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Introduction

Introducing the problematic
The problematic centers around Tennenbaum’s theorem, Tennenbaum [1959] ,
which is named after its discoverer Stanley Tennenbaum. It states that if M is a
non-standard model of PA, short for “Peano Arithmetic”, with domain N, then
neither +M nor ×M is a recursive function.

In a broader scale, the problematic centers around which arithmetical func-
tions/relations can be recursive in a non-standard countable model of PA, or
some weaker fragment of it. A closely related specific question is how weak can
a fragment of PA be to still satisfy Tennenbaum’s theorem.

Now, we explain in some detail some of the vocabulary used in the preceding
two paragraphs.

P A

The theory PA represent a particular formalization of the notion “arithmetical
theory” and its various properties.

To be more specific about the axiomatization of PA, it consists of axioms that
use constants 0 and 1, functional symbols + and × and a relational symbol < to
express basic truth that should hold in any structure interpreting given symbols
which is to be called a model of arithmetic. A standard such structure is N.

And to make it clear, the non-logical symbols of the base language, denoted
as LA, used for describing PA are constants 0 and 1, binary functions + and ×
and a binary relation <.

Let us mention, that we often differentiate between PA− which is axiomatized
by axioms defining the basic arithmetical properties of 0, 1,+,× and <. And PA
which is axiomatized by all the axioms of PA− + the induction axioms for every
LA formula.

Lastly, let us mention that “Peano Arithmetic” is named after Giuseppe
Peano, who introduced this formalization in his work Peano [1889], written in
Latin, and one can read an English translation in van Heijenoort [1967, pp. 83-
97].

Arithmetical functions/relations
Another arithmetical functions and relations of interest that are not included
implicitly in LA are introduced using defining axioms extending PA or some
weaker fragment of it we are considering, by a formula that is built from the
language we are extending.

Non-standard models
By non-standard (countable) models of PA are meant those that are not iso-
morphic to N (and are countable).
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Let us mention that we explain all the mentioned concepts in a greater detail,
and with less ambiguity, in the course of the main part of the text as it will be
need.

Other work on the subject
As we have already hinted at, there are two, three main kinds of questions about
the subject we are discussing.

• How weak a sub-theory of PA can be so that Tennenbaum’s theorem holds.

• Inspection of arithmetical functions/relations with respect to being recurs-
ive in a non-standard model of PA.

• Combination of the preceding two points. E.g. whether the divisibility
relation | can or can not be recursive in a non-standard model of I∆0,
which is a theory weaker than PA.

Besides these main types of questions, there are other more “exotic” ones, we
will comment on them right after the more mainstream results.

In the two subsections to come, we will mention results by other authors
concerning the introduced questions. And in the third section, we mention some
other sources, than this text, of presentations of Tennenbaum’s theorem.

Results on the topic
Let us mention that if we state that a model is “recursive”, then we mean that the
interpretation of + and × in that model are recursive functions. Furthermore,
when we are discussing recursivity, we discuss it with respect to structures which
domain is N.

One of the early results is that of Shepherdson [1964], stating that there can
be a recursive non-standard model of IOpen. Where by IOpen is meant PA−

together with the induction on all quantifier free formula.
This result was later strengthened by Berarducci and Otero [1996] showing

that there can be non-standard recursive model of IOpen + normality + with
an unbounded set of infinitely many non-standard primes. Where by IOpen +
normality is meant the extension of the theory IOpen with the following axiom
for all n ∈ N

∀x ∀y ∀z1 . . . ∀zn−1

((y ̸= 0 ∧ xn + z1 × xn−1 × y + . . .+ zn−1 × x× yn−1 + yn = 0)→
∃z (y × z = x)).

In Schmerl [1998] was proved that there exists a non-standard model M of PA
with |M , the divisibility relation, recursive and that there exists a non-standard
model M of PA with ∧M and ∨M recursive. Where by ∧ is meant a function
computing the greatest common divisor and by ∨ is meant a function computing
the least common multiple.
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In McAloon [1982] was proved that there can be no non-standard model M
of I∆0 where +M or ×M is recursive.

Later, in Wilmers [1985] was shown that there can be no non-standard model
M of IE1 with +M recursive. Where by IE1 is meant PA− + induction on quan-
tifier free formulas that may be enclosed by a finitely many bounded existential
quantifiers.

In D’Aquino [1997] the author considers a binary function denoted by #(x, y).
It is introduced as an axiomatic extension of the language with the intended
interpretation of #(x, y) = x[log2y]. Furthermore, if T is some theory, then by T#

we mean the theory T + defining axioms for #. The respective author shows the
following results.

• Let M be a non-standard model of PA#, then #M is not a recursive func-
tion.

• If M is a non-standard model of IE#
1 , then neither of +M ,×M and #M is

recursive.

• If M is a non-standard model of IE−#
1 and M ̸|= ∀E1(N), then neither of

+M ,×M and #M is recursive. Where by IE−#
1 is meant IE#

1 but only with
parameter free induction. And by ∀E1(N) is meant all the sentences true
in N s.t. they are also provable in PA− + induction on all the formulas
s.t. they are quantifier free enclosed by a finitely, possibly 0, many bounded
existential quantifiers which are in turn enclosed by a finitely many, possibly
0, unbounded universal quantifiers.

• Let M be a non-standard model of ∀E#
1 (N), then then neither of +M ,×M

and #M is recursive. Where ∀E1(N) is explained in the previous item and
∀E#

1 (N) is basically the same only with the language extended by #.

Furthermore, in D’Aquino [1997] is stated and proved the following statement. If
f is a unary function s.t.

• f is computable,

• f is injective,

• range(f) is coinfinite,

• f has no cycles.

Then there is a non-standard model of PA where f , more precisely its represent-
ation in that model, is recursive.

Lastly, in Yaegasi [2008] the author concentrates on the recursiveness of unary
functions. For example, it is showed there that all the following pairs of functions
can not be recursive in a non-standard model of PA.

• 2× x and 2× x+ 1,

• x2 and 2× x2,

• 2x and 3x.
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Furthermore, Yaegasi [2008] shows that for any total computable unary injec-
tion f(x) there is a non-standard model of PA where f(x) is recursive. Hence,
strengthening the result of D’Aquino [1997].

To the best of our current knowledge, the most interesting unanswered prob-
lems are the following ones.

• Can there be a non-standard recursive model of IE−
1 ?

• Can there be a non-standard recursive model of ∀E1(N)?

Lastly, in Kaye [1991] is proved (and we have it from D’Aquino [1997]) the
following,

(i) ∀E1(N) ⊢ IE−
1 and

(ii) for every ϕ ∈ ∀E1(N), if M |= IE−
1 + ¬ϕ, then M is not recursive.

Hence, the two most interesting unanswered problems boil down to “Can there
be a non-standard recursive model of ∀E1(N)?”, i.e. the second one.

With respect to the last mentioned question, in Kaye [1990, p. 39] is given a
condition, which if holds, then there can be no non-standard recursive model of
∀E1(N).

More “exotic” results
In Godziszewski and Hamkins [2017] authors prove mainly the following.

• No non-standard model of PA has a computable quotient presentation by
a computably enumerable equivalence relation.

• No Σ1-sound non-standard model of PA has a computable quotient present-
ation by a complementary computably enumerable equivalence relation.

• No non-standard model of PA in the language {+,×,≤} has a computably
enumerable quotient presentation by a equivalence relation of any complex-
ity.

In Pakhomov [2022] the author proves mainly the following.

• There is a theory definitionally equivalent to PA that has a computable
model s.t. the corresponding PA model is non-standard.

• There are no theories definitionally equivalent to Th(N) that have comput-
able models corresponding to non-standard models of PA.
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Various presentations of Tennenbaum’s theorem
We mention a few, other than this text, expositions of Tennenbaum’s theorem.

In Kaye [2011], the author sets the scene with a historical background on
the topic. Then presents Tennenbaum’s theorem emphasizing its connection
to Gödel-Rosser theorem, see Rosser [1936]. And finishes with examining the
connections on extensions of Tennenbaum’s theorem to diophantine problems in
models of PA.

In the book Kaye [1991, pp. 153-158], the same author as of the preceding
article, proves Tennenbaum’s theorem for + first in PA, i.e. a result of Tennen-
baum [1959], and then proves Tennenbaum’s theorem for + in I∆0, i.e. a result
of McAloon [1982].

In Smith [2014] author presents Tennenbaum’s theorem for + in PA and the
article is in fact inspired by Kaye [1991], i.e. the book we have just mentioned.

Lastly in Boolos et al. [2007, pp. 306-312] there are presentations of the
following.

(a) There is no non-standard model of Th(N) with domain N in which the
addition function is arithmetical.

(b) There is no non-standard model of PA with domain N in which the addition
function is recursive.

(c) There is no non-standard model of Th(N) with domain N in which the
multiplication function is arithmetical.

(d) There is no non-standard model of PA with domain N in which the multi-
plication function is recursive.

It is worth noting though that the detail of proofs are uneven. To (almost)
quote from Boolos et al. [2007, p. 306], where given letters match letters given
to respective just stated respective results. “The proof of (a.) will be given in
some detail. The modifications needed to prove Theorem (b.) and those needed
to prove Theorem (c.) will both be indicated in outline. A combination of both
kind of modifications would be needed for Theorem (d.), which will not be further
discussed.”

This text
Structurally, the thesis is separated into PART I and PART II which are further
subdivided into chapters.

Only some introductory-like knowledge of mathematical logic and computab-
ility/recursion theory is needed for this text, for an introductory to both one can
look at e.g. Boolos et al. [2007]. And occasionally, also some basic knowledge of
cardinal arithmetic is useful, one can find further details e.g. in Enderton [1977,
Chapter 6].

We will now state in a concise manner what can be found in PART I and
PART II. For further details please see chapter 11.3, for example, we state there
our results from PART II.
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PART I
In PART I, we present Tennenbaum’s theorem for + and ×. Moreover, we present
the case for + in a strengthened version for I∆0, which is due to K. McAloon,
and to be even more specific we present it for models of PA− + Overspill for N
on ∆0 formulas. Then we inspect the order-type of models of PA− + Overspill
for N on ∆0 formulas, as a corollary, we get that there is a non-standard model
of PA with domain N s.t. < and the successor are both recursive with respect to
it. In order to reach these results, we start PART I with some preliminary work.
We introduce PA and its various weaker versions like PA−, prove a number of
properties of the respective theories, recall and prove results from recursion theory
and present a way to code sets using models of PA−, more precisely of I∆0.

This part consists of known results and known techniques to solve them.
The reader might ask why not to go rather after one of the sources mentioned

in “Various presentations of Tennenbaum’s theorem”.
We will list some differences to, already mentioned, sources that we have used

the most.

• Compared to Kaye [1991, pp. 153-158], we show also the case for × for
non-standard models of PA.

• Compared to Smith [2014], we again show also the case for ×, and show it
for models of I∆0, which is somewhat only hinted at in Smith [2014].

• Compared to Boolos et al. [2007, pp. 306-312] we fill some of the, hinted at,
gaps of the proof of Tennenbaum’s theorem for + and ×, and we actually
show it for I∆0 as opposite to PA.

Some further differences are loosely mentioned in chapter 11.3.
Regarding the sources for PART I. The PART I is heavily influenced, regarding

both the form and content, by Kaye [1991]. Hence, many similarities to Kaye
[1991] can be found in this text. More specifically.

• Things were taken from Kaye [1991, Chapters 2 and 4] to produce chapter 1.

• Things were taken from Kaye [1991, Chapters 4, 5 and 6] to produce
chapter 2.

• Things were taken from Kaye [1991, Chapter 3] to produce chapter 3.

• Things were taken from Kaye [1991, Chapter 11] to produce chapter 4 and
chapter 5.

• Things were taken from Kaye [1991, Chapter 6] to produce chapter 6.

In general, it can be said that we are greatly in debt to Kaye [1991].
Regarding further sources that inspired mainly, but not only i.e. they influ-

enced also other segments, the presentation of Tennenbaum’s theorem. We were
inspired mainly by Kaye [1991, pp. 153-158], Smith [2014] and Boolos et al. [2007,
pp. 306-312]. And there can be again found many similarities to those sources
in this text.
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PART II
In PART II, we investigate the functions x div y, the quotient function, and
x mod y, the remainder function, with respect to being recursive in non-standard
models of PA or its weaker fragments. Furthermore, we often restrict the second
argument, i.e. y to some standard number, and ask the same type of questions.
We chose these two functions since they occur very naturally in many questions
in computer science and number theory. To reach these goals, we also investigate
properties of div and mod in PA, often in IΣ1, especially the structure of x div
n for n being a standard number. We did not manage to answer all the reasonable
questions that have emerged to us when asking about recursiveness of div and
mod, nevertheless, we have answered some of them.

Declaration
To conclude this introduction, I want to declare that both the the writing process
and the finishing of the writing of the thesis, in order to submit it by the deadline,
was a very hectic one and it was caused entirely by me. Therefore, I want to
emphasize that all the mistakes, errors,. . . are solely my responsibility and no one
else’s.
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Part I

Tennenbaum’s theorem and the
order-type of models of PA
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1. Observations and tools in PA−

In this introductory chapter, we shall get acquainted with the language of arith-
metic, LA, and the theory of PA− which is formed by a set of first − order
axioms with respect to the LA. Axioms of PA− more or less formalize obvious
mathematical truths that should hold for N with standard +,× and <.

1.1 What is actually PA−?

Language of arithmetic - LA

First, we formally introduce the first-order language of arithmetic, denoted as
LA, that will specify which structures we are interested in.

The non-logical symbols of LA are

• constant symbols 0 and 1,

• two binary functional symbols + and ×,

• one binary relational symbol <

and inherently the symbol = for equality. The = will represent in every structure
equality in its standard interpretation.

Besides the non-logical symbols of LA just mentioned, we will construct for-
mulas in the framework of the first-order logic, also denoted in this text as FOL.
I.e. LA also contains all the well known logical symbols such as

• logical connectives: ∨,∧,¬

• quantifiers: ∃,∀

• variables, denumerably many: x0, x1, . . .

• parenthesis: (, )

This concludes the formal introduction of the LA.
We will also use a few meta-logical notations that are not part of the LA.

• ≡ for defined as

• ⇒,⇐ for implies, is implied by

• ⇔ or ⇐⇒ for is equivalent to

Let φ,ψ be two formulas in the LA, we will define “missing“ logical connectives
using the already introduced ones:

• (φ ⊻ ψ) ≡ ((φ ∨ ψ) ∧ (¬(φ ∧ ψ))), i.e. ⊻ is φ or ψ but not both

• (φ→ ψ) ≡ (¬(φ) ∨ ψ)

• (φ← ψ) ≡ (ψ → φ)

11



• (φ↔ ψ) ≡ ((φ→ ψ) ∧ (ψ → φ))

Note that ∧,∨ are associative. Therefore it does not matter how we bracket
them, e.g. we can just write x ∧ y ∧ z.

We could have introduced those right away with the ∨,... , there is no differ-
ence for us, i.e. you can freely imagine that they were introduced as primitive
connectives. There is no difference for us because if we would have e.g. introduced
→ as an undefined connective and we would have defined when M |= (φ → ψ),
for any structure M of LA, then we would surely define it in a way that would
satisfy M |= (φ→ ψ) ⇐⇒ M |= (¬(φ) ∨ ψ).

Let us introduce one shortcut, if y and z are two list of variables of length
m+ 1, then by y = z we simply mean y0 = z0 ∧ . . . ∧ ym = zm.

Now, we shall define a quantifier denoted as ∃! for all of variables x and
formulas φ(y) we define

∃!x φ(y, x) ≡ ∃x (φ(y, x) ∧ ∀z (φ(x, z)→ y = z)).

Again, the reader might assume that ∃! was introduced as a primitive quan-
tifier with the standard interpretation in mind.

We will often adhere to the typical simplifications as omitting brackets when
possible, as always, and necessary, binary relations written in infix notation bind
more than ¬,∃, ∃!,∀ which are more binding than ∧,∨ which are in turn more
binding than→ and↔, and to many other standard simplifications and notations.

If not stated otherwise, the considered language will be always LA or some
extension of it. I.e. if no language is stated, then it is implicitly meant that LA,
or some extension of it according to the context, is used.

Axioms of PA−

Now, we shall approach axioms of the theory PA− with respect to the language
LA. These axioms embody obvious algebraic arithmetical truths in N. Later, in
the section 2.1, we will add infinitely many induction axioms to the theory of
PA− that will result in the creation of the theory PA.
The axioms of P A−, taken almost indentically from Kaye [1991, pp.16-18], are:

• The functions + and × are commutative and associative, and × is dis-
tributive over +.

Ax.1 ∀x, y, z ((x+ y) + z = x+ (y + z)),
Ax.2 ∀x, y (x+ y = y + x),
Ax.3 ∀x, y, z ((x× y)× z = x× (y × z)),
Ax.4 ∀x, y (x× y = y × x),
Ax.5 ∀x, y, z (x× (y + z) = x× y + x× z).

• Constant 0 is neutral element with respect to + and analogously 1 is neutral
element with respect to ×. Moreover, when 0 is multiplied by any element,
then we get the expected result 0.

Ax.6 ∀x ((x+ 0 = x) ∧ (x× 1 = x)),
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Ax.7 ∀x (x× 0 = 0).

• The relation < is a linear order.

Ax.8 ∀x, y, z ((x<y ∧ y<z)→ x<z),
Ax.9 ∀x¬(x<x),

Ax.10 ∀x, y (x<y ∨ x=y ∨ y<x).

• Before stating the next axioms, let us introduce one abbreviation. We define
x ≤ y ≡ x < y ∨ x = y. We can look at it as at an abbreviation, i.e. every
time we see x ≤ y in a LA formula we simply substitute it for x < y∨x = y.
No further result breaks this way since the formula x < y ∨ x = y is of very
small complexity (namely it is a ∆0 formula, definition of ∆0 will be found
in section 1.3). Or, on the other hand, we may have extended our language
by ≤ and added one more axiom to the PA− namely x ≤ y ↔ x < y∨x = y.
We will use the latter approach, but at least for our usage in this text are
both ways equivalent. This adding an abbreviation vs. extending a language
will happen multiple times throughout this text, therefore we have decided
to comment it here a bit more thoroughly. We will comment on it one more
time at the start of section 1.4.
We introduce in an analogous way also > and ≥.
Operations + and × are well behaved with respect to <.

Ax.11 ∀x, y, z (x<y → x+ z<y + z),
Ax.12 ∀x, y, z (0<z → (x<y → x× z<y × z)),
Ax.13 ∀x, y (x≤y → ∃z (x+ z=y)).

• The following last two axioms ensure < to be a discrete order.

Ax.14 0<1 ∧ ∀x (0<x→ 1≤x),
Ax.15 ∀x 0≤x.

This concludes the presentation of the axioms forming PA−.

Remark on the notation
If M is a LA structure then we will often use:

• M,M or dom(M) for its domain,

• 0, 1 for the constants 0M, 1M,

• + for the binary function +M,

• × for the binary function ×M,

• < for the binary relation <M.

Lastly, we will often simply write M or M for the whole structure M.
If we use the shorter notation, e.g. < for <M or <M , then we shall do it only

in places where no confusion can arise.
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Remark on reducts/expansions
Let L0 ⊆ L ⊆ L1 be some arbitrary languages, i.e. the logical parts are the same,
however the non-logical symbols for constants/functions/relations does not need
to have anything in common with LA. Also let M be some L structure.

Then by a reduct of M to L0, denoted as < M,L0 > or (M,L0) if no confusion
arises, we mean a L0 structure M0 s.t. dom(M0) = dom(M) and every symbol
of L0 has the same interpretation in M0 as in M .

Symmetrically, we say that a L1 structure M1 is an expansion/extension of
M if M is a reduct of M1 with respect to L.

Lastly, let us highlight that when we write e.g. T is an expansion/extension
of PA− or L is an expansion/extension of LA, then we do not mean it in strict
sense, meaning that T = PA− or L = LA can happen.

Standard models of PA−

The typical structure N = (N, 0, 1,+,×, <) giving the standard interpretation to
the LA obviously satisfies all the axioms of PA−.

Structures of the LA satisfying PA−, or PA, isomorphic to N are called stand-
ard models of PA−, or PA, and those which are not isomorphic to it are called
non-standard models of PA−, or PA.

Later on, we will observe that a structureM is non-standard iff. M has a “non-
standard element”, non-standard elements are introduced later in section 1.4.

Miscellaneous comments
• The later we are in the text, the less we differentiate between words “com-

putable”, “algorithmical” and “recursive”. Especially in proofs with respect
to the “recursion theory” formalism where we give rather intuitive argu-
ments than rigorous ones.

• By Gödel’s completeness theorem Gödel [1929], for an English translation
see van Heijenoort [1967, pp. 582-591] and for a more up to date proof see
Chiswell and Hodges [2007, p. 193, Theorem 7.6.7], we know that some
theory T proves some sentence ϕ iff. every model of T models ϕ. Therefore,
we often use T proves something with every model of T models something
interchangeably.

• By WLOG we mean, as usual, “without loss of generality”.

• We use mainly the symbol × for multiplication. But rarely we omit and
write xy instead of x× y, or possibly write x · y. I.e. in both cases always
imagine that × is there.

• We define for any n ∈ N, the expression [n] as the set {0, . . . , n}.

1.2 Deductions from the axioms of PA−

We will note few simple corollaries of the axioms of PA−.
In the proofs to follow, M is always a model of PA−.
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Since this a just a collection of statements and their respective proofs that
should hold in non-negative parts of discretely ordered commutative rings, the
reader might want to skip this section, and return to it when/if needed.

Order < behaves as expected
The order relation < behaves as expected.

Observation 1.1. PA− ⊢ ∀x, y (x < y ⊻x = y ⊻x > y), i.e. exactly one of those
three options will happen.

Proof. By Ax.10 [trichotomy <] we know that at least one possibility happens.
By Ax.9 [irreflexivity <] we get that the first, as well as the last, two options can
not happen. First applying Ax.8 [transitivity <] and then Ax.9 [irreflexivity <]
we get that nor the first and the last possibility can happen simultaneously.
Therefore exactly one option will happen.

Observation 1.2. PA− ⊢ ∀x, y (x ≤ y ∧ z < d→ x+ z < y + d).

Proof. If x = y, then use Ax.11 [x < y →x+ z < y + z] and afterwards Ax.2
[commutativity +] . Otherwise if x < y, then use Ax.11 [x < y →x+ z < y + z] to
conclude that x+ z < y+ z and z+ y < d+ y. Afterwards us Ax.2 [commutativ-
ity +] and Ax.8 [transitivity <] to finally conclude that x+ z < y + d.

Corollary 1.3. PA− ⊢ ∀x, y (x ≤ y → x < y + 1).

Proof. By noting Ax.14 [0 < 1∧(0 < x→ 1 ≤ x)] , then applying Observation 1.2
and lastly using Ax.6 [0, 1 are neutral] .

Max function can be defined well in PA−

Observation 1.4. Let M |= PA−, n ∈ N and x0, . . . , xn ∈ M . Set X :=
{x0, . . . , xn} then

(i) There exist x ∈ X s.t. M |= ∀y ∈ X(y ≤ x)

(ii) In case all xi’s are mutually different, i.e. |X| = n, there exists unique
x ∈ X s.t. M |= ∀y ∈ X(y ≤ x).

Proof. (i) Proof is by induction on n. If n = 0, then set x = x0. Otherwise
assume that we have X = {x0, . . . , xn+1}. Apply the induction hypothesis
to X ′ := {x0, . . . , xn} to get x′ with the property in the statement of this
observation for X ′ . By Ax.10 [trichotomy <] we know that x′

< xn+1 or
xn+1 ≤ x

′ . In the first this case set x := xn+1 and in the second case set
x := x

′ . By the way we chose x′ , Ax.8 [transitivity <] and the definition of
≤ we get that x satisfies the desired property.

(ii) By the previous point we get that there must exists such a x. If there were
two x’s, namely x1, x2, satisfying the property of this observation, we have
that either x1 = x2, which is what we want. Or that x1 < x2 and x2 < x1,
by the definition of ≤. But using Ax.8 [transitivity <] we get that x1 < x1

which is in contradiction with Ax.9 [irreflexivity <] . Therefore x1 = x2

must hold and the uniqueness of x follows.
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Min function can be defined well in PA−

Observation 1.5. Let M |= PA−, n ∈ N and x0, . . . , xn ∈ M . Set X :=
{x0, . . . , xn} then

(i) There exist x ∈ X s.t. M |= ∀y ∈ X(x ≤ y)

(ii) In case all xi’s are mutually different, i.e. |X| = n, there exists unique
x ∈ X s.t. M |= ∀y ∈ X(x ≤ y).

Proof. Proof is analogous to the one for Observation 1.4.

Operations +,× behave as expected
We can cancel terms on both sides of an equation.

Observation 1.6. PA− proves the following

(i) x+ z = y + z → x = y,

(ii) x× z = y × z ∧ 0 < z → x = y.

Proof. (i) Assume x + z = y + z. If x < y, then applying Ax.11 [x < y →
x+ z < y + z] we have x + z < y + z but this can not happen by Obser-
vation 1.1. Analogously for y < x. We may conclude by Ax.10 [tricho-
tomy <] that x = y must hold.

(ii) Assume x×z = y×z∧0 < z. Proof is similar to the one for +. Specifically,
assume x < y, then by Ax.12 [(x < y ∧ 0 < z)→x× z < y × z] we have
x × z < y × z which can not be by Observation 1.1 and our assumption
x× z = y × z. Analogously we get that y < x can not hold. Therefore by
Ax.10 [trichotomy <] we can conclude that x = y.

We will note two simple corollaries of Ax.11 [x < y →x+ z < y + z] and Ax.12
[(x < y ∧ 0 < z)→x× z < y × z] , sort of a weakening of those two.

Corollary 1.7. PA− ⊢ ∀x, y, z (x≤y → x+ z ≤ y + z)

Proof. If x = y or z = 0, then the conclusion is obvious. Otherwise x < y and
then the conclusion follows by Ax.11 [x < y →x+ z < y + z] .

Corollary 1.8. PA− ⊢ ∀x, y, z (x≤y → x× z≤y × z)

Proof. If x = y or z = 0, then the conclusion is obvious by Ax.7 [x× 0 = 0] .
Otherwise by Ax.15 [0 ≤ x] we have that 0 < z and Ax.12 [(x < y ∧ 0 < z)→
x× z < y × z] can be applied.

Also note the following.

Observation 1.9. PA− ⊢ ∀x, y, z x ≤ y → x ≤ y + z
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Proof. Since M |= 0 ≤ z, by Ax.15 [0 ≤ x] , we get by Corollary 1.7 that M |=
0 + x ≤ z + x. Using Ax.2 [commutativity +] and Ax.6 [0, 1 are neutral] we
observer M |= x ≤ x+ z.

Continuing, by Ax.11 [x < y →x+ z < y + z] follows that M |= x+z ≤ y+z.
And finally applying Ax.8 [transitivity <] we can conclude that M |= x ≤ y +
z.
Observation 1.10. PA− ⊢ ∀x, z (0 < z → x ≤ x× z)
Proof. Since M |= 0 ≤ z, by Ax.15 [0 ≤ x] , we get by Corollary 1.8 that M |=
0 × x ≤ z × x. Using Ax.4 [commutativity ×] and Ax.7 [x× 0 = 0] we observe
M |= x ≤ x× z.

For Ax.11-.13 also the converses hold.
Observation 1.11. PA− proves the following

(i) ∀x, y, z (x<y ← x+ z<y + z),

(ii) ∀x, y, z (0<z → (x<y ← x× z<y × z)),

(iii) ∀x, y (x≤y ← ∃z (x+ z=y)).

(iv) ∀x, y (x<y ↔ ∃z (z > 0 ∧ x+ z=y)).
Proof. (i) By Ax.10 [trichotomy <] , one of the two things can happen x<y or

x≥y. If x≥y then by Ax.11 [x < y →x+ z < y + z] we get x + z≥y + z.
If x + z = y + z, then it is a contradiction with Ax.9 [irreflexivity <] ,
if x + z > y + z, then using Ax.8 [transitivity <] we again arrive at a
contradiction with Ax.9 [irreflexivity <] . Therefore x<y must indeed take
place.

(ii) Assume we have, i.e. PA− proves, 0<z and x× z<y× z. If x ≥ y, then by
Ax.12 [(x < y ∧ 0 < z)→x× z < y × z] we get y × z≤ x × z, but we can
not have both y× z≤x× z and x× z<y× z by Observation 1.1. Therefore
we can not have x ≥ y, and from Ax.10 [trichotomy <] we must have x ≥ y
or x < y, therefore we indeed get that x < y must hold, i.e. PA− proves it
from the two starting assumptions.

(iii) Assume that PA− ⊢ ∃z (x + z = y). If PA− ⊢ z = 0, then by Ax.6
[0, 1 are neutral] can be concluded that PA− ⊢ x ≤ y. Otherwise if we have
0 < z, then we get by Ax.11 [x < y →x+ z < y + z] that 0 + x < z + x, by
Ax.2 [commutativity +] and Ax.6 [0, 1 are neutral] , we may conclude that
x < y. Therefore we got either way the wanted inequality of x ≤ y.

(iv) ⇒: Since 0 < z we are getting by Ax.11 [x < y →x+ z < y + z] that 0 +
x < z+x, therefore by Ax.2 [commutativity +] and Ax.6 [0, 1 are neut-
ral] we get x < y.

⇐: By Ax.13 [x ≤ y →∃z(x+ z = y)] we get that there exists a z s.t. x+
z = y. If z = 0, then by Ax.6 [0, 1 are neutral] we get that x = y
which combined with our assumption of x < y produces a contradiction
because of Ax.9 [irreflexivity <] . Therefore by Ax.15 [0 ≤ x] it follows
that 0 < z.
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As a one direct corollary of the first item of Observation 1.11 we shall mention
the following.

Corollary 1.12. PA− ⊢ ∀x, y, z (x≤y ← x+ z≤y + z)

Proof. Assume that PA− ⊢ x + z ≤ y + z, if moreover to that x + z < y + z,
then by Observation 1.11 x < y, therefore x ≤ y. If x + z = y + z then using
Observation 1.6 we get that x = y from which x ≤ y follows.

We will also note that the z in Observation 1.11 is unique, therefore we could
have used the article...

Corollary 1.13. In Observation 1.11 we may also replace ∃z by ∃!z. More
specifically PA− proves the following

(i) ∀x, y (x≤y → ∃!z (x+ z=y)).

(ii) ∀x, y (x<y → (∃!z (x+ z=y) ∧ ∀z (x+ z = y → 0 < z))).

Proof. The last part in the second item, i.e. ∀z (x + z = y → 0 < z) assuming
x < y, can be justified as follows. By Ax.15 [0 ≤ x] 0 ≤ z, if 0 = z, then
by Ax.6 [0, 1 are neutral] we get x = y, and we have both x < y and x = y
which can not be by Observation 1.1. Everything else follow by Observation 1.11,
Observation 1.6 and Ax.2 [commutativity +] .

Let us highlight two useful , although obvious, corollary.

Corollary 1.14. PA− ⊢ ∀y (1 ≤ y → ∃!x (x+ 1 = y))

Proof. Apply Corollary 1.13 and Ax.2 [commutativity +] .

Corollary 1.15. PA− ⊢ ∀x (x+ 1 ̸= 0)

Proof. Assume for contradiction that it can happen. Then by the last item in
Observation 1.11 we get that x < 0, which is by Ax.15 [0 ≤ x] and Observation 1.1
impossible.

Discreteness of the order <.

Observation 1.16. PA− ⊢ x < y → x+ 1 ≤ y

Proof. By the last item of Observation 1.11 we get z s.t. x+ z = y ∧ 0 < z. This
z must satisfy by Ax.14 [0 < 1∧(0 < x→ 1 ≤ x)] that 1 ≤ z. Therefore we get
by Corollary 1.7 and Ax.2 [commutativity +] that x + 1 ≤ x + z. The wanted
conclusion x+ 1 ≤ y immediately follows.

Hopefully, it is obvious by now to the reader that we can prove many basic
arithmetical truths just from the axioms of PA−.

1.3 Arithmetical hierarchy
A few classes of formulas turn out to be particularly useful to us, specifically ∆0
and Σ1 formulas. But before approaching these classes, and the whole Arithmet-
ical hierarchy, we need to introduce the notion of a bounded quantifier.
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Bounded quantifiers
Let t be a term without the variable x present, then we say that the quantifier ∃
is bounded in the following occurrence ∃xφ(y, x) iff. φ(y, x) is of the following
form (x<t∧ψ(y, x)), or with≤ instead of <. And the quantifier ∀ is bounded in
the following occurrence ∀xφ(y, x) iff. φ(y, x) is of the following form (x< t →
ψ(y, x)), or with≤ instead of <.

One more notation is often used, that is the bound is written inside the
quantifier, i.e. we write ∃x < tψ(y, x) instead of ∃x (x < t ∧ ψ(y, x)). And the
same goes for the ∀ quantifier.

We will use only the ∃ and ∀ quantifiers in the definition of the arithmetical
hierarchy. But the notion of a bounded quantifier can be obviously extended also
to ∃! together with the notation shortcut.

The Arithmetical hierarchy

We will be interested mainly in the classes of ∆0 and Σ1 formulas. Since there
is not much difference in defining only them compared to the definition of the
whole Arithmetical hierarchy we opted for the latter.

Now, we will approach the aforementioned formula classes.

Definition 1.1 (Strict Arithmetical hierarchy). Let i ∈ N.

∆0: A formula φ(x) is a strict ∆0 formula iff. all the quantifier occurrences
which are in φ(x) are bounded. We also extend the notation and say that
the a formula is a strict Σ0, or Π0, formula iff. it is a strict ∆0 formula.

Σi+1: A formula φ(x) is a strict Σi+1 formula iff. it is of the form ∃y ψ(x, y)
where ψ(x, y) is a strict Πi formula.

Πi+1: A formula φ(x) is a strict Πi+1 formula iff. it is of the form ∀y ψ(x, y)
where ψ(x, y) is a strict Σi formula.

Where ∃y or ∀y is a shortcut for a finite, possibly empty, list of corresponding
quantifiers with single variables. I.e. it symbolizes Qy0, . . . , Qyn−1, where Q
represents ∃ or ∀ and n ∈ N s.t. y is a n-tuple.

Definition 1.2 (Arithmetical hierarchy). Let i ∈ N. We say that φ(x) is a Σi

or Πi formula iff. it is equivalent over the theory T we consider, it is going to be
always PA− or some extension of it, to a strict Σi or Πi formula. We also say
that φ(x) is a ∆i formula iff. it is equivalent over the theory T we consider, to
both a strict Σi and a strict Πi formula.

Furthermore, we also associate with ∆i, Σi and Πi the sets of their respective
formulas, e.g.

Σi := {φ(x)|φ(x) is equivalent in T to a strict Σi formula}.

Since the list of quantifiers may be empty we have e.g. that ∆0 ⊆ Σ1 ⊆ Π2.
And also that ∆0 ⊆ Σ1σ2.

Let us note that we will often omit from mentioning over which theory T we
mean whether two formulas are equivalent since it should be obvious from the
context. And if it does not stem from the context, then always assume that the
theory is PA− or some extension of it we discuss at the moment.
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Remark about the Σ1 class
We mention one, relatively important, observation that any Σ1 formula “need”
only one unbounded existential quantifier.

In the proof to follow the theory T , from Definition 1.2, is always going to
be PA−. Therefore, the result obviously holds also for T being an extension of
PA−.
Observation 1.17. Let i, k ∈ N and φ(x) be a LA formula. If φ(x) is a Σ1
formula, then it is equivalent in T to a LA formula ∃uψ(x, u) s.t. ψ(x, u) is a ∆0
formula.
Proof. Since φ(x) is a Σ1, it is equivalent, in T , to a ∃y ϑ(x, y) formula for ϑ(x, y)
a strict ∆0 formula. But ∃y ϑ(x, y) is obviously equivalent over PA− to the
formula ∃u∃y < uϑ(x, y) where ∃y < uϑ(x, y) is clearly a ∆0 formula. To be
more specific, they are equivalent over PA− thanks to the fact that max is well
defined by Observation 1.4 and Corollary 1.3. Therefore, when showing the ⇒,
we can just set u to the max{y0, . . . , yn−1} + 1, for n being the length of the y.
And the ⇐ is obvious by the FOL.

We mention, without a proof - for a hint see e.g. Kaye [1991][Chapter 7, p.
80-81], that the just proved result generalizes to Σi or Πi formulas for any i ∈ N
for a theory S I∆0 which is a bit stronger than PA−, the ∆0 is introduced in
section 2.1. I.e. for any i ∈ N and φ(x) in Σi+1 or Πi+1, we have that the formula
is always equivalent in S to a ∃y0∀y1 . . . Qyiψ(x, y) or ∀y0∃y1 . . . Q

′
yi−1ψ(x, y), for

ψ(x, y) a ∆0 formula. Where Q is ∃ and Q
′ is ∀ if i is odd, and if i is even it is

the other way around.

1.4 Additional notation, functions and relations
In this section, we shall introduce additional functions, relations and notation
that will come handy sooner or later.

Introducing new relational and functional symbols
Before introducing new symbols, let us partly repeat one more time the following.
Let us also note that T is always going to be PA− or some extension of it.

To introduce a new n-ary relational symbol R with respect to some theory T
we do it by using some LA, or some extension of it, formula φ(x), where x is an
n-tuple. S.t. we usually either

• extend our language by R. And we add to our theory T axiom that R(x)↔
φ(x).

* or we do not extend our language, but we write formulas with R in it keeping
in mind that it is just a shortcut for the φ(x).

As you can see these two ways are basically identical.
To introduce a new n-ary functional symbol f with respect to some theory T

we do it by using some LA, or some extension of it, formula φ(x, y), where x is
an n-tuple, s.t. we demand that T proves that ∀x∃!yφ(x, y). Then we usually
either
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• extend our language by f . And we add the following formula to our set of
axioms ∀xφ(x, f(x)).

* we write formulas with f(x, y) but keeping in mind, that it is just a short-
cut. Namely if we have occurrences of f in a formula ψ(x, z), then these
occurrences must be always “inside” some occurrence of some relational
symbol.
In order to retrieve the actual formula, we simply replace every occurrence
of f(t0, . . . , tn−1), for any set of terms t0, . . . , tn−1, in ψ(x, z) step by step
in the following fashion.
Let t0, . . . , tn−1 be some set of terms and f(t0, ldots, tn−1) be some occur-
rence of f in ψ(x, z) “inside” some occurrence of some relational symbol R,
denote this specific occurrence by R′ .
We simply replace every occurrence of f(t0, ldots, tn−1) in R′ by some vari-
able w not present in R′ to get a new occurrence of R, denote it by R∗. And
then we replace the occurrence of R′ in ψ(x, z) by ∃w(φ(t0, . . . , tn−1)∧R∗).
And we do this for every occurrence of f . Since are all the described steps
finite and there is a finite number of occurrences of f in ψ(x, z) we must end
sooner or later with a formula that is equivalent, over the extension of PA−

we are considering with an addition of the defining axiom ∀xφ(x, f(x)), to
ϖ(x, z), but now without the symbol f .

We will use the first described approach both for adding new relations and
functions, but let us note that there is not some great difference between them.

In the preceding section about the Arithmetical hierarchy, section 1.3, we
defined a way to classify formulas, roughly speaking, according to the number of
alternating quantifiers. However, when we introduce e.g. a new relational symbol
R(x) defined by the formula ϱ(x) ↔ R(x), then the formula φ(x, y) with R in
it might not belong to the same members of the Arithmetical hierarchy as the
formula ψ(x) that we got from φ(x, y) by substituting every occurrence of R(x)
by ϱ(x). Therefore, when classifying a formula in an extension of the LA we
always first transform it into an equivalent, over T+ all the defining axioms we
are considering, formula formed solely by the LA. Actually a single step of this
transformation process is described by the second items, denoted as “*“, which
describe one way to introduce a new relational/functional symbol to formulas we
consider.

We would also like to note the reader that will classify formulas according to
the Arithmetical Hierarchy only a couple of times and every time we will only
ask whether a formula belongs to the ∆0, possibly the Σ1, class of formulas.
Furthermore, the answers to these questions will be, at least intuitively, obvious
even without the discussion we just gave.

And probably the most important thing to take from this subsection is that
we can always convert formulas in an extension of LA to formulas in LA which
are equivalent in some theory T+ all the defining axioms we are considering.

For additional details see e.g. Kaye [1991, Section 4.2.]. This section does
however treat mostly the process of adding new relational/functional symbols
with respect to the induction axioms, to be introduced in section 2.1.
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Successor, predecessor, minus and divides
Title of the forthcoming subsection reveals what we are going to introduce.

Let us highlight that the process of adding new symbols takes places with
respect to PA− or some extension of it.

Definition 1.3 (Successor - S(x)). We introduce a new unary functional symbol
S(x), the successor function, by the following formula φS(x)(x, y) ≡ y = x+ 1.

Definition 1.4 (Predecessor - P (x)). We introduce a new unary functional sym-
bol P (x), the predecessor function, by the following formula φP (x)(x, y) ≡ (x =
0 ∧ y = 0) ∨ (y + 1 = x).

Definition 1.5 (minus - .−). We introduce new binary functional symbol x .− x,
the subtraction function, by the following formula φ .−(x, z, y) ≡ (x < z ∧ y =
0) ∨ (z + y = x)).

In the light of section 1.4, we need to show that

PA− ⊢ ∀x∃!yφS(x)(x, y),
PA− ⊢ ∀x∃!yφP (x)(x, y),

PA− ⊢ ∀x∀z∃!yφ .−(x, z, y),

to justify the definitions we have just given.

Observation 1.18.

(i)
PA− ⊢ ∀x∃!yφS(x)(x, y)

(ii)
PA− ⊢ ∀x∃!yφP (x)(x, y),

(iii)
PA− ⊢ ∀x∀z∃!yφ .−(x, z, y),

Proof. (i) Existence is obvious as well as uniqueness.

(ii) Existence follow by Ax.15 [0 ≤ x] , Ax.14 [0 < 1∧(0 < x→ 1 ≤ x)] and Ob-
servation 1.6. Uniqueness follow by Corollary 1.15 and by a combination of
Ax.15 [0 ≤ x] , Ax.14 [0 < 1∧(0 < x→ 1 ≤ x)] and Observation 1.6.

(iii) Existence follow by Ax.10 [trichotomy <] and (i) in Corollary 1.13, the first
item is used. Uniqueness follow by a combination of the third item in Ob-
servation 1.11, Ax.8 [transitivity <] and Ax.9 [irreflexivity <] and then by
a combination of Ax.10 [trichotomy <] and the first item in Corollary 1.13.

Definition 1.6 (Divides - x0 | x1). We introduce new binary relational symbol
x0 | x1, the divides relation, by the following formula φ|(x0, x1) ≡ ∃z(x0×z = x1).
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Let us observe two important facts, namely that PA− ⊢ a | b∧ b ̸= 0→ a ≤ b
and, as a corollary, that φ|(x,w) is equivalent, over PA−, to a ∆0 formula.

Observation 1.19. Let M |= PA− and a, b ∈M s.t. M |= b ̸= 0 and M |= a | b,
then M |= a ≤ b.

Proof. Let c ∈ M be s.t. M |= a × c = b. Since M |= b ̸= 0 we get by Ax.7
[x× 0 = 0] that M |= c ̸= 0.

By Ax.15 [0 ≤ x] combined with Ax.14 [0 < 1∧(0 < x→ 1 ≤ x)] it follows that
M |= 1 ≤ c. Since M |= 1 ≤ c, we get by Corollary 1.8 that M |= a ≤ c× a.

But we know by Ax.4 [commutativity ×] that M |= c × a = b. Therefore
M |= a ≤ b which is what we wanted to prove.

Corollary 1.20. Formula φ|(x,w) is equivalent over PA− to the formula

ϱ|(x, y) ≡ ∃z ≤ y(x× z = y).

Proof. We will first show the implication from left to right.
Let M |= PA− and a, b ∈ M s.t. M |= φ|(a, b). Surely either M |= b = 0 or

M |= b ̸= 0. Let us consider these two cases separately.

b = 0M : Then clearly setting z to 0M we have that M |= z ≤ b and and by Ax.7
[x× 0 = 0] we have M |= a× z = b.

b ̸= 0M : Let c ∈M be s.t. M |= a× c = b, by Ax.4 [commutativity ×] we know
that M |= c× a = b, therefore M |= φ|(c, b).
So we know that M |= c | b∧ b ̸= 0, therefore by Corollary 1.20 we get that
M |= c ≤ b. Therefore, by setting z in ϱ|(a, b) to c, we get that M |= ϱ|(a, b).

As for the other implication. If M |= ϱ|(a, b) then obviously, by FOL, M |=
φ|(a, b).

Therefore it can be concluded that every function/relation we have introduced
can be defined using a ∆0 formula.

From now on, whenever we write PA− or some extension of it T , we will
actually mean PA−, or T , with added defining axioms for S(x), P (x), X .− z and
the divisibility relation |. Rarely, only to highlight the presence of such a defining
axiom/s, we will write e.g. T plus the defining axioms for S(x).

Notation and (non-)standard elements
We shall introduce few notations that act solely as a shortcuts for terms of LA

or, in case of the last one, are one of ours meta-notations.

Definition 1.7 (Definition of n). We define the following shortcut for every
n ∈ N.

n :=
⎧⎨⎩0 n = 0,

((n− 1) + 1) 1 ≤ n.
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The 0 and ((n− 1) + 1) on the left, i.e. the value of n, are terms from the
language LA, of course except the (n − 1) which is just evaluated in N. And
n = 0, 1 ≤ n on the right are conditions evaluated in N.

Note that the in any model of PA−, or some extension of it, 0, 1 have the
same meaning as the constant symbols 0, 1 from LA. However, we will usually
use 0, 1 for 0, 1. A possibly confusing situation can arise when we talk both about
constant symbols 0, 1 from LA and 0, 1 ∈ N in this case we will either use 0, 1 to
make the distinction explicit or we will simply rely on the context that should
make the distinction implicit.

In any model M of PA−, or some extension of it, we introduce the notion of
standard/non-standard elements.

Definition 1.8 (Standard and non-standard elements). Let M |= PA− and let
a ∈ M . We say that a is a standard element of M iff. ∃n ∈ N s.t. a = nM . And
we say that a is a non-standard element of M iff a is not a standard element of
M .

Definition 1.9 (Definition of xn). We define the following shortcut for every
n ∈ N and x being any variable from LA.

xn :=
⎧⎨⎩1 n = 0,
x× x(n−1) 1 ≤ n.

Again, the 1 and x × x(n−1) on the left are terms from the language LA, of
course except the (n−1) which is just evaluated in N. And the conditions on the
right are evaluated in N.

1.5 Further observations in PA−

Behavior of mainly standard elements in PA− with respect
to +,×, .−, | and <

Similarly as in section 1.2, this subsection is just a relatively large collection of
algebraic results in models of PA−. Therefore, if the reader chooses to, this
subsection can be skipped and returned to when explicitly needed. On the other
hand, let us note that compared to section 1.2 is this subsection is surely more
important.

First, we shall show that the standard elements behave in models of PA− as
expected.

Observation 1.21. Let M |= PA− and x ∈ M and let n be any member of N.
Then the following holds

M |= n× x = x+ . . .+ x,

where x is written on the right side n-times and if n = 0 the whole term will stand
for the constant symbol 0. Please note that thanks to Ax.1 [associativity +] it
does not matter how we bracket the expression on the right.
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Proof. Proof is by induction on n, first we show the case for n = 0 and then the
induction step.

n = 0: M |= 0 × x = 0 × x = x × 0 = 0 which is what we wanted to show.
Note that the first equality follows by Definition 1.7, the second by Ax.4
[commutativity ×] and the last one by Ax.7 [x× 0 = 0] .

n = m+ 1:

M |= n×x = x×n = x× (m+ 1) = x×m+x× 1 = x+ . . .+x, n− times,

which is what we wanted. The first equality follows by Ax.4 [commutativ-
ity ×] , the second by Definition 1.7, the third by Ax.5 [distributivity] and
the last one by Ax.6 [0, 1 are neutral] and the induction hypothesis on m.

Observation 1.22. LetM |= PA− then for any k, l ∈ N we haveM |= (k +N l) =
k + l.

Proof. Proof is by induction on l.

l = 0: In this case (k +N 0) = k. And by Definition 1.7 and Ax.6 [0, 1 are neut-
ral] we have that M |= k + 0 = k. Therefore we can indeed conclude that
M |= (k +N l) = k + l

l = d+ 1: By Definition 1.7 we have that M |= k+ l = k+ (d+ 1), by Ax.1 [as-
sociativity +] and the induction hypothesis we get that M |= k+ (d+ 1) =
(k +N d) + 1. And by Definition 1.7 M |= (k +N d) + 1 = ((k +N d) +N 1) =
(k +N l), from which immediately follows that M |= k+ l = (k +N l) There-
fore we may conclude that the induction step was finished.

From now on, when writing M |= . . . n+N m. . . we will write only M |=
. . . n+m. . . since it is obvious that we take + in N. We will do the same for ×
and relational symbols.

Observation 1.23. Let M |= PA− and a, b, c ∈ M s.t. M |= c ≤ b, then
M |= (a+ b) .− c = a+ (b .− c).

Proof. There must exist za+b, zb ∈ M s.t. M |= (a + b) .− c = za+b and M |=
b .− c = zb

Since M |= c ≤ b, and thus also M |= c ≤ (a + b) by Observation 1.9, we get
by definition of .− that M |= c+ za+b = a+ b and M |= c+ zb = b.

Therefore M |= a+ c+ zb = c+ za+b, and by Observation 1.6 we can conclude
that M |= a+ zb = za+b, but that is exactly what we wanted.

Observation 1.24. Let M |= PA− and a, b, c ∈ M s.t. M |= c ≤ b ≤ a, then
M |= (a .− b) + c = a .− (b .− c).
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Proof. There exists some zb ∈ M s.t. M |= (a .− b) = zb and therefore M |=
(a .−b)+c = zb+c. And by definition of .− the following must hold M |= b+zb = a.

Again, there exists some zc ∈ M s.t. M |= (b .− c) = zc. By definition of .−
we know that M |= c + zc = b and hence by Ax.2 [commutativity +] and more
importantly by the third item in Observation 1.11 and lastly our assumption of
M |= b ≤ a we get that M |= zc ≤ a. Therefore by definition of .− there is some
z ∈M s.t. M |= zc + z = a and this z equals (a .− zc)M .

We would like to show that zb + c = z.
Since M |= zc + z = a and M |= b+ zb = a we get that M |= zc + z = b+ zb.
When we add c to both sides of the equality and we employ Ax.1 [associativ-

ity +] and Ax.2 [commutativity +] we get M |= b+ z = c+ b+ zb.
Lastly, we can again apply Ax.1 [associativity +] , Ax.2 [commutativity +]

and most importantly Observation 1.6, i.e. that we cancel certain terms from
both sides of an equation, to reach the desired conclusion of M |= z = c+ zb.

Observation 1.25. Let M |= PA− and n,m ∈ M s.t. m ≤ n, then M |=
n .−m = (n−m).

Proof.

M |= n .−m = ((n−m)+m) .−m = (n−m)+(m .−m) = (n−m)+0 = (n−m),

which is what we wanted.
As for the equalities, the first follows by Observation 1.22, the second by

Observation 1.23, the third as well as the fourth by Ax.6 [0, 1 are neutral] .

Observation 1.26. Let M |= PA− and a, b, c ∈ M s.t. M |= a + b = c, then
M |= a = c .− b.

Proof. Assume M |= a+ b = c, then M |= (a+ b) .− b = c .− b.
By Observation 1.23 we have M |= a+(b .−b) = c .−b and by Ax.6 [0, 1 are neut-

ral] we may conclude M |= a = c .− b, which is what we wanted.

Observation 1.27. Let M |= PA− and a, b, c ∈ M s.t. M |= b ≤ a and
M |= b ≤ c, then M |= (a .− b) + c = a+ (c .− b).

Proof. First note that since M |= b ≤ c, we can conclude by Ax.13 [x ≤ y →
∃z(x+ z = y)] that M |= c = b+ z for some z ∈M .

Continuing, we have,
M |= (a .− b) + c =
(a .− b) + (b+ z) =
((a .− b) + b) + z =
(a .− (b .− b)) + z =

(a .− 0) + z =
a+ z =

a+ (c .− b).
Where the respective equalities follow by the upcoming arguments.

(i) Follows by M |= c = b+ z.
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(ii) Follows by Ax.1 [associativity +] .

(iii) Follows by M |= b ≤ b ≤ a and Observation 1.24.

(iv) It is obvious that for any x ∈M , M |= x .− x = 0.

(v) Follows by Ax.6 [0, 1 are neutral] .

(vi) Follows by M |= c = b+ z, Ax.2 [commutativity +] and Observation 1.26.

And the proof is finished.

Observation 1.28. Let M |= PA−, k, l ∈ N. Then the following holds

M |= (k × l) = k × l.

Proof. Proof is again by induction on l.

l = 0: By Definition 1.7 and Ax.7 [x× 0 = 0] we have that M |= k × l = 0.
And since k ∗ l = k ∗ 0 = 0, we get by definition 1.7 that M |= (k × l) = 0.
Therefore we indeed have M |= k × l = k × l.

l = d+ 1: We have M |= k × (d+ 1) = (k × d) + k, by Definition 1.7. By
previous Observation 1.22 we get that M |= ((k × d) + k) = k × d + k.
Using the induction hypothesis on l we get that M |= k × d+k = (k×d)+k.
Using Ax.6 [0, 1 are neutral] , to rewrite k as k×1, and Ax.5 [distributivity]
we get that M |= (k × d) + k = k × (d + 1). Where by Definition 1.7 we
have M |= k × d+ 1, which is precisely what we set out to prove.

Observation 1.29. Let M |= PA− and let k, l ∈ N. Then k < l iff. M |= k < l.

Proof. We prove the implication from left to right first, and the implication from
right to left will follow by the former one.

For the implication from left to right we assume that k < l. Since k < l, we
get l = k + d + 1 for d ∈ N. Furthermore, let us split the proof to the two cases
based on the value of k.

k = 0: By Definition 1.7 M |= k = 0. By Ax.15 [0 ≤ x] we have M |= 0 ≤ d,
therefore M |= k ≤ d. And by Corollary 1.3 we get that M |= k < d + 1.
Since k = 0, by Definition 1.7, we get by Ax.2 [commutativity +] and
Ax.6 [0, 1 are neutral] that M |= k < k + (d + 1). By Definition 1.7 and
Observation 1.22 we may finally conclude that M |= k < l.

0 < k: Since 0 < d + 1 we already know, using Definition 1.7,that M |= 0 <
(d+ 1). By Ax.11 [x < y →x+ z < y + z] we get M |= 0 + k < (d+ 1) + k.
Thanks to Definition 1.7 and Observation 1.22 can be concluded that M |=
k < l.

The proof from left to right was finished.
For the implication from right to left. We have that M |= k < l. Assume for

contradiction that the conclusion does not hold. Then by Ax.10 [trichotomy <] we
have that k = l or l < k. If k = l, then M |= k = l which is again in contradiction
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with Ax.9 [irreflexivity <] . Otherwise if l < k, then we already know that
M |= l < k. And by Ax.8 [transitivity <] can be concluded that M |= l < l which
is in contradiction with Ax.9 [irreflexivity <] . Either way we got a contradiction
and thus the proof by contradiction is finished.

Corollary 1.30 (nM are distinct elements). Let M |= PA− and let m,n ∈ N
then m = n iff. M |= n = m.

Proof. The implication ⇒ is trivial. The implication ⇐ follows by the previous
Observation 1.29 and Ax.9 [irreflexivity <] .

Observation 1.31. Let M |= PA− and m ∈ N, then

M |= ∀x (x≤m↔ x = 0 ∨ x = 1 ∨ . . . ∨ x = m)

Proof. Proof is by induction on m.
If m = 0, then the⇐ is immediate. And the⇒ follows immediately by Ax.15

[0 ≤ x] and the combination of Ax.8 [transitivity <] and Ax.9 [irreflexivity <] .
Let m > 0.

⇐: We get the implication from right to left for free using Observation 1.29.

⇒: If M |= x = m we are done. Otherwise if M |= x < m we have that
M |= x < (m− 1)+1, by Definition 1.7 and since 0 < m implies (m−1) ∈ N.
Using Observation 1.16 we get that M |= x + 1 ≤ (m− 1) + 1. And now
applying Corollary 1.12 we finally get that M |= x ≤ (m− 1), but from
this, applying the induction hypothesis on m− 1, it follows that M |= x =
0 ∨ . . . ∨ x = (m− 1) which is what we set out to prove.

Observation 1.32. Let M |= PA− and l, k ∈ N, then

l | k ⇐⇒ M |= l | k.

⇒: If l | k, then there exists r ∈ N s.t. l × r = k, therefore M |= l × r = k. By
Observation 1.28 we get that M |= l × r = k, therefore M |= l | k.

⇐: If M |= l | k then we get thanks to Corollary 1.20 that there exists a ∈ M
s.t. M |= a ≤ k ∧ l × a = k. And by Observation 1.31 we get that there
exists r ∈ N s.t. M |= a = r, therefore M |= l × r = k. Therefore, again
by Observation 1.28, we observe that M |= l × r = k for some r ∈ N. And
by a combination of Observation 1.29 and Observation 1.1 we may finally
conclude that l × r = k from which the desired conclusion follows.

Standard vs. non-standard elements
In this subsection we observe that N embeds into any model of PA−, give a
characterization of non-standard models using non-standard elements and show
that non-standard elements are greater than any standard ones.

Lemma 1.33. Let M |= PA−, then the function n → nM , denote this function
as h, is an embedding from N into M .
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Proof. Clearly, the described function h is a well defined function from N into M .

h maintains constants: h(0) = 0M = 0M and h(0) = 1M = 1M , the last equalit-
ies are by Definition 1.7

h respects +: Let k, l ∈ N, then

h(k + l) = k + lM = kM +M lM = h(k) +M h(l)

The second equality is by Observation 1.22.

h respects ×: Let k, l ∈ N, then

h(k × l) = k × lM = kM ×M lM = h(k)×M h(l)

The second equality is by Observation 1.28.

h respects <: Let k, l ∈ N, then

k < l ⇐⇒ kM <M lM ⇐⇒ h(k) <M h(k)

The first ⇐⇒ is by Observation 1.29.

Since < and <M are linear orders on N and M respectively, we actually only
need that they obey Ax.9 [irreflexivity <] . and the prescribed function h respects
them, it follows that the h must be injective.

We can conclude, from all that was written, that h is indeed an embedding
from N into M .

Observation 1.34. Let G,M |= PA− and let f be an embedding from G into
M , then it must hold that ∀n ∈ N(f(nG) = nM).

Proof. The proof is by induction on n. If n = 0 or n = 1 the conclusion follows
by Definition 1.7 and that f preserves constants by being an embedding. Assume
that the observation holds for 0, . . . , n, then

f((n+ 1)G) = f(nG +G 1G) = f(nG) +M f(1G) = nM +M 1M = (n+ 1)M ,

where the first = follow by Definition 1.7, the second by f being an embedding,
the third by the induction hypothesis and the last one by Definition 1.7.

Observation 1.35. Let M |= PA−, then M is a non-standard model of PA,
i.e. it is not isomorphic to N, iff. M has a non-standard element, i.e. it has an
element which differs from nM for every n ∈ N.

Proof. For the implication from left to right. Let h be the embedding from N toM
which is discussed in Lemma 1.33. Since M is a non-standard model we know that
h can not be onto. Therefore we get an existence of e ∈M s.t. ∀n ∈ Nh(n) ̸= e.
It follows, by the definition of h, that e has to be a non-standard element of M .

For the implication from right to left. Assume for contradiction that there
exists an isomorphism, call it I, from N onto M . Since M contains a non-
standard element, denote one of those as e, there has to be n ∈ N s.t. I(n) = e,
since I is onto. Applying Observation 1.34, with G being N, we also know that
I(nN) = nM , where nN is just n. Therefore we get that nM = e, which contradicts
our assumption that e is a non-standard element of M and finishes our proof.
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Non-standard elements are greater than the standard elements.

Corollary 1.36. Let M |= PA− and let e ∈ M . Then e is a non-standard
element in M iff. M |= n < e for any n ∈ N.

Proof. The implication from left to right follows by Ax.10 [trichotomy <] and
Observation 1.31. The other implication follows by Ax.9 [irreflexivity <] .

Nonstandardness is preserved with respect to + and ×.

Observation 1.37. Let M |= PA− and let a, e ∈ M s.t. e is a non-standard
element of M . Then a+M e = e+M a is a non-standard element of M .

Proof. The first equality follows by Ax.2 [commutativity +] . As for the non-
standardness. Let n ∈ N, by Corollary 1.36 M |= n < e. By Ax.11 [x < y →
x+ z < y + z]M |= n + a < e + a. Using Observation 1.9 it follows that M |=
n ≤ n + a. And from Ax.8 [transitivity <] it follows that M |= n < e + a. But
n was arbitrary, therefore for any n ∈ N we have M |= n < e + a, therefore by
Corollary 1.36 we get that e+M a is a non-standard element of M .

Observation 1.38. Let M |= PA− and let a, e ∈ M s.t. e is a non-standard
element of M and a ̸= 0M . Then a×M e = e×M a is a non-standard element of
M .

Proof. The first equality follows by Ax.4 [commutativity ×] . As for the non-
standardness.

Let n ∈ N, by Corollary 1.36 M |= n < e. By Ax.15 [0 ≤ x] , i.e. M |=
0 < a, and Ax.12 [(x < y ∧ 0 < z)→x× z < y × z]M |= n × a < e × a. Using
Observation 1.10 it follows that M |= n ≤ n× a. And from Ax.8 [transitivity <]
it follows that M |= n < e × a. But n was arbitrary, therefore for any n ∈ N
we have M |= n < e × a, therefore by Corollary 1.36 we get that e ×M a is a
non-standard element of M .

This concludes our inspection of the (non-)standard elements in models of
PA−.

One more concluding note, until now, we have always explicitly referenced to
Definition 1.7 when using it. From now on, we will omit these types of references
since they are hopefully obvious.

1.6 Initial segments
In this section, we observe that any M |= PA− contains at its beginning an
isomorphic copy of N.

First, we make the notion of “at its beginning” precise. Afterwards, we show
the hinted result.

Initial segments
Definition 1.10 (Initial segment). Let G,M be two LA structures. We say that
G is an initial segment of M , or M is an end-extension of G, in symbols G ⊆e M ,
iff. the two following conditions are met:
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1. G is a substructure of M , denoted also by G ⊆M ,

2. for every a ∈ G and b ∈M , if M |= b < a, then b ∈ G.
As usually, if in addition G ̸= M , then we say that G is a proper initial segment
of M .

N is an “initial segment” of every model of PA−

We show that for any model of PA− there is an isomorphic copy of N which is
an initial segment of that model.
Definition 1.11. Let M |= PA−, we define NM := {nM |n ∈ N}.
Theorem 1.39. Let M |= PA−, then NM is an initial segment of M which is
isomorphic to N.
Proof. Take the function h from N into M defined as follows h(n) := nM . By
Lemma 1.33 we know that h is an embedding of N into M . And obviously
h(N) = NM

Recall that an image I of an embedding function f from L into R is a sub-
structure of R and in fact f is an isomorphism from L onto I. This fact is an
elementary model-theoretic observation.

Therefore we infer that
• NM is a substructure of M ,

• N is isomorphic to NM .
Last thing we need to show is that NM satisfies the second condition in Defin-

ition 1.10.
Let a ∈ NM and b ∈ M s.t. M |= b < a. Since a is a standard element of

M , we can conclude by the Corollary 1.36 that b must be a standard element of
M . Since b is a standard element of M we immediately get that b ∈ NM which
finishes the proof.

Let M |= PA−, then we will sometimes write, assuming that no confusion
arises, n for nM , for any n ∈ N.

1.7 Equivalence of ∆0 truths
In this section, we will prove a result of high importance, namely that a ∆0
sentence is modeled by N iff. it is proved by PA−.

Elementary substructures
We will start with a definition that will later relate the notion of initial segments
to the notion of modeling formulas.
Definition 1.12. Let N,M be two LA structures and let Γ be a set of LA

formulas. We say that N is a Γ-elementary substructure of M , denoted as N ≺Γ
M , iff. N ⊆M and for any φ(x) ∈ Γ and a ∈ N we have

N |= φ(a) ⇐⇒ M |= φ(a).
In our usage, we will be setting Γ to ∆0.
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Preservation of ∆0,Σ1 truths
Initial segments preserve truth on ∆0 formulas.

Theorem 1.40. Let R ⊆e M be two LA structures. Then we have R ≺∆0 M .

Proof. Let R,M be as in the statement of the this theorem, let φ(x) be any ∆0
formula and a ∈ Rk, where k is the length of x.

We want to show that R |= φ(a) ⇐⇒ M |= φ(a) We proceed by induction
on the number of ∨,¬ and ∃, we omit other logical symbols since they can be
defined using the already mentioned ones.

Since N ⊆ M , then from a basic theorem of model theory stating that sub-
structures “evaluate” quantifier free formulas identically, see for example Kirby
[2019][Section 5.3, p. 26], we get that the conclusion of the theorem is true
whenever φ(x) is quantifier free. This proves the base step of our induction, and
more of course.

Now for the induction steps.

case ∨, φ(x) ≡ α(x) ∨ β(x):

R |= φ(a) ⇐⇒ R |= α(a ∨ βa) ⇐⇒
R |= α(a) or R |= β(a) by the induction hypothesis ⇐⇒

M |= α(a) or M |= β(a) ⇐⇒
M |= α(a) ∨ β(a) ⇐⇒ M |= φ(a).

case ¬, φ(x) ≡ ¬α(x):

R |= φ(a) ⇐⇒ R |= ¬α(a) ⇐⇒
R ̸|= α(a) by the induction hypothesis ⇐⇒

M ̸|= α(a) ⇐⇒
M |= ¬α(a) ⇐⇒ M |= φ(a).

case ∃, φ(x) ≡ ∃y < t(x)α(x, y): Let it be that R |= ∃y < t(a)α(a, y). Then
there must be b ∈ R s.t. R |= b < t(a) and R |= α(a, b), by the base step
of our induction and the induction hypothesis we have both M |= b < t(a)
and M |= α(a, b). And as such we get M |= ∃y<t(a)α(a, y).
For the other direction assume M |= ∃y<t(a)α(a, y). Then there must be
b ∈ M s.t. M |= b < t(a) and M |= α(a, b). Since R ⊆ M and a ∈ Rk

we know that t(a)M = t(a)R, to prove it formally one can use induction on
the complexity of terms. Therefore M |= b < t(a)R and since R ⊆e M we
get that b ∈ R, from which it also follows that R |= b < t(a), by the base
step of our induction. So we have b ∈ R s.t. R |= b < t(a) and by the
induction hypothesis we have R |= α(a, b). Combining everything together
we get R |= ∃y<t(a)α(a, y), which finishes the proof.

Corollary 1.41. Let M |= PA− and φ(x) be a ∆0 formula. Then ∀n ∈ N we
have N |= φ(n) ⇐⇒ M |= φ(n).
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Proof. We have by Theorem 1.39 that NM is isomorphic to N and also that
NM ⊆e M .

Therefore by Theorem 1.40, we have that NM |= φ(n) ⇐⇒ M |= φ(n).
Furthermore, by Kirby [2019][Section 3.4, p.15], we know that “being iso-

morphic to” preserves validity, which is quite an obvious result. Therefore,
N |= φ(n) ⇐⇒ NM |= φ(n).

Hence, we can conclude that indeed

N |= φ(n) ⇐⇒ M |= φ(n).

Corollary 1.42. Let M |= PA− and ϕ be a ∆0 sentence. Then N |= ϕ ⇐⇒
M |= ϕ.

Proof. This is a direct corollary of Corollary 1.41.

Corollary 1.43. Let Γ be a set of LA formulas and R,M two LA structures s.t.
R ≺Γ M . Moreover let φ(x) be a formula s.t. φ(x) ≡ ∃y ψ(x, y) and ψ(x, y)
belongs to Γ. Then if a ∈ Rk, where k is the length of x, we have

R |= φ(a)⇒M |= φ(a),

Proof. If R |= φ(a), then there has to be b ∈ Rl, where l is the length of y,
s.t. R |= ψ(a, b). By R ≺Γ M we have M |= ψ(a, b), from which it follows that
M |= φ(a), which finishes the proof.

Lemma 1.44 (Σ1 truth is preserved in PA−). Let M by any model of PA− and
let σ be a LA sentence that belongs to the Σ1 s.t. N |= σ. Then M |= σ.

Proof. Let M and σ be as in the statement of the corollary. Since N is iso-
morphic to NM , by Theorem 1.39, and N |= σ we get that NM |= σ. The fact
that isomorphism preserves validity is obvious but can be found e.g. in Kirby
[2019][Section 3.4, p.15].

Continuing, again by Theorem 1.39 we have that NM ⊆e M . Therefore by
Theorem 1.40 we note that NM ≺∆0 M .

Since σ ∈ Σ1 it must be of the form ∃yψ(y) s.t. ψ(y) is a ∆0 formula. But
now from Corollary 1.43, where x is empty, and keeping in mind that NM |= σ
follows that M |= σ.

1.8 Gödel’s lemma for N
In this section, we state and prove a variation to Gödel’s lemma for N. This lemma
is, roughly speaking, about coding sequences of numbers by a single number s.t.
retrieving the i-th number from the sequence is (∆0) easy.

The proof to come closely follows the discussion given in Kaye [1991, p. 58].

Lemma 1.45 (Gödel’s lemma for N). Define a LA formula Θ(x,w, y, z) in the
following way

Θ(x,w, y, z) ≡ (z < ((y + 1)×w+ 1))∧ (∃q ≤ x(x = q× ((y + 1)×w+ 1) + z)).

Then the following holds
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(i) Θ(x,w, y, z) is a ∆0 formula,

(ii) N |= ∀x,w, y∃!zΘ(x,w, y, z),

(iii) For any k ∈ N and r0, . . . , rk ∈ N there exists n,m ∈ N s.t. ∀l ≤ k
N |= Θ(n,m, l, rl).

Proof. So that no confusion can arise, everything in this proof is evaluated in the
N.

Θ(x,w, y, z) is obviously a LA formula. We need to show that it satisfies all
the mentioned points.

(i) This item is obvious.

(ii) The second item is obvious from the standard knowledge of N.

(iii) Let k ∈ N and (r0, . . . , rk) ∈ Nk+1. First, we determine m and then n.

Determining m: Define m := (max(r0, . . . , rk, k))!. Now we will observe
that ∀i, j ≤ k s.t. i ̸= j we have (i+ 1)×m+ 1 is relatively prime to
(j + 1)×m+ 1, i.e. they have no common prime divisor.
Assume for contradiction that it is not the case. Therefore ∃i < j ≤ k
in N and some prime number p ∈ N s.t. p | (i + 1) × m + 1 and
p | (j + 1) × m + 1. Therefore p | (j − i) × m. Therefore either
p | (j − i) or p | m. Since (j − i) ∈ N and 1 ≤ (j − i) ≤ k we again get
that p | m. Either way we know that p | m. Since p | (i + 1)×m + 1
and p | m it follows that p | 1 which is clearly impossible and the proof
by contradiction is finished.

Determining n Using the Chinese remainder theorem, see e.g. Pinter
[2012][Chapter 23, p.233], we get that there exists n ∈ N s.t.

n ≡ r0(mod(1×m+ 1))
...

n ≡ rk(mod((k + 1)×m+ 1))

By the way we chose m it is obvious that r0, . . . , rk < m+ 1, therefore
we actually get that

n mod (1×m+ 1) = r0 (1.1)
...

n mod ((k + 1)×m+ 1) = rk

We immediately get from Equation 1.1 that N |= Θ(n,m, l, rl), for any
l ∈ [k].
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We may note, that Θ(x,w, y, z) is intuitively equivalent to
(x mod ((y + 1)× w + 1)) = z. I.e. Θ(x,w, y, z) more or less expresses the mod
function in N.

To finish this section, we will notice few observation culminating in a very
important property of Θ(x,w, y, z).

Observation 1.46. Let M |= PA− and let Θ(x,w, y, z) be as in Lemma 1.45.
Also let a, b, c, d ∈M . If M |= Θ(a, b, c, d) , then M |= d ≤ a.

Proof. Assuming that M |= Θ(a, b, c, d) we get that there exists q ∈ M s.t.
M |= a = q × ((c + 1) × b + 1) + d. By Ax.15 [0 ≤ x] we know that M |= 0 ≤
q×((c+1)×b+1), and by Corollary 1.7 we have M |= 0+d ≤ q×((c+1)×b+1)+d,
using Ax.2 [commutativity +] and Ax.6 [0, 1 are neutral] we finally get that
M |= d ≤ a.

Corollary 1.47. Let M |= PA− and let Θ(x,w, y, z) be as in Lemma 1.45. Also
let n ∈ N and b, c, d ∈M . If M |= Θ(n, b, c, d) , then d = uM for some n ≥ u ∈ N,
i.e. d is a standard element of M .

Proof. Proof is obvious by Observation 1.46 and Observation 1.31.

Corollary 1.48. Let M |= PA− and let Θ(x,w, y, z) be as in Lemma 1.45. Also
let n ∈ N, then M |= ∀w∀y∃!zΘ(n,w, y, z). Moreover this z is a standard element
of M .

Proof. Let w, y ∈M . We will split the proof into cases according to the different
values that can be possessed by w and y.

w, y ∈ NM :
First assume that both w, y are standard elements of M , i.e. w = mM and
y = lM .

existence of z: We know that N |= ∃zΘ(n,m, l, z) by the second item in
Lemma 1.45. Therefore M |= ∃zΘ(n,m, l, z) by Lemma 1.44.

uniqueness of z: As for the uniqueness assume that z0, z1 ∈ M s.t. M |=
∃zΘ(n,w, y, z0) and M |= ∃zΘ(n,w, y, z1). By Corollary 1.47 we
know that z0, z1 ∈ NM . Therefore there exists r0, r1 ∈ N s.t. z0 =
r0

M and z1 = r1
M . Therefore we get that M |= Θ(n,m, l, r0) and

M |= Θ(n,m, l, r1). By Lemma 1.44 we infer that N |= Θ(n,m, l, r0)
and N |= Θ(n,m, l, r1). By the uniqueness of the second item in
Lemma 1.45 we observe that r0

N = r1
N which is just a complicated

way of writing r0 = r1. But from the r0 = r1 follows that z0 = z1,
which is what we wanted to show and the uniqueness is proved.

w = 0M

Note that if w = 0M , then M |= (y + 1)× w + 1 = 1.

existence of z Set z = 0M , setting q = nM , M |= Θ(n,w, y, z), by Ax.15
[0 ≤ x] and Ax.6 [0, 1 are neutral] .

uniqueness of z If z satisfies Θ(n,w, y, z), then M |= z < 1 and by Ax.15
[0 ≤ x] , Ax.14 [0 < 1∧(0 < x→ 1 ≤ x)] , Ax.8 [transitivity <] and
Ax.9 [irreflexivity <] it follows that M |= z = 0, uniqueness follows.
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otherwise
By Observation 1.37 and Observation 1.38 is (y+M 1)×M w+M 1M a non-
standard element of M .

existence of z: Setting z = nM , then, setting q = 0M , we have that
M |= Θ(n,w, y, z), namely by Corollary 1.36, Ax.15 [0 ≤ x] , Ax.7
[x× 0 = 0] and Ax.2 [commutativity +] in combination withAx.6
[0, 1 are neutral] .

uniqueness of z Assume that M |= Θ(n,w, y, z0) and M |= Θ(n,w, y, z1).
Then combining Ax.15 [0 ≤ x] , Observation 1.38 and Observation 1.37
it follows that q must be set for both z’s to 0M . Therefore by Ax.4
[commutativity ×] and Ax.7 [x× 0 = 0] we get that M |= n = 0+z0 =
0 + z1. Applying Ax.2 [commutativity +] and Ax.6 [0, 1 are neutral]
we observe that M |= z0 = z1, which is what we wanted to show.

The moreover part follows directly by corollary 1.47

The part in the proof of Corollary 1.48 where w, y are standard elements (of
M) is the most important for us. But for the sake of completeness we have
decided to prove also the case where w or y is not a standard element (of M).
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2. Observations and tools in PA

In this chapter we will extend, as already hinted at many times, axioms of PA−

with infinitely many other induction axioms that will result in a theory PA. We
will also look at some “middle ground” theories, i.e. those which are stronger
than PA− and weaker than PA. Besides the already mentioned, we will look
at a very useful lemma, called Overspill lemma, state a generalization of Gödels
lemma introduced in section 1.8 for any model of PA and lastly we shall formally
define the exponentiation function.

2.1 Introducing induction to the PA−

Induction axioms
Let us start with one meta-definition.

Definition 2.1 (Induction on formula). Let φ be a LA formula with x being any
variable from LA( recall that we have only denumerably many variables). Then
by Ixφ we denote the following formula

∀y (φ(0, y) ∧ ∀x(φ(x, y)→ φ(x+ 1, y))→ ∀xφ(x, y)),

where y are all the free variables in φ except the variable x.

Two comments are in place.

• Obviously, when x is not a free variable in φ, then Ixφ states an obvious
truth in any model. However, it does not do anything bad therefore we
have decided to leave it like that and not to exclude these harmless cases.

• For the sake of definiteness, we should have chosen the order of variables
in ∀y. I.e. if y consists of xi and xj, for i ̸= j, recall the formal definition
of LA from section 1.1, we should have determined whether it is ∀xi∀xj or
vice versa. Well, in order to fulfill this need we can either state that the
variable that goes first is the one with the smallest index, then the one
with the second smallest index and so on. Or, we can just realize, what did
probably most readers implicitly realize when reading Definition 2.1, that
for the quantifier ∀ in its standard interpretation it does not matter how
we order y in ∀y.

Definition 2.2. Let Γ be a set of LA formulas. Then by IΓ we mean the theory
resulting from the following set of axioms:

• Axioms Ax.1− Ax.15 introduced in the section 1.1.

• The set of all the axioms of the form Ixφ for φ ∈ Γ and x being any variable
in the LA.

Most important theories for us will be I∆0 and IΣ. And what is IΣ? It is
the long awaited theory PA.
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Definition 2.3 (PA). The theory PA is the theory IΣ.

One remark is in place about the induction axioms. One might ask, why have
not we opted, in order to define PA, for the following induction axiom, which
might seem a bit more natural.

∀X ((0 ∈ X ∧ ∀x (x ∈ X → (x+ 1) ∈ X))→ ∀x (x ∈ X)),

where ∀X quantifies over all subsets of the structure’s domain. In fact, this axiom
was stated by Giuseppe Peano himself, after whom is the PA− and PA named,
in his work Peano [1889], which is written in Latin, and one can read in English
about the content of Peano’s book in van Heijenoort [1967, p.83-97].

One problem is that trying to use this axiom would take us to the realm
of second-order Boolos et al. [2007, Chapter 22] logic where standard model-
theoretic tools like Compactness Theorem Kirby [2019, Chapters 8 and 11] and
Löwenheim–Skolem theorems Kirby [2019, Chapters 12 and 13] don’t hold, for
proofs see e.g. Boolos et al. [2007, Chapter 22].

Moreover to that, N is the only one countable, up to isomorphism, structure
satisfying PA− together with the second-order induction axiom, for a beginning
steps of a possible proof of the foregoing statement look e.g. at Enderton [1977,
Chapter 4, mainly Theorem 4H].

Therefore we defined induction, and PA, this way, in a way trying to replicate
the second-order induction axiom yet still remaining in the framework of the first-
order logic.

Least number principle
We will show that using induction we can prove the often used “least number
principle”.

Lemma 2.1 (Least number principle). LetM |= PA and φ(y, x) be a LA formula.
Furthermore let a ∈Mk, where k is the length of y. Then M models

(∃z φ(a, z))→ (∃z (φ(a, z) ∧ ∀w < z (¬φ(a, w))))

Proof. Assume for contradiction that M |= (∃z φ(a, z)) and M ̸|= (∃z (φ(a, z) ∧
∀w < z (¬φ(a, w)))).

Using the second assumption we will show by induction on x that M |=
ψ(a, x) ≡ ∀y ≤ x¬φ(a, y) for all x ∈M . First assume that M |= x = 0, we need
to show that M |= ¬φ(a, 0), but this is obvious using our second assumption.
Next assume that M |= ψ(a, x), then M |= ∀y ≤ x¬φ(a, y) and combining this
fact with our second assumption we also get that M |= ¬φ(a, x+ 1). Everything
combined we get that M |= ∀y ≤ x + 1¬φ(a, y), i.e. M |= ψ(a, x + 1). Then
by induction in PA we get that M |= ∀xψ(a, x) but this is clearly with a direct
contradiction to our first assumption of M |= (∃z φ(a, z)).

Our usage will be often the case, as usual, when φ(a, x) is a negation of some
some formula ψ(a, x) s.t. we want to show M |= ∀xψ(a, x) and we assume for
contradiction that it does not hold.
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2.2 Observations in PA or its weaker versions
Firs of all, we will show that there indeed exists a countable non-standard model
of PA, hence also of I∆0 and PA−.

We will show even a stronger result, namely that there is a countable model
of Th(N) which is non-standard, where Th(N) is the set of all true sentences in
Th(N).
Commentary. Since obviously Th(N) proves everything, and possibly more, than
what PA− proves, we can use the standard terminology of non-standard elements.

Furthermore, again since obviously Th(N) proves everything (because we have
standard induction on N), and possibly more, than what PA proves, it follows
that a countable non-standard model of Th(N) is a countable non-standard model
of PA.

Theorem 2.2 (Non-standard model of Th(N)). There exists a countable LA

structure M s.t. M |= Th(N) and M ̸∼= N, i.e. M is a non-standard countable
model of Th(N).

Proof. Let us extended LA to Lc
A by adding one new constant symbol c.

And define Th(N)c := Th(N) ∪ {n ̸= c|n ∈ N}.
Clearly, when we take any finite subset T of Th(N)c, we can define a Lc

A

structure Nc which extends N by setting cNc to sufficiently large natural number.
By sufficiently large natural number we mean any number m which is greater
than any n ∈ N for which n ̸= c is in T , since T is finite there must exist such a
m.

Since Th(N) does not use the constant c we get from N |= Th(N) that indeed
Nc |= Th(N)c. And be the way we chose cNc we must have Nc |= ({n ̸= c|n ∈
N} ∩ T ). Therefore we may conclude that Nc |= T .

Since T was arbitrary finite subset of Th(N)c we get by Strong Compactness
theorem, see e.g. Kirby [2019, Chapter 11], that there must exist a Lc

A structure
M c s.t. M c |= Th(N)c and has cardinality, denoted as |M c| at most |Σc|, where
we mean by Σc the set of all Lc

A formulas. For a very brief introduction to what
the word “cardinality” mean, or in general to the different sizes of sets, see for a
very brief introduction Kirby [2019, Chapter 10] or for a more in-depth look see
e.g. Enderton [1977, Chapter 6].

By Kirby [2019, Proposition 10.6] we know that |Σc| is equal to maximum of
|N| and the size of the set containing exactly non-logical symbols in Lc

A. Since
the latter set is finite we get that |Σc| equals |N|. Therefore we may conclude
that |M c| is at most |N| which is the same as saying that |M c| is countable.

Let us forget about the constant c now, i.e. take the reduct of M c to LA and
call this new structure M .

Now, M is still countable and still has an element e s.t. M |= n ̸= e for any
n ∈ N. Furthermore, since M c |= Th(N) and the constant c is not present in any
sentence of the Th(N) we have that M |= Th(N)).

Therefore by Observation 1.35 and by Th(N) being a stronger theory than
PA− M must indeed be a countable non-standard model of Th(N).

Corollary 2.3 (Non-standard model of PA). There exists a countable LA struc-
ture M s.t. M |= PA and M ̸∼= N, i.e. M is a non-standard countable model of
PA.
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Proof. Follows directly by Theorem 2.2 and the commentary before it.

Further follows standard, and important, theorem about unique quotients and
remainders when dividing by non-zero divisors.

Theorem 2.4. Let M |= IΣ1, and let a, b ∈ M s.t. a ̸= 0M . Then there exists
unique q, r ∈M s.t.

M |= b = q × a+ r ∧ r < a.

Proof. existence: Proof is by induction on the formula

φ(x, y) ≡ (y = 0 ∨ ∃q, r((x = q × y + r) ∧ r < y)),

with respect to the variable x. This formula is clearly a Σ1 formula. And
let y ∈M . If y = 0M , then there is nothing to prove.
Otherwise assume y ̸= 0M which by Ax.15 [0 ≤ x] means that M |= 0 < y.
If x = 0M , then set q, r = 0M . By axioms Ax.4 [commutativity ×] , Ax.7
[x× 0 = 0] , Ax.6 [0, 1 are neutral] and Ax.15 [0 ≤ x] it follows that the
formula is satisfied.
Otherwise assume M |= φ(x, y) for some x ∈ M , and we need to show
that M |= φ(x + 1, y). Since M |= φ(x, y) and M |= y ̸= 0, there exists
qx, rx ∈M s.t. M |= x = qx × y + rx ∧ rx < y.
If M |= rx + 1 < y, then by Ax.1 [associativity +] it follows that M |=
φ(x+ 1, y), setting qx+1 to qx and rx+1 to rx +M 1M .
Otherwise, by Observation 1.16, M |= rx + 1 = y. Then setting qx+1
to qx +M 1M and rx+1 to 0M , recall that M |= 0 < y, shows by Ax.4
[commutativity ×] ,Ax.5 [distributivity] and Ax.1 [associativity +] that
M |= φ(x+ 1, y).

uniqueness: Let x, y ∈ M s.t. y ̸= 0M , again recall by Ax.15 [0 ≤ x] that M |=
0 < y immediately follows. Moreover, let us have q, r ∈ M and k, l ∈ M
s.t.

M |= x = q × y + r ∧ r < y

and
M |= x = k × y + l ∧ l < y.

If q = k, then by Observation 1.6 it immediately follows that r = l.
It remains to show that q = k, assume for contradiction that it does not
hold. By Ax.10 [trichotomy <] we may WLOG assume that M |= q < k.
Since M |= q < k we get by the last item in Observation 1.11 that M |= k =
q + z ∧ 0 < z, for some z ∈M s.t. by Ax.14 [0 < 1∧(0 < x→ 1 ≤ x)]M |=
1 ≤ z.
Let us observe the following,

M |= k × y + l = (q × y + z × y) + l ≥ q × y + z × y > q × y + r.

The first equality is by Ax.4 [commutativity ×] and Ax.5 [distributivity] .
The next ≥ is by Observation 1.9 and the last > is by applying Ax.11
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[x < y →x+ z < y + z] to M |= r < z × y. And M |= r < z × y follows by
applying Ax.8 [transitivity <] to M |= r < y and M |= y ≤ z × y. Where
in turn M |= y ≤ z × y follows by an application of Corollary 1.8, together
with Ax.4 [commutativity ×] and Ax.6 [0, 1 are neutral] , to the fact that
M |= 1 ≤ z.
Now using Ax.8 [transitivity <] we can conclude that M |= k×y+l > q×y+
r. But combining M |= k×y+l = x = q×y+r and M |= k×y+l > q×y+r
gives rise to a contradiction with Observation 1.1.

We will show that standard primes behave like primes in any model of PA.

Corollary 2.5. Let M |= IΣ1, and let p ∈ N s.t. p is a prime number in N.
Then we have

M |= ∀x∀y((p | x× y)↔ (p | x ∨ p | y))

Proof. The proof from right to left is obvious.
As for the proof from left to right. Let x, y ∈ M s.t. M |= p | x × y, follows

that there must be, using Ax.6 [0, 1 are neutral] and Observation 1.29, some
z ∈M s.t. M |= x× y = p× z + 0 ∧ 0 < p.

By Theorem 2.4 for x, pM and y, pM , and by M |= 0 < p which follows by
Observation 1.29, we get that there exists unique qx, rx, qy, ry ∈M s.t. M |= x =
qx × p+ rx ∧ rx < p and M |= y = qy × p+ ry ∧ ry < p.

Assume for contradiction that the supposed conclusion does not hold, i.e.
M |= ¬(p | x ∨ p | y). Then it follows that M |= rx ̸= 0 and M |= ry ̸= 0, using
Ax.6 [0, 1 are neutral] .

Using the Observation 1.31 we get that M |= rx = l and M |= ry = k s.t.
l, k ∈ N and 0 < l, k < p.

Evaluating x×M y we have

M |= x× y = (qx × p+ l)(qy × p+ k) = p× (qxqyp+ qxk + qyl) + l × k

The second equality follows by Ax.1-Ax.5 together with Observation 1.22. Fur-
thermore, since p is a prime number and 0 < l, k < p we get that there must
by some q, r ∈ N s.t. 0 < r < p and l × k = p × q + r. Therefore we get by
Observation 1.22, Observation 1.28 and Ax.5 [distributivity] that M |= x× y =
p × (qxqyp + qxk + qyl + q) + r ∧ 0 < r < p. Since M |= 0 < p and M |= 0 ̸= r
by Observation 1.1, we get that this result is clearly in contradiction with the
uniqueness in Theorem 2.4 because we also have M |= x×y = p×z+0∧0 < p.

From now on we will often put less detail in justifying every single step of
proofs we gave with a hope that the reader is capable of filling all the gaps
necessary.

2.3 Overspill lemma for the standard cut N
This section is devoted to a very useful tool called Overspill lemma for N.
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Lemma 2.6 (Overspill lemma for N). Let M |= PA, M be a non-standard
model, and φ(y, x) be a La formula. Moreover let a ∈Mk, where k is the length
of y. Then if M |= φ(a, n) for all n ∈ N we have that there must exist some
non-standard element e ∈M s.t. M |= φ(a, e).

Proof. Suppose for contradiction that the assumptions of the lemma hold but not
the conclusion. Then M |= φ(a, 0) and if M |= φ(a, x) we necessary have x ∈ NM

therefore by our assumption M |= φ(a, x+1). But applying the induction, which
we have on all LA formulas, we get M |= ∀xφ(a, x). And since non-standard
models have non-standard elements, by Observation 1.35, we get that there must
be a non-standard element e ∈M s.t. M |= φ(a, e) which is the contradiction we
wanted.

Let us notice one simpler case of the lemma that holds in I∆0, i.e. we have
only changed PA for I∆0.

Lemma 2.7 (Ovespill lemma on I∆0 for N). Let M |= I∆0, M be a non-standard
model, and φ(y, x) be a ∆0 formula. Moreover let a ∈Mk, where k is the length
of y. Then if M |= φ(a, n) for all n ∈ N we have that there must exist some
non-standard element e ∈M s.t. M |= φ(a, e).

Proof. Obviously, when we restrict ourselves to the formulas φ(y, x) ∈ ∆0, then
the proof in Lemma 2.6 can be carried out for any M |= I∆0.

This case will be later important for us, since for example using this weakening
we can observe that Tennenbaum’s theorem for addition holds actually in I∆0
and not only in PA.

As you may have already guessed, by the fact that we emphasize “for N” there
are more general versions to those two lemmas which are for any proper cut I,
for a definition see Kaye [1991, p. 70], and not only for N, with the conclusion
of M |= φ(a, e) for some e ∈ M s.t. M |= I < e. There is also one more
strengthening with conclusion that M |= ∀x ≤ eφ(a, e) where e is a non-standard
element of M . Naturally, a combination of the two extension also holds and the
reader can find a proof of it in Kaye [1991, pp.70-71]. However, we will not need
any of those for this text.

All of the versions of Overspill lemma, stated or hinted at, are due to Abraham
Robinson.

We would like to note two last things. One is that besides this chapter the
only time we will use induction will be indirectly through using some form of
Overspill lemma. Second is that you can observe in the course of the text to
follow, that in PART I only the Overspill lemma for ∆0 formulas will be used.

2.4 Gödel’s lemma in PA

In this section, we state another useful tool in PA. Using this tool we will formally
extend our language/theory by the exponentiation function.

Lemma 2.8 (Gödel’s lemma in PA). There exists a ∆0 formula, which we can
construct, T (x, y, z) s.t. PA proves all the following points.

• ∀x, y ∃!z T (x, y, z).
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• ∀z∃xT (x, 0, z)

• ∀x, y, z ∃w ((∀l ≤ y∀d (T (x, l, d)↔ T (w, l, d)) ∧ T (w, y + 1, z)).

• ∀x, y, z (T (x, y, z)→ z ≤ x).
We will follow instructive notation used in Kaye [1991, Section 5.2] to denote

T (x, y, z) as (x)y = z.
We have decided not to include, quite a technical, proof of this lemma. We

will at least mention that it is more or less a formalization of the proof we gave
for the “Gödel’s lemma for N” in Theorem 1.45. For more details see e.g. Kaye
[1991, Section 5.2].

2.5 Introducing the exponentiation function exp
This short section is devoted to the formal introduction of the exp function.
Definition 2.4 (The exp function). We define the exp(x, y) in theory PA, where
x is the base and y is the exponent, using the following formula

φexp(x,y)(x, y, z) ≡ ∃w ((w)0 = 1 ∧ (w)y = z ∧ (∀l < y (w)l+1 = (w)l × x)).

As usual, we need to show the following observation.
Observation 2.9. Let M |= PA, then M |= ∀x, y∃!z φexp(x,y)(x, y, z).
Proof. Let b be any element of M .
existence of z: Proof is by induction on the variable y in the formula

∃z φexp(x,y)(b, y, z).

If M |= y = 0, then we can just set z to 1M and use the second item in
Gödel’s lemma in PA.
Otherwise M |= φexp(x,y)(b, y, zy), for some zy ∈ M , and we want to show
that M |= φexp(x,y)(b, y + 1, zy+1) for some zy+1 ∈ M . In this case set zy+1

to zy ×M b and use the third item in Gödel’s lemma in PA to construct
w to witness M |= φexp(x,y)(b, y + 1, zy+1) from the w witnessing M |=
φexp(x,y)(b, y, zy) by having M |= (w)y+1 = zy+1.

uniqueness of z: The proof is again by induction on the variable y in the formula
ψ(b, y) ≡ ∀z0, z1 ((φexp(x,y)(b, y, z0) ∧ φexp(x,y)(b, y, z1))→ z0 = z1).
If M |= y = 0, then everything works, since M |= z0 = 1 = z1.
Otherwise, if M |= ψ(b, y) then we want to show that M |= ψ(b, y+ 1). As-
sume that there are z0, z1 ∈M s.t. M |= φexp(x,y)(b, y+1, z0)∧φexp(x,y)(b, y+
1, z1), and take the respective w0, w1 ∈M witnessing that M actually mod-
els the formula for z0, z1. Then we have that M |= z0 = (w0)y+1 = (w0)y×b
and M |= z1 = (w1)y+1 = (w1)y × b. But we also clearly have that w0, w1

are witnesses to M |= (φexp(x,y)(b, y, (w0)y) ∧ φexp(x,y)(b, y, (w1)y)).
Therefore by our induction hypothesis we get that M |= (w0)y = (w1)y

from which the conclusion of M |= z0 = z1 follows. Therefore we have M |=
∀y ψ(b, y) and since b is any member of M we get that M |= ∀x, y ψ(x, y),
which finishes the proof of uniqueness.
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Since it is not hard to construct a particular formula of interest over which
we want to conduct induction in PA we will, from now on, often omit such a
construction.

2.6 Properties of the exp function

Standard algebraic properties of the exp function
Observation 2.10 (Algebraic properties of exp). Let M |= PA and n ∈ N, then

• M |= ∀x, y, z exp(x, y + z) = exp(x, y)× exp(x, z),

• M |= ∀x, y, z exp(x× y, z) = exp(x, z)× exp(y, z)

• M |= ∀x, y, z exp(exp(x, y), z) = exp(x, y × z),

• M |= ∀x exp(x, n) = xn, recall the notation from Definition 1.9.

Proof. Proof of the first three items can be carried out by an induction within
PA on z. A possible proof of the third item will also use that the first item is
already proved.

Proof of the last item is by induction on n.

Observation 2.11 (Properties of exp with respect to <). Let M |= PA, then
the following holds

• M |= ∀x exp(x, 0) = 1

• M |= ∀0 < y exp(0, y) = 0

• M |= ∀y exp(1, y) = 1

• M |= ∀x exp(x, 1) = x

• Let x ∈ M s.t. M |= 1 < x, then M |= ∀y exp(x, y) < exp(x, y + 1), i.e.
exp is an increasing function given M |= 1 < x.

Proof. First four items are obvious by the definition of exp.
The last item follows by induction on y, case when M |= 0 = y is obvious

by the definition of exp and the assumption M |= 1 < x. In the inductive step
Ax.12 [(x < y ∧ 0 < z)→x× z < y × z] can be used.

Miscellaneous property of the exp function
The goal of this subsection is to show that if M |= exp(x, y) = exp(2, z) ∧ z ̸= 0,
then M |= x = exp(2, w). But to be able to prove this result we will prove one
related observation first.

Observation 2.12. Let M |= PA and let x, y ∈ M. Then if M |= 2 | exp(x, y),
M |= 2 | x follows.
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Proof. Proof is by induction on y in PA.
If M |= y = 0, then the assumption itself, i.e. M |= 2 | exp(x, y), can not

happen. Since M |= exp(x, y) = 1 the first item in Observation 2.11. And that
would mean that M |= 2 | 1 which can not be by Observation 1.32.

Now, if the statement holds for y, we want to show that it also holds for y+1.
We know that M |= exp(x, y + 1) = exp(x, y) × x, e.g. by definition of

exp. Since M |= 2 | exp(x, y + 1), we get that M |= 2 | exp(x, y) × x. By
Corollary 2.5 we get that M |= 2 | x ∨ 2 | exp(x, y). If M |= 2 | x we are done
and if M |= 2 | exp(x, y) we use the induction hypothesis to again conclude
M |= 2 | x.

Observation 2.13. Let M |= PA and x, y, z ∈ M s.t. M |= 0 < z and M |=
exp(x, y) = exp(2, z). Then there exists w ∈M s.t. M |= x = exp(2, w).

Proof. First, before the main part of the proof starts, let us mention one obvious
fact, used often in the following proof, and namely that M |= 1 < 2.

Proof is going to be by contradiction. Hence, let us assume that there exists
some element of M not satisfying the observation.

Let x be then the smallest such member of M not satisfying the observation,
we know of its existence by Least number principle.

Since M |= 0 < z we have that there exists d ∈ M s.t. M |= z = d + 1.
Therefore M |= exp(x, y) = 2× exp(2, d).

Immediately follows that M |= 2 | exp(x, y) from which we get, using Obser-
vation 2.12, that there is x′ ∈M s.t. M |= x = 2× x′

.
If M |= x

′ = 1, then we are done.
Otherwise M |= x

′ ̸= 1. Also note that if M |= x
′ = 0, then M |= exp(x, y) ≤

1 by the first two items of Observation 2.11. But thanks to the assumption that
M |= 0 < z and that M |= exp(2, 0) = 1, by the first item in Observation 2.11,
we get, by the last item in Observation 2.11 - exp(2, w) is an increasing function
in M , that M |= 1 < exp(2, z). Therefore the case when M |= x

′ = 0 actually
can not happen and we can conclude that M |= 1 < x

′ .
For the same reason, as in the previous paragraph, we want to observe that

M |= 0 < y. Because otherwise, by the first item of Observation 2.11, we get
that M |= exp(x, y) = 1 < exp(2, z).

We can use the second item in Observation 2.10 to conclude that M models
exp(x, y) = exp(2, y)× exp(x′

, y). Since M |= 1 < x
′ and M |= 0 < y we get that

M |= 1 < exp(x′
, y), by the last item in Observation 2.11. Similarly we get that

M |= 1 < exp(2, y).
From the last paragraph, using the last item in Observation 2.11, we can

conclude that M |= y < z. Therefore there exist b ∈M s.t. M |= z = y+b∧0 < b.
Using the first item in Observation 2.10 and Observation 1.6, about cancellation
from both sides of an equation, we get that M |= exp(x′

, y) = exp(2, b) ∧ 0 < b.
Since obviously M |= x

′
< x we have that M |= x

′ = exp(2, a), for some a ∈ M ,
recall that x is the smallest member of M not satisfying the observation.

But from the last conclusion in the previous paragraph it follows that M |=
x = exp(2, a + 1) which is the desired contradiction and the observation was
proved.
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3. Recursion theory preliminaries
This chapter centers around recursive functions and their representability in PA.

Since this text is rather more about PA−, PA and various theories in between
them, we have decided not to include formal definition of (primitive) recursive
functions, for one see e.g Boolos et al. [2007, Chapter 6].

As a direct consequence of the lack of the formal definition/s some statements
are left unproved or left only with an informal justification.

3.1 Recursive & recursively enumerable sets

Definitions
Informal Definition 3.1 (Recursive (partial) function). Intuitively, f is a (par-
tial) recursive functions if f ’s domain is (a subset) of Nk, for k ∈ N, and f ’s range
is a subset of N. Moreover, there should be an algorithmic procedure A having
Nk as its input domain satisfying the following.

• If n ∈ Nk belongs the domain of f we have that A given n as its input,
written as A(n), stops after a finitely many finite steps and returns f(n).

• And otherwise, if n does not belong to the domain of f , then A(n) will
never halt (and it will run forever).

With a loose image of (partial) recursive functions in mind, we will define
recursive sets.

Intuitively, a set X ⊆ N is going to be recursive for us, if for every element of
N we can algorithmically decide whether it is a member of N or not.

Hence the former of the following definitions.

Definition 3.2 (Characteristic function). Let X ⊆ Nk, then the characteristic
function of X, denoted as χX , is a function with a domain Nk which maps Nk

into {0, 1}. Moreover to that, ∀n ∈ Nk (n ∈ X ⇐⇒ χX(n) = 1).

Definition 3.3 (Recursive set). Let X ⊆ N, then X is a recursive set iff. the
characteristic function of X, i.e. χX , is a recursive function.

Definition 3.4 (Recursive relation). Let X ⊆ Nk, then X is a recursive relation
iff. the characteristic function of X, i.e. χX , is a recursive function.

Let us recall one standard notation, when we write g : D −→ E we mean that
g is a function with domain D and the range of g is a subset of E.

Next, we will be also interested in recursively enumerable sets. Intuitively, we
say that X ⊆ N is a recursively enumerable set if there exists an algorithmic pro-
cedure that will gradually write members of N to some output s.t. the following
two conditions are met.

• Only members of X will be written out to the output.

• Every member of X will be written out (after a finite number of steps) to
the output.

46



Note that we do no require the algorithmic procedure to terminate, i.e. it can go
on forever. Also note that it is not problem when a member of X is written to
the output more than once.

Hence the following formal definition.

Definition 3.5 (Recursively enumerable sets). Let X ⊆ N, then X is a recurs-
ively enumerable, r.e. for short, set iff. there exists a (partial) recursive function
f : D −→ N, where D ⊆ N, s.t. X = f [N], i.e. X is the range of f .

Observation 3.1. Let f : N −→ N s.t. f a is partial recursive function. Then
f−1[{k}] for any k ∈ N is a recursively enumerable set. Where f−1[A] is the set
of all members x of the domain of f satisfying f(x) ∈ A.

Proof sketch. Since f is a partial recursive function there is some algorithmic
procedure A as in Informal Definition 3.1.

We will construct procedures B and C, where the former uses the latter as a
sub-procedure to show that indeed f−1[{k}] is a recursively enumerable set. Also
C will take as its input a single natural number whereas B will take no input at
all.

C(n): Run n steps of A(i) for every i ≤ n. If for some i ≤ n A(i) returns k we
print i immediately to the output and proceed as planned.

B: We will enumerate whole N according to <N and for every n ∈ N we run
C(n).

Now we claim that B is a witness to recursive enumerability of f−1[{k}]. Also
let us remark that enumeration N can be surely done recursively.

Clearly, B writes to the output only members of f−1[{k}].
On the other hand, when m ∈ f−1[{k}], there must exist some n ∈ N s.t.

A(m) returns k in at most n steps (of A).
Therefore, at latest, when we run the sub-procedure C(n) we will write, during

the run of C(n), m to the output. For this argument to work we need to know
that C(i) takes a finite number of steps for every i ∈ N, but this is obvious. And
we also need to know that B eventually runs C(n). But that obviously stems
from the third item in the following list which in turn follows by the first two
items in the following list.

• C(i) takes a finite number of steps for every i ∈ N.

• We do only finitely many steps between calls of C.

• We enumerate N, hence by the previous two items we call C(i) in B sooner
or later for every i ∈ N.

The proof is finished.
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Relation between recursive and recursively enumerable sets
Observation 3.2. Let X ⊆ N. Then X is a recursive set iff. X and its comple-
ment, denoted as X, are recursively enumerable sets.

Proof sketch. ⇒: To recursively enumerate X, we will enumerate whole N ac-
cording to <N, which can be surely done recursively, and when considering
i ∈ N we compute χX(i), recall that χX is total. If χX(i) = 1, then we
write i to the output and proceed to i+ 1. And otherwise, i.e. if χX(i) = 0,
we do not write i to the output and proceed to i+ 1.
We obviously write to the output only members of X.
And if n ∈ X, we obviously write it the output after finitely many steps.
This is because to compute χX(i) for any i ∈ N takes us only finitely
many steps which in turn follows from the fact that χX is a total recursive
function.
To show that X is recursively enumerable simply write out i iff. χX(i) = 0
instead of χX(i) = 1.

⇐: Assume that there are algorithmic procedures AX and AX witnessing re-
cursive enumerability of X and X.
To compute χX(i) for i ∈ N we start both processes AX and AX , alternating
between them, i.e. we run a few steps of AX , then AX , then AX and so on.
If i gets written out to the output during the run of AX , we immediately
halt AX , return that χX(i) = 1 and halt the whole process of computing
χX(i). And if i gets written out to the output during the run of AX , we
immediately halt AX , return that χX(i) = 0 and halt the whole process of
computing χX(i).
Since X∪X = N, we get that i must be written out to the output sooner or
later by one of the two processes. Therefore the whole process of computing
χX(i) must eventually halt.
As for the correctness. If we conclude that χX(i) = 1, then it must be that
i was written during the process AX . Therefore i ∈ X and we gave the
right answer. On the other hand, if we return that χX(i) = 0, then it must
be that i was written during the process AX . Therefore i ̸∈ X and we again
gave the right answer.

We will now mention two important facts. Proofs of the two statements, in
augmented versions, can be found in Boolos et al. [2007].

Lemma 3.3 (Coding of recursive functions). There exits a way to enumerate all
the single variable recursive functions into single list h0, h1, . . . I.e. ∀i ∈ N hi is a
recursive single variable function and for every single variable recursive function
g there exists j ∈ N s.t. g = hj.

Proof. Analogous proof, the one in the book is given for Turing machines, can be
found in Boolos et al. [2007, Section 4.1].
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Lemma 3.4 (Universal diagonal recursive function). There exits a recursive func-
tion U : N −→ N s.t.

• U(x) is defined iff. hx(x) is defined.

• Assuming hx(x) is defined, then U(x) = hx(x).

Where we use hx(y) from Lemma 3.3.

Proof. Similar proof can be found in Boolos et al. [2007, Section 8.1].

An important notion of recursive inseparability is going to be introduced to-
gether with a proof of existence of recursively enumerable recursively inseparable
sets.

Definition 3.6 (Recursively inseparable sets). Two sets A,B ⊆ N are called
recursively inseparable, r.i. for short, iff.

• A and B are disjoint,

• there exists no recursive set X s.t. A ⊆ X and B ∩X = ∅.

Since a recursive set X is recursive iff. its complement is recursive, obvious
corollary of Observation 3.2 or note that χX = 1 .− χX is intuitively a recursive
function witnessing the recursiveness ofX, we get that A is recursively inseparable
to B iff. B is recursively inseparable to A. Hence the slightly ambiguous wording
in the definition does not cause any problems.

Lemma 3.5. There are two recursively inseparable sets s.t. they are both re-
cursively enumerable, r.i.r.e. for short.

Proof. Define two sets A := {n ∈ N|U(n) is defined ∧ U(n) = 0} and B :=
{n ∈ N|U(n) is defined ∧ U(n) = 1}. Since U is a (partial) recursive function it
is intuitively sound, by Observation 3.1, that A and B are recursively enumerable.
Moreover to that, they are clearly disjoint.

Last step to showing that A,B are r.i.r.e. is showing that there is no recursive
set X s.t. A ⊆ X and B ∩X = ∅.

Assume for contradiction that it is not the case, i.e. there exists a recursive
set X with the property stated in the previous paragraph.

Take the characteristic function, with respect to X, χX . χx must be a single
variable (total) recursive function. Therefore there exists x ∈ N s.t. χX = hx.

Let us inspect whether x ∈ X or not.

x ∈ X: Then χX(x) = 1, therefore hx(x) = 1, therefore x ∈ B from which
follows that X ∩B ̸= ∅.

x ̸∈ X: Then χX(x) = 0, therefore hx(x) = 0, therefore x ∈ A from which
follows that A ̸⊆ X.

Either way we got a contradiction with the assumption that A ⊆ X and B∩X =
∅.

Therefore there can not exists such a recursive set X satisfying A ⊆ X and
B ∩X = ∅, and thus the proof is finished.
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3.2 Representing recursive functions in PA−

Let us mention that the following lemma holds also for the opposite direction,
i.e. not only the ⇒ holds but also the ⇐ holds.

Lemma 3.6 (Representation of recursive functions in N). Let k ∈ N and let
f : A −→ N where A ⊆ Nk. If f is a recursive function, then there exist a Σ1
formula σf (x, y), where x is of length k, s.t. ∀n,m ∈ Nk+1 we have

(f(n) is defined ∧ f(n) = m) ⇐⇒ N |= σf (n,m).

Proof. Proof can be found in Kaye [1991, Section 3.1].

For the following lemma we again have that it holds in the other direction as
well, but we will not need that result.

Lemma 3.7 (Representation of recursively enumerable sets in N). Let X ⊆ N
s.t. X is a recursively enumerable set, then there exists a Σ1 formula ψX(y) s.t.
for all n ∈ N we have n ∈ X ⇐⇒ N |= ψX(n).

Proof. Let X by a recursively enumerable set (which is by our definition imme-
diately a subset of N).

Since X is r.e. there must exist a partial recursive function f s.t. X is f ’s
range. Moreover let σf (x, y) be a Σ1 formula from Lemma 3.6.

We claim that ψX(y) ≡ ∃x σf (x, y) satisfies the conclusion of the lemma. Let
us verify it.

• If m ∈ X, then ∃n ∈ Nk s.t. (f(n) is defined ∧ f(n) = m). Therefore,
N |= σf (n,m) from which follows that N |= ∃x σf (x,m) which is the same
as N |= ψX(m).

• If m ̸∈ X, then there is no n ∈ Nk s.t. (f(n) is defined ∧ f(n) = m) from
which follows that N ̸|= ∃x σf (x,m) which is the same as N ̸|= ψX(m).

Next, we introduce a definition, and a corresponding lemma, about represent-
ing functions in any extension of PA−.

Definition 3.7. Let k ∈ N and f : Nk −→ N. Then we say that f is represented
in some theory T extending PA− if there exists a formula ϑf (x, y), where x is of
length k, s.t. for all n,m ∈ Nk+1 the following holds

• T ⊢ ∃!z ϑf (n, z).

• f(n) = m ⇐⇒ T ⊢ ϑf (n,m).

Notice that the definition applies only to total functions.

Lemma 3.8 (Representation of recursive functions in PA−). Let f be a total
recursive function, then f is represented in PA−, and thus in any extension of it.

Proof. Proof can be found in Kaye [1991, Section 3.2].
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3.3 Representation of the n-th prime function
in PA−

Definition 3.8 (n-th prime function). We will denote by p(n) a function from
N into N s.t. p(n) is going to be the (n+ 1)-th prime number in N.

E.g. p(0) = 2, p(1) = 3, . . ..
The main point of this section is that p(n) can be represented in PA− (almost)

in the sense of Definition 3.7.
One way of solving this task is to realize the following two points.

• Function p(n) is total - obvious.

• Function p(n) is recursive.
Intuitively it follows by the following algorithmic procedure A(n) which
calls a sub-procedure B(i).

A: We enumerate N, according to <N. And we call B(i) to test whether i
is a prime or not.
If i is a prime and if so far, not counting i, we have found exactly n
primes we return i and end. Otherwise we continue with i+ 1.

B(i): We check primality of i by checking whether 1 < i and whether for
every k, l < i we have k × l ̸= i.

Obviously, B(i) takes only finitely many steps as well as A in between dif-
ferent i’s. And since A enumerates N with respect <N, which can be surely
done recursively, and B(i) obviously asses whether is i a prime number
correctly, we get that A will indeed return p(n).

Hence we got by the previous discussion the following observation.

Observation 3.9. Function p(n) is recursive.

And now we can apply Lemma 3.8 to get actually a good way to represent,
using a Σ1 formula, the n-th prime function in PA−. Denote such a formula
Π(x, y). Let us note that we will use this representation often, for its convenience
and standardness only, compared to the representation we are going to introduce.

This procedure is perfectly fine for everything that is to come and solely using
this way of representing p(n) we would be able to show, using our proof-procedure,
that Tennenbaum’s theorem for addition holds in IΣ1. As we will see later, the
actual part that enforces IΣ1, and not some weaker theory like I∆0, is partly
caused by the complexity, from the point of Arithmetical hierarchy, of a formula
used to represent the p(n) function.

Since we strive for the stronger result, we prove the lemma named “Repres-
enting” p(n) in non-standard models of PA− by a ∆0 formula.
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Lemma 3.10 (“Representing” p(n) in non-standard models of PA− by a ∆0
formula). Let us recall the ∆0 formula Θ(w, t, x, y) from Section 1.8, where (w, t)
intuitively codes some sequence of which is y the x-th member. Then define
Π(z, x, y) as ∃w, t < z ψ(z, x, y, w, t) where ψ(z, x, y, w, t) is a conjunction of the
following ∆0 formulas

(i) Θ(w, t, 0, 2)

(ii) ∀r0 < z (Θ(w, t, 0, r0)→ r0 = 2)

(iii) Θ(w, t, x, y)

(iv) ∀l ≤ x ∃rl < zΘ(w, t, l, rl)

(v) ∀l ≤ x ∀rl < z (Θ(w, t, l, rl)→ (1 < rl ∧ ∀a, b < z (a× b = rl → a = 1 ∨ b =
1)))

(vi) ∀l < x∀rl, rl+1 < z [(Θ(w, t, l, rl) ∧Θ(w, t, l + 1, rl+1))→ rl < rl+1]

(vii) ∀l < x∀rl, rl+1 < z {[Θ(w, t, l, rl)∧Θ(w, t, l+1, rl+1)]→ [∀rl < q < rl+1 (q ≤
1 ∨ (∃a, b < z (a × b = q ∧ a ̸= 1 ∧ b ̸= 1)))]}, where ∀rl < q < rl+1 . . . ≡
∀q < rl+1 (rl < q → . . .)

For the sake of unambiguity, let us highlight that variables are only pieces of
syntax rl and rl+1, i.e. we do not substitute for l or l + 1 some actual value.

Now let M be a non-standard model of PA−, and let e be any non-standard
element of e.

Then for every n ∈ N we have

• M |= ∀y0, y1 (Π(e, n, y0) ∧ Π(e, n, y1)→ y0 = y1) and

• M |= Π(e, n, p(n)).

Proof. Obviously, by the definition of ∆0 formulas, is Π(z, x, y) a ∆0 formula.
Let us try to interpret intuitively first all the conjuncts of ψ(z, x, y, w, t) where

z is set to “infinity”.
Recall once more that when N |= Θ(w, t, x, y), it means that the pair (w, t)

codes y as the x-th element of some sequence. In any model of PA− we do
not have, or we have not shown, that necessarily such a y exists or is unique.
Nevertheless, we will still use the terminology of coding.

(i) 2M is coded by (w, t) as one of its 0-th members.

(ii) 2M is the only 0-th element of (w, t) when we restrict ourselves to elements
smaller than z.

(iii) y is the x-th element coded by (w, t).

(iv) For any M |= l ≤ x there is some element of M that is coded as l-th element
by (w, t).

(v) If M |= l ≤ x and we take some l-th element coded by (w, t), we get an
element which is greater than 1 and irreducible, both with respect to M .
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(vi) IfM |= l < x and we take some l-th element, denote it as rl, and some (l+1)-
th element, denote it as rl+1, coded by (w, t) we get that M |= rl < rl+1.

(vii) If we again have M |= l < x and we take some l-th element, denote it as rl,
and some (l + 1)-th element, denote it as rl+1, coded by (w, t) we get that
for any element q which is strictly between them, in M , q is not irreducible,
in M .

Let us proceed to the actual proof of the two points in the statement of the
lemma.

• Assume M |= Π(e, n, y0) and M |= Π(e, n, y1). Moreover let (w0, t0) and
(w1, t1) be the respective witnesses. Our goal is to show that M |= y0 = y1.
We will prove M |= ∀l ≤ n∀z0, z1 ((Θ(w0, t0, l, z0) ∧Θ(w1, t1, l, z1))→ z0 =
z1). Obviously, the desired result will follow.
The proof is going to be by standard induction on l in N. More specifically
by Observation 1.31 it is enough to show that ∀l ≤ n, where l ∈ N, and
∀z0, z1 ∈M we have M |= (Θ(w0, t0, l, z0) ∧Θ(w1, t1, l, z1))→ z0 = z1.

l = 0: By the second item we know that M |= z0 = 2 = z1 assuming that
M |= z0, z1 < e. But by Observation 1.46 we know that only elements
z ∈ M s.t. M |= z ≤ w can satisfy M |= Θ(w, , , z), for any w ∈ M .
And since M |= w0, w1 < e it follows that actually M |= z0 = z1 for
any members of M , not only those smaller than e, which is what we
wanted.

l = k + 1: Again assume that M |= Θ(w0, t0, l, z0) ∧Θ(w1, t1, l, z1).
By the fourth item we know that there is some a ∈ M s.t. M models
Θ(w, t, k, a) and by our induction hypothesis it is a unique one.
But since

– M |= a < z0, z1, by the sixth item,
– they both must satisfy the same condition α described in the

fourth item,
– there can be no element between any of those two z’s and a s.t. it

satisfies α, by the seventh item,
we get that indeed M |= z0 = z1.
Therefore the first item in the statement of the lemma holds.

• By the last item in Lemma 1.45 we know that there exits some w, t ∈ N s.t.
∀l ≤ n we have N |= Θ(w, t, l, p(l)).
Since Θ is a ∆0 formula, we get by Corollary 1.42 that M |= Θ(w, t, l, p(l))
for any l ≤ n.
Furthermore, since e is a non-standard element, we know that M models
w, t, p(l) < e, for any l ∈ N.
It is not hard to realize that we are done if we manage to show that for any
y ∈M , if M |= Θ(w, t, l, y) then necessarily M |= y = p(l). But this follows
immediately by Corollary 1.48.
Proof of this item, as well as the whole proof, is hereby finished.
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3.4 When is a model recursive?

Formal definition
Motivation

First of all, only structures that have countable domain will be admitted into the
consideration of being recursive/computable.

Intuitively speaking, it is because all the standard models of computation are
defined with respect to a countable domain.

Furthermore, it seems only natural that models which do not have countable
domain will not be considered recursive/computable. It is since to even represent
all the elements of the domain, let alone functions/relations on that domain, using
some way which represents

(i) different elements differently and

(ii) every element finitely

is impossible for an uncountable domain, because otherwise the domain would be
countable by “definition”.

And when we are unable to sufficiently represent elements of the domain,
then it does not make that much of a sense of asking whether we can sufficiently
represent functions/relations of a given model algorithmically.

Hence, intuitively speaking, only models of countable domain will be admitted
into consideration.

Definition

Furthermore, since we have defined recursive functions/relations to be always
functions/relations over N, we will restrict domain of respective models to N.

Definition 3.9 (Recursive model). Let L be some language s.t. LA ⊆ L, PA− ⊆
T and M |= T , i.e. L extends/expands language LA and T extends the theory
PA−. Furthermore assume that M has domain equal to N.

Then we define the following.

• If f is a functional symbol in L, then we say that M is recursive with respect
to f , or f is recursive in M , if fM is a recursive function.

• If R is a relational symbol in L, then we say that M is recursive with respect
to R, or R is recursive in M , if RM is a recursive relation.

However, this is not much of a restriction. Since if we have some L structure M
s.t. M |= T , and dom(M) is countable. Then we can define new L structure with
domain N that is isomorphic to M . We will prove it at once in Observation 3.12
but before that let us prove one more observation.

Observation 3.11 (Countable models of PA− are denumerable). LetM |= PA−,
L be some extension of LA and dom(M) is countable, then it is denumerable, i.e.
there is an bijection between dom(M) and N.

54



Proof. Since dom(M) is countable it means that dom(M) is denumerable or finite.
Assume for contradiction that it is finite.

Since L contains constants M can not be empty.
Let x ∈ dom(M) be the maximum of this set with respect to <M . We know

that such an element exists by the second item in Observation 1.4. By Ax.14
[0 < 1∧(0 < x→ 1 ≤ x)] we know that M |= 0 < 1 therefore by Ax.11 [x < y →
x+ z < y + z] we get that M |= x < 1 + x, where (1 + x)M ∈M .

Hence by Ax.8 [transitivity <] there exists y ∈M s.t. ∀z ∈M (M |= z < y),
therefore also M |= y < y which is in direct contradiction with Ax.9 [irreflexiv-
ity <] .

Therefore the domain of M can not be finite and is denumerable.

Observation 3.12 (Every model of PA− is isomorphic to one with domain N).
Let M |= PA−, L be some extension of LA and dom(M) is countable. Then there
exists a L structure G s.t. dom(G) = N, G |= PA− and G ∼= M .

Proof. By Observation 3.11 we know that there exists some bijection I from N
onto M , recall that I−1 must be a bijection from M onto N.

Let us create the structure G step by step so that I is a witness to G ∼= M .
Let us highlight that we will write (I(x0), . . . , I(xn)) as I(x).

• Set dom(G) = N.

• If c is a constant symbol of L then just set cG to I−1(cM).

• If f is a function symbol in L, then define fG(n) as I−1(fM(I(n))).

• If R is a relation symbol in L, then define n ∈ RG iff I(n) ∈ RM .

Since I is a bijection from N onto M , I−1 is a bijection from M onto N it
follows that G is a well defined L structure which has domain N.

And again since I is bijection from N onto M combined with the way we
have defined interpretation of symbols in L for G, it follows that I is indeed an
isomorphism from G to M .

Since M |= PA− and G ∼= M , G |= PA− follows.

Let us conclude this section on recursivity of models with one useful observa-
tion.

Observation 3.13. Let M |= PA−, L be some language expanding LA, dom(M)
equals N and l ∈ N. Then there exists a L structure G, s.t.

• G ∼= M ,

• dom(G) = N,

• if f ∈ L and f is recursive in M , then f is recursive in G,

• if R ∈ L and R is recursive in M , then R is recursive in G,

• ∀r ∈ N s.t. r ≤ l we have rG = r.

I.e. that there exists a structure isomorphic to the original one s.t. the interpret-
ation of all the terms 0, . . . , r is known to us and is actually 0, . . . , r.
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Proof. The proof is going to be by induction on l, where we assume that the
observation holds for all r ∈ N s.t. r < l. Other way to look at what will follow is
that we present a single step of an algorithm that takes a structure G′ satisfying
the conclusion for l − 1 and creates a structure G satisfying the conclusion for l.

Let G′ be the L structure that we get from induction hypothesis. More spe-
cifically, if l = 0, then set G′ to M and otherwise set G′ to the structure satisfying
the conclusion of the just being proved observation for l − 1. I.e. G′ either way
satisfies the conclusion of the just being proved observation for all r < l.

Define s as a function from N into N in the following way.

s(n) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
lG

′

n = l,

l n = lG
′

,

n otherwise.

Note that if l = n = lG
′

, i.e. both the first and the second condition are
satisfied, then nothing bad happens since according to the first condition is s(n) =
lG

′

which is the same as s(n) = l by the second condition.
Since dom(G′) = N, s is a well defined function from N into N.
Since s clearly permutes (at most) two elements on N and other elements

remain intact it follows that s is a bijection on N.
Lastly, since s permutes (at most) two elements, we have s = s−1.
Let us construct step by step G, similarly as in Observation 3.12.

• Set dom(G) = N.

• If c is a constant symbol of L then just set cG to s−1(cG
′
).

• If f is a functional symbol in L, then define fG(n) as s−1(fG
′
(s(n))).

• If R is a relational symbol in L, then define n ∈ RG iff s(n) ∈ RG
′
.

We have used s as well as s−1 to emphasize the correspondence to Observa-
tion 3.12. However, since s = s−1 we could have written s instead of all s−1’s.

By the way we have defined G, it is obvious that dom(G) = N, G is a L
structure and s is a witnesses to G ∼= M .

Furthermore, since s permutes only two elements, i.e. makes only a local/finite
change, then if some functional/relational symbol f/R was recursive with respect
to G′ , then it must be also recursive with respect to G.

Or to look at it from other perspective, s is obviously a recursive function.
Therefore we get fG as a composition of recursive total functions, hence it is
recursive. And, intuitively speaking, recursive functions should be closed under
composition since when we have some procedure A that is by it self computable
except for calls to other computable procedure B, we still think of A as being
computable as a whole.

An analogous, intuitive, argument applies to relations. Since we ask whether
some element that we can compute belongs to some relation that is computable,
i.e. we can decide whether an element belongs there or not algoritmically.

Last thing to check is whether ∀r ≤ l we have G |= rG = r. The proof is by
induction on r.
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r < l: Since r < l, we have by induction hypothesis that r = rG
′
.

Furthermore, since r ̸= l we have by Corollary 1.30 that rG
′
̸= lG

′

, therefore
by the previous observation we have r ̸= lG

′

, hence s(r) = r.
We know, by induction hypothesis, that G′ |= x = r, with x set to r. And
since s−1 is an isomorphism from G

′ onto G we get that G |= x = r with x
set to s−1(r) = s(r) = r. And therefore indeed r = rG.

r = l: First note that s(lG
′

) = l.

Clearly G′ |= x = l for x set to lG
′

. And since s−1 is an isomorphism from
G

′ onto G we get that G |= x = l with x set to s−1(lG
′

) = s(lG
′

) = l, which
is what we wanted to show.

One commentary is in place. Since l ∈ N, the induction/algorithm that
we have shown a single step of, needs to be applied only l + 1, i.e. finitely,
many times to create G. Therefore we indeed retain recursiveness of respective
functions/relations. Since e.g. if f ∈ L is a recursive function with respect to M ,
we apply only finitely many times, possibly different, recursive functions s to the
the original function fM , actually 2× (l+ 1) times in total when we count all the
compositions. Hence fG is indeed recursive. And an analogous argument holds
for relations.

We are mentioning this because if we made some other kind of “induction”
where there are needed infinitely many induction steps, to get from the base of an
induction to the case we actually wanted to prove in the first place, the described
process wouldn’t need to work.

The proof is finished.

Why is not the formal definition actually that important
We would like to highlight to the reader that this subsection is not that precise,
nevertheless, we believe that the reader will understand what we are trying to
achieve as well as will be, intuitively, conveyed that everything works as is going
to be described.

In this subsection, as the title suggest, we will try to relax the definition of
recursive models.

It should not be that surprising that the condition on dom(M) = N is quite
a technical one, caused by a specific formalization of algorithmic processes using
recursive functions.

First, assume that A, B are two denumerable sets and I is a bijection from A
onto B. Intuitively, I codes A onto B and I−1 codes B onto A.

Furthermore, if I as well as I−1 are computable in some broad sense, then it
means that we can computably code A onto B and vice versa.

Assume from now on that I as well as I−1 are indeed computable.
Moreover, it should hold that if we come up with some reasonable represent-

ation of A and B in N, then there exists a recursive bijection H over N s.t. when
we look at N as if it was A and B, we get that H coincides with I as well as H−1

coincides with I−1.
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Furthermore, if A = N or B = N, then I or I−1 are such a reasonable repres-
entations mentioned in the last paragraph.

Informal Definition 3.10 (Computable coding). Let A and B be two denu-
merable set. Furthermore let I be a bijection from A onto B. Then we call I a
computable coding (of A onto B) iff. I and I−1 are computable.

Informal Definition 3.11 (Computably codable set). Let A be a denumerable
set, then we say that A is a computably codable set iff there exists a computable
coding from N onto A.

Commentary. Let us mention, that in practice to show that A is a computably
codable set it does suffice to show that there exists a computable coding from A
onto N, since there exists one iff there exists computable coding from N onto A.

What are some simple examples of such a computably codable sets? One is Z
and the witness, i.e. respective computable coding, is e.g. I(n) = (−1)n × ((n +
1) div 2), where it is intuitively evident that I and I−1 are computable.

For an inventory of computable codings used in the course of this text, we
will utilize them in section 6.3, section 9.1 and section 11.2, one should look at
Appendix A.

Observation 3.14. Let L be some language, M a L-structure, dom(M) be a
computably codable set and T a theory over L s.t. M |= T . Then there exists a
L structure G s.t.

• dom(G) = N.

• G ∼= M .

• G |= T .

• If f ∈ L is a functional symbol and fM is computable, then fG is recursive
in G.

• If R ∈ L is a relational symbol and RM is computable, then RG is recursive
in G.

Proof sketch. Since dom(M) is a computably codable set, there exists a bijection
I from N onto dom(M) s.t. I and I−1 are computable.

Define now G in the same way as in Observation 3.12. I.e.

• Set dom(G) = N.

• If c is a constant symbol of L then set cG to I−1(cM).

• If f is a functional symbol in L, then define fG(n) as I−1(fM(I(n))).

• If R is a relational symbol in L, then define n ∈ RG iff I(n) ∈ RM .

Evidently G is a L-structure and G ∼= M which implies G |= T .
If fM is computable, and since composition of computable functions is again

computable in the same vein as is calling a computable sub-procedure B from a
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computable procedure A, we get that fG is a computable function over N, hence
fG is recursive.

Analogously, if RM is computable, i.e. we can decide algoritmically for any
element of dom(M) whether or not it does belong toRM , and I is also computable,
i.e. we can algoritmically find for any n the value I(n), it follows that RG is
computable relation over N, hence RG is a recursive relation over N.

What are some valid examples that satisfy the premises in Observation 3.14?
Continuing with the example Z, which is a computably codable set, L will

consist of a binary functional symbol + and a binary relational symbol < as
its only, not counting =, non-logical symbols. The structure M is going to be
(Z,+Z, <Z), where +Z, <Z will have their standard interpretation in Z and T is
going to be axiomatized by Ax.1, Ax.2, Ax.8, Ax.9 and Ax.10 from Axioms of
PA−. Clearly, L,M and T are a valid example of a premise in Observation 3.14
as well as are +Z a <Z intuitively computable functions/relations.

Corollary 3.15. Let L be some language s.t. LA ⊆ L, U be a L-structure, T a
L theory extending PA− and U |= T .

Furthermore let L0 ⊆ L, where non-logical symbols as well as = are preserved
in L0. And (U,L0) be a reduct of U to the language L0.

Under the listed assumptions, if there exists a L0 structure U ′ s.t. (U,L0) ∼= U
′

and dom(U ′) is a computably codable set,
then there exists a L structure G satisfying the following.

• dom(G) = N

• G ∼= U

• G |= T

• If f ∈ L0 is a functional symbol and fU
′

is computable, then fG is recursive
in G.

• If R ∈ L0 is a relational symbol and RU
′

is computable, then RG is recursive
in G.

Proof sketch. Let H be an isomorphism from U
′ onto (U,L0).

We will define a L structure M s.t. M is an expansion of U ′ with respect to
L0, i.e. they have the same domain and they interpret symbols from L0 in the
same way.

We define interpretation for symbols in L\L0 in the following way.

• If c is a constant symbol of L L0 then set cM to H−1(cU).

• If f is a functional symbol in L L0, then define fM(x) as H−1(fU(H(x))).

• If R is a relational symbol in L L0, then define x ∈ RM iff H(x) ∈ RU .

We have that dom(M) is computably codable set where M is a L-structure.
Furthermore, since (U,L0) ∼= U

′ and by the way we have interpreted symbols
from L L0 when expanding U

′ to M we get that M ∼= U and therefore also
M |= T .
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Lastly, when we were expanding U ′ to M the interpretation of symbols from
L0 remained unchanged Therefore functional/relational symbols from L0 which
interpretations were computable, with respect to U ′ , have computable interpret-
ations with respect to M as well.

Combining the last two paragraphs, we can apply Observation 3.14, to get
the desired result and the proof is finished.

Lastly, we would like to emphasize that codings in this subsection are not
related to the process of coding sets described in chapter 4.

60



4. Coding sets in PA

A much of this section is inspired by Smith [2014, sections 5 to 8].

4.1 Equivalence of different encodings
Let T be some extension of PA−.

Definition 4.1 (Canonical coding of sets). Let M |= T and let X ⊆ N. We say
that X is canonically coded in M iff. there exists a ∈M s.t. ∀n ∈ N (n ∈ X ⇐⇒
M |= ∃z (Π(n, z) ∧ z | a)).

Let us comment that since Π(x, y) represents function p(n), from the point of
view of Definition 3.7, there is only one element in M satisfying M |= Π(n, z) for
any n ∈ N and this element is p(n)M .

Definition 4.2 (Coding of sets). Let M |= T and let X ⊆ N. We say that X
is coded in M iff. there exists a LA formula φ(x, y) and b ∈ M s.t. ∀n ∈ N (n ∈
X ⇐⇒ M |= φ(b, n)).

Actually, only the implication from right to left, of the following lemma, will
be important to us. However, we have decided to show both implications, based
on preference, the reader can certainly skip the first one.

Lemma 4.1 (Equivalence of coding sets in I∆0). Let M be a non-standard model
of I∆0 and X ⊆ N. Then X is canonically coded in M iff. it is coded in M by
∆0 formula.

Proof. ⇒: Let a ∈ M and e be some non-standard element of M , then mainly
by Lemma 3.10 and Corollary 1.36, M |= ∃z (Π(n, z)∧ z | a) iff. M |= ∃z <
e (Π(e, n, z) ∧ z | a). Where Π(z, x, y) is a ∆0, as we know by Lemma 3.10,
as well as is the relation | expressible by a ∆0 formula by Corollary 1.20.
Therefore the formula ∃z < w (Π(w, x, z) ∧ z | v) is a ∆0 formula and the
⇒ follows.

⇐: Let φ(x, y) be some ∆0 formula and let b ∈ M s.t. ∀n ∈ N we have the
following equivalence n ∈ X ⇐⇒ M |= φ(b, n).
Let us define ψ(w, x, y) as

∃w0 < w ∀y0 ≤ y [(∃z ≤ w (Π(w, y0, z) ∧ z | w0))↔ φ(x, y0)].

Since Π(w, y0, z) and φ(x, y0) are ∆0 formulas we get that ψ(w, x, y) is a
∆0 formula.
Let e be a non-standard element of M . We will show that ∀m ∈ N we have
M |= ψ(e, b,m).
Note that by Observation 1.31 we know that it is sufficient to show the
equivalence only for y0 = 0M , . . . ,mM .
Define r as r := Πl∈(X∩[m])p(l), this time Π is the standard product function
(in case X ∩ [m] = ∅, the product is 1). And set w0 to rM .
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Clearly by Corollary 1.36 we have M |= w0 < e. We claim that actually

M |= ∀y0 ≤ m [(∃z ≤ e (Π(e, y0, z) ∧ z | w0))↔ φ(b, y0)].

Let M |= y0 ≤ m, which, as we have already pointed out, means that
M |= y0 = q, for some natural number 0 ≤ q ≤ m.

⇒: If M |= (∃z ≤ e (Π(w, y0, z) ∧ z | w0)), then we know by Lemma 3.10,
and non-standardness of e, that M |= p(q) | r. By Observation 1.32
the p(q) | r follows. And by the definition of r we get that q ∈ X,
therefore indeed M |= φ(b, y0), which is what we wanted to show.

⇐: If M |= φ(b, y0) then q ∈ X, since we have q ≤ m as well, it follows
that p(q) | r and by Observation 1.32 M |= p(q) | r(= w0). And
again by properties of Π( , , ) and since e is a non-standard element
M |= (∃z ≤ e (Π(e, y0, z)∧ z | w0)), which is what we wanted to show.

Now,Lemma 2.7, i.e. Overspill lemma on ∆0 formulas, can be applied to
acquire a non-standard element c ∈ M s.t. M |= ψ(e, b, c). And since
standard elements are below, with respect to <, non-standard ones by Co-
rollary 1.36 we get that there exists a ∈M s.t. ∀n ∈ N,

M |= (∃z ≤ e (Π(e, n, z) ∧ z | a))↔ φ(b, n).

And since Π(w, x, y) and Π(x, y) are equivalent over PA− when x ∈ NM

and w is non-standard we get by Lemma 3.10 that ∀n ∈ N,

M |= (∃z ≤ e (Π(n, z) ∧ z | a))↔ φ(b, n).

Furthermore, we can replace ∃z ≤ e by ∃z since by Definition 3.7 there can
be no z ∈M that is non-standard, which would follow by M |= e ≤ z, and
M |= Π(n, z).
Therefore there is a ∈M s.t. ∀n ∈ N we have

(n ∈ X ⇐⇒ M |= ∃z (Π(n, z) ∧ z | a)),

which is precisely what we wanted to show.

Commentary. Let us mention that the proof of ⇐ in the just proved lemma,
namely when we use Overspill which is in turn proved by induction on respective
∆0 formulas, is the point about which we talked in section 3.3.

Specifically, when we were saying that the complexity, with respect to Arith-
metical hierarchy, of formula representing p(n) (partly) implies the theory in
which we can show that Tennenbaum’s theorem for addition holds.
Commentary. Also please bear in mind that the only time we have used M |= I∆0
instead of just using M |= PA− was when we used Overspill lemma for ∆0
formulas. Therefore, we can replace in Lemma 4.1 the assumption of M |= I∆0
by M |= PA− and M satisfies Overspill lemma for all the ∆0 formulas.
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Lastly, let us mention, as a possible point of interest, that when M is a non-
standard model of PA, then M canonically codes a set iff M codes it. (In this
case we do not restrict ourselves only to ∆0 formulas.) One can carry out an
analogous proof to the one we gave in Lemma 4.1. Actually, this time it would
be easier, since ⇒ is trivial and ⇐ can be done analogously, and even without
using Π(x, y, z).

4.2 Encoding of a non-recursive set
Lemma 4.2 (A non-recursive set which can be coded in I∆0). Let M be a non-
standard model of I∆0, then there exists a non-recursive set X ⊆ N s.t. X can
be coded in M by a ∆0 formula.

Proof. Let us recall that by Lemma 3.5 there exists a recursive inseparable re-
cursively enumerable sets A,B.

By Lemma 3.7 we know that there must exist some Σ1 formulas representing
A,B in N. And by Observation 1.17 these formulas “need” only one unbounded
existential quantifier.

To be less ambiguous, we have two ∆0 formulas α(x, y), β(x, y) s.t.

n ∈ A ⇐⇒ N |= ∃y α(n, y)

and
n ∈ B ⇐⇒ N |= ∃y β(n, y).

Since A ∩B = ∅, we have for every m ∈ N that

N |= ∀x ≤ m∀yA ≤ m∀yB ≤ m (¬α(x, yA) ∨ ¬β(x, yB)).

Moreover, the just written sentence is a ∆0 sentence. Therefore by Corol-
lary 1.42 we have ∀m ∈ N the following

M |= ∀x ≤ m∀yA ≤ m∀yB ≤ m (¬α(x, yA) ∨ ¬β(x, yB)).

Using Overspill lemma on ∆0 formulas, i.e. Lemma 2.7, we get a non-standard
element e of M s.t.

M |= ∀x ≤ e ∀yA ≤ e∀yB ≤ e (¬α(x, yA) ∨ ¬β(x, yB)).
Let us define now the set X as {n ∈ N|φ(e, n)} where the φ(y, x) is defined

as ∃yA ≤ y α(x, yA). Clearly, X is coded in M by a ∆0 formula.
It remains to show that X is not recursive. For this, it suffices to show that X

separates A and B, i.e. A ⊆ X and B ∩X = ∅, because A and B are recursively
inseparable.

A ⊆ X: If n ∈ A, then N |= ∃y α(n, y). Therefore there is m ∈ N s.t. N |=
α(n,m).
By Corollary 1.42 we have M |= α(n,m). And, as we have mentioned
many times, since are standard elements below non-standard ones we have
M |= ∃yA ≤ e α(n, yA), which is the same as M |= φ(e, n). And thus n ∈ X.
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B ∩X = ∅: Assume for contradiction that ∃n ∈ B s.t. n ∈ X. Then we have
M |= φ(n, e), i.e. M |= ∃yA ≤ e α(n, yA).
Moreover, since n ∈ B we have that N |= ∃y β(n, y). By an analogous
argument as in the previous item we get M |= ∃yB ≤ e β(n, yB).
Everything combined, and again keeping in mind that M |= n ≤ e, we have

M |= ∃x ≤ e ∃yA ≤ e ∃yB ≤ e (α(x, yA) ∧ β(x, yB)),

which can not be since

M |= ∀x ≤ e ∀yA ≤ e ∀yB ≤ e (¬α(x, yA) ∨ ¬β(x, yB)).

Corollary 4.3 (Canonical coding of a non-recursive set and its complement).
Let M |= I∆0, then there exists a non-recursive set X s.t. X as well as its
complement X can be canonically coded in M .

Proof. By Lemma 4.2 there exists a non-recursive set X which can be canonically
coded by a ∆0 formula in M . Obviously, since ∆0 formulas are closed with respect
to negation, we have that also X can be code by a ∆0 formula in M .

Applying Lemma 4.1 we get the desired result.

Corollary 4.4. Let M |= PA, then there exists a non-recursive set X s.t. there
exists a, c ∈M for which we have

• n ∈ X ⇐⇒ M |= (∃x exp(x, p(n)) = exp(2, a))

• n ∈ X ⇐⇒ M |= (∃x exp(x, p(n)) = exp(2, c))

Proof. By Corollary 4.3 we know that there exist a, c ∈ M s.t. n ∈ X ⇐⇒
M |= p(n) | a and n ∈ X ⇐⇒ M |= p(n) | c.

Let us also note that these a, c must be non-standard elements of M , because
otherwise X would be a finite/co-finite, hence recursive, set. We do not spend
time to (intuitively) justify the preceding line since actually M |= 0 < a, c is
enough for the given proof to work. And if, by contradiction, a = 0M ∨ b = 0M ,
then X is the empty set or the N, and in this case it is especially obvious that X
must be a recursive set.

We will show that a and c we got from Corollary 4.3 actually satisfy the
conclusion of this corollary. We will show it only for X, and a, the case for X,
and c, can be proved by the same argument.

⇒: Assume that n ∈ X.
Then, as we know, M |= p(n) | a, therefore there is some z ∈ M s.t. M |=
p(n)× z = a. Therefore we must have M |= exp(2, p(n)× z) = exp(2, a).
And by the third item in Observation 2.10 we have

M |= exp(exp(2, z), p(n)) = exp(2, a).

Therefore the result of M |= ∃x (exp(x, p(n)) = exp(2, a)) follows.
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⇐: Assume that there is x ∈M s.t. M |= exp(x, p(n)) = exp(2, a).
By Observation 2.13, there must exist w ∈M s.t. M |= x = exp(2, w). And
again by the third item in Observation 2.10 we have M |= exp(2, w×p(n)) =
exp(2, a).
Since exp(2, z) is an increasing function with respect to z, this follows by
the last item in Observation 2.11, we must have M |= w × p(n) = a. And
thus M |= p(n) | a and the membership of n in X follows.

Corollary 4.5. Let M |= PA, then there exists a non-recursive set X s.t. there
exists a, c ∈M for which we have

• n ∈ X ⇐⇒ M |= ∃x (exp(x, p(n)) = a)

• n ∈ X ⇐⇒ M |= ∃x (exp(x, p(n)) = c)

Proof. Obvious corollary of Corollary 4.4.

Commentary. Let us again highlight that all the occurrences of M |= I∆0 can be
replaced by M |= PA− and M satisfies Overspill lemma for all the ∆0 formulas.
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5. Tennenbaum’s theorem
At last, we approach the proof of Tennenbaum’s theorem.

Let us also recall from Section 3.4 that we do not lose much when we will be
considering only non-standard models which have N as their domain.

Let us recall that the original Tennenbaum’s theorem for non-standard models
of PA is due to Tennenbaum [1959] and the strengthened version for on-standard
models of I∆0 is due to McAloon [1982].

5.1 Tennenbaum’s theorem for addition in I∆0

Lemma 5.1. Let M |= PA− s.t. dom(M) = N and +M is recursive. Then if
X ⊆ N is canonically coded in M we have that X is recursively enumerable.

Proof. Since X is canonically coded it means that there exists a ∈ dom(M) = N
s.t.

n ∈ X ⇐⇒ M |= ∃z (p(n)× z = a).
And that is in turn the same as, by Observation 1.21,

n ∈ X ⇐⇒ M |= ∃z (z + . . .+ z = a),

where z is repeated p(n) times.
We will now construct an algorithmic procedure A enumerating X. Further-

more, this procedure A will call a sub-procedure B(n).

A: Enumerate N according to <N. For every enumerated i invoke the sub-
procedure B(i).

B(i): • First, Compute all the finitely many p(0), . . . , p(i).
• For every p(l), for l ≤ i, we check for every m ≤ i whether the sum

with respect to +M of p(l) m’s is equal to a or not.
If it is equal to a, then print out l to the output, and proceed. Other-
wise do not print out anything and proceed.

Since we can surely enumerate N according to <N recursively, p(n) is a re-
cursive function by Observation 3.9 and +M is recursive by our assumption we
get that A and B(i) are well defined algorithms.

Now, we check that A enumerates X and the proof will be finished.

• Obviously A, or more precisely B, will write to the output only members
of X.

• Let n ∈ X. Then there must be some m ∈ N s.t. the sum of p(n)-times m,
with respect to +M , is equal to a.
Since B(i) processes only finitely many steps for every i ∈ N we get that
after a finitely many steps of A, including those of B, B(max(n,m)) is
called. And during B(max(n,m)) we will evidently write n to the output.
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Theorem 5.2 (Tennenbaum’s theorem for addition in I∆0). Let M be a non-
standard model of I∆0 s.t. dom(M) = N. Then +M can not be a recursive
function.

Proof. Assume for contradiction that the assumption holds but not the conclu-
sion, i.e. +M is recursive.

We know by Corollary 4.3 that there is a non-recursive set X ⊆ N s.t. X and
its complement can be both canonically coded in M .

However, since in addition is +M recursive, we get by Lemma 5.1 recursive
enumerability of both X and X. But from this result we immediately get the
recursiveness of X, namely by Observation 3.2, which is the contradiction we
wanted.

Commentary. Let us also note that the only time we have used induction on
∆0 formulas to reach this final goal of showing Theorem 5.2 formulas was when
we were proving Ovespill lemma on I∆0 for N which we have subsequently used
many times.

Therefore we can actually conclude that Tennenbaum’s theorem for addition
holds for any model of PA− that also satisfies all the instances of Overspill lemma
on ∆0 formulas (for N), i.e. the conclusion of Lemma 2.7.

5.2 Tennenbaum’s theorem for multiplication
As we will see, with all the preparations we have made, the proof of Tennenbaum’s
theorem for × is basically identical to the one for +.

Lemma 5.3. Let M |= PA s.t. dom(M) = N and ×M is recursive. Moreover let
X be a subset of N. Then if there exists a ∈M s.t.

n ∈ X ⇐⇒ M |= ∃x (exp(x, p(n)) = a),

then X is recursively enumerable.

Proof. The proof is analogous to the one in Lemma 5.3.
Only this time use the fourth item in Observation 2.10 to show that

n ∈ X ⇐⇒ M |= ∃x (xp(n) = a),

where recall that xp(n) is just a product of p(n) x’s.
And then change suitably chosen +M to ×M in Lemma 5.1 and the proof is

written.

Theorem 5.4 (Tennenbaum’s theorem for multiplication). Let M |= PA s.t.
its domain equals N and M is non-standard. Then ×M can not be a recursive
function.

Proof. The proof is literally the same as the proof for Tennenbaum’s theorem for
addition in I∆0.

• Change +M to ×M .
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• To acquire non-recursive set X where X and X are properly coded, for the
proof to work, change Corollary 4.3 to Corollary 4.5.

• And lastly change reference to Lemma 5.1 for a reference to Lemma 5.3.

And the proof is written.

Concluding remark
After the two negative results, i.e. there can be no non-standard model of PA
where the + or × can be recursive, the reader might wonder whether there ac-
tually is some non-trivial relation or function, which we would possibly get by
extending the language and adding a defining axiom to the theory, which can be
recursive in some non-standard model of PA.

As we will see, for example, in the next chapter, there actually are some non-
trivial relations/functions that are recursive in some non-standard model of PA.
And we will not have to even extend the language, since one of them is <.
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6. Inspection of the order
relation
In this chapter, we investigate the structure of the order relation on models of
I∆0, more specifically on models of PA− which also satisfy Overspill for N on all
the ∆0 formulas.

As a consequence of these observations, we will observe that there is a non-
standard model of PA with domain N where the < is recursive.

The results we present here are relatively well known and we have them mainly
from Kaye [1991, pp. 73-77].

6.1 Equivalence relation of elements which are
apart by a standard distance

Definition 6.1 (Relation ∼<). Let M |= PA−, we define a relation ∼<, with
respect to M , as for all a, b ∈M

a ∼< b ⇐⇒ ∃k ∈ NM (M |= a+ k = b ∨ a = b+ k).

Observation 6.1. Let M |= PA−, then ∼< is an equivalence relation.

Proof. reflexivity: Obvious by setting k = 0M .

symmetricity: Obvious by the symmetricity of the definition of ∼<.

transitivity: Assume a ∼< b and b ∼< c, furthermore let k, l ∈ NM be the
respective witnesses.
Let us consider the four different possibilities that can happen.

• M |= a = b+ k ∧ b = c+ l.
In this case we obviously have M |= a = c+ (l+ k), where (l+M k) ∈
NM . Therefore a ∼< c.

• M |= a = b+ k ∧ b+ l = c.
Let n,m ∈ N be such a natural numbers so that M |= k = n ∧ l = m.
We must have m ≤ n or Mn ≤ m. WLOG M |= m ≤ n. And by
Observation 1.29 we get that M |= l ≤ k.
We clearly have M |= a+ l = c+ k.
Hence we have M |= (a+ l) .− l = (c+ k) .− l .
And we can proceed to conclude by Observation 1.23 that M |= a +
(l .− l) = c+ (k .− l).
And lastly we get by Observation 1.25 that M |= a = c + (n−m).
Where (n−m) ∈ N , hence a ∼< c holds.

• M |= a+ k = b ∧ b = c+ l.
We can verify by an analogous argument as in the previous item that
indeed a ∼< c.
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• M |= a+ k = b ∧ b+ l = c.
In this case we obviously have M |= a+ (k + l) = c, where (k +M l) ∈
NM . Therefore a ∼< c.

Definition 6.2 (Equivalence classes eZ). Let M |= PA− and let ∼< be the
respective equivalence relation. Then for every e ∈M we define eZ := [e]∼< .

Observation 6.2. Let M |= PA− and let ∼< be the respective equivalence
relation. Then for every e ∈ M we have eZ = {. . . , e .−M 1M , e, e +M 1M , . . .},
more specifically

eZ = {x ∈M |∃k ∈ NM (M |= x = e .− k)} ∪ {x ∈M |∃k ∈ NM (M |= x = e+ k)}.

Secondly, {x ∈M |∃k ∈ NM (M |= x = e .−k)} equals {x ∈M |∃k ∈ NM (M |=
x+ k = e)}.

Lastly, if e is a non-standard element of M and n ∈ N {0}, then

M |= . . . < e .− n < . . . < e .− 1 < e < e+ 1 < . . . < e+ n < . . .

Proof. Clearly, be definition of ∼< we have

eZ = {x ∈M |∃k ∈ NM (M |= x+ k = e)} ∪ {x ∈M |∃k ∈ NM (M |= x = e+ k)}.

As a simple application of Observation 1.26, we can observe that {x ∈M |∃k ∈
NM (M |= x+ k = e)} equals {x ∈M |∃k ∈ NM (M |= x = e .− k)}, and the main
result, as well as the (middle) remark, follows.

As for the last “Lastly” part.
Mainly by Observation 1.29 and Ax.11 [x < y →x+ z < y + z] we can con-

clude that M |= e+ n < e+ n+ 1 for any n ∈ N.
Next, if n ∈ N then since e is non-standard element we get by Ax.13 [x ≤ y →

∃z(x+ z = y)] that there exists z ∈ M s.t. M |= e = z + n+ 1, Which also
implies that M |= e = (z + 1) + n. Therefore, mainly by Observation 1.23
M |= e .− n+ 1 = z and M |= e .− n = z + 1. And thus we may conclude that
M |= e .− n+ 1 < e .− n, which finishes the proof.

Corollary 6.3. Let M |= PA−, then 0M
Z = NM .

Proof. By Observation 6.2 we know that 0M
Z is equal to

{x ∈M |∃k ∈ NM (M |= x+ k = 0)} ∪ {x ∈M |∃k ∈ NM (M |= x = 0 + k)}.

The second item in the union is obviously NM , by Ax.2 [commutativity +]
and Ax.6 [0, 1 are neutral] .

Let us inspect more carefully the first item in the union, i.e.

{x ∈M |∃k ∈ NM (M |= x+ k = 0)}.

Assume that x ∈ M and M |= x + k = 0 for some k ∈ NM . Assume
furthermore for contradiction that M |= x ̸= 0. Then by Ax.15 [0 ≤ x]M |= 0 <
x, hence by Ax.11 [x < y →x+ z < y + z] we have M |= 0 + k < x+ k.
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Applying Ax.15 [0 ≤ x] again we have M |= 0 ≤ 0 + k, therefore by Ax.8
[transitivity <] we have both M |= 0 < x+ k and M |= 0 = x+ k which can not
be by Observation 1.1.

Therefore we may conclude that the first set in the union is a subset of a
singleton containing only 0M , actually it is equal to it by Ax.6 [0, 1 are neutral] .

Continuing, since the first set in the union is a a subset of {0M} and the second
set is NM which by it self contains 0M we may conclude that indeed 0M

Z = NM .

Observation 6.4. Let M |= PA−, a, b ∈ M and let ∼< be the respective equi-
valence relation. Then if aZ ̸= bZ and M |= a < b , then ∀x ∈ aZ ∀y ∈ bZ (M |=
x < y).

Proof. First, we will show that ∀y ∈ bZM |= a < y, and the rest will follow.
Let y ∈ bZ, then there exits k ∈ NM , where M |= k = n for some n ∈ N, s.t.

M |= y = b+ k ∨ b = y + k.
Let us argue about these two cases separately.

y = b+M k: By Observation 1.9 we know that M |= b ≤ b + k. And by Ax.8
[transitivity <] we can conclude M |= a < y.

b = y +M k: We will show by induction on n that M |= a < y.

n = 0: Then b = y and we are finished.
n = d+ 1: Assume for contradiction that M |= a < y does not hold.

By Ax.10 [trichotomy <] we get that M |= a = y ∨ y < a.
If M |= a = y, then aZ = bZ which is in contradiction with our
assumption of aZ ̸= bZ, hence M |= a = y can not hold.
If M |= y < a, then M |= y + 1 ≤ a by Observation 1.16. Also since
M |= b = (y + 1) + d we get by our induction hypothesis that M |=
a < y+ 1. Combining the last two observations we get a contradiction
by Observation 1.1.

Let x ∈ aZ, then there exists l ∈ NM s.t. M |= x+ l = a or M |= x = a+ l.
In the former case, by the third item in Observation 1.11, M |= x ≤ a, hence

by Ax.8 [transitivity <] we have ∀y ∈ bZ (M |= x < y).
In the latter case, by Ax.11 [x < y →x+ z < y + z] , M |= a+k < b+k where

(b+k) ∈ bZ. Therefore we can use the same argument as we did at the beginning
of this proof for a that ∀y ∈ bZ (M |= (x =)a+ k < y).

The proof is finished.

Definition 6.3. Let M |= PA− and let ∼< be the respective equivalence relation.
Define order, denoted as <∼, on the equivalence classes in the following way

∀a, b ∈M(aZ <∼ bZ ⇐⇒ ((aZ ̸= bZ) ∧ (M |= a < b))

In the following observation, we justify the word “order” used in the preceding
definition.

Observation 6.5 (<∼ is a well defined order). Let M |= PA− and let ∼< be
the respective equivalence relation then <∼ is linear order on M/ ∼<.
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Proof. Firstly, let us use ∼ as a shortcut for the more correct ∼<.
Let a, b ∈M .

antisymmetri: Assume for contradiction that aZ <∼ bZ as well as bZ <∼ aZ.
Then aZ ̸= bZ and there must be two elements x, y ∈ aZ and two element
w, z ∈ bZ, s.t. M |= x < w ∧ z < y. But this can not happen by Observa-
tion 6.4 and the contradiction follows.

transitivity: Obvious by Ax.8 [transitivity <] and anti-symmetricity of the re-
lation <∼.

trichotomy: If aZ = bZ, then we are done. Otherwise aZ ̸= bZ and therefore
a ̸= b as well.
By Ax.10 [trichotomy <] we can conclude that M |= a < b ∨ b < a, and
thus aZ <∼ bZ or bZ <∼ aZ and the trichotomy follows.

And thus the <∼ is a well defined linear order.

6.2 Structure of the order relation
Definition 6.4 (Dense linear order without endpoints). Let A = (A,<) be some
structure over the language with only one, except for =, non-logical symbol <.
We say that A is a dense linear order without endpoints, DLO for short, if it does
model all the following conditions.

(i) ∀x, y, z ((x < y ∧ y < z)→ x < z), i.e. transitivity.

(ii) ∀x (¬x < x), i.e. irreflexivity.

(iii) ∀x, y (x < y ∨ x = y ∨ y < x), i.e. trichotomy.

(iv) ∀x∃y (x < y), i.e. there is no largest element.

(v) ∀x∃y (y < x), i.e. there is no smallest element.

(vi) ∀x, y (x < y → (∃z x < z ∧ z < y)), i.e. density.

Lemma 6.6. Let M |= I∆0. Then if we set A := (M/ ∼<)\{0M
Z }, then (A,<∼)

is a DLO.

Proof. By Observation 6.5 we know that the first three properties hold for (A,<∼
). (The irreflexivity follows by the anti-symmetricity.)

Let us verify that there are no endpoints in (A,<∼) and the density of (A,<∼).
Furthermore, we would like to emphasize that by Corollary 6.3 all the equivalence
classes of which is A made of contain only non-standard elements of M and vice
versa, i.e. every non-standard element is a member of some equivalence class in
A.
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no largest element: Let a ∈M s.t. aZ ∈ A.
Then a must be a nonstandard element as well as a+M a.
Set b to a +M a, we know that b ∈ M and furthermore that b is a non-
standard element of M , hence bZ ∈ A.
Next, we clearly have M |= a < b.
Lastly aZ ̸= bZ since a is non-standard and therefore by Observation 6.2
a+M a can not be in aZ.
Therefore we may conclude that bZ ∈ A as well as aZ <∼ bZ from which
immediately follows that (A,<∼) has no largest element.

no smallest element: Let a ∈M s.t. aZ ∈ A.
Since a is a non-standard element, we clearly have the following two in-
equalities M |= m < (a .−m) .− 1 < a for any m ∈ N.
Recall that in Definition 1.5 we have defined M |= y = x .−z as (x < z∧y =
0) ∨ (z + y = x)), which is a ∆0 formula. Furthermore, it is obvious that if
y satisfies the defining formula of .− it must hold that M |= y ≤ x. Hence,
anytime the term x .− z emerges within some formula φ we can substitute
it by a new, so far unused, variable y and add the following ∆0 formula

ψ(x, z) ≡ ∃y ≤ x (x < z ∧ y = 0) ∨ (z + y = x)),

to the outer scope of the φ formula so that the substitued y is encapsulated
by it.
It follows that we can use Lemma 2.7, i.e. Overspill lemma on ∆0 formulas,
to get a non-standard element e of M s.t. M |= e < (a .− e) .− 1 < a.
Again let b be the element of M s.t. M |= b = (a .− e) .− 1.
Since M |= e < b it follows that b must be a non-standard element of M
and thereafter bZ ∈ A.
Last think to show is that bZ <∼ aZ, that is bZ ∩ aZ = ∅ and M |= b < a.
The latter is evident and the former follows by b being smaller then every
element of aZ which in turn follows by a and e being non-standard elements.
Therefore we may conclude that (A,<∼) has no smallest element.

density: Let aZ, cZ ∈ A s.t. aZ <∼ cZ.
Clearly M |= a < a + m + 1 as well as M |= a + m + 1 < c .−m, for any
m ∈ N.
The second inequality follows because by Observation 6.2 we know that
(a + m + 1)M ∈ aZ whereas c .−m ∈ cZ, and since aZ <∼ cZ it follows by
Observation 6.4 that M |= a+m+ 1 < c .−m.
Therefore M |= a < a+m+ 1 ∧ a+m+ 1 < c .−m for any m ∈ N.
Hence noting as in the preceding item that the formula is a ∆0 formula we
can apply Lemma 2.7, i.e. Overspill lemma for ∆0 formulas, to acquire a
non-standard element e in M s.t. M |= a < a+ e+ 1 < c .− e.
Set b ∈M so that M |= b = a+ e+ 1.
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Clearly, b is a non-standard element of M and hence bZ ∈ A.
Furthermore, we obviously have, namely by Observation 6.2 and e being a
non-standard element, that aZ ̸= bZ and cZ ̸= bZ.
Lastly, since M |= a < b as well as evidently M |= b < c, we can finally
conclude that aZ <∼ bZ <∼ cZ where bZ ∈ A.
From the last paragraph we can come to the conclusion that (A,<∼) is
indeed dense.

Commentary. Let us highlight that the only time we have used M |= I∆0 instead
of just M |= PA− was when we used Ovespill lemma on I∆0 for N.

Hence, we can conclude that the foregoing theorem holds for any model of
PA− which also satisfies Overspill lemma on all the instances of ∆0 formulas (for
N).

Theorem 6.7 (Order-type of models of I∆0). Let M be a non-standard model
of I∆0 and recall that I∆0 implicitly contains defining axiom for S(x) introduced
in Definition 1.3, i.e. for the successor function. Furthermore set (A,<∼) as in
Lemma 6.6. Then (M,<M , SM) ∼= (N∪A×Z, <′

, S
′), where we define <′ in the

following way.

• Let n,m ∈ N, then n <
′
m ⇐⇒ n < m.

• Let n ∈ N and a ∈ A× Z, then we always set n <′
a.

• Let (q, k), (r, l) ∈ A × Z, then we set (q, k) <′ (r, l) iff. q <∼ r or q =
r ∧ k <Z l.

And the S ′(x) is defined as follows.

• If x ∈ N , then S
′(x) = x+ 1.

• If x = (q, k) ∈ A× Z, then S
′(x) = (q, k + 1).

Proof. Take a function, e.g. by Axiom of Choice - for further details see Enderton
[1977, p.151], s : A −→M s.t. ∀q ∈ As(q) ∈ q.

Now, we will define h, from (N∪A×Z) onto M , that will be a witness to the
isomorphism we want to show.

Let x ∈ (N ∪ A× Z), then

h(x) :=

⎧⎪⎪⎨⎪⎪⎩
nM x = n ∧ n ∈ N,
(s(aZ) + k)M x = (aZ, k) ∧ 0 ≤Z k,

(s(aZ) .− l)M x = (aZ, k) ∧ k <Z 0 ∧ l = −k.

h is evidently a well defined function from (N ∪ A× Z) into M .
It remains to show the following four points.
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onto: Let y ∈M .
Then either y ∈ NM or y is a nonstandard element and yZ ∈ A.
If y ∈ NM , then y = nM for some n ∈ N. Hence h(n) = y.
Otherwise yZ ∈ A and

y ∈ yZ = s(yZ)Z = {. . . , (s(yZ) .− 1)M , s(yZ), (s(yZ) + 1)M , . . .},

where the last equality follows by Observation 6.2.
Hence it is obvious that there must exist k ∈ Z s.t. h(yZ, k) = y, and we
may conclude that h is onto.

injective: By Corollary 1.30 we know that h is injective when restricted to N.
Also, it is is obvious that h(n) ̸= h(a, k), for n ∈ N, a ∈ A and k ∈ Z. It
is because h(n) ∈ 0M

Z and h(a, k) ∈ a, by Observation 6.2, and a ̸= 0M
Z by

definition of A.
Continuing, when a, b ∈ A the by Observation 6.2 we clearly have h(a, l) ∈ a
and h(b, k) ∈ b for any l, k ∈ NM . Therefore if a ̸= b, then h(a, l) ̸= h(b, k).
It only remains to show that for any a ∈ A is h injective when we restrict
the first argument to a. But that follows immediately by the last point in
Observation 6.2.

respects order: Let x, y ∈ N ∪ A× Z and x <
′
y.

If x, y ∈ N, then by Observation 1.29 M |= h(x) < h(y).
If x ∈ N and y ∈ A × Z, then h(x) ∈ NM whereas by Observation 6.2 is
h(y) ∈ yZ ∈ A and hence h(y) ̸= h(x).
Case when y ∈ A× Z and x ∈ N can not happen.
Last unanalyzed situation is when both x, y ∈ A × Z. In this case, there
must be q, r ∈ A and k, l ∈ Z s.t. x = (q, k) and y = (r, l). And since
x <

′
y we have that q <∼ y or q = r ∧ k <Z l. Let us argue about these

two cases separately.

q <∼ r: We know by Observation 6.2 that h(x) ∈ q and h(y) ∈ r.
Since q <∼ r we have q ̸= r and there is an element from q which is
smaller, with respect to <M then some element from r. But applying
Observation 6.4 we know that ∀z ∈ q ∀w ∈ r (M |= z < w). Therefore
we must have M |= h(x) < h(y), which is what we wanted.

q = r ∧ k <Z l: Then, by the last part in Observation 6.2 we must indeed
have M |= h(x) < h(y).

respects S: It suffices to show that for any x ∈ (N∪A×Z) we have h(S ′(x)) =
SM(h(x)).
Let us consider separately different possibilities of the value that can be
possessed by x.

75



x ∈ N: S
′(x) = x+ 1, hence h(S ′(x)) = x+ 1M .

As for h(x), we have, h(x) = xM and hence, by Definition 1.3, we get
that SM(h(x)) = (h(x) + 1)M = (x + 1)M , which is clearly equal to
x+ 1M .

(q, k) = x ∈ A× Z:
0 ≤ k: If 0 ≤ k, then also 0 ≤ k + 1 and since S ′(x) = (q, k + 1) we

may conclude that h(S ′(x)) = (s(q) + k + 1)M .
Continuing, if 0 ≤ k, then we have h(x) = (s(q) + k)M and hence
SM(h(x)) = ((s(q) + k) + 1)M which is obviously equal to (s(q) +
k + 1)M , by Ax.1 [associativity +] .

k < 0: First note that, e.g. by definition of .−, M |= x .− 0 = x.
S

′(x) = (q, k + 1) and hence h(S ′(x)) = (s(q) .− (−(k + 1)))M =
(s(q) .− (−k − 1))M , this first equality follows by definition of h(y)
if k+ 1 < 0 and otherwise, i.e. k+ 1 = 0, it follows by the remark
we have just made.
When we compute h(x), we have (s(q) .− (−k))M and when we
apply SM we get SM(h(x)) = ((s(q) .− (−k)) + 1)M .
However, we may now conclude by
• 1 ≤ −k and M |= (−k) ≤ s(q),
• “associativity” of .− observed in Observation 1.24 for certain

specific elements of M ,
• the fact that .− behaves on standard elements quite reasonably,

which is observed in Observation 1.25,
that indeed (s(q) .− (−k − 1))M = ((s(q) .− (−k)) + 1)M .

The proof is hereby completed.

Commentary. One can possibly wonder whether we can have a formula that would
be satisfied by exactly one element from every non-standard copy of Z, i.e. aZ
for a ∈ A. However, we will see in the following lines that this is not possible.

Assume for contradiction that M |= PA and there is a LA formula φ(x) for
any aZ ∈M/ ∼<, where aZ ̸= 0M

Z , exactly one element e ∈ aZ satisfies the formula
with respect to M , i.e. M |= φ(e) and ∀b ∈ aZ b ̸= a⇒M |= ¬φ(b).

However, since we know how aZ must look like by Observation 6.2 and we
know that if M |= z ≤ m → z = 0 ∨ . . . ∨ z = m by Observation 1.31, we get
that M |= ∀z ≤ m¬φ(e+ z + 1) for any m ∈ N.

Hence by Overspill lemma we get that there must exist c ∈ M s.t. c is
non-standard and M |= ∀z ≤ c¬φ(e + z + 1). Clearly d = (e + c + 1)M is a
non-standard element of M s.t. aZ <∼ dZ, hence we get by Lemma 6.6 that there
is b a non-standard element of M s.t. M |= aZ <∼ bZ <∼ dZ.

It is not hard to see that ∀x ∈ bZ there must exist a z ∈ M s.t. M |= z ≤ c
and x = (a + z + 1)M . Therefore we can conclude that ∀x ∈ bZ, where b is
a non-standard element of M , M |= ¬φ(x) which is in contradiction with our
assumption.

Lemma 6.8 (Q is the only countable DLO). Let (A,<) be a countable DLO,
then (A,<) is isomorphic to (Q, <Q).
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Proof. For one, (Q, <Q) is evidently DLO. By Cantor’s theorem, as presented in
Kirby [2019, section 15.3], we know that any two countable DLO’s are isomorphic
to each other.

Hence, combining the last two points, we have that (A,<) ∼= (Q, <Q).

Corollary 6.9. Let M be a countable non-standard model of I∆0, set (A,<∼)
as in Lemma 6.6, then (A,<∼) ∼= (Q, <Q).

Proof. Since (A,<∼) is a DLO by Lemma 6.6, the corollary follows by Lemma 6.8.

Corollary 6.10. Let M be a countable non-standard model of I∆0, then (M,<M

, SM) ∼= (N ∪Q× Z, <′
, S

′) where <′ is defined in the following way.

• Let n,m ∈ N, then n <
′
m ⇐⇒ n < m.

• Let n ∈ N and a ∈ Q× Z, then we always set n <′
a.

• Let (q, k), (r, l) ∈ Q × Z, then we set (q, k) <′ (r, l) iff. q <Q r or q =
r ∧ k <Z l.

And the S ′(x) is defined as

• If x ∈ N , then S
′(x) = x+ 1.

• If x = (q, k) ∈ Q× Z, then S
′(x) = (q, k + 1).

Proof. The result stems from Theorem 6.7, Corollary 6.9 and the relation iso-
morphic to being transitive.

Corollary 6.11. Let M be a countable non-standard model of PA, then M,<M

, SM) ∼= (N ∪Q× Z, <′
, S

′) where <′ and S
′ are defined as in Corollary 6.10.

Proof. Since PA is a stronger theory than I∆0 the result follows by Corollary 6.10.

6.3 Order and successor can be recursive
Lemma 6.12 (< and S can be recursive). There exists a non-standard model G
of PA, recall that PA implicitly includes the defining axiom for S(x) introduced
in Definition 1.3, s.t. dom(G) = N and <G as well as SG are recursive.

Proof. First note that there exists a countable non-standard model U of PA by
Corollary 2.3.

By Corollary 6.11 we get that (U,<U , SU), i.e. the restriction of U to the <
and S, is isomorphic to a structure (N ∪ (Q × Z), <′

, S
′) where <′ and S

′ are
evidently computable. Moreover, N ∪ (Q× Z) is a computable codable set where
the witness to it can be found in Bijection 5.

Now from a discussion in section 3.4, more specifically by Corollary 3.15,
follows that there exists a non-standard model G of PA, this follows from G ∼= U ,
s.t. dom(G) = N and S as well as < are recursive with respect to G.

And the lemma was proved.
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Part II

Recursiveness of mod & div in
PA
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7. Mod & Div functions
In this chapter, we are going to extend our language by binary functional symbols
div and mod with their standard interpretation in mind. Furthermore, we will
also add unary functional symbols divk and modk for every k ∈ N.

As for the subsequent chapters, we will investigate questions related to the
recursiveness of those functions.

7.1 Introducing the div & mod functions
We further extend our language by two binary functional symbols div and mod
in the same manner as we have extended our language by e.g. S(x) or x .− z in
section 1.4.

Definition 7.1 (Quotient function - x div y). We introduce a new binary func-
tional symbol div, the quotient function, by the following formula

φ div (x, y, z) ≡ ((y = 0 ∧ z = 0) ∨ (y ̸= 0 ∧ (z × y ≤ x < (z + 1)× y)).

Definition 7.2 (Remainder function - x mod y). We introduce a new binary
functional symbol mod, the remainder function, by the following formula

φ mod (x, y, z) ≡ ((y = 0 ∧ z = x) ∨ (y ̸= 0 ∧ (z < y ∧ ∃w ≤ x (w × y + z = x))).

Let us note that our definition of div rounds down as opposite to rounding
up. We have chosen this definition since it seems more standard and natural to
us. Furthermore, we get that M |= x = (x div y) × y + x mod y, for suitably
chosen structure M .

Both definitions are clearly in line with our understanding of the behavior of
div and mod in N.

As usual, we will need to show by the following observation that we actually
can extend our language with the two binary functional symbols in mention using
the just proposed formulas.

Observation 7.1 (div and mod are well defined). Let M |= IΣ1, then the fol-
lowing holds.

• M |= ∀x, y ∃!z φ div (x, y, z),

• M |= ∀x, y ∃!z φ mod (x, y, z),

Proof. Let x, y ∈M .
If y = 0M , then the proof for the existence and the uniqueness is simple for

both cases.
Otherwise assume for the rest of the proof that y ̸= 0M .
We can apply Theorem 2.4, this is why we need IΣ1, setting b := x and a := y

to get that there exists a unique pair of q, r ∈M s.t. M |= x = q× y+ r ∧ r < y.
Since M |= x = q×y+r, we obviously have M |= q×y ≤ x and moreover since

M |= r < y we also get that M |= x < (q + 1)× y. Therefore M |= φ div (x, y, q).
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We know that M |= r < y and also that there exists w ∈ M , namely setting
w to q, s.t. M |= x = w × y + r. Furthermore, as we have already noted,
M |= q × y ≤ x and since y ̸= 0M , we get that M |= (w =)q ≤ x. Hence we get
that M |= φ mod (x, y, r).

Therefore the existence part of both cases has been proved.
As for the uniqueness part. Assume that q′

, r
′ ∈ M s.t. M |= φbdiv(x, y, q′)

and M |= φ mod (x, y, r′).
We know that there exists w ∈M s.t. M |= x = w× y+ r

′ ∧ r′
< y. Now, we

get by uniqueness part of theorem 2.4 that r′ = r (and also w = q). Hence the
uniqueness of z in φ mod (x, y, z) has been proved.

We also know that M |= q
′ × y ≤ x < (q′ + 1)× y. Hence there must be some

t ∈M s.t. M |= x = q
′ × y + t ∧ t < y. But now we again get by the uniqueness

part of Theorem 2.4 that M |= q
′ = q (and also t = r). Thereafter the uniqueness

of z in φ div (x, y, z) has been proved.

From now on, whenever we write IΣ1 or some extension of it T , we will
actually mean IΣ1, or T , with added defining axioms for mod and div. And
as in PART I also with the defining axioms of S(x),P (x), x .− z and |, i.e. the
divisibility relation, introduced in section 1.4.

Corollary 7.2. Let M |= IΣ1 and let x, y ∈ M s.t. y ̸= 0M . Then if q, r ∈ M
are the unique pair for b := x and a := y in Theorem 2.4, i.e. they satisfy
M |= x = q × y + r ∧ r < y, then M |= x div y = q and M |= x mod y = r.

Proof. Follows by the proof of the previous observation Observation 7.1.

Furthermore, let us observe that x div y and x mod y are expressible by ∆0
formulas.

Observation 7.3. Let M |= IΣ1 and x, y ∈ M , then M |= ∃z φ div (x, y, z) iff.
M |= ∃z ≤ xφ div (x, y, z), where the latter formula is obviously a ∆0 formula.

Proof. The implication from right to left is obvious.
As for the implication for left to right assume that M |= φ div (x, y, z) for some

z ∈M . Then we have either M |= y = 0 ∧ z = 0 and hence M |= z ≤ x.
Or we have that M |= y ̸= 0 and then we have that M |= z × y ≤ x. Since

M |= 1 ≤ y we evidently have M |= z ≤ x.
Therefore we have either way that M |= z ≤ x from which follows that

M |= ∃z ≤ xφ div (x, y, z).

Observation 7.4. Let M |= IΣ1 and x, y ∈ M , then M |= ∃z φ mod (x, y, z)
iff. M |= ∃z ≤ (x + y)φ mod (x, y, z), where the latter formula is obviously a ∆0
formula.

Proof. The implication from right to left is obvious.
As for the implication from left to right assume that M |= φ mod (x, y, z) for

some z ∈ M . Then we have either M |= y = 0 ∧ z = x and hence M |= z ≤ x
from which follows that M |= z ≤ x+ y.

Or we have that M |= y ̸= 0 and then we have by definition that M |= z < y
which implies M |= z ≤ y from which follows that M |= z ≤ x+ y.

Therefore we have either way that M |= z ≤ x + y from which follows that
M |= ∃z ≤ (x+ y)φ mod (x, y, z).
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To finish this section, let us prove that mod and div behave on standard
elements as expected.

Observation 7.5 (modM behaves on standard elements as modN). Let M |=
IΣ1, then for any m,n ∈ N we have

M |= n mod m = n mod Nm.

Proof. First assume that m = 0, then we clearly get on both sides of the equation
nM and hence the observation holds for any n ∈ N and m = 0.

Now assume that m ̸= 0, then by Theorem 2.4 we know that there are q, r ∈ N
s.t. n = q ×m+ r and r < m.

We clearly have n mod Nm = r and therefore M |= n mod Nm = r.
As for the left hand side of the equation, we have

M |= n mod m = q ×m+ r mod m = (q ×m+ r) mod m.

The last equality in the just stated equation follows by Observation 1.22 and
Observation 1.28, i.e. that + and × behave on NM as expected.

Furthermore since r < m we get by Observation 1.29 that M |= r < m.
We can conclude now by Corollary 7.2, setting x to nM and y to mM , that

indeed M |= n mod m = r and the proof is finished.

Observation 7.6 (divM behaves on standard elements as modN). Let M |=
IΣ1, then for any m,n ∈ N we have

M |= n div m = n div Nm.

Proof. Assume that m = 0, then by the definition of div we have that the obser-
vation holds.

Assume now that 0 < m. Then we know, for example from Theorem 2.4 that
there exists q, r ∈M s.t. n = q ×m+ r and r < m.

Hence we also have by Observation 1.22 and Observation 1.28 that M |= n =
q ×m+ r and by Observation 1.29 we, moreover, get M |= r < m.

Therefore, we can now conclude by Corollary 7.2, setting x to nM and y to
mM , that M |= n div m = q.

Ans since evidently n div m = q, we get that indeed M |= n div m =
n div Nm.

7.2 Introducing the divk & modk functions
In the subsequent chapters, we will often talk about the restrictions of x div y
and x mod y with respect to their second parameter y. More specifically, we will
restrict y to the term k, for k ∈ N.

Let us note that from a formal point of view we should introduce two new
unary functional symbols, one for x div k and the other for x mod k, for any
k ∈ N we want to use those two unary function symbols for. And hence the
following two definitions follow.
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Definition 7.3 ( div k). Let k ∈ N. We introduce a new unary functional symbol
divk by the following formula

φ div k(x, z) ≡ ((k = 0 ∧ z = 0) ∨ (k ̸= 0 ∧ (z × k ≤ x < (z + 1)× k)).

Definition 7.4 (modk). Let k ∈ N. We introduce a new unary functional sym-
bol modk by the following formula

φ mod k(x, z) ≡ ((k = 0 ∧ z = x) ∨ (k ̸= 0 ∧ (z < k ∧ ∃w ≤ x (w × k + z = x))).

As always, we need to check the following.

Observation 7.7 (divk and modk are well defined). Let k ∈ N and M |= IΣ1,
then the following holds.

• M |= ∀x∃!z φ div k(x, z),

• M |= ∀x∃!z φ mod k(x, z),

Proof. Since we got φ div k(x, z) and φ mod k(x, z) only by substituting the term
k in φ div (x, y, z) and φ mod (x, y, z) for the variable y we get by an analogous
result for x div y and x mod y, i.e. Observation 7.1, that the observation must
hold.

And by the same argument as in Observation 7.7, and the references to the
respective results for x div y and x mod y in section 7.1, we have the following
two results (analogous to those in section 7.1).

Observation 7.8 (x div k can be represented by a ∆0 formula). Let M |= IΣ1,
k ∈ N and x ∈ M , then M |= ∃z φ div k(x, z) iff. M |= ∃z ≤ xφ div k(x, z), where
the latter formula is obviously a ∆0 formula.

Observation 7.9 (x mod k can be represented by a ∆0 formula). Let M |= IΣ1,
k ∈ N and x ∈M , then M |= ∃z φ mod k(x, z) iff. M |= ∃z ≤ (x+ k)φ mod k(x, z),
where the latter formula is obviously a ∆0 formula.

Lastly, let us mention the following observation, which justifies the notation
for unary functions divk and modk.

Observation 7.10. Let M |= IΣ1, k ∈ N and x ∈ M , then if y is set to kM ,
then M |= x div y = x div k as well as M |= x mod y = x mod k. Where the div
and mod on the left hand side of the equations are binary functions introduced
in section 7.1 and divk and modk on the right hand side of the equations are
unary functions introduced in the current section.

Proof. Since we got φ div k(x, z) and φ mod k(x, z) only by substituting the term k
in φ div (x, y, z) and φ mod (x, y, z) the result follows.

By Observation 7.10 we see that we can use the binary functions x div y and
x mod y interchangeably with the unary functions x div k and x mod k, when y
is set to the interpretation of k in the respective model. Therefore, we will often
omit from mentioning whether we are using a binary function x div k or a unary
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function x div k, and hence the same syntactical notation. And the same goes
for mod.

Lastly, we can also use more or less any result for x div y and x mod y when
we substitute y for k, and k satisfies all the conditions required from y, for x div k
and x mod k. For example an analogy to Corollary 7.2 clearly holds for unary
functions x div k and x mod k.

From now on, we will mean by IΣ1 the “true” IΣ1 with defining axioms for
both binary functions div and mod. As well as for the infinitely many unary
functions divk and modk for every k ∈ N. And as in PART I, also with the
defining axioms for S(x),P (x), x .−z and |, i.e. the divisibility relation, introduced
in section 1.4.
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8. Recursiveness of the div and
mod functions
In this chapter, we start our discussion on the recursivity of div and mod . More
precisely, we will be interested in questions whether both x div y and x mod y,
as binary functions or as unary functions with y set to k, can be recursive or not.

The subsequent chapter 9 will deal solely with the recursivity of mod and the
next two chapters, namely chapter 10 and chapter 11, will deal with the structure
and recursivity of div respectively.

8.1 mod and div can not be both recursive in
IΣ1

A good question to ask at the start is whether there is a non-standard model
of PA where are both functions in mention recursive. And the answer to this
questions is no.

Before that, let us mention few useful observations.
First follows a remark that will be used all the time, although we will not

refer to it.
Remark 8.1 (= is a recursive relation). Let M |= PA− s.t. dom(M) = N. Then
=M is a recursive relation.

Proof. Since we assume only structures that give to = the standard interpretation,
i.e. n =M m iff. n = m, then it is obvious that =M must be a recursive
relation.

Observation 8.2. Let M |= IΣ1, furthermore let x ∈ M s.t. M |= 1 < x.
Then for any y ∈ M we have, M |= y = S(x) iff. M |= y div x = 1 and
M |= y mod x = 1.

Proof. ⇒: Assume that M |= y = S(x), therefore M |= y = x+1 and thereafter
M |= y = 1 × x + 1 ∧ 1 < x. And we can by Corollary 7.2, with x, y
from Corollary 7.2 set to y, x from this observation, conclude that indeed
M |= y div x = 1 and M |= y mod x = 1.

⇐: Assume that M |= y div x = 1 and M |= y mod x = 1. Since furthermore
M |= 0 < x then we have by Corollary 7.2 that M |= y = (y div x) × x +
(y mod x) = x+ 1 which is just a restatement of M |= y = S(x).

Corollary 8.3 (recursive div and mod implies recursive S(x)). Let M |= IΣ1,
s.t. dom(M) = N, we can interpret 0, 1 and 2 in M and div is as well as mod
recursive with respect to M . Then S(x) is also recursive with respect to M .

Proof. This is a direct corollary of Observation 8.2.

Observation 8.4 (x mod y and S(x) can not be both recursive). Let M be a
non-standard model of IΣ1 s.t. dom(m) = N. Then x mod y and S(x) can not
be both recursive with respect to M .
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Proof. Assume for contradiction that both the assumption and the opposite to
the conclusion hold. Moreover, we can assume by Observation 3.13 that 0M = 0.

First note that we can compute nM for any n ∈ N since it is just the result of
applying n times SM to 0M(= 0).

Therefore, since p(n) is computable by Observation 3.9, we can compute p(n)M

for any n ∈ N, recall that p(n) is the (n+ 1)-th prime function.
Continuing, we have by Corollary 4.3 that there exists a non-recursive subset

of N, denote it by X, and an element a of M s.t. ∀n ∈ N,

n ∈ X ⇐⇒ M |= p(n) | a.

Which is evidently the same as

n ∈ X ⇐⇒ M |= a mod p(n) = 0.

Now, since we can compute the binary function b mod Mc for any b, c ∈ M
and we can compute p(n)M for any n ∈ N, it follows that we can computably
decide membership in X which is the desired contradiction.

Lemma 8.5 (div and mod can not be both recursive). M be a non-standard
model of IΣ1 with its domain equal to N. Then divM and modM can not be
both recursive.

Proof. Let M be from the assumption of the lemma. Furthermore, assume for
contradiction that divM and modM are both recursive. Also assume, we can do
this by Observation 3.13, that 0M = 0, 1M = 1 and 2M = 2.

From Corollary 8.3 follows that mod and S are both recursive with respect
to M . But that can not be in the light of Observation 8.4, and hence we get a
contradiction.

Can we get positive result in case we restrict the second parameter in div
and mod? E.g. can we have both x div 4 and x mod 11 recursive with respect
to some non-standard model M? Or can we have x div k and x mod k, for some
fixed k ∈ N, both recursive with respect to some non-standard model M?

It mostly doesn’t seem to be, since actually in the latter mentioned case we
again have the negative answer for 2 ≤ k.

Before we end this section, a proof will be presented that for k < 2 we have a
non-standard model of PA with both (x div k)M and (x mod k)M recursive. And
the next section, section 8.2 , is devoted to showing that for 2 ≤ k there can be
no such non-standard model.

Observation 8.6. Let M |= PA and dom(M) = N, furthermore assume that we
know the interpretation of 0 in M , i.e. we know 0M . Then mod0, mod1, div0
and div1 are all recursive with respect to M .

Proof. Since (x mod 0)M = x as well as (x div 1)M = x for every x ∈ M , i.e.
they are the identity functions on N, we get that they are both recursive.

Furthermore, we clearly have (x mod 1)M = 0M as well as (x div 0)M = 0M ,
hence they are constant functions returning 0M which we know how to compute,
hence they are also recursive.
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Corollary 8.7. There exists a non-standard model M of PA s.t. dom(M) = N,
and all the functions

• div0,

• div1,

• mod0,

• mod1,

are recursive with respect to it.

Proof. Recall that there exists a non-standard countable model M ′ of PA by
Corollary 2.3. By Observation 3.12 we get that there must exists one, denote
it as M , with domain equal to N, where the non-standardness of M follows by
M

′ ∼= M . Lastly, by Observation 3.13 we can also assume that 0M = 0.
Therefore, there exists a non-standard model M of PA s.t. dom(M) = N and

0M = 0. Hence, the result follows by noting Observation 8.6.

8.2 For any 2 ≤ k, modk and divk can not be
both recursive in PA

Let us note that the following commentary only hints the ideas to come. And as
such, the commentary is very informal.
Commentary. Intuitively speaking, how would one prove that modk and divk
can not be both recursive in some non-standard model of PA?

After all the discussion we went through in chapter 4 and chapter 5, the
following idea proposes it self.

We take some non-recursive set X ⊆ N and code it using some non-standard
element e. The coding is going to be s.t. when we look at numbers as in theirs
k-ary notation, i.e. with digits {0, 1, . . . , (k − 1)} then at the n-th place, for any
n ∈ N, we will have 0 if n ∈ X and 1 otherwise.

Then to find whether n ∈ X it does suffice to apply n-times divk to e, i.e.
((e div k) . . .) div k where div k is n times in that expression, to get some number
a. Afterwards to the result of such a computation, i.e. to a, we will apply modk.
And if the final result is 0 we return n ̸∈ X and otherwise we return n ∈ X.

We will now formalize the proposed idea to show that there can be no non-
standard model of PA where both modk and divk are recursive.
Commentary. Please also bear in mind that we can not choose just any non-
recursive subset of N. It is because there are uncountably many non-recursive
subsets of N and for the proof to work we evidently need to code different sets by
different elements of the model in mention. And thus, if we were able to conduct
the process for any non-recursive set it would imply that the model in mention
has an uncountable domain. But that is not an option, since we have restricted
our discussion only to models with domain N, or possibly countable domains
which are computably codable, see Informal Definition 3.11.

For a proof that there are uncountably many recursive sets see first pages
in Boolos et al. [2007, Chapter 4]. The discussion shows that there are only
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countably many Turing computable functions, hence also there are only countably
many recursive functions by a combination of Boolos et al. [2007, Theorem 5.6,
p.56] and Boolos et al. [2007, Theorem 5.8, p.61]. And since every recursive subset
X of N determines one distinct recursive function, namely χX , we get that there
are only countably many recursive subsets of N. And since there are uncountably
many subsets of N in total, see e.g. Boolos et al. [2007, pp.16-17, Theorem 2.1],
we get that there are uncountably many non-recursive subsets of N.
Commentary. Lastly, let us mention that we will use the exp function to express
by a formula the process of applying n-times the divk function to x, i.e. we can
obviously write it down as x div exp(k, n). To highlight this use, let us state it
as an observation.

Observation 8.8. Let M |= PA, n, k ∈ N, then for any a ∈M we have

M |= ((a div k) . . . k) = a div exp(k, n),

where the divk is repeated n-times on the left hand side.

Proof. Possible line of proof is by induction on n, we omit the details.

Since the ideas are very similar to those in chapter 4 and chapter 5 it should
not be a surprise that the discussion which follows is going to resemble them. For
example, the following lemma is analogous to Lemma 4.1.

Lemma 8.9 (Coding sets using divk and modk). Let M be a non-standard
model of PA and φ(x, y) be some formula in LA or some extension of it. Fur-
thermore let b ∈M and k ∈ N s.t. 2 ≤ k. Define X := {n ∈ N|M |= φ(b, n)} and
as usual let χX be its characteristic function.

Then there exists a ∈ M s.t. ∀n ∈ N we have n ∈ X iff. M |= (a div
exp(k, n)) mod k = 0, or equivalently

M |= φ(b, n)↔ (a div exp(k, n)) mod k = 0.

Proof. We clearly have for any m ∈ N the following

M |= ∃a∀n ≤ m (φ(b, n)↔ (a div exp(k, n)) mod k = 0).

Specifically, it evidently follows by setting a to (χX(m)×exp(k,m)+. . .+χX(0)×
exp(k, 0))M .

Hence, we can apply Overspill lemma, Lemma 2.6, to show that there exists
a non-standard element e ∈M s.t.

M |= ∃a ∀n ≤ e (φ(b, n)↔ (a div exp(k, n)) mod k = 0).

And since every standard element is below any non-standard element the
conclusion of the just being proved lemma follows.

Corollary 8.10 (Non-recursive set coded using divk and modk). Let M be a
non-standard model of PA and k ∈ N s.t. 2 ≤ k. Then there exists a non-
recursive sets X ⊆ N and a ∈M s.t.

n ∈ X ⇐⇒ M |= (a div exp(k, n)) mod k = 0.
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Proof. This is a corollary of the just proved Lemma 8.9 and Lemma 4.2 from
section 4.2 which is about being able to code in any non-standard models of PA
some non-recursive set with a ∆0 formula.

At last, we approach the main lemma of this subsection.

Lemma 8.11 (divk and modk can not be both recursive). Let M |= PA, with
its domain equal to N, and k ∈ N s.t. 2 ≤ k. Then the unary functions x mod k
and x div k can not be both recursive.

Proof. Assume that M and k satisfy the assumptions in the statement of the just
being proved lemma. And for the contrary assume that x mod k and x div k are
both recursive.

We can again WLOG assume that 0M = 0 by Observation 3.13.
But now it is easy to observe, by the just proved Corollary 8.10 and by Ob-

servation 8.8, i.e. that M |= ((a div k) . . . k) = a div exp(k, n), that we can now
computably decide membership in some set X ⊆ N which is not recursive, which
in turn gives rise to a contradiction we want.

8.3 divk with S(x) or < can not be both recurs-
ive in PA

Observation 8.12. Let M |= IΣ1, a ∈ M and k ∈ N s.t. 0 < k. Then there
exists exactly k elements x of M s.t. M |= x div k = a. Furthermore, if we set
b = (k × a)M then they are of the form b, (b+ 1)M , . . . , (b+ (k − 1))M

Proof. Clearly, all the elements b, (b+ 1)M , . . . , (b+ (k − 1))M satisfy M |= x div
k = a by the definition of div.

And for any other y ∈ M we must have either M |= y < k × a or M |=
((a + 1) × k) ≤ y, which by definition of div implies that y can not satisfy
M |= y div k = a.

Let us observe the following two observations.

Observation 8.13 (Recursive divk and S(x) implies recursive modk). Let M
be a model ofIΣ1, s.t. dom(M) = N and both divk and S(x) are recursive
functions with respect to M . Moreover assume that we know the interpretation
of 0M . Then modk is a recursive function with respect to M as well.

Proof. First note that since we know the interpretation of 0M and S(x) is recurs-
ive, then it is evident that we can compute nM for any n ∈M .

Let b ∈M and we want to find (b mod k)M .
First of all compute (b div k)M , which we can by our assumption on recursivity

of div, and denote the result as a.
Now compute, which we can by recursivity of S(x), (S(b) div k)M and then

(S(S(b)) div k)M and so on until we get for the first time result that differs from a.
Since S(x) is clearly an injective function we get by Observation 8.12 that

after at most k steps we finish this procedure.
Denote by l the number of steps that we have actually needed. Then since S(x)

adds 1M , with respect to M , we obviously get mainly by Observation 8.12 that
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(b mod k)M = (k − l)M , where the expression on the right side of the equation
can be computed, as we have already noted at the start of our proof.

We have managed to compute (b mod k)M for any b ∈ M and thereafter the
proof of the recursivity of modk is finished.

Observation 8.14 (Recursive divk and < implies recursive modk). Let M |=
IΣ1, s.t. dom(M) = N and both div k and < are recursive functions with respect
to M . Moreover assume that we know the interpretation of 0M . Then modk is
a recursive function with respect to M as well.

Proof. First note that since we know the interpretation of 0M and < is recursive
as well as divk, then we can compute lM for any l ∈ N s.t. 0 ≤ l < k.

Simply recursively enumerate N with respect to <N and compute (x div k)M

for the just enumerated x. If the result is 0M , store such a x. If we have already
stored k x’s, we stop.

We know that this procedure must stop by Observation 8.12 and we also know
by that observation how those x’s look like.

Now it is obvious that lM is the (l + 1)-th smallest x we have stored and we
can recursively determine which one is the (l+ 1)-th smallest by using <M which
is recursive.

A part of a proof which is similar to both the part we have already presented
and to the proof in Observation 8.13 follows.

Let b ∈M and we want to compute (b mod k)M .
First of all compute (b div k)M , which we can by our assumption on recursivity

of div, and then denote it as a.
Now recursively enumerate N with respect to <N and compute (x div k)M ,

where x is the enumerated over member of N, whenever the result equals a we
store such a x. If we have already stored k x’s, we stop.

We know by Observation 8.12 that this procedure must stop.
Now, we can order all the stored x’s with respect to recursive <M .
Since we know how these stored x’s look like by Observation 8.12 we know

that if b, which is stored as one of the x’s, is l-th smallest element among the
stored x’s, with respect to <M , then actually (b mod k)M = (l − 1)M , which we
can compute by our remark at the start of the proof, since (l − 1) < k.

We have managed to compute (b mod k)M for any b ∈ M and thereafter the
proof of the recursivity of modk is finished.

As a corollaries we get the following.

Corollary 8.15 (divk and S(x) can not be both recursive). Let M be a non-
standard model of PA s.t. dom(M) = N and let k ∈ N s.t. 2 ≤ k. Then we can
not have both divk and S(x) recursive in M .

Proof. Assume for contradiction that there can be such a non-standard model
M . Then by Observation 3.13 we can WLOG assume that 0M = 0.

But it now follows by Observation 8.13 that divk together with modk are
recursive with respect to M which is in direct contradiction with Lemma 8.11.

Corollary 8.16 (divk and < can not be both recursive). Let M be a non-
standard model of PA s.t. dom(M) = N and let k ∈ N s.t. 2 ≤ k. Then
we can not have both divk and < recursive in M .

89



Proof. The proof is exactly the same as in Corollary 8.15, we only substitute the
reference to Observation 8.13 for the reference to Observation 8.14.

Let us state a sharpening of Corollary 8.16, that we will be of use to us later.

Corollary 8.17 (divk and restricted < can not be both recursive). Let M be
a non-standard model of PA s.t. dom(M) = N and let k ∈ N s.t. 2 ≤ k.
Furthermore have some binary function f<(x, y) s.t. for any x, y ∈M where M |=
x < y and x ∈ yZ it holds f<(x, y) = 1, i.e. f< computes <M on elements which
are apart by a standard distance. Then we can not have both divk recursive
with respect to M and f<(x, y) recursive.

Proof. The proof is the same as for Corollary 8.16.
Only note that in the proof of Observation 8.14 to work we do not need to have

< recursive. More specifically, recursive f< instead of recursive < will do.

Lastly, let us show that we get as a corollary that k× x, k× x+ 1,...,k× x+
(k − 1) can not be recursive all at once in a non-standard model of PA. (From
a strictly formal point of view we should have introduced new unary function
symbols for all the mentioned unary functions for any k ∈ N, however, we believe
that everything is understandable anyway.)

Corollary 8.18. Let M |= PA s.t. dom(M) = N and k ∈ N s.t. 2 ≤ k. Then
the unary functions k× x, k× x+ 1,...,k× x+ (k − 1) can not be recursive all at
once.

Proof. Assume that all the assumptions hold. For contradiction assume the the
conclusion does not hold. We can also WLOG assume by Observation 3.13 that
0M = 0,...,k − 1M = k − 1.

Let x ∈ M , we will simultaneously observe how to compute (x mod k)M and
(x div k)M which can not be by Lemma 8.11.

Enumerate N recursively according to <N and denote by y the just enumerated
member of N. For every enumerated y we compute (k× y+ l)M for any l ∈ N s.t.
0 ≤ l < k. We do this process until we find such a y and l s.t. M |= k×y+ l = x.
And then we return y as a result of (x div k)M and l as the result of (x mod k)M ,
for this also recall that lM = l.

We know by Theorem 2.4 that there exists q and r in dom(M) = N s.t.
M |= x = q × k + r ∧ r < k. And recall that by Observation 1.31 we get that
M |= r = 0 ∨ . . . ∨ r = (k − 1). Therefore, it can be concluded that the process
must eventually stop.

And since M |= 0 < k, we get by Corollary 7.2 that the correct answer is
returned.

Concluding remarks

Concluding remarks for mod
Since we know by results in section 8.3 that there can be no such non-standard
model of PA s.t. divk and S(x) or divk and < are both recursive in it, we
can ask whether the same holds for modk substituted for divk. As we will see
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in section 9.1, the analog for modk does not hold. We will even observe in
section 9.1 that there is a non-standard model M of PA s.t. all modk, S(x) and
< are recursive with respect to M .

Last natural question that we will pose for mod, since div and mod can not
be both recursive in a non-standard model of IΣ1 by Section 8.1, is whether mod
on its own can be recursive in some non-standard model of IΣ1 or some extension
of it e.g. PA. This question got our interest, nevertheless, we did not manage to
reach a conclusion. More on this topic in section 9.2.

Concluding remarks for div
Analogues questions as for mod emerge.

After the negative results for the div k in section 8.3 a natural question arises,
specifically, whether there can be a non-standard model of PA where at least
divk by its own is recursive? An answer to this question is positive, i.e. there
can be such a non-standard model. First, we will develop in chapter 10 a deeper
understanding of the behavior of divk in models of PA. And then, the result
itself will be stated in section 11.2.

However, we also have the negative general result that there can be no non-
standard model of IΣ1 s.t. both mod and div are recursive with respect to it
from Section 8.1. Again, another question arises. Can there be a non-standard
recursive model of IΣ1 where div is recursive? The answer to this question is
negative, i.e. there can be no such a non-standard model, as will be observed in
section 11.1.
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9. Recursiveness of the mod
function

9.1 x mod k can be recursive in PA

Before we reach the main result of this section we will state a few useful obser-
vations.

Observation 9.1 (“distributivity” of mod). Let M be a model of IΣ1, then for
any a, k, l, t ∈M s.t. M |= l | k we have

M |= (a+ t) mod l = ((a mod k) + t) mod l = ((a mod k) + (t mod k)) mod l.

Proof. First, let us note that the second equality follows by the first equality and
Ax.2 [commutativity +] .

Therefore, we need to show only M |= (a+ t) mod l = ((a mod k) + t) mod l.

• Assume k = 0M . Then by definition of mod we have M |= (a mod k) = a,
and therefore, we indeed have M |= (a+ t) mod l = ((a mod k) + t) mod l.

• Assume that l = 0M , then obviously k = 0M and the same argument as in
the previous item applies.

• Lastly, assume l ̸= 0M and k ̸= 0M .
Let us observe the following items which are by the theorem on unique
quotients/remainders, i.e. from Theorem 2.4.

(i) Let q1, r1 ∈M be s.t. M |= a = q1 × k + r1 ∧ r1 < k.
(ii) Let q2, r2 ∈M be s.t. M |= r1 + t = q2 × l + r2 ∧ r2 < l.
(iii) Let q3, r3 ∈M be s.t. M |= a+ t = q3 × l + r3 ∧ r3 < l.

We have by Corollary 7.2 that M |= r1 = a mod k, hence, we have again
by Corollary 7.2 that M |= r2 = ((a mod k) + t)) mod l. Furthermore, we
can reach that r3 = (a+ t) mod l by the same argument. And therefore, it
does suffice to show that r2 = r3.
By (iii) we have M |= a+t = q3× l+r3 and by (i) we get that M |= q1×k+
r1+t = q3×l+r3. Lastly, by (ii) we have M |= q1×k+q2×l+r2 = q3×l+r3.
Since M |= l | k, we get that there exists s ∈ M s.t. M |= s × l = k.
Therefore, we get that M |= (q1× s+ q2)× l+ r2 = q3× l+ r3, where both
M |= r2 < l and M |= r3 < l.
And now since l ̸= 0M , we get by the uniqueness part of Theorem 2.4 that
indeed r2 = r3, which finishes the proof.

Let us note that we will use the preceding observation with k, l ∈ NM , and
hence the choice of letters.
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Observation 9.2 ((x mod n)M is a standard element below nM). Let M |= IΣ1,
then for any a ∈M and any n ∈ N s.t. n ̸= 0 we have the following.

M |= a mod n = l,

for some l ∈ N s.t. l < n.

Proof. Let everything be as in the assumption of the observation.
By the definition of mod we see that M |= a mod n < n. Therefore, by

Observation 1.31, we get that the conclusion must hold.

Observation 9.3. Let M |= IΣ1, a ∈ M and k ∈ N. Then there exists r ∈ N,
actually r ≤ k, s.t.

M |= (a+ r) mod k = 0.

Proof. If k = 0, then the observation is trivial, hence assume that 0 < k.
First, we know by Observation 9.2 that there exists l ∈ N s.t. l < k and

M |= l = a mod k.
There clearly must exist r ∈ N s.t. (l + r) mod Nk = 0 and r < k. Take such

a r and let us compute ((a+ r) mod k)M .
We have,

M |= (a+ r) mod k =
((a mod k) + r) mod k =

(l + r) mod k =
l + r mod k =

(l + r) mod Nk =
0 =
0,

which is what we wanted to show.
Where the first = follows by Observation 9.1, second = follows by our assump-

tion, third = follows by Observation 1.22, fourth = follows by Observation 7.5
and the last = follows by the definition of underlined terms.

The rest of this section is going to have strong resemblance to section 6.2 and
section 6.3.

Theorem 9.4 (Structure of the <, S(x) and modk in IΣ1). Let M be a non-
standard model of IΣ1, k ∈ N and recall that implicitly M models defining axiom
for S(x), introduced in Definition 1.3, and the defining axioms for modk, which
can be found in Observation 7.9. Furthermore, set (A,<∼) as in Lemma 6.6, i.e.
A := (M/ ∼<)\{0M

Z } and for aZ, bZ ∈ A we have aZ <∼ bZ iff. aZ ̸= bZ and
∃a ∈ aZ ∃b ∈ bZ s.t. M |= a < b. Then (M,<M , SM , (modk)M) ∼= (N ∪A× Z, <′

, S
′
,mod ′), where we define <′

, S
′ and mod ′ in the following manner.

Definition of <′ .

• Let n,m ∈ N, then n <
′
m ⇐⇒ n < m.

• Let n ∈ N and a ∈ A× Z, then we always set n <′
a.

• Let (q, k), (r, l) ∈ A × Z, then we set (q, k) <′ (r, l) iff. q <∼ r or q =
r ∧ k <Z l.
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Definition of S ′ .

• If x ∈ N, then S
′(x) = x+ 1.

• If x = (q, k) ∈ A× Z, then S
′(x) = (q, k + 1).

Definition of mod ′ .

• If x ∈ N , then x mod ′ = x mod Nk.

• If x = (q, l) ∈ A× Z and 0 ≤ l, then x mod ′ = l mod Nk.

• If x = (q, l) ∈ A×Z and l < 0, then x mod ′ = (k−((−l) mod Nk)) mod Nk.

Proof. Take a function, by Axiom of Choice - for further details see Enderton
[1977, p.151], s : A −→ M s.t. ∀q ∈ A s(q) ∈ q and M |= s(q) mod k = 0.
By Observation 9.3, it easily follows that for any q ∈ M we must have in qZ an
element x s.t. M |= x mod k = 0, and hence is s a well defined function.

Further define for any x ∈ N ∪ A× Z,

h(x) :=

⎧⎪⎪⎨⎪⎪⎩
nM x = n ∧ n ∈ N,
(s(aZ) + k)M x = (aZ, k) ∧ 0 ≤Z k,

(s(aZ) .− l)M x = (aZ, k) ∧ k <Z 0 ∧ l = −k.

We can now copy-paste the proof in Theorem 6.7 to observe that h is a
bijection from N ∪ A× Z onto M . S.t. it respects S(x) and <.

Therefore, we only need to show that h respects mod k, i.e. that h(x mod ′) =
(h(x) mod k)M , for any x ∈M .

x ∈ N: Let n ∈ N s.t. x = n.
We evidently have h(n mod ′) = (n mod Nk)M .
On the other hand, (h(x) mod k)M = (n mod k)M , which by Observa-
tion 7.5 equals (n mod Nk)M , and the wanted equality follows.

x = (q, l) ∈ A× Z:

0 ≤ l: We have x mod ′ = l mod Nk. Therefore, we have that h(x mod ′) =
(l mod Nk)M .
On the other hand, we evidently have, since 0 ≤ l, that h(x) = (s(q)+
l)M . Computing (h(x) mod k)M , we get by Observation 9.1 that

(h(x) mod k)M = ((s(q) mod k + l) mod k)M .

Lastly, recalling that M |= s(q) mod k = 0, we get that (h(x) mod k)M

equals to (l mod k)M .
Applying Observation 7.5, we have (l mod k)M = (l mod Nk)M , which
is what we wanted to show.
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l < 0: Note that if k = 0, then this whole proof is trivial, therefore, from
now on assume that 0 < k.
We have x mod ′ = (k − ((−l) mod Nk)) mod Nk. Therefore,

h(x mod ′) = ((k − ((−l) mod Nk)) mod Nk)M .

On the other hand, we have, since l < 0, that h(x) = (s(q) .− (−l))M .
Therefore,

M |= h(x) mod k =
(s(q) .− (−l)) mod k =

((s(q) .− (−l)) + 0) mod k =
((s(q) .− (−l)) + (−l)× k) mod k =
(s(q) + ((−l)× k .− (−l))) mod k =

(s(q) + (−l)× (k − 1)) mod k =
(−l)× (k − 1) mod k =
(−l)× (k − 1) mod Nk =

(k − ((−l) mod Nk)) mod Nk,

which is what we wanted to show.
Where the respective equality signs follow by the following points.
(i) By the definition of h.

(ii) By Ax.6 [0, 1 are neutral] .
(iii) By Ax.2 [commutativity +] combined with Observation 9.1, i.e.

that mod is “distributive”, and by Observation 7.5, i.e. that mod
behaves as expected on NM .

(iv) This equality can be concluded by first noting M |= −l ≤ s(q)
and M |= −l ≤ (−l)× k, and then applying Observation 1.27.

(v) It is because .− behaves on NM as expected when when subtracting
mM from nM s.t. M |= m ≤ n, for a proof see Observation 1.25.

(vi) Follows mainly by Observation 9.1, i.e. “distributivity” of mod,
and using the fact that M |= s(q) mod k = 0, combined with Ax.2
[commutativity +] and Ax.6 [0, 1 are neutral] .

(vii) Follows by Observation 7.5, i.e. that mod behaves on NM as ex-
pected.

(viii) Standard truth in N.

And by the same argument as for Corollary 6.10, we get the following corollary.

Corollary 9.5. Let M be a countable non-standard model of IΣ1, k ∈ N and
recall that implicitly M models defining axiom for S(x), introduced in Defin-
ition 1.3, and the defining axioms for modk, which can be found in Observa-
tion 7.9. Then (M,<M , SM , (modk)M) ∼= (N ∪ Q × Z, <′

, S
′
,mod′), where we

define <′
, S

′ and mod ′ followingly.
Definition of <′ .
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• Let n,m ∈ N, then n <
′
m ⇐⇒ n < m.

• Let n ∈ N and a ∈ Q× Z, then we always set n <′
a.

• Let (q, k), (r, l) ∈ Q × Z, then we set (q, k) <′ (r, l) iff. q <Q r or q =
r ∧ k <Z l.

Definition of S ′ .

• If x ∈ N , then S
′(x) = x+ 1.

• If x = (q, k) ∈ Q× Z, then S
′(x) = (q, k + 1).

Definition of mod ′ .

• If x ∈ N , then x mod ′ = x mod Nk.

• If x = (q, l) ∈ Q× Z and 0 ≤ l, then x mod ′ = l mod Nk.

• If x = (q, l) ∈ Q×Z and l < 0, then x mod ′ = (k−((−l) mod Nk)) mod Nk.

Proof. The corollary follows immediately by the just proved Theorem 9.4 and
Corollary 6.9, which states that (A,<∼) ∼= (Q,<Z).

We can finally approach one of the main result of this section, note the re-
semblance to Lemma 6.12.

Lemma 9.6 (<,S and modk can be all recursive). There exists a non-standard
model M of PA, recall that we implicitly include defining axioms for S(x) and
x mod k in PA, s.t. dom(M) = N and the relation < as well as the functions S
and modk are recursive with respect to it.

Proof. First, let us note that the witness to (N∪Q×Z) being computably codable
set can be found in Bijection 5.

Now, since there exists a non-standard countable model of PA by Corollary 2.3
we get by Corollary 9.5, for this recall that if M |= IΣ1 then M |= PA, and by
Corollary 3.15 that the just being proved lemma holds.

To conclude this section, we will state one, possibly interesting, corollary of
Lemma 9.6 as well as a few commentaries related to strengthening Theorem 9.4,
which consequently strengthens also Corollary 9.5.

Corollary 9.7 (<,S and modl, for all l in a finite set F ⊆ N, can be all recurs-
ive). Let F be a finite subset of N. Then there exits a non-standard model of
PA, denote it as M , s.t. M satisfies all the following.

• dom(M) = N.

• < is recursive with respect to M .

• S is recursive with respect to M .

• ∀l ∈ F , we have that modl is recursive with respect to M .
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Proof. Define p ∈ N as the following product, p := Πl∈F \{0}l, where least common
multiple of F\{0} would be sufficient as well. Where, as it is customary, if
F\{0} = ∅, then p equals 1.

Let M ′ be a non-standard model of PA that we can get from Lemma 9.6 with
k set to p. More specifically, we have M ′ s.t. M ′ is a non-standard model of PA,
dom(M ′) = N, and <,S as well as modp are recursive with respect to M ′ .

Furthermore, by Observation 3.13, we know that there exists a non-standard
model of PA, denote it as M , s.t. dom(M) = N, ∀r ≤ p rM = r and <,S as well
as modp are recursive with respect to it.

Now, we will show that actually for every l ∈ F is mod l recursive with respect
to M , and the proof will be finished.

Since 0 ≤ p, we have that 0M = 0. Therefore, we can conclude by Observa-
tion 8.6 that mod0, and also mod1, are recursive with respect to M .

Let l ∈ F\{0} and x be any element of M .
Since l | p implies M |= l | p, by Observation 1.32, we get by Observation 9.1

that M |= x mod l = (x mod p) mod l.
We can compute, by our assumption, (x mod p)M , denote the result as a.
Evidently M |= 0 ̸= p, hence, M |= a < p. And by Observation 1.31 we can

conclude that a is one of 0M , . . . , (p− 1)M . But since 0M = 0, . . . , (p− 1)M =
p− 1, we can compute the exact r ∈ N s.t. rM = a.

To remind us of our goal, we need to compute (a mod l)M which, as we know,
is the same as computing (r mod l)M .

But computing (r mod l)M is easy. It is because by Observation 7.5 M |=
r mod l = r mod Nl. And since is modN surely computable, we can compute
r mod Nl. Continuing, evidently r mod Nl ≤ l ≤ p, hence, we we can also compute
r mod Nl

M because it simply equals r mod Nl.
To summarize, we can compute r mod Nl

M which is the same as (r mod l)M ,
what we set out to compute.

Commentary. The strengthening we did in Corollary 9.7 can be “pushed” further,
namely to Theorem 9.4, and consequently to Corollary 9.5.

More specifically, the statement of Theorem 9.4 can be altered so that we have
for any finite subset of N, denote it as F = {r0, . . . , rn}, that (M,<M , SM , (mod
r0)M , . . . , (modrn)M) is isomorphic to (N ∪ A × Z, <′

, S
′
,mod′

0, . . . ,mod′
n). We

define <′ and S
′ exactly as in Theorem 9.4. As for the mod′

i,for i ∈ [0, n], we
define it in the following manner.

• If x ∈ N , then x mod ′
i = x mod Nri.

• If x = (q, l) ∈ A× Z and 0 ≤ l, then x mod ′
i = l mod Nri.

• If x = (q, l) ∈ A× Z and l < 0, then x mod ′
i = (ri − ((−l) mod Nri)) mod

Nri.

Note that the definition is analogous to the one for mod ′ in Theorem 9.4.
The proof of this strengthening is similar to the proof of the original statement.

There are two differences, though, worth mentioning.
One is that s(q), for q ∈ A, will now have to satisfy, besides s(q) ∈ q, that for

any i ∈ [n], M |= s(q) mod ri = 0. Actually, by Observation 9.1, it does suffice if
s(q) satisfies that M |= s(q) mod Πk∈F \{0}k = 0 or M |= s(q) mod c = 0, where c
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is least common multiple in F\{0}. As for the existence of such a (s(q) =)x ∈ q,
we can again use Observation 9.3.

And the second is that when arguing about h preserving mod′
i, for i ∈ [n],

we will now need to use Observation 9.1 in its general form when l | k, where l, k
are from the statement of Observation 9.1, compared to the proof of Theorem 9.4
where we used the observation only with l = k.
Commentary. Elaborating on the idea in the preceding commentary and with our
knowledge of how to use Theorem 9.4 to proof Lemma 9.6, it is not that hard to
see the following for any F ⊆ N.

Assume that there exists M , a non-standard countable model of PA, or IΣ1,
s.t. ∀q ∈ A, where A is defined as in Theorem 9.4, we can find s(q) s.t. the
following holds.

• s(q) ∈ q.

• M |= s(q) mod r = 0, for every r ∈ F .

Then there exists G, a non-standard model of PA, or IΣ1, s.t.

• dom(G) = N.

• < and S are recursive with respect to G.

• For every r ∈ F is modr recursive with respect to G.

Commentary. And now, a natural question arises. Does every copy of Z in some
non-standard countable model of PA contain an element that is divisible by every
standard number?

More formally, does it hold that in some countable non-standard model of
PA, or IΣ1, we have ∀q ∈ A, where A is defined as usual, that there exists x ∈ q
s.t. M |= x mod m = 0 for every m ∈ N?

If so, then in the light of the previous commentary, there is a non-standard
model of PA, or IΣ1, s.t.

• its domain is N,

• <, S and modm, for every m ∈ N, is recursive with respect to it.

Unfortunately, it is not that easy, since as we will see in Section 10.1, for every
non-standard model M of PA there exists q ∈ A s.t. no element x from q satisfies
for every m ∈ N that M |= x mod 2m = 0.

We would like to conclude this section with one general problem concerning
the x mod k function that we did not manage to solve fully.

Problem 1 (Classification of when can be modk, for all k ∈ F ⊆ N, recursive).
Classify exactly for which sets F ⊆ N there exists a non-standard model of PA,
or IΣ1, with domain N s.t. modk, for every k ∈ F , is recursive with respect to
it.

We have seen some valid examples of F , namely that any finite subset of N is
valid with respect to Problem 1. However, there are still many other subsets of
N to which we do not know the answer, with respect to Problem 1.
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9.2 Recursiveness of the x mod y function
An interesting piece of the puzzle left unanswered is whether there can be a non-
standard model of IΣ1 or PA, s.t. the binary function x mod y is recursive with
respect to it.

Unfortunately, we did not manage to come to a conclusion on this matter,
and therefore, we state is as an unanswered problem.

Problem 2 (Can x mod y be recursive?). Does there exist a non-standard model
of PA, or IΣ1, s.t. the binary function x mod y is recursive with respect to it?

A natural idea is whether when we make the assumption stronger, i.e. when we
want also < or S(x) to be recursive, we can give an answer to the aforementioned
question.

As we have seen in Observation 8.4, there can be no such non-standard model
of IΣ1 in the case of x mod y and S(x).

And, as for the combination of x mod y and <, we will see in Observation 9.9
that it is the same as asking whether the x mod y can be recursive without the
additional assumption of < being recursive.

Observation 9.8 (x mod y determines <). Let M |= IΣ1, then ∀a, b ∈ M s.t.
b ̸= 0M the following holds.

M |= a < b ⇐⇒ M |= a mod b = a.

Proof. If M |= a < b, then M |= a = 0 × b + a ∧ a < b where b ̸= 0M and
M |= 0 ≤ a, hence by the definition of mod we have M |= a mod b = a.

On the other hand, if M |= a mod b = a, then since 0M ̸= b we have that
M |= a < b again by the definition of mod.

Observation 9.9 (x mod y recursive implies < recursive). Let M |= IΣ1, then
if x mod y is recursive with respect to M , then < is also recursive with respect
to M .

Proof. Let a, b ∈M and we want to compute a <M b.
First we check whether or not a =M b, which can be done recursively by

Remark 8.1. If so, then we return that it is not the case of a <M b.
Otherwise assume that it is not the case of a =M b. Therefore, we have

M |= a < b ∨ b < a.
Let us now realize that we can determine whether b = 0M or not.
It is because 0M is clearly the only element x ∈ M s.t. M |= x mod x = x.

And hence, we can enumerate recursively N according to <N and when we, sooner
or later, stumble upon x s.t. M |= x mod x = x we know that x = 0M . And
since we can compute 0M we can check whether b = 0M or not.

If b = 0M , then it must indeed be the case of M |= b < a and we return that
a <M b does not hold.

Otherwise we have that b ̸= 0M and therefore we can employ Observation 9.8
to check whether a <M b by checking whether a mod Mb = a or not. And since is
modM recursive, we can do also this step recursively, and we can conclude that
<M is computable.
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10. Structure of (M,x div k) for
M |= PA

10.1 A copy of Z with no 0
The argument in this section was inspired by Jeřábek [2015].

Recall that if G |= PA− and x ∈ G, then

xZ = {. . . , (x .− n)G, . . . , (x .− 1)G, x, (x+ 1)G, . . . , (x+ n)G, . . .}.

Let k ∈ N s.t. 2 ≤ k. The ultimate goal of this section is to show that for
any non-standard model of PA, denote it as M , there exists x ∈M s.t. ∀y ∈ xZ
there exists l ∈ N s.t. M |= ¬kl | y, or equivalently M |= y mod kl ̸= 0. We can
also note that xZ surely can not equal to 0M

Z .
It can be vaguely rephrased as that for any non-standard model of PA there

exists a non-standard copy of Z within it s.t. it does not contain a zero-like
element from the point of view of divisibility by standard numbers.

Before we reach this result, we will introduce two useful functions that we
will call fk and gk. And as expected, we will prove a couple of observations with
respect to them. The reader may also note, when we reach the main conclusions
of this section, that the choice of fk and gk is not that important as long they
satisfy certain properties introduced in the course of this section.

Definition 10.1 (fk). Let k ∈ N s.t. 2 ≤ k, then we define a unary function
over N denoted as fk in the following manner. Let n ∈ N, then define

fk(n) :=

⎧⎪⎪⎨⎪⎪⎩
n n ≤ 1,
fk(n− 1) 2 | n ∧ 2 ≤ n,

fk(n− 1) + kn−1 otherwise.

The otherwise. condition can be equivalently replaced by 2 ̸| n ∧ 2 ≤ n.

Observation 10.1 (fk is a recursive function). Let k ∈ N s.t. 2 ≤ k. Then fk is
a recursive function.

Proof. Obvious by the definition of fk.

Observation 10.2 (fk(n) < kn). Let k, n ∈ N s.t. 2 ≤ k. Then fk(n) < kn.

Proof. Assume that k, n are as in the statement of the observation. The proof is
going to be by induction on n.

n ≤ 1: This case is trivial.

2 | n ∧ 2 ≤ n: We have

fk(n) = fk(n− 1) < kn−1 < kn,

where the first equality is by definition of fk, the first < is by the induction
hypothesis and the second < is by 2 ≤ k.
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2 ̸| n ∧ 2 ≤ n: We have

fk(n) = fk(n− 1) + kn−1 < kn−1 + kn−1 ≤ kn,

where the first equality is by definition of fk, the first < is by the induction
hypothesis and the ≤ is by 2 ≤ k.

Observation 10.3 (monotousness of fk). Let k ∈ N s.t. 2 ≤ k. Then fk is a
monotone function on N, furthermore, ∀n ∈ N fk(n) < fk(n+ 2).

Proof. These properties follow directly from the definition of fk.

Corollary 10.4 (fk is unbounded and monotone). Let k ∈ N s.t. 2 ≤ k. Then
for every m ∈ N there exists n0 ∈ N s.t. ∀n ∈ N n0 ≤ n⇒ m < fk(n).

Proof. It is an immediate consequence of the just stated Observation 10.3.

Definition 10.2 (gk). Let k ∈ N s.t. 2 ≤ k. We define a function gk over N for
every n ∈ N as follows,

gk(n) := kn − fk(n).

Let us note that by Observation 10.2 is gk indeed a well defined function from
N into N.

Observation 10.5 (monotonousness of gk). Let k ∈ N s.t. 2 ≤ k. Then we have
the following,

(i) gk is monotone.

(ii) ∀n ∈ N gk(n) < gk(n+ 2).

Proof. Assume k ∈ N s.t. 2 ≤ k and n ∈ N.
We will start proving the monotony of gk, i.e. (i), by showing that gk(n) ≤

gk(n+ 1). Alongside the proof of monotonousness, we will also show (ii).

n ≤ 1: Let us note that gk(0) = 1, gk(1) = k − 1, gk(2) = k2 − 1 and lastly
gk(3) = k3 − (1 + k2) = k2 × (k − 1)− 1.

n = 0: Clearly, since 2 ≤ k, gk(0) ≤ gk(1) as well as gk(0) < gk(2), i.e. we
have verified both (i) and (ii) for n = 0.

n = 1: Evidently, since 2 ≤ k, gk(1) ≤ gk(2) as well as gk(1) < gk(3), i.e. we
have again verified both (i) and (ii) for n = 1.

n ≥ 2:

2 | n: We have fk(n+1) = kn+fk(n), hence, gk(n+1) = kn+1−kn−fk(n) =
kn×(k−1)−fk(n). Since k ≥ 2, we have that indeed gk(n) ≤ gk(n+1).
I.e. (i) has been verified.
Furthermore, note that fk(n + 2) = fk(n + 1) = kn + fk(n). Hence,
gk(n+ 2) = kn+2−kn− fk(n), therefore by 2 ≤ k, we have gk(n+ 1) <
gk(n + 2) which in turn implies gk(n) < gk(n + 2). I.e. the (ii) has
been verified as well.
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2 ̸| n: We have, by 2 ≤ k, that

gk(n+ 1) = kn+1 − fk(n+ 1) = kn+1 − fk(n) > kn − fk(n) = gk(n),

which verifies (i).
Continuing, by 2 ≤ k, we have

gk(n+ 2) = kn+2 − fk(n+ 2) = kn+2 − fk(n+ 1)− kn+1 =
kn+1 × (k − 1)− fk(n+ 1) = kn+1 × (k − 1)− fk(n)

from which we can infer that (ii) holds as well.

Observation 10.6 (Congruence for fk). Let k ∈ N s.t. 2 ≤ k. Furthermore, let
n ∈ N, then ∀l ∈ N l ≤ n we have

fk(l) ≡ fk(n)(modkl).

Proof. We will proceed by induction on n.

n ≤ 1: This case is obvious.

n = m+ 1: Assume that the lemma holds for m.

• If 2 | n, then fk(n) = fk(m). Therefore, we have by induction hypo-
thesis ∀l ≤ m that fk(l) ≡ fk(n)(modkl).
Furthermore, if l = n, then evidently fk(l) ≡ fk(n)(modkl), hence,
we have verified the induction step for n s.t. 2 | n.

• If 2 ̸| n, then fk(n) = fk(m) + km.
Let l ≤ n.
If l = n, then we evidently have fk(l) ≡ fk(n)(modkl).
Otherwise l ≤ m. First note that kl | km, hence km mod kl = 0.
Therefore, by induction hypothesis on m and the just stated congru-
ence, we have that fk(l) ≡ fk(m) + km(modkl), which is the same as
fk(l) ≡ fk(n)(modkl).
Thus, we have verified the induction step also for n s.t. 2 ̸| n.

Observation 10.7. Let M |= IΣ1, a ∈ M , n ∈ N and S ⊆ N s.t. S is finite.
Then there exists m ∈ N s.t.

∀s ∈ S M |= a+m mod s = n mod s.

Proof. First note that if 0 ∈ S, then 0 satisfies the conclusion of the observation
for any m ∈ N. Therefore, let us assume for simplicity that 0 ̸∈ S, since if we
find valid m for such a S then we have actually found m for S ∪ {0}.

Set k as the least common multiple of elements in S, and as always, if S = ∅,
then k = 1.
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Then by Observation 9.3, having the same a and k as in here, there exists
r ∈ N s.t. M |= (a+ r) mod k = 0.

Therefore, by Observation 9.1, we get that M |= (a+ r) mod s = 0 for every
s ∈ S.

Hence, we have for every s ∈ S that M |= (((a + r) mod s) + n) mod s =
n mod s.

But again by Observation 9.1, Ax.1 [associativity +] we get that for every
s ∈ S we have, M |= (a+ (r + n)) mod s = n mod s.

Therefore, by Observation 1.22, we may finally conclude that for every s ∈ S,
M |= (a+ r + n) mod s = n mod s.

And thus, the proof is finished.

Lemma 10.8. Let M |= IΣ1, a ∈ M and k ∈ N s.t. 2 ≤ k. Then ∀n ∈ N there
exists m ∈ N s.t. ∀l ≤ n we have

M |= (a+m) mod kl = fk(l) mod kl.

Proof. Fix some a ∈ M and k, n ∈ N s.t. 2 ≤ k. We will show that there exists
a suitable m satisfying the conclusion of the lemma.

First recall that mod behaves on NM as expected by Observation 7.5.
By Observation 10.6 there exists r ∈ N, namely fk(n), s.t. M |= r mod kl =

fk(l) mod kl for any l ≤ n.
Now we only need to find m ∈ N s.t. M |= (a + m) mod kl = r mod kl, for

any l ≤ n. But now we can refer to Observation 10.7, with

• a set to the same a as in here,

• n in the observation set to the r in here,

• S := {k0, . . . , kn},

to argue that there indeed must exist such a m.
The proof is finished.

Definition 10.3 (Representing fk). Let k ∈ N s.t. 2 ≤ k. We know by Ob-
servation 10.1 that fk is a recursive, and evidently total, function. Hence, by
Lemma 3.8, there exists a Σ1 formula representing fk in PA−, denote from now
on such a formula as Fk(x, y). Te recall from Definition 3.7, the properties of Fk

are the following.

• For any n ∈ N, we have PA− ⊢ ∃!y Fk(n, y).

• For any n,m ∈ N, we have fk(n) = m ⇐⇒ PA− ⊢ Fk(n,m).

Definition 10.4 (φk(x, y, z)). Let k ∈ N s.t. 2 ≤ k. We will define one formula,
denoted as φk(x, y, z), that will be of use to us later.

φk(x, y, z) ≡ ∃x ≤ u ≤ y ∀l ≤ z ∃w
(Fk(l, w) ∧ u mod exp(k, l) = w mod exp(k, l)).

Definition 10.5 (Closed interval of non-standard length). Let M |= PA− and
a, b ∈ M , then we define a closed interval [a, b] as {z ∈ M |M |= a ≤ z ≤ b}.
Furthermore, if ∀n ∈ N we have M |= a+n ≤ b, then we say that [a, b] is a closed
interval of non-standard length.
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Lemma 10.9. Let M |= PA, a, b ∈ M s.t. [a, b] is a closed interval of non-
standard length. Furthermore, let k ∈ N s.t. 2 ≤ k. Then M |= φk(a, b, n) for
every n ∈ N.

Proof. Let n ∈ N.
By Lemma 10.8 there exists m ∈ N s.t. ∀l ≤ n M |= a + m ≡ fk(l)(mod

exp(k, l)). And it does suffice to consider only l ≤ n, since by Observation 1.31
M |= z ≤ n→ z = 0 ∨ . . . ∨ z = n.

Furthermore, M |= a ≤ a+m ≤ b evidently holds.
Therefore, we may conclude that M |= φk(a, b, n) by setting u to (a + m)M ,

and the proof is finished.

Corollary 10.10 (Non-standard d ∈ M s.t. M |= φk(a, b, d)). Let k ∈ N s.t.
2 ≤ k and let M be a non-standard model of PA. Furthermore, let a, b ∈M s.t.
[a, b] is a closed interval of non-standard length. Then there exists a non-standard
d ∈M s.t. M |= φk(a, b, d).

Proof. This is a simple corollary to the just proved Lemma 10.9 and to Overspill
lemma for N, see Lemma 2.6.

Definition 10.6 (A meta formula DM
k (x), Dk(x).). Let M |= PA− and k ∈ N,

then we will denote by DM
k (x) a meta formula of a single free variable x s.t. x will

be always considered from from dom(M). We define the formula in the following
way.

DM
k (x) ≡ ∀l ∈ NM |= kl | x.

Furthermore, if it obvious to which M we refer to, then we will denote DM
k (x)

simply as Dk(x).

In order to proceed further, we prove one natural property of mod.

Observation 10.11 (M |= (a .− c) mod d = (b .− c) mod d, for M |= a mod
d = b mod d). Let M |= IΣ1 and a, b, c, d ∈ M s.t. M |= c ≤ a, b. Furthermore,
assume that M |= a mod d = b mod d. Then, we have that M |= (a .− c) mod d =
(b .− c) mod d.

Proof. First assume that M |= d = 0, then the observation trivially holds.
Otherwise assume M |= 1 ≤ d, hence, M |= d = z + 1 for some z ∈M .
We have,

M |= (a .− c) mod d =
((a .− c) + d× c) mod d =
(a+ (d× c .− c)) mod d =

(a+ ((z + 1)× c .− c) mod d =
(a+ (((z × c+ c) .− c) mod d =
(a+ ((z × c+ (c .− c)) mod d =

(a+ z × c) mod d =
(b+ z × c) mod d =

...
(b .− c) mod d

Where the respective equality signs are discussed in the upcoming points.
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(i) Follows by Observation 9.1.

(ii) Follows by Observation 1.27, since M |= c ≤ a and M |= c ≤ d× c.

(iii) By M |= d = z + 1.

(iv) By Ax.4 [commutativity ×] and Ax.5 [distributivity] .

(v) Follows by Observation 1.23.

(vi) Obviously M |= c .− c = 0, and the equality follows.

(vii) By the assumption of M |= a mod d = b mod d and Observation 9.1.

(viii) We would do the same steps in a reverse order to reach the last expression.

Lemma 10.12 (A copy of Z with no 0, under the assumption of M |= φk(a, b, d)).
Let M |= PA, a, b ∈M , [a, b] is a closed interval of non-standard length and k ∈ N
s.t. 2 ≤ k. Furthermore, assume that there is d ∈M\NM s.t. M |= φk(a, b, d).

Moreover, set e ∈M to be one of the possible interpretations of u witnessing
M |= φk(a, b, d), i.e. the u from

∃x ≤ u ≤ y ∀l ≤ z, ∃w (Fk(l, w) ∧ u mod exp(k, l) = w mod exp(k, l)).

Then, we claim the following.

(i) ∀x ∈ eZ ¬Dk(x).

(ii) e is a non-standard element of M .

Proof. First, let us note that (i) implies (ii).
Assume for contradiction that e ∈ NM , then from Corollary 6.3 follows that

0M ∈ eZ, hence, ∃x ∈ eZ such that Dk(x) holds, which is the desired contradiction.
Point (ii) out of the way, we move to proving (i).
Assume for contradiction that (i) does not hold. Therefore, ∃x ∈ eZ s.t.

∀l ∈ NM |= kl | x.

M |= x ≤ e: There must exist r ∈ N s.t. M |= x = e .− r. Furthermore, let r be
the smallest one with such a property, hence, M |= r ≤ e.
By Corollary 10.4, setting m to r from here, there exists n ∈ N s.t. r <
fk(n). By Observation 1.29 we also have M |= r < fk(n).
By the way we chose e we have that and by properties of exp from Obser-
vation 2.10,

M |= e mod kn = fk(n) mod kn.

Furthermore, since M |= r ≤ e and M |= r ≤ fk(n), by Lemma 10.12 can
be conclude that

M |= (e .− r) mod kn = (fk(n) .− r) mod kn.
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We have by r ≤ fk(n), Observation 1.25 and Observation 7.5 that

M |= (fk(n) .− r) mod kn =
(fk(n)− r) mod kn.

We know that r < fk(n) < kn, the last < is by Observation 10.2. Hence,
0 < (fk(n)−r) mod kn < kn from which follows that M |= (e .−r) mod kn ̸=
0, where recall that M |= x = e .− r.
Hence, we can not evidently have that M |= kn | x, which is a contradiction
to our assumption.

M |= e ≤ x: In this case, we will mimic the proof given for M |= x ≤ e.
There again exists r ∈ N s.t. M |= x = e+ r.
Furthermore, by Observation 10.5 there must be 1 ≤ n ∈ N s.t. r < gk(n),
which is the same as r < kn − fk(n).
Again, by the way we chose e and properties of exp from Observation 2.10,
we have that

M |= e mod kn = fk(n) mod kn.

Hence, by Observation 9.1, we have that

M |= e+ r mod kn = fk(n) + r mod kn.

We know that 0 < r + fk(n) < kn, where the first < is by 1 ≤ n and
Observation 10.3.
Hence, we have by Observation 1.22 and Observation 7.5 the following,

M |= fk(n) + r mod kn =
(fk(n) + r) mod kn ̸= 0

Since M |= x = e+ r and we evidently have that M ̸|= kn | e+ r, we again
arrive at a contradiction.

Corollary 10.13 (A copy of Z with no 0). Let M |= PA, a, b ∈ M s.t. [a, b] is
a closed interval of non-standard length. Also let 2 ≤ k ∈ N. Then there exists
e ∈ [a, b] s.t. e ∈M\NM and ∀x ∈ eZ the formula Dk(x) does not hold.

Proof. Is a consequence of Lemma 10.12.

10.2 Investigation of an equivalence relation ∼k
Observation 10.14 (x div (y × z) equals (x div y) div z). Let M |= IΣ1 and
a, b ∈M . Then if x is any member of M we have,

M |= x div (a× b) = (x div a) div b.
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Proof. First assume that a = 0M or b = 0M , then M |= x div (a × b) = 0 and
M |= (x div a) div b = 0, where both observation follow by the definition of div.

From now on, assume that M |= 0 < a ∧ 0 < b. Moreover, note that as a
direct consequence of our assumption we get M |= 0 < a× b.

By Theorem 2.4, i.e. the theorem on unique quotients and remainders, we
have the following.

(i) There exists unique qab, rab ∈M s.t.

M |= x = qab × (a× b) + rab ∧ rab < a× b.

(ii) There exists unique qa, ra ∈M s.t.

M |= x = qa × a+ ra ∧ ra < a.

(iii) There exists unique qb, rb ∈M s.t.

M |= qa = qb × b+ rb ∧ rb < b.

By Corollary 7.2 we see that

M |= x div (a× b) = qab ∧ (x div a) div b = qb.

I.e. it only remains to show that qab = qb.
Combining (ii) and (iii) we observe that,

M |= x = qb × (a× b) + rb × a+ ra.

If we manage to show that M |= rb×a+ ra < a× b, and since M |= 0 < a× b,
then by the uniqueness part in Theorem 2.4 the equality qab = qb will follow.

Since M |= 0 < b, we have that there must be z ∈M s.t. M |= b = z + 1.
And because M |= ra < 1× a, it is evident that it only remains to show that

M |= rb × a ≤ z × a.
But since M |= rb < b, it follows that M |= rb ≤ z, and hence, we indeed have

M |= rb × a ≤ z × a and the proof is finished.

Corollary 10.15. Let M |= IΣ1 and k, l ∈ N . Then if x is any member of M
we have,

M |= x div kl = (. . . (x div k) . . .) div k.
Where the div k is repeated on the right hand side of the equation exactly l times.
And if l = 0, then the right hand side expression stands for x.

Proof. The proof is by induction on l. If l ≤ 1, then everything is in order.
Otherwise we can use the induction hypothesis together with Observation 10.14.

Observation 10.16. Let M |= IΣ1, a ∈ M and 1 ≤∈ N. Then there exists
s ∈ N s.t.

M |= k × (a div k) + s = a.
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Proof. Let a and k be as in the statement of the observation.
We know by Theorem 2.4 that there exists unique qa, ra ∈ M s.t. M |= a =

k × qa + ra ∧ ra < k. And by Corollary 7.2 we know that M |= a div k = qa.
Therefore, M |= k × (a div k) + ra = a.
By Observation 1.31 and M |= ra < k we know that ra ∈ NM , hence, the

proof is finished.

Definition 10.7 (Relation ∼k). Let 2 ≤ k and M |= IΣ1, we will denote by ∼k

a relation on dom(M) which is defined as follows. Let x, y ∈M , then

x ∼k y ⇐⇒ ∃lx, ly ∈ N; M |= x div klx = y div kly .

In proofs to come, we will (often) use ∼ instead of longer ∼k.

Note that in the light of Corollary 10.15 we also have x ∼k y iff. there
∃lx, ly ∈ N s.t. (divk)M applied lx-times to x equals (divk)M applied ly-times to
y.

Furthermore, we will not use some kind of notation hinting that ∼k is with
respect to M since that should be always obvious.

Later, we will see why ∼k is a relation of interest for us. However first, we
show that ∼k is a equivalence relation.

Observation 10.17 (∼k is an equivalence relation). Let 2 ≤ k and M |= IΣ1,
then ∼k is an equivalence relation.

Proof. reflexivity: Obvious by setting lx, ly to 0.

symmetry: Obvious by the symmetry of Definition 10.7.

transitivity: Let x, y, z ∈M s.t. x ∼ y and y ∼ z. There must exist lx, ly, ry, rz ∈
N s.t. M |= x div klx = y div kly and M |= y div kry = z div krz .

ly = ry: In this case, we are obviously done.
ly < ry: Since M |= x div klx = y div kly , we have by Corollary 10.15 that

M |= x div klx+(ry−ly) = y div kly+(ry−ly), note that ly + (ry − ly) = ry.
Therefore, M |= x div klx+(ry−ly) = z div krz which is what we wanted
to show

ly > ry: We can examine this case analogously to the case of ly < ry.

Observation 10.18 ([0M ]∼k
= NM). Let M |= IΣ1 and 2 ≤ k ∈ N, then

[0M ]∼k
= NM .

Proof. We will show the two inclusions separately.

[0M ]∼ ⊆ NM Let x ∈ [0M ]∼, then there exists lx, l0 ∈ N s.t. M |= x div klx =
0 div kl0 . By the definition of div we evidently have that M |= 0 div kl0 =
0. Therefore, M |= x div klx = 0.
By Observation 10.16 we know that there exists s ∈ N s.t. M |= klx ×
(x div klx) + s = x, since M |= x div klx = 0, we may conclude that M |=
s = x, and therefore, x ∈ NM .
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NM ⊆ [0M ]∼ Let x ∈ NM , then there exists s ∈ N s.t. M |= x = s. There must
evidently exists lx ∈ N s.t. s div klx = 0, therefore by Observation 7.6,
M |= s div klx = 0. Therefore, M |= x div klx = 0 div k1, and we can
conclude that indeed x ∈ [0M ]∼.

After examining [0M ]∼k
, we will focus more on the other equivalence classes

of ∼k. We will differentiate among them from the point of view of elements
satisfying Dk(x), see Definition 10.6.

But before that, one useful observation.

Observation 10.19. Let M |= PA−, x, y, a, b ∈ M and M |= y = x + b. Then
if M |= a | y and M |= a | x, then M |= a | b.

Proof. Assume that indeed M |= a | y and M |= a | x. Then, there must exist
qy, qx ∈M s.t. M |= y = a× qy and M |= x = a× qx.

Therefore, M |= a × qy = a × qx + b. Evidently M |= qx ≤ qy. Hence, there
exists z ∈M s.t. M |= qy = qx + z. Therefore, M |= a× qx + a× z = a× qx + b.

We can conclude that M |= a × z = b which is equivalent to M |= a | b, and
the proof is finished.

Observation 10.20. Let 2 ≤ k ∈ N, M |= PA− and e ∈ M . Then there exists
at most one x ∈ eZ s.t. Dk(x) holds.

Proof. Assume for contradiction that there exist x, y ∈ eZ, where WLOG also
assume that M |= x ≤ y, s.t. Dk(x) and Dk(y) hold.

Since x, y ∈ eZ, by Definition 6.1, we know that there must exist s ∈ N s.t.
M |= x+ s = y.

And by Observation 10.19 we see that Dk(sM) must hold, which obviously
can not by Observation 1.32, and the proof by contradiction is finished.

Definition 10.8 (d+ and d−). Let M |= PA− and d ∈ M , then we define d+ as
{(d+ k)M |k ∈ NM} and we define d− as {(d .− k)M |k ∈ NM ∧ k ̸= 0M}.

Observation 10.21. Let M |= IΣ1, x ∈ M and k ∈ N. Then M |= x div k =
(x+ 1) div k or M |= (x div k) + 1 = (x+ 1) div k

Proof. If k = 0, then the result obviously holds. Otherwise assume 1 ≤ k. Also
denote (x+ 1)M as y.

By Theorem 2.4 there exist qx, qy, rx, ry ∈M s.t. M |= x = k×qx +rx∧rx < k
and M |= y = k × qy + ry ∧ ry < k.

Moreover, by Corollary 7.2 we know that M |= x div k = qx and M |=
y div k = qy.

If qx = qy, then we are done.
Otherwise, we must have M |= qx < qy. And since M |= 1 ≤ k, then the case

of M |= qx + 1 < qy can not happen. Therefore, M |= qy = qx + 1 and the proof
is finished.

Observation 10.22. Let 2 ≤ k ∈ N, M |= IΣ1 and x ∈M . Furthermore assume
that Dk(x+ 1) holds. Then,

(i) ∀l ∈ N we have Dk((x div kl + 1)M) and
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(ii) ∀l ∈ N we have ¬Dk((x div kl)M).

Proof. First note that (ii) follows from (i), otherwise would be, by Observa-
tion 10.19, 1M divisible in M by klM for any l ∈ N.

So it does suffice to show only (i).
If l = 0, then the conclusion evidently holds. Otherwise, thanks to Corol-

lary 10.15, it does suffice to show that if Dk((y+1)M) holds, then Dk(((y div k)+
1)M) holds.

We know by Observation 10.21 that either M |= (y div k)+1 = (y+1) div k or
M |= (y div k) = (y+ 1) div k In the former case, Dk(((y+ 1) div k)M) obviously
holds by our assumption of Dk((y + 1)M) being true.

Assume for contradiction that the latter case holds, let q ∈ M s.t. M |= q =
(y div k) = (y+1) div k. Then by Corollary 7.2 and the fact that M |= k | (y+1),
M |= (y + 1) = q × k whereas again by Corollary 7.2 and the fact that Dk(y)
evidently can not hold, we get that M |= y = q × k + r ∧ r ̸= 0 for some r ∈M .
Therefore, M |= (y + 1) < y which is a contradiction.

Observation 10.23. Let 2 ≤ k ∈ N, M |= IΣ1 and e be a non-standard element
of M . Then the following holds.

(i) If ∀x ∈ eZ ¬Dk(x), then eZ ⊆ [e]∼k
.

(ii) If ∃d ∈ eZ s.t. Dk(d) holds, then we have the following.

(a) d+ ⊆ [d]∼k
.

(b) d− ⊆ [(d .− 1)M ]∼k
.

(c) Furthermore, [d]∼k
∩ [(d .− 1)M ]∼k

= ∅.

Let us note that options (i) and (ii) for eZ are evidently non-overlapping and by
Observation 10.20 are also exhaustive.

Proof. We will prove the respective cases as are stated in the statement of the
observation.

(i) It clearly does suffice to show that if x ∈ eZ, then x ∼ (x+1)M . For further
discussion, denote (x+ 1)M as y.
By Theorem 2.4 there exist qx, qy, rx, ry ∈M s.t. M |= x = k×qx+rx∧rx <
k and M |= y = k × qy + ry ∧ ry < k.
Moreover, by Corollary 7.2 we know that M |= x div k = qx and M |=
y div k = qy.
If qx = qy, then we are clearly done.
Otherwise assume that qx ̸= qy, then since M |= y = x + 1, we must have
M |= ry = 0.
Let l ∈ N be the maximum natural number, by our assumption is l well
defined, s.t. M |= kl | y.
By Observation 10.21, we see that M |= x div kl = y div kl, in that case we
are done, or M |= (x div kl) + 1 = y div kl.
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In the latter case, we must again have that there exists q, r ∈ M , by The-
orem 2.4, s.t. M |= y div kl = k × q + r ∧ r < k.
But this time, thanks to the maximality of l, we must have M |= r ̸= 0.
Therefore, we may apply the same argument as the one we just did for x, y
but now for x div kl and y div kl and importantly without the possibility
of M |= r = 0.

(ii) (a) It again does suffice to show that if x ∈ d+, then x ∼ (x+ 1)M , where
we will denote (x+ 1)M as y.
First assume that x = d, then since M |= k | d, then evidently M |=
x div k = (x+ 1) div k.
Otherwise, i.e. x ̸= d, use the same argument as in (i).

(b) Now, it clearly does suffice to show that if x ∈ d− and M |= x ̸= d .−1,
then x ∼ (x+ 1)M . And the proof is the same as in (i).

(c) Assume for contradiction that [d]∼k
∩ [(d .− 1)M ]∼k

̸= ∅. Then, (d .−
1)M ∼ dM , hence, there exists ld−1, ld ∈ N s.t. M |= (d .−1) div kld−1 =
d div kld .
But this can not be. First note that since Dk(d) holds, Dk((d div
kld)M) must hold as well. On the other hand, by (ii) in Observa-
tion 10.22 we get that Dk(((d .− 1) div kld−1)M) does not hold. And
thus we arrive at a contradiction.

We will state a couple of other observations with respect to div.

Observation 10.24 (x div y is monotone with respect to y). Let M |= IΣ1 and
x, a, b ∈M . If M |= 0 < a ≤ b, then M |= x div b ≤ x div a.

Proof. The observation is trivial.

Observation 10.25. Let M |= IΣ1 and a, b, d ∈ M . Then M |= a div d +
b div d ≤ (a+ b) div d.

Proof. The statement is obvious.

Observation 10.26 (preservation of ∼< when applying divk). Let M |= PA,
x ∈M\NM and y ∈ xZ. Then we have the following.

(i) ∀k ∈ N, (k × y)M ∈ (k × x)M
Z .

(ii) ∀k ∈ N, (y div k)M ∈ (x div k)M
Z .

(iii) ∀l, k ∈ N l ̸= k we have (k × y)M ̸∈ (l × x)M
Z .

(iv) ∀l, k ∈ N l ̸= k we have (y div k)M ̸∈ (x div l)M
Z .

Proof. Although the proof is relatively lengthy, it is quite simple, hence we omit
it. Moreover, the validity of the observation is hopefully obvious.

Definition 10.9 (non-standard gap). Let M |= PA−, then for a, b ∈ M we say
that there is a non-standard gap between them if aZ ∩ bZ = ∅.
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Observation 10.27. Let M |= IΣ1 and a, b, c ∈M s.t. M |= a < b < c and there
is a non-standard gap among them, see Definition 10.9. Moreover, let 1 ≤ k ∈ N.

Then M |= a div k < b div k < c div k. And furthermore, there is again
non-standard gap among them.

Proof. Let a, b, c ∈M and 1 ≤ k ∈ N be as in the premise of the observation.
It clearly does suffice to show that M |= a div k < b div k and (a div k)M

Z ∩
(a div k)M

Z = ∅.
There must exist e ∈ M s.t. M |= a+ e = b. Thanks to our assumption, e is

a non-standard element of M .
Since 1 ≤ k, we have by Theorem 2.4 that there exists qa, ra, qb, rb, qe, re ∈M

s.t. M |= a = k × qa + ra ∧ ra < k, M |= b = k × qb + rb ∧ rb < k and
M |= e = k × qe + re ∧ re < k.

And by Corollary 7.2 we know that M |= a div k = qa and M |= b div k = qb

and M |= e div k = qe.
By Observation 10.25 we note that M |= qa + qe ≤ qb. Furthermore, since

e ̸∈ NM we clearly have that qe must be a non-standard element as well, the
conclusion follows.

Lemma 10.28. Let M |= IΣ1, e ∈M\NM and 2 ≤ k ∈ N.

(i) If there exists, by Observation 10.20 unique, d ∈ eZ s.t. Dk(d) holds, we
observe the following, setting B := {(d div kl)M |l ∈ N}∪{(kl×d)M |l ∈ N}.

(a)
[d]∼k

=
. . . ∪ (d div k)M

+ ∪ d+ ∪ (k × d)M
+ ∪ . . . =⋃︂

y∈B

y+.

(b)
[(d .− 1)M ]∼k

=
. . . ∪ (d div k)M

− ∪ d− ∪ (k × d)M
− ∪ . . . =⋃︂

y∈B

y−.

(ii) Otherwise, i.e. if there exists no such d ∈ eZ s.t. Dk(d) holds, then we have
the following, setting E := {(e div kl)M |l ∈ N} ∪ {(kl × e)M |l ∈ N}

[e]∼k
=

. . . ∪ (e div k)M
Z ∪ eZ ∪ (k × e)M

Z ∪ . . . =⋃︂
y∈E

yZ.

Where in all the three series of unions, the individual sets that we union together
are disjoint.

Proof. Let us state first that the last remark in the statement of the lemma follows
by Observation 10.26.

We will now show respective set equalities, where we split each case to showing
⊆ and ⊇.
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[d]∼ ⊇
⋃︁

y∈B y+: Evidently, every y ∈ B satisfies Dk(y), since d does. Therefore,
in the light of Observation 10.23, it does suffice to show that ∀x, y ∈ B we
have x ∼ y, but that is obvious.

[(d .− 1)M ]∼ ⊇
⋃︁

y∈B y−: Again note that every y ∈ B satisfies Dk(y).
Thanks to Observation 10.23, it does suffice to show that for any x, y ∈ B
we have (x .− 1)M ∼ (y .− 1)M . For that, thanks to Corollary 10.15, it does
suffice to show that for any y ∈ B we have M |= (y .−1) div k = (y div k) .−1.
By Observation 10.21 we have M |= (y .− 1) div k = (y div k) .− 1 or M |=
(y .− 1) div k = (y div k). But since Dk(d) holds, which implies M |= k | y,
the latter case evidently can not hold.

[e]∼ ⊇
⋃︁

y∈E yZ: For any x, y ∈ E, we evidently have that x ∼ y.
As a consequence of Observation 10.23, it suffices to show that ∀x ∈ E we
have no d ∈ xZ s.t. Dk(d) holds.
Assume for contradiction that there is x ∈ E s.t. d ∈ xZ and Dk(d) holds.
But this can not be because if there is one such d, then by and (i) or (ii)
in Observation 10.26, in case (i) would also apply Observation 10.16, there
must exist c ∈ eZ s.t. Dk(c) holds, which can not be.

[d]∼ ⊆
⋃︁

y∈B y+: And let us assume for contradiction that there exists x ∈ [d]∼
s.t. x ̸∈ ⋃︁

y∈B y+.
First note that x ∼ d.
By x ̸∈ ⋃︁

y∈B y+, we know that x ̸∈ ⋃︁
y∈B yZ, because otherwise x ∈⋃︁

y∈B y− ⊆ [(d .− 1)M ]∼ which would mean that x ∈ [d]∼ ∩ [(d .− 1)M ]∼.
And that is not a possibility by (ii) (c) in Observation 10.23.
Therefore, x ∼ d and x ̸∈ ⋃︁

y∈B yZ. By Observation 10.27, using also
Corollary 10.15, it is evident that elements of B are strictly ordered by <M

in an expected way, i.e. M |= . . . < d div k < d < k × d < . . ., and there
are non-standard gaps among them.
First, we observe that there must exist y ∈ B s.t. M |= y div k < x <
y. Otherwise, since x ̸∈ ⋃︁

y∈B yZ, it would mean that for any y ∈ B we
have M |= x < y or M |= y < x and hence, by Observation 10.27 and
Corollary 10.15, x ∼ d can not be.
Therefore, we indeed have y ∈ B s.t. M |= y div k < x < y. Now, since
x ∼ d and evidently d ∼ y, we have x ∼ y.
Hence, there exists lx, ly ∈ N s.t. M |= x div klx = y div kly . Keep also in
mind that x ̸∈ yZ, i.e. there is a non-standard gap among them.
We will see that none of the possibilities lx ̸= ly, lx > ly and lx < ly can
hold, hence, arriving at a contradiction.
By (iv) in Observation 10.26, we have that lx ̸= ly.
Assume that lx > ly, by Observation 10.27 we know that M |= x div kly <
y div kly . And by Observation 10.24 we know that M |= x div klx ≤ x div
kly . Hence, M |= x div klx ̸= y div kly , contrary to the assumption.
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Assume that lx < ly, we have by Observation 10.27 that M |= (y div
k) div klx < x div klx . By Observation 10.24, we infer that M |= (y div
k) div k(ly−1) < x div klx . And finally by Corollary 10.15 we get that M |=
y div k(ly) < x div klx , implying that M |= y div k(ly) ̸= x div klx .
We got that neither of lx ̸= ly, lx > ly and lx < ly can hold. Therefore, we
get a contradiction we wanted.

[(d .− 1)M ]∼ ⊆
⋃︁

y∈B y−: The proof can be carried out analogously to the one for
[d]∼ ⊆

⋃︁
y∈B y+.

[e]∼ ⊆
⋃︁

y∈E yZ: This proof can be as well carried out similarly to the one for
[d]∼ ⊆

⋃︁
y∈B y+.

Observation 10.29. Let M |= IΣ1, 2 ≤ k ∈ N and d, e ∈ M\NM s.t. Dk(d)
holds and ∀x ∈ eZ we have that Dk(x) does not hold. Then the sets [d]∼k

,
[(d .− 1)M ]∼k

and [e]∼k
are disjoint.

Proof. Classes [d]∼k
and [(d .− 1)M ]∼k

are disjoint by Observation 10.23.
By [d]∼k

∩ [(d .− 1)M ]∼k
= ∅ and the structure of those two classes in mention,

observed in Lemma 10.28, we know that neither of [d]∼k
and [(d .−1)M ]∼k

contains
xZ for some x ∈M . On the other hand, by Lemma 10.28, we know that eZ ⊆ [e]∼.
Hence, [e]∼ differs from both [d]∼k

and [(d .− 1)M ]∼k
. Therefore, we can conclude

that [e]∼k
∩ [d]∼k

= ∅ and [e]∼k
∩ [(d .− 1)M ]∼k

= ∅.

Observation 10.30. Let M |= IΣ1, 2 ≤ k ∈ N and x ∈ M\NM . Then exactly
one of the following tree things can happen.

(i) ∃e ∈M\NM s.t. ∀y ∈ eZ the condition Dk(y) does not hold and x ∈ [e]∼k
.

(ii) ∃d ∈M\NM s.t. Dk(d) holds and x ∈ [d]∼k
.

(iii) ∃d ∈M\NM s.t. Dk(d) holds and x ∈ [(d .− 1)M ]∼k
.

Proof. The fact that at most one of (i)-(iii) can happen follows by Observa-
tion 10.29.

The fact that at least one of (i)-(iii) can happen is by noting Observation 10.23.

Lemma 10.31. Let M |= IΣ1 and 2 ≤ k ∈ N. Define C0 := {[0M ]∼k
}, CDk :=

{[d]∼k
|d ∈ M\NM ∧ Dk(d)}, CDk−1 := {[(d .− 1)M ]∼k

|d ∈ M\NM ∧ Dk(d)} and
C¬Dk := {[e]∼k

|e ∈ M\NM ∧ ∀x ∈ eZ ¬Dk(x)}. Then all the four mentioned
sets of equivalence classes of ∼k are disjoint and are exhaustive, meaning that
{[x]∼k

|x ∈M} = C0 ∪ CDk ∪ CDk−1 ∪ C¬Dk .

Proof. The disjointedness follows by Observation 10.18 and by Observation 10.29.
The exhaustiveness follows by Observation 10.18 and by Observation 10.30.

Let us note that we will use the notation also C0, CDk , CDk−1 and C¬Dk later
in the text. Furthermore, we do not add to the notation something specifying
the respective model M since M will be always evident from the context.

This concludes the first part of investigation in the equivalence relation ∼k.
In the section to come, we will find cardinalities of CDk , CDk−1 and C¬Dk .
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10.3 Counting equivalence classes of ∼k
For the end of this section, a basic knowledge of cardinal arithmetic is necessary.
For details see e.g. Enderton [1977, Chapter 6].

First, let us state an obvious corollary.

Corollary 10.32. Let M |= IΣ1 and 2 ≤ k ∈ N, then |CDk | = |CDk−1|.

Proof. This is a consequence of Lemma 10.28.

First, we will inspect |CDk |.

Definition 10.10 (Pk). Let 2 ≤ k ∈ N. Then define Pk := {p(n)|n ∈ N ∧
¬p(n) | k}.

Observation 10.33. Let M |= PA, M be a non-standard model of PA, e ∈ M
and 2 ≤ k ∈ N. If moreover p1, p2 are distinct members of Pk, then M |=
¬(p2 | (exp(k, e)× p1)).

Proof. Let everything be as in the statement of the observation. We will prove
the conclusion by an induction on e.

e = 0M : Evidently M |= exp(k, e)× p1 = p1, e.g. by the first item in Observa-
tion 2.11. And since ¬p2 | p1, we get by Observation 1.32 thatM |= ¬p2 | p1.
Therefore, the case of e = 0M has been verified.

e = (d+ 1)M : We have by the first item in Observation 2.10 and the fourth
item in Observation 2.11 that M |= exp(k, e) = exp(k, d) × k. By the
induction hypothesis, we know that M |= ¬p2 | (exp(k, d)× p1) and by the
way we have defined Pk, in combination with Observation 1.32, we know
that M |= ¬p2 | p1. Therefore, we can conclude by Corollary 2.5 that indeed
M |= ¬(p2 | (exp(k, e)× p1))

Lemma 10.34. Let M |= IΣ1, M be a non-standard model of PA, e ∈ M\NM

and 2 ≤ k ∈ N. Then we have for any distinct p1, p2 ∈ Pk that

¬((exp(k, e)× p1)M ∼k (exp(k, e)× p2)M).

Proof. If e is a nonstandard element of M , then we have evidently for any l ∈ N
that M |= exp(k, e) div kl = exp(k, e .− l).

Therefore, we see that indeed ¬((exp(k, e)× p1)M ∼k (exp(k, e)× p2)M), be-
cause otherwise would have M |= p2 | exp(k, e .− l)× p1 for some l ∈ N which can
not be by Observation 10.33.

Corollary 10.35 (|N| ≤ |CDk |). Let M |= PA, M is non-standard and 2 ≤ k ∈
N. Then |N | ≤ |CDk | = |CDk−1|.

Proof. The equality follows by Corollary 10.32 and the≤ follows by Lemma 10.34.

Now, we will investigate in some detail the size of |C¬Dk |. But first, we will
prove two useful observations related to div.
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Observation 10.36. Let M |= IΣ1, e ∈ M\NM and 1 ≤ n ∈ N. Then there
exists f ∈M\NM s.t. M |= e div n+ 1 + f = e div n.

Proof. By Theorem 2.4 we know that there exists qn+1, rn+1, qn, rn ∈M s.t. M |=
e = n+ 1× qn+1 + rn+1 ∧ rn+1 < n+ 1 and M |= e = n× qn + rn ∧ rn < n.

Furthermore, by Corollary 7.2 M |= e div n+ 1 = qn+1 and M |= e div n =
qn.

Since e ∈ M\NM , we evidently have that qn+1, qn ∈ M\NM . Therefore,
M |= qn+1 < qn, hence, there exists f ∈M s.t. M |= qn+1 + f = qn.

We get M |= n × f + rn = qn+1 + rn+1. Since qn+1 ∈ M\NM whereas
nM , rn ∈ NM , we can conclude that indeed f ∈M\NM .

Observation 10.37 (x div m is monotone for 1 ≤ m). Let M |= IΣ1 and m ∈ N
s.t. 1 ≤ m. Then if x, y ∈M s.t. M |= x ≤ y, then M |= x div m ≤ y div m.

Proof. If x = y, then the conclusion evidently holds. Otherwise, we can assume
M |= x < y.

Since 1 ≤ m, then by Theorem 2.4 there exists qx, rx, qy, ry ∈ M s.t. M |=
x = qx ×m+ rx ∧ rx < m and M |= x = qy ×m+ ry ∧ ry < m.

Furthermore, by Corollary 7.2 we know that M |= x div m = qx and M |=
y div m = qy.

Assume for contradiction that M |= qy < qx.
First note that M |= qy+1 ≤ qx. Therefore, M |= x ≥ qy×m+m+rx∧rx < m.

Since M |= ry < m, then evidently

M |= qy ×m+m+ rx > qy ×m+ ry = y.

Therefore, M |= x > y and we have arrived at a contradiction, the proof is
finished.

Lemma 10.38. Let M |= PA, M is non-standard and 2 ≤ k ∈ N. Then there
exists e0, e1, . . . , en, . . . ∈M\NM , i.e. for every n ∈ N we have en, s.t.

(i) ∀n ∈ N ∀x ∈ en
Z the Dk(x) does not hold.

(ii) ∀n ̸= m ∈ N we have that ¬(en ∼k e
m).

(iii) M |= e0 < . . . < en < . . . < e1 < 2× e0 for n ∈ N. Furthermore, there is a
non-standard gap between any two of them, see Definition 10.9.

Proof. Let d be any non-standard element of M . Then [d, (2× d)M ] is evidently
an closed interval of non-standard length. Therefore, by Corollary 10.13 there
exists e0 ∈ [d, (2× d)M ] s.t. e0 ∈M\NM and ∀x ∈ eZ the Dk(x) does not hold.

We will now create closed intervals of non-standard length I1, . . . , In, . . ., i.e.
we will have for every 1 ≤ n ∈ N a closed interval of non-standard length denoted
as In, s.t. for every 1 ≤ n ∈ N

(a) ∀x ∈ I1 we have M |= x < 2× e0 and there is a non-standard gap between
them.

(b) ∀x ∈ In+1∀y ∈ In we have M |= x < y and there is a non-standard gap
between them.
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(c) ∀x ∈ In we have M |= e0 < x and there is a non-standard gap between
them.

I.e. (a),(b) and (c) can be loosely written as “M |= e0 < . . . < In < . . . < I1 <
2 × e0” s.t. there is a non-standard gap between any two expressions delimited
by <.

For any 1 ≤ n ∈ N define an := (e0 + e0 div 2× n+ 1)M and bn := (e0 +
e0 div 2× n)M . And now define ∀1 ≤ n ∈ N the set In as [an, bn].

Let 1 ≤ n ∈ N, we will verify now all the properties of In. By Obser-
vation 10.36 applied on 2 × n as n we get that there exists fn ∈ M\NM s.t.
M |= an + fn = bn. Therefore, In is indeed a closed intervals of non-standard
length. Furthermore, again by Observation 10.36 with 2 × n + 1 as n, we have
that there exists gn ∈M\NM s.t. M |= bn+1 + gn = an. So there is indeed a non-
standard gap between In+1 and In, i.e. there are non-standard gaps between any
two elements of In+1 and In, hence verifying (b). Continuing, applying Observa-
tion 10.36 to 1 we get that there exists g0 ∈ M\NM s.t. M |= b1 + g0 = 2 × e0.
Therefore (a) holds. Lastly, (e0 div 2× n+ 1)M is evidently a non-standard ele-
ment of M , where by definition M |= an = e0 + (e0 div 2× n+ 1)M , and thus (c)
holds as well.

For every n ∈ N apply Corollary 10.13 to In to get en ∈ In s.t. ∀x ∈ en
Z

the Dk(x) does not hold. By the way we have chosen en we have immediately
satisfied (i). Since ∀en ∈ In, we observe that (iii) holds as well.

It remains to verify (ii). And as we will see (iii) follows by (ii), moreover,
the proof will have a certain resemblance to the last part in the proof of [d]∼ ⊆⋃︁

y∈B y+ in Lemma 10.28.
Assume for contradiction that there ∃n,m ∈ N s.t. n ̸= m and en ∼ em. Since

en ∼ em we get that there exists ln, lm ∈ N s.t. M |= en div kln = em div klm .
Also WLOG assume that n < m, which implies M |= en < em. We also note that
M |= e0 ≤ en < em < k × e0 and there is a non-standard gap in place of <’s.

Since en ̸∈ em
Z we observe by (ii) in Observation 10.26 that ln ̸= lm.

If ln > lm, then by Observation 10.27 we know that M |= en div klm <
em div klm . And by Observation 10.24 we get that M |= en div kln < em div klm .
Therefore, M |= en div kln ̸= em div klm , hence the assumption of ln > lm can
not hold.

Assume that ln < lm. We have by Observation 10.27 that M |= em div klm <
(k × e0) div klm . Evidently M |= (k × e0) div klm = e0 div klm−1. And by
Observation 10.24 we know that M |= e0 div klm−1 ≤ e0 div kln . And since
M |= e0 ≤ en we get by Observation 10.37 that M |= e0 div kln ≤ en div kln .
Combining all the <,= and ≤, we get that M |= em div klm < en div kln . There-
fore, M |= em div klm ̸= en div kln , hence, ln < lm can not hold.

We got that neither of ln = lm, ln > lm and ln < lm can hold, which is the
contradiction we wanted.

Corollary 10.39. Let M |= PA, M is non-standard and 2 ≤ k ∈ N. Then
|N | ≤ |C¬Dk |.
Proof. Follows by Lemma 10.38.

Now, our goal will be to show that actually for any 2 ≤ k ∈ N and M |= PA
we have |CDk | = |C¬Dk | = |M |.
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Lemma 10.40 (injection from |C¬Dk | into |CDk |). Let M be a non-standard
model of PA and let 2 ≤ k ∈ N. Moreover, let a ∈ M\NM and let S be some
function from C¬Dk into M s.t. ∀X ∈ C¬Dk S(X) ∈ X. Then the later defined
h is a function from C¬Dk into CDk s.t. h is injective. Definition, h(X) :=
[(exp(k, a)× S(X))M ]∼k

.
Proof. First note that h is evidently a well defined function from C¬Dk into CDk .
Therefore, it does suffice to show that h is injective.

Let X, Y ∈ C¬Dk s.t. X ̸= Y . Since S(X) ∈ X and S(Y ) ∈ Y we have that
¬S(X) ∼ S(Y ).

Assume for contradiction that h(X) = h(Y ). As a consequence, we get that
(exp(k, a) × S(X))M ∼ (exp(k, a) × S(Y ))M . Hence, there exists lX , lY ∈ N s.t.
M |= exp(k, a .− lx) × S(X) = exp(k, a .− ly) × S(Y ). WLOG lx ≤ ly and set
r := ly − lx. Then we can conclude that M |= kr × S(X) = S(Y ) which in turn
implies a contradiction that S(X) ∼ S(Y ).

Commentary. The reader may notice, or has already noticed, that in the light of
Corollary 10.39 and Lemma 10.40 the Observation 10.33 and Lemma 10.34 are
not actually needed to conclude Corollary 10.35 Nevertheless, we think that it is
instructive to show that |N| ≤ CDk first by a very natural proof idea.
Corollary 10.41. Let M |= PA and 2 ≤ k ∈ N. Then |C¬Dk | ≤ |CDk |.
Proof. If M is standard, then C¬Dk = CDk = ∅ and the conclusion holds. Other-
wise apply Lemma 10.40.
Observation 10.42 (|CDk | = |M |). Let M be a non-standard model of PA and
2 ≤ k ∈ N. Then |M | = |CDk | = |CDk−1|.
Proof. The equality is by Corollary 10.32. By Lemma 10.31 we know that
{[x]∼k

|x ∈ M} = C0 ∪ CDk ∪ CDk−1 ∪ C¬Dk . Furthermore by Lemma 10.28
it is obvious that for any x ∈M the |[x]∼| = |N|.

By Theorem 6.7 it is evident that |M\0M
Z | = |M |. So we have the following

equation, |M | = |CDk | × |N|+ |CDk−1| × |N|+ |C¬Dk | × |N|. By Corollary 10.32
we get that |M | = |CDk | × |N| + |C¬Dk | × |N|. Continuing, by Corollary 10.41,
we have |M | = |CDk | × |N|. And since |N| ≤ |CDk |, which is by Corollary 10.35,
we may finally conclude that |M | = |CDk |.
Lemma 10.43. Let M |= PA, M be non-standard and let 2 ≤ k ∈ N. Further-
more let S be some function from CDk into M s.t. ∀X ∈ CDk we have S(X) ∈ X
and Dk(S(X)) holds. Furthermore, let F be some function from C¬Dk into M
s.t. ∀X ∈ C¬Dk we have F (X) ∈ X. Moreover, define a function L from ⋃︁

C¬Dk

into Z in the following manner. Where if x ∈ ⋃︁
C¬Dk denote by X the unique

member of C¬Dk s.t. x ∈ X.

L(x) :=

⎧⎪⎪⎨⎪⎪⎩
l x ∈ (kl × F (X))M

Z ,

0 x ∈ F (X)M
Z ,

−l x ∈ (F (X) div kl)M
Z .

Note that L is well defined by Lemma 10.28. Lastly let e ∈ M\NM s.t. ∀x ∈
eZ ¬Dk(x). Note that picking such a e makes sense thanks to Lemma 10.38.
Then the following function h from CDk into C¬Dk×Z is a well defined injection.
h(X) := ([(S(X) + e)M ]∼k

, L((S(X) + e)M)).
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Proof. To show that h is well defined function it clearly does suffice to show that
∀X ∈ CDk we have ∀y ∈ (S(X) + e)M

Z that ¬Dk(y).
Assume for contradiction that there exists X ∈ CDk , y ∈ (S(X) + e)M

Z and
r ∈ N s.t. Dk((S(X) + e+ r)M) or Dk((S(X) + e .− r)M) is true. Since Dk(S(X))
holds by our assumption, we get that by Observation 10.19 that Dk((e+ r)M) or
Dk((e .− r)M) hold which can not be by our choice of e.

Now, it remains to show that h is injective. Let X, Y ∈ CDk and assume
X ̸= Y . If ¬((S(X) + e)M ∼ (S(Y ) + e)M) then evidently h(X) ̸= h(Y ).

Otherwise assume (S(X) + e)M ∼ (S(Y ) + e)M . Since X ̸= Y we have
¬(S(X) ∼ S(Y )). Therefore S(X) ̸= S(Y ) and recalling that Dk(S(X)) and
Dk(S(Y )) hold, we get by Observation 10.20 that they can not be in the same
copy of Z. More formally there exists f ∈ M\NM s.t. M |= S(X) + f =
S(Y ) where we WLOG assume that M |= S(X) < S(Y ). Hence, we also have
M |= S(X) + f + e = S(Y ) + e. Since (S(X) + e)M ∼ (S(Y ) + e)M we get
that the unique X1, X2 ∈ C¬Dk are actually equal to each other, i.e. X1 = X2.
Therefore, also F (X1) = F (X2). But now by M |= S(X) + f + e = S(Y ) + e,
where f is non-standard, it is by Lemma 10.28 evident that L((S(X) + e)M) ̸=
L((S(Y ) + e)M). Therefore, we can again conclude that h(X) ̸= h(Y ) which
concludes our verification of h being injective.

Corollary 10.44. Let M |= PA and 2 ≤ k ∈ N. Then |CDk | ≤ |C¬Dk | × |N|.

Proof. If M is standard model of PA the result is obvious, otherwise apply
Lemma 10.43.

Observation 10.45. Let M be a non-standard model of PA, 2 ≤ k ∈ N. Then
|C¬Dk | = |M |.

Proof. By the same argument as in Observation 10.42 we get that |M | = |CDk |×
|N| + |C¬Dk | × |N|. By Corollary 10.44 we get that |M | ≤ |C¬Dk | × |N| × |N| +
|C¬Dk | × |N|. Furthermore, we know by Corollary 10.39 |N| ≤ |C¬Dk |. Therefore,
we can conclude that |M | = |C¬Dk | indeed holds.

This concludes our inspection of the cardinalities of |CDk |, |CDk−1| and |C¬Dk |.
We will state one more corollary only to sum up findings of this section.

Corollary 10.46 (|CDk | = |CDk−1| = |C¬Dk | = |M |). Let M |= PA and 2 ≤ k ∈
N. Then |CDk | = |CDk−1| = |C¬Dk | = |M |.

Proof. Follows by Observation 10.42 and Observation 10.45.

10.4 Graph theory intermezzo
In this section, and text, we consider only oriented (infinite) graphs, which are
not multigraphs.

Definition 10.11 (x → y, x →n y, x →≤n y). Let G = (V,E) be an oriented
graph and let x, y ∈ V .

• We use x→ y to denote that there exists a finite path from x to y in G.
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• We use x →n y to denote that there exists a path of length n from x to y
in G.

• And we use x→≤n y to denote that there exists a path of length at most n
from x to y in G.

Definition 10.12 (N+(x), N−(x)). Let G = (V,E) be an oriented graph and let
x ∈ V and B ⊆ V . Then we define the following.

• N+(x) := {y ∈ V |(y, x) ∈ E}.

• N−(x) := {y ∈ V |(x, y) ∈ E}.

• N+(B) := {y ∈ V |∃x ∈ B (y, x) ∈ E}.

• N−(B) := {y ∈ V |∃x ∈ B (x, y) ∈ E}.

When we will be dealing with multiple graphs, with the same domain, it will
be evident from the context with respect to what graph we mean x→ y, N+(y),...

Definition 10.13 (TG, T
n
G, T

≤n
G ). Let G = (V,E) be an oriented graph. We will

define then TG, T
n
G and T≤n

G as a functions from V into P (V ). Specifically, if
v ∈ V , then we define the following.

• TG(v) := {u ∈ V |u→ v}.

• T n
G(v) := {u ∈ V |u→n v}.

• T≤n
G (v) := {u ∈ V |u→≤n v}.

Commentary. Note that for any oriented graph G = (V,E) and v ∈ V we have
TG(v) = ⋃︁

n∈N T
≤n
G (v).

In our usage, G induced on TG(v), T n
G(v) and T≤n

G (v) will be a tree, hence the
notation.

Lemma 10.47. Let G1 = (V1, E1) and G2 = (V2, E2) be two oriented graphs s.t.
V1 = V2 = Z× Z. Also let 2 ≤ k ∈ N. Moreover we assume the following.

(i) ∀u, v ∈ Z × Z we have that if ¬u→ v in G1 and ¬v → u in G1, then
TG1(u) ∩ TG1(v) = ∅. ∀u, v ∈ Z× Z we have that if ¬u→ v and ¬v → u in
G2, then TG2(u) ∩ TG2(v) = ∅.

(ii) ∀(i, j) ∈ Z × Z∀e ∈ E1 we have that if x ∈ Z × Z and e = (x, (i, j)),
then x = (i + 1, l) for some l ∈ Z. Moreover ∀y ∈ Z × Z we have that
|{x ∈ Z×Z|(x, y) ∈ E1}| = k. Or equivalent said, ∀(i, j) ∈ Z×Z there are
exactly k edges going to (i, j) from k distinct vertices of the form (i+ 1, l)
for l ∈ Z. And exactly the same condition applies, and is required from, to
G2.

Then ∀u ∈ V1∀v ∈ V2 we have that G1[TG1(u)] ∼= G2[TG2(v)], i.e. we take
induced subgraphs of G1 and G2 with respect to TG1(u) and TG2(v), s.t. one such
isomorphism I witnessing G1[TG1(u)] ∼= G2[TG2(v)] satisfies that I(u) = v.
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Proof sketch. The proof goes as follow. We will by creating isomorphisms I0 ⊆
I1 ⊆ . . . In ⊆ . . ., i.e. for any n ∈ N we will have In ⊆ In+1, where In will be
an isomorphism witnessing G1[T≤n

G1 (u)] ∼= G2[T≤n
G2 (v)]. Furthermore, we will have

I0(u) = v.
Assuming that everything promised will actually hold, it is then a routine

work to check that I := ⋃︁
n∈N I

n is a witness to G1[TG1(u)] ∼= G2[TG2(v)] s.t.
I(u) = v.

First, we define I0 := {(u, v)}. I0 evidently satisfies everything that it needs
to.

Now, we shall describe the process of defining In+1 from In for some n ∈ N.
Assume we have In satisfying all it needs to satisfy. Take T n+1

G1 (u), which is
N+(T n

G1(u)), and T n+1
G2 (v), which is N+(T n

G2(v)). Now, thanks to our conditions, it
is not hard to infer that there must exist a bijection f from T n+1

G1 (u) onto T n+1
G2 (v)

s.t. ∀x ∈ T n+1
G1 (u) when we take the the unique y ∈ V1, actually y ∈ T n

G1(u),
satisfying (x, y) ∈ E1 and the unique y′ ∈ V2, actually y

′ ∈ T n
G2(v), satisfying

(f(x), y′) ∈ E2, then In(y) = y
′ . And now defining In+1 as In ∪ f we see that

In+1 satisfies what we want it to satisfy.
Let us note that the existence part of the uniqueness of y follows by x ∈ T n+1

G1 ,
i.e. there exists a path from x to u and thus some y ∈ T n

G1(u) s.t. (x, y) ∈ E1,
and the “at most one” part follows by (i) and (ii). And the same goes for the
uniqueness of y′

Also note that we can construct such a f because when we have have y ∈
T n

G1(u) and y
′ ∈ T n

G2(v) then by (ii) |N+(y)| = k = |N+(y′)|, note that |N+(y)| is
with respect to G1 and |N+(y′)| is with respect to G2, where N+(y) ⊆ T n+1

G1 (u)
and N+(y′) ⊆ T n+1

G2 (v). And by (i) we get that for distinct y, z ∈ T n
G1(u) we have

N+(y) ∩N+(z) = ∅, and the same holds for distinct y′
, z

′ ∈ T n
G2(v).

We choose to omit further details.

Lemma 10.48. Let G1 = (V1, E1) and G2 = (V2, E2) be two oriented graphs s.t.
V1 = V2 = Z× Z. Also let 2 ≤ k ∈ N. Moreover let us assume the following.

(i) Same as (i) in Lemma 10.47.

(ii) Same as (ii) in Lemma 10.47.

(iii) ∀u ∈ V1 ∀z ∈ V1 there exists w ∈ V1 s.t. u→ w and z ∈ TG1(w)

Then G1 ∼= G2.

Proof sketch. Let us call, for any i ∈ Z, the set Ci := {(i, l)|l ∈ Z} the i-th layer.
First, we pick any two elements u0 and v0 from Z×Z. By Lemma 10.47 there

exists I0, note that it is not the I0 from the proof of Lemma 10.47 but actually
the I, s.t. I0(u0) = v0 and I0 is an isomorphism from G1[TG1(u)] onto G2[TG2(v)].

Let u1 ∈ V1 and v1 ∈ V2 be the unique vertices s.t. (u0, u1) ∈ E1 and
(v0, v1) ∈ E2. The existence of such vertices follows mainly by (iii) and the
uniqueness by (i) and (ii). Note that u1, v1 are “one layer down” from u0, v0.

Take N+(u1) and N+(v1), with respect to G1 and G2. Then evidently both
sets are of size k and if u1 = (i, j) and v1 = (k, l) then N+(u1) ⊆ Ci+1 and
N+(v1) ⊆ Ck+1. Furthermore, TG1(u0) ∩N+(u1) = {u0} and TG2(v0) ∩N+(v1) =
{v0}.
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Now, let g be any bijection fromN+(u1) andN+(v1) satisfying that g(u0) = v0.
Apply for every x ∈ N+(u1) s.t. x ̸= u0 Lemma 10.47 to get an isomorph-
ism witnessing G1[TG1(x)] ∼= G2[TG2(g(x))] that sends x on g(x). Call such an
isomorphism Hx. Also define Hu0 as I0.

Then defining I1 := ⋃︁
x∈N+(u1) Hx ∪ {(u1, v1)} is indeed an isomorphism wit-

nessing G1[TG1(u1)] ∼= G2[TG2(g(v1))] s.t. I(u1) = v1 and I0 ⊆ I1. I.e. in this case
and in general we are not extending I0, or In, row by row or column by column
but we are extending the respective trees that represent domain and range of I0,
or In.

In an analogous way, we construct I2 which will among other things satisfy
I1 ⊆ I2.

This way we will construct I0 ⊆ I1 ⊆ . . . ⊆ In ⊆ . . . for any n ∈ N. It is not
hard that to observe that I := ⋃︁

n∈N I
n will be an isomorphism from G1[V ′

1 ] onto
G2[V ′

2 ] for V ′
1 ⊆ V1 and V

′
2 ⊆ V2. But now by (iii) it is not hard to observe that

V
′

1 = V1 and V
′

2 = V2, hence proving the lemma.
We choose to omit further details.

10.5 Structure of (M,x div k)
Observation 10.49. Let 2 ≤ k ∈ N. Also define f as a function over Z× Z s.t.
for (l,m) ∈ Z× Z where i ∈ [k − 1] ∧ k | (l + i), note that i is unique, we have

f(l,m) :=
⎧⎨⎩(l − 1, (m+ i) div k) −i ≤ m,

(l − 1,−(−(m+ i+ 1) div k)− 1) m ≤ −i− 1.

Then (Z×Z, f) is an oriented graph satisfying (i),(ii) and (iii) from Lemma 10.48.

Proof. Verification of (i) is easy. Verification of (ii) and (iii) is technical but
possible. We omit the proof.

Theorem 10.50. Let M be a non-standard model of PA and let 2 ≤ k ∈
N. Then (M, (x div k)M), i.e. M restricted to the unary function x div k, is
isomorphic to (N∪(|CDk |×Z×N×{0})∪(|CDk−1|×Z×N×{1})∪(|C¬Dk |×Z×Z×
{2}), f) where f(x) for x ∈ N is defined as x div k. For x = (s, l,m, j) with j ≤ 1
is defined as (s, l− 1,m div k, j). Lastly for j = 2 and with i ∈ [k− 1]∧k | (l+ i)
we define

f(s, l,m, j) :=
⎧⎨⎩(s, l − 1, (m+ i) div k) −i ≤ m,

(s, l − 1,−((−(m+ i+ 1)) div k)− 1) m ≤ −i− 1.

Where in the definition of f is div always the standard div on N, i.e. divN.

Proof sketch. By Lemma 10.31 we know that we can split, in a disjoint and
exhaustive manner, elements of M into sets {[0M ]∼k

}, CDk , CDk−1 and C¬Dk

which contain equivalence classes of ∼k. By Observation 10.18 we know that
0M ]∼k

= NM . And by Lemma 10.28 we know how elements of CDk , CDk−1 and
C¬Dk look like.

Therefore, it can be observed, that to prove the theorem in mention the follow-
ing does suffice to be shown. Namely, we will present function that will show iso-
morphism between various restrictions, with respect to domains, of (M, ( div k)M)
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and (N∪(|CDk |×Z×N×{0})∪(|CDk−1|×Z×N×{1})∪(|C¬Dk |×Z×Z×{2}), f)
from which will follow that there must exist one function witnessing the isomorph-
ism of the two structures in the statetement of the theorem.

(i) We will want to show that (NM , (x div k)M ↾ NM) ∼= (N, f ↾ N). A function
witnessing the isomorphism,“from right to left”, is g0(n) = nM .

(ii) Let c ∈ CDk and let d ∈ c, i.e. [d]∼k
= c, s.t. Dk(d) holds. We will

want to show that ([d]∼k
, (x div k)M ↾ [d]∼k

) ∼= ({0} × Z × N × {0}, f ↾
{0} × Z × N × {0}). A function witnessing the isomorphism, we omit the
{0}’s, is

g1(l,m) :=
⎧⎨⎩(kl × d+m)M 0 ≤ l,

(d div kl +m)M l < 0.

(iii) Let c ∈ CDk−1 and let d ∈ M s.t. [(d .− 1)M ]∼k
= c and Dk(d) hold.

We will want to show that ([(d .− 1)M ]∼k
, (x div k)Mf ↾ [(d .− 1)M ]∼k

) ∼=
({0} × Z × N × {1}, f ↾ {0} × Z × N × {1}). A function witnessing the
isomorphism, we omit the {0} and {1}, is

g2(l,m) :=
⎧⎨⎩((kl × d .− 1) .−m)M 0 ≤ l,

((d div kl .− 1) .−m)M l < 0.

(iv) Let c ∈ C¬Dk and let e ∈ M s.t. [e]∼k
= c and ∀x ∈ eZ the Dk(x)

does not hold. We will want to show that ([e]∼k
, (x div k)Mf ↾ [e]∼k

) ∼=
({0} × Z × Z × {2}, f ↾ {0} × Z × Z × {2}). This time we note, using
some abstraction e.g. forgetting {0} and {2}, that these two structures in
mention are basically graphs from with vertices Z× Z satisfying condition
(i), (ii) and (iii) from Lemma 10.48. Therefore, they are indeed isomorphic.

Points (i)-(iv) can be, although, technically verified. We omit further details.

Commentary. Let us note that the point (iv) in the construction of isomorphism
in Theorem 10.50 is the only point where we do not necessarily retain the successor
function, the order or at least the order on (non-)standard copies of Z is inevitable.
Because it is not hard to observe, be an argument that we are about to encounter
in Lemma 11.7, that otherwise there would be a non-standard model of PA with
domain N s.t. (x div k)M would be a recursive function and also

• SM or

• <M or

• <M restricted on copies of Z

would be recursive. But that is not possible by Corollary 8.15, Corollary 8.16
and Corollary 8.17.

This argument also shows that in principle, i.e. in general case, we can not find
an isomorphism between two graphs satisfying (i),(ii) and (iii) from Lemma 10.48
that would retain some reasonably defined the order or the successor function on
the graphs in mention satisfying the condition (i)-(iii) from Lemma 10.48.
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Corollary 10.51. Let M be a non-standard model of PA and let 2 ≤ k ∈ N.
Then (M, (divk)M), i.e. M restricted to the unary function x div k, is iso-
morphic to (N∪(|M |×Z×N×{0})∪(|M |×Z×N×{1})∪(|M |×Z×Z×{2}), f)
where f(x) for x ∈ N is defined as x div k. For x = (s, l,m, j) with j ≤ 1 is defined
as (s, l− 1,m div k, j). Lastly for j = 2 and with i ∈ [k− 1]∧ k | (l+ i) we define

f(s, l,m, j) :=
⎧⎨⎩(s, l − 1, (m+ i) div k) −i ≤ m,

(s, l − 1,−(−(m+ i+ 1) div k)− 1) m ≤ −i− 1.

Where in the definition of f is div always the standard div on N, i.e. divN.

Proof. Follows by Theorem 10.50 and Corollary 10.46.
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11. Recursiveness of the div
function

11.1 x div y can not be recursive in IΣ1

Observation 11.1 (div determines <). Let M |= IΣ1, then we can determine
<M using div. I.e. the following holds for any a, b ∈M and b ̸= 0M .

M |= a < b ⇐⇒ M |= a div b = 0.

Proof. Assume that M |= a < b. Then we have M |= b ̸= 0 and M |= 0 × b ≤
a < 1× b, and thus by the definition of div we get M |= a div b = 0.

As for the other direction assume that M |= a div b = 0. Then since b ̸= 0M

we have M |= 0× b ≤ a < 1× b which implies the desired conclusion of M |= a <
b.

Corollary 11.2 (recursive div implies recursive <). Let M |= IΣ1, s.t. dom(M)
equals N, we know the interpretation of 0 in M and div is recursive with respect
to M . Then < is also recursive with respect to M .

Proof. This is but a direct corollary of Remark 8.1, i.e. that =M is recursive, and
the just proved Observation 11.1.

Observation 11.3 (recursive div implies recursive S on NM). Let M |= IΣ1,
s.t. dom(M) = N, we know the interpretation of 0, 1 and 2 in M and div is
recursive with respect to M . Then we can compute nM for any given n ∈ N, i.e.
we can compute the successor function SM on standard elements of M .

Proof. Assume that we already know the interpretation of 0, 1, 2, . . . , k in M for
some k ∈ N s.t. 2 ≤ k. Then we show how to compute (k + 1)M .

If we manage to show and justify the just proposed procedure, i.e. computing
(k + 1)M , then it evidently follows that we can compute nM for any n ∈ N.

Computing k + 1M .

(i) Enumerate N recursively according to <N and denote by x the just enumer-
ated element of N. Where for every such enumerated x compute x div MkM .
If the result of such computation returns 1M , then store such x. And if you
have already stored k such x’s, then stop and move to the next step (ii).

(ii) We know that we can compute <M by Corollary 11.2. Therefore we can
order all the k stored x’s from the previous step and pick the second smallest
one, denote it by y.

(iii) We return y as we claim that y = (k + 1)M .

By Observation 8.12 we know that there are indeed exactly k such x’s con-
sidered in step (i), hence it is obvious that the described procedure always ends
and is computable.

And again by Observation 8.12 we know that the x’s are of the form kM ,
k + 1M , . . . , (k + k − 1)M , and hence it is evident that y = (k + 1)M and we have
returned the right answer.
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Observation 11.4 (Determining k | x by using div). Let M |= IΣ1, b ∈M and
k ∈ N. Then M |= k | b iff. b is the smallest element of all such x ∈ M s.t.
M |= x div k = b div k.

Proof. First assume that M |= k = 0. Then clearly both sides hold iff. b = 0M .
Then assume that M |= k = 1, then the observation again evidently holds

since M |= a | b holds always and b is the smallest one, since it is the only one,
such x.

From now on we can, and will, assume M |= 2 ≤ k.

⇒: Assume that M |= k | b, hence, there exists a ∈M s.t. M |= k × a = b.
Since necessarily M |= 0 < k, which also implies M |= 0 ̸= k, we evidently
have that M |= a × k ≤ b < (a + 1) × k and hence M |= b div k = a by
definition.
But using Observation 8.12 we see that b is indeed the smallest x ∈M s.t.
M |= x div k = a (= b div k).

⇐: Let a ∈ M s.t. M |= b div k = a. Since evidently 0 < k, we get by
Observation 8.12 that if b is the smallest x ∈M s.t. M |= x div k = a, then
M |= b = k × a.
Hence, M |= k | b and the proof is finished.

Observation 11.5 (Deciding k | b by using computable div). Let M |= IΣ1,
b ∈ M and k ∈ N. Furthermore, assume that div is recursive with respect to M
and we know the interpretation of k and 0 in M . Then, we can recursively decide
whether or not M |= k | b.

Proof. If kM = 0M , then if b = 0M we can evidently return yes, and otherwise, if
b ̸= 0M , we can evidently return no .

From now on assume that kM ̸= 0M .

(i) Enumerate N recursively according to <N s.t. we will store x’s which satisfy
M |= x div k = b div k. And if we have exactly k of them, we stop this part
of the computation and proceed to the next one, i.e. (ii). Let us note that
by Observation 8.12 this sub-procedure must come to an end after a finite
number of steps.

(ii) Now order all the stored x’s, we can do it by Corollary 11.2 - i.e. the
recursivity of <, and check whether b equals to the smallest x.

(iii) If it does, then return yes and otherwise no.

The validity of the just described algorithmic procedure follows by the just
proved Observation 11.4.

And since are all the described steps finite in nature and computable, we can
conclude that the observation being proved holds.

We shall now state and prove the main result of this section.
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Lemma 11.6 (div can not be recursive in non-standard model of IΣ1). Let M
be a non-standard model of IΣ1 with its domain equal to N. Then the binary
function x div y can not be recursive with respect to M .

Proof. Assume for contradiction that the premises hold whereas the conclusion
does not, i.e. divM is a recursive function. Furthermore we can WLOG assume
by Observation 3.13 that 0M = 0,1M = 1 and 2M = 2.

Applying Corollary 4.3 we get that there exists X ⊆ N s.t. X is not recursive
and there exists b ∈M s.t. ∀n ∈ N

n ∈ X ⇐⇒ M |= p(n) | b.

But now since p(n) is computable by Observation 3.9, we get by Observa-
tion 11.3, which is about computing kM for any k ∈ N, that we can compute
p(n)M for any n ∈ N.

And thus we get by Observation 11.5, which is about deciding divisibility,
that we can algorithmically decide for any n ∈ N whether M |= p(n) | b or not.

Therefore, we can algorithmically decide membership in X which is the con-
tradiction we wanted.

Commentary. The just proved result directly implies the one in Lemma 8.5, how-
ever, it seemed only natural to us to prove the weaker version first.

11.2 x div k can be recursive in PA

This section is basically one, described in detail, corollary of the work done in
chapter 10.

Lemma 11.7 (x div k can be recursive). Let k ∈ N. Then, there exists a non-
standard model M of PA, s.t. dom(M) = N and divk is recursive with respect
to M .

Proof. First assume that k < 2.
The result follows immediately by Corollary 8.7, since it states all in the just

being proved lemma (and more).
Assume that 2 ≤ k.
Let U be any countable non-standard model of PA. By Corollary 2.3 we know

that there is one.
We know by Corollary 10.51 that (U, (divk)U), i.e. U restricted to divk, is

isomorphic to a structure (A, f) with f being a computable function and where

A = N ∪ (N× Z× N× [1]) ∪ (N× Z× Z× {2}).

Furthermore, by Bijection 8 we know that A is a computably codable set.
Therefore, we can conclude by Corollary 3.15 that there must be G a model

of PA s.t. dom(G) = N, G ∼= M , hence it is non-standard model of PA, s.t.
divk is recursive with respect to G.

And the proof is finished.

Lemma 11.8. Let k ∈ N. Then there exists a non-standard model M of PA,
s.t. dom(M) = N and for every l ∈ N is divkl recursive with respect to M .

Proof. The lemma follows by Lemma 11.7 and by noting Corollary 10.15.
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11.3 One middle ground observation
We have seen in section 11.1 that x div y can not be recursive in a non-standard
model of IΣ1. Whereas, we have seen in section 11.2 that for any k ∈ N there is
a non-standard model of PA with divkl recursive for every l ∈ N.

How about for some middle ground results? I.e. where we demand more than
just divkl to be recursive but still with some restriction on x or y in the binary
function x div y.

A question of interest might be the following.

Problem 3 (Classification of when can be divk, for all k ∈ F ⊆ N, recursive).
Classify exactly for which sets F ⊆ N there exists a non-standard model of PA,
or IΣ1, with domain N s.t. divk, for every k ∈ F , is recursive with respect to it.

Although, we have seen some examples of valid F ’s in section 11.2, we did
not manage to answer Problem 3 in its fullnes

Nevertheless, there is one thing that we would like to mention that is possibly
remotely related to Problem 3.

First, let us recall the following. Imagine for a moment that M |= IΣ1 and we
want to show by contradiction that some function or relation can not be recursive
with respect to M . As we have already seen, in this and the preceding chapters,
it is very useful if we are able to compute nM for all n ∈ N. It is because we
can compute then p(n)M for any n ∈ N, which was often a powerful tool in
deciding membership in some non-recursive subset of N, and hence arriving at a
contradiction.

Therefore, a natural question to ask is which sets F ⊆ N enable us to compute
nM , for every n ∈ N, in some respective model M for which we can compute
(x div l)M for every l ∈ F .

We did not manage to answer this question fully, however, we have observed,
as will be seen in Lemma 11.16, that there are some pairs of natural numbers s.t.
if F contains them, then we can compute nM for every n ∈ N.

Let us first state a few useful observations and one useful condition on pairs
of natural numbers.

Note that the following observation is taking place in N.

Observation 11.9. Let 2 ≤ n,m ∈ N and l ∈ N s.t. nl < m. Also assume that
r0, . . . , rl ∈ N s.t. r1, . . . , rl < n. Then there exists b0 ∈ N s.t. ∀b ∈ N b0 ≤ b we
get that

(n× (. . . (n× (b+ r0) + r1) . . .) + rl) div m < b,

where the n× is repeated l-times.

Proof. We can WLOG assume r1 = . . . = rl = n− 1. We can do it since x div m
is obviously monotone in N, for a proof see Observation 10.37.

Set b0 := (r0 + 1)×m and assume b = b0.
Observe that,

n× (. . . (n× (b+ r0) + r1) . . .) + rl =
nl × b+ nl × r0 + nl−1 × (n− 1) + . . .+ n0 × (n− 1) =

nl × b+ nl × r0 + nl − 1.
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The last expression is, by nl < m, clearly smaller than or equal to

nl × b+m× r0 + nl − 1.

Furthermore, (nl × b + m× r0 + (nl − 1)) div m = nl × (r0 + 1) + r0, by the
choice of b = b0 = (r0 + 1)×m and nl < m.

Hence, by the result of Observation 10.37 , i.e. x div m being monotone, we
have (n× (. . . (n× (b+ r0) + r1) . . .) + rl) div m ≤ nl × (r0 + 1) + r0.

By nl < m we get that nl×(r0 +1)+r0 < (nl +1)×(r0 +1) ≤ m×(r0 +1) = b.
Therefore (n× (. . . (n× (b+ r0) + r1) . . .) + rl) div m < b.
Now it remains to show the same if b = b0 +c for some c ∈ N. By a well known

truth in N, or by using Theorem 2.4, there must exist d, t ∈ N s.t. c = d×m+ t
and t < m. Therefore, from now on, we can assume that b = b0 +d×m+t∧t < m
for some d, t ∈ N.

We still have that n× (. . . (n× (b+ r0)+ r1) . . .)+ rl = nl× b+nl× r0 +nl−1.
Furthermore, we have,

nl × b+ nl × r0 + nl − 1 =
nl × b0 + nl ×m× d+ nl × t+ nl × r0 + nl − 1.

Continuing, we have by nl < m and the value of b0 the following,

nl × b0 + nl ×m× d+ nl × t+ nl × r0 + nl − 1 ≤
nl × (r0 + 1)×m+ nl ×m× d+m× t+m× r0 + (nl − 1).

Computing (nl× (r0 + 1)×m+nl×m× d+m× t+m× r0 + (nl− 1)) div m,
we get by nl < m that the result equals to nl × (r0 + 1) + nl × d+ t+ r0.

Recall that nl×(r0+1)+r0 < b0, and since nl < m, we have nl×d+t ≤ m×d+t,
hence, nl × (r0 + 1) + nl × d+ t+ r0 < b. Therefore,

(nl × (r0 + 1)×m+ nl ×m× d+m× t+m× r0 + (nl − 1)) div m < b.

To summarize.

•
n× (. . . (n× (b+ r0) + r1) . . .) + rl ≤

nl × (r0 + 1)×m+ nl ×m× d+m× t+m× r0 + (nl − 1).

• x div m is monotone by Observation 10.37.

• (nl × (r0 + 1)×m+ nl ×m× d+m× t+m× r0 + (nl − 1)) div m < b.

Therefore, (n× (. . . (n× (b+ r0) + r1) . . .) + rl) div m < b, which finishes the
proof.

What follows, is a version of the preceding observation for any model of IΣ1.

Observation 11.10. Let M |= IΣ1. Let 2 ≤ n,m ∈ N and l ∈ N s.t. nl < m.
Also assume that r0, . . . , rl ∈ N s.t. r1, . . . , rl < n. Then there exists b0 ∈ N s.t.
∀b ∈ N b0 ≤ b we get that

(n× (. . . (n× (b+ r0) + r1) . . .) + rl) div m < b,

where the n× is repeated l-times.
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Proof. We can evidently make the same proof as for Observation 11.9, only in a
slightly formalized fashion.

It is mainly because of the following.

• By all the properties we have learned in section 1.2, in section 1.5 and by
axioms of PA− mentioned in section 1.1. I.e. how +,× and < behave on
elements of M and especially on elements in NM .

• div behaves on NM as expected from Observation 7.6.

• x div m is monotone in M with respect to x, for a proof see Observa-
tion 10.37.

• We can always find for any c ∈ N (s.t. M |= b = b0 + c) elements d, t in N
s.t. M |= c = d×m+ t ∧ t < m, it follows mainly by Theorem 2.4.

Observation 11.11. Let M |= IΣ1 s.t. dom(M) = N and let n ∈ N s.t. 2 ≤ n.
Furthermore, assume that divn is recursive with respect to M . Then if a ∈ M ,
then you can compute (n× a)M ,(n× a+ 1)M ,. . . , (n× a+ (n− 1))M .

Proof. Let a be some given member of M .
The description of an algorithm follows.
Enumerate N recursively according to <N. Whenever you find x s.t. (x div

n)M = a, which we can verify, store such a x. If you have stored so far n x’s,
then stop and return them.

By Observation 8.12, it follows that the algorithm must stop sooner or later.
And we get from the same Observation 8.12 that we return the right answer.

Condition 1. Let n,m ∈ N, then we say that they compute standard numbers,
if they satisfy the following conditions where we WLOG assume that n ≤ m,
otherwise swap them.

• 2 ≤ n,m.

• ∀k ∈ N nk ̸= m.

• If l ∈ N is the unique natural number s.t. nl < m < nl+1, then m < 2× nl.

We will introduce a new notation that will be useful for us in the proof of
Lemma 11.16.

Definition 11.1 (L(n, x, l)). Assume that M |= PA−, x ∈ M , n, l ∈ N and
1 ≤ n. Define,

L(n, x, l) :=
⎧⎨⎩{x} l = 0,⋃︁

y∈L(q,x,r){(n× y)M , . . . , ((n× y) + (n− 1))M} l = r + 1.

Observation 11.12 (Properties of L(n, x, l)). Let M |= PA−, x, y ∈ M s.t.
x ̸= y and n, l ∈ N s.t. 1 ≤ n. Then the following holds.

(i) L(n, x, l) = {(nl × x)M , . . . , ((nl × x) + (nl − 1))M}.
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(ii) |L(n, x, l)| = |L(n, y, l)| = nl.

(iii) L(n, x, l) ∩ L(n, y, l) = ∅.

(iv) ∀z, w ∈ L(n, x, l)∀a ∈ M (M |= z ≤ a ≤ w ⇒ a ∈ L(n, x, l)), i.e. that
L(n, x, l) is one continuous chunk of elements or equivalently said, it does
not contain holes.

(v) If ∃w ∈ L(n, x, l)∃z ∈ L(n, y, l) s.t. M |= w < z, then ∀a ∈ L(n, x, l)∀b ∈
L(n, y, l) we have M |= a < b.

Proof. (i) Follows by induction on l, and that×,+ behave reasonably in models
of PA−, especially with respect to standard elements, i.e. NM .

(ii) Follows by (i).

(iii) WLOG assume M |= x < y, then in the light of (i), it does suffice to
show that M |= nl × x + (nl − 1) < nl × y. Since, M |= x < y implies
M |= x+ 1 ≤ y, the strict inequality we want to prove is obvious.

(iv) Follows by (i).

(v) Follows by (i) and (iii).

Observation 11.13 (Properties of L(n, x, l) with respect to computability). Let
M |= IΣ1, dom(M) = N, x is some given element from M and n, l ∈ N s.t.
1 ≤ n. Furthermore, assume that divn is recursive with respect to M . Then we
can compute L(n, x, l).

Proof. We can obviously compute L(n, x, 0).
Furthermore, we can by Observation 11.11 inductively compute L(n, x, r+ 1)

from L(n, x, r) for any r ∈ N.
Hence, we can evidently compute L(n, x, l).

Definition 11.2 (Ld(n, x, l,m)). Assume that M |= IΣ1, x ∈M and n, l,m ∈ N
s.t. 1 ≤ n. We define then the following.

Ld(n, x, l,m) := {(z div m)M |z ∈ L(n, x, l)}.

Observation 11.14 (Size of L(n, x, l,m)). Let M |= IΣ1, x ∈ M , n, l,m ∈ N
s.t. 1 ≤ n and nl < m. Then 1 ≤ |Ld(n, x, l,m)| ≤ 2.

Proof. The observation follows by (i) in Observation 11.12 and Observation 8.12.

Definition 11.3 (Min and max in L(n, x, l,m)). Let M |= IΣ1, n, l,m ∈ N s.t.
1 ≤ n and nl < m. In the light of Observation 11.14 it makes sense talking about
maximum and minimum element in Ld(n, x, l,m) with respect to <M . Therefore,
we will denote them as Max(Ld(n, x, l,m)) and Min(Ld(n, x, l,m)) respectively.

Observation 11.15. Let M |= IΣ1, x, y ∈ M , n, l,m ∈ N s.t. 1 ≤ n, nl < m
and m < 2× nl. Furthermore assume x ̸= y. Then the following holds,

M |= x < y ⇐⇒ M |= Min(Ld(n, x, l,m)) < Max(Ld(n, y, l,m)).
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Proof. Let us denote Min(Ld(n, x, l,m)) as a and Max(Ld(n, y, l,m)) as b.

⇒: Assume that M |= x < y.
Then it means by div being monotone, for a proof see Observation 10.37,
and by (i) in Observation 11.12 that M |= nl × x div m = a and M |=
(nl × y + (nl − 1)) div m = b.
Since, M |= x < y we have M |= nl × x < nl × y + (nl − 1), hence by
Observation 10.37, M |= a ≤ b.
Assume for contradiction that M |= a = b.
Therefore, by Observation 10.37 we get that for any z ∈ M s.t. M |=
nl × x ≤ z ≤ nl × y + (nl − 1) we have M |= z div m = a.
But evidently by (i) in Observation 11.12 all the elements z from L(n, x, l)
and L(n, y, l) satisfy that M |= nl × x ≤ z ≤ nl × y + (nl − 1). Hence, for
all the elements z ∈ (L(n, x, l) ∪ L(n, y, l)) we have M |= z div m = a.
Recall that by (ii) and (iii) from Observation 11.12 |L(n, yi, l) ∪ L(n, yj, l)|
equals 2× nl.
However, by Observation 8.12 we know that there are exactly m elements
z ∈ M s.t. M |= z div m = a. Therefore, 2× nl ≤ m which can not be by
our assumption of m < 2×nl, and thus we have arrived at a contradiction.
Therefore a = b can not hold, hence, M |= a < b.

⇐: Assume that M |= a < b.
Then there exists w ∈ L(n, x, l) and z ∈ L(n, y, l) s.t. M |= w div m = a
and M |= z div m = b.
Since, M |= a < b and x div m is a monotone function with respect to x,
we get that M |= w < z.
Therefore, by the last point in Observation 11.12, we get

∀c ∈ L(n, x, l)∀d ∈ L(n, y, l) M |= c < d.

But from this we can conclude that M |= nl × x < nl × y which in turn
implies M |= x < y.

And now, we can approach the main lemma of this section.

Lemma 11.16 (Pairs n,m which enable us to compute k). Let M |= PA,
dom(M) = N and n,m ∈ N s.t. they compute standard numbers, i.e. they
satisfy Condition 1.

Also let l ∈ N be the natural number from Condition 1 satisfying nl < m <
nl+1.

Furthermore, assume that ∀t ≤ b0 t
M = t, where b0 is the b0 from Obser-

vation 11.10 when having n,m, l with the same interpretation as in here and
r0, . . . , rl set to n− 1.

Lastly, assume that divn and divm are recursive with respect to M .
Then for any k ∈ N we can compute kM .
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Proof. We will now present an evidently algorithmic procedure on how to compute
dM , and possibly more, from knowing 0M , . . . , (d− 1)M for b0 ≤ (d− 1).

If we manage to present such an algorithmic procedure, then, since we know
by our assumption the interpretation of tM for all t ≤ b0, it is obvious how to
construct an algorithm for computing kM for any k ∈ N.

So, once again assume that we already know 0M , . . . , (d− 1)M for b0 ≤ (d−1)
and we want to compute dM .

Algorithmic procedure.

Finding dM , . . . , (d+ s)M .

By Theorem 2.4, i.e. the theorem on unique quotients/remainders, there
must exist qd, rd ∈M s.t. M |= d = qd × n+ rd ∧ rd < n.
Evidently, by Corollary 7.2, M |= d div n = qd. And by Observation 7.6 we
also know that M |= d div n = d div n. Hence qd = d div nM .
Since divN is evidently a computable function, we can compute d div Nn,
and if d div Nn ≤ d−1, then we know how to interpret d div n in M , hence,
we know qd. But since 2 ≤ n and b0 ≤ (d − 1) < d, we get that indeed
d div n ≤ d− 1, hence, we truly know how to find qd.
Recall Observation 1.31 from which we know that M |= rd < n implies
M |= rd = 0M ∨ rd = 1M ∨ . . . ∨ rd = n− 1M .
Let us consider now dM = (qd × n + rd)M , d+ 1M = (qd × n + (rd + 1))M

up to d+ sM = (qd×n+ (n− 1))M , for some s ∈ N, where if rd = iM , then
s = n− 1− i.
Since we know qd, as we have already noted, and how to compute x div n
with respect to M , we can by Observation 11.11 compute

(qd × n)M , . . . , dM , . . . , (qd × n+ n− 1)M .

From being able to compute those elements, and from already knowing
0M , . . . , (d− 1)M , we can separate from them dM , . . . , d+ sM , hence, we
can compute them.
Denote these computed elements as y0, . . . , ys. Remember, that we do not
know, at least for now, how to differentiate among them, e.g. we do not
know whether y0 = dM ∨ . . . ∨ y0 = d+ sM . We have only computed some
y0, . . . , ys ∈M s.t. {y0, . . . , ys} = {dM , . . . , d+ sM}.
Now, we will show how to differentiate among y0, . . . , ys, i.e. to identify
which one is which from dM , . . . , (d+ s)M . From that, it will immediately
follow that we can compute any element from {dM , . . . , d+ sM}, hence, we
can compute dM .

Differentiating among y0, . . . , ys.

If s = 0, then we are clearly done, since y0 = dM = . . . = d+ sM .

133



Otherwise assume 0 < s.
By Observation 11.13 we can compute L(n, y0, l), . . . , L(n, ys, l), and so as-
sume we did.
Now, we would like to show that for any i ∈ [s], ∀x ∈ L(n, yi, l) we have
M |= x div m ≤ (d− 1).
By (i) in Observation 11.12 and by Observation 10.37, i.e. div being mono-
tone, it clearly does suffice to show that M |= ((nl× (d+ s))+ (nl − 1)) div
m < d.
Note that since s ≤ n− 1, then evidently

M |= ((nl × (d+ s)) + (nl − 1)) ≤
n× (. . . (n× (d+ n− 1) + n− 1) . . .) + (n− 1),

where the n× is repeated l times.
Therefore, by x div m being monotone, we have

M |= ((nl × (d+ s)) + (nl − 1)) div m ≤
(n× (. . . (n× (d+ n− 1) + n− 1) . . .) + (n− 1)) div m.

Hence, by the choice of b0 and b0 ≤ d, we indeed must have

M |= ((nl × (d+ s)) + (nl − 1)) div m < d.

Lastly, by Observation 1.29, we know that ((nl× (d+ s)) + (nl− 1)) div m,
is one of 0M , . . . , (d− 1)M , i.e. one of the expressions we know.
By the remarks we have just made, we get that for any i ∈ [s], Ld(n, yi, l,m)
is a subset {0M , . . . , (d− 1)M}.
Since div m is computable, we can compute Ld(n, yi, l,m). Furthermore, by
Ld(n, yi, l,m) ⊆ {0M , . . . , (d− 1)M}, it follows that we can algorithmically
find such a k, r ∈ N s.t. Ld(n, yi, l,m) = {kM , rM}.
To summarize.

• We can compute y0, . . . , ys, s.t. {y0, . . . , ys} = {dM , . . . , (d+ s)M}.
• Hence, we can compute for any i ∈ [s] the set L(n, yi, l).
• Hence, we can compute for any i ∈ [s] the set Ld(n, yi, l,m).
• Hence, we can compute k, r ∈ N s.t. Ld(n, yi, l,m) = {kM , rM},
• Furthermore, since k <N r ⇐⇒ M |= k < r. we can com-

pute such a k, r ∈ N s.t. kM = Min(Ld(n, yi, l,m)) and rM =
Max(Ld(n, yi, l,m)).

Let yi ̸= yj, where i, j ∈ [s], and assume kM = Min(Ld(n, yi, l,m)) and
rM = Max(Ld(n, yj, l,m)), where k, r ∈ N.
Suppose, we manage to show that M |= yi < yj ⇐⇒ k <N r.

134



Then, we will be able to computably compare elements from {y0, . . . , ys}
with respect to <M , also recall that =M is computable.
Furthermore, by Observation 1.29, we know that M |= d < d+ 1 < . . . <
d+ s.

Lastly, since <M is a linear order on M , we can conclude that we will be able
to tell which element from {y0, . . . , ys} is which from {dM , . . . , (d+ s)M}.
Hence, the proof as well as the loose description of an algorithmic procedure
for finding dM will be complete.
Since by Observation 1.29,

k <N r ⇐⇒ M |= k < r ⇐⇒
M |= Min(Ld(n, yi, l,m)) < Max(Ld(n, yj, l,m)),

(11.1)

we may conclude by Observation 11.15 that what we have supposed to hold
indeed holds. And thus, the proof is finished.

After the proof was finished, we would like to make a few concluding com-
mentaries with respect to Lemma 11.16.
Commentary. First note that if we are given n,m ∈ N satisfying Condition 1, then
we can compute in N the value of l from Condition 1 and b0 from the statement
of Lemma 11.16. I.e. these values do not have to be given to us.

It is obvious for l. Since we have constructed b0 in the proof of Observa-
tion 11.9 constructively, it follows that we can also compute in N the value of
b0.
Commentary. Notice that the assumption on having ∀t ≤ b0 t

M = t is not that
limiting.

It is because we know by Observation 3.13 that if there exists such a struc-
ture M satisfying every other assumption in Lemma 11.16 besides the just men-
tioned one, then there must exist one which satisfy all of the assumptions (in
Lemma 11.16).
Commentary. Lastly, we would like to point out that the conditions in Condition 1
are not only sufficient but also necessary for our procedure of computing nM to
work. It is not that hard to observe it and thus we choose to omit a proof of it.

However, we would like to emphasize the word our in the preceding paragraph
one more time. We do not claim that there can not be some other procedure that
would enable us to compute n from some other pairs that do not satisfy the
conditions in Condition 1.
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Conclusion

Goals of the thesis
To quote a part of the bachelor thesis assignment, “Give a presentation of it and
investigate related questions, such as how weak a theory of arithmetic can be
used, or which aspects of the model can be made computable.” Where by “it”
was meant the Tennenbaum’s theorem.

To summarize the mentioned goals.

(i) Give a presentation of the well known Tennenbaum’s theorem.

(ii) Investigate related questions, such as how weak a theory of arithmetic can
be used, or

(iii) which aspects of the model can be made computable.

Naturally, two more sub-goals, besides a presentation of the Tennenbaum’s
theorem, of (i) have emerged.

1. To give a sensible introduction to PA−, PA, recursion theory and their re-
spective parts like properties of standard/non-standard numbers, the Arith-
metical hierarchy, Gödels lemma, Overspill lemma and many others. Op-
timally, in a way that would be understandable by someone who has went
trough an introductory classes on mathematical logic and computability
theory, e.g. like courses “Propositional and Predicate logic” and “Introduc-
tion to Complexity and Computability”, plus some introduction into the
formalism of recursive functions, which are being taught at MFF CUNI.

2. To show, on the contrary to the Tennenbaum’s theorem, that not every non-
trivial relation/function has to be non-recursive in a non-standard model of
PA (with domain N).

Fulfillment of the respective goals
(i) As for the first goal, with all of its sub-goals, we believe that we have

managed to fulfill it.
Firstly, the presentation of the respective preliminaries is a rather thorough
one so that someone who has not seen PA yet will not get lost. And almost
the same goes for preliminaries from the recursion/computability theory.
Secondly, we have presented Tennenbaum’s theorem for + not only for PA
but also for a weaker theory I∆0, which is due to K. McAloon. Whereas
the presentation for × was done for models of PA. Moreover, the proof was
done in a quite detailed fashion. We want to highlight that we have showed
Tennenbaum’s theorem for × because it is not rare that in expository proofs
that can be found only the version for + is proved, and is often proved using
a standard theorem on unique quotients remainders which does not have
much of analogy for the case of ×.
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Furthermore, a thing that appears under the hood of many proofs related to
proving Tennenbaum-like results, is representing the n-th prime function in
PA−. In this text, namely in section 3.3, we have showed that the function
in mention can be in a certain way, sufficient to our needs, represented by a
∆0 formula. Showing such a representation by a ∆0 formula does not seem
to us to be found in other expository proofs of Tennnebaum’s theorem that
we have delved into.
Lastly, we have presented a relatively detailed proof of the order-type of
models of I∆0 together with a corollary that there exists a non-standard
model of PA with domain N with recursive < and S(x). This result was
presented not only to show that non-trivial functions/relations can be re-
cursive in non-standard models, but they were also of use to us in PART
II.
Therefore, and furthermore, we hope that PART I of this work is accessible
to anyone with a basic knowledge of mathematical logic and computability
theory. Hence, for a complete beginner to the topic, it might be even a
place to learn a little about PA and its weaker fragments, Tennenbaum’s
theorem and order-type of models of arithmetic.

(ii) A one think that we did in PART I, related to how a weak theory can
be to still have the Tennenbaum phenomena, was that we tried to put
some emphasis on presenting Tennenbaum’s theorem for +, as well as the
inspection of the order-type, in a relatively weak fragment of PA, namely
I∆0, or to be even more precise in PA− with Overspill for N on ∆0 formulas.
Furthermore, we have added throughout the text, both in PART I and
PART II, various comments.
But in general, we chose not to pursue this goal in a greater depth.

(iii) We chose to investigate recursiveness of x div y and x mod y.
Before we list most of the results that we came across (and solved), we want
to state the following. As far as our current knowledge on the research in
the topic goes, the upcoming results have not been published in some other
work, survey or paper. And the same goes for some, more elaborate, dis-
cussion of the recursiveness of the functions div and mod in non-standard
models of PA. An exception to what has been just written are some weaker
versions of results mentioned in the upcoming list. Namely, in Yaegasi [2008]
the author of that article proves points (b) and (d) for k = 2, and we show
it for any 2 ≤ k.

(a) In Corollary 8.7, we show that there is a non-standard model of PA
with all x div 0, x div 1, x mod 0 and x mod 1 recursive with respect
to it.

(b) In Lemma 8.11, we show that there can be no non-standard model of
PA s.t. x mod k and x div k are both recursive with respect to it.

(c) In Corollary 8.15, we show that there can be no non-standard model
of PA with both the x div k, for 2 ≤ k, and the successor function
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recursive with respect to it. And an analogous result has been shown
for x div k, for 2 ≤ k, and the order relation, <, in Corollary 8.17.

(d) In Corollary 8.18, we show that the the unary functions k×x, k×x+
1,...,k× x+ (k − 1) can not be recursive all at once in a non-standard
model of PA.

(e) In Corollary 9.7, we show that for any finite subset F of N there exists
a non-standard model of PA s.t. all the functions x mod k, for k ∈ F ,
together with < and the successor function are recursive with respect
to it.

(f) In Lemma 11.6, we show that there can be no non-standard model of
IΣ1 with x div y recursive.

(g) In Lemma 11.8, we show that that for any k ∈ N there exists a non-
standard model of PA with x div kl, for every l ∈ N, recursive with
respect to it.

(h) One miscellaneous lemma in section 11.3, namely Lemma 11.16, wit-
nesses pairs of natural numbers n,m which enable us to compute k in
some respective model assuming that x div n and x div m are recursive
in that model in mention.

(i) Lastly, we have inspected in chapter 10 the structure of (M, div k), see
namely Theorem 10.50 or Corollary 10.51, for 2 ≤ k, where M |= PA.
The inspection was conducted in the same spirit as the inspection of
the order-type in chapter 6.
One thing is that the investigation in mention helped us to show that
x div k can be recursive in a non-standard model of PA.
And secondly, the result on its own is of its own beauty and import-
ance, as far as our subjective view goes.

We hope that PART II gave some insight on how the functions div and
mod behave with respect to their recursiveness in models of PA or IΣ1.

As argued, we believe that we have fulfilled the mentioned goals to a sufficient
extent.

Problems that remained unsolved (and are of in-
terest to us)
A great amount of problems related to the recursiveness of x div y and x mod y
in non-standard models of PA, or some weaker theories like IΣ1, that we have
not solved can be listed.

There are three problems that arose to us in a quite natural way, and are
also of interest to us. We have already mentioned them throughout the text as
Problem 1, Problem 2 and Problem 3 in section 9.1, section 9.2 and section 11.3
respectively. Nevertheless, we mention them here one more time concluding this
text.
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Problem 1 (Classification of when can be modk, for all k ∈ F ⊆ N, recursive).
Classify exactly for which sets F ⊆ N there exists a non-standard model of PA,
or IΣ1, with domain N s.t. modk, for every k ∈ F , is recursive with respect to
it.

Problem 2 (Can x mod y be recursive?). Does there exist a non-standard model
of PA, or IΣ1, s.t. the binary function x mod y is recursive with respect to it?

In regard to Problem 2, at the beginning of our investigations we were quite
convinced that there can be no such non-standard model. To some extent, we
still believe it a tiny bit more than the opposite. On the other hand, since we
have failed in our thought experiments many times to show that there can be no
such non-standard model, we definitely do not rule out the possibility that there
can be indeed such a non-standard model.

Problem 3 (Classification of when can be divk, for all k ∈ F ⊆ N, recursive).
Classify exactly for which sets F ⊆ N there exists a non-standard model of PA,
or IΣ1, with domain N s.t. divk, for every k ∈ F , is recursive with respect to it.
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A. Computable bijections
Commentary. Please notice that every considered bijection, alongside with its
inverse, is at least intuitively computable. And when we reasonably represent
domain and range of the respective bijections in N they would be even recursive.

Therefore also theirs finite addition, composition, etc., when respecting their
domains/ranges, produce bijections that are again computable, as well as their
inverses.
Commentary. All of the considered computable bijections are standard ones e.g.
the standard Cantor’s Zig-Zag bijection between N and N × N, see e.g. Boolos
et al. [2007, p. 7, Example 1.2], and/or it is hopefully evident from the definition
of the just being considered function that it is indeed a bijection between the
given two sets in consideration. Therefore we have chosen to omit (full) proofs of
why the functions are indeed bijective.

Bijection 1 (Bijection between N × N and N). By IN×N↔N we will denote a
standard bijection between N× N and N. The definition follows.

IN×N↔N(m,n) := 1+2+ . . .+(m+n)+(m+1) = (m+ n)× (m+ n+ 1)
2 +m+1,

which is obviously computable.
The 1 is for the number of pairs (k, l) s.t. k + l = 0. The 2 is for the number

of pairs (k, l) s.t. k + l = 1. The (m + n) is for the number of pairs (k, l) s.t.
k + l = m+ n− 1 and lastly m+ 1 is for the first part of the ordered pair (m,n)
with added 1.

Clearly ∀m,n ∈ N we have m,n ≤ IN×N↔N(m,n) and hence is IN↔N×N :=
I−1
N×N↔N computable as well.

Bijection 2 (Bijection between N and Z). By IN↔Z we will denote a bijection
between N and Z. The definition follows.

IN↔Z(n) := (−1)n × ((n+ 1) div 2),

which is obviously computable.
And when we define IZ↔N := I−1

N↔Z we can observe that actually the following
holds.

IZ↔N(k) =
⎧⎨⎩2× k k ≥ 0,

(2× (−k))− 1 k < 0.

And hence is IZ↔N also computable.

Commentary. For the next bijection, let us recall that by p(n) we mean (n +
1)-th prime number. Where, as we have observed in Observation 3.9, is p(n)
computable. And it is not hard to observe that also the prime decomposition of
any number m is computable.

Since obviously if p(m) | m then p(m) ≤ m and also p(n) < p(n + 1) we
can easily compute all the finitely many primes that can possibly be in a prime
decomposition of m.
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And from that, since computing div and mod is obviously computable, and
also from x div p(m) < x for any positive natural number we can evidently find
m’s prime decomposition in finite time.

Bijection 3 (Bijection between Z and Q). By IZ↔Q we will denote a bijection
between Z and Q. The definition follows.

IZ↔Q(k) =

⎧⎪⎪⎨⎪⎪⎩
p(0)IN↔Z(l0) × · · · × p(s)IN↔Z(ls) k > 0 ∧ k = p(0)l0 . . . p(s)ls ,

0 k = 0,
−p(0)IN↔Z(l0) × · · · × p(s)IN↔Z(ls) k < 0 ∧ −k = p(0)l0 . . . p(s)ls .

Let us note that in case k = 1 or k = −1 is p(0)l0 . . . p(s)ls , and p(0)IN↔Z(l0) ×
· · · × p(s)IN↔Z(ls) as well as the minus versions of them an empty product, hence
equal to 1 and −1 respectively.

By the commentary which preceded definition of this function and the fact
that IN↔Z is computable, it is obvious that IZ↔Q is indeed computable.

And since IN↔Z is a bijection from N onto Z it is not that hard to see that
IZ↔Q is indeed a bijection from Z onto Q.

Let us define IQ↔Z := I−1
Z↔Q, therefore IQ↔Z is a bijection from Q onto Z, and

observe the following where m and n do not have a common divisor except for 1.

IQ↔Z(q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(0)IZ↔N(l0) × · · · × p(s)IZ↔N(ls) × p(0)IZ↔N(l0) × · · · × p(t)IZ↔N(lt)

where q > 0 ∧ q = m/n∧
|m| = p(0)l0 . . . p(s)ls ∧ |n| = p(0)l0 . . . p(t)lt ,

0 q = 0,
−p(0)IZ↔N(l0) × · · · × p(s)IZ↔N(ls) × p(0)IZ↔N(l0) × · · · × p(t)IZ↔N(lt)

where q < 0 ∧ q = m/n∧
|m| = p(0)l0 . . . p(s)ls ∧ |n| = p(0)l0 . . . p(t)lt .

Please note, that if m and n have no common divisors, besides 1, and q = m/n,
then (m,n) are uniquely determined, up to the minus sign. Also note that IZ↔N
is a well defined bijection from Z onto N, hence it is easy to understand that the
equality actually holds.

If q ∈ Q, and we represent q as some pair (r, l) s.t. q = (r, l), then it
is obviously easy to algorithmically find a pair (m,n) s.t. they m and n are
co-prime. Simply enumerate i ∈ {1, . . . ,m}, starting with i = m and going
downwards, and if m mod i = n mod i = 0, then we set m := m div i as well as
n := n div i and we can end the procedure. Hence IQ↔Z is also computable.

Bijection 4 (Bijection between N and Q). By IN↔Q we will denote a bijection
from N onto Q. The definition is,

IN↔Q(n) := IZ↔Q(IN↔Z(n)).

IN↔Q is obviously a valid bijection from N onto Q.
Define IQ↔N := I−1

N↔Q.
Moreover, since IZ↔Q and IN↔Z are computable, as are also their inverses,

then IN↔Q as well as I−1
N↔Q = IQ↔N are also computable.
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Bijection 5 (Bijection between N and N ∪ (Q × Z)). By IN↔N∪(Q×Z) we will
denote a bijection from N onto N ∪ (Q× Z). The definition follows.

IN↔N∪(Q×Z)(n) :=
⎧⎨⎩n IN↔N×Z(n) = (0, k),

(IN↔Q(l − 1), IN↔Z(k)) IN↔N×N(n) = (l, k) ∧ l > 0.

IN↔N∪(Q×Z)(n) is clearly a bijection with domain N and range N ∪ (Q× Z).
Define IN∪(Q×Z)↔N := I−1

N↔N∪(Q×Z).
Since IN↔N×Z is computable as well as its inverse, we get that IN↔N∪(Q×Z) is

computable as well as its inverse.

Bijection 6 (Bijection between N and Nk). For a positive integer k, we will
denote by IN↔Nk a bijection from N onto Nk. The definition will be recursive
with respect k.

Also let us note that if two sets are identical, e.g. N2 and N × N, then by
IN↔N2 we will mean exactly the same function as by IN↔N×N

k = 1 IN↔N(n) := n, this function is clearly the wanted bijection and is, as well as
its, inverse computable.

k = 2 IN↔N2 was already defined as IN↔N×N in Bijection 1.
By the discussion in Bijection 1, we know that IN↔N2 is the desired com-
putable bijection which has also its inverse computable.

k ≥ 3
IN↔Nk := (IN↔N(k−1)(m), l), where IN↔N2(n) = (m, l).

Evidently, IN↔Nk is a bijection from N onto Nk.
Since we can assume that IN↔N(k−1) and IN↔N2 are computable bijections
which have also computable inverses, we have that IN↔Nk and its inverse
are computable.

Define, as usual, also the following INk↔N := I−1
N↔Nk .

Bijection 7 (Bijection between N and N × [k]). For k ∈ N, we will denote by
IN↔N×[k] a bijection from N onto N× [k].

The definition will be recursive with respect k.

k = 0 IN↔N×[0](n) := (n, 0), this function is clearly the wanted bijection and is as
well as its inverse computable.

k = 1 IN↔N×[1] := (n div 2, n mod 2).
IN↔N×[1] is obviously a bijection from N onto N× [1].
Since div and mod are evidently computable so is IN↔N×[1].
Continuing, since 2×m and m+ 1 are again evidently computable we get
that I−1

N↔N×[1] is computable as well.
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k ≥ 2

IN↔N×[k](n) :=
⎧⎨⎩(m, 0) IN↔N×[1](n) = (m, 0),

(l, r + 1) IN↔N×[1](n) = (m, 1) ∧ IN↔N×[(k−1)](m) = (l, r).

Clearly, IN↔N×[k] is a bijection from N onto N× [k].
And since we can assume that IN↔N×[l] is computable for any l ∈ N s.t.
l < k, and has computable inverse, we can conclude that IN↔N×[k] and its
inverse are computable.

As usual define IN×[k]↔N := I−1
N↔N×[k].

Bijection 8 (Bijection between N and N∪(N×Z×N×[1])∪(N×Z×Z×{2})). Let
us denote by A the syntactical expression N∪(N×Z×N× [1])∪(N×Z×Z×{2}).

We will define,

IN↔A(n) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

m IN↔N×[3](n) = (m, 0),
(a, IN↔Z(b), c, l − 1) IN↔N×[3](n) = (m, l) ∧ 1 ≤ l ≤ 2∧

IN↔N3(m) = (a, b, c),
(a, IN↔Z(b), IN↔Z(c), 2) IN↔N×[3](n) = (m, 3)∧

IN↔N3(m) = (a, b, c).

Clearly, IN↔A is a bijection from N onto A.
Define IA↔N := I−1

N↔A.
Since IN↔N×[3], IN↔Z and IN↔N3 and their inverses are computable, it is evident

that IN↔A and IA↔N are also computable bijections.
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mathématiques, astronomiques et physiques, 12:79–86, 1964.

Peter Smith. Tennenbaum’s theorem, 2014. URL https://www.logicmatters.
net/resources/pdfs/tennenbaum_new.pdf. Accessed: 14.12.2023, lecture
notes.

Stanley Tennenbaum. Non-archimedean models for arithmetic. Notices of the
American Mathematical Society, 6(270):44, 1959.
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