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Introduction 

During the last decade, machine learning, particularly generative models, has 

experienced significant advancements – not only because of the accessibility of more 

powerful hardware, but also due to the development of more sophisticated techniques. 

This thesis focuses on the application of these innovative techniques to the study of 

magnetic configurations, specifically within the realm of the two-dimensional 

Heisenberg model on a square lattice. We will develop a generative model called the 

variational autoencoder, and use it to examine skyrmion lattices.  

The primary objective of this thesis is threefold; Firstly, we will develop the 

architecture of this machine learning model and test whether it is able to understand 

the intricacies of skyrmion lattices. Secondly, we will train this model and search for 

the best set of parameters that maximizes the performance of the model. And thirdly, 

we will evaluate how the model performs and explore practical applications of the 

trained models.  

The goal is to have a model, that can extract useful information from the lattices and 

encode it in a much smaller space, which can help find anomalies in the lattices, and 

that can possibly even generate new, theoretically plausible skyrmion lattices.  
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1 Theoretical part 

In this work, we will examine properties of ferromagnetic materials. We can imagine 

such a system as a 2-dimensional lattice which has a unit spin (described using θ and 

φ angles) in each of its nodes. This system can be described with a classical Heisenberg 

Model, which will be discussed in subsequent chapters. Besides the Heisenberg 

Hamiltonian, we will also include the term describing the magnetic field influence and 

the Dzyaloshinskii–Moriya interaction (also known as Asymmetric exchange), which 

is caused by a spin-orbit interaction due to an absence of inversion symmetry. In a 

system described by a Hamiltonian containing these three terms, there can exist 

multiple different phases, notably the skyrmion phase, the spiral phase and the 

ferromagnetic phase, discussed further.  

1.1 Magnetic skyrmions 

At the beginning, let’s describe what a magnetic skyrmion is. The surface of some 

magnetic material has magnetization, which can be represented using unit vectors. 

Skyrmions can exist in this material; they are a vortex-like configuration of those spins 

[1]. A skyrmion is a localized and stable topological soliton, and it was first predicted 

to exist by the British physicist Tony Skyrme during the 1960’s in the context of 

particle physics [2].  That a skyrmion is a topological object means that there is no 

continuous transformation that could project the skyrmion on a uniform configuration 

[1]. It means that its spin configuration is protected when interacting with other 

skyrmions.  

A skyrmion is tied to the notion of a topological charge (also called topological 

quantum number or skyrmion number). The topological charge of a skyrmion always 

has a non-zero integer value. It is defined as  

𝑁𝑆𝑘 =
1

4𝜋
∫ 𝒎(𝒓) ∙ (

𝜕𝒎(𝒓)

𝜕𝑥
×

𝜕𝒎(𝒓)

𝜕𝑦
) 𝑑𝑥 𝑑𝑦, (1.1) 

where 𝑁𝑆𝑘 is the topological charge and 𝒎(𝒓) is the spin value in the given point. The 

topological charge describes how many times the skyrmion configuration wraps 

around a unit sphere.  

A visualization of two of the most common types of skyrmions is shown in Picture 

1.1. Both Néel type skyrmions and Bloch type skyrmions have 𝑄 = −1.  

 



 

3 

 

 

Picture 1.1 – Néel type skyrmion (left) and Bloch type skyrmion (right). Taken from 

[3] under CC BY-SA 3.0.  

 

Using radial coordinates 𝒓 = 𝑟 ∙ (𝑐𝑜𝑠𝜙, 𝑠𝑖𝑛𝜙), we can transform the equation (1.1) to 

𝑁𝑆𝑘 =
1

4𝜋
∫ ∫

𝜕𝛷(𝜙)

𝜕𝜙

𝜕𝜃(𝑟)

𝜕𝑟
𝑑𝜙

2𝜋

0
𝑑𝑟

∞

0
, (1.2) 

which can be further simplified to  

𝑁𝑆𝑘 = 𝑚 ∙ 𝑝 = [
1

2𝜋
𝛷(𝜙)]

2𝜋      
 

𝜙 = 0
∙ [−

1

2
𝑐𝑜𝑠𝜃(𝑟)]

∞      
 

𝑟 = 0
, 

(1.3) 

  

where the first term is called the vorticity 𝑚 ∈ ℤ and the second term is called the 

polarity 𝑝 = ±1 [2]. For each unit spin vector, we then have 

𝒏(𝒓) = (𝑠𝑖𝑛𝜃(𝒓)𝑐𝑜𝑠𝛷(𝒓), 𝑠𝑖𝑛𝜃(𝒓)𝑠𝑖𝑛𝛷(𝒓), cos𝜃(𝒓)) . (1.4) 

 One additional parameter characterizing skyrmions is the helicity 𝛾 – we can calculate 

it from the azimuthal angle 𝛷 and the vorticity 𝑚 as 

𝛾 = 𝑚 ∙ 𝜑 − 𝛷. (1.5) 

The helicity can be understood as a phase factor, and is different between Néel type 

and Bloch type skyrmions. For the Néel type skyrmion, helicity is 𝛾 = 0 and for the 

Bloch type skyrmion it is 𝛾 = ±
𝜋

2
 [4]. 

If we had a 3-dimensional lattice, skyrmions would typically extend in a tube-like 

manner, as indicated in Picture 1.2.  

 

Picture 1.2 – Extension of a skyrmion in 3 dimensions. Taken from [2].  
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Besides skyrmions, different non-trivial particle-like structures do exist, such as 

antiskyrmions (𝑁 = 1, 𝑚 = −1), merons and antimerons (𝑁 = ±
1

2
), biskyrmions and 

others [4].  

1.2 Stabilizing mechanisms for magnetic skyrmions 

 

The notion of a spin lattice has been already introduced at the beginning of the 

theoretical part. A skyrmion lattice can be described using the Heisenberg model; the 

most important energy contribution to such a system is the symmetric Heisenberg 

exchange interaction. The Hamiltonian describing this interaction is 

𝐻𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 = −
1

2
∑ 𝐽𝑖,𝑗𝑺𝑖 ∙ 𝑺𝑗𝑖𝑗 , (1.6) 

 where 𝑺𝑖 =
𝝁𝑖

|𝝁𝑖|
 is a unit vector in the direction of the corresponding magnetic moment 

𝝁𝑖. 𝐽𝒊,𝒋 denotes the exchange integral, which is related to the charge distribution 

between atoms [4]. The equation can be simplified to  

𝐻𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 = −
1

2
𝐽 ∑ 𝑺𝑖 ∙ 𝑺𝑗<𝑖𝑗> , (1.7) 

where we include only the interaction between nearest neighbors. The exchange 

integral 𝐽 is a constant in that case. 𝐽 is responsible for how the neighboring spins are 

arranged, for 𝐽 > 0 we have a ferromagnetic (parallel) ordering and for 𝐽 < 0 we have 

an antiferromagnetic (antiparallel) ordering.  

However, the exchange interaction is not enough to explain the existence of a skyrmion 

phase on a magnetic lattice. The second interaction that needs to be included is the 

Dzyaloshinskii–Moriya interaction (often referred to as DMI). The energy 

contribution of the DMI interaction is  

𝐻𝐷𝑀𝐼 =
1

2
∑ (𝑺𝑖 × 𝑺𝑗) ∙ 𝑫𝑖𝑗𝑖𝑗 . (1.8) 

 Spins 𝑺𝑖 and 𝑺𝑗 are the same as those in the exchange interaction equation and 𝑫𝑖𝑗 is 

a Dzyaloshinskii–Moriya vector, that characterizes the interaction.  

Once again, if we include only the interaction between nearest neighbors, the equation 

can be simplified into  

𝑫 ∙ ∑ [𝑺𝑖 × 𝑺𝑗]<𝑖𝑗> , (1.9) 

 where we sum only between nearest neighbors. Since the Dzyaloshinskii–Moriya 

vector has a  𝐶𝑣 symmetry, for the vector 𝒖𝑖𝑗 between two magnetic moments 𝑖 and 𝑗  
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(from 𝑖 to 𝑗) it holds that if 𝒖𝑖𝑗 = (±1, 0, 0), then 𝑫 = (0, ±𝐷, 0), and if  𝒖𝑖𝑗 =

(0, ± 1, 0), then 𝑫 = (±𝐷, 0, 0) where 𝐷 is a single scalar parameter.  

The Dzyaloshinskii–Moriya interaction is a spin-orbit interaction that exists due to the 

lack of inversion symmetry.  

Lastly, we will also consider the influence of a magnetic field on the system (Zeeman 

term). We will assume the field is perpendicular to the lattice, thus 𝑩 = (0, 0, 𝐵). 

Under such an assumption, its energy is 

𝐵 ∑ 𝑆𝑖
𝑍

𝑖 , (1.10) 

where we once again sum over all the lattice spins.  

Besides the Dzyaloshinskii–Moriya interaction, other stabilizing mechanisms are the 

frustrated exchange interaction, the four-spin exchange interaction and magnetic 

dipole coupling [2][5][6][7]. 

1.3 Lattice defects 

We can describe lattice defects as deviations from the strictly periodic arrangement of 

atoms in a solid. There exist extrinsic defects, which are caused by impurities, and 

intrinsic defects, which are caused by a disarrangement of atoms in the solid [8]. We 

are interested in intrinsic defects. We can also group various types of defects according 

to their dimensionality. Thus, we have point defects, line defects (dislocations), planar 

defects, and bulk defects.  

Point defects are for example vacancies and interstitials. A vacancy is a missing atom 

from a lattice site, and an interstitial is an atom that occupies space between lattice 

sites. A vacancy can be of two types – the first one is the Frenkel defect, which consists 

of a vacancy and a nearby interstitial atom from the vacancy, and the other is the 

Schottky defect, which is just the vacancy – the original atom is missing (for example 

by diffusion to the surface) [8][9]. The equilibrium number 𝑛 of vacancies, under the 

assumption that 𝑛 ≪ 𝑁, where 𝑁 is the number of atoms, is  

𝑛

𝑁
≅ exp (−

𝐸𝑣

𝑘𝐵𝑇
), (1.11) 

 where 𝐸𝑣 is the energy to take an atom from a lattice site inside the crystal to the 

surface, 𝑘𝐵 is the Boltzmann constant and 𝑇 is the temperature [9]. Thus, higher 

temperature leads to an increased number of defects.  

Line defect (dislocation) occurs when a whole line of lattice points is perturbed. Line 

defects in crystals are a consequence of shear stress. There exist edge dislocations and 
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screw dislocations. An edge dislocation could be understood as inserting an extra plane 

of atoms into a part of the lattice [9]. A screw dislocation differs from an edge 

dislocation in the sense that the boundary between slipped and unslipped parts of the 

crystal is parallel to the slip direction, instead of being perpendicular to it. Both 

dislocations are illustrated in Picture 1.3.  

 

Picture 1.3 – An illustration of an edge dislocation (left) and a screw dislocation (right). 

Burgers vectors 𝒃 characterizing both dislocations are also shown. Taken from [8].  

 

Dislocations are characterized using a Burger’s vector 𝒃, which gives the magnitude 

and direction of the slipping process. We can first draw a closed curve around the 

original site of the dislocation, but without the dislocation itself. Let’s say that this 

curve has the form of a rectangle, given by points 𝐴, 𝐵, 𝐶, 𝐷 and grey lines in Picture 

1.3. When we introduce the dislocation, the curve will be deformed along with the 

lattice, and the vector needed to close the curve is exactly Burger’s vector 𝒃 [9].  

Examples of planar defects are grain boundaries and twin boundaries. Bulk defects are 

precipitates, vacancy clusters, pores and cracks.  
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2 Used methods 

In this thesis, we used machine learning to study skyrmion lattice configurations. 

Namely, we utilized variational autoencoders, which are a special type of unsupervised 

generative neural networks. In this chapter, I will introduce the basics of neural 

networks and their applications, then, convolutional neural networks, which are 

utilized in variational autoencoders, will be discussed, and the chapter will conclude 

with the description of variational autoencoders.  

2.1 Basics of Neural Networks 

The basic principle of how neural networks function can be demonstrated on a simple 

concept called a perceptron [10] (an idealization of a neuron), which is shown in 

Picture 2.1.  

 

Picture 2.1 – a scheme describing a perceptron. Taken from [10].  

 

Arrows {𝑦1, 𝑦𝑚} denote the inputs into the perceptron (such as values of spins at 𝑥, 𝑦, 𝑧 

lattice positions). Each of those inputs is then multiplied by the corresponding weight 

{𝑎1, 𝑎𝑚} and in the summation unit, those values and the constant C from the response 

unit are added together, resulting in the sum 

𝐴 = ∑ 𝑎𝑖𝑦𝑖
𝑚
𝑖=1 + 𝐶. (2.1) 

Finally, the perceptron returns the value 1 if 𝐴 ≥ 0 and returns 0 if 𝐴 < 0. The constant 

C in (2.1) is often being referred to as a bias.  
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We would like to construct a network out of these perceptrons in such a way, that 

multiple perceptrons take as inputs values describing the object we are interested in, 

and the outputs of these perceptrons are used as inputs for multiple subsequent 

perceptrons – we repeat that enough times, until we use outputs of the last batch of 

perceptrons to give us the information we need. Practically, it is useful to think of 

perceptrons as being in layers, as it is indicated in Picture 2.2. As described, we can 

see the input layer (inputs into the layer are parameters of the examined object), the 

hidden layers, and the output layer (returns the information we seek).  

 

Picture 2.2 – a scheme describing a simple neural network. Taken and modified from 

[11]. 

 

We want the neural network to be trainable – at the beginning, we create an 

architecture with weights that are initialized randomly, but after we feed into it a 

dataset containing examples of objects we would like to model, the algorithm needs to 

be able to tweak the values of the weights in such a way, that the neural network 

performs the task we intended, whether it is a classification, regression, generation, or 

something else.  

However, the concept of the perceptron shown in Picture 2.1 has a problem that makes 

it unusable for that - it needs to be modified. Neural networks are being trained using 

a method called gradient descent [12], which is an algorithm for optimizing the neural 

network in the space of a loss function 𝐸(𝜽), where 𝜽 are weights of the model and 

the loss function is a scalar function that evaluates the performance of the model. 

Training will be discussed in detail in further chapters, but we can already make a 

simple observation. Since gradient descent is a gradient based method that utilizes 

∇𝜽𝐸(𝜽), in which we change the weights iteratively by incremental steps, we require 

that a small change of a random weight results only in a small change of the output of 
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the network. The perceptron, like we described it above, does not fulfill this premise, 

since the Heaviside step function 𝐻 = {
1, 𝑥 ≥ 0
0, 𝑥 < 0

 that is applied to the sum (2.1) does 

not have a continuous first derivative in 0. Thus, a different function (called an 

activation function) has to be used.  

One of the first activation functions used was the logistic sigmoid function  

𝜎(𝐴) =
1

1+exp (−𝐴)
, (2.2) 

where 𝐴 is the sum (2.1).  

 

Picture 2.3 – sigmoid activation function 

 

Since lim
𝐴→∞

𝜎(𝐴) = 1 and lim
𝐴→−∞

𝜎(𝐴) = 0, it in both limits converges to the Heaviside 

step function, however, it has a continuous derivative in 0. Later, different activation 

functions started being used, most notably tanh(𝐴) = 2𝜎(2𝐴) − 1 (the result of 

tweaking the sigmoid to be symmetrical and making the derivation in zero 1) and 

especially ReLU (rectified linear unit): 

𝑅𝑒𝐿𝑈(𝐴) = max(0, 𝐴) (2.3) 

 

Picture 2.4 – ReLU activation function 

 

Once we use a reasonable activation function instead of the Heaviside step function, 

we can talk of a neuron instead of a perceptron, and it is these neurons that form a 

neural network. 

Besides empirical evidence, how can we be sure that such a structure is able to model 

what we want? According to the Universal Approximation Theorem [13], any 

bounded, non decreasing function 𝜑(𝑥): ℝ → ℝ can be used as an activation function 
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after a single layer of neurons of size 𝐻 with 𝐷 inputs, in such a way, that we are able 

to approximate a continuous function 𝑓 to an arbitrary precision (given 𝐻 is large 

enough). For any 𝜀 > 0 and any continuous function 𝑓: [0, 1]𝐷 → ℝ, there exists 𝐻 ∈

ℕ, 𝒗 ∈ ℝ𝐻, 𝒃 ∈ ℝ𝐻and 𝑾 ∈ ℝ𝐷×𝐻 such, that if we denote  

𝐹(𝒙) = 𝒗𝑇𝜑(𝒙𝑇𝑾 + 𝒃) = ∑ 𝑣𝑖𝜑(𝒙𝑇𝑾∗,𝑖 + 𝑏𝒊
𝐻
𝑖=1 ), (2.4) 

where 𝜑 is applied element-wise, then for all 𝒙 ∈ [0,1]𝐷: 

|𝐹(𝒙) − 𝑓(𝒙)| < 𝜀. (2.5) 

A sketch of the network is shown in Picture 2.5. 𝑾 is the matrix of weights that linearly 

calculates values of 𝐻 neurons in the hidden layer from 𝐷 input values, b is the vectors 

of constants added as 𝐶 in equation (2.1), and 𝒗 is a vector of transformation between 

the hidden layer after the activation function 𝜑 was applied and the output node. 

 

Picture 2.5 – a picture describing the simple neural network used in the Universal 

Approximation Theorem 

 

Proof is outside of the scope of this work; however, it utilizes the fact that if a function 

is continuous on a closed interval, it can be approximated by a sequence of lines to an 

arbitrary precision. Proofs exist even for ReLU, which is an unbounded function [14].  

Nowadays, predominantly ReLU and its modifications (ReLU multiplied by the 

cumulative distribution of the standard normal distribution – GeLU, ReLU which is 

slightly increasing for 𝐴 = (−∞, 0) – Leaky ReLU, etc.) are being used [15].  

2.2 Neural network training 

In the previous chapter, we have introduced the concept of a neural network. Now, 

let’s describe in detail the training process.  

When solving usual machine learning problems, the neural network learns from a large 

dataset of observations describing the task at hand. We have a train dataset, which is 
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used to train the neural network, and a test dataset, which is not used during training, 

but on which we evaluate how the model performs after it was trained.  

Machine learning is also often divided into two categories, supervised machine 

learning and unsupervised machine learning. In supervised machine learning, 

observations in both datasets are also accompanied by labels which describe the 

corresponding observation. Neural networks are then usually trained to assign the 

correct label to a previously unseen observation. In unsupervised machine learning, 

observations in both datasets are not accompanied by labels. For example, large 

language models or certain generative models use unsupervised ML. Since we are 

building a generative model, the task of this thesis falls into this category. 

Before the training of a neural network begins, its weights are randomly initialized. 

Numerous weight initializations methods are being used; the most common one and 

the one we are using is the Glorot uniform initialization [16] – a matrix of weights 

𝑾 ∈ ℝ𝐷×𝐻  is initialized as 𝑾~𝑼 [−√
6

𝐷+𝐻
, √

6

𝐷+𝐻
 ], where 𝑼 denotes a uniform 

distribution from the given interval. Bias vectors are initialized as zeros.  

The model is trained by minimizing the loss function, such as the mean squared error, 

between samples from the training data and network outputs.  

Mean squared error loss function for N samples (𝒙(1), 𝑦(1)), … , (𝒙(𝑁), 𝑦(𝑁)) from the 

train dataset is  

𝐿𝑀𝑆𝐸 =
1

𝑁
∑ (𝑓(𝒙𝑖; 𝜽) − 𝑦(𝑖))

2𝑁
𝑖=1 , (2.6) 

where 𝒙𝑖 and 𝑦𝑖 denotes an observation and its label from the dataset, 𝑓(𝒙𝑖; 𝜽) is the 

output of the model and 𝜽 are the parameters (weights and biases) of the model. 

Unsupervised machine learning differs from a supervised machine learning in the 

sense, that we train the model on unlabelled data; the model learns without any 

guidance or instructions. It is often used for anomaly detection or clustering.  

The loss function is calculated during a forward propagation regime, during which 

values of neurons in the first layer are calculated, those are used to calculate values of 

neurons in the second layer, etc., until we reach the output layer that calculates 

𝑓(𝒙𝑖; 𝜽). As we could see in equation (2.4), the hidden layer 𝒉 ∈ ℝ𝑀 can be calculated 

from the preceding layer (or an input) 𝒙 ∈ ℝ𝑁 as  

𝒉 = 𝑓(𝒙𝑇𝑾(ℎ) + 𝒃ℎ), (2.7) 

 where 𝑾 ∈ ℝ𝑁×𝑀 is a matrix of weights and 𝒃 ∈ ℝ𝑀 is a vector of biases.  
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Once the loss function is calculated, we minimize it by changing weights and biases 

using gradient descent 

𝜽 ← 𝜽 − 𝛼∇𝜃𝐸(𝜽), (2.8) 

 where 𝐸(𝜽) is 

𝐸(𝜽) = 𝔼(𝑥,𝑦)~𝑝𝑑𝑎𝑡𝑎
𝐿(𝑓(𝒙; 𝜽), 𝑦 ) (2.9) 

and 𝛼 is a constant called a learning rate.  

The most currently used version of the gradient descent algorithm is the minibatch 

stochastic gradient descent – we take only N random samples (a batch) from the dataset 

and apply the algorithm (2.8), and we repeat it until the network saw all samples from 

the dataset. Once the whole dataset was used, the first epoch of training was completed 

and we begin cycling through the dataset using minibatch SGD anew. The other two 

variants are when our batch is the whole dataset or only a single sample.  

The gradient ∇𝜃𝐸(𝜽) in (2.8) is calculated using an algorithm called backpropagation. 

For the loss 𝐿 and a weight/bias j in i-th layer 𝑤𝑖𝑗, 𝑦𝑗 = 𝜑(∑ 𝑤𝑘𝑗𝑥𝑘
𝑁
𝑘=1 ) = 𝜑(𝑛𝑒𝑡𝑗) is 

the neuron’s output and 𝜑 its activation, using the chain rule of derivatives we get [11] 

𝜕𝐿

𝜕𝑤𝑖𝑗
=

𝜕𝐿

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑤𝑖𝑗
=

𝜕𝐿

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑖𝑗
. (2.10) 

Those partial derivations are calculated from the last layer to the first, since we need 

results for the farther layers to calculate partial derivations for the front ones – thus the 

name backpropagation algorithm. One of the reasons ReLU activation is used is that 

𝜕𝑦𝑗

𝜕𝑛𝑒𝑡𝑗
 can be calculated faster [15], even though we have to define the derivative in zero 

to be 0.  

Besides the mean squared error loss function, the cross-entropy loss function is 

sometimes used – models using it perform better on some tasks. It is given by  

𝐿𝑐𝑟𝑜𝑠𝑠−𝐸 = −
1

𝑁
∑ ∑ [𝑦𝑗𝑙𝑛𝑦̂𝑗 + (1 − 𝑦𝑗)𝑙𝑛(1 − 𝑦̂𝑗)]𝑀

𝑗=1
𝑁
𝑖=1 , (2.11) 

 where N is the number of samples in the batch, j indexes output neurons, 𝑦𝑗 the target 

label and 𝑦̂ is the model’s output [17]. It comes from the information theory and 

expresses the amount of surprise when a random variable is sampled.  

2.3 Convolutional neural networks 

In the previous sections, how neural networks function was explained only on 

networks with fully connected layers, such as is the one shown in Picture 2.2. When 

working with data that have a spatial or temporal dependency, such as image data, 
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speech or our magnetic lattices, it is often advantageous to use a different type of layers 

– convolutional layers.  

Imagine the input 𝑰 into the neural network is a tensor with 3 dimensions – x and y 

coordinates and the c channel dimension, which, in the case of the magnetic lattice, 

can contain for example 𝜃 and 𝜑 values characterizing the unit vector in each site. A 

convolutional layer uses the discrete convolution operation, in which the input is 

convolved with a tensor 𝑲 called a kernel/filter: 

(𝑲 ⋆ 𝑰)𝑥,𝑦,𝑜 = ∑ 𝑰𝑥+𝑚,𝑦+𝑛,𝑐𝑲𝑚,𝑛,𝑐,𝑜𝑚,𝑛,𝑐 , (2.12) 

where the dimension o sets the number of channels of the output tensor [18]. Elements 

of the kernel are the trainable parameters.  

Convolutional layers have two main advantages over fully connected layers. Firstly, 

they allow us to drastically reduce the number of trainable parameters in the layer, 

which speeds up the training process significantly and allows us to build deeper neural 

networks. Secondly, once the neural network learns to discern a certain pattern on a 

specific part of the input picture, it is able to discern it everywhere – it is translation 

invariant [12]. 

The most common filter size is (3, 3), and the number of channels of the output tensor 

o is being generally increased the deeper in the neural network the convolutional layer 

is. Because the convolution operation as written in the equation (2.12) decreases the x 

and y dimensions (convolving 𝑰 with dimensions (200, 200, 2) with 𝑲 with 

dimensions (3, 3, 2, 2) results in a tensor with dimensions (198, 198, 2). Thus, a 

padding is often added, meaning that before the convolution is computed, the x and y 

dimensions are extended by one on both sides by a vector filled with zero values.  

Besides convolutional layers that keep the dimensionality of the input, sometimes we 

intentionally need to reduce the dimensionality. It is possible to do that with 

convolutional layers that utilize strides S – we modify the equation (2.12):  

(𝑲 ⋆ 𝑰)𝑥,𝑦,𝑜 = ∑ 𝑰𝑥⋅𝑆+𝑚,𝑦⋅𝑆+𝑛,𝑐𝑲𝑚,𝑛,𝑐,𝑜𝑚,𝑛,𝑐 . (2.13) 

 Stride 𝑆 ∈ ℕ denotes that an output pixel is calculated only for every S-th pixel. For 

reducing dimensionality, usually 𝑆 = 2 is used, which reduces both x and y dimensions 

by half. A convolution with strides is depicted in Picture 2.6. 
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Picture 2.6 – convolution of a (3, 3) kernel over a (5, 5) input with (1,1) padding and 

the stride 𝑆 = 2. The input are the blue elements, the output are the green elements, 

the filter is grey and the padded values are white. Taken from [19].  

 

Another type of convolutional layers are layers that utilize transposed convolution. 

Those layers are used when we need to increase the dimensionality, instead of 

decreasing it. We can obtain such a layer by running the equation (2.13) in a backward 

pass, which leads to the equation [18] 

𝜕𝑳

𝜕𝑰𝑥,𝑦,𝑐
= ∑ ∑ ∑

𝜕𝑳

𝜕(𝑲⋆𝑰)𝑥´,𝑦´,𝑜
𝑲𝑚,𝑛,𝑐,𝑜𝑜𝑦´,𝑛

𝑦´⋅𝑆+𝑛=𝑦
𝑥´,𝑚

𝑥´⋅𝑆+𝑚=𝑥

. (2.14) 

A more intuitive notion of transposed/upscaling convolution offers Picture 2.7.  

 

Picture 2.7 – The transpose of convolving a (3, 3) kernel over a (5, 5) input with (1, 1) 

padding and stride 2. Taken from [19].  

 

2.4 Regularization mechanisms 

It makes sense that if a very small neural network is used on a very difficult task, the 

network might not have enough capacity to solve the task – we say the model is 

underfitting (not only do we have a bad performance on a test dataset, but the model 

is not doing well even on a train dataset). It might not be intuitive that having an 

unnecessarily large model for an easy task leads to a similar problem, called overfitting 

– such a model may opt to memorize specific portions of each training sample rather 
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than understanding their distinct features. This approach, while effective on the train 

dataset, results in poor performance when the model encounters new, unseen data in 

the test dataset. A model that is generalizing well, on the other hand, learns to identify 

useful features instead of relying on memorization. Good generalization usually means 

that the error on the train dataset is similar as on the test dataset.  

Numerous techniques that aim to reduce the generalization error (while not necessarily 

reducing the training error, sometimes the opposite is true) were developed. Here, only 

the ones used in this thesis will be mentioned.  

The most powerful regularization technique is data augmentation. When working with 

convolutional networks that process image-like data, very often creating new samples 

for the train dataset by taking original samples and applying operations such as 

blurring, tilting, shifting, zooming them usually enhances the model performance [20]. 

Since we work with data that were generated by a Monte Carlo simulation, we cannot 

use most of those operations. However, because our lattices have periodic boundary 

conditions, shifting the lattice by an integer multiple of the distance between two lattice 

points in both x and y directions and rotating the lattice by an integer multiple of 
𝜋

2
 𝑟𝑎𝑑 

is possible. That way, we can greatly enlarge the size of the dataset and make it harder 

for the model to memorize individual samples.  

Another regularization technique is lowering the model capacity by making it smaller. 

One could also put a bottleneck into the neural network – there could be two powerful 

parts of a neural network connected by a layer that has intentionally a small number of 

neurons, which forces the network to extract only the key information from the input. 

This is actually a core mechanism of autoencoders and variational autoencoders, which 

will be discussed in the following chapters.  

Another mechanism that enhances the model performance is batch normalization [21]. 

Batch normalization is usually applied on a layer of neurons right before an activation 

function. During training, it learns the variance and mean of the layer outputs and 

normalizes them as 

𝑥̂𝑖 = 𝐵𝑁(𝑥𝑖) =
𝑥𝑖−𝔼[𝑥𝑖]

√𝑉𝑎𝑟[𝑥𝑖]
, (2.15) 

 where 𝑥𝑖 are the values of the neurons and 𝑥̂𝑖 are their normalized values [12]. Batch 

normalization reduces the need for bias in the equation (2.7), thus it can be rewritten 

as  
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𝒉 = 𝑓(𝐵𝑁(𝑾𝒙)). (2.16) 

 It improves the learning process when training deeper neural networks and help when 

using activation functions with saturating non-linearities [21].  

2.5 Residual neural networks 

A residual neural network is a type of a neural network, that contains residual 

connections (also called skip connections). Residual connections were an answer to 

the degradation problem of convolutional neural networks – with an increasing depth, 

after a certain threshold, not only was the test accuracy decreasing, but the accuracy 

on the train dataset was decreasing as well, suggesting that this decrease of accuracy 

is not caused by overfitting [22]. The decrease of training accuracy was surprising, 

because one can imagine that if additional layers that only do identity mapping were 

added to a shallow convolutional model, its accuracy would not decrease. It is 

speculated that if an identity mapping in a part of a neural network was truly optimal, 

it is difficult for the network to fit it using a stack of nonlinear layers [22]. Residual 

blocks replace (a set of) convolutional layers, and instead of the usual mapping ℋ(𝒙), 

they are trying to fit the mapping 

ℋ(𝒙) = ℱ(𝒙) + 𝒙. (2.17) 

 𝒙 in the equation (2.17) is the residual connection, ℱ(𝒙) represents the hidden layers. 

If its output was zero, ℋ(𝒙) would by default be an identity mapping. A more intuitive 

depiction is provided in Picture 2.8.  

 

Picture 2.8 – A set of layers depicting a residual block, fitting the mapping (2.17). 

Taken from [22]. 

 

Residual connections significantly increase the accuracy of very deep convolutional 

networks (with tens of layers or more). Multiple types of residual blocks that differ in 

the form of the hidden layers are being used nowadays [23]. It is possible to create 

upsampling and downsampling residual blocks [24]. An example of such a 
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downsampling block is depicted in Picture 2.9. In that case, the residual connection 𝒙 

contains a hidden layer, but without any activation function, so it is only a linear 

transformation.  

 

Picture 2.9 – A downsampling residual block with a stride 𝑆 ≥ 2 

 

An upsampling residual block can be done analogously – only instead of the 

convolutional layer with the stride 𝑆 and no activation in both 𝒙 and ℱ(𝒙), we would 

have a transposed convolution with the same properties.  

2.6 Autoencoders and variational autoencoders 

Autoencoders belong to the category of unsupervised machine learning and are a 

useful tool for extracting an optimal representation of the training data [25]. The model 

consists of two parts – an encoder, which is a neural network that reduces the 

dimensionality of the input and tries to compress it into a small number of useful 

features, and a decoder, which takes the representation given to it by the encoder and 

tries to reconstruct the original input. A depiction of such a model is shown in Picture 

2.10.  

 

Picture 2.10 – A representation of an autoencoder. Taken from [26].  
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The space of the outputs of the encoder – the compressed representations - is called 

the latent space and is usually denoted as 𝔃. It needs to have a lower dimensionality 

than is the dimensionality of the input. The task autoencoders perform is trying to 

understand the distribution 𝑃(𝒙), describing observations 𝒙. The distribution can be 

rewritten as  

𝑃(𝒙) = ∑ 𝑃(𝔃)𝑃(𝒙|𝔃)𝔃 . (2.18) 

We use the neural network to estimate the conditional probability 𝑃𝜽(𝒙|𝔃). Ideally, the 

encoder would be just a reversed decoder - 𝑃𝜽(𝔃|𝒙), however, that is not technically 

possible, so we approximate 𝑃𝜽(𝔃|𝒙) by a different model, an encoder, which is a 

trainable 𝑄𝝋(𝔃|𝒙).  

The loss function used to train the model is usually the cross-entropy loss or the mean 

squared error loss [27]. It is called the reconstruction loss and it measures the error 

between the original input and the reconstructed input. If we augment the input 𝒙 as 

𝒙 + 𝜺, where 𝜺 is a small noise, the network can be trained to perform denoising [28].  

Even though such an autoencoder can function as a generative model in the sense, that 

if we send it an input, it generates a similar one, it has troubles generating completely 

new representations. We could take a random vector from the latent space and generate 

an output from it, but there is no guarantee that for that exact vector from the latent 

space, there is going to be a meaningful representation. Variational autoencoders 

address these limitations.  

2.7 Variational autoencoders 

The variational autoencoder differs from a standard autoencoder by the way it encodes 

inputs into the latent space. An encoder in a standard autoencoder generates 𝔃 – an 

encoder in a variational autoencoder generates a distribution of 𝔃’s. It is one of the 

mechanisms that ensures that the whole latent space generates meaningful 

representations. 

How does that work? We represent each dimension of 𝔃 as a normal distribution 

𝔃 = 𝒩(𝝁, 𝝈2), (2.19) 

described by its mean value 𝝁 and its variance 𝝈2. Both 𝝁 and 𝝈2 are represented by a 

layer in the encoder output. During training, a random 𝔃 from the normal distribution 

is sampled. Because the backpropagation algorithm would not be able to propagate 
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gradients back through this sampling layer, a modification is needed. This 

modification is called the reparameterization trick [26] and it is portrayed in Picture 

2.11. We sample a vector 𝜺 from the normal distribution 𝒩(𝟎, 𝟏) with zero mean and 

unit variance. This vector is then used to obtain 𝔃 for a given 𝒙 as 

𝔃 = 𝝈𝒙 ⨀ 𝜺 + 𝝁𝒙. (2.20) 

 Since we understand 𝜺 as just another input into the sampling layer, we are able to 

backpropagate gradients through it.  

 

Picture 2.11 – A sampling layer without the reparameterization trick (on the left) and 

a sampling layer with the reparameterization trick (on the right) 

 

One has to be careful when creating the layer containing variances 𝝁. They cannot be 

negative, so one either needs to use an exp activation function, or the model can be 

trained to learn log(𝝁) and then the exponential can be applied to it when calculating 

𝔃 afterwards.  

The loss function used for training variational autoencoders differs from that of a 

standard autoencoder. Training the decoder alone without employing the encoder 

using the cross-entropy loss as indicated in the equation (2.21) 

log 𝑃𝜽(𝒙) = log 𝔼𝑃(𝔃)[𝑃𝜽(𝒙|𝔃)] (2.21) 

is not possible. This is because sampling a random 𝔃 would lead to a huge variance, 

hindering the training process [29]. Thus, utilizing the encoder and Jensen’s inequality 

for distributions, we can modify the equation (2.21) as 

log 𝑃𝜽(𝒙) ≥ 𝔼𝑄𝝋(𝔃|𝒙) [log 𝑃𝜽(𝒙|𝔃) + log
𝑃(𝔃)

𝑄𝝋(𝔃|𝒙)
], 

(2.22) 

which leads to the loss function [26] 

𝐿(𝜽, 𝝋; 𝒙) = 𝔼𝑄𝜑(𝔃|𝒙)[− log 𝑃𝜽(𝒙|𝔃)] + 𝐷𝐾𝐿(𝑄𝝋(𝔃|𝒙)‖𝑃𝔃), (2.23) 

 where the first term is our reconstruction loss and the second term is the Kullback–

Leibler divergence, also known the latent loss, which optimizes the latent space by 
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trying to make the encoder latent space distribution 𝑄𝝋(𝔃|𝒙) as close as possible to 

the normal distribution 𝑃𝔃 = 𝒩(𝟎, 𝟏) [29]. 𝑄𝝋(𝔃|𝒙) is parametrized as 

𝒩(𝔃|𝝁, 𝝈2; 𝟏). The latent loss is usually weighted; too high a latent loss forces the 

normal distribution describing some random sample 𝒙 spread out over the whole latent 

space. We want it to cover only the nearest area around its 𝔃 coordinates. Conversely, 

too low a latent loss might lead to some regions in the latent space not outputting 

samples corresponding to the given domain.  

2.8 Principal Component Analysis 

Principal component analysis, often referred to as PCA, is a statistical technique, often 

used for dimensionality reduction, feature extraction or data visualisation. Its main 

goal is to transform a high-dimensional dataset into a lower-dimensional 

representation while losing as little information as possible [30]. We will use it to 

examine the latent space of the variational autoencoder.  

It is an orthogonal linear transformation 𝒀 = 𝑿𝑾, where 𝑿 represents the data, 𝑾 is 

a matrix of weights, and 𝒀 is the resulting orthogonal transformed matrix of principal 

components. Those principal components are calculated sequentially, from the first to 

the last. The first principal component is 

𝑃𝐶1 =  argmax
‖𝜔‖=1

{𝑉𝑎𝑟(𝑿𝜔)}, (2.24) 

 where 𝜔 is the weight vector and we are maximizing the variance of the projected 

data. Subsequent principal components are calculated as 

𝑃𝐶𝑘 =  argmax
‖𝜔‖=1,𝜔⊥𝑃𝐶1,… ,𝑃𝐶𝑘−1

{𝑉𝑎𝑟(𝑿𝜔)}. (2.25) 

The resulting principal components are linearly uncorrelated. We can see that the 

ordering means that the first component explains most of the variance of the data and 

the last component explains the least. Hence the use for dimensionality reduction – 

often, it is possible to use only the 𝑁 most important principal components and discard 

the rest.  

3 Own work 

3.1 Training and testing data 

In this thesis, we worked with square spin lattices of the size 𝑁 × 𝑁 = 200 × 200 that 

had already been prepared in advance. They were created using Monte Carlo 
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simulations in Uppsala Atomistic Spin Dynamics package (UppASD) [31], utilizing 

the Heisenberg Hamiltonian  

𝐻 = −𝐽 ∑ 𝑺𝑖 ∙ 𝑺𝑗<𝑖𝑗> − 𝑫′ ∙ ∑ [𝑺𝑖 × 𝑺𝑗]<𝑖𝑗> − 𝐵′ ∑ 𝑆𝑖
𝑍

𝑖 . (3.1) 

 Thus, the exchange interaction, Dzyaloshinskii–Moriya interaction and the influence 

of the perpendicular magnetic field were included. We only consider the nearest 

neighbors interaction. We assumed that the 𝑫′ and 𝐵′ distribution on the lattice was 

uniform. Lattices were simulated for different values of the parameters 𝑫′ and 𝐵′. The 

parameter 𝐽 was removed by dividing the Hamiltonian (3.1) by it, resulting in the 

dimensionless equation  

𝐻̃ = − ∑ 𝑺𝑖 ∙ 𝑺𝑗

<𝑖𝑗>

− 𝑫 ∙ ∑ [𝑺𝑖 × 𝑺𝑗]

<𝑖𝑗>

− 𝐵 ∑ 𝑆𝑖
𝑍

𝑖

, (3.2) 

where 𝑫 =
𝑫′[𝐽𝑜𝑢𝑙𝑒]

𝐽
 and analogously 𝐵 = 𝜇𝐵

𝐵′[𝑇]

𝐽
. 𝜇𝐵 is the Bohr magneton and 𝐵′[𝑇] 

is the magnetic induction. 

We set 𝐽 = 1. Since the Dzyaloshinskii–Moriya vector has 𝐶𝑣 symmetry (shown in the 

equation (1.9)), 𝐷 is a single scalar parameter. The temperature was expressed as 𝑇 =

𝑘𝐵
𝑇′[𝐾]

𝐽
, where 𝑘𝐵 is the Boltzmann constant and 𝑇′[𝐾] is the temperature. The lattices 

were simulated for 𝑇 = 0.006. We will work with these parameters.  

The dataset of lattices used for training and testing the neural network models contains 

2860 lattices. 2574 of them were used for training those models and 286 were used for 

testing (unseen during training). Both the train and test datasets contain only skyrmion 

lattices; no spiral or ferromagnetic phases were present. They are depicted in Picture 

3.1 and Picture 3.2, along with the average topological charge 𝑄 and the mean 

magnetization in the z-axis 𝑀𝑍 of lattices corresponding to each set of (𝐷, 𝐵). To each 

couple of parameters (𝐷, 𝐵) in those pictures corresponds five independent 

configurations.  
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Picture 3.1 – A scatter plot depicting 𝐷 and 𝐵, along with the topological charge and 

𝑀𝑧 of phase diagram points, from which were sampled the train dataset lattices 

 

 

Picture 3.2 – A scatter plot depicting 𝐷 and 𝐵, along with the topological charge and 

𝑀𝑧 of phase diagram points, from which were sampled the test dataset lattices 

 

3.2 Motivation 

Our goal is to create a variational autoencoder that should be able to generate new 

magnetic lattices. The motivation follows; simulating magnetic lattices using Monte 

Carlo simulations is a computationally expensive process, which limits the quantity of 

lattices we are able to obtain. Having a model that is able to generate those lattices 

much faster is therefore an attractive prospect.  
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Generating new lattices utilizes the decoder part of the variational autoencoder, which 

generates lattices from their reduced representation in its latent layer. However, the 

encoder part of the model is also useful. We can use it to compress an existing lattice 

into a space of a much lower dimensionality, while retaining almost all of the original 

information. Then, instead of analysing properties of the original lattice, we can work 

with this reduced representation.  

Another possible use-case is the combination of those two possibilities. We can use 

the encoder part of the model to generate a reduced representation in the latent space 

from an existing lattice, sample a different vector from the latent space, which is 

however in a close proximity to the reduced representation, and generate a new lattice 

from it using the decoder. The resulting lattice should have properties similar to the 

original lattice, but should differ slightly.  

Once we create the variational autoencoder, we would like to examine how many of 

those tasks it is able to perform. This means that we need to understand, how well it is 

able to reconstruct the input lattices and whether the model introduces any artifacts 

into the generated lattices during reconstruction. We will also need to examine the 

properties of the latent space and finally, the model’s ability to create lattices from any 

given point in the latent space. These are the questions we aim to answer.  

3.3 Architecture and training of the variational autoencoder 

When we first approached this task, we tried to start with a simple VAE architecture, 

consisting of a few convolutional layers along with simple Max-Polling and 

upsampling layers, similarly to the model in [32]. However, it quickly became 

apparent that this approach would not work – the model would not train. It could be 

perhaps because we were working with significantly larger lattices or because those 

lattices contained many more skyrmions, which made the task more complex. Thus, 

we decided to use significantly more sophisticated models, utilising tens of blocks with 

residual connections, allowing us to make a very deep neural network. Initially, we 

also trained the model on lattices, where the unit spins were expressed using 𝜃 and 𝜑 

angles, but 𝑥, 𝑦, 𝑧 coordinates seemed to perform better (despite making the lattice 

representation even bigger). Eventually, we converged to an architecture was able to 

learn and which is shown in Picture 3.3. Let’s name it VAE 1. 
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Picture 3.3 – A scheme describing the neural network VAE 1. ResDBlock is a shortcut 

for the residual downsampling block, ResUBlock is a shortcut for the residual 

upsampling block, 𝓩 is the VAE sampling layer. The network starts with the Input and 

ends with the Output layer. The first three numbers in all brackets denote the 

dimensions of the output of the corresponding layer, the 4th number in the bracket is 

the size of the stride S.  

 

We have implemented the neural network models in the programming language 

Python and besides standard Python libraries such as NumPy or matplotlib, we used 

Tensorflow and Keras [12]. 

Since we train the network on 200 × 200 lattices of spins, where each spin has 𝑥, 𝑦, 𝑧 

coordinates, the network’s input is in fact a tensor of the dimensionality ℝ200,200,3. 

The residual downsampling block has the same architecture as the one shown in 

Picture 2.9, the residual upsampling block is analogous to the downsampling block, 

but the first convolutional layer in both 𝒙 and ℱ(𝒙) uses a transposed convolution. The 

kernel used in convolutional layers in those blocks and all other convolutional layers 

as well has the size (3, 3). The layer named Flatten only performs an operation that 

reshapes a tensor ℝ𝑚,𝑛,𝑜 to ℝ𝑚∙𝑛∙𝑜. The Dense layer denotes a standard fully-connected 
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layer. The CropDim layer denotes an operation that transforms a tensor ℝ𝑚,𝑛,𝑜 to ℝ𝑗,𝑘,𝑙 

where 𝑚 ≥ 𝑗, 𝑛 ≥ 𝑘, 𝑜 ≥ 𝑙 by dropping values in the corresponding dimensions. 𝝁𝑥, 

𝝈𝑥 and 𝜀 are all as shown in Picture 2.11. The Output layer uses the 𝑡𝑎𝑛ℎ activation 

function instead of the standard 𝑅𝑒𝐿𝑈; tanh(𝑥) ∈ (−1,1), which is also the range of 

possible values for 𝑥, 𝑦, 𝑧 coordinates of unit spins. A part of the 𝑂𝑢𝑡𝑝𝑢𝑡 layer is also 

unit normalization; 𝑥, 𝑦, 𝑧 are rescaled so that the vector (𝑥, 𝑦, 𝑧) has a unit length. 

The loss function was 𝐿 = 𝐿𝑀𝑆𝐸(𝒙𝑖𝑛, 𝒙𝑜𝑢𝑡) + 𝐶𝐾𝐿 ∙ 𝐿𝐾𝐿(𝒛), where the first term is the 

mean squared error reconstruction loss between the input and the output lattice and the 

second term is the Kullback–Leibler divergence loss (2.23) multiplied by the 𝐶𝐾𝐿 

constant, which we will call the KL weight parameter. The optimizer used was the 

ADAM algorithm [33]. The model was trained with a batch size of 32 for 1000 epochs 

and the dimension of the latent space, as seen in Picture 3.3, was 500.  

We trained six such models with six different KL weight parameters 𝐶𝐾𝐿 ∈

{1.25 ∙ 10−5 , 5 ∙ 10−5, 1 ∙ 10−4, 2 ∙ 10−4, 8 ∙ 10−4, 32 ∙ 10−4}. The names of those 

models and the appropriate KL weight parameters are shown in Table 3.1. Each model 

is denoted according to its KL weight parameter, which is the only property that differs 

between them.  

Model name KL weight 𝑪𝑲𝑳 

VAE 1 1.25e-05 1.25 ∙ 10−5 

VAE 1 5e-05 5 ∙ 10−5 

VAE 1 0.0001 1 ∙ 10−4 

VAE 1 0.0002 2 ∙ 10−4 

VAE 1 0.0008 8 ∙ 10−4 

VAE 1 0.0032 32 ∙ 10−4 

Table 3.1 – VAE 1 model names and the corresponding KL weight parameters 

 

Training progress of all VAE 1 models is shown in Picture 3.4. The model was trained 

on the train dataset of 2574 lattices. We can see that models VAE 1 0.0008 and VAE 

1 0.0032 completely failed to train – their reconstruction error did not decrease almost 

at all. This was definitely caused by the KL weight parameter being too large, as can 

be seen when observing the KL divergence loss; compared to other models, VAE 1 

0.0008 and VAE 1 0.0032 have the KL divergence loss orders of magnitude smaller. 

Also, the KL weight parameter is the only thing that differs between the models. Other 
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models did manage to generalize, VAE 1 0.0002 took around 180 epochs until the 

reconstruction loss began significantly decreasing, and the rest of those models took 

higher tens of epochs. VAE 1 0.0002 took longer than the rest possibly also due to the 

higher KL weight parameter.  

 

Picture 3.4 – Mean train dataset losses each epoch for all VAE 1 models during training 

 

3.4 Evaluation of performance of the variational autoencoder 
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Now that the models are trained, let’s have a general overview of how they perform. 

For that, we will need the test dataset. While there are many things that we can test on 

a variational autoencoder, the most important is its ability to accurately reconstruct 

previously unseen data.  

We can test this by taking lattices 𝒙𝑖𝑛 from the test dataset, feeding them into the 

encoder, getting their latent representations in 𝓩, feeding those into the decoder, 

getting the reconstructed lattices 𝒙𝑜𝑢𝑡 and measuring the mean squared error between 

these input and output lattices. There is a small twist however; in the equation (2.20), 

which describes how we obtain 𝓩 during training, were sampled elements of the vector 

𝜺 from a normal distribution. This time, to obtain as accurate representations as 

possible, we need to set to whole vector 𝜺 to zero. This will be the case during the 

whole testing. We will have a use for 𝝈𝒙 only once we will try generating new lattices 

from randomly sampled points in the latent space.  

Besides looking at the mean squared errors between the test dataset lattices and the 

reconstructed lattices, we can also look at the difference between their energies. The 

reconstruction loss depicts how well the models reconstructs the lattice and the energy 

difference indicates, whether other properties of the reconstructed lattice are similar to 

the input one.  

Histograms that capture both the mean squared error between test dataset lattices and 

their reconstructions, and the differences between their energies, are shown in Picture 

3.5.  
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Picture 3.5 – Histograms depicting the mean squared error and the energy difference 

between test dataset lattices and their reconstructions from VAE 1 models 1.25e-05, 

5e-05, 0.0001, 0.0002, 0.0008 and 0.0032.  
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Histograms for VAE 1 0.0008 and VAE 1 0.0032 models in Picture 3.5 confirm what 

we have observed about them when examining training curves in Picture 3.4. There, 

we could see that their reconstruction loss on the train dataset did not converge. Here, 

we can see that neither did their reconstruction loss on the test dataset – since the test 

dataset reconstruction loss is 𝐿𝑀𝑆𝐸 =
1

𝑁
∑ 𝑀𝑆𝐸(𝒙𝑖,𝑖𝑛, 𝒙𝑖,𝑜𝑢𝑡)𝑁

𝑖=0 , meaning the average 

value from the histograms on Picture 3.5. Their reconstruction loss on the test dataset 

is more than an order of magnitude larger than the reconstruction loss of other VAE 1 

models.  

Reconstruction losses on the test dataset of all VAE 1 models are shown in Table 3.2.  

We can see that VAE 1 5e-05 has the lowest reconstruction loss. VAE 1 0.0008 and 

VAE 1 0.0032 models will not be included in further analyses, and when referring to 

“all VAE 1 models”, those two models will not be encompassed in the reference. 

Thanks to them, we see, that 𝐶𝐾𝐿  ≥ 0.0008 leads to the VAE 1 architecture not being 

able to generalize.  

Model name 1.25e-05 5e-05 0.0001 0.0002 0.0008 0.0032 

Reconstruction 

loss 

0.0342 0.0318 0.0361 0.0358 0.3383 0.3384 

Table 3.2 – Reconstruction loss on the test dataset for all VAE 1 models 

 

It is also interesting to look at the differences between the energies of the test dataset 

lattices and their reconstructions, as they are shown in Picture 3.5. The mean total 

energy of test dataset lattices is 𝐸𝑚𝑒𝑎𝑛 = −26.34, which means, that the energy 

differences are very small – even the largest energy difference in Picture 3.5 is less 

than 0.7 % of the average test dataset lattice energy (not taking into account the VAE 

1 0.0032 and VAE 1 0.0008 models).  

An assumption we could make is that the energy differences should be positive, 

meaning the energy of a test dataset lattice should be lower than the energy of its 

reconstruction. Test dataset skyrmion lattices are a ground state, meaning that they 

have a minimal energy. However, only a handful of those lattices contain no defects. 

It could be the inaccurate reconstruction of those defects that causes the energy of the 

reconstructions to be lower than the energy of the original lattice in some cases.   

3.5 Examples and analysis of lattice reconstruction 
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In the previous chapter, we have shown some general metrics illustrating how the VAE 

1 models perform on the test dataset, but we did not yet show any specific examples 

of reconstructed lattices. We will do it here. Since the VAE 1 5e-05 was the model that 

had the lowest reconstruction loss on the test dataset, we will mainly focus on its 

reconstructions.  

Five examples of lattice reconstructions of the VAE 1 5e-05 model are shown in 

Picture 3.6. The picture shows a set of test dataset input lattices, their corresponding 

reconstructions and the squared error between the spins of these test dataset lattices 

and their reconstructions. The first column shows the 𝑀𝑍 component of the test dataset 

lattice and the second column shows the 𝑀𝑍 component of its reconstruction. Since 

the magnetization vector has a unit length, it follows that 𝑀𝑍 ∈ 〈−1, 1〉. In Picture 3.6 

in the reconstruction squared error plots, 𝑀1, 𝑀2 and 𝑀3 denote the 𝑀𝑥, 𝑀𝑦 and 𝑀𝑧 

components, respectively. It follows that ∑ (𝑀𝑖,𝑡𝑒𝑠𝑡 − 𝑀𝑖,𝑟𝑒𝑐)3
𝑖=1 ∈ 〈0, 4〉.  

To better visualise the lattice, the hexagonal pattern was highlighted using Delaunay 

triangulation. As a set of points for the triangulation were used the centres of 

skyrmions. As a skyrmion was considered a cluster of at least 7 spins with the 

component 𝑀𝑍 < −0.8. The centre of the skyrmion was chosen as the mean 𝑋 and 𝑌 

of this cluster (𝑋 and 𝑌 in this case denotes the position of the spin on the lattice, not 

the spin components). Once this was done, we found the skyrmions with either more 

or less neighbors than six, which are needed to form the hexagonal lattice. These 

skyrmions form our defects. This can be done by finding how many times a certain 

node appears in the set of Delaunay triangles. In further chapters, whenever we work 

with lattice defects, this is the procedure we used to find them.  

The lattices from the test dataset were carefully selected to demonstrate a range of 

scenarios. Initially, we present a lattice free of defects alongside its reconstruction. 

This is followed by two lattices that contain only a few defects. Finally, we showcase 

two lattices with a high number of defects. These test dataset lattices were 

chronologically named A, B, C, D, E.  
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Picture 3.6 – Visualization of the performance of the VAE 1 model 5e-05 on a few 

selected lattices (named A, B, C, D, E) from the test dataset. In the first column are the 

𝑀𝑧 components of lattices from the test dataset that were used as the model’s input, in 
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the second column are the 𝑀𝑧 components of the corresponding lattices reconstructed 

by the model, and in the third column is the squared error between the spins of the test 

dataset lattice and its reconstruction. Yellow and blue dots mark skyrmions from the 

input lattice that have more or less than six neighbors, respectively, and the hexagonal 

structure is highlighted using a transparent red triangulation mesh.  

 

In Picture 3.6, it seems, that the lattices with a higher number of defects have a higher 

reconstruction loss. This is a claim that is explored in the following chapter. The 

specifics of how the squared error between the spins of the test dataset lattice and its 

reconstruction looks around defects is discussed more at the end of this chapter, 

because further images of lattice reconstructions are shown there. It is also important 

to note that when displaying the reconstruction squared error, we utilised a logarithmic 

scale. It helps to increase the contrast of lattices, where the reconstruction squared error 

is generally very low, such as the lattice A.  

Next, we would like to have a look at the correlation between the effective fields and 

the spins. The effective field is defined as 

𝒉𝑒𝑓𝑓,𝑖 = −
𝜕𝐻

𝜕𝑺𝒊
 

(3.3) 

where 𝐻 is the Hamiltonian from the equation (3.1)  and 𝑺𝒊 is the spin configuration. 

It plays an important role in the Landau-Lifshitz-Gilbert equation,  

𝑑𝑺

𝑑𝑡
= −𝛾(𝑺 × 𝒉𝑒𝑓𝑓 − 𝜂𝑺 × 𝒉𝑒𝑓𝑓), (3.4) 

which describes the processional motion in a solid. 𝛾 is the electron gyromagnetic ratio 

and 𝜂 is the dampening parameter.  

The correlation between the spins and the effective fields is then  

cos 𝜃 =
𝑺𝑖 ∙ 𝒉𝑒𝑓𝑓,𝑖

|𝑺𝑖| ∙ |𝒉𝑒𝑓𝑓,𝑖|
 

(3.5) 

We can use this to determine how stable the spin configuration is, because the smaller 

the angle 𝜃 between the spin and the corresponding effective field, the lower the energy 

[32].  

In Picture 3.7, the correlations from the equation (3.5) of the A, B, C, D, E lattices 

from Picture 3.6 are shown, along with the 𝑥 components of the magnetization 𝑴.  
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Picture 3.7 – Visualisation of the performance of the VAE 1 5e-05 model on the 

selected test dataset lattices (A, B, C, D, E). The first two columns show the 𝑀𝑥 

component of the test dataset lattice and the appropriate model reconstruction, 

respectively. In the third and fourth column is shown the cos 𝜃 correlation between the 
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magnetization spins and the effective field 𝒉𝑒𝑓𝑓 of both the test dataset lattice and the 

reconstruction, respectively.  

 

While in lattices A, B, C, the correlation cos 𝜃 of both the original lattice and the 

reconstruction are almost the same, lattices D and E have a few spots, where it differs 

dramatically. To be able to properly compare it, however, requires plotting the squared 

error between cos 𝜃 of the test dataset lattice and its reconstruction.  This is shown in 

Picture 3.8 – that way, we can compare the correlations more easily. The local energies 

of the lattices and their reconstructions, along with the squared error between the two, 

are also shown there.  
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Picture 3.8 – Visualisation of the performance of the VAE 1 5e-05 model on the 

selected test dataset lattices (A, B, C, D, E). The first column shows the squared error 

between the correlations cos 𝜃 of the test dataset lattice and its reconstruction, the 

second and the third column show the local energy of the lattice and its reconstruction, 
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respectively, and the fourth column shows the squared error between these local 

energies 

 

When examining Picture 3.8, it is important to note, that the squared error between the 

correlations cos 𝜃 of the test lattices and their reconstructions, and the squared error 

between local energies, is displayed using a logarithmic scale. As was possible to 

deduce from Picture 3.7, while the correlations between the lattice and its 

reconstruction differ minimally for most lattices, there are two points on the lattice E 

and one point on the lattice D, where the difference is enormous. To better understand 

it, the problematic region on the reconstruction of the lattice E is shown in Picture 3.9.  

 

Picture 3.9 – The lattice E region of interest. The first plot shows the 𝑀𝑍 component 

of the test dataset lattice E, the second plot shows the 𝑀𝑍 component of the 

reconstruction of the lattice E, done using the VAE 1 5e-05 model, and the third plot 

shows the squared error between the cos 𝜃 correlations of the said lattice and its 

reconstruction. 

 

Now, it is easy to see, that those two points in the (cos 𝜃𝑡𝑒𝑠𝑡 − cos 𝜃𝑟𝑒𝑐)2 plot in 

Picture 3.9 correspond to the two non-physical artifacts in the reconstruction of the 

lattice E. It would seem, that the squared error between the cos 𝜃 correlations of the 

reference lattice and the reconstructed lattice, or possibly even just the cos 𝜃 

correlation of the reconstructed lattice alone, offers a good way to find non-physical 

artifacts in the lattices produced by the decoder. In future works, it would be interesting 

to see whether using the equation (3.5) in the loss function would reduce the number 

of similar artifacts generated by the variational autoencoder. 
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We have examined how the selected VAE 1 5e-05 model reconstructs the selected test 

dataset lattices. Now, let’s have a look at a few more lattices, and this time, let’s 

visually compare how the reconstructions differ between all VAE 1 models. That is 

shown in Picture 3.10 and Picture 3.11.  

 

Picture 3.10 – Visualization of how different VAE 1 models reconstruct test dataset 

lattices F and G. In the first column in the first row is shown the test dataset lattice F 

(its 𝑀𝑍 component) and in the remaining rows are its appropriate reconstructions by 
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all VAE 1 models. In the second column are the corresponding squared errors between 

those reconstructions and the test dataset lattice. Analogously, the test dataset lattice 

G, its reconstructions and the corresponding squared error are shown in the third and 

the fourth column. Yellow and blue dots mark skyrmions from the input lattice that 

have more or less than six neighbors, respectively, and the hexagonal structure is 

highlighted using a transparent red triangulation mesh. 
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Picture 3.11 –Visualisation of how different VAE 1 models reconstruct test dataset 

lattices H and I. In the first column in the first row is shown the test dataset lattice H 

(its 𝑀𝑍 component) and in the remaining rows are its appropriate reconstructions by 

all VAE 1 models. In the second column are the corresponding squared errors between 

these reconstructions and the test dataset lattice. Analogously, the test dataset lattice I, 

its reconstructions and the corresponding squared error are shown in the third and the 

fourth column. Yellow and blue dots mark skyrmions from the input lattice that have 
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more or less than six neighbors, respectively, and the hexagonal structure is 

highlighted using a transparent red triangulation mesh. 

 

Generally, we can see that while all models do a good job reconstructing a regular 

hexagonal lattice, they struggle with reconstructing lattice defects. Thus, a higher 

squared error corresponds to those lattice sites. While they sometimes reconstruct a 

simple 5-7 defects (a defect consisting of one skyrmion with 5 neighbors and one 

skyrmion with 7 neighbors) perfectly, it is unusual for them to reconstruct more 

complicated defects without any increase in the squared error. It is not impossible – an 

example of a very good reconstruction of a complicated defect is the reconstruction of 

the lattice H by the 1.24e-05 model in Picture 3.11 – but it seems to be improbable.  

Some defects also disrupt a large area of the regular lattice structure around it. This 

leads to the fact, that if a model reconstructs this defect incorrectly, this disruption in 

the hexagonal lattice around it is incorrect as well, resulting in a high reconstruction 

squared error in the whole area. A good example of that is the top left corner of the 

lattice I reconstructed by VAE 1 0.0002 in Picture 3.11. Sometimes, the reconstruction 

squared error is higher only along the single line of skyrmions the defect is a part of. 

An example of that is the same region, but this time reconstructed by VAE 1 0.0001. 

A detail of this part of the lattice is shown in Picture 3.12. A much better reconstruction 

of the defect by VAE 1 5e-05 model is included.  

 

Picture 3.12 – Visualisation of how selected VAE 1 models (5e-05, 0.0001, 0.0002) 

reconstruct a certain defect of the test dataset lattice I. The first row shows the 𝑀𝑍 

component of the lattice and then their reconstructions using those models, and the 
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second row shows the reconstruction squared error between the reconstructions above 

and the test lattice I. Yellow and blue dots mark skyrmions from the input lattice that 

have more or less than six neighbors, respectively, and the hexagonal structure is 

highlighted using a transparent red triangulation mesh. 

3.6 Reconstruction of lattices with defects 

In the previous chapter we have introduced the idea, that the mean squared error 

between a test dataset lattice and its reconstruction increases with the number of 

defects in the test dataset lattice. This is what we would now like to explore further.  

To do so, we have calculated the number of defects in all test dataset lattices. This was 

done using the Delaunay triangulation that is described in the chapter 3.4. Once this is 

done, we can calculate the reconstruction loss of every test dataset lattice. As a defect 

is considered a skyrmion that has more or less than six neighbors.  

We have done this for all VAE 1 models and plotted the dependence of the 

reconstruction loss of those lattices on the number of defects in those lattices. The 

result is shown in Picture 3.13. 

 

Picture 3.13 – The first graph shows the mean squared error between test dataset 

lattices and their reconstructions for selected VAE 1 models dependent on the number 

of defects of the given test lattice. In the second graphs, these mean squared errors of 
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lattices with the same number of defects were averaged. Their dependence on the 

number of defects is displayed along with a linear fit. 

 

We see that the reconstruction loss increases with the number of defects for all VAE 

1 models. To make sure that these values truly correlate, Pearson correlation 

coefficients between the number of defects on a lattice and the average MSE between 

test lattices and their reconstructions for the same number of defects were calculated 

for all models. The results are shown in Table 3.3.  

VAE 1 model name 1.25e-05 5e-05 0.0001 0.0002 

𝜌#𝑑𝑒𝑓,𝑀𝑆𝐸(𝑥𝑡𝑒𝑠𝑡,𝑥𝑟𝑒𝑐)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑑𝑒𝑓,𝑚𝑜𝑑𝑒𝑙

 0.88 0.92 0.9 0.84 

Table 3.3 – Pearson correlation coefficients between the mean squared reconstruction 

error of test lattices with the same number of defects and the number of defects in the 

test dataset lattice for all VAE 1 models.  

 

Pearson correlation coefficients with the value above 0.8 indeed suggest that there is 

a strong correlation.  

3.7 Analyzing variational autoencoder latent space 

Besides reconstructions, it is also important to examine the latent space of those 

models. The latent space is the space of the 500-dimensional vector between the 

encoder and decoder parts of the model, as shown in Picture 3.3, given by 𝝁𝒙. 𝝈𝒙 gives 

us variances of those dimensions, it will not be needed in this chapter. The encoder 

condenses the information about input lattices into this latent space, which is then used 

by the decoder during reconstruction. We are now interested in this information 

contained in the latent space.  

This time, for all test dataset lattices 𝒙1, … , 𝒙𝑁, we generated their corresponding latent 

space representations, meaning 𝓩𝒙𝒊,𝜺=𝟎 = 𝝁𝒙𝒊
 , according to the equation (2.20). Then, 

we applied the principal component analysis on all test dataset 𝓩’s and transformed 

them using PCA to obtain their corresponding PCA-transformed representations, 

denoted as 𝓩̂. This was done for all VAE 1 models independently.  

Principal component analysis is needed, because we do not know what information is 

contained in which latent space dimension (or a set of dimensions). PCA linearly 

transforms this space so that the elements of 𝓩̂, called the principal components, are 
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ordered in such a way, that the first component explains most of the original variance 

of 𝓩 and the subsequent components explain progressively less variance. This is 

shown in the equation (2.25). 

Looking at how much variance is explained by each component allows us to see how 

important are the first principal components and how many dimensions we can leave 

out and still retain most of the information. We can do that using the explained variance 

ratio and the cumulative explained variance ratio. Explained variance ratio is the 

explained variance of each principal component plotted for all principal components, 

and the cumulative explained variance ratio is the summed explained variance of all 

principal components up until the n-th one plotted for all principal components.  

This was done in Picture 3.14 for the VAE 1 5e-05 model. Variances for both train and 

test dataset lattices are shown. Since there were only 286 test dataset lattices, the 

explained variance ratio for them is shown only for the first 286 principal components. 

With its 2574 lattices, the train dataset can show the explained variance ratio for the 

whole latent space.  

 

Picture 3.14 – Explained variance ratio and cumulative explained variance ratio of 

principal components of 𝓩’s for lattices from the train dataset and test dataset 

respectively, using the VAE 1 5e-05 model 

 

We can see that the first principal component explains substantially more variance than 

the remaining principal components both on the test dataset and on the train dataset. 
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The second principal component also has a noticeably larger explained variance. The 

explained variance of principal components for the test dataset lattices decreases with 

an increasing principal component index more sharply than for the train dataset – it 

seems that some components of the latent space learned to find certain features of the 

train dataset lattices, which were not-so-common in the test dataset (or the model did 

worse at identifying them). Also, given that the cumulative explained variance ratio 

reaches 0.999 at the 230th principal component on the test dataset and at the 342nd 

principal component on the train dataset, the latent space could probably have 100 or 

even more dimensions fewer. 

Next, let’s look at the dependence of various quantities of test dataset lattices on the 

value of the first two principal components of the VAE 1 5e-05 model. Such plots are 

shown in Picture 3.15. 

To make the text more concise, the 1st principal component of the latent space 𝓩 is 

denoted as 𝒵̂0 and the 2nd principal component of the latent space 𝓩 is denoted as 𝒵̂1.  
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Picture 3.15 – The dependence of the size of Dzyaloshinskii–Moriya vector 𝐷, the size 

of the magnetic field 𝐵, the average lattice magnetization in the z-axis 𝑀𝑧, the 

topological charge 𝑄 and the number of defects on the first two principal components 

of latent space representations of the test dataset lattices for the VAE 1 5e-05 model 

 

It is interesting to see that 𝑄, 𝑀𝑍 and 𝐷 seem to be correlated with 𝒵̂0. To examine 

whether such correlation occurs even for other VAE 1 models and to better visualise 

it, 𝒵̂0 of all test dataset lattices with a given 𝑄 were averaged and their dependence on 
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𝑄 was fitted with a linear curve. This was done for all VAE 1 models. The resulting 

plot is shown in Picture 3.16. 

 

Picture 3.16 – The dependence of the mean 𝒵̂0 of all test dataset lattices for a given 𝑄 

on 𝑄 for all VAE 1 models, along with a linear fit 

 

Picture 3.16 shows that all 𝒵̂0’s of all VAE 1 models, except for VAE 1 0.0002, 

correlate with the parameter 𝑄. To find if this is true also about 𝑀𝑍 and 𝐷, Pearson 

correlation coefficients 𝜌 between 𝒵̂0 and 𝐷, 𝑄 and 𝑀𝑍, respectively, were calculated, 

and they are shown in Table 3.4.  

VAE 1 model 1.25e-05 5e-05 0.0001 0.0002 

𝜌𝑄,𝒵̂0,𝑚𝑜𝑑𝑒𝑙
 0.88 0.85 -0.87 -0.06 

𝜌𝑀𝑍,𝒵̂0,𝑚𝑜𝑑𝑒𝑙
 0.85 0.86 -0.83 -0.15 

𝜌𝐷,𝒵̂0,𝑚𝑜𝑑𝑒𝑙
 -0.81 -0.77 0.80 -0.05 

Table 3.4 – The correlation between 𝒵̂0 of test dataset lattices and their 𝑄 (second 

row), mean magnetization in the z-axis 𝑀𝑍 (third row) and 𝐷 (fourth row) for all VAE 

1 models (first row, each column corresponds to a different model) 

 

Table 3.4 indeed shows that all those properties of test dataset lattices correlate with 

the 1st principal component of their representation in the latent space. The variational 

autoencoder did not receive any additional information about 𝑄, 𝐷 or the mean value 

of the 𝑀𝑍 magnetization of those lattices. It was only trained on the lattices themselves, 

and this table and graphs demonstrate, that the encoder truly extracts useful and easily 

interpretable properties of these lattices, such as 𝑄 or 𝑀𝑍, and encodes them into the 

latent space 𝓩. 
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However, we need to verify, whether 𝑄, 𝑀̅𝑍 or 𝐷 of the test dataset lattices are 

correlated between themselves. Pearson correlation coefficients between these 

properties of the test dataset lattices are 

• 𝜌𝐷,𝑄 =  −0.98 

• 𝜌𝐷,𝑀̅𝑍
=  −0.43 

• 𝜌𝑀̅𝑍,𝑄 =  0.55 

So, it seems, that the correlation between 𝑀𝑍 and the 𝓩̂0 is independent on the 

correlation between 𝐷 or  𝑄 and 𝓩̂0. However, 𝐷 and 𝑄 appear to be very strongly 

correlated.  

𝐵 and the number of defects does not seem to be correlated with 𝓩̂0. The appropriate 

correlation coefficients are shown in Table 3.5.  

VAE 1 model 1.25e-05 5e-05 0.0001 0.0002 

𝜌𝐵,𝒵̂0,𝑚𝑜𝑑𝑒𝑙
 -0.22 -0.16 0.20 -0.06 

𝜌#𝑑𝑒𝑓,𝒵̂0,𝑚𝑜𝑑𝑒𝑙
 -0.50 -0.49 0.52 -0.03 

Table 3.5 – The correlation between 𝒵̂0 of test dataset lattices and their 𝐵 (second 

row), number of defects (third row) for all VAE 1 models (first row, each column 

corresponds to a different model) 

 

Table 3.5 does not necessarily prove that there are no elements of the latent space 𝓩 

that try to estimate the magnitude of the magnetic field 𝐵 or note the number of defects 

in the lattice. But it certainly is not such a defining characteristic as 𝑄, which correlates 

with the first principal component of the PCA-transformed 𝓩.  

 The failure of the VAE 1 0.0002 model to capture the same correlation between the 

test lattices and its 𝒵̂0 as the other three models probably means that the KL weight 

𝐶𝐾𝐿 parameter was too high and the model’s latent space was being regularized too 

much. In this context, the failure of the 0.0008 and 0.0032 models with even higher 

KL weights to train at all is not surprising. However, it is interesting that despite that, 

VAE 1 0.0002 performed well when reconstructing unseen lattices.  
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3.8 Generating new lattices 

So far, we have thoroughly explored the reconstruction capabilities of the models and 

the capability of their latent layers to extract important information. Now, let’s have a 

look at their ability to create completely new lattices.  

To be able to generate new lattices, we first need to calculate the mean value of 𝝁𝑥 and 

𝝈𝑥 as they are shown in Picture 3.3 from the latent representations of all train dataset 

lattices. We can then sample a random vector 𝜺 from a normal distribution and use the 

equation (2.20) to generate a new latent vector 𝓩 and then use it as an input for the 

decoder part of the model, generating a new lattice. Using this procedure, we have 

created a dataset of 600 new lattices. We transformed the latent vectors corresponding 

to those lattices using PCA from the chapter 3.7 (see Picture 3.15) to obtain their 

representation in 𝓩̂. All was done using the VAE 1 5e-05 model.  

First, let’s look at whether properties of those generated lattices, such as 𝑄 or 𝑀𝑍, are 

correlated with 𝒵̂0. Previously, we have shown that these properties are correlated with 

𝒵̂0 of the reconstructed test dataset lattices. While the model did not see test dataset 

lattices during training, what if still, they covered only a subspace of the latent space? 

By examining lattices generated from randomly sampled latent vectors, we can verify 

that these correlations hold for the whole latent space. The dependence of 𝑀𝑍, 𝑄 and 

the number of defects of lattices created from these randomly sampled latent vectors 

using the VAE 1 5e-05 model on 𝒵̂0 and 𝒵̂1 is shown in Picture 3.17. 
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Picture 3.17 – Dependence of 𝑀𝑍, 𝑄 and the number of defects of lattices reconstructed 

from randomly sampled latent vectors on the first two principal components of those 

latent vectors transformed using PCA 

 

We see that both 𝑄 and 𝑀𝑍 indeed correlate with the first principal component. When 

we repeated this procedure using the decoder part of other VAE 1 models, we got 

similar results; 𝑀𝑍 and 𝑄 of lattices generated from randomly sampled vectors from 

their latent spaces also correlated with 𝒵̂0 of their latent representations, except for the 

VAE 1 0.0002 model. The number of defects does not correlate with 𝒵̂0. The results 

are shown in Table 3.6.  
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VAE 1 model 1.25e-05 5e-05 0.0001 0.0002 

𝜌𝑄,𝒵̂0,𝑚𝑜𝑑𝑒𝑙
 0.85 0.79 -0.84 0.09 

𝜌𝑀𝑍,𝒵̂0,𝑚𝑜𝑑𝑒𝑙
 0.90 0.85 -0.90 0.03 

𝜌#𝑑𝑒𝑓,𝒵̂0,𝑚𝑜𝑑𝑒𝑙
 -0.05 -0.37 0.01 0.02 

Table 3.6 – The correlation between 𝒵̂0 of randomly sampled dataset lattices and their 

𝑄 (second row), mean magnetization in the z-axis 𝑀𝑍 (third row) and their number of 

defects (fourth row) for all VAE 1 models (first row, each column corresponds to a 

different model) 

 

To illustrate data in Table 3.6, the dependence of 𝑄 on 𝒵̂0 of these randomly sampled 

lattices by all VAE 1 models is shown in Picture 3.18.  

 

Picture 3.18 – The dependence of 𝒵̂0 on the topological charge 𝑄 of generated lattices 

by all VAE 1 models from randomly sampled vectors from their latent space 𝓩 

 

At first glance, what is surprising about Picture 3.17 is the generally huge number of 

defects in generated lattices. These lattices have from 68 to 161 defects, while test 

dataset lattices had usually an order of magnitude fewer defects (see Picture 3.13). A 

possible explanation could be that the subspace of the latent space, which contains 

lattices with none or very few defects, is much smaller than the rest of the latent space. 

There exist many more possible configurations of lattices with a lot of defects than 

there are configurations of lattices with no defects. So, when we randomly sample 

vectors from this space, we are bound generate lattices with a lot of defects. This could 

be possibly solved by identifying which latent space dimensions are responsible for 

defects generation by examining latent representations of test and train dataset lattices 
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with no or only few defects, and sampling random latent space vectors with the 

constraint that they are in a close proximity of latent space vectors of these lattices.  

Next, let’s have a look at examples of these randomly generated lattices.  Eight of these 

lattices are shown in Picture 3.19.  

 

Picture 3.19 – Examples of lattice generation by the decoder part of the VAE 1 5e-05 

model from randomly sampled latent space vectors. Odd columns show the 𝑀𝑥 

components of these lattices and even columns show their appropriate 𝑀𝑍 components. 

Even columns also display yellow and blue dots which mark skyrmions from the input 

lattice that have more or less than six neighbors, respectively, and the hexagonal 

structure of the lattice is highlighted using a transparent red triangulation mesh. 
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We see that those lattices truly contain significantly more defects than test dataset 

lattices. Unlike test dataset lattices defects, which often form boundaries between 

mostly defect-less regions with a different orientation of the hexagonal pattern, defects 

in these generated lattices show no such behavior.  
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Conclusion 

In this thesis, we developed a model of a variational autoencoder, trained on a dataset 

of skyrmion lattices. We examined its ability to reconstruct lattices, to encode the 

information describing the lattice into a low-dimensional latent space, and its ability 

to generate new lattices from randomly sampled points in the latent space.  

The proposed variational autoencoder architecture features a set of powerful residual 

blocks and indeed seems to be able to generalize on a dataset of unseen lattices. The 

architecture was significantly more complex than the one in similar works [32], but 

that it was needed due to the higher dimensionality of our training data and a 

significantly higher average topological charge 𝑄 of our lattices. Several such models 

with different weights multiplying the Kullback-Leibler divergence loss during the 

training were being compared.  

When examining the ability of these models to reconstruct lattices, we noticed that 

they struggled with reconstructing complicated defects and the area around them. This 

was done by visualizing the reconstruction squared error between the spins of test 

lattices and their reconstruction. We have shown the dependence of reconstruction 

mean squared error on the number of defects in those lattices, it appears to be linear 

and its mean Pearson correlation coefficient for all models is 𝜌#𝑑𝑒𝑓,𝑀𝑆𝐸 = 0.89. This 

could be used for the detection of defects in lattices. The squared error between the 

original and reconstructed spins could be used for the identification of the approximate 

position of the defect sites.  

Furthermore, the latent space of the models was examined. Using the principal 

component analysis, we have demonstrated that physical properties, such as the 

topological charge 𝑄 or the mean magnetization of the z-axis 𝑀̅𝑍, are indeed being 

encoded into the latent space, and that they correlate with the first principal component 

of the latent space. The reduced representation of a lattice in the latent space contains 

enough information to allow us to reconstruct it with high accuracy.  

Lastly, we attempted to generate new lattices from randomly sampled latent space 

vectors. While the 𝑄 and 𝑀̅𝑍 properties of those lattices also correlated with the first 
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principal component of the latent space, these generated lattices contained a 

significantly higher number of defects than the test dataset lattices. This was a 

surprising observation, especially given that the model is generally worse at 

reconstructing lattices with a high number of defects. Perhaps it is due to the fact, that 

there are many more possible configurations of lattices with a lot of defects than there 

are lattices with a low-defect count, and thus random sampling from the space 

encoding these lattices results in the generation of high-defect count lattices. This 

would be worth exploring further.  

In future works, it would be interesting to encode the information about the magnetic 

field 𝐵 and the size of Dzyaloshinskii–Moriya vector 𝐷 into the model as well. That 

would allow us to examine the correlation between the effective field and the spins of 

lattices, or their local energies. Also, one could experiment with the correlation 

between the effective field and the spins of lattices being a part of the model loss 

function.  
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