

MASTER THESIS

Bc. Ondřej Dušek

Analysis of topological magnetic phases using generative

machine learning models

Department of Condensed Matter Physics

Supervisor of the master thesis: RNDr. Pavel Baláž, Ph.D.

Study programme: Physics of Condensed Matter and Materials

Specialization: Physics of materials

Prague 2023

I declare that I carried out this master thesis independently, and

only with the cited sources, literature and other professional

sources.

I understand that my work relates to the rights and obligations under

the Act No. 121/2000 Coll., the Copyright Act, as amended, in

particular the fact that the Charles University has the right to

conclude a license agreement on the use of this work as a school work

pursuant to Section 60 paragraph 1 of the Copyright Act.

In…...... date............ signature

I would like to thank my supervisor RNDr. Pavel Baláž, Ph.D., for his endless patience

and the time he gave me. He was the one who introduced me to machine learning, and

it profoundly influenced me.

I would also like to thank RNDr. Milan Straka, Ph.D., who was willing to consult the

neural network architecture with me.

Title: Analysis of topological magnetic phases using generative machine learning

models

Author: Bc. Ondřej Dušek

Department: Department of Condensed Matter Physics

Supervisor: RNDr. Pavel Baláž, Ph. D., FZU - Institute of Physics of the Czech

Academy of Sciences

Abstract: In this thesis, we developed a model of a variational autoencoder with

residual connections, trained on a dataset of skyrmion lattices. Afterwards, we

explored its ability to reconstruct lattices, to encode the information describing lattices

into a low-dimensional latent space, and to generate new lattices from randomly

sampled points in the latent space. We have shown that the reconstruction squared

error between the lattice used as an input and the reconstructed lattice correlates with

the number of defects in the lattice. This could be used for detecting defects in lattices.

We have demonstrated that the model is able to encode physical properties such as the

topological charge 𝑄 or mean magnetization 𝑀𝑍 of these lattices into the latent space.

This comparison was done for multiple variational autoencoders, differing in the

weight used to multiply their Kullback-Leibler divergence loss during the training.

Keywords: machine learning, neural networks, magnetic skyrmions

Contents

Introduction 1

1 Theoretical part 2

1.1 Magnetic skyrmions 2

1.2 Stabilizing mechanisms for magnetic skyrmions 4

1.3 Lattice defects 5

2 Used methods 7

2.1 Basics of Neural Networks 7

2.2 Neural network training 10

2.3 Convolutional neural networks 12

2.4 Regularization mechanisms 14

2.5 Residual neural networks 16

2.6 Autoencoders and variational autoencoders 17

2.7 Variational autoencoders 18

2.8 Principal Component Analysis 20

3 Own work 20

3.1 Training and testing data 20

3.2 Motivation 22

3.3 Architecture and training of the variational autoencoder 23

3.4 Evaluation of performance of the variational autoencoder 26

3.5 Examples and analysis of lattice reconstruction 29

3.6 Reconstruction of lattices with defects 41

3.7 Analyzing variational autoencoder latent space 42

3.8 Generating new lattices 48

Conclusion 53

Bibliography 55

Introduction

During the last decade, machine learning, particularly generative models, has

experienced significant advancements – not only because of the accessibility of more

powerful hardware, but also due to the development of more sophisticated techniques.

This thesis focuses on the application of these innovative techniques to the study of

magnetic configurations, specifically within the realm of the two-dimensional

Heisenberg model on a square lattice. We will develop a generative model called the

variational autoencoder, and use it to examine skyrmion lattices.

The primary objective of this thesis is threefold; Firstly, we will develop the

architecture of this machine learning model and test whether it is able to understand

the intricacies of skyrmion lattices. Secondly, we will train this model and search for

the best set of parameters that maximizes the performance of the model. And thirdly,

we will evaluate how the model performs and explore practical applications of the

trained models.

The goal is to have a model, that can extract useful information from the lattices and

encode it in a much smaller space, which can help find anomalies in the lattices, and

that can possibly even generate new, theoretically plausible skyrmion lattices.

2

1 Theoretical part

In this work, we will examine properties of ferromagnetic materials. We can imagine

such a system as a 2-dimensional lattice which has a unit spin (described using θ and

φ angles) in each of its nodes. This system can be described with a classical Heisenberg

Model, which will be discussed in subsequent chapters. Besides the Heisenberg

Hamiltonian, we will also include the term describing the magnetic field influence and

the Dzyaloshinskii–Moriya interaction (also known as Asymmetric exchange), which

is caused by a spin-orbit interaction due to an absence of inversion symmetry. In a

system described by a Hamiltonian containing these three terms, there can exist

multiple different phases, notably the skyrmion phase, the spiral phase and the

ferromagnetic phase, discussed further.

1.1 Magnetic skyrmions

At the beginning, let’s describe what a magnetic skyrmion is. The surface of some

magnetic material has magnetization, which can be represented using unit vectors.

Skyrmions can exist in this material; they are a vortex-like configuration of those spins

[1]. A skyrmion is a localized and stable topological soliton, and it was first predicted

to exist by the British physicist Tony Skyrme during the 1960’s in the context of

particle physics [2]. That a skyrmion is a topological object means that there is no

continuous transformation that could project the skyrmion on a uniform configuration

[1]. It means that its spin configuration is protected when interacting with other

skyrmions.

A skyrmion is tied to the notion of a topological charge (also called topological

quantum number or skyrmion number). The topological charge of a skyrmion always

has a non-zero integer value. It is defined as

𝑁𝑆𝑘 =
1

4𝜋
∫ 𝒎(𝒓) ∙ (

𝜕𝒎(𝒓)

𝜕𝑥
×

𝜕𝒎(𝒓)

𝜕𝑦
) 𝑑𝑥 𝑑𝑦, (1.1)

where 𝑁𝑆𝑘 is the topological charge and 𝒎(𝒓) is the spin value in the given point. The

topological charge describes how many times the skyrmion configuration wraps

around a unit sphere.

A visualization of two of the most common types of skyrmions is shown in Picture

1.1. Both Néel type skyrmions and Bloch type skyrmions have 𝑄 = −1.

3

Picture 1.1 – Néel type skyrmion (left) and Bloch type skyrmion (right). Taken from

[3] under CC BY-SA 3.0.

Using radial coordinates 𝒓 = 𝑟 ∙ (𝑐𝑜𝑠𝜙, 𝑠𝑖𝑛𝜙), we can transform the equation (1.1) to

𝑁𝑆𝑘 =
1

4𝜋
∫ ∫

𝜕𝛷(𝜙)

𝜕𝜙

𝜕𝜃(𝑟)

𝜕𝑟
𝑑𝜙

2𝜋

0
𝑑𝑟

∞

0
, (1.2)

which can be further simplified to

𝑁𝑆𝑘 = 𝑚 ∙ 𝑝 = [
1

2𝜋
𝛷(𝜙)]

2𝜋

𝜙 = 0
∙ [−

1

2
𝑐𝑜𝑠𝜃(𝑟)]

∞

𝑟 = 0
,

(1.3)

where the first term is called the vorticity 𝑚 ∈ ℤ and the second term is called the

polarity 𝑝 = ±1 [2]. For each unit spin vector, we then have

𝒏(𝒓) = (𝑠𝑖𝑛𝜃(𝒓)𝑐𝑜𝑠𝛷(𝒓), 𝑠𝑖𝑛𝜃(𝒓)𝑠𝑖𝑛𝛷(𝒓), cos𝜃(𝒓)) . (1.4)

 One additional parameter characterizing skyrmions is the helicity 𝛾 – we can calculate

it from the azimuthal angle 𝛷 and the vorticity 𝑚 as

𝛾 = 𝑚 ∙ 𝜑 − 𝛷. (1.5)

The helicity can be understood as a phase factor, and is different between Néel type

and Bloch type skyrmions. For the Néel type skyrmion, helicity is 𝛾 = 0 and for the

Bloch type skyrmion it is 𝛾 = ±
𝜋

2
 [4].

If we had a 3-dimensional lattice, skyrmions would typically extend in a tube-like

manner, as indicated in Picture 1.2.

Picture 1.2 – Extension of a skyrmion in 3 dimensions. Taken from [2].

4

Besides skyrmions, different non-trivial particle-like structures do exist, such as

antiskyrmions (𝑁 = 1, 𝑚 = −1), merons and antimerons (𝑁 = ±
1

2
), biskyrmions and

others [4].

1.2 Stabilizing mechanisms for magnetic skyrmions

The notion of a spin lattice has been already introduced at the beginning of the

theoretical part. A skyrmion lattice can be described using the Heisenberg model; the

most important energy contribution to such a system is the symmetric Heisenberg

exchange interaction. The Hamiltonian describing this interaction is

𝐻𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 = −
1

2
∑ 𝐽𝑖,𝑗𝑺𝑖 ∙ 𝑺𝑗𝑖𝑗 , (1.6)

 where 𝑺𝑖 =
𝝁𝑖

|𝝁𝑖|
 is a unit vector in the direction of the corresponding magnetic moment

𝝁𝑖. 𝐽𝒊,𝒋 denotes the exchange integral, which is related to the charge distribution

between atoms [4]. The equation can be simplified to

𝐻𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 = −
1

2
𝐽 ∑ 𝑺𝑖 ∙ 𝑺𝑗<𝑖𝑗> , (1.7)

where we include only the interaction between nearest neighbors. The exchange

integral 𝐽 is a constant in that case. 𝐽 is responsible for how the neighboring spins are

arranged, for 𝐽 > 0 we have a ferromagnetic (parallel) ordering and for 𝐽 < 0 we have

an antiferromagnetic (antiparallel) ordering.

However, the exchange interaction is not enough to explain the existence of a skyrmion

phase on a magnetic lattice. The second interaction that needs to be included is the

Dzyaloshinskii–Moriya interaction (often referred to as DMI). The energy

contribution of the DMI interaction is

𝐻𝐷𝑀𝐼 =
1

2
∑ (𝑺𝑖 × 𝑺𝑗) ∙ 𝑫𝑖𝑗𝑖𝑗 . (1.8)

 Spins 𝑺𝑖 and 𝑺𝑗 are the same as those in the exchange interaction equation and 𝑫𝑖𝑗 is

a Dzyaloshinskii–Moriya vector, that characterizes the interaction.

Once again, if we include only the interaction between nearest neighbors, the equation

can be simplified into

𝑫 ∙ ∑ [𝑺𝑖 × 𝑺𝑗]<𝑖𝑗> , (1.9)

 where we sum only between nearest neighbors. Since the Dzyaloshinskii–Moriya

vector has a 𝐶𝑣 symmetry, for the vector 𝒖𝑖𝑗 between two magnetic moments 𝑖 and 𝑗

5

(from 𝑖 to 𝑗) it holds that if 𝒖𝑖𝑗 = (±1, 0, 0), then 𝑫 = (0, ±𝐷, 0), and if 𝒖𝑖𝑗 =

(0, ± 1, 0), then 𝑫 = (±𝐷, 0, 0) where 𝐷 is a single scalar parameter.

The Dzyaloshinskii–Moriya interaction is a spin-orbit interaction that exists due to the

lack of inversion symmetry.

Lastly, we will also consider the influence of a magnetic field on the system (Zeeman

term). We will assume the field is perpendicular to the lattice, thus 𝑩 = (0, 0, 𝐵).

Under such an assumption, its energy is

𝐵 ∑ 𝑆𝑖
𝑍

𝑖 , (1.10)

where we once again sum over all the lattice spins.

Besides the Dzyaloshinskii–Moriya interaction, other stabilizing mechanisms are the

frustrated exchange interaction, the four-spin exchange interaction and magnetic

dipole coupling [2][5][6][7].

1.3 Lattice defects

We can describe lattice defects as deviations from the strictly periodic arrangement of

atoms in a solid. There exist extrinsic defects, which are caused by impurities, and

intrinsic defects, which are caused by a disarrangement of atoms in the solid [8]. We

are interested in intrinsic defects. We can also group various types of defects according

to their dimensionality. Thus, we have point defects, line defects (dislocations), planar

defects, and bulk defects.

Point defects are for example vacancies and interstitials. A vacancy is a missing atom

from a lattice site, and an interstitial is an atom that occupies space between lattice

sites. A vacancy can be of two types – the first one is the Frenkel defect, which consists

of a vacancy and a nearby interstitial atom from the vacancy, and the other is the

Schottky defect, which is just the vacancy – the original atom is missing (for example

by diffusion to the surface) [8][9]. The equilibrium number 𝑛 of vacancies, under the

assumption that 𝑛 ≪ 𝑁, where 𝑁 is the number of atoms, is

𝑛

𝑁
≅ exp (−

𝐸𝑣

𝑘𝐵𝑇
), (1.11)

 where 𝐸𝑣 is the energy to take an atom from a lattice site inside the crystal to the

surface, 𝑘𝐵 is the Boltzmann constant and 𝑇 is the temperature [9]. Thus, higher

temperature leads to an increased number of defects.

Line defect (dislocation) occurs when a whole line of lattice points is perturbed. Line

defects in crystals are a consequence of shear stress. There exist edge dislocations and

6

screw dislocations. An edge dislocation could be understood as inserting an extra plane

of atoms into a part of the lattice [9]. A screw dislocation differs from an edge

dislocation in the sense that the boundary between slipped and unslipped parts of the

crystal is parallel to the slip direction, instead of being perpendicular to it. Both

dislocations are illustrated in Picture 1.3.

Picture 1.3 – An illustration of an edge dislocation (left) and a screw dislocation (right).

Burgers vectors 𝒃 characterizing both dislocations are also shown. Taken from [8].

Dislocations are characterized using a Burger’s vector 𝒃, which gives the magnitude

and direction of the slipping process. We can first draw a closed curve around the

original site of the dislocation, but without the dislocation itself. Let’s say that this

curve has the form of a rectangle, given by points 𝐴, 𝐵, 𝐶, 𝐷 and grey lines in Picture

1.3. When we introduce the dislocation, the curve will be deformed along with the

lattice, and the vector needed to close the curve is exactly Burger’s vector 𝒃 [9].

Examples of planar defects are grain boundaries and twin boundaries. Bulk defects are

precipitates, vacancy clusters, pores and cracks.

7

2 Used methods

In this thesis, we used machine learning to study skyrmion lattice configurations.

Namely, we utilized variational autoencoders, which are a special type of unsupervised

generative neural networks. In this chapter, I will introduce the basics of neural

networks and their applications, then, convolutional neural networks, which are

utilized in variational autoencoders, will be discussed, and the chapter will conclude

with the description of variational autoencoders.

2.1 Basics of Neural Networks

The basic principle of how neural networks function can be demonstrated on a simple

concept called a perceptron [10] (an idealization of a neuron), which is shown in

Picture 2.1.

Picture 2.1 – a scheme describing a perceptron. Taken from [10].

Arrows {𝑦1, 𝑦𝑚} denote the inputs into the perceptron (such as values of spins at 𝑥, 𝑦, 𝑧

lattice positions). Each of those inputs is then multiplied by the corresponding weight

{𝑎1, 𝑎𝑚} and in the summation unit, those values and the constant C from the response

unit are added together, resulting in the sum

𝐴 = ∑ 𝑎𝑖𝑦𝑖
𝑚
𝑖=1 + 𝐶. (2.1)

Finally, the perceptron returns the value 1 if 𝐴 ≥ 0 and returns 0 if 𝐴 < 0. The constant

C in (2.1) is often being referred to as a bias.

8

We would like to construct a network out of these perceptrons in such a way, that

multiple perceptrons take as inputs values describing the object we are interested in,

and the outputs of these perceptrons are used as inputs for multiple subsequent

perceptrons – we repeat that enough times, until we use outputs of the last batch of

perceptrons to give us the information we need. Practically, it is useful to think of

perceptrons as being in layers, as it is indicated in Picture 2.2. As described, we can

see the input layer (inputs into the layer are parameters of the examined object), the

hidden layers, and the output layer (returns the information we seek).

Picture 2.2 – a scheme describing a simple neural network. Taken and modified from

[11].

We want the neural network to be trainable – at the beginning, we create an

architecture with weights that are initialized randomly, but after we feed into it a

dataset containing examples of objects we would like to model, the algorithm needs to

be able to tweak the values of the weights in such a way, that the neural network

performs the task we intended, whether it is a classification, regression, generation, or

something else.

However, the concept of the perceptron shown in Picture 2.1 has a problem that makes

it unusable for that - it needs to be modified. Neural networks are being trained using

a method called gradient descent [12], which is an algorithm for optimizing the neural

network in the space of a loss function 𝐸(𝜽), where 𝜽 are weights of the model and

the loss function is a scalar function that evaluates the performance of the model.

Training will be discussed in detail in further chapters, but we can already make a

simple observation. Since gradient descent is a gradient based method that utilizes

∇𝜽𝐸(𝜽), in which we change the weights iteratively by incremental steps, we require

that a small change of a random weight results only in a small change of the output of

9

the network. The perceptron, like we described it above, does not fulfill this premise,

since the Heaviside step function 𝐻 = {
1, 𝑥 ≥ 0
0, 𝑥 < 0

 that is applied to the sum (2.1) does

not have a continuous first derivative in 0. Thus, a different function (called an

activation function) has to be used.

One of the first activation functions used was the logistic sigmoid function

𝜎(𝐴) =
1

1+exp (−𝐴)
, (2.2)

where 𝐴 is the sum (2.1).

Picture 2.3 – sigmoid activation function

Since lim
𝐴→∞

𝜎(𝐴) = 1 and lim
𝐴→−∞

𝜎(𝐴) = 0, it in both limits converges to the Heaviside

step function, however, it has a continuous derivative in 0. Later, different activation

functions started being used, most notably tanh(𝐴) = 2𝜎(2𝐴) − 1 (the result of

tweaking the sigmoid to be symmetrical and making the derivation in zero 1) and

especially ReLU (rectified linear unit):

𝑅𝑒𝐿𝑈(𝐴) = max(0, 𝐴) (2.3)

Picture 2.4 – ReLU activation function

Once we use a reasonable activation function instead of the Heaviside step function,

we can talk of a neuron instead of a perceptron, and it is these neurons that form a

neural network.

Besides empirical evidence, how can we be sure that such a structure is able to model

what we want? According to the Universal Approximation Theorem [13], any

bounded, non decreasing function 𝜑(𝑥): ℝ → ℝ can be used as an activation function

10

after a single layer of neurons of size 𝐻 with 𝐷 inputs, in such a way, that we are able

to approximate a continuous function 𝑓 to an arbitrary precision (given 𝐻 is large

enough). For any 𝜀 > 0 and any continuous function 𝑓: [0, 1]𝐷 → ℝ, there exists 𝐻 ∈

ℕ, 𝒗 ∈ ℝ𝐻, 𝒃 ∈ ℝ𝐻and 𝑾 ∈ ℝ𝐷×𝐻 such, that if we denote

𝐹(𝒙) = 𝒗𝑇𝜑(𝒙𝑇𝑾 + 𝒃) = ∑ 𝑣𝑖𝜑(𝒙𝑇𝑾∗,𝑖 + 𝑏𝒊
𝐻
𝑖=1), (2.4)

where 𝜑 is applied element-wise, then for all 𝒙 ∈ [0,1]𝐷:

|𝐹(𝒙) − 𝑓(𝒙)| < 𝜀. (2.5)

A sketch of the network is shown in Picture 2.5. 𝑾 is the matrix of weights that linearly

calculates values of 𝐻 neurons in the hidden layer from 𝐷 input values, b is the vectors

of constants added as 𝐶 in equation (2.1), and 𝒗 is a vector of transformation between

the hidden layer after the activation function 𝜑 was applied and the output node.

Picture 2.5 – a picture describing the simple neural network used in the Universal

Approximation Theorem

Proof is outside of the scope of this work; however, it utilizes the fact that if a function

is continuous on a closed interval, it can be approximated by a sequence of lines to an

arbitrary precision. Proofs exist even for ReLU, which is an unbounded function [14].

Nowadays, predominantly ReLU and its modifications (ReLU multiplied by the

cumulative distribution of the standard normal distribution – GeLU, ReLU which is

slightly increasing for 𝐴 = (−∞, 0) – Leaky ReLU, etc.) are being used [15].

2.2 Neural network training

In the previous chapter, we have introduced the concept of a neural network. Now,

let’s describe in detail the training process.

When solving usual machine learning problems, the neural network learns from a large

dataset of observations describing the task at hand. We have a train dataset, which is

11

used to train the neural network, and a test dataset, which is not used during training,

but on which we evaluate how the model performs after it was trained.

Machine learning is also often divided into two categories, supervised machine

learning and unsupervised machine learning. In supervised machine learning,

observations in both datasets are also accompanied by labels which describe the

corresponding observation. Neural networks are then usually trained to assign the

correct label to a previously unseen observation. In unsupervised machine learning,

observations in both datasets are not accompanied by labels. For example, large

language models or certain generative models use unsupervised ML. Since we are

building a generative model, the task of this thesis falls into this category.

Before the training of a neural network begins, its weights are randomly initialized.

Numerous weight initializations methods are being used; the most common one and

the one we are using is the Glorot uniform initialization [16] – a matrix of weights

𝑾 ∈ ℝ𝐷×𝐻 is initialized as 𝑾~𝑼 [−√
6

𝐷+𝐻
, √

6

𝐷+𝐻
], where 𝑼 denotes a uniform

distribution from the given interval. Bias vectors are initialized as zeros.

The model is trained by minimizing the loss function, such as the mean squared error,

between samples from the training data and network outputs.

Mean squared error loss function for N samples (𝒙(1), 𝑦(1)), … , (𝒙(𝑁), 𝑦(𝑁)) from the

train dataset is

𝐿𝑀𝑆𝐸 =
1

𝑁
∑ (𝑓(𝒙𝑖; 𝜽) − 𝑦(𝑖))

2𝑁
𝑖=1 , (2.6)

where 𝒙𝑖 and 𝑦𝑖 denotes an observation and its label from the dataset, 𝑓(𝒙𝑖; 𝜽) is the

output of the model and 𝜽 are the parameters (weights and biases) of the model.

Unsupervised machine learning differs from a supervised machine learning in the

sense, that we train the model on unlabelled data; the model learns without any

guidance or instructions. It is often used for anomaly detection or clustering.

The loss function is calculated during a forward propagation regime, during which

values of neurons in the first layer are calculated, those are used to calculate values of

neurons in the second layer, etc., until we reach the output layer that calculates

𝑓(𝒙𝑖; 𝜽). As we could see in equation (2.4), the hidden layer 𝒉 ∈ ℝ𝑀 can be calculated

from the preceding layer (or an input) 𝒙 ∈ ℝ𝑁 as

𝒉 = 𝑓(𝒙𝑇𝑾(ℎ) + 𝒃ℎ), (2.7)

 where 𝑾 ∈ ℝ𝑁×𝑀 is a matrix of weights and 𝒃 ∈ ℝ𝑀 is a vector of biases.

12

Once the loss function is calculated, we minimize it by changing weights and biases

using gradient descent

𝜽 ← 𝜽 − 𝛼∇𝜃𝐸(𝜽), (2.8)

 where 𝐸(𝜽) is

𝐸(𝜽) = 𝔼(𝑥,𝑦)~𝑝𝑑𝑎𝑡𝑎
𝐿(𝑓(𝒙; 𝜽), 𝑦) (2.9)

and 𝛼 is a constant called a learning rate.

The most currently used version of the gradient descent algorithm is the minibatch

stochastic gradient descent – we take only N random samples (a batch) from the dataset

and apply the algorithm (2.8), and we repeat it until the network saw all samples from

the dataset. Once the whole dataset was used, the first epoch of training was completed

and we begin cycling through the dataset using minibatch SGD anew. The other two

variants are when our batch is the whole dataset or only a single sample.

The gradient ∇𝜃𝐸(𝜽) in (2.8) is calculated using an algorithm called backpropagation.

For the loss 𝐿 and a weight/bias j in i-th layer 𝑤𝑖𝑗, 𝑦𝑗 = 𝜑(∑ 𝑤𝑘𝑗𝑥𝑘
𝑁
𝑘=1) = 𝜑(𝑛𝑒𝑡𝑗) is

the neuron’s output and 𝜑 its activation, using the chain rule of derivatives we get [11]

𝜕𝐿

𝜕𝑤𝑖𝑗
=

𝜕𝐿

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑤𝑖𝑗
=

𝜕𝐿

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑖𝑗
. (2.10)

Those partial derivations are calculated from the last layer to the first, since we need

results for the farther layers to calculate partial derivations for the front ones – thus the

name backpropagation algorithm. One of the reasons ReLU activation is used is that

𝜕𝑦𝑗

𝜕𝑛𝑒𝑡𝑗
 can be calculated faster [15], even though we have to define the derivative in zero

to be 0.

Besides the mean squared error loss function, the cross-entropy loss function is

sometimes used – models using it perform better on some tasks. It is given by

𝐿𝑐𝑟𝑜𝑠𝑠−𝐸 = −
1

𝑁
∑ ∑ [𝑦𝑗𝑙𝑛𝑦̂𝑗 + (1 − 𝑦𝑗)𝑙𝑛(1 − 𝑦̂𝑗)]𝑀

𝑗=1
𝑁
𝑖=1 , (2.11)

 where N is the number of samples in the batch, j indexes output neurons, 𝑦𝑗 the target

label and 𝑦̂ is the model’s output [17]. It comes from the information theory and

expresses the amount of surprise when a random variable is sampled.

2.3 Convolutional neural networks

In the previous sections, how neural networks function was explained only on

networks with fully connected layers, such as is the one shown in Picture 2.2. When

working with data that have a spatial or temporal dependency, such as image data,

13

speech or our magnetic lattices, it is often advantageous to use a different type of layers

– convolutional layers.

Imagine the input 𝑰 into the neural network is a tensor with 3 dimensions – x and y

coordinates and the c channel dimension, which, in the case of the magnetic lattice,

can contain for example 𝜃 and 𝜑 values characterizing the unit vector in each site. A

convolutional layer uses the discrete convolution operation, in which the input is

convolved with a tensor 𝑲 called a kernel/filter:

(𝑲 ⋆ 𝑰)𝑥,𝑦,𝑜 = ∑ 𝑰𝑥+𝑚,𝑦+𝑛,𝑐𝑲𝑚,𝑛,𝑐,𝑜𝑚,𝑛,𝑐 , (2.12)

where the dimension o sets the number of channels of the output tensor [18]. Elements

of the kernel are the trainable parameters.

Convolutional layers have two main advantages over fully connected layers. Firstly,

they allow us to drastically reduce the number of trainable parameters in the layer,

which speeds up the training process significantly and allows us to build deeper neural

networks. Secondly, once the neural network learns to discern a certain pattern on a

specific part of the input picture, it is able to discern it everywhere – it is translation

invariant [12].

The most common filter size is (3, 3), and the number of channels of the output tensor

o is being generally increased the deeper in the neural network the convolutional layer

is. Because the convolution operation as written in the equation (2.12) decreases the x

and y dimensions (convolving 𝑰 with dimensions (200, 200, 2) with 𝑲 with

dimensions (3, 3, 2, 2) results in a tensor with dimensions (198, 198, 2). Thus, a

padding is often added, meaning that before the convolution is computed, the x and y

dimensions are extended by one on both sides by a vector filled with zero values.

Besides convolutional layers that keep the dimensionality of the input, sometimes we

intentionally need to reduce the dimensionality. It is possible to do that with

convolutional layers that utilize strides S – we modify the equation (2.12):

(𝑲 ⋆ 𝑰)𝑥,𝑦,𝑜 = ∑ 𝑰𝑥⋅𝑆+𝑚,𝑦⋅𝑆+𝑛,𝑐𝑲𝑚,𝑛,𝑐,𝑜𝑚,𝑛,𝑐 . (2.13)

 Stride 𝑆 ∈ ℕ denotes that an output pixel is calculated only for every S-th pixel. For

reducing dimensionality, usually 𝑆 = 2 is used, which reduces both x and y dimensions

by half. A convolution with strides is depicted in Picture 2.6.

14

Picture 2.6 – convolution of a (3, 3) kernel over a (5, 5) input with (1,1) padding and

the stride 𝑆 = 2. The input are the blue elements, the output are the green elements,

the filter is grey and the padded values are white. Taken from [19].

Another type of convolutional layers are layers that utilize transposed convolution.

Those layers are used when we need to increase the dimensionality, instead of

decreasing it. We can obtain such a layer by running the equation (2.13) in a backward

pass, which leads to the equation [18]

𝜕𝑳

𝜕𝑰𝑥,𝑦,𝑐
= ∑ ∑ ∑

𝜕𝑳

𝜕(𝑲⋆𝑰)𝑥´,𝑦´,𝑜
𝑲𝑚,𝑛,𝑐,𝑜𝑜𝑦´,𝑛

𝑦´⋅𝑆+𝑛=𝑦
𝑥´,𝑚

𝑥´⋅𝑆+𝑚=𝑥

. (2.14)

A more intuitive notion of transposed/upscaling convolution offers Picture 2.7.

Picture 2.7 – The transpose of convolving a (3, 3) kernel over a (5, 5) input with (1, 1)

padding and stride 2. Taken from [19].

2.4 Regularization mechanisms

It makes sense that if a very small neural network is used on a very difficult task, the

network might not have enough capacity to solve the task – we say the model is

underfitting (not only do we have a bad performance on a test dataset, but the model

is not doing well even on a train dataset). It might not be intuitive that having an

unnecessarily large model for an easy task leads to a similar problem, called overfitting

– such a model may opt to memorize specific portions of each training sample rather

15

than understanding their distinct features. This approach, while effective on the train

dataset, results in poor performance when the model encounters new, unseen data in

the test dataset. A model that is generalizing well, on the other hand, learns to identify

useful features instead of relying on memorization. Good generalization usually means

that the error on the train dataset is similar as on the test dataset.

Numerous techniques that aim to reduce the generalization error (while not necessarily

reducing the training error, sometimes the opposite is true) were developed. Here, only

the ones used in this thesis will be mentioned.

The most powerful regularization technique is data augmentation. When working with

convolutional networks that process image-like data, very often creating new samples

for the train dataset by taking original samples and applying operations such as

blurring, tilting, shifting, zooming them usually enhances the model performance [20].

Since we work with data that were generated by a Monte Carlo simulation, we cannot

use most of those operations. However, because our lattices have periodic boundary

conditions, shifting the lattice by an integer multiple of the distance between two lattice

points in both x and y directions and rotating the lattice by an integer multiple of
𝜋

2
 𝑟𝑎𝑑

is possible. That way, we can greatly enlarge the size of the dataset and make it harder

for the model to memorize individual samples.

Another regularization technique is lowering the model capacity by making it smaller.

One could also put a bottleneck into the neural network – there could be two powerful

parts of a neural network connected by a layer that has intentionally a small number of

neurons, which forces the network to extract only the key information from the input.

This is actually a core mechanism of autoencoders and variational autoencoders, which

will be discussed in the following chapters.

Another mechanism that enhances the model performance is batch normalization [21].

Batch normalization is usually applied on a layer of neurons right before an activation

function. During training, it learns the variance and mean of the layer outputs and

normalizes them as

𝑥̂𝑖 = 𝐵𝑁(𝑥𝑖) =
𝑥𝑖−𝔼[𝑥𝑖]

√𝑉𝑎𝑟[𝑥𝑖]
, (2.15)

 where 𝑥𝑖 are the values of the neurons and 𝑥̂𝑖 are their normalized values [12]. Batch

normalization reduces the need for bias in the equation (2.7), thus it can be rewritten

as

16

𝒉 = 𝑓(𝐵𝑁(𝑾𝒙)). (2.16)

 It improves the learning process when training deeper neural networks and help when

using activation functions with saturating non-linearities [21].

2.5 Residual neural networks

A residual neural network is a type of a neural network, that contains residual

connections (also called skip connections). Residual connections were an answer to

the degradation problem of convolutional neural networks – with an increasing depth,

after a certain threshold, not only was the test accuracy decreasing, but the accuracy

on the train dataset was decreasing as well, suggesting that this decrease of accuracy

is not caused by overfitting [22]. The decrease of training accuracy was surprising,

because one can imagine that if additional layers that only do identity mapping were

added to a shallow convolutional model, its accuracy would not decrease. It is

speculated that if an identity mapping in a part of a neural network was truly optimal,

it is difficult for the network to fit it using a stack of nonlinear layers [22]. Residual

blocks replace (a set of) convolutional layers, and instead of the usual mapping ℋ(𝒙),

they are trying to fit the mapping

ℋ(𝒙) = ℱ(𝒙) + 𝒙. (2.17)

 𝒙 in the equation (2.17) is the residual connection, ℱ(𝒙) represents the hidden layers.

If its output was zero, ℋ(𝒙) would by default be an identity mapping. A more intuitive

depiction is provided in Picture 2.8.

Picture 2.8 – A set of layers depicting a residual block, fitting the mapping (2.17).

Taken from [22].

Residual connections significantly increase the accuracy of very deep convolutional

networks (with tens of layers or more). Multiple types of residual blocks that differ in

the form of the hidden layers are being used nowadays [23]. It is possible to create

upsampling and downsampling residual blocks [24]. An example of such a

17

downsampling block is depicted in Picture 2.9. In that case, the residual connection 𝒙

contains a hidden layer, but without any activation function, so it is only a linear

transformation.

Picture 2.9 – A downsampling residual block with a stride 𝑆 ≥ 2

An upsampling residual block can be done analogously – only instead of the

convolutional layer with the stride 𝑆 and no activation in both 𝒙 and ℱ(𝒙), we would

have a transposed convolution with the same properties.

2.6 Autoencoders and variational autoencoders

Autoencoders belong to the category of unsupervised machine learning and are a

useful tool for extracting an optimal representation of the training data [25]. The model

consists of two parts – an encoder, which is a neural network that reduces the

dimensionality of the input and tries to compress it into a small number of useful

features, and a decoder, which takes the representation given to it by the encoder and

tries to reconstruct the original input. A depiction of such a model is shown in Picture

2.10.

Picture 2.10 – A representation of an autoencoder. Taken from [26].

18

The space of the outputs of the encoder – the compressed representations - is called

the latent space and is usually denoted as 𝔃. It needs to have a lower dimensionality

than is the dimensionality of the input. The task autoencoders perform is trying to

understand the distribution 𝑃(𝒙), describing observations 𝒙. The distribution can be

rewritten as

𝑃(𝒙) = ∑ 𝑃(𝔃)𝑃(𝒙|𝔃)𝔃 . (2.18)

We use the neural network to estimate the conditional probability 𝑃𝜽(𝒙|𝔃). Ideally, the

encoder would be just a reversed decoder - 𝑃𝜽(𝔃|𝒙), however, that is not technically

possible, so we approximate 𝑃𝜽(𝔃|𝒙) by a different model, an encoder, which is a

trainable 𝑄𝝋(𝔃|𝒙).

The loss function used to train the model is usually the cross-entropy loss or the mean

squared error loss [27]. It is called the reconstruction loss and it measures the error

between the original input and the reconstructed input. If we augment the input 𝒙 as

𝒙 + 𝜺, where 𝜺 is a small noise, the network can be trained to perform denoising [28].

Even though such an autoencoder can function as a generative model in the sense, that

if we send it an input, it generates a similar one, it has troubles generating completely

new representations. We could take a random vector from the latent space and generate

an output from it, but there is no guarantee that for that exact vector from the latent

space, there is going to be a meaningful representation. Variational autoencoders

address these limitations.

2.7 Variational autoencoders

The variational autoencoder differs from a standard autoencoder by the way it encodes

inputs into the latent space. An encoder in a standard autoencoder generates 𝔃 – an

encoder in a variational autoencoder generates a distribution of 𝔃’s. It is one of the

mechanisms that ensures that the whole latent space generates meaningful

representations.

How does that work? We represent each dimension of 𝔃 as a normal distribution

𝔃 = 𝒩(𝝁, 𝝈2), (2.19)

described by its mean value 𝝁 and its variance 𝝈2. Both 𝝁 and 𝝈2 are represented by a

layer in the encoder output. During training, a random 𝔃 from the normal distribution

is sampled. Because the backpropagation algorithm would not be able to propagate

19

gradients back through this sampling layer, a modification is needed. This

modification is called the reparameterization trick [26] and it is portrayed in Picture

2.11. We sample a vector 𝜺 from the normal distribution 𝒩(𝟎, 𝟏) with zero mean and

unit variance. This vector is then used to obtain 𝔃 for a given 𝒙 as

𝔃 = 𝝈𝒙 ⨀ 𝜺 + 𝝁𝒙. (2.20)

 Since we understand 𝜺 as just another input into the sampling layer, we are able to

backpropagate gradients through it.

Picture 2.11 – A sampling layer without the reparameterization trick (on the left) and

a sampling layer with the reparameterization trick (on the right)

One has to be careful when creating the layer containing variances 𝝁. They cannot be

negative, so one either needs to use an exp activation function, or the model can be

trained to learn log(𝝁) and then the exponential can be applied to it when calculating

𝔃 afterwards.

The loss function used for training variational autoencoders differs from that of a

standard autoencoder. Training the decoder alone without employing the encoder

using the cross-entropy loss as indicated in the equation (2.21)

log 𝑃𝜽(𝒙) = log 𝔼𝑃(𝔃)[𝑃𝜽(𝒙|𝔃)] (2.21)

is not possible. This is because sampling a random 𝔃 would lead to a huge variance,

hindering the training process [29]. Thus, utilizing the encoder and Jensen’s inequality

for distributions, we can modify the equation (2.21) as

log 𝑃𝜽(𝒙) ≥ 𝔼𝑄𝝋(𝔃|𝒙) [log 𝑃𝜽(𝒙|𝔃) + log
𝑃(𝔃)

𝑄𝝋(𝔃|𝒙)
],

(2.22)

which leads to the loss function [26]

𝐿(𝜽, 𝝋; 𝒙) = 𝔼𝑄𝜑(𝔃|𝒙)[− log 𝑃𝜽(𝒙|𝔃)] + 𝐷𝐾𝐿(𝑄𝝋(𝔃|𝒙)‖𝑃𝔃), (2.23)

 where the first term is our reconstruction loss and the second term is the Kullback–

Leibler divergence, also known the latent loss, which optimizes the latent space by

20

trying to make the encoder latent space distribution 𝑄𝝋(𝔃|𝒙) as close as possible to

the normal distribution 𝑃𝔃 = 𝒩(𝟎, 𝟏) [29]. 𝑄𝝋(𝔃|𝒙) is parametrized as

𝒩(𝔃|𝝁, 𝝈2; 𝟏). The latent loss is usually weighted; too high a latent loss forces the

normal distribution describing some random sample 𝒙 spread out over the whole latent

space. We want it to cover only the nearest area around its 𝔃 coordinates. Conversely,

too low a latent loss might lead to some regions in the latent space not outputting

samples corresponding to the given domain.

2.8 Principal Component Analysis

Principal component analysis, often referred to as PCA, is a statistical technique, often

used for dimensionality reduction, feature extraction or data visualisation. Its main

goal is to transform a high-dimensional dataset into a lower-dimensional

representation while losing as little information as possible [30]. We will use it to

examine the latent space of the variational autoencoder.

It is an orthogonal linear transformation 𝒀 = 𝑿𝑾, where 𝑿 represents the data, 𝑾 is

a matrix of weights, and 𝒀 is the resulting orthogonal transformed matrix of principal

components. Those principal components are calculated sequentially, from the first to

the last. The first principal component is

𝑃𝐶1 = argmax
‖𝜔‖=1

{𝑉𝑎𝑟(𝑿𝜔)}, (2.24)

 where 𝜔 is the weight vector and we are maximizing the variance of the projected

data. Subsequent principal components are calculated as

𝑃𝐶𝑘 = argmax
‖𝜔‖=1,𝜔⊥𝑃𝐶1,… ,𝑃𝐶𝑘−1

{𝑉𝑎𝑟(𝑿𝜔)}. (2.25)

The resulting principal components are linearly uncorrelated. We can see that the

ordering means that the first component explains most of the variance of the data and

the last component explains the least. Hence the use for dimensionality reduction –

often, it is possible to use only the 𝑁 most important principal components and discard

the rest.

3 Own work

3.1 Training and testing data

In this thesis, we worked with square spin lattices of the size 𝑁 × 𝑁 = 200 × 200 that

had already been prepared in advance. They were created using Monte Carlo

21

simulations in Uppsala Atomistic Spin Dynamics package (UppASD) [31], utilizing

the Heisenberg Hamiltonian

𝐻 = −𝐽 ∑ 𝑺𝑖 ∙ 𝑺𝑗<𝑖𝑗> − 𝑫′ ∙ ∑ [𝑺𝑖 × 𝑺𝑗]<𝑖𝑗> − 𝐵′ ∑ 𝑆𝑖
𝑍

𝑖 . (3.1)

 Thus, the exchange interaction, Dzyaloshinskii–Moriya interaction and the influence

of the perpendicular magnetic field were included. We only consider the nearest

neighbors interaction. We assumed that the 𝑫′ and 𝐵′ distribution on the lattice was

uniform. Lattices were simulated for different values of the parameters 𝑫′ and 𝐵′. The

parameter 𝐽 was removed by dividing the Hamiltonian (3.1) by it, resulting in the

dimensionless equation

𝐻̃ = − ∑ 𝑺𝑖 ∙ 𝑺𝑗

<𝑖𝑗>

− 𝑫 ∙ ∑ [𝑺𝑖 × 𝑺𝑗]

<𝑖𝑗>

− 𝐵 ∑ 𝑆𝑖
𝑍

𝑖

, (3.2)

where 𝑫 =
𝑫′[𝐽𝑜𝑢𝑙𝑒]

𝐽
 and analogously 𝐵 = 𝜇𝐵

𝐵′[𝑇]

𝐽
. 𝜇𝐵 is the Bohr magneton and 𝐵′[𝑇]

is the magnetic induction.

We set 𝐽 = 1. Since the Dzyaloshinskii–Moriya vector has 𝐶𝑣 symmetry (shown in the

equation (1.9)), 𝐷 is a single scalar parameter. The temperature was expressed as 𝑇 =

𝑘𝐵
𝑇′[𝐾]

𝐽
, where 𝑘𝐵 is the Boltzmann constant and 𝑇′[𝐾] is the temperature. The lattices

were simulated for 𝑇 = 0.006. We will work with these parameters.

The dataset of lattices used for training and testing the neural network models contains

2860 lattices. 2574 of them were used for training those models and 286 were used for

testing (unseen during training). Both the train and test datasets contain only skyrmion

lattices; no spiral or ferromagnetic phases were present. They are depicted in Picture

3.1 and Picture 3.2, along with the average topological charge 𝑄 and the mean

magnetization in the z-axis 𝑀𝑍 of lattices corresponding to each set of (𝐷, 𝐵). To each

couple of parameters (𝐷, 𝐵) in those pictures corresponds five independent

configurations.

22

Picture 3.1 – A scatter plot depicting 𝐷 and 𝐵, along with the topological charge and

𝑀𝑧 of phase diagram points, from which were sampled the train dataset lattices

Picture 3.2 – A scatter plot depicting 𝐷 and 𝐵, along with the topological charge and

𝑀𝑧 of phase diagram points, from which were sampled the test dataset lattices

3.2 Motivation

Our goal is to create a variational autoencoder that should be able to generate new

magnetic lattices. The motivation follows; simulating magnetic lattices using Monte

Carlo simulations is a computationally expensive process, which limits the quantity of

lattices we are able to obtain. Having a model that is able to generate those lattices

much faster is therefore an attractive prospect.

23

Generating new lattices utilizes the decoder part of the variational autoencoder, which

generates lattices from their reduced representation in its latent layer. However, the

encoder part of the model is also useful. We can use it to compress an existing lattice

into a space of a much lower dimensionality, while retaining almost all of the original

information. Then, instead of analysing properties of the original lattice, we can work

with this reduced representation.

Another possible use-case is the combination of those two possibilities. We can use

the encoder part of the model to generate a reduced representation in the latent space

from an existing lattice, sample a different vector from the latent space, which is

however in a close proximity to the reduced representation, and generate a new lattice

from it using the decoder. The resulting lattice should have properties similar to the

original lattice, but should differ slightly.

Once we create the variational autoencoder, we would like to examine how many of

those tasks it is able to perform. This means that we need to understand, how well it is

able to reconstruct the input lattices and whether the model introduces any artifacts

into the generated lattices during reconstruction. We will also need to examine the

properties of the latent space and finally, the model’s ability to create lattices from any

given point in the latent space. These are the questions we aim to answer.

3.3 Architecture and training of the variational autoencoder

When we first approached this task, we tried to start with a simple VAE architecture,

consisting of a few convolutional layers along with simple Max-Polling and

upsampling layers, similarly to the model in [32]. However, it quickly became

apparent that this approach would not work – the model would not train. It could be

perhaps because we were working with significantly larger lattices or because those

lattices contained many more skyrmions, which made the task more complex. Thus,

we decided to use significantly more sophisticated models, utilising tens of blocks with

residual connections, allowing us to make a very deep neural network. Initially, we

also trained the model on lattices, where the unit spins were expressed using 𝜃 and 𝜑

angles, but 𝑥, 𝑦, 𝑧 coordinates seemed to perform better (despite making the lattice

representation even bigger). Eventually, we converged to an architecture was able to

learn and which is shown in Picture 3.3. Let’s name it VAE 1.

24

Picture 3.3 – A scheme describing the neural network VAE 1. ResDBlock is a shortcut

for the residual downsampling block, ResUBlock is a shortcut for the residual

upsampling block, 𝓩 is the VAE sampling layer. The network starts with the Input and

ends with the Output layer. The first three numbers in all brackets denote the

dimensions of the output of the corresponding layer, the 4th number in the bracket is

the size of the stride S.

We have implemented the neural network models in the programming language

Python and besides standard Python libraries such as NumPy or matplotlib, we used

Tensorflow and Keras [12].

Since we train the network on 200 × 200 lattices of spins, where each spin has 𝑥, 𝑦, 𝑧

coordinates, the network’s input is in fact a tensor of the dimensionality ℝ200,200,3.

The residual downsampling block has the same architecture as the one shown in

Picture 2.9, the residual upsampling block is analogous to the downsampling block,

but the first convolutional layer in both 𝒙 and ℱ(𝒙) uses a transposed convolution. The

kernel used in convolutional layers in those blocks and all other convolutional layers

as well has the size (3, 3). The layer named Flatten only performs an operation that

reshapes a tensor ℝ𝑚,𝑛,𝑜 to ℝ𝑚∙𝑛∙𝑜. The Dense layer denotes a standard fully-connected

25

layer. The CropDim layer denotes an operation that transforms a tensor ℝ𝑚,𝑛,𝑜 to ℝ𝑗,𝑘,𝑙

where 𝑚 ≥ 𝑗, 𝑛 ≥ 𝑘, 𝑜 ≥ 𝑙 by dropping values in the corresponding dimensions. 𝝁𝑥,

𝝈𝑥 and 𝜀 are all as shown in Picture 2.11. The Output layer uses the 𝑡𝑎𝑛ℎ activation

function instead of the standard 𝑅𝑒𝐿𝑈; tanh(𝑥) ∈ (−1,1), which is also the range of

possible values for 𝑥, 𝑦, 𝑧 coordinates of unit spins. A part of the 𝑂𝑢𝑡𝑝𝑢𝑡 layer is also

unit normalization; 𝑥, 𝑦, 𝑧 are rescaled so that the vector (𝑥, 𝑦, 𝑧) has a unit length.

The loss function was 𝐿 = 𝐿𝑀𝑆𝐸(𝒙𝑖𝑛, 𝒙𝑜𝑢𝑡) + 𝐶𝐾𝐿 ∙ 𝐿𝐾𝐿(𝒛), where the first term is the

mean squared error reconstruction loss between the input and the output lattice and the

second term is the Kullback–Leibler divergence loss (2.23) multiplied by the 𝐶𝐾𝐿

constant, which we will call the KL weight parameter. The optimizer used was the

ADAM algorithm [33]. The model was trained with a batch size of 32 for 1000 epochs

and the dimension of the latent space, as seen in Picture 3.3, was 500.

We trained six such models with six different KL weight parameters 𝐶𝐾𝐿 ∈

{1.25 ∙ 10−5 , 5 ∙ 10−5, 1 ∙ 10−4, 2 ∙ 10−4, 8 ∙ 10−4, 32 ∙ 10−4}. The names of those

models and the appropriate KL weight parameters are shown in Table 3.1. Each model

is denoted according to its KL weight parameter, which is the only property that differs

between them.

Model name KL weight 𝑪𝑲𝑳

VAE 1 1.25e-05 1.25 ∙ 10−5

VAE 1 5e-05 5 ∙ 10−5

VAE 1 0.0001 1 ∙ 10−4

VAE 1 0.0002 2 ∙ 10−4

VAE 1 0.0008 8 ∙ 10−4

VAE 1 0.0032 32 ∙ 10−4

Table 3.1 – VAE 1 model names and the corresponding KL weight parameters

Training progress of all VAE 1 models is shown in Picture 3.4. The model was trained

on the train dataset of 2574 lattices. We can see that models VAE 1 0.0008 and VAE

1 0.0032 completely failed to train – their reconstruction error did not decrease almost

at all. This was definitely caused by the KL weight parameter being too large, as can

be seen when observing the KL divergence loss; compared to other models, VAE 1

0.0008 and VAE 1 0.0032 have the KL divergence loss orders of magnitude smaller.

Also, the KL weight parameter is the only thing that differs between the models. Other

26

models did manage to generalize, VAE 1 0.0002 took around 180 epochs until the

reconstruction loss began significantly decreasing, and the rest of those models took

higher tens of epochs. VAE 1 0.0002 took longer than the rest possibly also due to the

higher KL weight parameter.

Picture 3.4 – Mean train dataset losses each epoch for all VAE 1 models during training

3.4 Evaluation of performance of the variational autoencoder

27

Now that the models are trained, let’s have a general overview of how they perform.

For that, we will need the test dataset. While there are many things that we can test on

a variational autoencoder, the most important is its ability to accurately reconstruct

previously unseen data.

We can test this by taking lattices 𝒙𝑖𝑛 from the test dataset, feeding them into the

encoder, getting their latent representations in 𝓩, feeding those into the decoder,

getting the reconstructed lattices 𝒙𝑜𝑢𝑡 and measuring the mean squared error between

these input and output lattices. There is a small twist however; in the equation (2.20),

which describes how we obtain 𝓩 during training, were sampled elements of the vector

𝜺 from a normal distribution. This time, to obtain as accurate representations as

possible, we need to set to whole vector 𝜺 to zero. This will be the case during the

whole testing. We will have a use for 𝝈𝒙 only once we will try generating new lattices

from randomly sampled points in the latent space.

Besides looking at the mean squared errors between the test dataset lattices and the

reconstructed lattices, we can also look at the difference between their energies. The

reconstruction loss depicts how well the models reconstructs the lattice and the energy

difference indicates, whether other properties of the reconstructed lattice are similar to

the input one.

Histograms that capture both the mean squared error between test dataset lattices and

their reconstructions, and the differences between their energies, are shown in Picture

3.5.

28

Picture 3.5 – Histograms depicting the mean squared error and the energy difference

between test dataset lattices and their reconstructions from VAE 1 models 1.25e-05,

5e-05, 0.0001, 0.0002, 0.0008 and 0.0032.

29

Histograms for VAE 1 0.0008 and VAE 1 0.0032 models in Picture 3.5 confirm what

we have observed about them when examining training curves in Picture 3.4. There,

we could see that their reconstruction loss on the train dataset did not converge. Here,

we can see that neither did their reconstruction loss on the test dataset – since the test

dataset reconstruction loss is 𝐿𝑀𝑆𝐸 =
1

𝑁
∑ 𝑀𝑆𝐸(𝒙𝑖,𝑖𝑛, 𝒙𝑖,𝑜𝑢𝑡)𝑁

𝑖=0 , meaning the average

value from the histograms on Picture 3.5. Their reconstruction loss on the test dataset

is more than an order of magnitude larger than the reconstruction loss of other VAE 1

models.

Reconstruction losses on the test dataset of all VAE 1 models are shown in Table 3.2.

We can see that VAE 1 5e-05 has the lowest reconstruction loss. VAE 1 0.0008 and

VAE 1 0.0032 models will not be included in further analyses, and when referring to

“all VAE 1 models”, those two models will not be encompassed in the reference.

Thanks to them, we see, that 𝐶𝐾𝐿 ≥ 0.0008 leads to the VAE 1 architecture not being

able to generalize.

Model name 1.25e-05 5e-05 0.0001 0.0002 0.0008 0.0032

Reconstruction

loss

0.0342 0.0318 0.0361 0.0358 0.3383 0.3384

Table 3.2 – Reconstruction loss on the test dataset for all VAE 1 models

It is also interesting to look at the differences between the energies of the test dataset

lattices and their reconstructions, as they are shown in Picture 3.5. The mean total

energy of test dataset lattices is 𝐸𝑚𝑒𝑎𝑛 = −26.34, which means, that the energy

differences are very small – even the largest energy difference in Picture 3.5 is less

than 0.7 % of the average test dataset lattice energy (not taking into account the VAE

1 0.0032 and VAE 1 0.0008 models).

An assumption we could make is that the energy differences should be positive,

meaning the energy of a test dataset lattice should be lower than the energy of its

reconstruction. Test dataset skyrmion lattices are a ground state, meaning that they

have a minimal energy. However, only a handful of those lattices contain no defects.

It could be the inaccurate reconstruction of those defects that causes the energy of the

reconstructions to be lower than the energy of the original lattice in some cases.

3.5 Examples and analysis of lattice reconstruction

30

In the previous chapter, we have shown some general metrics illustrating how the VAE

1 models perform on the test dataset, but we did not yet show any specific examples

of reconstructed lattices. We will do it here. Since the VAE 1 5e-05 was the model that

had the lowest reconstruction loss on the test dataset, we will mainly focus on its

reconstructions.

Five examples of lattice reconstructions of the VAE 1 5e-05 model are shown in

Picture 3.6. The picture shows a set of test dataset input lattices, their corresponding

reconstructions and the squared error between the spins of these test dataset lattices

and their reconstructions. The first column shows the 𝑀𝑍 component of the test dataset

lattice and the second column shows the 𝑀𝑍 component of its reconstruction. Since

the magnetization vector has a unit length, it follows that 𝑀𝑍 ∈ 〈−1, 1〉. In Picture 3.6

in the reconstruction squared error plots, 𝑀1, 𝑀2 and 𝑀3 denote the 𝑀𝑥, 𝑀𝑦 and 𝑀𝑧

components, respectively. It follows that ∑ (𝑀𝑖,𝑡𝑒𝑠𝑡 − 𝑀𝑖,𝑟𝑒𝑐)3
𝑖=1 ∈ 〈0, 4〉.

To better visualise the lattice, the hexagonal pattern was highlighted using Delaunay

triangulation. As a set of points for the triangulation were used the centres of

skyrmions. As a skyrmion was considered a cluster of at least 7 spins with the

component 𝑀𝑍 < −0.8. The centre of the skyrmion was chosen as the mean 𝑋 and 𝑌

of this cluster (𝑋 and 𝑌 in this case denotes the position of the spin on the lattice, not

the spin components). Once this was done, we found the skyrmions with either more

or less neighbors than six, which are needed to form the hexagonal lattice. These

skyrmions form our defects. This can be done by finding how many times a certain

node appears in the set of Delaunay triangles. In further chapters, whenever we work

with lattice defects, this is the procedure we used to find them.

The lattices from the test dataset were carefully selected to demonstrate a range of

scenarios. Initially, we present a lattice free of defects alongside its reconstruction.

This is followed by two lattices that contain only a few defects. Finally, we showcase

two lattices with a high number of defects. These test dataset lattices were

chronologically named A, B, C, D, E.

31

Picture 3.6 – Visualization of the performance of the VAE 1 model 5e-05 on a few

selected lattices (named A, B, C, D, E) from the test dataset. In the first column are the

𝑀𝑧 components of lattices from the test dataset that were used as the model’s input, in

32

the second column are the 𝑀𝑧 components of the corresponding lattices reconstructed

by the model, and in the third column is the squared error between the spins of the test

dataset lattice and its reconstruction. Yellow and blue dots mark skyrmions from the

input lattice that have more or less than six neighbors, respectively, and the hexagonal

structure is highlighted using a transparent red triangulation mesh.

In Picture 3.6, it seems, that the lattices with a higher number of defects have a higher

reconstruction loss. This is a claim that is explored in the following chapter. The

specifics of how the squared error between the spins of the test dataset lattice and its

reconstruction looks around defects is discussed more at the end of this chapter,

because further images of lattice reconstructions are shown there. It is also important

to note that when displaying the reconstruction squared error, we utilised a logarithmic

scale. It helps to increase the contrast of lattices, where the reconstruction squared error

is generally very low, such as the lattice A.

Next, we would like to have a look at the correlation between the effective fields and

the spins. The effective field is defined as

𝒉𝑒𝑓𝑓,𝑖 = −
𝜕𝐻

𝜕𝑺𝒊

(3.3)

where 𝐻 is the Hamiltonian from the equation (3.1) and 𝑺𝒊 is the spin configuration.

It plays an important role in the Landau-Lifshitz-Gilbert equation,

𝑑𝑺

𝑑𝑡
= −𝛾(𝑺 × 𝒉𝑒𝑓𝑓 − 𝜂𝑺 × 𝒉𝑒𝑓𝑓), (3.4)

which describes the processional motion in a solid. 𝛾 is the electron gyromagnetic ratio

and 𝜂 is the dampening parameter.

The correlation between the spins and the effective fields is then

cos 𝜃 =
𝑺𝑖 ∙ 𝒉𝑒𝑓𝑓,𝑖

|𝑺𝑖| ∙ |𝒉𝑒𝑓𝑓,𝑖|

(3.5)

We can use this to determine how stable the spin configuration is, because the smaller

the angle 𝜃 between the spin and the corresponding effective field, the lower the energy

[32].

In Picture 3.7, the correlations from the equation (3.5) of the A, B, C, D, E lattices

from Picture 3.6 are shown, along with the 𝑥 components of the magnetization 𝑴.

33

Picture 3.7 – Visualisation of the performance of the VAE 1 5e-05 model on the

selected test dataset lattices (A, B, C, D, E). The first two columns show the 𝑀𝑥

component of the test dataset lattice and the appropriate model reconstruction,

respectively. In the third and fourth column is shown the cos 𝜃 correlation between the

34

magnetization spins and the effective field 𝒉𝑒𝑓𝑓 of both the test dataset lattice and the

reconstruction, respectively.

While in lattices A, B, C, the correlation cos 𝜃 of both the original lattice and the

reconstruction are almost the same, lattices D and E have a few spots, where it differs

dramatically. To be able to properly compare it, however, requires plotting the squared

error between cos 𝜃 of the test dataset lattice and its reconstruction. This is shown in

Picture 3.8 – that way, we can compare the correlations more easily. The local energies

of the lattices and their reconstructions, along with the squared error between the two,

are also shown there.

35

Picture 3.8 – Visualisation of the performance of the VAE 1 5e-05 model on the

selected test dataset lattices (A, B, C, D, E). The first column shows the squared error

between the correlations cos 𝜃 of the test dataset lattice and its reconstruction, the

second and the third column show the local energy of the lattice and its reconstruction,

36

respectively, and the fourth column shows the squared error between these local

energies

When examining Picture 3.8, it is important to note, that the squared error between the

correlations cos 𝜃 of the test lattices and their reconstructions, and the squared error

between local energies, is displayed using a logarithmic scale. As was possible to

deduce from Picture 3.7, while the correlations between the lattice and its

reconstruction differ minimally for most lattices, there are two points on the lattice E

and one point on the lattice D, where the difference is enormous. To better understand

it, the problematic region on the reconstruction of the lattice E is shown in Picture 3.9.

Picture 3.9 – The lattice E region of interest. The first plot shows the 𝑀𝑍 component

of the test dataset lattice E, the second plot shows the 𝑀𝑍 component of the

reconstruction of the lattice E, done using the VAE 1 5e-05 model, and the third plot

shows the squared error between the cos 𝜃 correlations of the said lattice and its

reconstruction.

Now, it is easy to see, that those two points in the (cos 𝜃𝑡𝑒𝑠𝑡 − cos 𝜃𝑟𝑒𝑐)2 plot in

Picture 3.9 correspond to the two non-physical artifacts in the reconstruction of the

lattice E. It would seem, that the squared error between the cos 𝜃 correlations of the

reference lattice and the reconstructed lattice, or possibly even just the cos 𝜃

correlation of the reconstructed lattice alone, offers a good way to find non-physical

artifacts in the lattices produced by the decoder. In future works, it would be interesting

to see whether using the equation (3.5) in the loss function would reduce the number

of similar artifacts generated by the variational autoencoder.

37

We have examined how the selected VAE 1 5e-05 model reconstructs the selected test

dataset lattices. Now, let’s have a look at a few more lattices, and this time, let’s

visually compare how the reconstructions differ between all VAE 1 models. That is

shown in Picture 3.10 and Picture 3.11.

Picture 3.10 – Visualization of how different VAE 1 models reconstruct test dataset

lattices F and G. In the first column in the first row is shown the test dataset lattice F

(its 𝑀𝑍 component) and in the remaining rows are its appropriate reconstructions by

38

all VAE 1 models. In the second column are the corresponding squared errors between

those reconstructions and the test dataset lattice. Analogously, the test dataset lattice

G, its reconstructions and the corresponding squared error are shown in the third and

the fourth column. Yellow and blue dots mark skyrmions from the input lattice that

have more or less than six neighbors, respectively, and the hexagonal structure is

highlighted using a transparent red triangulation mesh.

39

Picture 3.11 –Visualisation of how different VAE 1 models reconstruct test dataset

lattices H and I. In the first column in the first row is shown the test dataset lattice H

(its 𝑀𝑍 component) and in the remaining rows are its appropriate reconstructions by

all VAE 1 models. In the second column are the corresponding squared errors between

these reconstructions and the test dataset lattice. Analogously, the test dataset lattice I,

its reconstructions and the corresponding squared error are shown in the third and the

fourth column. Yellow and blue dots mark skyrmions from the input lattice that have

40

more or less than six neighbors, respectively, and the hexagonal structure is

highlighted using a transparent red triangulation mesh.

Generally, we can see that while all models do a good job reconstructing a regular

hexagonal lattice, they struggle with reconstructing lattice defects. Thus, a higher

squared error corresponds to those lattice sites. While they sometimes reconstruct a

simple 5-7 defects (a defect consisting of one skyrmion with 5 neighbors and one

skyrmion with 7 neighbors) perfectly, it is unusual for them to reconstruct more

complicated defects without any increase in the squared error. It is not impossible – an

example of a very good reconstruction of a complicated defect is the reconstruction of

the lattice H by the 1.24e-05 model in Picture 3.11 – but it seems to be improbable.

Some defects also disrupt a large area of the regular lattice structure around it. This

leads to the fact, that if a model reconstructs this defect incorrectly, this disruption in

the hexagonal lattice around it is incorrect as well, resulting in a high reconstruction

squared error in the whole area. A good example of that is the top left corner of the

lattice I reconstructed by VAE 1 0.0002 in Picture 3.11. Sometimes, the reconstruction

squared error is higher only along the single line of skyrmions the defect is a part of.

An example of that is the same region, but this time reconstructed by VAE 1 0.0001.

A detail of this part of the lattice is shown in Picture 3.12. A much better reconstruction

of the defect by VAE 1 5e-05 model is included.

Picture 3.12 – Visualisation of how selected VAE 1 models (5e-05, 0.0001, 0.0002)

reconstruct a certain defect of the test dataset lattice I. The first row shows the 𝑀𝑍

component of the lattice and then their reconstructions using those models, and the

41

second row shows the reconstruction squared error between the reconstructions above

and the test lattice I. Yellow and blue dots mark skyrmions from the input lattice that

have more or less than six neighbors, respectively, and the hexagonal structure is

highlighted using a transparent red triangulation mesh.

3.6 Reconstruction of lattices with defects

In the previous chapter we have introduced the idea, that the mean squared error

between a test dataset lattice and its reconstruction increases with the number of

defects in the test dataset lattice. This is what we would now like to explore further.

To do so, we have calculated the number of defects in all test dataset lattices. This was

done using the Delaunay triangulation that is described in the chapter 3.4. Once this is

done, we can calculate the reconstruction loss of every test dataset lattice. As a defect

is considered a skyrmion that has more or less than six neighbors.

We have done this for all VAE 1 models and plotted the dependence of the

reconstruction loss of those lattices on the number of defects in those lattices. The

result is shown in Picture 3.13.

Picture 3.13 – The first graph shows the mean squared error between test dataset

lattices and their reconstructions for selected VAE 1 models dependent on the number

of defects of the given test lattice. In the second graphs, these mean squared errors of

42

lattices with the same number of defects were averaged. Their dependence on the

number of defects is displayed along with a linear fit.

We see that the reconstruction loss increases with the number of defects for all VAE

1 models. To make sure that these values truly correlate, Pearson correlation

coefficients between the number of defects on a lattice and the average MSE between

test lattices and their reconstructions for the same number of defects were calculated

for all models. The results are shown in Table 3.3.

VAE 1 model name 1.25e-05 5e-05 0.0001 0.0002

𝜌#𝑑𝑒𝑓,𝑀𝑆𝐸(𝑥𝑡𝑒𝑠𝑡,𝑥𝑟𝑒𝑐)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑑𝑒𝑓,𝑚𝑜𝑑𝑒𝑙

 0.88 0.92 0.9 0.84

Table 3.3 – Pearson correlation coefficients between the mean squared reconstruction

error of test lattices with the same number of defects and the number of defects in the

test dataset lattice for all VAE 1 models.

Pearson correlation coefficients with the value above 0.8 indeed suggest that there is

a strong correlation.

3.7 Analyzing variational autoencoder latent space

Besides reconstructions, it is also important to examine the latent space of those

models. The latent space is the space of the 500-dimensional vector between the

encoder and decoder parts of the model, as shown in Picture 3.3, given by 𝝁𝒙. 𝝈𝒙 gives

us variances of those dimensions, it will not be needed in this chapter. The encoder

condenses the information about input lattices into this latent space, which is then used

by the decoder during reconstruction. We are now interested in this information

contained in the latent space.

This time, for all test dataset lattices 𝒙1, … , 𝒙𝑁, we generated their corresponding latent

space representations, meaning 𝓩𝒙𝒊,𝜺=𝟎 = 𝝁𝒙𝒊
 , according to the equation (2.20). Then,

we applied the principal component analysis on all test dataset 𝓩’s and transformed

them using PCA to obtain their corresponding PCA-transformed representations,

denoted as 𝓩̂. This was done for all VAE 1 models independently.

Principal component analysis is needed, because we do not know what information is

contained in which latent space dimension (or a set of dimensions). PCA linearly

transforms this space so that the elements of 𝓩̂, called the principal components, are

43

ordered in such a way, that the first component explains most of the original variance

of 𝓩 and the subsequent components explain progressively less variance. This is

shown in the equation (2.25).

Looking at how much variance is explained by each component allows us to see how

important are the first principal components and how many dimensions we can leave

out and still retain most of the information. We can do that using the explained variance

ratio and the cumulative explained variance ratio. Explained variance ratio is the

explained variance of each principal component plotted for all principal components,

and the cumulative explained variance ratio is the summed explained variance of all

principal components up until the n-th one plotted for all principal components.

This was done in Picture 3.14 for the VAE 1 5e-05 model. Variances for both train and

test dataset lattices are shown. Since there were only 286 test dataset lattices, the

explained variance ratio for them is shown only for the first 286 principal components.

With its 2574 lattices, the train dataset can show the explained variance ratio for the

whole latent space.

Picture 3.14 – Explained variance ratio and cumulative explained variance ratio of

principal components of 𝓩’s for lattices from the train dataset and test dataset

respectively, using the VAE 1 5e-05 model

We can see that the first principal component explains substantially more variance than

the remaining principal components both on the test dataset and on the train dataset.

44

The second principal component also has a noticeably larger explained variance. The

explained variance of principal components for the test dataset lattices decreases with

an increasing principal component index more sharply than for the train dataset – it

seems that some components of the latent space learned to find certain features of the

train dataset lattices, which were not-so-common in the test dataset (or the model did

worse at identifying them). Also, given that the cumulative explained variance ratio

reaches 0.999 at the 230th principal component on the test dataset and at the 342nd

principal component on the train dataset, the latent space could probably have 100 or

even more dimensions fewer.

Next, let’s look at the dependence of various quantities of test dataset lattices on the

value of the first two principal components of the VAE 1 5e-05 model. Such plots are

shown in Picture 3.15.

To make the text more concise, the 1st principal component of the latent space 𝓩 is

denoted as 𝒵̂0 and the 2nd principal component of the latent space 𝓩 is denoted as 𝒵̂1.

45

Picture 3.15 – The dependence of the size of Dzyaloshinskii–Moriya vector 𝐷, the size

of the magnetic field 𝐵, the average lattice magnetization in the z-axis 𝑀𝑧, the

topological charge 𝑄 and the number of defects on the first two principal components

of latent space representations of the test dataset lattices for the VAE 1 5e-05 model

It is interesting to see that 𝑄, 𝑀𝑍 and 𝐷 seem to be correlated with 𝒵̂0. To examine

whether such correlation occurs even for other VAE 1 models and to better visualise

it, 𝒵̂0 of all test dataset lattices with a given 𝑄 were averaged and their dependence on

46

𝑄 was fitted with a linear curve. This was done for all VAE 1 models. The resulting

plot is shown in Picture 3.16.

Picture 3.16 – The dependence of the mean 𝒵̂0 of all test dataset lattices for a given 𝑄

on 𝑄 for all VAE 1 models, along with a linear fit

Picture 3.16 shows that all 𝒵̂0’s of all VAE 1 models, except for VAE 1 0.0002,

correlate with the parameter 𝑄. To find if this is true also about 𝑀𝑍 and 𝐷, Pearson

correlation coefficients 𝜌 between 𝒵̂0 and 𝐷, 𝑄 and 𝑀𝑍, respectively, were calculated,

and they are shown in Table 3.4.

VAE 1 model 1.25e-05 5e-05 0.0001 0.0002

𝜌𝑄,𝒵̂0,𝑚𝑜𝑑𝑒𝑙
 0.88 0.85 -0.87 -0.06

𝜌𝑀𝑍,𝒵̂0,𝑚𝑜𝑑𝑒𝑙
 0.85 0.86 -0.83 -0.15

𝜌𝐷,𝒵̂0,𝑚𝑜𝑑𝑒𝑙
 -0.81 -0.77 0.80 -0.05

Table 3.4 – The correlation between 𝒵̂0 of test dataset lattices and their 𝑄 (second

row), mean magnetization in the z-axis 𝑀𝑍 (third row) and 𝐷 (fourth row) for all VAE

1 models (first row, each column corresponds to a different model)

Table 3.4 indeed shows that all those properties of test dataset lattices correlate with

the 1st principal component of their representation in the latent space. The variational

autoencoder did not receive any additional information about 𝑄, 𝐷 or the mean value

of the 𝑀𝑍 magnetization of those lattices. It was only trained on the lattices themselves,

and this table and graphs demonstrate, that the encoder truly extracts useful and easily

interpretable properties of these lattices, such as 𝑄 or 𝑀𝑍, and encodes them into the

latent space 𝓩.

47

However, we need to verify, whether 𝑄, 𝑀̅𝑍 or 𝐷 of the test dataset lattices are

correlated between themselves. Pearson correlation coefficients between these

properties of the test dataset lattices are

• 𝜌𝐷,𝑄 = −0.98

• 𝜌𝐷,𝑀̅𝑍
= −0.43

• 𝜌𝑀̅𝑍,𝑄 = 0.55

So, it seems, that the correlation between 𝑀𝑍 and the 𝓩̂0 is independent on the

correlation between 𝐷 or 𝑄 and 𝓩̂0. However, 𝐷 and 𝑄 appear to be very strongly

correlated.

𝐵 and the number of defects does not seem to be correlated with 𝓩̂0. The appropriate

correlation coefficients are shown in Table 3.5.

VAE 1 model 1.25e-05 5e-05 0.0001 0.0002

𝜌𝐵,𝒵̂0,𝑚𝑜𝑑𝑒𝑙
 -0.22 -0.16 0.20 -0.06

𝜌#𝑑𝑒𝑓,𝒵̂0,𝑚𝑜𝑑𝑒𝑙
 -0.50 -0.49 0.52 -0.03

Table 3.5 – The correlation between 𝒵̂0 of test dataset lattices and their 𝐵 (second

row), number of defects (third row) for all VAE 1 models (first row, each column

corresponds to a different model)

Table 3.5 does not necessarily prove that there are no elements of the latent space 𝓩

that try to estimate the magnitude of the magnetic field 𝐵 or note the number of defects

in the lattice. But it certainly is not such a defining characteristic as 𝑄, which correlates

with the first principal component of the PCA-transformed 𝓩.

 The failure of the VAE 1 0.0002 model to capture the same correlation between the

test lattices and its 𝒵̂0 as the other three models probably means that the KL weight

𝐶𝐾𝐿 parameter was too high and the model’s latent space was being regularized too

much. In this context, the failure of the 0.0008 and 0.0032 models with even higher

KL weights to train at all is not surprising. However, it is interesting that despite that,

VAE 1 0.0002 performed well when reconstructing unseen lattices.

48

3.8 Generating new lattices

So far, we have thoroughly explored the reconstruction capabilities of the models and

the capability of their latent layers to extract important information. Now, let’s have a

look at their ability to create completely new lattices.

To be able to generate new lattices, we first need to calculate the mean value of 𝝁𝑥 and

𝝈𝑥 as they are shown in Picture 3.3 from the latent representations of all train dataset

lattices. We can then sample a random vector 𝜺 from a normal distribution and use the

equation (2.20) to generate a new latent vector 𝓩 and then use it as an input for the

decoder part of the model, generating a new lattice. Using this procedure, we have

created a dataset of 600 new lattices. We transformed the latent vectors corresponding

to those lattices using PCA from the chapter 3.7 (see Picture 3.15) to obtain their

representation in 𝓩̂. All was done using the VAE 1 5e-05 model.

First, let’s look at whether properties of those generated lattices, such as 𝑄 or 𝑀𝑍, are

correlated with 𝒵̂0. Previously, we have shown that these properties are correlated with

𝒵̂0 of the reconstructed test dataset lattices. While the model did not see test dataset

lattices during training, what if still, they covered only a subspace of the latent space?

By examining lattices generated from randomly sampled latent vectors, we can verify

that these correlations hold for the whole latent space. The dependence of 𝑀𝑍, 𝑄 and

the number of defects of lattices created from these randomly sampled latent vectors

using the VAE 1 5e-05 model on 𝒵̂0 and 𝒵̂1 is shown in Picture 3.17.

49

Picture 3.17 – Dependence of 𝑀𝑍, 𝑄 and the number of defects of lattices reconstructed

from randomly sampled latent vectors on the first two principal components of those

latent vectors transformed using PCA

We see that both 𝑄 and 𝑀𝑍 indeed correlate with the first principal component. When

we repeated this procedure using the decoder part of other VAE 1 models, we got

similar results; 𝑀𝑍 and 𝑄 of lattices generated from randomly sampled vectors from

their latent spaces also correlated with 𝒵̂0 of their latent representations, except for the

VAE 1 0.0002 model. The number of defects does not correlate with 𝒵̂0. The results

are shown in Table 3.6.

50

VAE 1 model 1.25e-05 5e-05 0.0001 0.0002

𝜌𝑄,𝒵̂0,𝑚𝑜𝑑𝑒𝑙
 0.85 0.79 -0.84 0.09

𝜌𝑀𝑍,𝒵̂0,𝑚𝑜𝑑𝑒𝑙
 0.90 0.85 -0.90 0.03

𝜌#𝑑𝑒𝑓,𝒵̂0,𝑚𝑜𝑑𝑒𝑙
 -0.05 -0.37 0.01 0.02

Table 3.6 – The correlation between 𝒵̂0 of randomly sampled dataset lattices and their

𝑄 (second row), mean magnetization in the z-axis 𝑀𝑍 (third row) and their number of

defects (fourth row) for all VAE 1 models (first row, each column corresponds to a

different model)

To illustrate data in Table 3.6, the dependence of 𝑄 on 𝒵̂0 of these randomly sampled

lattices by all VAE 1 models is shown in Picture 3.18.

Picture 3.18 – The dependence of 𝒵̂0 on the topological charge 𝑄 of generated lattices

by all VAE 1 models from randomly sampled vectors from their latent space 𝓩

At first glance, what is surprising about Picture 3.17 is the generally huge number of

defects in generated lattices. These lattices have from 68 to 161 defects, while test

dataset lattices had usually an order of magnitude fewer defects (see Picture 3.13). A

possible explanation could be that the subspace of the latent space, which contains

lattices with none or very few defects, is much smaller than the rest of the latent space.

There exist many more possible configurations of lattices with a lot of defects than

there are configurations of lattices with no defects. So, when we randomly sample

vectors from this space, we are bound generate lattices with a lot of defects. This could

be possibly solved by identifying which latent space dimensions are responsible for

defects generation by examining latent representations of test and train dataset lattices

51

with no or only few defects, and sampling random latent space vectors with the

constraint that they are in a close proximity of latent space vectors of these lattices.

Next, let’s have a look at examples of these randomly generated lattices. Eight of these

lattices are shown in Picture 3.19.

Picture 3.19 – Examples of lattice generation by the decoder part of the VAE 1 5e-05

model from randomly sampled latent space vectors. Odd columns show the 𝑀𝑥

components of these lattices and even columns show their appropriate 𝑀𝑍 components.

Even columns also display yellow and blue dots which mark skyrmions from the input

lattice that have more or less than six neighbors, respectively, and the hexagonal

structure of the lattice is highlighted using a transparent red triangulation mesh.

52

We see that those lattices truly contain significantly more defects than test dataset

lattices. Unlike test dataset lattices defects, which often form boundaries between

mostly defect-less regions with a different orientation of the hexagonal pattern, defects

in these generated lattices show no such behavior.

53

Conclusion

In this thesis, we developed a model of a variational autoencoder, trained on a dataset

of skyrmion lattices. We examined its ability to reconstruct lattices, to encode the

information describing the lattice into a low-dimensional latent space, and its ability

to generate new lattices from randomly sampled points in the latent space.

The proposed variational autoencoder architecture features a set of powerful residual

blocks and indeed seems to be able to generalize on a dataset of unseen lattices. The

architecture was significantly more complex than the one in similar works [32], but

that it was needed due to the higher dimensionality of our training data and a

significantly higher average topological charge 𝑄 of our lattices. Several such models

with different weights multiplying the Kullback-Leibler divergence loss during the

training were being compared.

When examining the ability of these models to reconstruct lattices, we noticed that

they struggled with reconstructing complicated defects and the area around them. This

was done by visualizing the reconstruction squared error between the spins of test

lattices and their reconstruction. We have shown the dependence of reconstruction

mean squared error on the number of defects in those lattices, it appears to be linear

and its mean Pearson correlation coefficient for all models is 𝜌#𝑑𝑒𝑓,𝑀𝑆𝐸 = 0.89. This

could be used for the detection of defects in lattices. The squared error between the

original and reconstructed spins could be used for the identification of the approximate

position of the defect sites.

Furthermore, the latent space of the models was examined. Using the principal

component analysis, we have demonstrated that physical properties, such as the

topological charge 𝑄 or the mean magnetization of the z-axis 𝑀̅𝑍, are indeed being

encoded into the latent space, and that they correlate with the first principal component

of the latent space. The reduced representation of a lattice in the latent space contains

enough information to allow us to reconstruct it with high accuracy.

Lastly, we attempted to generate new lattices from randomly sampled latent space

vectors. While the 𝑄 and 𝑀̅𝑍 properties of those lattices also correlated with the first

54

principal component of the latent space, these generated lattices contained a

significantly higher number of defects than the test dataset lattices. This was a

surprising observation, especially given that the model is generally worse at

reconstructing lattices with a high number of defects. Perhaps it is due to the fact, that

there are many more possible configurations of lattices with a lot of defects than there

are lattices with a low-defect count, and thus random sampling from the space

encoding these lattices results in the generation of high-defect count lattices. This

would be worth exploring further.

In future works, it would be interesting to encode the information about the magnetic

field 𝐵 and the size of Dzyaloshinskii–Moriya vector 𝐷 into the model as well. That

would allow us to examine the correlation between the effective field and the spins of

lattices, or their local energies. Also, one could experiment with the correlation

between the effective field and the spins of lattices being a part of the model loss

function.

55

Bibliography

[1] A. Fert, N. Reyren, and V. Cros, “Magnetic skyrmions: advances in physics and

potential applications,” Nat Rev Mater, vol. 2, no. 7, p. 17031, 2017, doi:

10.1038/natrevmats.2017.31.

[2] B. Göbel, I. Mertig, and O. A. Tretiakov, “Beyond skyrmions: Review and

perspectives of alternative magnetic quasiparticles,” Phys Rep, vol. 895, p. 1,

2021, doi: 10.1016/j.physrep.2020.10.001.

[3] Karin Everschor-Sitte and Matthias Sitte, “2skyrmions.jpg,” Wikipedia.

[Online]. Available:

https://commons.wikimedia.org/w/index.php?curid=37682157

[4] S. Li, X. Wang, and T. Rasing, “Magnetic skyrmions: Basic properties and

potential applications,” Interdisciplinary Materials, vol. 2, no. 2, pp. 260–289,

2023, doi: https://doi.org/10.1002/idm2.12072.

[5] B. Van Dijk, “Skyrmions and the Dzyaloshinskii-Moriya Interaction,” thesis,

Utrecht University, 2014. [Online]. Available:

http://dspace.library.uu.nl/handle/1874/304188

[6] T. Okubo, S. Chung, and H. Kawamura, “Multiple-qStates and the Skyrmion

Lattice of the Triangular-Lattice Heisenberg Antiferromagnet under Magnetic

Fields,” Phys Rev Lett, vol. 108, no. 1, Jan. 2012, doi:

10.1103/physrevlett.108.017206.

[7] S. Heinze et al., “Spontaneous atomic-scale magnetic skyrmion lattice in two

dimensions,” Nat Phys, vol. 7, no. 9, pp. 713–718, 2011, doi:

10.1038/nphys2045.

[8] A. Winnacker, “Lattice Defects,” in The Physics Behind Semiconductor

Technology, Cham: Springer International Publishing, 2022, pp. 81–94. doi:

10.1007/978-3-031-10314-8_6.

[9] C. Kittel, Introduction to Solid State Physics, 8th ed. Wiley, 2004. [Online].

Available: http://www.amazon.com/Introduction-Solid-Physics-Charles-

Kittel/dp/047141526X/ref=dp_ob_title_bk

[10] L. N. Kanal, “Perceptron,” in Encyclopedia of Computer Science, GBR: John

Wiley and Sons Ltd., 2003, pp. 1383–1385.

56

[11] J. Šíma and R. Neruda, Teoretické otázky neuronových sítí. Praha: Matfyzpress,

1996.

[12] F. Chollet, Deep Learning with Python. Manning, 2017.

[13] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks

are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366,

1989, doi: https://doi.org/10.1016/0893-6080(89)90020-8.

[14] Z. Shen, H. Yang, and S. Zhang, “Optimal approximation rate of ReLU

networks in terms of width and depth,” J Math Pures Appl, vol. 157, pp. 101–

135, 2022, doi: https://doi.org/10.1016/j.matpur.2021.07.009.

[15] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation Functions:

Comparison of trends in Practice and Research for Deep Learning,” CoRR, vol.

abs/1811.0, 2018.

[16] L. G. C. Evangelista and R. Giusti, “Short-term effects of weight initialization

functions in Deep NeuroEvolution,” Evo, p. 21, 2021.

[17] M. A. Nielsen, Neural Networks and Deep Learning. Determination Press,

2015.

[18] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[19] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep

learning.” 2018.

[20] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond

Empirical Risk Minimization.” 2018.

[21] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift.” 2015.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image

Recognition.” 2015.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Identity Mappings in Deep Residual

Networks.” 2016.

[24] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, “Dive into Deep Learning,”

arXiv preprint arXiv:2106.11342, 2021.

[25] M. A. Kramer, “Nonlinear principal component analysis using autoassociative

neural networks,” AIChE Journal, vol. 37, no. 2, pp. 233–243, 1991, doi:

https://doi.org/10.1002/aic.690370209.

[26] D. Bank, N. Koenigstein, and R. Giryes, “Autoencoders.” 2021.

57

[27] U. Michelucci, “An Introduction to Autoencoders.” 2022.

[28] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked

Denoising Autoencoders: Learning Useful Representations in a Deep Network

with a Local Denoising Criterion,” J. Mach. Learn. Res., vol. 11, pp. 3371–

3408, Dec. 2010.

[29] L. Pinheiro Cinelli, M. Araújo Marins, E. A. da Silva, and S. Lima Netto,

“Variational Autoencoder,” in Variational Methods for Machine Learning with

Applications to Deep Networks, Cham: Springer International Publishing, 2021,

pp. 111–149. doi: 10.1007/978-3-030-70679-1_5.

[30] J. Lever, M. Krzywinski, and N. Altman, “Principal component analysis,” Nat

Methods, vol. 14, no. 7, pp. 641–642, 2017, doi: 10.1038/nmeth.4346.

[31] O. Eriksson, A. Bergman, L. Bergqvist, and J. Hellsvik, Atomistic Spin

Dynamics: Foundations and Applications. OUP Oxford, 2017.

[32] H. Y. Kwon, H. G. Yoon, S. M. Park, D. B. Lee, J. W. Choi, and C. Won,

“Magnetic State Generation using Hamiltonian Guided Variational

Autoencoder with Spin Structure Stabilization,” Advanced Science, vol. 8, no.

11, p. 2004795, 2021, doi: https://doi.org/10.1002/advs.202004795.

[33] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization.” 2017.

	Contents
	Introduction
	1 Theoretical part
	2 Used methods
	3 Own work
	Conclusion
	Bibliography

