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1 Introduction

Table-to-text generation is a subtask of Natural Language Generation (NLG) that
aims at generating text in natural language from structured tables. There are
multiple varieties of this task differing in the domain, table structure, intermediate
annotation, and output length (Wiseman et al., 2017; Parikh et al., 2020; Cheng
et al., 2022; Moosavi et al., 2021; Lebret et al., 2016; Chen et al., 2020a,c).
The approaches to solving this task also differ and depend substantially on the
dataset. Modern solutions include end-to-end training, pre-training models, or
pipeline-based systems. At the today’s age of large pre-trained models, the sys-
tems do not struggle with language fluency anymore, but the major issue is the
generation fidelity, i.e. preservation of the correct factual and numerical informa-
tion in the resulting text (Ji et al., 2022). Another challenge is generating state-
ments involving logical and numerical inference, as modern sequence-to-sequence
models lack the reasoning capabilities (Liu et al., 2022a).
This thesis focuses on logical table-to-text (LT2T) generation. All recent works
address the fidelity issue using fully neural (Nan et al., 2022; Liu et al., 2022a;
Zhao et al., 2022) or partially symbolic (Saha et al., 2022; Zhao et al., 2023a)
approaches. Several studies (Perlitz et al., 2023; Zhao et al., 2023b) explore
the opportunities to increase the diversity of the outputs. Apart from that, we
observe a problem reported but not tackled by previous research, namely, the
table length. Long tables contain too much excessive information not required
for generation, and they undergo truncation because of the limited context length
in the modern language models. In this study, we focus on the questions of fidelity
and content selection and create a system that is not dependent on the number
of rows in a table.

1.1 Research Questions

We pose two research questions:

1. Is it possible to select relevant content and logical or numerical operations
avoiding using the whole table, so that longer tables can be processed?

2. Does symbolic reasoning help to make the statements more faithful to the
table?

Our practical goal is to create a pipeline-based system that takes a whole table as
input and 1) uses aggregated table information to generate intermediate formal
representation templates, 2) fills the template using a symbolic algorithm, 3)
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generates text from the resulting formal representation. We mainly focus on the
first two steps of the pipeline, i.e. content selection and symbolic reasoning, while
using a basic model for the third step. Figure 6.1 in Chapter 6 depicts an example
of a pipeline execution.
Our main finding is that the described system performs well, being superior in
fidelity to other systems according to the automatic metric and producing inter-
esting outputs based on the human evaluation. Therefore, our answer to both
research questions is positive. We release the code, the models, and the outputs1.
We discuss our contributions in more detail in Chapter 8.

1.2 Thesis Structure

This thesis is constructed as follows: in Chapter 2, we provide a brief overview of
fundamental notions this work builds on. In Chapter 3, we analyze recent studies,
as well as the data and metrics for logical table-to-text generation. We conduct
a deeper analysis of the data in Chapter 4. In Chapter 5 we present our baseline,
and Chapter 6 contains a full description of our system with the intermediate
experiments. We discuss the evaluation and performance of our system in Chapter
7. Finally, our contributions and possible future work directions are outlined in
Chapter 8.

1https://github.com/kategerasimenko/LT2T, also see Appendix A.1.
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2 Theoretical Background

In this section, we outline fundamental notions and the background our work
builds on. In Section 2.1, we describe the general formulation of the task of
the natural language generation, Section 2.2 contains a brief description of a
Transformer architecture, and Section 2.3 describes a pre-trained encoder-decoder
model that we employ in our work.

2.1 Natural Language Generation

Natural language generation (NLG) is the task of automatically generating coher-
ent texts using a non-linguistic or textual representation of information as input
(Reiter and Dale, 2000). The generated texts should correspond to the initial
task and remain grammatical, fluent, natural, and faithful to the input.
Common examples of NLG tasks are machine translation and automatic summa-
rization. One of the challenging subtasks of NLG is Data-to-Text (D2T) genera-
tion, which generates text in natural language based on non-linguistic input. The
concept of D2T is quite broad, including, but not limited to, graph-to-text (Nan
et al., 2021), chart-to-text (Obeid and Hoque, 2020), table-to-text (Parikh et al.,
2020) tasks.

2.1.1 Table-To-Text Generation

In this study, we focus on table-to-text generation, which aims to produce state-
ments that highlight crucial table elements, either reporting mostly surface-level
values (Parikh et al., 2020; Cheng et al., 2022; Lebret et al., 2016) or involving
rich logical reasoning (Chen et al., 2020a,c). With the recent development of large
language models with astonishing generation capabilities (Radford et al., 2019;
Lewis et al., 2020; Raffel et al., 2020; Touvron et al., 2023), language fluency is
a solved problem for high-resource languages, but processing complex data, rea-
soning, and revealing non-obvious relations in the input is still a challenge (Zhao
et al., 2022; Liu et al., 2022a). In this work, we address this issue and focus on
logical table-to-text generation. Further background on this task is provided in
Chapter 3.
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2.2 Transformer

Transformer (Vaswani et al., 2017) is the architecture used by state-of-the-art
systems for multiple NLP tasks (Wolf et al., 2020). As opposed to the previous
best architecture for processing sequences, RNNs (Rumelhart and McClelland,
1987), Transformers rely solely on attention mechanisms, discarding recurrence
and convolutions, thus making the model faster, more scalable and more power-
ful. The general Transformer architecture is depicted in Figure 2.1. The whole
Transformer consists of an encoder and a decoder, which allows to use it for
sequence-to-sequence tasks, such as the table-to-text task considered in this work.

Figure 2.1: Transformer architecture. Taken from Vaswani et al. (2017).

2.3 Text-to-Text Transfer Transformer

Text-to-Text Transfer Transformer (Raffel et al., 2020), abbreviated as T5, is a
model pre-trained in the framework which casts multiple language tasks (e.g.,
translation, summarization, sentiment analysis, sentence similarity estimation)
into the text-to-text formulation. This allows to train one model in a multi-task
setup without any additional heads and other changes to the original architecture.
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Figure 2.2 shows the principle of the text-to-text framework used to pre-train T5
models.

Figure 2.2: Text-to-text framework used for T5 pre-training. Taken from Raffel
et al. (2020).

This approach showed state of the art performance in multiple tasks at the mo-
ment of the publication, and the pre-trained models of different sizes were released
for usage and fine-tuning.
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3 Related Work

In this section, we give an overview of the recent advances in logical table-to-text
(LT2T) generation. The interest to this task has been growing since the release of
LogicNLG dataset (Chen et al., 2020a). LT2T generation is aimed at generating
natural language statements that can be logically entailed by the facts in an
open-domain table. Therefore, LT2T implies reasoning and producing sentences
that are consistent both linguistically and logically with the input table.
The task is extremely challenging because, opposed to the task of reporting the
information from pre-defined table cells, as in ToTTo dataset (Parikh et al.,
2020), the system needs to capture subtle non-trivial relations and include com-
plex reasoning into the statements. There are several challenges that the current
LT2T research addresses:

1. fidelity: language models struggle with logical and numerical reasoning, as
shown by multiple works (Chen et al., 2020a; Liu et al., 2022a; Zhao et al.,
2022).

2. diversity: the space of possible table descriptions is exponentially large, and
it is required for the system to produce a valid, diverse, and interesting set
of statements covering different parts of a table (Chen et al., 2020c; Perlitz
et al., 2023; Zhao et al., 2023b).

Another issue is the table size which further complicates content selection and
depends on a technical restriction of the maximum model input length. A related
study on table reasoning (Chen, 2023) reports a dramatic drop in performance
with the increasing table size. However, this challenge is underexplored in current
works on LT2T, which mostly use provided pre-selected columns (Liu et al.,
2022a; Zhao et al., 2022; Perlitz et al., 2023; Zhao et al., 2023b) and employ table
truncation strategies (Zhao et al., 2023c).
We briefly describe the main datasets (Section 3.1), discuss available evaluation
metrics (Section 3.2), and outline the recent research in the LT2T field (Section
3.3).

3.1 Datasets

Several table-to-text datasets are specifically tailored for numerical and logical
reasoning. They differ in size and in domain.
LogicNLG is the largest dataset of its kind and features very rich logical inference
on open-domain tables. NumericNLG (Suadaa et al., 2021) and SciGen (Moosavi
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et al., 2021) contain numerical tables with the statements involving reasoning in
the scientific domain. Logic2Text (Chen et al., 2020c) consists of tables, sen-
tences, and corresponding logical forms as intermediate formal representations.
In the current study, we extensively use Logic2Text for development, and test our
system on LogicNLG. We provide more in-depth analysis of these two datasets
in Chapter 4.

3.2 Evaluation Metrics

Previous works use two general types of metrics: reference-based, which compare
a statement to the set of references, and table-based, which evaluate sentences
based on the input table to measure fidelity. The first type is a traditional
way to evaluate a sequence-to-sequence model, e.g., in machine translation. The
second evaluation type is aimed at measuring logical fidelity of the statements
and requires a table as input.

3.2.1 Reference-Based Metrics

A large variety of reference-based metrics is used for different sequence-to-sequence
tasks: BLEU (Papineni et al., 2002), ROUGE (Lin, 2004), METEOR (Banerjee
and Lavie, 2005), and others. Works on LT2T generation employ BLEU score
most frequently.
BLEU (bilingual evaluation understudy) is a token-based metric, which compares
n-gram overlap between a candidate and a set of references. BLEU score ranges
from 0 to 1, where 1 indicates a perfect match with the reference translation(s)
and 0 indicates no overlap at all. It is computed with the following formula:

BLEU = BP · exp
(︄

N∑︂
n=1

wn log pn

)︄

In this formula:

• N is the maximum order of n-grams;
• wn is the weight of the corresponding n-gram (usually uniform);
• pn is the modified n-gram precision, restricted by n-gram counts in the

references;
• BP is the brevity penalty, aimed at discouraging shorter candidate se-

quences and calculated as follows:

BP =
⎧⎨⎩1 if c > r

e(1−r/c) if c ≤ r

where c is the candidate text length and r is the length of the closest
matching reference translation.
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Despite being extremely widely used, BLEU is criticized for the heavy dependence
on tokenization strategy (Post, 2018), lack of recall measurement (Banerjee and
Lavie, 2005), and relying only on a surface realization without capturing the
actual meaning (Sellam et al., 2020).
BLEU score is usually computed on the whole candidate sentence set, where pn

is calculated based on the summed counts from all sentences in the set. Another
convention for standard tasks like machine translation is using one standartized
implementation, namely, SacreBLEU (Post, 2018), which features n-gram order
of 4 and a high-level interface for running the evaluation. However, in LT2T,
related studies follow Chen et al. (2020a) and measure averaged sentence-level
BLEU-1/2/3 in NLTK (Bird et al., 2009) implementation.

3.2.2 Table-Based Metrics

Since LT2T implies reporting non-obvious complex facts from the table, rule-
based surface-matching metrics cannot be used to get an adequate fidelity es-
timation. Therefore, the common practice in the field is to use model-based
metrics that rely either on automatic semantic parsing (SP) or on models that
perform Natural Language Inference (NLI) on the tables, i.e., predict whether
the statement is entailed or refuted by the table.
We consider four metrics: SP-acc and NLI-acc proposed by Chen et al. (2020a),
and TaPas-acc and TaPEx-acc based on the TaPas (Herzig et al., 2020) and
TaPEx (Liu et al., 2022b) models accordingly. NLI models are trained on Tab-
Fact dataset (Chen et al., 2020b), which contains both positive and negative
examples of statement entailment.

1. SP-acc (Chen et al., 2020a) is based on weakly-supervised semantic parsing.
It extracts the meaning representation from the generated sentence and
executes it against the table to verify its correctness. As found by Liu et al.
(2022a), the parsing algorithm for SP-Acc often generates irrelevant logical
programs for the sentences, which makes the evaluation unreliable.

2. NLI-acc (Chen et al., 2020a) is based on TableBERT (Chen et al., 2020b),
which achieves relatively low accuracy of 65.1% on the TabFact dataset and
is overly positive about the predictions, as reported by Liu et al. (2022a).

3. TaPas-acc employs TaPas model (Herzig et al., 2020; Eisenschlos et al.,
2020). The model is a derivation of BERT with additional embeddings
to encode the table structure, and it achieves quality improvement by the
additional pre-training on two auxiliary tasks involving synthetic and coun-
terfactual statements. TaPas shows accuracy of 81% on the TabFact test
set.

4. TaPEx-acc uses TaPEx model (Liu et al., 2022b) which is a further im-
provement on TabFact. TaPEx uses BART as a backbone model and also
benefits from additional pre-training, learning a neural SQL executor on a
diverse large-scale synthetic corpus. It performs with the 84.2% accuracy
on TabFact.
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Overall, the studies use SP-acc and NLI-acc for comparability with other works.
As seen from the reported performance accuracy on TabFact, TaPEx-acc is
considered to be the most reliable metric for LT2T so far, although it is not used
by everyone. In our work, we use TaPas and TaPEx accuracy and do not rely
on the first two metrics because of the lower quality.

3.3 Existing Approaches

In this section, we describe and analyze works based on Logic2Text or LogicNLG.
We summarize the research directions and list concrete studies in more detail.
Overall, all approaches to LT2T utilize pre-trained language models but even
larger ones are shown to struggle with the task. Therefore, the proposed methods
include other additions and improvements. Related studies suggest using addi-
tional components in the model (Chen et al., 2021; Nan et al., 2022), logic-related
pre-training (Liu et al., 2022a; Zhao et al., 2022), neuro-symbolic approaches with
reasoning done by external programs (Saha et al., 2022; Zhao et al., 2023a,b),
and controlling the generation explicitly (Perlitz et al., 2023; Zhao et al., 2023b).
Among the most recent works, Zhao et al. (2023c) analyze large language model
(LLM) prompting and report impressive results.
Chen et al. (2020a), apart from releasing LogicNLG dataset and novel table-
based metrics, consider various approaches to training the model on this data.
They show that the task is extremely challenging by surveying different archi-
tectures (LSTM, Transformer), pre-trained models (GPT-2), training strategies
(RL, Adversarial Training, Coarse-to-Fine), and concluding that all models lack
fidelity based on human evaluation. Subsequent works manage to improve the
performance on LogicNLG dataset.
Chen et al. (2021) argue that baseline models learn to capture surface-level spu-
rions correlations between the table and the sentence instead of correct causal
relations. To mitigate this problem, they propose a de-confounded variational
encoder-decoder (DCVED) based on causal intervention, back-prediction process,
and a table-text selector, and achieve state of the art results at that moment.
Nan et al. (2022) argue that entity retrieval capability of D2T systems is one of
the primary faithfulness factor. They propose training a system both as a gener-
ator and a faithfulness discriminator with additional replacement detection and
unlikelihood learning tasks. They experiment with multiple table-to-text datasets
and do not address logical table-to-text generation specifically, but the proposed
system surpasses the baselines and previous works on LogicNLG according to the
automatic metric.
Liu et al. (2022a) and Zhao et al. (2022) follow the general trend of further
pre-training, which is successfully applied in other table-related NLP tasks as
well (Andrejczuk et al., 2022; Herzig et al., 2020; Liu et al., 2022b). Liu et al.
(2022a) show that table-to-logic pre-training on a large synthetic dataset greatly
improves the fidelity on downstream table-to-text tasks. Zhao et al. (2022) con-
struct a template-based dataset of questions on tables, and use question answering
via generation as a pre-training task. This approach outperformed all previous

11



studies by a considerable margin.
Saha et al. (2022) propose a neuro-symbolic modular system with multi-step
reasoning. They develop several modules and a grammar for their combination,
using neural networks for constructing coherent text and symbolic algorithms
for reasoning to ensure fidelity. They focus on a few-shot setting, showing that
neuro-symbolic approach outperforms other few-shot techniques such as direct
and chain-of-thought prompting.
Perlitz et al. (2023) and Zhao et al. (2023b) address the problem of output di-
versity along with fidelity. Perlitz et al. (2023) use logic types, i.e., logical or
numerical operations required to generate a statement, to control the generation.
The system accepts the explicit logic types, which can be sampled randomly,
and thus is guided to produce more diverse outputs keeping fidelity. Zhao et al.
(2023b) utilize logical forms to select the content and relevant operations and
conduct reasoning, thus controlling logical table-to-text generation and preserv-
ing the fidelity of the output.
Zhao et al. (2023a) rely on a neuro-symbolic approach, generating a statement
template and reasoning out concrete entities from a table by a dependency-aware
symbolic reasoning framework based on table-compatible programming language.
They show a further improvement in output fidelity, though not addressing the
diversity problem.
Zhao et al. (2023c) explore the most recent trend of LLM prompting and find
that querying GPT-* models outperforms all existing solutions by a large margin,
achieving impressive fidelity. They also show that LLMs can also be useful for
evaluation and feedback on other models’ output. It is important to note that
this analysis relies only on 500 examples due to technical constraints.
Overall, the field is rapidly developing, and a huge improvement in generation
quality has been achieved since the first dataset publication. Nevertheless, the
challenges of fidelity, diversity, and controlled generation remain to be highly
relevant.
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4 Data

This research utilizes two datasets: LogicNLG (Chen et al., 2020a) and Logic2Text
(Chen et al., 2020c). These datasets consist of tables coupled with corresponding
statements which include reasoning about the content of the tables. These tables
are sourced from the TabFact dataset (Chen et al., 2020b), which is itself based
on WikiTables (Bhagavatula et al., 2013). TabFact is modified by filtering out
tables that are overly complicated or large (for example, those with multiple rows
or columns, or LaTeX symbols), resulting in relatively clean tables of flat layout
and reasonable size. Each table contains a one-row header and a title.
In handling Logic2Text, we had to exclude all training tables already present in
the LogicNLG development and test sets. In further dataset analysis, we use an
updated version of the dataset.
Each table carries a unique identifier, referred to as table id (for Logic2Text,
this is the final part of the url attribute). For ease of reference throughout this
text, we use both the table id and a combination of split and example number
from the original dataset1. The dataset statistics are detailed in Table 4.1, and
the train, development, and test splits are displayed in Table 4.2.

LogicNLG Logic2Text

Tables 7392 4855
References 37015 9327
Refs per table 5.007 1.921
Max rows 49 21
Max columns 26 25
Ref length 14.227 16.908

Table 4.1: Dataset statistics.

LogicNLG Logic2Text

Tables References Tables References

train 5682 28450 3855 7140
dev 848 4260 500 1095
test 862 4305 500 1092

Table 4.2: Dataset split statistics.

1We use the Tabgenie toolkit (Kasner et al., 2023) for dataset navigation and processing.
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4.1 LogicNLG

LogicNLG is a direct derivative of TabFact dataset. The authors of LogicNLG
selected true statements from TabFact that belong to the category of higher
complexity, which denotes reasoning in TabFact annotations.
Additionally, the authors conducted a thorough preprocessing of the raw data.
An automatic entity linking system was employed to identify the relevant columns
for each corresponding reference. This data was included as column selection and
a reference template. While not explicitly mentioned in the dataset description,
references were also also preprocessed to emphasize column mentions and values.
An example of a resulting table-reference pair is depicted in Figure 4.1.

Figure 4.1: Table with the title and column selection and corresponding reference
from LogicNLG (train 6, id 2-18179114-4).

Nevertheless, we identified two issues with the preprocessed references:

1. The resulting reference is not formulated in natural language, potentially
affecting the performance of models that have been pre-trained on written
texts.

2. Since the end-to-end evaluation aims to use a model trained on TabFact,
the input must mirror TabFact training data, which is in natural language.
Therefore, this preprocessing introduces an inconsistency in the input, pos-
sibly leading to lower scores.

Considering these issues with preprocessed references, we have reverted them to
match the original TabFact statements. We still use original LogicNLG data to
compare some of our experiments with the previous works.

4.2 Logic2Text

In contrast to LogicNLG, Logic2Text is less related to TabFact since the refer-
ences for Logic2Text were obtained independently. Beyond tables and references,
the dataset includes corresponding intermediate formal representations, denoted
as “logical forms” (LFs). The syntax of these LFs is custom yet formalized, per-
mitting parsing into a nested structure and execution on a table.
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References were collected by crowdsourcing, where the annotators were provided
with logical operators to utilize in sentence construction. Afterwards, full logical
forms were created as a separate task within a conversational setting, with each
function having specifically designed questions. To confirm the correctness of the
resulting forms, the logical forms were then executed against the table.
Figure 4.2 depicts a table from Logic2Text dataset with the corresponding logical
forms and references.

Figure 4.2: Table, logical forms, and references from Logic2Text (train 6995, id
2-15531181-15).

Logical forms consist of nested functions which take a specified set of arguments.
There are 39 functions in the dataset. Function definitions are given in Table
4.3, and the corresponding examples are provided in Table A.1 in Appendix A.2.
Figure 4.3 contains two LF examples with the explanation of an LF structure.

Figure 4.3: Two examples of logical forms. The first one is simple and calculates
the average (dev 2, 2-12890300-1). The second one checks the value uniqueness
and reports the value from another column; it requires the filtering consistency
across different LF arguments (dev 0, 2-17464729-1).
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Name Arguments Output Description

count view number returns the number of rows in the view
only view bool returns whether there is exactly one row in the view
hop row, header value returns the value under the header column of the row
and bool, bool bool returns the boolean operation result of two arguments
max/min/avg/sum view, header number returns the max/min/average/sum of the values under the header column
nth max/nth min view, header, integer number returns the n-th max/n-th min of the values under the header column
argmax/argmin view, header row returns the row with the max/min value in header column
nth argmax/nth argmin view, header, integer row returns the row with the n-th max/min value in header column
eq/not eq value, value bool returns if the two arguments are equal
round eq value, value bool returns if the two arguments are roughly equal under certain tolerance
greater/less value, value bool returns if argument 1 is greater/less than argument 2
diff value, value value returns the difference between two arguments
filter eq/not eq view, header, value view returns the subview whose values under the header column is equal/not equal to argument 3
filter greater/less view, header, value view returns the subview whose values under the header column is greater/less than argument 3
filter greater eq /less eq view, header, value view returns the subview whose values under the header column is greater/less or equal than argument 3
filter all view, header view returns the view itself for the case of describing the whole table
all eq/not eq view, header, value bool returns whether all the values under the header column are equal/not equal to argument 3
all greater/less view, header, value bool returns whether all the values under the header column are greater/less than argument 3
all greater eq/less eq view, header, value bool returns whether all the values under the header column are greater/less or equal to argument 3
most eq/not eq view, header, value bool returns whether most of the values under the header column are equal/not equal to argument 3
most greater/less view, header, value bool returns whether most of the values under the header column are greater/less than argument 3
most greater eq/less eq view, header, value bool returns whether most of the values under the header column are greater/less or equal to argument 3

Table 4.3: Function definitions. Taken from Chen et al. (2020c) with minor
changes.

Further analysis of logical forms shows that the dataset relies on certain LF
patterns, which we will subsequently call “structures”. We derive these structures
using heuristics by replacing values and headers with placeholders X and Y. As an
example, consider the following LF and its corresponding structure:

most eq { all rows ; played ; 114 }
most eq { all rows ; Y ; X }

Across the entire Logic2Text dataset, there are 191 distinct structures. Table 4.4
displays the top five structures along with their absolute frequency in the dataset.
The data shows that the most prevalent LF structure constitutes roughly 12%
(1154 / 9327) of the total dataset, while these five structures combined account
for approximately 47% of the dataset.

structure count

eq { count { filter_eq { all_rows ; Y ; X } } ; X } 1154
and { only { filter_eq { all_rows ; Y ; X } } ; eq {

hop { filter_eq { all_rows ; Y ; X } ; Y } ; X } }
895

most_eq { all_rows ; Y ; X } 854
round_eq { avg { all_rows ; Y } ; X } 739
eq { hop { argmax { all_rows ; Y } ; Y } ; X } 727

Table 4.4: Top 5 LF structures and their counts in Logic2Text dataset.

The function distribution in the data also indicates a considerable imbalance.
Figure 4.4 illustrates the proportions of different function occurrences in the data
(multiple occurrences of a function within a single LF are counted individually).
The functions filter eq, eq, and hop can be considered more “technical” in
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Figure 4.4: Function distribution across Logic2Text dataset.

nature, and their presence in many LFs can be attributed to their functional
roles. Nevertheless, quite a lot of functions form a long infrequent tail, with max
/ min and diff being the most unexpected.
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5 Baseline

In this section, we outline our baseline system and compare it to the baselines
from previous studies to ensure its validity. Moreover, we perform a series of ex-
periments to enhance the robustness of our baseline and explore the challenges of
the task. For evaluation, we employ the metrics described in Section 3.2, specifi-
cally, TaPEx-acc, TaPas-acc, and the BLEU score. For the BLEU calculation,
we calculate SacreBLEU as a standard sequence-to-sequence metric, as well as
BLEU-3 in order to be in line with the previous research on LogicNLG. In this
section, we follow the evaluation setup of the previous works, but we use a slightly
different strategy in our final evaluation (described in Section 7.2).
First, we have rerun the training of the baseline system from Liu et al. (2022a) and
achieved results comparable to the reported ones. Nonetheless, even the column
selection does not completely resolve the technical issue of handling large inputs:
certain inputs get truncated due to the large size of some tables. Moreover, the
input in this system includes certain pre-computed values, which we avoid in our
baseline, keeping it as basic as possible.
We develop a sequence-to-sequence baseline that takes selected columns as input
and produces generated statements as output. Our baseline is a simple end-to-
end system which is based on fine-tuning a pre-trained LM. We conduct several
experiments on t5-base model, and all parameters that we fix during training are
listed in Appendix A.4.1. We discuss our experiments in the subsequent sections.

5.1 Input Formats

As a side experiment, we explore different input formats. All our representations
are designed to be more concise to mitigate the issue of truncation, but each
option encodes information slightly differently. These formats are quite different
from Liu et al. (2022a) where the input is in XML format. The formats we
examine are as follows:

• Markers: cells are listed with their headers, with special marker tokens
denoting row start, cell, and header cell:

<T> oleh protasov <R> 1 <H> goal <C> 1 <H> date <C> 15
may 1984 <H> competition <C> friendly <R> 2 <H> goal <C>
2 <H> date <C> 2 june 1984 <H> competition <C> friendly
...

• NL: natural language: cells are listed with their headers in a concise
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but natural language-like format, without special tokens but with the usual
punctuation:

Title: oleh protasov. Row, goal: 1, date: 15 may 1984,
competition: friendly. Row, goal: 2, date: 2 june 1984,
competition: friendly. ...

• NL-idx: natural language with row indices: the representation is the
same as NL but with the addition of row indices:

Title: oleh protasov. Row: 1, goal: 1, date: 15 may
1984, competition: friendly. Row: 2, goal: 2, date: 2
june 1984, competition: friendly. ...

5.2 Original LogicNLG Outputs

As discussed in Section 4.1, for the proper application of the TaPEx-acc and
TaPas-acc metrics, the system should produce statements similar to the TabFact
dataset which both models were trained on. However, PLOG models, against
which our system is compared, are trained on the original outputs of LogicNLG.
Thus, we train two types of baseline models: initially, we select the most effective
input format based on the corrected outputs, then we train another model using
the same input format, but with the original LogicNLG outputs, in order to
compare our baseline to that from Liu et al. (2022a). Additionally, this provides
us with a rough estimation of the variation in TaPEx-acc and TaPas-acc that
could be expected from correcting the outputs.

5.3 Results

Table 5.1 illustrates the performance of models trained on different input formats.

train dev test
trunc BLEU-3 SacreBLEU TaPEx TaPas BLEU-3 SacreBLEU TaPEx TaPas

Markers 13.5 18.1 17.5 60.3 64.7 18.7 17.5 60.9 63.1
NL 12.8 18.9 17.8 63.8 67.4 19.5 18.3 62.2 65.3
NL-idx 14.0 18.0 17.4 62.7 67.3 19.1 18.3 62.8 66.9

Table 5.1: Comparison of different input formats on LogicNLG with TabFact
outputs. Metrics are described in Section 3.2; trunc stands for the percentage of
truncated inputs.

NL encoding strategy shows superior results on the development set but performs
worse than NL-idx input format with respect to fidelity metric. We rely on the
test set results and compare the model trained on the NL-idx input format and

19



train dev test
trunc BLEU-3 TaPEx TaPas BLEU-3 TaPEx TaPas

Baseline from Liu et al. (2022a) 32.2 19.1 55.9 58.4 19.9 55.5 56.1
T5-base NL-idx 14.0 18.5 61.1 62.0 19.2 59.4 60.9

Table 5.2: Comparison of a t5-base baseline from Liu et al. (2022a) and our
baseline on LogicNLG with original outputs. trunc stands for the percentage of
truncated inputs.

original LogicNLG outputs with the baseline model from Liu et al. (2022a). Table
5.2 reveals that:

• The PLOG input format truncates a considerable amount of inputs, which
could potentially mitigate the model’s performance.

• The baseline by Liu et al. (2022a) surpasses our model in the BLEU-3
metric, while our model achieves higher fidelity scores. This discrepancy
could be due to our focus on maximizing the TaPEx-acc score, whereas
PLOG employs the BLEU-3 metric for model selection.

• The difference in TaPEx-acc score between models trained on original and
corrected outputs is around 1.5 points for development sets and approxi-
mately 3.5 points for test sets, favoring the corrected version. The same
holds for TaPas-acc, where the difference is more than 5 points for both
sets. This proves our hypothesis concerning the importance of data consis-
tency.

We have examined a small number of outputs produced by the baseline and
observed relatively low fidelity. Figure 5.1 displays the table from LogicNLG and
the generated statements.
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Figure 5.1: Example of a baseline system output (LogicNLG, test 35-39, id
1-2668420-17). There are 5 dataset entries for the given table with varying
column selection (selected columns) and the corresponding references. Baseline
model uses only selected columns. A correct generation is in green, unfaithful
ones are in red.
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6 Proposed System

In this section, we describe our pipeline-based system and analyze the perfor-
mance of individual steps.

6.1 Overview

Our system is a pipeline-based approach that leverages symbolic operations. By
breaking the process into multiple steps, we aim to increase the fidelity of gener-
ation and offer greater control and interpretability in the generation process.
Specifically, our system consists of four steps:

1. Data preprocessing (Section 6.2). This step prepares the tables for both
training and inference. In particular, the columns are parsed according
to their identified data types. Column type classification and value pars-
ing are essential for a more meaningful and directed content selection and
subsequent symbolic reasoning.

2. Content selection (Section 6.3). This step generates an LF template, which
can also be viewed as generation planning. A sequence-to-sequence model is
given a more abstract representation of the table rather than the table itself,
and it produces a nested structure of operations on appropriate columns,
without specific values or results of operation execution. This step aims to
achieve two objectives:

(a) we select relevant content and operations without passing actual val-
ues, thus reducing noise in the input and its overall length;

(b) we do not force the model to copy values and, most importantly, do
any kind of reasoning on 2D data.

3. Template filling (Section 6.4). This stage constitutes the symbolic part of
our approach. We have developed an algorithm for recursively filling the
LF template generated in the previous step. The algorithm selects values
for all available functions and expands the option tree, finally producing all
possible template filling options for the given template. By applying a sym-
bolic approach in template filling, we minimize reasoning and calculation
errors, thereby enhancing the overall fidelity of the system.

4. LF-to-text generation (Section 6.5). This step involves using a sequence-to-
sequence model trained in a straightforward manner. We expect the model
to be capable of deriving natural language counterparts from function names
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and copying the corresponding pre-calculated values. This results in the
generation of a fluent yet accurate statement in natural language, which is
the ultimate goal of the pipeline.

Figure 6.1 depicts the example of a pipeline executed on one table. In the sub-
sequent sections, we outline all components of the system, evaluate their perfor-
mance, and provide relevant intermediate experiments. We include the majority
of table examples in Appendix A.3.

Figure 6.1: Example of the pipeline execution on one table. LogicNLG, test 150,
id 2-1554464-3.
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6.2 Data Preprocessing

To perform symbolic reasoning, it is necessary to determine the data type of each
column and parse the table values accordingly, maintaining both the original and
processed values.
First, we remove the last row if it contains summations (total or sum in the first
cell of the row, see Figure A.1), in line with previous works. Additionally, we
delete all rows that duplicate the header (see Figure A.2). Finalizing first basic
preprocessing, we replace all variations of n/a representations (e.g., Figure A.3)
with Python None objects.
Next, we move to the detection of column types. We exclude all None values and
examine the remaining cells for every column. We have categorized these into
nine types (ordered by priority during classification):

• empty: an empty column.

• date: various types of dates. Date parsing is based on the dateparser
package. However, it generates a lot of false positives on our data, so we
have imposed several restrictions:

– numbers must be present;
– if a cell is parsed as a date, either the month or a full year must be

present, or the column header must contain the word date.
If the whole cell is not parsed as a date but a word for month is present,
we look for date substrings in the string and classify the column as date if
any found.

• year: years. We use a regular expression to check if each cell contains the
same number of numbers (i.e. is somehow structured) and one of them is a
year. Afterwards, we take a year if it is the only number in the string. We
limit years to numbers between 1700 and 2099 to avoid false positives.

• rank: rankings or any sequential row enumeration. The column is classified
as a ranking if all cell values are integers and the difference between any
two consecutive cells is 0 or 1.

• num: numbers (floats and integers, including negative values, thousands
with delimiters, e.g., 200,000, and percents). We use a regular expression
for the detection, which matches the string containing only the number.

• time: durations (e.g., 33:42). Times are parsed if all cells contain : and
time can be parsed by the pytimeparse library. The processed value is the
number of seconds.

• same n nums: mixed values where several numbers are present or the
cells contain both numbers and alphabetic characters, but the number of
numbers is the same in every cell.

• str: non-numeric values only, checked with a regular expression.
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• mixed: both numeric and alphabetic characters are encountered, and no
structure can be determined.

In the example provided in Figure 4.2, nearly all column types are represented,
namely: date: date, opponent: mixed, location: str, result: same n nums, atten-
dance: num. Another example is provided in Figure A.4, which features column
types rank, year, time. Figure A.3 presents a column of the type empty.
To ensure the accuracy and sensibility of the parsing, we manually evaluated a
set of 45 tables, i.e., 5 tables for each column type, and each column in every
table was evaluated. In all the tables, we encountered only one arguable column
type, where an increasing score was parsed as a rank. All other columns were
parsed correctly in accordance with the proposed logic.
Table 6.1 shows the distributions of column types in the complete Logic2Text
dataset, which was used for development, as well as the test partition of Logic-
NLG, which was utilized for the final evaluation. Types str and num, which are
the most straightforward for further processing both technically and conceptually,
comprise over a half of all columns for both sets of tables.

column type Logic2Text (all) LogicNLG (test)

str 0.368 0.366
num 0.225 0.217
mixed 0.134 0.143
same n nums 0.123 0.13
date 0.059 0.066
rank 0.043 0.041
year 0.041 0.028
time 0.005 0.007
empty 0.002 0.002

Table 6.1: Column type distribution in all Logic2Text tables and LogicNLG test
tables.

6.3 Content Selection

The content selection step generates logical form templates based on the ag-
gregated information about the table, which can potentially include the header,
column types, and column statistics. This step aims at solving the problem of
excessive input (by avoiding the need to pass the entire table to the model) and
plays an essential role in controllable generation by predicting relevant columns
and operations.
The system receives a table as input, aggregates it to the required format, and
feeds it into the sequence-to-sequence model. The output is a logical form tem-
plate, which is an intermediate representation formalized in LF syntax but with-
out the values from the table. To obtain LF templates for training, we substitute
all values (everything that is not included in the header or is not equal to the
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special token all words) with a placeholder X. For instance, given a table as
depicted in Figure 4.2, the LF template options are as follows:

• most eq { all rows ; result ; X }
• eq { hop { argmax { all rows ; attendance } ; location } ; X }
• round eq { avg { all rows ; attendance } ; X }

In this section, we experiment with varying types of input information (Section
6.3.2), training data (Section 6.3.3), and generation strategies (Section 6.3.4).
We do experiments incrementally, measuring the performance of the models with
several validity and variability metrics and reporting the results in each experi-
ment. Evaluation metrics are described before all experiments in Section 6.3.1.
The final results are analyzed in Section 6.3.5.

6.3.1 Evaluation

Generating templates is quite non-trivial task. Unlike conventional sequence-
to-sequence tasks, where the primary metric group measures the match with a
reference, our goal is different. The model should not be designed to produce out-
puts that match the reference as closely as possible. Instead, it should provide
a variable yet valid set of options based on the input table aggregation. Conse-
quently, although we report BLEU-3 and SacreBLEU scores, we have devised our
own metrics that we use throughout our experiments.
The first group of metrics is related to the validity of the generated templates.
These measurements are conducted by the template filling algorithm (Section
6.4). Template filling is also prone to errors and is generally stricter than the
original LFs. However, we argue that the metrics below align well with the
general objective since they evaluate whether the template can be used in this
specific pipeline. They evaluate general syntax and overall template rationality
(e.g. the template filling fails if the only function is applied to a column where
all values are repeated).

• syntax check (syntax): the proportion of generated templates that are
syntactically correct out of all predictions. The metric checks the match of
brackets, the validity of function names used, the correctness of the men-
tioned column headers and their types, and verifies the number of function
arguments and placeholders.

• executability (exec): the proportion of generated templates that can be
successfully executed relative to all predictions. This metric measures if the
templates can actually be filled. Given that it also applied to the templates
with syntactic errors, the executability score is always lower than the syntax
score.

As our aim is to generate multiple, maximally diverse options per input, we have
designed two metrics to evaluate variability. It’s crucial to note, however, that
these metrics are affected by the number of generated outputs, making them un-
suitable for comparisons involving different output numbers. Thus, we maintain
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a constant number of generated options across all our experiments.

• table variability (var): the average of how many unique LF templates
are generated per input table. The ratios are normalized to lie between 0
and 1, since this ratio cannot be zero originally, e.g., it would be 1/5 if all
5 inputs are the same.

• number of generated structures (structs): number of unique struc-
tures (a term introduced in Section 4.2) among the executable generated
LF templates.

Since we target both validity and variability, our main metric, which we maximize
in our experiments, is the average between executability and the number
of unique structures (ex+st). The executability metric has a range from 0
to 100, and the number of unique structures is expected to be less than 150.
Therefore, both metrics align in magnitude and can be averaged. However, this
averaging exhibits a bias towards the number of unique structures due to its
larger variation (for example, a difference between 36 and 40 structures is more
prominent than a change from 77.1% to 77.6% in executability). However, we
argue that this bias is in line with our objective because small fluctuations in
executability can be neglected in favor of more diverse outputs.

6.3.2 Input Format

A table can be aggregated with varying levels of detail, and we explore multiple
input choices that differ in the volume of information passed to the model. For
all options, we include the table title, its header and the detected column types.
Below, we list all input configurations we consider, providing the example of each.

• Types only (T): Essential information only: the title and the table header
with the associated column types. This level of detail should suffice to
distinguish between numerical and string columns and possibly capture a
column meaning from the column name.

Title: wake forest demon deacons football , 1980 -
89. Column date. Type: date. Column opponent. Type:
mixed. Column location. Type: str. Column result. Type:
same n nums. Column attendance. Type: num.

• Basic statistics (TB): T + basic column statistics expressed in a gener-
alized form without specific numbers. This input option additionally de-
scribes value distribution in the column using natural language. The aim
of this approach is to capture the information required for functions that
operate on precise table values, like all * eq functions.

Title: wake forest demon deacons football , 1980 - 89.
Column date. Type: date. Stats: Column has all unique
values, all values have one occurrence. ... Column
location. Type: str. Stats: Column has most unique
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values, one value has most occurrences, most values have
one occurrence. ...

• Value (TBV): T + B + value example. The objective of this addition is
to show the column format to the model, for instance, a measurement that
can occur beside the numerical value.

Title: wake forest demon deacons football , 1980 - 89.
Column date. Type: date. Stats: Column has all unique
values, all values have one occurrence. Value: 09 / 12
/ 1987. ... Column location. Type: str. Stats: Column
has most unique values, one value has most occurrences,
most values have one occurrence. Value: groves stadium
winston - salem , nc. ...

• Numerical statistics (TBN): T + B + numerical statistics where ap-
plicable. A set of aggregations depends on the column type. max, min,
avg, sum, maximum diff are calculated for num type and for each number in
same n nums. For date, year, and time, only max, min, and maximum diff
are calculated.

Title: wake forest demon deacons football , 1980 -
89. Column date. Type: date. Stats: Column has all
unique values, all values have one occurrence, first:
1987-09-12, last: 1987-11-21, max diff days: 70, max diff
months: 2, max diff years: 0. ... Column location. Type:
str. Stats: Column has most unique values, one value has
most occurrences, most values have one occurrence. ...

• Basic, numerical statistics, and value (TBNV): All input options
combined.

Title: wake forest demon deacons football , 1980 -
89. Column date. Type: date. Stats: Column has all
unique values, all values have one occurrence, first:
1987-09-12, last: 1987-11-21, max diff days: 70, max
diff months: 2, max diff years: 0. Value: 09 / 12 /
1987. ... Column location. Type: str. Stats: Column
has most unique values, one value has most occurrences,
most values have one occurrence. Value: groves stadium
winston - salem , nc. ...

More detailed input options can be quite long which results in truncation of some
inputs. However, while truncation obviously means the loss of information, it
is worth noting that it is the column details that get truncated. This is less
concerning compared to truncating actual table cells from the table’s end, as
observed in the baseline. Furthermore, it is essential to highlight that content
selection operates on the whole table rather than a predefined column selection.
Table 6.2 shows the model performance on all input formats.
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Format exec syntax var structs ex+st SacreBLEU BLEU-3

T 68.5 88.2 85.7 44 56.2 59.2 54.4
TB 78.6 88.7 84.7 36 57.3 59.4 55.9
TBV 77.6 88.6 84.4 41 59.3 58.2 55.0
TBN 78.7 88.9 84.6 44 61.4 57.8 55.1
TBNV 78.1 87.6 84.2 45 61.5 59.1 55.7

Table 6.2: Performance of models trained on different input formats.

The results indicate that there are no huge differences between different input
formats, although T option (only headers and column types) displays notably
lower executability. When considering the more detailed input options, we find
that ≈ 11% of outputs are syntactically invalid, and additional ≈ 10% cannot
be filled with the values, as the executability score shows. Overall, ≈ 78% of the
outputs are executable, suggesting that, on average, 4/5 outputs per table can
be filled with the table data.
Another observation concerns variability and none of the models shows good per-
formance in this respect. Given > 150 unique structures in the training data, the
models produce ≤ 45 executable structures, which is quite low. In our subsequent
experiments, we investigate whether it is possible to increase the variability while
keeping executability on a satisfactory level.
In spite of the inconsistent maximum metric values observed across the models,
we primarily focus on optimizing the ex+st metric, as stated in Section 6.3.1.
While the TBN input type demonstrates superior executability, the TBNV op-
tion appears more promising in terms of variability, and we use it for further
experiments.

6.3.3 Training Data

Liu et al. (2022a) provided a synthetic dataset which they employed for the table-
to-LF pre-training. We use > 675, 000 LFs from this dataset for our experiments
on data augmentation, pre-training, and data balancing.
Data augmentation (all): We add all generated data to the training set and
conduct basic fine-tuning without distinguishing between the original and the
synthetic data.
Pre-training (pretrain): We pre-train on the synthetic dataset and further
fine-tune on the original data samples. Parameters for the pre-training are listed
in Appendix A.4.2.
Balancing (balance + power): We add samples from the synthetic dataset
trying to mitigate the data imbalance described in Section 4.2. We use “soft”
balancing, ensuring that the dominant structures still prevail and and the rare
ones remain infrequent, but smoothing the imbalance. The process for the soft
balancing consists of the following steps:

1. derive LF structures and obtain their counts in the dataset;
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2. get a smoother distribution by raising the number to the power less than
1. The exact power is a hyperparameter and a smoother distribution is
achieved by a lower power value. We further normalize the obtained num-
bers to lie between 0 and 1;

3. calculate new expected counts from the obtained normalized “probabili-
ties”. We do not add new samples to the most frequent structure, so we
can derive an expected new dataset size from its original count and a new
“probability”: int(count / new prob). From the new total number and
“probabilities”, it is possible to get the new counts of all other structures.

4. We select structures to be added based on their original and expected
counts, taking new samples from concatenated original and synthetic data
and possibly repeating instances.

We try two powers: 0.5 (square root) and 0.75.
The performance of the model on different training data is presented in Table
6.3.

Strategy exec syntax var structs ex+st SacreBLEU BLEU-3

orig 78.1 87.6 84.2 45 61.5 59.1 55.7
all 73.5 78.5 97.7 29 51.3 53.1 53.2
balance 0.75 70.6 82.0 90.0 47 58.8 54.1 52.1
balance 0.5 64.7 74.9 96.1 55 59.8 47.4 47.9
pre-train 81.9 91.4 80.1 54 67.9 58.8 55.9

Table 6.3: Results of models trained on different training data and using different
training strategies. orig refers to the best model from section 6.3.2, which is
trained only on the original data.

The results indicate that training on all data at once greatly reduces the number of
unique generated structures. While the balancing stratey enhances the diversity
of executable structures, there’s a marked decrease in executability. This might
be due to the generation of more complex or challenging templates, which our
template filling algorithm finds difficult to address given our restrictions on values
and data types.
In contrast, pre-training substantially enhances generation quality. This can be
explained bythe model’s early exposure to valid and varied data over several steps,
followed by fine-tuning using natural data that features more sensible selection
of columns and operations on them. For subsequent experiments, we use this
pre-trained + fine-tuned model.

6.3.4 Generation Strategies

In previous sections, we adopted top-k sampling with k = 50 both for choosing the
best checkpoint during training and for final predictions, since this strategy has
shown the best executability vs. variablility balance in preliminary experiments.
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We use the best model based on the experiments in the previous sections and
examine several generation parameters that can potentially increase the diversity:

• varying k values in top-k sampling: only the top k values are selected from
the token conditional probability distribution, and the next token is picked
randomly according to the distribution. Random selection substantially
increases variability but avoids generating unexpected tokens due to re-
stricting the token set to the most probable options only. We experiment
with k of 5 and 10.

• top-p sampling, chooses the next token from the set of tokens whose cumu-
lative probability exceeds the p threshold. This type of sampling preserves
diversity but accounts for the problem of sharp and smooth conditional
distributions, adjusting the number of tokens taken into consideration at
every step. We consider p = 0.95.

• temperature: a parameter for the softmax function which influences the
sharpness of the resulting probability distribution. When combined with
sampling techniques, a temperature below 1 sharpens the distribution, lead-
ing to a more restricted generation. Conversely, higher values tend to make
the distribution smoother, enhancing diversity but possibly compromising
fluency. We try a temperature of 1.5 in combination with top-k sampling
with k = 50.

• beam search, which keeps the n beams most probable hypotheses at each
time step, maintaining a pruned tree of hypotheses and selecting the most
probable ones at the end of the generation. This method can potentially
generate high-probability sequences that have a rare token at the beginning.
We set n beams to 5.

• diverse beam search, which divides beams into distinct groups, enforcing
diversity among beam groups throughout the generation process. We use
25 beams divided into 5 groups and set diversity penalty to 1.

The results are presented in Table 6.4.

strategy exec syntax var structs ex+st sacreBLEU BLEU-3

k=50 81.9 91.4 80.1 54 67.9 58.8 55.9
temp=1.5, k=50 73.6 84.4 90.3 48 60.8 55.3 53.1
b=25, bg=5 79.4 84.7 99.7 51 65.2 68.7 59.0
b=5 87.8 92.4 100 46 66.9 61.2 61.0
k=5 82.0 91.4 79.2 53 67.5 58.9 56.0
k=10 81.9 91.4 80.1 54 68 58.8 55.9
p=0.95 82.6 91.8 78.0 54 68.3 59.2 56.1

Table 6.4: Results of different generation strategies. k stands for k in top-k
sampling, p is the parameter for top-p sampling, temp is temperature, b is the
number of beams, and bg is the number of beam groups.
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The outcomes from our experiments are as follows:

• top-k sampling with temperature noticeably decreases executability and,
consequently, the number of executable structures;

• diverse beam search produces results with satisfactory executability and
almost perfect table variability, which is the main feature of the approach
in general. However, a slight drop in the number of unique structures makes
this method less desirable for our purposes.

• traditional beam search achieves the best executability results among all
tested generation strategies. It also shows perfect table variability, which is
inherent to its nature of picking top probabilities (resulting in mostly valid
sequences) and keeping only distinct sequences in the tree. The downside
is its limited structure diversity.

• For top-k sampling, k = 5 performs worse than the baseline of 50 but k = 10
slightly improves the result1.

• Top-p sampling turns out to be the best generation strategy, marginally
outperforming top-k sampling in terms of executability while maintaining
the same count of unique structures. Nevertheless, it is important to note
that table variability is slightly worse for this strategy.

6.3.5 Results

In this section, we provide the scores of several models on the test set and conduct
more in-depth analysis. Table 6.5 presents the performance of several models on
the test set. We show the best models from Sections 6.3.2, 6.3.3, and 6.3.4.

Parameters exec syntax var structs ex+st SacreBLEU BLEU-3

TBNV, orig, k=50 78.7 87.9 84.4 51 64.9 59.4 55.3
TBNV, pre-train, k=50 81.1 90.5 79.3 60 70.6 58.6 55.7
TBNV, pre-train, p=0.95 81.9 91.1 77.0 57 69.5 59.1 56.0

Table 6.5: Results of the best parameter sets on the test set.

The data presented in the table shows that pre-training considerably enhances
the quality of generation, but the choice of an alternative generation strategy
has a negative impact on variability. The decline in ex+st metric on the test set
(−1.1) is larger than its increase for the development set (+0.3). Therefore, our
final choice of the content selection model is the model which takes the input with
all features, is additionally pre-trained on artificial data and employs generation
with top-k sampling with k = 50 (labelled as TBNV, pre-train, k=50).
Diving deeper into the performance of the best model on the test set, we examine
its executability and variability.

1ex+st for is correctly larger and its components exec and syntax are reported to be the
same due to rounding.
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Syntax errors comprise around a half of all executability errors, and our analysis
showed that ≈ 15% of syntactic errors are caused by hallucination (e.g., non-
matching column header names). The remaining 85% are caused by the data
type mismatch between the column and the selected function. It is worth noting
that there are no errors due to brackets mismatch, indicating model’s proficiency
in generating the LF structure. A syntactically correct template may fail to be
filled because of the absence of values or other conditions required by the function
or due to our template filling restrictions imposed to keep the sensibility of the
resulting logical forms (Section 6.4).
In general, executability of 81.9 means that, on average, 4 out of 5 templates
can be filled, but the actual number of executable templates varies for different
tables. Below, we provide an example of generated options for a table, two of
which are valid and three are not:

test 416, 2-11895475-1, Figure A.5
Executable: a statement that some venue occurs only once on some date (several
options available):
and { only { filter_eq { all_rows ; venue ; X } } ; eq { hop { filter_eq {

all_rows ; venue ; X } ; date } ; X } }

Executable: a statement that the same competition was held on two different
dates:
and { eq { hop { filter_eq { all_rows ; date ; X } ; competition } ; hop {

filter_eq { all_rows ; date ; X } ; competition } } ; and { eq { hop {

filter_eq { all_rows ; date ; X } ; competition } ; X } ; eq { hop {

filter_eq { all_rows ; date ; X } ; competition } ; X } } }

No options – a statement that most competitions are X, but there are no prevail-
ing values in the competition column, so most eq function cannot be filled and
executed:
most_eq { all_rows ; competition ; X }

No options – a statement that some competition happened only once on some
date, but all competitions occur at least twice, so only function fails:
and { only { filter_eq { all_rows ; competition ; X } } ; eq { hop {

filter_eq { all_rows ; competition ; X } ; date } ; X } }

Syntax – a statement about maximum score, but score has the column type of
same n nums, which is incompatible with max operation:
eq { max { all_rows ; score } ; X }

Table variability of 0.77 implies that there are 4 unique generations our of 5 in
total per table, and the resulting number of unique executable structures is 60,
which is acceptable. However, these metrics do not measure imbalance in the se-
lection of functions and structures, which we discussed regarding the training data
(Section 4.2). Therefore, we compare the function and structure distributions on
the test set and our generated outputs. We take only executable templates from
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the prediction pool, and the size of the resulting prediction set is 2028 (out of
initial 2500 for 500 tables). As stated in Section 4, the size of the test set is 1092.
Table 6.6 compares top occurring structures in the original test data and our
prediction set. It can be clearly seen that the model has a very strong preference
towards generating the structure with only function, producing it in over 35%
of cases. Apart from generation process, this prevalence can be explained by the
ease of template filling, since unique values are quite common in columns and
there are no additional restrictions for this structure. Most of other structures
have proportions similar to the test data, except for less function which is in
top-5 of generated structures, and argmax which occurs often in the test data but
not in the model outputs.

structure data preds

and { only { filter_eq { all_rows ; Y ; X } } ; eq {

hop { filter_eq { all_rows ; Y ; X } ; Y } ; X } }
0.102 0.362

most_eq { all_rows ; Y ; X } 0.097 0.090
eq { count { filter_eq { all_rows ; Y ; X } } ; X } 0.128 0.075
less { hop { filter_eq { all_rows ; Y ; X } ; Y } ;

hop { filter_eq { all_rows ; Y ; X } ; Y } }
0.044 0.070

round_eq { avg { all_rows ; Y } ; X } 0.076 0.064
eq { hop { argmax { all_rows ; Y } ; Y } ; X } 0.093 0.016

Table 6.6: Proportions of top-occurring structures in the original test data (data)
and predictions (preds).

We also investigate the frequencies of individual functions. Figure 6.2 depicts
the function distribution in the original test data and generated LF templates.
The comparison highlights a bias towards only operation as well, which is also
presumably a reason for higher and and filter eq frequencies as well. Other
findings include wider occurrence of several functions (sum, most greater) and
unexpected rarity or absence of others: count is generated less frequently than
it is used in the data, argmax and greater are very infrequent, and nth argmax
and diff are never generated although present in the data.
Theoretically, several underrepresented functions could be added to the outputs
by rule-based output augmentation. For instance, all templates with less func-
tion can be converted to the analogous templates with greater or used to con-
struct a template with diff operation. An alternative could be more targeted
balancing in the training data. However, these steps remain out of scope of this
work.

6.4 LF Template Filling

This section describes the template filling algorithm, which generates valid logical
forms (LFs) from the templates created in the previous stage. An example illus-
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Figure 6.2: Function distribution comparison between Logic2Text test set and
generated outputs.

trating the inputs and outputs is provided below. The input suggests selecting n
for nth argmax and filling the corresponding value from home team column. The
reference takes the second-largest crowd value, while our system suggests three
alternatives using the first, second, and third-largest values.

train 79, 2-10750694-122

Input:
eq { hop { nth_argmax { all_rows ; crowd ; X } ; home team } ; X }

Suggested options:
eq { hop { nth_argmax { all_rows ; crowd ; 1 } ; home team } ; geelong }

eq { hop { nth_argmax { all_rows ; crowd ; 2 } ; home team } ; south melbourne }

eq { hop { nth_argmax { all_rows ; crowd ; 3 } ; home team } ; carlton }

Reference:
eq { hop { nth_argmax { all_rows ; crowd ; 2 } ; home team } ; south melbourne }

in the 1952 vfl season , the 2nd largest crowd happened when the home team was
south melbourne .

In general, we traverse LF as a tree structure, following a depth-first search (DFS)
approach, and during this traversal, we expand the tree of potential filling options
(Section 6.4.1). We have implemented nearly all the functions presented in the
data (Section 6.4.2). Each of these functions returns a list of possible valid filling

2Examples of the algorithm outputs in this section use the following structure: table identifier
(split and index in the dataset, table id); input; suggested options; reference LF; reference text.
General LF cases from the dataset are presented with table identifier, reference LF, and reference
text.
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options, along with the result of function execution for every option. If a function
is an argument of another function, the parent function is executed on each of
the child’s options, thereby expanding the options tree further.
Moreover, certain structures in the data require consistency across different parts
of the LF. Therefore, we perform additional consistency checks that rely on other
LF parts and select placeholder values that satisfy a set of conditions (Section
6.4.3). Lastly, to enhance the quality and quantity of filling options, we employ
additional value processing (Section 6.4.4).
The evaluation strategies are described in Section 6.4.5, and the results are dis-
cussed in Section 6.4.6.

6.4.1 Filling Algorithm

First, a recursive syntactic check is conducted. It includes:
1. technical LF parsability, which implies the presence of function names in

the appropriate locations and a match between the opening and closing
brackets.

2. validity of function names;

3. validity of all arguments, which includes nested structures (evaluated through
a recursive call), special keywords (such as all rows and placeholders), and
column names.

4. applicability of the function to the type of column on which the function is
operating;

5. the match between the number of provided arguments and the function
definition;

6. number of placeholders, which can not exceed one.
Examples of several syntactically invalid functions are below:

• Brackets mismatch:
eq { hop { argmax { all_rows ; tonnage } } ; name } ; X }

• Not suitable column type:
eq { hop { argmax { all_rows ; episode name } ; actor } ; X }

• Mismatch in the number of arguments (argmax does not need a value to be
filled):
eq { hop { argmax { all_rows ; tonnage ; X } ; name } ; X }

If the check is successfully passed, the recursive algorithm starts. One recursive
step is described below:

1. For a given function, we iterate over its arguments and collect all possi-
ble combinations of the arguments that can be filled at this stage. The
variability comes from processing nested LFs at this step: a recursive call is
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made to process, execute and fill the nested LF, returning all possible filling
options. If a placeholder is present, it is left unchanged at this stage. How-
ever, each resulting option constitutes a complete set of arguments ready
for the selection of the placeholder value and the execution of the current
function.

2. For each obtained argument combination, we call the function and get the
list of filling options along with the corresponding execution outputs. We
then fill the LF template and return the function’s output and a filled
template for every option.

6.4.2 Functions

In this study, function implementations serve not only for execution but also for
producing all valid value options for filling the function placeholder, if required.
We have implemented all functions from Table 4.3 except for all not eq, which
is encountered in the dataset only once, stating that all values in the column are
not None (train 3450, 2-17593350-2), and has a relatively unclear semantics.
Functions are called in a uniform manner and yield a uniform output. Apart from
compulsory function arguments, functions connected with other LF parts also
take information about the current state of LF tree in order to perform consistency
checks. Functions that do not have placeholders (e.g., max, count, and others)
perform only execution on the given input, and functions that require to be filled
(e.g. nth max, filter eq) also return filling options along with corresponding
execution results.
An overview of function implementations is presented in Table 6.7. Overall, the
implementations, including column type and value restrictions, align with the
semantics of the functions. The additions column in the table also lists which
consistency checks are run for every function and which helpers are used to derive
value options. Non-trivial details about the implementation are marked in the
table and described in Appendix A.5.

6.4.3 Consistency Checks

Several LF structures in the data require consistency across different LF parts.
Consistency checks are relevant for filtering functions, which return a subtable
or a row, to ensure that filtering is the same in different LF parts or that both
arguments satisfy a condition for an ancestor boolean function. In this section,
we will describe each check and provide relevant examples.
Uniqueness The value must occur only once in the column if ancestor func-
tions include only (which by its semantics requires the value to be unique) or
hop (which accepts a row thus implying value uniqueness in preceding filtering
function). Otherwise, the value must occur more than once to make subsequent
operations more sensible. In the following example, value fl in filter eq is
checked to be unique before being selected:

37



function column types returned filled additions

filter all all original table None

filter eq all filtered table raw valueE1 all checks6.4.3,
substrings6.4.4

filter not eq all filtered table raw value all checks
filter greater eq
filter less eq

num, date, rank,
year, timeE4 filtered table raw value all checks

filter greater
filter less num, rankE6 filtered table floor

ceil
all checks,
rounding6.4.4

max
min

num, date, rank,
year, time raw valueE2 None

argmax
argmin

num, date, rank,
year, time row None

nth maxE10

nth min
num, date, rank,
year, time raw value n

nth argmax
nth argmin

num, date, rank,
year, time row n check for andE11

avg num, timeE7 rounded num None
sum num, timeE7 rounded num None
count all int None

diff num, date, rank,
year, timeE9

rounded num or
timedelta in
days/seconds

None

hop all rawE2 / proc value None check if parent
func is eqE2

only all boolE3 None
and all bool None

eq all bool raw value /
NoneE12

not eq all bool None
round eq num, time bool rounded num
greaterE9

less
num, date, rank,
year, time bool None

most eqE13 all bool raw value substrings
most not eq all bool raw value
most greater eq
most less eq

num, date,
year, timeE8 bool raw value

most greater
most less num bool floor

ceil rounding

all eq all bool raw value substrings
all not eq

all greater eq
all less eq

num, date,
year, timeE8 bool raw value

all greater
all less num bool floor

ceil rounding

Table 6.7: Overview of function implementations. Hyperlinks next to certain
elements lead to the comments about their implementation (Appendix A.5).

38



train 393, 1-26996293-2
only { filter_eq { all_rows ; position ; fl } }

in the second round of the 1970 cfl draft , there was only one fl or flankerback
drafted .

Greater / Less This check is conducted if the ancestors in the LF tree contain
a greater or less function, where the second argument must be strictly less /
greater than the first one. Here, baker brook is verified against madawaska and
confirmed to have a smaller area km 2 value:

train 412, 2-171250-2
greater { hop { filter_eq { all_rows ; official name ; madawaska } ; area km 2 } ;

hop { filter_eq { all_rows ; official name ; baker brook } ; area km 2 } }

the parish of madawaska ( madawaska county , new brunswick ) has a larger land
area than the parish of baker brook .

Inequality This condition is required by not eq and diff functions, and the
second value must not be equal to the first argument. In the example below,
end of the middle is selected because it has a different original air date from joke
overload.

train 334, 1-28081876-4
eq { diff { hop { filter_eq { all_rows ; title ; joke overload } ; original air

date } ; hop { filter_eq { all_rows ; title ; end of the middle } ; original air

date } } ; -7 }

the childrens hospital episode titled ” joke overload ” had an original air date that
was 7 days before the original air date for the episode titled ” end of the middle
. ” .

Equality The equality check is run for the special case of eq function, where
both arguments are LFs and the equality between their outputs must be verified.
We additionally verify that the second LF is not a full repetition of the first one.
In the following example, the check must verify that the second filter eq fills in
a different value of class than the filtering in the first argument of eq, but their
quantity made values must be equal.

train 441, 2-18620528-14
eq { hop { filter_eq { all_rows ; class ; a - 4 } ; quantity made } ; hop {

filter_eq { all_rows ; class ; a - 3 } ; quantity made } }

the northern pacific railway locomotive ’s class a - 4 and class a-3 had the same
amount of quantity made .

And This check runs if the ancestors in the tree contain and function. Based on
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the data, it must match filter * functions and nth arg* with nth * functions
across the LF. In a simple case, there is only one and and the first argument
contains only one filtering. There are harder cases with functions like greater
with two different filterings or nested and functions. In the simple example below,
filtering value slovaks must be repeated in both filter eq function calls.

train 1, 1-2562572-12
and { only { filter_eq { all_rows ; largest ethnic group ( 2002 ) ; slovaks } } ; eq

{ hop { filter_eq { all_rows ; largest ethnic group ( 2002 ) ; slovaks } ;

settlement } ; pivnice } }

pivnice is the only settlement in vojvodina with slovaks as the largest ethnic group .

6.4.4 Helpers

In order to broaden the option space and produce more human-like outputs,
we have developed two helper functions that transform cell values: substring
matching and a special rounding algorithm.
Substring matching Substring matching aims at matching a cell if a substring
in it is a match. From the raw cell values, we extract 1-, 2-, and 3-grams that
do not contain punctuation and stopwords and are encountered in 3 or more
cells. Afterwards, we remove all n-grams that occur only within larger selected
substrings, including the original text. The resulting list of substrings is used
along with the full values in the filling functions. In the example provided, the
reference contains substring matching and the system proposes both whole values
and substrings:

train 313, 2-15985163-2
Input:
eq { count { filter_eq { all_rows ; method ; X } } ; X }

Suggested options:
eq { count { filter_eq { all_rows ; method ; choke } } ; 3 }

eq { count { filter_eq { all_rows ; method ; decision ( unanimous ) } } ; 4 }

eq { count { filter_eq { all_rows ; method ; decision } } ; 5 }

eq { count { filter_eq { all_rows ; method ; tko ( punches ) } } ; 2 }

eq { count { filter_eq { all_rows ; method ; tko ( referee stoppage ) } } ; 2 }

eq { count { filter_eq { all_rows ; method ; tko } } ; 9 }

eq { count { filter_eq { all_rows ; method ; submission } } ; 4 }

eq { count { filter_eq { all_rows ; method ; submission ( guillotine choke ) } } ;

2 }

Reference:
eq { count { filter_eq { all_rows ; method ; submission } } ; 4 }

4 of jake o’brien ’s fights have ended due to submission .
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Rounding Reasonable value rounding is required for the natural and logical
filling of * greater and * less functions. For instance, 74 can be rounded to
70, and it is logical to round 143640 up to 150000. Therefore, for each set of
values, we find a suitable increment to a multiple of which values are rounded.
The increment is 10 for the first example and 50000 for the second one. During
value selection for a particular function, we round numbers up or down to the
closest multiple of the chosen increment. In the following example, the increment
was chosen to be 5000 and the values were rounded to its multiples:

train 690, 1-27764201-2
Input:
eq { count { filter_greater { all_rows ; attendance ; X } } ; X }

Suggested options:
eq { count { filter_greater { all_rows ; attendance ; 10000 } } ; 6 }

eq { count { filter_greater { all_rows ; attendance ; 15000 } } ; 4 }

eq { count { filter_greater { all_rows ; attendance ; 25000 } } ; 3 }

Reference:
eq { count { filter_greater { all_rows ; attendance ; 10000 } } ; 6 }

the 2005 cologne centurions season featured an attendance of more than 10000
fans six times .

6.4.5 Evaluation

To assess the performance of our template filling algorithm, we employ an au-
tomatic metric that measures recall, i.e., how many original LFs our system can
reconstruct from the corresponding templates. We evaluate recall separately on
the training + development sets, which we utilized extensively for testing and
debugging throughout the development process, and on the test set, which we
did not use during the development stage. Additionally, we examine the first 50
erroneous examples from the beginning of the test set3 to identify the reasons for
unsuccessful template filling.
Furthermore, we conduct a small-scale manual evaluation to assess precision, i.e.,
the number of false positives encountered among the resulting filling options.
We manually examine the first 50 examples of filled templates and the same 50
erroneous examples (as used for the recall analysis) to estimate the quantity of
false positive cases.

6.4.6 Results

The results of the automatic recall evaluation are presented in Table 6.8.
From 50 erroneous examples, we observe several error patterns that prevent the

3We select the first examples because the data is initially shuffled.
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split correct total refs recall

train + dev 5810 8235 0.71
test 782 1092 0.72

Table 6.8: Recall of template filling algorithm on train + development and test
sets. correct: number of items in the data where actual reference is contained in
the set of suggested filling options.

template from being filled:

1. 20 examples – column type mismatch. In the example below, score column
is of type same n nums with the format 0 - 1, on which our system does
not conduct numerical operations.

test 32, 2-11048203-1, Figure A.7
Input:
eq { hop { nth_argmax { all_rows ; score ; X } ; competition } ; X }

Suggested options: none
Reference:
eq { hop { nth_argmax { all_rows ; score ; 2 } ; competition } ; 2007 afc

asian cup qualification }

of the games that hatem aqel played from 2002 to 2013 , the one with the
second highest winning score was the 2007 afd asian cup qualification game
on 22 february 2006 .

2. 9 examples – errors in substring selection in cell values. In the following
example, the system did not include the option in the reference due to our
restriction to take only ngrams that occur 3 times or more, and dorell wright
occurs only twice.

test 40, 2-13762472-8, Figure A.9
Input:
eq { count { filter_eq { all_rows ; high points ; X } } ; X }

Suggested options:
eq { count { filter_eq { all_rows ; high points ; dwyane wade } } ; 4 }

Reference:
eq { count { filter_eq { all_rows ; high points ; dorell wright } } ; 2 }

dorell wright had two high points performances for the miami heat .

3. 8 examples – number rounding mismatch. This is a usual number rounding
which we also regulate, but it is not related to the helper function described
above. We do not round the aggregation results to integers, causing errors
for some examples:
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test 148, 2-18974097-6, Figure A.11
Input:
round_eq { avg { all_rows ; enrollment } ; X }

Suggested options:
round_eq { avg { all_rows ; enrollment } ; 737.88 }

Reference:
round_eq { avg { all_rows ; enrollment } ; 738 }

the average student enrollment of schools in the ohio river valley - western
indiana conference is 738 .

4. 6 examples – restrictions imposed by us in our function implementation. In
this example, restriction on n in nth argmin (described in Appendix A.5)
caused the reference not to be included in the option list.

test 18, 2-18662700-3, Figure A.6
Input:
eq { hop { nth_argmin { all_rows ; time ; X } ; country } ; X }

Suggested options:
eq { hop { nth_argmin { all_rows ; time ; 1 } ; country } ; new zealand }

eq { hop { nth_argmin { all_rows ; time ; 2 } ; country } ; germany }

Reference:
eq { hop { nth_argmin { all_rows ; time ; 3 } ; country } ; united states }

the rowers from the united states had the 3rd shortest time in women ’s
double sculls during the 2008 summer olympics .

5. 4 examples – arguable or wrong reference. Here the reference includes 90
repeating which is a loose interpretation of the resulting average, which is
43/11 = 3.9090...:

test 83, 2-167482-1, Figure A.10
Input:
round_eq { avg { all_rows ; mult } ; X }

Suggested options:
round_eq { avg { all_rows ; mult } ; 3.91 }

Reference:
round_eq { avg { all_rows ; mult } ; 3.90 90 repeating }

the average mult of all models is 3.90 with the 90 repeating .

6. 3 examples – other reasons.
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Out of the 50 examples we analyzed, our algorithm suggested other valid options
for 25 of them.
The manual analysis of the same 50 erroneous examples and the first 50 correctly
filled examples reveals that our algorithm produced undesirable filling options,
or false positives (FPs), for 7 out of 100 templates. To calculate precision, we
employ the strictest evaluation criterion. For each template associated with a
table, a set of filled options is provided by the algorithm. If at least one filling
option is incorrect or does not make much sense, the entire set is considered a
FP for that template. In this setup, precision is 93/100 = 0.93.
In this sample, FPs appear because of the imperfect substring matching algo-
rithm, which tends to extract irrelevant information from the cells (such as first
names, numbers, or generic parts in location names like stadium). The example
below illustrates a set of filling options where one filling is correct while the other
one is a FP (park, which is too generic for a location).

test 39, 2-11788447-2, Figure A.8
Input:
eq { count { filter_eq { all_rows ; venue ; X } } ; X }

Suggested options:
eq { count { filter_eq { all_rows ; venue ; park } } ; 4 }

eq { count { filter_eq { all_rows ; venue ; roker park } } ; 2 }

Reference:
eq { count { filter_eq { all_rows ; venue ; roker park } } ; 2 }

roker park was used two times as a venue during 1990-1991 season when kieron
brady played .

6.5 LF-to-Text Generation

The objective of this step is to generate a sentence from a logical form. Consider
the example below:

train 5215, 2-1235920-4
Title:
julian bailey
LF:
eq { count { filter_eq { all_rows ; team ; mg sport & racing ltd } } ; 2 }

Output:
julian bailey drove with the team mg sport & racing ltd for a total of two years .

In this stage of the pipeline, we fine-tune a pre-trained sequence-to-sequence
model in a basic setup without any additional enhancements. Our hypothesis
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is that modern language models, even of moderate size, are generally capable of
copying values from the input and learning direct natural language counterparts
of formal functions.

6.5.1 Model Description

We feed the title, linearized header, and LF to the model. During training, we
use a gold standard LFs provided in the dataset, and the inference mode uses the
output from the template filling step (Section 6.4). Below is an example of the
input:

Title: list of cities , towns and villages in vojvodina. Header: settlement

| cyrillic name other names | type | population ( 2011 ) | largest ethnic

group ( 2002 ) | dominant religion ( 2002 ). Logical form: and { only

{ filter_eq { all_rows ; largest ethnic group ( 2002 ) ; slovaks } } ;

eq { hop { filter_eq { all_rows ; largest ethnic group ( 2002 ) ; slovaks

} ; settlement } ; pivnice } }

The output is a single sentence in natural language:

pivnice is the only settlement in vojvodina with slovaks as the largest
ethnic group .

We generate only one option per LF, prioritizing fidelity over variability at this
step.
We do not carry out any experiments at this stage as our model is quite basic
but still shows good performance in this setup. We utilize the t5-base model,
and the training and generation parameters are detailed in Appendix A.4.3.

6.5.2 Evaluation

For evaluation, we employ the BLEU score in the BLEU-3 and SacreBLEU im-
plementations, which are also used for end-to-end evaluation. We also use BLEC
score (Shu et al., 2021).
BLEC (Bidirectional Logic Evaluation of Consistency) is a rule-based metric
specifically designed to evaluate the logical consistency between semantic parses
and the generated texts. The output is the list of mismatched items, from which
binary consistency score can be derived: score is 1 if the list is empty and 0 oth-
erwise. The rationale behind this metric aligns with our objective as it is based
on the idea that many values from the LF should directly correspond to tokens
in the text.
The metric has a fixed set of target tokens (for instance, lowest for the min
function, or majority for the most eq function) and a number parser. During
evaluation, it matches tokens and numbers between the formal representation and
text in a bidirectional manner, and if it finds at least one missing counterpart for
a target token or number, the pair is marked as inconsistent.
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6.5.3 Results

Quantitative results on the test set of Logic2Text are presented in Table 6.9.

BLEC BLEU-3 SacreBLEU

90.48 36.51 36.21

Table 6.9: LF-to-Text model performance on Logic2Text test set.

Since the BLEC metric is rule-based, we hypothesize that it might have low recall,
predicting 0 for the outputs that are actually correct. We have run the metric
through the original test set data, i.e., taking references as generations, and got
the score of 89.2. Given that all items in this set match the input LFs, thus being
true positives, this score equals to the metric recall.
We have also conducted a manual analysis in order to obtain insights about our
system and metric predictions. We evaluate 50 random examples for consistent
and inconsistent outputs as predicted by BLEC. Out of the positive predictions,
6 examples out of 50 were found to be incorrectly flagged as correct LF-to-text
generations. Out of the negative predictions, only 21 examples out of 50 were
found to be truly incorrect LF-to-text generations.
Below are examples of generations with differing BLEC predictions.

• Generation is correct, BLEC correctly predicts 1:

test 3, 2-16660997-15
Title:
1963 new york giants season
LF:
eq { count { filter_eq { all_rows ; date ; october } } ; 4 }

Generation:
four of the games took place in the month of october during the 1963 new
york giants season .
Reference:
during the 1963 new york giants season , the new york giants played four
games during the month of october .

• Generation is wrong (diff is misintepreted), BLEC incorrectly predicts 1:

test 87, 2-18880596-3
Title:
hughes hall college boat club
LF:
eq { diff { hop { filter_eq { all_rows ; year ; 2009 } ; finish position } ;

hop { filter_eq { all_rows ; year ; 2008 } ; finish position } } ; -4 }

46



Generation:
the hughes hall college boat club finished in 4th place in 2009 when compared
to 2008 .
Reference:
in 2009 , the hughes hall college boat club finished four positions better than
in 2008 .

• Generation is wrong (nth argmax on time column is interpreted as fastest
instead of slowest), BLEC correctly predicts 0:

test 34, 2-18662686-4
Title:
rowing at the 2008 summer olympics - men ’s double sculls
LF:
eq { hop { nth_argmax { all_rows ; time ; 2 } ; country } ; slovenia }

Generation:
slovenia had the second fastest time in the 2008 summer olympics - men ’s
double sculls .
Reference:
for the teams who have times , the team with the 2nd slowest time in rowing
at the 2008 summer olympics is slovenia .

• Generation is correct, BLEC incorrectly predicts 0:

test 123, 2-11898258-5
Title:
list of largest airlines in south america
LF:
eq { hop { argmin { all_rows ; rank } ; airline } ; tam }

Generation:
tam is the airline that ranks the highest among the largest airlines in south
america .
Reference:
of the largest airlines in south america , the one with the best rank is tam .
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7 End-to-End Evaluation

In this section, we analyze the outputs of our system on development and test sets
of LogicNLG. We collect the generation statistics, calculate automatic table- and
reference-based metrics, and compare the results with the baseline. Afterwards,
we conduct a small-scale human evaluation to further examine the resulting qual-
ity of our system and reliability of the metrics. We also discuss the limitations of
the automatic metrics used in previous works and this study.

7.1 Setup

We generate 5 LF templates per table and provide all possible filling options for
each executable template without any pruning at the generation stage. The num-
ber of final outputs for each table depends on the executability of the generated
LF templates and the number of filling options for every template, and it is highly
variable.
Some LF templates tend to produce a huge number of filling options. One such
example is filling options for greater function, for which the number of all valid
comparisons from the table can exceed one hundred. However, generations de-
rived from the same template are not versatile, and this type of output is quite
far from the the real-life usage. Therefore, in our analysis, we do option selection
and report four types of the output sets:

• all: all outputs without any selection.

• several: we select 5 filling options per template, keeping all templates
represented but balancing their occurrences.

• single: we keep only one filling option per template, thus making the num-
ber of generations equal to the number of unique executable templates.

• one: we employ single strategy and subsequently select one item per table.

Distinguishing between these setups allows us to evaluate our system from three
perspectives: our whole output as the most formal evaluation setup, more real-
life situation when a user is suggested to select one item out of several similar
options, and the smallest but the most diverse output without similar options
at all. The last setup, one, corresponds to the selection of outputs for manual
evaluation.
It is important to note that in rare cases our system does not produce any outputs
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for a table. In such cases, we consider the prediction pool to consist of one empty
prediction.

7.2 Automatic Evaluation

For LogicNLG, we do not have golden data for the intermediate steps. Therefore,
we only evaluate the executability and versatility of content selection outputs
and calculate end-to-end metrics, namely, TaPEx-acc, TaPas-acc, and BLEU
scores.
We keep the original BLEU score setup but change TaPEx-acc and TaPas-
acc calculation. We discard the standard averaging setup because, as mentioned
above, our system produces a variable number of statements per table, thus caus-
ing the discrepancy in the number of outputs between our system and the baseline
and making the comparison of averages unfair. Instead, we consider an average
of averages, where the NLI models’ scores are averaged for each table and the
overall average is taken among the table scores rather than individual examples.
Therefore, the comparison is valid since the second step of the calculation is con-
ducted on the equal number of items. In the next sections, we refer to the average
of averages as TaPEx-aa and TaPas-aa.
For all option selection setups except for all, we run the evaluation for 10 times
and report the average and the standard deviation of the scores.

7.3 Manual Evaluation

Since the task is quite difficult and the automatic metrics are not perfect, we also
conduct a small-scale manual evaluation. We hired 5 NLP Master’s students who
evaluated a baseline and our final system by two criteria:

• Logical correctness: whether the sentence is logically correct in relation
to the given table and its title. This criterion concerns only formal logi-
cal correctness, almost excluding commonsense. Nevertheless, we include
“partially correct” option, possible examples of which are non-critical mis-
interpretation of columns (e.g., player instead of team) or the incomplete
information given in a sentence, which makes it misleading (e.g., listing only
several items out of all that satisfy a condition). We also add the option
“nonsense” for examples that are not fluent or just do not correspond to
the table at all (e.g., In 1981, the champion was a champion.).

• Interestingness: whether the statement describes an interesting fact about
the table. We consider a statement interesting if it could be encountered
in a human-produced description of a table, e.g., in a report or a news
article. This formulation implies that the sentence sounds natural in the
context of the table and describes a non-trivial fact that a human would
also find worthy to report. We make the evaluation of this criterion relative,
i.e., making the annotator select more interesting option among two of
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them, in order to to facilitate the task for the annotators and get the direct
comparison between the baseline and our system. Nevertheless, we include
the options “both are interesting” and “none is interesting” to account for
cases when both generations are equally good or bad.

For evaluation, we randomly sample 100 tables from the test set of LogicNLG.
For each table, we employ one strategy described above. We derive an example
for evaluation through single selection strategy since it completely mitigates the
imbalance caused by numerous options per template, making the selection of
less populated templates more probable and thus increasing the overall sample
variability.
We developed a simple web application for the questionnaire. We divided the set
of examples into four parts of 25 tables each to make it more convenient for the
annotators. Exact instruction for the annotators and an example of a question
are presented in Appendix A.6.

7.4 Results

In this subsection, we analyze the quantity of the resulting outputs, the results
reported by automatic metric, and the insights that manual evaluation provides.

7.4.1 Generation Statistics

The results on the overall number of generated statements are presented in Table
7.1.

dev test

total avg empty total avg empty

baseline 4260 5.0 0 4305 5.0 0
all 30443 35.9

5

34215 39.7

5several 8275 9.8 8331 9.7
single 2826 3.3 2873 3.3
one 843 0.99 857 0.99

Table 7.1: Number of statements generated by the baseline and the proposed
system. total: raw number of generated sequences. avg: average number of
statements per table. empty: number of tables with no generated statements.

For the baseline, the number of statements corresponds to the number of entries
in the dataset, and the number of sentences per table is ≈ 5.
Considering our system, there are not many unique executable LF templates
generated for the table, which single selection strategy (one option per template)
reflects, producing 3.3 statements per table on average. However, some templates
produce quite a lot of output options, resulting in over 35 different statements
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per table on average if all possible outputs are included and almost 10 for several
strategy, where option selection is applied. For 5 tables, nothing was generated,
which comprises 5/848 = 0.59% for the development set and 5/862 = 0.58% for
the test set.

7.4.2 Content Selection

Table 7.2 shows that there are no huge differences in the model outputs for
Logic2Text and LogicNLG. This is expected because the source of two datasets
is the same and the content of the tables is similar.

parameters exec syntax var structs ex+st

Logic2Text, test set 81.1 90.5 79.3 60 70.6
LogicNLG, test set 80.4 90.0 80.6 61 70.7

Table 7.2: Content selection results on the test sets of Logic2Text (Section 6.3.5)
and LogicNLG.

7.4.3 End-to-end Metrics

Table 7.3 displays the performance of the baseline model and our system with
three option selection strategies.

dev test

BLEU-3 SB TaPEx-aa Std TaPas-aa Std BLEU-3 SB TaPEx-aa Std TaPas-aa Std
baseline 18.0 17.4 62.8 - 67.4 - 19.1 18.3 62.6 - 66.9 -
all 10.6 10.7 83.7 - 81.1 - 9.0 9.3 83.9 - 81.8 -
several 13.0 12.1 83.8 0.16 80.1 0.14 12.8 12.0 83.9 0.14 81.5 0.18
single 13.7 12.8 85.5 0.57 81.5 0.59 13.5 12.7 84.9 0.33 81.8 0.30
one 13.5 12.9 85.1 1.08 81.2 0.81 13.8 13.0 84.7 0.71 81.3 1.09

Table 7.3: End-to-end evaluation of the baseline model and the proposed system
with four option selection strategies. SB stands for sacreBLEU.

The first observation is that all output variants of our system show quite high
fidelity, which is substantially superior to the baseline. Both BLEU scores are
much lower, which is an expected outcome, since our system is trained on another
dataset, uses other logical operations and overall has slightly different underlying
structure. We also find that single shows the best TaPEx score and quite low
standard deviation.
Additionally, we compare our system to the previous works, although it is im-
portant to remember that the numbers are not directly comparable, since the
output format is different (discussion in Section 4.1). Nevertheless, from the
baseline comparison (Section 5) we obtained an estimate of expected difference
in TaPEx score, which is 3.5 points, favouring the TabFact output format.
Table 7.4 shows the TaPEx-aa scores for several previous systems and our system
with single option selection strategy. If we consider the difference in output
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format, our system still outperforms the best previous one by several accuracy
points.

Output BLEU-3 TaPEx-aa

LoFT (Zhao et al., 2023b) original 14.9 63.5
PLOG, T5-base (Liu et al., 2022a) original 18.9 61.6
PLOG, BART-large (Liu et al., 2022a) original 21.0 73.6
ReasTAP (Zhao et al., 2022) original 20.7 79.4
Ours, single tabfact 13.5 84.9

Table 7.4: BLEU-3 and TaPEx-aa scores for previous systems and ours with
single option selection strategy. Please note that direct comparison with previous
works is not possible due to the output format mismatch.

7.5 Manual Evaluation Results

We obtained the results on 100 tables from five annotators, and the following
aspects were annotated:

1. clarity of the given table: binary, and no other questions were answered
in case the table is unclear for the annotator;

2. correctness: four classes: nonsense, incorrect, partially correct, correct.
3. interestingness: four relative classes: none is interesting, first is more

interesting, second is more interesting, both are interesting.

Five annotators marked 0, 1, 3, 4, and 16 tables as unclear, the median being 3
and the average 4.8. There is no consistency in tables marked as unclear, which
can be due to different background of the annotators.

7.5.1 Logical Correctness

First, we evaluate inter-annotator agreement by measuring Fleiss’ kappa. We
evaluate several variations differing in granularity:

1. all tables, including the unclear ones, which results in 100 tables, and 5
categories, including unclear category. Agreement is 47.1.

2. tables that are clear to everyone: 80 tables, only 4 correctness categories.
Agreement is 53.9.

3. tables that are clear to everyone and binary correctness categorization (non-
sense and incorrect vs. partially correct and correct): 80 tables and 2 cat-
egories. Agreement is 56.4.

Overall, we can observe moderate annotator agreement, which is an acceptable
level given the complexity of the task. We provide the individual annotator
statistics in Table A.2 in Appendix A.7. For aggregation, we excluded unclear
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tables for each annotator separately and calculated the proportions of each class.
We then averaged the resulting numbers for each class across all annotators.
Figure 7.1 presents the comparison of the baseline and our system for every
correctness class.

nonsense incorrect part correct correct
0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n

Baseline Ours

Figure 7.1: Correctness of the baseline and our system based on the manual
evaluation of 100 tables.

We also estimate the correlation of the manual evaluation and TaPEx outputs.
We take only clear tables and calculate the average judgement for each sample,
converting nonsense to 0 and partially correct to 0.5. We further convert the
result into a binary format with values ≥ 0.5 being rounded to 1.
If we consider all annotators, thus keeping 80 tables that are clear to everyone,
Fisher exact test does not show significant correlation between manual evaluation
and the metric output (p-value = 0.063). If we remove one annotator who dis-
carded 16 tables, we conduct a test on 93 tables, average across 4 annotators and
obtain a statistically significant correlation (p-value = 0.033). However, if evalu-
ated individually, only one annotator has a significant correlation with TaPEx
metric. We report corresponding p-values in Table A.2 in Appendix A.7.
Overall, given quite high p-values even in the cases of statistical significance,
we argue that the metric does not correlate with human judgements well, even
though our system shows good fidelity results in both evaluation setups. Several
examples of erroneous TaPEx predictions are presented in Appendix A.8.

7.5.2 Interestingness

Interestingness annotation is much less consistent, highlighting the subjectivity
of this criterion. Fleiss’ kappa, if all unclear tables are excluded, equals to 15.4,
which is a slight agreement. Therefore, we provide the option proportions for
all annotators in Table 7.5 to show the choice pattern differences, as well as the
average.
The table shows that the annotators select none option only occasionally. Two
annotators prefer the baseline option, whereas other two opt for both and the
fifth annotator selected our system most often. Overall, we can see that the
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More interesting Ann 1 Ann 2 Ann 3 Ann 4 Ann 5 avg

none 19.2 9.4 13.1 17.5 20.0 15.8
baseline 32.3 20.8 47.6 29.9 27.0 31.5
ours 10.1 19.8 35.7 27.8 36.0 25.9
both 38.4 50.0 3.6 24.7 17.0 26.7

Table 7.5: Results of manual evaluation of statement interestingness. Five anno-
tators are reported separately, with the last column containing the average.

baseline model generates quite interesting statements and overall is considered
to be natural and relevant more often. This is an expected result, since the
baseline model grasps the style and general patterns of LogicNLG dataset, which
are richer and more complex than the ones in our training data. Nevertheless,
the sentences from the proposed system were considered interesting in more than
a half of cases (e2e and both options combined), thus showing that our system is
capable of generating insights and non-trivial statements.

7.5.3 Examples

Below, we show several examples from the manual evaluation set. In the first
example, our system produces a faithful and an interesting statement whereas
the baseline does not (LogicNLG, test 2456, id 2-18961052-1):
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For the following table, our system produced a correct output but an incorrect
baseline was annotated as more interesting by several annotators (LogicNLG, test
1285, id 2-14971788-1):

Below we provide one of several examples where our system produced an incorrect
output but was considered more interesting by some annotators. The reason
for correctness error is a misinterpreted count operation on the nation column
(LogicNLG, test 1364, id 2-16142610-11).
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Another example, where both systems fail, is the table below. Our system pro-
duces a weird output because of a false positive substring matching, discussed in
Section 6.4.6 (LogicNLG, test 1227, id 2-14670286-4):

7.6 Discussion

Overall, both automatic and manual evaluation showed that the proposed system
is superior to the baseline model in terms of fidelity, and is not much worse in the
interestingness aspect. Nevertheless, we argue that the current metrics for logical
table-to-text generation are not entirely reliable. Apart from our main analysis
presented above which showed only a weak correlation with the automatic metric,
we have noticed the unwanted behaviour of both TaPEx and TaPas models in
three cases:

1. Random shuffle: if the predictions are randomly shuffled so that they almost
never match the input tables, both metrics output the score of > 0.5 thus
predicting that over a half of predictions are actually entailed by the table.
Therefore, the metrics are over-positive towards unfaithful statements.

2. Nonsense outputs: during our preliminary experiments, one model appar-
ently converged to the incorrect local minimum and produced nonsense
outputs that do no not correspond to any table at all (examples in Ap-
pendix A.9). However, TaPEx-acc metric is 96.0, whereas TaPas-acc is
89.5. The reason behind this behaviour is yet to be determined, but this
accident shows the relative unreliability of these models and model-based
evaluation in general.

3. Empty statements: the models can predict the “entailed” class for empty
statements.

As we can see, both metrics, despite different architectures, output unexpected
results in some cases making the whole evaluation setup compromised.
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Our next concern is the BLEU score. Apart from overall BLEU criticism discussed
in Section 3.2, the setup of BLEU-1/2/3 employed by Chen et al. (2020a) and all
subsequent work has two major drawbacks:

1. Although the prediction is conducted on a subset of columns to avoid noise
and mitigate the input length issue, the evaluation is done using all refer-
ences for the given table, which are constructed on different column subsets.
Thus, the generated sequence is compared with references that are possibly
absolutely unrelated to the table-sentence pair in consideration. Additional
references might inflate the resulting score.

2. Chen et al. (2020a) employ sentence-level BLEU and average it across all
evaluated sentences. This contradicts a conventional BLEU estimation
setup where BLEU is evaluated on the whole corpus. We have found that
the averaged sentence-level scores are considerably stricter than a corpus-
level metric.

Nevertheless, it is not possible to apply SacreBLEU evaluation neatly either since
the data in the employed datasets is pre-tokenized. Unfortunately, SacreBLEU
implementation awaits a detokenized input, which is not the case for the current
study. We provide the SacreBLEU score but it is necessary to keep in mind
that this metric is not entirely applicable to this work either if no additional
postprocessing is done.
Overall, we express a concern about current evaluation metrics for this task and
encourage sanity checks and manual analysis of the metric outputs. Nevertheless,
we suppose that the model-based metrics, despite their black-box nature and quite
non-controllable behaviour, are the most suitable evaluation method for this task
due to its complexity.
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8 Conclusion

In this work, we studied two questions: whether it is possible to select rele-
vant columns and operations from the table without using the whole table, and
whether symbolic reasoning helps to improve statement fidelity. We discuss our
contributions and outline the directions of the future work.

8.1 Contributions

The contributions of this thesis are as follows:

1. We showed that it is possible to do sensible content selection on only ag-
gregated data, which allows to apply this system to tables with multiple
rows. We found that the model benefits from more detailed input, further
pre-training, and generation with sampling. However, we found that this
part in its current state lacks variability, generating several template types
too often.

2. We showed that symbolic reasoning greatly increases fidelity of the final
outputs. Nevertheless, it is important to note that, as with any rule-based
system, this step required a considerable amount of resources and time, as
well as extensive testing to alleviate possible logic and coding errors.

3. We made a full pipeline combining these two approaches thus approaching
to the solution both problems we addressed: long excessive input and fi-
delity. Moreover, the resulting system has two important properties. The
first one is the opportunity to explicitly control generation by further in-
corporating changes to the content selection step. The second one, es-
pecially relevant today, is the interpretability, since every generated state-
ment is based on the formal representation with explicitly stated operations,
columns, and values chosen with a symbolic approach.

4. We have analyzed the original datasets in depth and discussed their poten-
tial problems such as output postprocessing and data imbalance.

5. We have highlighted the problems of the automatic evaluation metrics, en-
couraging sanity checks and qualitative analysis of metric outputs in gen-
eral.
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8.2 Future Work

This work can be improved in several ways, some of which are relatively easy
to achieve, and others are more conceptual and require a deep dive into further
development. Future work directions are the following:

1. evaluate our system end-to-end on Logic2Text dataset;
2. replace our basic model for LF-to-text generation with a model from other

available works, for instance, the one released by Xie et al. (2022);
3. try out larger models and see if further improvement is possible by scaling

up;
4. explore older fidelity metrics discarded by us but actively used in other

works, analyze their behaviour and discuss their advantages and problems;
5. improve the variability of content selection model outputs;
6. improve data processing to account for more column types encountered in

the data.
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A Appendices

A.1 Attachments

We release additional materials along with the current thesis:
1. The code for pipeline training and inference;
2. The models for the two steps of our pipeline;
3. Auxiliary scripts for data processing and analysis;
4. Manual evaluation materials: app code, input data, raw responses;
5. The outputs of our best system on the LogicNLG development and test

sets.
We have made the code and the system outputs available on GitHub1, and have
uploaded the models to Hugging Face Hub2. Moreover, we attach a .zip archive
containing the fixed version of the code, outputs, auxiliary scripts, and manual
evaluation materials.

1https://github.com/kategerasimenko/LT2T
2Content selection: https://huggingface.co/kategaranina/lt2t content selection

LF-to-text: https://huggingface.co/kategaranina/lt2t lf to text
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A.2 Function Examples

function LF reference source

count eq { count { filter eq { all rows ; bronze ; 0 } } ; 2 } two of these countries earned a total of 0 bronze medals . dev 19, 2-15972223-1

only
and { only { filter eq { all rows ; largest ethnic group ( 2002 ) ;
slovaks } } ; eq { hop { filter eq { all rows ; largest ethnic group
( 2002 ) ; slovaks } ; settlement } ; pivnice } }

pivnice is the only settlement in vojvodina with slovaks as the largest ethnic group . train 1, 1-2562572-12

hop eq { hop { nth argmax { all rows ; rounds ; 1 } ; team } ;
phil parsons racing } the team that participated in the highest number of rounds was phil parsons racing . train 15, 2-1266602-2

and and { eq { nth max { all rows ; goals against ; 1 } ; 333 } ; eq { hop {
nth argmax { all rows ; goals against ; 1 } ; season } ; 1982 - 83 } }

with 378 goals , 1982-83 was the nova scotia voyageurs highest scoring
season . train 1241, 2-1166259-1

max and { eq { max { all rows ; capacity } ; 41040 } ; eq { hop {
argmax { all rows ; capacity } ; team } ; dinamo minsk } }

in the 1993 - 94 belarusian premier league , the venue with the highest
capacity was minsk at 41040 . train 369, 2-14744886-1

avg round eq { avg { all rows ; weight ( lb ) } ; 212.14 } for the 2009 - 10 pittsburgh panthers men ’s basketball team , the average
weight for the players was 212.14 . train 50, 1-24925945-3

nth max eq { nth max { all rows ; no of episodes ; 3 } ; 135 } the third-highest number of episodes in a show shown on farsi1 was 135 . train 192, 1-28803803-1
argmax eq { hop { argmax { all rows ; earnings } ; player } ; lee trevino } lee trevino had the highest earnings of any player in the 1996 senior pga tour . train 28, 2-11621873-4

nth argmax eq { hop { nth argmax { all rows ; face value ; 4 } ; ecosystem } ;
alpine tundra }

the alpine tundra ecosystem series of nature of america stamps has the
fourth highest face value . train 8339, 2-15635768-1

eq eq { hop { nth argmax { all rows ; gold ; 2 } ; nation } ; argentina ( arg ) } argentina ( arg ) recorded the 2nd highest number of gold in athletics
at the 1951 pan american games . dev 3, 2-10647806-3

not eq

and { not eq { hop { filter eq { all rows ; player ; bob jones } ; team } ;
hop { filter eq { all rows ; player ; larry hutton } ; team } } ; and { eq {
hop { filter eq { all rows ; player ; bob jones } ; team } ; minnesota
twins } ; eq { hop { filter eq { all rows ; player ; larry hutton } ; team } ;
los angeles dodgers } } }

bob jones was drafted by the minnesota twins and larry hutton was
drafted by the los angeles dodgers in the 1966 major league baseball draft . train 1816, 2-15667202-1

round eq round eq { sum { all rows ; points } ; 2 } between 1952 and 1956 , elie bayol scored a total of 2 points . train 6, 2-1228323-1

greater greater { hop { filter eq { all rows ; nation ; puerto rico } ; bronze } ;
hop { filter eq { all rows ; nation ; barbados } ; bronze } }

puerto rico recorded more bronze medals than barbados in athletics
at the 1986 central american and caribbean games . train 61, 2-10258265-3

diff
eq { diff { hop { filter eq { all rows ; title ; joke overload } ; original
air date } ; hop { filter eq { all rows ; title ; end of the middle } ;
original air date } } ; -7 }

the childrens hospital episode titled ” joke overload ” had an original air date
that was 7 days before the original air date for the episode titled
” end of the middle . ” .

train 334, 1-28081876-4

filter eq (substr) eq { count { filter eq { all rows ; method ; submission } } ; 4 } 4 of jake o’brien ’s fights have ended due to submission . train 313, 2-15985163-2

filter greater eq { count { filter less { filter greater { all rows ; population ; 50000 } ;
altitude ( mslm ) ; 300 } } ; 2 }

in the province of turin , 2 of those with population more than 50000 have
altitude ( mslm ) of less than 300 . dev 85, 2-1449176-1

filter greater eq eq { count { filter greater eq { all rows ; goals for ; 50 } } ; 7 } 7 teams score 50 or more goals in the 1988 - 89 segunda división . train 146, 2-12107896-2
filter all eq { count { filter all { all rows ; area served } } ; 6 } there are 6 areas served of radio stations in the northern territory . train 51, 2-14155573-2
all eq all eq { all rows ; home captain ; alec stewart } alec stewart was the home captain all of england ’s cricket test matches . dev 89, 2-12410929-94
all greater all greater { all rows ; elevation ( m ) ; 1000 } all of the mountains in norway have an elevation that is higher than 1000 meters . train 1098, 2-12280396-1
all greater eq all greater eq { all rows ; rebounds ; 100 } all of the top players in euroleague 2007 - 08 had 100 or more rebounds . train 635, 2-16050349-2

most eq (substr) most eq { all rows ; result ; l } the majority of games in the 2006 kansas city brigade season ended in losses
for the kansas city brigade . train 138, 2-11974088-1

most not eq most not eq { all rows ; qual 2 ; - } most drivers of the 2004 centrix financial grand prix of denver had a qual 2 time . train 874, 2-16789804-1
most greater most greater { all rows ; crowd ; 10000 } most of the games on july 4 , 1931 had a crowd of over 10,000 . train 254, 2-10789881-9
most greater eq most greater eq { all rows ; td ’s ; 1 } most of the players from tampa bay storm had at least one td in the 2007 season . train 540, 2-11486671-4

Table A.1: Examples of all function types.
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A.3 Table Examples

Figure A.1: Table with the last summing row. Logic2Text, train 5880, id
2-10636637-1.

Figure A.2: Table with the duplicated header. Logic2Text, train 66, id
1-17625749-3.
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Figure A.3: Table with empty values, represented as -. Column slalom is of type
empty. Logic2Text, train 6244, id 2-16403980-1.

Figure A.4: Table with column types rank (track), year (original release), and
time (length). Logic2Text, test 463, id 2-18424482-2.
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Figure A.5: Logic2Text, test 416, id 2-11895475-1.

Figure A.6: Logic2Text, test 18, id 2-18662700-3.

Figure A.7: Logic2Text, test 32, id 2-11048203-1.

74



Figure A.8: Logic2Text, test 39, id 2-11788447-2.

Figure A.9: Logic2Text, test 40, id 2-13762472-8.

Figure A.10: Logic2Text, test 83, id 2-167482-1.
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Figure A.11: Logic2Text, test 148, id 2-18974097-6.
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A.4 Model parameters

In this section, we list all hyperparameters used for training and generation and
fixed during the experiments. All unlisted possible parameters are equal to de-
faults defined in transformers library of version 4.25.1 (Wolf et al., 2020).
Training data for all models was converted to ASCII using Unidecode library3

(e.g., š → s) in order to avoid OOV tokens in the input data as well as predictions.
This conversion did not affect evaluation data.
All training was conducted on a single NVIDIA A100 40GB GPU card. We
thank the Center for Information Technology of the University of Groningen for
their support and for providing access to the Hábrók high performance computing
cluster.

A.4.1 Baseline

• t5-base model;
• epochs: 20;
• batch size: 16;
• learning rate: 1e-04;
• beams: 3.

A.4.2 Content Selection

Pre-training:
• t5-base model;
• 1 epoch;
• batch size: 16;
• learning rate: 1e-04;
• minimizing eval loss for evaluation and best checkpoint selection.

Fine-tuning:
• t5-base model;
• epochs: 20;
• batch size: 8;
• learning rate: 1e-04;
• top-k sampling with k = 50 during generation, if not stated otherwise.
3https://github.com/avian2/unidecode
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A.4.3 LF-to-Text

• t5-base model;
• epochs: 30;
• batch size: 8;
• learning rate: 2e-05;
• beams: 3.
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A.5 Template Filling Functions Details

Below we provide several comments about the non-trivial implementation details
of the functions described in the function implementation table.

E1 Each cell has two types of values: an original raw value and a processed
one obtained by parsing described in Section 6.2. If the placeholder is filled
with a concrete value rather than a derivation or aggregation, raw cell value
is used.

E2 If the function is used as a child of eq function ((nth )max/min, partially
hop), it returns raw value as well, which is later used to fill the placeholder
in eq function. In the example below, max returns 27 july 2011, which is a
raw value from the table rather than a datetime object.

train 982, 2-17310356-2
eq { max { all_rows ; took office } ; 27 july 2011 }

the latest date that a prime minister took office in the berlusconi iv cabinet
was in july of 2011 .

E3 All boolean functions can be considered dummy in terms of execution. They
return True and their truth value is verified during value options selection
and consistency checks.

E4 Column types which allow at least some numerical operations are num, rank,
year, time, date. We will further refer to this set of types as “numerical”.

E5 When working with numerical columns, all None values are discarded. Nev-
ertheless, they are taken into account when concrete values are considered
(e.g. for filter eq function).

E6 For all * greater and * less functions, column types year, time, date
are not included despite being numeric because the rounding algorithm
(described in Section 6.4.4 for numbers) is non-trivial to devise for them.

E7 Aggregating functions avg and sum do not work for types date, year, and
rank because aggregations over these types do not convey any meaning.

E8 Values of type rank will not produce sensible generations for most * and
all * functions (consider making statements about most values being larger
than rank 2) and we do not list this type as valid for the above-mentioned
functions.

E9 Functions diff, greater, and less can accept only numerical values but
they have no direct restriction on column type since they accept only com-
puted values. Therefore, their executability depends on the executability
of their children, which must return numerical values.
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E10 For all nth * functions, we limit the option space by the first half of values
which are sorted in descending (for max) or ascending (for min) order. It
contradicts with some examples in the training data but corresponds more
to common sense and expected function behaviour. In the example below,
the table has 7 rows and our system suggests top-3 values, whereas the
reference suggests taking the 5th row.

train 4895, 1-29574579-1
Input:
eq { hop { nth_argmax { all_rows ; uk viewers ( million ) ; X } ; title } ;

episode X }

Suggested options:
eq { hop { nth_argmax { all_rows ; uk viewers ( million ) ; 1 } ; title } ;

episode 1 }

eq { hop { nth_argmax { all_rows ; uk viewers ( million ) ; 2 } ; title } ;

episode 2 }

eq { hop { nth_argmax { all_rows ; uk viewers ( million ) ; 3 } ; title }

episode 3 }

Reference:
eq { hop { nth_argmax { all_rows ; uk viewers ( million ) ; 5 } ; title }

episode 4 }

episode 4 had the 5th highest amount of uk viewers of all outcasts episodes
.

E11 For nth argmax and nth argmin we introduce a consistency check for and
function since one of the patterns in the data is and with two children, with
the first one containing nth max / min. n must be the same in both parts:

train 1241, 2-1166259-1
and { eq { nth_max { all_rows ; goals against ; 1 } ; 333 } ; eq { hop {

nth_argmax { all_rows ; goals against ; 1 } ; season } ; 1982 - 83 } }

with 378 goals , 1982-83 was the nova scotia voyageurs highest scoring sea-
son .

E12 Function eq is the only one which has two versions of argument sets, and
they need to be handled separately. The most frequent one has a value as a
second argument, which needs to be filled. In this example, the filled value
is lee trevino:

train 28, 2-11621873-4
eq { hop { argmax { all_rows ; earnings } ; player } ; lee trevino }

lee trevino had the highest earnings of any player in the 1996 senior pga
tour .
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The second version consists of two LFs as both arguments, and this function
only needs to be executed and return True. We run a consistency check for
this structure.

train 441, 2-18620528-14
eq { hop { filter_eq { all_rows ; class ; a - 4 } ; quantity made } ; hop {

filter_eq { all_rows ; class ; a - 3 } ; quantity made } }

the northern pacific railway locomotive ’s class a - 4 and class a-3 had the
same amount of quantity made .

E13 All most * functions operate with strict majority, which is not always in line
with the training data but aligns better with expected function behaviour.
In the following example, the table has 6 lines, and 1948 occcurs 3 times,
which is not strictly most, and our system does not fill the template:

train 343, 1-1342198-17
most_eq { all_rows ; first elected ; 1948 }

most of the incumbents in the 1950 us house of representatives elections in
kentucky were first elected in 1948 .
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A.6 Manual Evaluation Guidelines

Instruction:

You are given 25 tables, each with two statements. Each table has
a title.
First, evaluate whether each statement is logically correct based
on the table. Evaluate only formal logical correctness at this step.
If the sentence doesn’t make sense in relation to the table or is just
not fluent, so you cannot understand it and make any judgements
about its logical correctness, select “nonsense”.
If the sentence is mostly correct but some details in it are not, or the
reported information is not complete in relation to the table, select
“partially correct”. Some examples of partially correct statements are
non-critical misinterpretation of the columns or listing several values
correctly but skipping other eligible ones, making the statement mis-
leading.
Missing diacritics and lowercase should not be counted as errors.
Next, decide which of the two statements is more interesting
(or both are equally interesting or none of them is). An interesting
fact about the table looks natural in the context of the table and you
could meet it in a report or a news article. You could potentially
report it yourself if you were to describe the table.
If the sentence is not logically correct, evaluate its interestingness as
if it were correct.
If you don’t understand the table and thus cannot make any judge-
ments about the statements, put a tick on “Table is unclear”.

An example of a question in the web app:

Figure A.12: An example of a question in the manual evaluation web app.
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A.7 Correctness Evaluation per Annotator

category system Ann 1 Ann 2 Ann 3 Ann 4 Ann 5 avg

nonsense baseline 11.1 12.5 10.7 13.4 5.0 10.5
ours 6.1 6.3 13.1 6.2 5.0 7.3

incorrect baseline 31.3 36.5 31.0 35.1 36.0 34.0
ours 7.1 11.5 11.9 13.4 12.0 11.2

part correct baseline 16.2 12.5 14.3 15.5 12.0 14.1
ours 4.0 7.3 4.8 6.2 5.0 5.5

correct baseline 41.4 38.5 44.0 36.1 47.0 41.4
ours 82.8 75.0 70.2 74.2 78.0 76.1

TaPEx corr for ours, p-value 0.216 0.459 0.512 0.298 0.028 0.063

Table A.2: Proportions of different correctness categories per system and per
annotator. Last row: p-values of Fisher exact test between the manual evaluation
and TaPEx metric on the outputs of our system - per annotator and on averaged
data.
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A.8 Wrong TaPEx Predictions

Example below illustrates the erroneous TaPEx output, which has predicted ab-
sence of entailment for the correct statement (LogicNLG, test 3976, id 2-18947170-9):

The following example illustrates another TaPEx error, the erroneous generation
is marked as entailed by the table (LogicNLG, test 1859, id 2-16176685-4):
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A.9 Nonsense Outputs

Two examples of nonsense outputs produced by the incorrectly trained model
with TaPEx predictions:

Figure A.13: LogicNLG, test 0, id 2-18424778-6.

Figure A.14: LogicNLG, test 25, id 2-11545282-4.
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