
MASTER THESIS

Bc. David Říha

Group Detection in Crowds Using Spatiotemporal Data

Computer Science Institute of Charles University

Supervisor of the master thesis: Ing. David Hartman, Ph.D.

Study program: Computer Science

Specialization: Artificial Intelligence

Prague 2024

I declare that I carried out this master thesis independently and only with the cited

sources, literature, and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.

121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles

University has the right to conclude a license agreement on the use of this work as a

school work pursuant to Section 60 subsection 1 of the Copyright Act.

In Prague date 11. January 2024 David Říha

I would like to thank my supervisor, David Hartman, for his help and guidance. I also thank

Giulio Tani Raffaelli for consultations and Simona Kurňavová for read through.

Title: Group Detection in Crowds Using Spatiotemporal Data

Author: Bc. David Říha

Department / Institute: Computer Science Institute of Charles University

Supervisor of the master thesis: Ing. David Hartman, Ph.D.

Abstract: This thesis addresses the challenge of social group detection in crowds,

presenting an algorithm informed by sociological insights into common group

formations among pedestrians. Our proposed algorithm demonstrates comparable

performance to existing solutions – Time-sequence DBSCAN and Agglomerative

Hierarchical Clustering with Hausdorff Distance, using the DIAMOR dataset for

testing and comparison. Additionally, we introduce a validator tool potentially

capable of refining results from existing algorithms based on a group shape criterion,

leading to improved accuracy in identifying groups.

Keywords: groups detection; clustering; group shape analysis; pedestrian behavior;

Table of Contents

Introduction...3

1 Problem description...4

1.1 Social Groups..4

1.2 Data for Group Detection..5

1.3 Reduction to Clustering..5

1.4 Evaluation of Clustering...6

2 Existing methods..8

2.1 Time–Sequence DBSCAN..8

2.2 Agglomerative Hierarchical Clustering with Hausdorff Distance....................10

3 Human Behavior in Groups..13

3.1 Group Shapes..13

3.2 Group Speeds..15

3.3 Group Sizes...16

4 Used Techniques...17

4.1 Trajectory Misalignment...17

4.2 Shared Time Steps..18

4.3 Distance...18

4.4 Cosine Similarity..18

4.5 Group Shape Score...19

4.6 Breadth-First Search...22

4.7 Hyperparameter Optimization..22

4.8 k-fold Cross-Validation..23

5 Proposed Solution..25

5.1 Algorithm Description..25

6 Dataset...29

6.1 DIAMOR Dataset...29

6.2 Data Format..29

6.3 Removal of Unsuitable Pedestrians..30

6.4 Downsampling of Trajectories..31

6.5 Interpolation of Missing Data...32

1

6.6 Descriptive Statistics...33

7 Experiments..36

7.1 Evolutionary Optimization..36

7.2 Validation..39

7.3 Performance of Our Algorithm...39

7.4 Performance of Time–sequence DBSCAN..42

7.5 Performance Agglomerative Hierarchical Clustering.......................................44

7.6 Comparison of All Algorithms...46

7.7 Investigation of Results for Day 2..47

8 Group Shape Score Validator...52

8.1 Thresholds Selection...52

8.2 Time-Sequence DBSCAN with Validator..53

8.3 Agglomerative Hierarchical Clustering with Validator....................................55

9 Dataset Modification..58

9.1 Increasing Inner Group Distances...58

9.2 Performance of Our Algorithm...60

9.3 Performance of Time-Sequence DBSCAN..62

9.4 Performance of Agglomerative Hierarchical Clustering..................................63

9.5 Summary of All Algorithms...65

10 Conclusion..67

Bibliography..69

List of Abbreviations..71

2

Introduction

The study of crowd behavior extends across various fields such as psychology,

sociology, and informatics, offering insights into human behavior. The knowledge

gained can be instrumental in various applications, ranging from enhancing safety

measures to innovating crowd management strategies and designing spaces

accommodating large human flows.

In this thesis, we analyze and develop methodologies to identify social groups

using spatiotemporal data, aiming to contribute to the field by proposing a novel

algorithm for solving this problem. Our proposed algorithm utilizes findings of

crowd behavior studies, from which we derive a new measure called group shape

score. The thesis involves a comparison of our solution with two existing widely

used approaches to social group detection, namely Time-sequence DBSCAN [1] and

Agglomerative Hierarchical Clustering with Hausdorff Distance [2]. The evaluation

is conducted using the DIAMOR dataset [3], which contains ground truth data

obtained by human observations, providing a benchmark for comparing our results.

Additionally, we introduce a group shape score validator as a post-processing

mechanism to refine the results obtained by any algorithm addressing this problem.

This validator employs a group shape score in a similar manner as our proposed

algorithm. We test this on both selected existing approaches to assess its

effectiveness in enhancing the precision of group detection results.

Acknowledging ethical considerations is crucial in this area of crowd behavior

analysis due to privacy concerns. It is vital that the insights gained from this

discipline are utilized ethically, and we emphasize the importance of collective

responsibility within the context of this thesis to prevent any misuse or harmful

actions.

3

1 Problem description

In this chapter, we present the problem of group detection among pedestrians. The

significance of addressing this challenge extends to various practical applications,

including but not limited to crowd management and behavioral analysis. The ability

to differentiate and categorize groups of people within a given environment holds the

potential for advancing decision-making systems in complex scenarios.

1.1 Social Groups

The definition of social groups is not consistent across different areas of expertise

and scientific studies. A study by Jarosław Was and Krzysztof Kulakowski defines it

as “A group in a crowd is interpreted as two or more persons who are connected by

interpersonal relationships” [4]. For the purpose of this thesis, we shall define social

groups as consisting of two or more individuals intentionally walking together. Such

groups usually consist of family members, friends, or colleagues. These two

definitions do not necessarily coincide with each other in all cases.

The difficulty of a group detection task from tracking data is apparent when we

try to translate the definition of social groups to a strict mathematical or logical

formulation. For example, while walking closely together could be a good indicator

of pedestrians forming a social group, in many situations, pedestrians share a

common goal and also a common walking path without forming a social group. In

public transportation like the subway, it is common to have a limited number of exits

and entrances that every passenger can walk through. In such situations, many

passengers share the same start and end point with very few available options for

their path. In this situation grouping people only by their proximity to each other

might prove inaccurate, especially during high-density situations.

Due to the reasons mentioned above another problem arises when observing

social groups in video footage of pedestrians. The difficulty lies not only in

translating this problem to mathematical representation but also in the inherent

subjectivity of visual interpretation of the footage. Unless prior knowledge about

observed individuals is available, it is a difficult task to distinguish between actual

social groups and people just sharing a similar path to their destination and,

4

therefore, obtain ground truth about given video footage. For simplification, we

assume ground truth data provided by human observation are true, but keeping in

mind the possibility of human error in this interpretation.

1.2 Data for Group Detection

The approach to group detection varies based on the characteristics of the chosen

dataset, its representation, and pre-processing. Some studies choose to work with

video data of pedestrians. This allows researchers to observe and categorize human

interactions such as verbal communication, head orientation, hand gestures, etc.

Since this task is inherently based on social interactions, the usage of video footage

can prove to be advantageous.

In this thesis, we will be using two-dimensional temporal trajectories, without any

other additional data. This choice limits us to position and movement-based

algorithms.

Definition (Trajectory): For each pedestrian p we define their trajectory as

T p=[(xt 0 , y t 0) , (xt 1 , y t 1) ,⋯ , (x t n , y t n)] ,
t i<t j⇒ i< j

where (x t i , y t i) ∈ R2 are spatial coordinates at time t i ∈ R. Trajectory T p at time t

will be denoted as T p [t]=(x t , y t)∈ T p. In the rest of the thesis, the terms pedestrian

and (their) trajectory are used interchangeably.

1.3 Reduction to Clustering

Clustering is the process of organizing a collection of items in a manner where

items within the same cluster share more similarities than those in different clusters.

Clustering aims to uncover natural groupings or patterns present in a dataset. Objects

or data points that exhibit common characteristics (commonly described as being

“closer to each other”) are grouped together, forming clusters. This method aids in

revealing inherent structures within data, making it a valuable tool for tasks such as

identifying similar customer behaviors, categorizing images, or organizing

information. It was first introduced by Driver and Kroeber in 1932 [5].

5

Definition (Partition of Set): Let T be a set. Partition of set T is a non-empty

collection C= {C1 , C2 ,⋯ ,Cm } such that:

 ∀ i :C i⊆ T ,

 ∀ i , j :C i∩C j=∅ ,

 ∪iC i=T .

Definition (Clustering): Let T={T 1 ,T 2 ,⋯ ,T n } be a set of objects and

C= {C1 , C2 ,⋯ ,Cm } is a partition of set T , then we say that C is a clustering of T and

C i are called clusters. We can also say that function f :T→{1 ,2 ,⋯ ,m}, where

f (T i)= j indicates that T i∈ C j describes clustering.

The group detection problem can be looked at as clustering. Each pedestrian

represents an object that we want to categorize into a group (cluster) with other

pedestrians that are ‘similar’, using its spatiotemporal data. Characteristics,

according to which decision is made if spatiotemporal data are ‘similar’ and should

belong to the same group, will be described later in the chapter 5. No pedestrian can

be in more than one group. Formally definition for group detection problem:

Definition (Group Detection Problem): Given a set of n trajectories

T={T 1 ,T 2 ,⋯ ,T n } and ground truth clustering Ggt of T. Find groups {G1 ,G2 ,⋯ ,Gm }

such that {G1 ,G2 ,⋯ ,Gm }=Ggt.

1.4 Evaluation of Clustering

To compare the results of different algorithms, we will use the Adjusted Rand

Index (ARI) as our evaluation function. ARI evaluates the similarity between two

clustering assignments, ignoring permutations. It provides a score that indicates how

well the clustering results align with each other, accounting for the possibility of

randomness.

We are going to use ARI as an evaluation function that quantifies the agreement

between the true groupings of data points and the clusters computed by a clustering

algorithm. The "adjusted" part considers what would be expected by random chance,

providing a normalized measure that ranges from the worst value of -1 to the best

6

value of 1. Clusterings for which ARI is close to 0 can be interpreted as if produced

by a random algorithm, and any value of ARI lower than 0 suggests that the

algorithm by which it was produced is performing worse than the random one [6].

Definition (Adjusted Rand Index): Given a set of trajectories T={T 1 ,T 2 ,⋯ ,T n },

and clusterigns X={X1 , X 2 ,⋯ , Xr }, Y={Y 1 ,Y 2 ,⋯ ,Y s} of T, then ARI can be

calculated as:

 ARI (X ,Y)=
∑ij

(
nij
2

)−[∑i
(
ai
2

)∑ j
(
b j
2

)] /(n2)
1
2 [∑i

(
a i
2
)+∑ j

(
b j
2

)]−[∑i
(
ai
2

)∑ j
(
b j
2

)]/(n2)
,

where nij=|X i∩Y j|, ∀ X i∈X :ai=∑
j=1

s

n1 j, and ∀Y j∈Y :b j=∑
i=1

r

ni1.

ARI serves as an evaluation function of clusterings. Algorithms approximate

solution of group detection problem by producing a set of groups that are similar to

the groups from the ground truth. The similarity is evaluated by ARI.

Definition (Approximation of Group Detection Problem): Given a set of

trajectories T={T 1 ,T 2 ,⋯ ,T n } and ground truth clustering Ggt, find clustering

G={G1 ,G2 ,⋯ ,Gm }such that ARI (G,Ggt) is maximalized.

7

2 Existing methods

In this chapter, we focus on understanding methods of social group detection,

emphasizing two techniques as benchmarks for our proposed algorithm's evaluation:

Time-sequence DBSCAN and Agglomerative Hierarchical Clustering with

Generalized Hausdorff Distance.

We aim to outline and examine these methods, considering their strengths and

limitations. This forms the basis for evaluating their performance and comparing it

with our suggested solution. This assessment is essential for developing our own

group detection algorithms, providing insights and a potential roadmap for future

improvements.

The selection of Time-sequence DBSCAN was motivated by its great

performance, as reported in the respective research paper. The authors compared

three models that considered overlapping coexisting time, distance between

trajectories, or both, demonstrating notably positive results. The evaluation

encompassed three datasets from the German university area at various times of the

day, and the algorithm exhibited robust performance [1].

Agglomerative Hierarchical Clustering with Generalized Hausdorff Distance was

chosen for its contrasting approach compared to Time-sequence DBSCAN. This

clustering method draws inspiration from psychological models of collective

behavior. The algorithm underwent testing on diverse data sets, incorporating indoor,

outdoor, and varying viewpoints [2].

2.1 Time–Sequence DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) was

presented by Martin Ester, Hans-Peter Kriegel, Jiirg Sander, and Xiaowei Xu in 1996

[7]. It belongs to the group of clustering algorithms used for class identification in

spatial databases. According to their paper, DBSCAN excels in large spatial

databases, offering benefits such as minimal domain knowledge requirements for

input parameters, the discovery of clusters with arbitrary shapes, and efficient

processing even in databases with a higher number of objects.

8

DBSCAN uses the concept of core points – points with a high density of points

around them – for cluster creation and border points – points that are reachable from

core points – to distinguish between noise and points that are part of some cluster. It

takes two parameters as input:

1. epsilon – defines the radius of a circle around points for conducting a

range query, establishing whether other points are considered "close"

(located inside the circle) or not

2. minPoints – defines the minimum number of points required to start a

cluster

DBSCAN is not a deterministic algorithm since border points may be associated

with multiple clusters, and their assignment to the cluster depends on the core point

from which they are first identified.

Time-sequence DBSCAN, introduced in [1], is a modification to the standard

DBSCAN algorithm. This adaptation enables the application of DBSCAN on data

with a temporal dimension, such as data reflecting the movement of walking

pedestrians over time.

2.1.1Algorithm Description

The process involves running the original DBSCAN for each time step within the

data. In the case of detecting groups from trajectories of walking pedestrians, the

minimal size of clusters is 2. Therefore DBSCAN is run with minPoints = 2. The

other parameter of DBSCAN, epsilon, is for us to decide based on the specific data.

We monitor the number of time steps during which pedestrians share the same

cluster. Ultimately, for each pair, we assess their total time steps (the union of

distinct time steps of each pedestrian) and compare it with the instances they were

together in a cluster. If this ratio exceeds the new parameter CTR (coexisting time

ratio threshold), pedestrians are considered to belong to the same group.

9

Following pseudocode is describing Time-Sequence DBSCAN in closer detail:

ALGORITHM: TIME-SEQUENCE DBSCAN

Input: T={T 1 ,T 2 ,⋯ ,T n }, epsilon, CTR

Output: G={G1 ,G2 ,⋯ ,Gm}

1: M  0n×n // coexistence matrix, counts how many times (i,j) are in a cluster

2: for t in T: // t are all time steps that exists for any trajectory in T

3: points  [T 1 [t] ,⋯ ,T n [t]]

4: C  DBSCAN(points, epsilon, 2) //minPoints = 2 for group detection

5: for C x in C:

6: for each pair (i,j) in C x: M[i,j] += 1

7: end

8: end

9: cluster_pairs = []

10: for ∀ T i ,T j in T:

11: time  union of time steps covered by a pair

12: if M[i,j] / time > CTR:

13: cluster_pairs  cluster_pairs + pair

14: end

15: end

16: G  create clusters from cluster_pairs

17: return G

2.2 Agglomerative Hierarchical Clustering with Hausdorff

Distance

Agglomerative clustering, or bottom-up clustering, is a traditional method for

grouping observations that creates a cluster tree. Starting with individual

observations, the tree progressively forms subclusters as one moves upwards. To

prevent merging into a single large cluster, a stopping rule is needed for the

agglomeration algorithm. Additionally, rules are necessary to determine which

subcluster should merge next at each stage of the tree-building process [8].

10

Agglomerative Hierarchical Clustering with Hausdorff Distance, developed by

Weina Ge, Robert T. Collins, and R. Barry Ruback [2], builds on pedestrian

detection and multi-object tracking methods, drawing inspiration from sociological

models of collective human behavior. It autonomously identifies small groups of

individuals traveling together through a bottom-up hierarchical clustering approach.

The innovation lies in utilizing a generalized, symmetric Hausdorff distance,

specifically defined with respect to pairwise proximity and velocity. We will refer to

Agglomerative Hierarchical Clustering with Hausdorff Distance as AHC.

2.2.1Algorithm Description

For this algorithm, a different definition of trajectory is used. The trajectory is a

set of tuples (s,v,t), where s is the position, v is the velocity vector, and t is the time.

si
t is a position s of trajectory i at the time t.

The distance measure w ijbetween two trajectories i and j is defined as:

w ij=
∑
t

wij
t

ρij|Γ|
, for i≠ j∧t∈ Γ ,

w ij
t =α N (‖s it−s jt‖)+(1−α)N (‖v it−v jt‖) ,
ρij=∑

t

δt (i , j) ,

δ t (i , j)={1 ‖sit−s jt‖<Γ s∧‖v it−v jt‖<Γ v
0 otherwise

,

where N is a min-max normalization operator applied independently for each pair of

trajectories to linearly scale their velocity and distance differences into the range [0,

1], and weight is defined as α = 0.7. Γ is a temporal overlap between trajectories i

and j. Γ s is a distance threshold, Γ v is a velocity threshold – both are inputs to the

algorithm.

Modified Hausdorff distance introduced by Marie-Pierre Dubuisson and Anil E.

Jain [9] is used to measure the inter-group closeness between two groups A and B:

H (A ,B)=
h (A ,B)+h (B , A)

2
,

11

h (A ,B)=
∑
i=1

|A|

∑
j=1

⌈
|B|
2

⌉

d il

|A|× ⌈|B|
2

⌉
,

where d il is the lth smallest distance amongst all the distances w ij , j ∈ B.

AHC starts with each individual in their own cluster. During each iteration, we

select groups A and B with the lowest distance H (A ,B) and try to merge them. If

merge is accepted depends on intragroup tightness.

 For any group of size k ≥1 we create graph Gk in which vertices represent

members of the group. The edge between vertices ni and n j exists if ρij<Γ t. This

represents a need for i and j to be “close together” for Γ t time steps. The time

coexistence threshold Γ t is the last input needed for the algorithm.

Let ek be the number of edges in Gk and êk+1 be the minimal number of edges

desired in Gk+1 after merging with a single person. By definition e1=ê1=0. A person

can be added to the existing Gk if they are connected to at least half of the members

of Gk:

êk+1=ek+⌈ k
2
⌉ .

We can derive: êk=(k2)
2

for even k, and êk=
k−1
2 (1+ k−12) for odd k. Two groups G p

and Gq can be merged if they satisfy the intragroup tightness criterion:

e p+q≥ ê p+q+ (ep−ê p+eq−êq) .

If the groups don’t satisfy the intragroup tightness criterion, the merge is denied,

and the algorithm continues with groups with the next lowest distance, etc. The

algorithm stops and returns all groups after it fails to merge any two groups [2].

12

3 Human Behavior in Groups

This chapter delves into how people behave in groups, particularly when walking

together, from a sociological and analytical standpoint. The analysis includes

examining whether groups tend to cluster, form linear arrangements, or adopt more

complex structures. Group size is also a key aspect we'll explore, investigating how

and if it can provide useful insight into crowd dynamics.

Findings from this chapter will be a key for creating our own metric based on

group shapes.

3.1 Group Shapes

In a study done by Mehdi Moussaid, Niriaska Perozo, Simon Garnier, Dirk

Helbing, and Guy Theraulaz [10], it was observed that a significant proportion of

pedestrians prefer walking in groups. In the study, two populations were studied, and

in both, over half of pedestrians were walking in groups rather than alone – 55% and

70% of the population, respectively. It is also noted, that the environment influences

this distribution, with leisure areas like commercial walkways showing a higher

tendency for people to walk in groups.

When walking alone, a pedestrian needs to adapt its walking path to avoid other

pedestrians and obstacles and to general infrastructure. In the case of an empty street,

there is very little reason to observe anything other than a straightforward path from

the starting point to the point of interest. This assumption changes when two or more

people are walking together and talking to each other. In social groups, people adapt

their walking paths to be able to talk to each other, gesture to each other, etc. This

was observed in [4] [10].

13

As seen in Figure 1 and Figure 2, people tend to walk next to each other from the

view of the walking direction, forming a perpendicular line to the vector of the

walking direction. This is easy to see in groups of two people but can also be

observed in bigger groups. In groups of three, people usually walk in a wide, straight

line, or in a “V”-shape, and in bigger groups, the shape could be described as a

parabola.

Studies have shown that these shapes change with crowd density [10]. With

increasing density, groups of two become closer to each other. Groups of three and

higher are also closer to each other, and their “V”-shape gets more pronounced. This

holds until the critical density is reached and the shape changes drastically. “In very

high densities, V-like patterns are transformed into a lane aimed toward the direction

of motion.” [4]

14

Figure 1: Group positions per crowd density and group size, Source: [9]

Figure 2: Group shapes per crowd density, Source: [4]

These group-shape findings will be one of the factors when we build a group

detection algorithm.

3.2 Group Speeds

The study on the walking behavior of pedestrian social groups [10] found that the

walking speed of pedestrians is influenced by both density levels and group size.

Their observations can be seen in a Figure 3. At low density, individuals walk faster

compared to higher density, aligning with prior research on pedestrian traffic [11].

Additionally, their observation reveals a linear decrease in pedestrian walking speeds

with increased group size. Interestingly, the density level does not significantly

impact the slope of this group-size-related speed decrease.

Another study was done at the Bus Terminal Area [12] using data collected

through a 45-minute video recording at the main lobby of the bus terminal revealed

that walking speed is dependent on multiple individual factors. Male pedestrians

walked faster than female pedestrians, with average speeds of 1.13 m/s and 1.07 m/s,

respectively. Additionally, pedestrians without baggage walked faster than those

carrying baggage, indicating that baggage can impact walking speed due to

additional weight and potential distractions.

15

Figure 3: Average Speed per Group Size, Source [10]

According to [13], groups of people walking together exhibit common behavioral

patterns, such as moving at the same speed and reforming quickly when separated

[14]. Small groups often display unintentional synchronization in stepping, which

can be a result of shared feelings of unity and closeness, a phenomenon known as

"mirroring" in the psychology [15].

3.3 Group Sizes

Another dimension of group behavior to consider is the group size. As previously

noted, the size of a group influences the walking speeds of pedestrians within that

group. According to some studies, the most prevalent groups typically comprise only

two to four members [10], making larger groups significantly less frequent.

16

4 Used Techniques

In this chapter, we will introduce all the techniques that we will need to build our

algorithm. Firstly, we are going to explain how to deal with misalignment of

trajectories. Next, we will introduce shared time steps, a measure that will quantify

how many time steps two trajectories share. We will define the distance between

two trajectories and the cosine similarity for two trajectories. At last, we will

introduce group shape score, a new way how to quantify the expected shape of a

group.

4.1 Trajectory Misalignment

When comparing the trajectories of two pedestrians, a significant challenge arises

from the unavoidable discrepancy in trajectory lengths. This creates a problem of

handling calculations that require values from both trajectories at a single time step,

and only one trajectory has data for that time step.

We have opted for a straightforward approach: any measure requiring data from

both trajectories will be computed exclusively on intervals during which data is

available from both trajectories. This strategy presents the risk of yielding misleading

results. For example, a person leaving the tracking area might exhibit a small average

distance from another pedestrian entering the area from the same spot. We will

define common time steps to use in this chapter.

Definition (Common Time Steps): Let T i=[(x i0 , yi 0) ,⋯ , (x in, y in)],
T j=[(x j0 , y j 0) ,⋯ , (x jm , y jm)] be two trajectories, then t ij will denote the intersection of

their times steps:

t ij={i0 ,⋯ , in }∩ { j0 ,⋯ , jm }.

This problem is not limited to the beginning or ends of trajectories but could also

happen in the middle of tracking data with tracking errors or people leaving the area

and returning. This is completely avoided by choosing to interpolate missing data –

which we will describe in the chapter dedicated to the dataset.

17

4.2 Shared Time Steps

Since we are not penalizing other metrics for being calculated on potentially small

amounts of data when two trajectories coexist, we must introduce a measure of

shared time steps.

For any two trajectories T i , T j , let’s define their shared time steps St (T i , T j) as a

percentage of time steps of the longer trajectory for which the shorter trajectory also

exists.

Let T i=[(x i0 , yi 0) ,⋯ , (x in, y in)] , T j=[(x j0 , y j 0) ,⋯ , (x jm , y jm)] be two trajectories.

Without loss of generality |T i|<|T j|. Then shared time steps will be calculated as:

St (T i ,T j)=
|t ij|
|T j|

.

4.3 Distance

Distance is a core metric for group detection. For computing the distance between

two trajectories, we decided to use the median of distances of their time-aligned

positions. Unlike the mean distance, which is influenced by extreme values, the

median is the middle observation, exactly at the center of the distribution. The

median is a robust measure, meaning it is less sensitive to outliers or extreme values,

unlike the mean.

When all distances are sorted, the median equals their middle point. For a list of

distances of odd size n, the median equals the value on the n/2-th position. For even

n, the median equals the mean value between the n/2-th distance and (n/2)+1-th

distance. Let T i=[ai 0 ,⋯ ,ain] , T j=[b j 0 ,⋯ ,b jm] be to trajectories, and D is a list of

distances ‖a t−b t‖ for every t ∈ t ij, then their distance will be calculated as:

d (T i ,T j)=med (D)

4.4 Cosine Similarity

Cosine similarity is a metric used to determine the cosine of the angle between

two non-zero vectors in a multidimensional space. It is commonly employed in data

analysis to assess the similarity between two vectors, regardless of their magnitudes.

18

The cosine similarity ranges from -1 to 1, where a value of 1 indicates perfect

similarity, 0 denotes no similarity, and -1 implies perfect dissimilarity.

SC (x , y)= x ∙ y
‖x‖∙‖y‖

,

where x ∙ y is the dot product of vectors x and y, ‖x‖, ‖y‖ are lengths of vectors x

and y, respectively.

For two trajectories T i and T j, and their ordered common time steps

t ij=[0 ,1 , ... , n] we will define their cosine similarity as an average of the cosine

similarity between their displacement vectors:

SC (T i ,T j)=
1
n−1∑t=1

n

Sc(T i [t]−T i [t−1], T j [t]−T j [t−1])

4.5 Group Shape Score

So far, all measures mentioned have been used strictly for pairs of trajectories. In

this section, we will use knowledge gained from 3.1 to define the group shape score,

a measure calculated for set of n trajectories.

Group shape score measures how the shape of the group corresponds to our

expections.

4.5.1 Principal Component Analysis

Principal Components Analysis (PCA) is a method used for simplifying complex

data structures, making it easier to understand relationships between variables.

Unlike focusing on why events occur, PCA centers on providing insights into how

different factors in a dataset interact. It serves the purpose of distillation rather than

causal analysis [16]. PCA finds utility in various fields. In ecology, it helps interpret

natural connections, while in food science, it untangles relationships among different

food properties [16] [17].

The primary goals of PCA are to streamline complex data, aid in interpretation,

and enhance the overall understanding of relationships within the dataset [18]. PCA's

significance lies in its mathematical foundations. Through numerical evaluations, it

simplifies datasets, facilitating subsequent analyses. PCA takes diverse

measurements and condenses them into a few principal components, capturing

19

essential information and revealing the primary data structure [18]. Principal

components are designed to encapsulate the maximum variance within a dataset. In

mathematical terms, the first principal component is the line that maximizes the

variance, ensuring the average squared distances from the projected points to the

origin are optimized [19]. Each additional principal component shows in which

direction there is the next greatest variability while orthogonal to each other.

We use PCA as a dimensionality reduction and data transformation technique to

detect the shape of the group. At any given time, the first principal component of a

group describes in what direction the group spreads the most – effectively describing

its “shape.” In isolation, this information does not mean anything. We also need to

know the walking direction of the group – its displacement vectors. To make these

we need to define groups position.

Figure 4: Example of the first PCA vector on four points

4.5.2 Centroid

We have positions for each trajectory in the group but not for the whole group.

We will define the group’s position as its centroid. The centroid of n 2D points is the

point that represents the geometric center or average position of the set of points. It is

a point that balances the distribution of points in both the x and y dimensions. The

centroid C of a group G with n trajectories at time step t can be calculated by taking

the mean of the positions of all trajectories included in the group G.

C t (G)=1
n
∑
i=0

n

T i[t]

20

4.5.3 Evaluation

Now that we have a displacement vector and a vector that describes the group’s

shape, we just need to compare them.

If a group has a perfectly “wide” shape, its shape vector is perpendicular to its

displacement vector. On the other hand, a group that has a perfectly “long” shape has

its shape vector and velocity vector parallel to each other. Visualization of this can be

seen in Figure 5.

We need to define a function that would return the highest value for perpendicular

vectors and the lowest for parallel vectors. We define the group shape score of group

G at time t as:

Gst (G)={ θt90 if 0≤θ t≤ 90

1−
θt−90
90

if 90<θ t≤180

where θt is the angle between the velocity vector and the first principal component

vector of a group at time t. θt is in degrees and modulo 180. This function will

linearly map angles from 0 to 90 degrees to interval [0,1] and between 90 and 180

degrees to interval [1,0]. Gst (G)=1, for perfectly “wide”-shaped group G, and

Gst (G)=0, for perfectly “long”-shaped group G.

The total shape score of the group G is the average shape score across time steps

that the whole group exists at:

Gs (G)= 1

|tG|∑t∈ t
G

G s t (G) ,

where tG is the intersection of all time steps of all trajectories in the group.

21

Figure 5: Example of "wide" and "long" group

4.6 Breadth-First Search

Breadth-First Search (BFS) is a fundamental graph exploration algorithm, defined

for a graph G(V, E) with vertices V and edges E. It starts from a specified source

vertex s, systematically traversing the edges to discover every reachable vertex from

s. The algorithm employs a first-in, first-out (FIFO) queue to manage the exploration

order, progressing in waves to uncover vertices at increasing distances from the

source [20].

The BFS will be used in our algorithm to discover a connected component in a

graph in which trajectories represent vertices and edges between them represent their

‘similarity’.

4.7 Hyperparameter Optimization

Hyperparameter optimization is the method of adjusting settings in an algorithm

to maximize its performance. This involves systematically exploring different values

for these settings, aiming to minimize errors or enhance performance on validation

data [21]. Different methods can be used to achieve this, for example, Grid search,

Random search, Bayesian Optimization, or Evolutionary algorithms [22]. In this

thesis, we will focus solely on Evolutionary algorithms to approximate optimal

parameters for our algorithm.

4.7.1 Evolutionary Algorithms

Evolutionary Algorithms (EAs) operate on a population of potential solutions,

employing the survival of the fittest principle to sequentially improve

approximations to a solution. In each generation, individuals are selected based on

fitness function and undergo reproduction with variation operators. Evolutionary

Algorithms encompass various techniques, such as evolutionary programming,

genetic programming, evolutionary strategies, or swarm intelligence. EAs are

inspired by biology, using crossover, mutation, and natural selection mechanisms to

progressively improve potential solutions. The typical EA begins by initializing a

population, evaluating fitness of individuals, generating a new generation through

breeding, and combining parent and child solutions to find optimal solutions [23].

22

Fitness refers to the measure of how well an individual solution in the population

performs. Crossover entails combination of genetic information from two parent

individuals to produce offspring. Mutation introduces random modifications to an

individual's genetic information. Individuals exhibiting higher fitness are favored by

natural selection, increasing their chances of being selected for reproduction [23]

 [24].

Our primary focus in the context of this thesis will be on an evolutionary

optimization.

4.7.2 Evolutionary Optimization

Evolutionary optimization involves applying an EA to solve problem of

hyperparameter optimization. The process starts with a population of randomly

generated hyperparameter configurations, their performance is evaluated by fitness

function and individuals are ranked accordingly. New members replace the worst

performers with hyperparameter values derived through mutation or recombination

of the best performers. This process continues until a stopping condition is met,

evolving the population toward an optimal solution [22]. The method is visualized in

Figure 6.

Figure 6: Hyperparameter optimization using the evolutionary method; Source [22]

4.8 k-fold Cross-Validation

Cross-validation is a statistical method for the comparison and evaluation of

algorithms. It works by dividing data into two segments: one for training a given

algorithm and the second for validating the trained model. In the standard cross-

validation procedure, training and validation sets alternate in successive rounds,

ensuring that each data point is validated. [25]

23

Cross-validation is widely used in machine learning, data mining, and similar

areas for performance optimization, offering a systematic approach to help train

prediction models.

K-fold cross-validation is a type of cross-validation where data is partitioned into

k equally sized segments. Through k iterations of training and validation, each round

uses a k-th fold for validation and the remaining folds (k-1) for training. This

approach enables thorough and comprehensive evaluation [25] [26]. The process is

described in Figure 7.

Figure 7: Illustration of k-fold cross-validation, Source: [26]

24

5 Proposed Solution

In this chapter, we will show an algorithm composed of techniques and ideas

presented in previous chapters. Our algorithm consists of two main steps for each

pedestrian. The first is to generate group candidates based on being “similar”

enough. To decide which trajectories are “similar” we will use distance, cosine

similarity, and shared time steps. The second part is creating a group out of the

candidates based on group shape scores using a greedy algorithm.

5.1 Algorithm Description

At the beginning of the algorithm, we calculate three similarity measures for each

pair of pedestrians:

1. distance similarity – measured by d (T i ,T j) from 4.3,

2. cosine similarity – measured by Sc (T i ,T j)from 4.4,

3. shared time steps – measured by St (T i ,T j) from 4.2.

These measures will define how ‘similar’ two trajectories are. For every measure,

there exists a corresponding threshold in the algorithm’s input –

thrm=[thrd , thrsc , th r st], that two trajectories have to pass to be considered ‘similar’.

We create graph S in the following way:

 for each T i∈ T , create node ni,

 edge e ij between ni and n j exists if all conditions are met:

1. d (T i ,T j)< thrd,

2. Sc (T i ,T j)> thrsc,

3. St (T i ,T j)>thr st.

25

The pool of all pedestrians is created, and then we start looping through the pool.

From the pool, we randomly select a trajectory T i. We are interested in finding

pedestrians who could create a group with T i (group candidates for T i). We identify

group candidates for T i by conducting a BFS on S starting from a node ni. The result

of BFS is the connected component C i. By definition of edges in S, this component is

composed of nodes that are ‘similar’ to trajectory T i either directly (neighbors), or

indirectly – for nodes that are not connected to ni, but there exists a path from ni to

them.

Once we have C i, we move to the second part of the algorithm – selecting those

pedestrians that will create a group with the T i based on the group shape score. For

next steps, the graph S is irrelevant – was only used to get candidates.

 In the beginning, the group consists only of the T i. We check each candidate to

see if combining it with the current group would create a new valid group. For each

group size, we have defined the group shape score threshold (input to the algorithm –

26

ALGORITHM: OUR GROUP DETECTION ALGORITHM

Input: trajectories T={T 1 ,T 2 ,⋯ ,T n }, measure thresholds thrm, groups shape
score thresholds thr gs

Output: detected groups G={G1 ,G2 ,⋯ ,Gm}

1: S  getMeasureThresholdSatisfactoryGraph(T , thrm)

2: G  {} //empty set

3: j  1 //group counter

4: P  T //pool

5: for each T i in P

6: C i  run BFS(T i)

7: G j  getGroupUsingGroupShapeScore(T i , C i , th rgs)

8: G.add(G j)

9: P.remove(G j) // removes each trajectory in G j from the pool

10 j++ //increase group counter

11: end

12: return detected_groups

thr gs=[th r2 , thr3 , th r4 , th r5+]) the group needs to pass to be valid. For group sizes of

5 or bigger, a single threshold is used. For example, thr gs = [0.4, 0.3, 0.1, 0.05]

means that a group size of two has to have a shape score of 0.4 or higher, 0.3 for a

group of three, 0.1 for a group of four, and 0.05 for a group of five and bigger.

Once we find such a candidate, we immediately add it to the current group and

repeat the process – even with candidates that were previously declined. Some

candidates might be declined and still form a valid group when more candidates are

added.

METHOD: GET GROUP USING GROUP SHAPE SCORE

Input: trajectory T i, group candidates C i, groups shape score thresholds thr gs

Output: group G j

1: G j {T i}

2: C i .remove(T i)

3: T new  getShapeFulfillingTrajectory(G j, C i , thrgs)

4: while T new is not None:

5: G j.add(T new)

6: C i .remove(T new)

7: T new  getShapeFulfillingTrajectory(G j, C i , thrgs)

8: end

9: return G j

Since this is a greedy approach, it is possible that we add a candidate to the group

that prevents us from discovering a better group. This is an accepted risk since we

cannot test all possible subsets of all candidates – for n candidates we would have to

test 2n groups for their group shape score.

We stop once going through all the remaining candidates does not yield a new

group member. It is possible that no candidate is added to the group and the only

member is the T i. The group is added to the list of groups, all its members are

removed from the pool, and the process continues with another pedestrian from the

pool.

27

METHOD: GET SHAPE FULFILLING TRAJECTORY

Input: current group G j, group candidates C i , groups shape score thresholds thr gs

Output: trajectory T new

1: size  |G j|+1 //size  5 if size > 5

2: for each T x in C i:

3: G j
* G j∪ T x

4: if Gs (G j
*)> thrgs[size]: return T x

5: end

6: return None

28

6 Dataset

There are many available datasets of tracking data for pedestrians in public

spaces, but not many include ground truth data for social grouping. In this chapter,

we will introduce the dataset used for this thesis, what preprocessing was needed,

and general statistics.

6.1 DIAMOR Dataset

Using a laser range-finder tracking system, researchers in Japan tracked the

movement of pedestrians on two separate days in “two large straight corridors

connecting the Diamor shopping center in Osaka, with the railway station” [3]. For

social group annotations, video cameras were used, and from recorded video, two

members of nontechnical staff were asked to label groups [27]. The DIAMOR

dataset is available at [3].

Additionally, tracking data for 6 days from the Asia and Pacific Trade Center

(ATC) in Osaka is available. For these, only a specific part of the area was covered

with video cameras, and groups that did not move through this area were not labeled.

This limitation is problematic for us, and therefore we did not use this data.

6.2 Data Format

For both days, two files are available – a personal tracking file and a group file. A

person tracking file is a comma-separated file where each row represents data for one

tracked person at a fixed time. Columns are:

 time [s],

 pedestrian_id,

 position_x [mm],

 position_y [mm],

 velocity [mm/s],

 angle_of_motion (direction of velocity vector) [rad],

 facing_angle (body direction) [rad].

29

We processed this file and removed facing_angle because even if this parameter

could improve group detection, it is not a common variable in datasets and its

inclusion would make any findings less useful for datasets without it. Also, instead of

velocity and angle_of_motion, we calculated velocity_x and velocity_y after

interpolating and downsampling the dataset, which will be described later.

The group file is a text file where each line represents one pedestrian (only those

in any group are included), and it contains the following space-separated fields:

 pedestrian_id,

 group_size,

 partner_id_1,

 list of IDs of all other pedestrians in the group,

 number_of_interacting_partners,

 interaction_partner_id_1,

 list of IDs of all socially interacting partners

Interaction partners were removed for the same reason as facing_angle from the

tracking file. We worked with groups as sets of pedestrian IDs.

6.3 Removal of Unsuitable Pedestrians

The first step that needed to be done was the removal of trajectories that were too

short or too long. Neither extreme is interesting for our task – a trajectory that is too

short does not have enough data to properly observe, and a trajectory that is too long

belongs to a person who is probably walking nonstandardly. We removed any

pedestrian with a trajectory shorter than 8 seconds or longer than 120 seconds.

For the first day, we removed around 25% of all pedestrians – only 37 for having

a long trajectory. Unfortunately, it seems that the data for the second day are not

optimal, and we had to remove more than half of the pedestrians due to their short

trajectories. Even if we decided to lower the threshold to 4 seconds, we would still

have to remove 12639 pedestrians. These unnaturally short trajectories raise a

question about the data quality for the second day.

For some groups, not all pedestrians were properly tracked – in such cases, a

pedestrian’s ID is replaced with “-1”. Our algorithm uses different group shape score

thresholds for different group sizes. These groups might be problematic as their

group shape score will be compared to an incorrect threshold. Therefore, we decided

30

to remove groups with untracked pedestrians completely from our data – including

trajectories of all pedestrians tracked properly in that group. Additionally, some

special cases were also removed from the dataset. For example, a parent with a baby

stroller was labeled as a group of two people, which does not align with our

definition of a group, and it is of no interest to us. For all these reasons, we had to

remove 52 pedestrians from day 1 and 92 pedestrians from day 2. At the end there

are 7346 pedestrians for day 1 and 11907 for day 2. The summary of statistics is in

Table 1.

Day 1 Day 2

Original number of trajectories 9969 27639

Removed (short) 2534 15579

Removed (long) 37 61

Removed (other reasons) 52 92

New number of trajectories 7346 11907

Table 1: Statistics for trajectories in DIAMOR dataset

6.4 Downsampling of Trajectories

In [12], it is stated that pedestrians walk at a speed of ~1m/s. On average, this

dataset has a gap between two consecutive time steps of ~0.042s or ~24 updates per

second. That means the average pedestrian moves by a few centimeters between two

time steps. This level of detail is unnecessary for our use case and will only slow

down any algorithm used. We downsampled the data, aiming for 0.25s between each

time step.

31

Figure 8: Histogram of time gaps between consecutive time steps in DIAMOR dataset

Unlike video cameras that record with fixed frames per second, this dataset has

irregular gaps between consecutive time steps. We cannot have a constant gap unless

we interpolate the majority of data. At no point is that necessary for us, and we

would rather interpolate less. Therefore, we iterated through each time step,

accumulating a time gap until the cumulative gap exceeded a quarter of a second.

Subsequently, we marked the last time step or the one immediately before it,

selecting the one that was closer to the target gap of a quarter of a second. Reset the

counter and repeat until the last frame. We kept only data associated with marked

time steps and removed every other from the dataset.

6.5 Interpolation of Missing Data

Observing the histogram of time gaps between consecutive time steps in Figure 8,

it is evident that interpolation is also necessary to ensure a desired gap of a quarter of

a second. We interpolated data if the gap between two time steps was over half a

second. For any gap like that, we insert a new time step in the middle of a gap. For

larger gaps, we inserted more time steps proportionally.

Figure 9: Distribution of interpolated time steps

On day 1, 87% of pedestrians have less than 10% time steps interpolated and 78%

on day 2. Distribution of interpolated time steps is visible in Figure 9.

32

6.6 Descriptive Statistics

As mentioned, after removing unsuitable pedestrians, there are 7346 and 11907

pedestrians for day 1 and day 2, respectively. These pedestrians formed 728 groups

on day 1, and despite an increase of 62% in pedestrian count on day 2, the increase in

the number of groups was marginal, amounting to two additional groups. The

number of groups per size can be seen in Table 2.

Group Size 2 3 4 5+ All

Day 1 627 73 21 7 728

Day 2 630 82 12 6 730

Table 2: Number of groups per size in DIAMOR dataset

6.6.1 Speed of pedestrians

The average speed of pedestrians is illustrated in Figure 10. Due to the similarities

of average speeds per group size, we are probably not able to use it for group size

categorization.

33

Figure 10: Distribution of average speed by group size

6.6.2 Density

On average, there are 12 pedestrians at each time step on day 1 and 20 on day 2,

with standard deviations of 4.7 and 7.4, respectively (Figure 11).

Figure 11: Distribution of pedestrians in time steps

As described in 3.1, one of the key factors influencing the behavior of pedestrians

and the group shapes they form during locomotion is the proximal density of

surrounding pedestrians. For lower densities, groups form “wide” shapes in the

direction of their locomotion, and only when the density reaches a critical point the

“long” shapes are preferred.

In a study [28], where the highest observed pedestrian density reached 4.4

pedestrians per square meter, researchers identified creations of river-like or line

formation among pedestrians. However, they acknowledged the difficulty in

detecting such situations and emphasized the need for further investigation. The

study highlighted that in these instances of high density, the formation of lines could

potentially be attributed to individuals creating obstacles, prompting others to

organize themselves into a more compact shape for efficiency.

Regrettably, even if we account for removed pedestrians from the dataset, on

neither day 1 nor 2, densities aren’t high enough to properly test “long” shapes of

groups. Consequently, our algorithm will be constrained to assume that long

shapes are never anticipated.

34

6.6.3 Group Shape Score

For each group from the ground truth provided, we measured the group shape

score as described in 4.5 to see if the findings from 3.1 are valid for our dataset. As

mentioned above, we only expect wide shapes with group shape scores above 0.5.

Generally, a trend of decreasing scores with increasing group size is observed on

Figure 12. Median values for day 1 are 0.82, 0.71, 0.33, and 0.48 for group sizes of

2, 3, 4, and 5+, respectively. For day 2, median values are 0.85, 0.81, 0.57, and 0.28

for the same sizes.

For sizes two and three groups are forming mostly wide shapes, as was

anticipated. Especially for groups of two pedestrians, we have more than 80% and

85% of groups with a group shape score higher than 0.7 on day 1 and day 2,

respectively.

It is important to keep in mind that for groups of size four, we have only 21

groups on day 1 and 12 groups on day 2. For groups of size five and bigger we have

less than 10 groups for both days. That is not a big enough sample size to make any

conclusions, but it needs to be noted that the values are lower than we expected and

our algorithm might struggle for groups of these sizes. One more notable observation

is that the biggest groups on day 2 not only were, in general, not wide, but even their

maximum group shape score was 0.45. Meaning no group from that category could

be described as “wide”. It is possible that more research in big groups is needed.

Figure 12: Distribution of group shape scores per group sizes

35

7 Experiments

In this chapter, we perform experiments on our algorithm and previously

introduced existing solutions for the group detection problem. We properly tested all

algorithms only on day 1 of the DIAMOR dataset. We identified an anomaly on the

day 2 part of the dataset, which we will explore in section 7.7.

7.1 Evolutionary Optimization

Our proposed algorithm contains many different parameters that need to be

decided on before we can test it. These parameters include a distance threshold, a

cosine similarity threshold, a shared time threshold, and, for each group size, a group

score threshold. A straightforward way to optimize the solution would be to

experimentally test all combinations of values and decide on the best-performing

ones. Regrettably, this method is time-inefficient due to the vast number of possible

values. Additionally, each parameter is interdependent on others, resulting in a

complex, multidimensional search space that is challenging to navigate through. To

address this problem, we decided to utilize a hyper-parameter evolutionary

algorithm, as mentioned in 4.7, to approximate the best possible values.

7.1.1 Hyper-parameter Optimization for Our Algorithm

We define individuals for the evolutionary algorithm as a vector of parameters of

our algorithm from 5.1 that we wish to optimize:

1. Distance threshold (thrd) – a number larger than 0,

2. Cosine similarity threshold (t h rsc) – a number between -1 and 1,

3. Time shared threshold (t h rst) – a number between 0 and 1,

4. List of group shape score thresholds (thr gs) – numbers between 0 and 1.

The values in thr gs are always sorted from the highest to lowest (do not increase

with size). From the analysis in 6.6.3, this is a valid limitation to use.

To calculate the fitness function for an individual, we run our algorithm with

parameters held by an individual. This returns a list of detected groups, which we can

36

compare to the ground truth group list by calculating the ARI value 1.4. This ARI

value is the fitness of an individual. The higher the fitness value of an individual, the

better the solution is.

Our algorithm uses roulette wheel selection [29]. Using this selection the

probability of being selected is proportional to the fitness of each individual,

mimicking the concept of a roulette wheel in a casino. The probability pi of picking

individual i is:

pi=
fi tness i

∑
j=0

n

fitnes s j

,

where n is the number of all individuals.

 We used a uniform crossover [30]. For each variable in an individual, we

produce a random boolean – each represents the parent from which the variable

should be taken for the first offspring. The second offspring is built by variables not

chosen by the first offspring. Please remember that shape score thresholds are

considered to be one variable. Example in Table 3.

distance cosine similarity shared time shape score list

random boolean 0 1 1 0

parent 0 1300 0.4 0.5 [0.5, 0.4, 0.3, 0.2]

parent 1 2000 0.2 0.75 [0.9, 0.8, 0.7, 0.6]

offspring 0 1300 0.2 0.75 [0.5, 0.4, 0.3, 0.2]

offspring 1 2000 0.4 0.5 [0.9, 0.8, 0.7, 0.6]
Table 3: Example of uniform crossover

For mutation, we chose to use the Gaussian mutation [31]. The Gaussian

mutation for each variable separately adds a random value generated from a

Gaussian distribution. We mutate every new offspring generated from the crossover

method, but each variable has a separate mutation rate – the probability that the

variable will be changed. Note that this is the only place where shape score

thresholds behave as separate variables – each value has its own mutation rate.

37

The final hyper-parameter searching evolutionary algorithm will look as follows:

ALGORITHM: HYPER-PARAMETER SEARCHING EVOLUTIONARY ALGORITHM

Input: size of population, number of generations, parameters for mutation

Output: Individual with best fitness

1: population  init() //initialize 0-th population with random individuals

2: calculate fitness for each in population

3: for i = 0 to number of generations:

4: parents  population

5: new_offspring  []

6: while parents not empty:

7: parent_0, parent_1  randomly pop two individuals from parents

8: offspring  crossover(parent_0, parent_1) //produces two

9: new_offspring  new_offspring + offspring

10: end

11: for individual in new_offspring:

12: mutate(individual)

13: fittness(individual)

14: end

15: population  select(population, new_offspring)

16: end

17: return max(population) //best individual from last population

We run EA with these parameters for all experiments on our dataset:

 population = 40,

 number of generations = 60,

 mutation rates for:

o distance threshold = 0.15,

o cosine similarity threshold = 0.15,

o shared time threshold = 0.1

o each value in the group shape score threshold = 0.1.

38

7.2 Validation

To validate the results, we use k-fold Cross-Validation with k = 4. This means we

perform four iterations (folds). Each iteration involves using 75% of the pedestrians

in the dataset for training purposes, and the remaining 25% is reserved for testing the

optimal model identified during the training phase. The order of pedestrians is based

on the time of their first appearance in the dataset. For the first iteration, the first

quarter of pedestrians is used as a testing set. For the second iteration, the second

quarter, and so on. It is a common practice to shuffle the data as a pre-processing

step, but in the context of our task and dataset, shuffling is not appropriate due to

linear nature of the data. Results will be added and averaged to calculate the total

success rate.

7.3 Performance of Our Algorithm

The best results for each fold were as follows:

 For k = 1, thrd = 1320, thr sc = 0.31, thr st = 0.29, thr gs = [0.34, 0.15, 0.06,

0], ARI = 0.925.

 For k = 2, thrd = 1320, thr sc = 0.21, thr st = 0.29, thr gs = [0.34, 0.29, 0.18,

0.04], ARI = 0.837.

 For k = 3, thrd = 1280, thr sc = 0.16, thr st = 0.26, thr gs = [0.35, 0.27, 0.02,

0], ARI = 0.894.

 For k = 4, thrd = 1322, thr sc = 0.28, thr st = 0.29, thr gs = [0.34, 0.15, 0.06,

0.04], ARI = 0.919.

The average across all ARI results of 0.925, 0.837, 0.894, and 0.919 is 0.894. The

results for all folds appear to be consistent, except for the second fold, with a score

lower by ~0.06 than the average.

To interpret the results, we combined all four test results together, and in the

following two sections, we will analyze the data.

39

7.3.1 Correctly Detected Groups by Group Size

Group size 2 3 4 5+ All

Number of groups 627 73 21 7 728

Detected 585 50 11 2 648

Table 4: Number of detected ground truth groups for our algorithm

Table 4 and Figure 13 illustrates a percentage of successfully detected groups

compared to ground truth data categorized by group size. We can observe a decrease

in success rate with the increase in group size – from 93.3% for groups of size two

down to 28.6% for groups of size five and bigger.

For groups of two, we have a high success rate and a large sample size – detecting

585 groups and failing to detect only 42. Groups consisting only of two pedestrians

have the easiest dynamics, therefore they are more easily predicted. In larger groups,

the predictability could be problematic. Individuals in bigger groups can

momentarily pause, disengage from the group, or alter their trajectory, thereby

inducing changes to the overall group shape score.

Due to the small number of groups of size five or bigger, it is not possible to

conclude with a high degree of certainty whether our algorithm is ineffective at

detecting bigger groups or if these results are influenced by chance. However,

considering the decrease in performance even for groups of three, it is likely that our

algorithm is not well suited for the detection of large groups.

40

Figure 13: Distribution of detected ground truth groups for our algorithm

7.3.2 False Positives by Group Size

We can gain interesting insights when we take a look at the number of false

positives detected by our algorithm. We differentiate between a fully false positive

group and a partially correct one. A group G can be partially correct for two reasons.

Either G⊂ Gt for some ground truth group G t. Or the other way around, G t ⊂ G.

This means, that either algorithm omitted some pedestrians in the detected group or

added some that do not belong to the group.

Group size 2 3 4 5+ All

Number of false positives 86 27 5 0 118

Table 5: Number of false positives for our algorithm

As seen in Table 5 and Figure 14, the highest number of false positives are in the

first category for the groups of size two – 86 groups were incorrectly detected and

40% of them are partially correct. Out of 27 false positives for groups of size three, 9

of them are groups of size four or bigger that are missing one or more pedestrians.

Since our algorithm failed to detect 15 groups of size four or bigger, this implies that

60% were detected as groups of size three.

41

Figure 14: Distribution of false positives per group size for our algorithm

7.4 Performance of Time–sequence DBSCAN

Time-sequence DBSCAN is easier to test as it requires only two parameters –

epsilon and coexisting time ratio threshold (CTR). We used the same 4-fold cross-

validation as with our algorithm. In this case, due to the small number of parameters,

we didn’t use an evolutionary algorithm, but we chose to search the parameter space

for the correct configuration. We limited ourselves to a search space of epsilon

values ranging from 1100 to 1500, incrementally examined at intervals of 50. From

our additional testing, it was clear that epsilon below 1100 and above 1500 was not

optimal. The dataset’s positions of pedestrians are in millimeters, so a change of 50

equals a change of 5 cm. CTR ranges from 0 to 1, and we tested it from 0.2 to 0.95,

with intervals of 0.05.

The best results for each fold were as follows:

 For k = 1, epsilon = 1250, CTR = 0.4, ARI = 0.899,

 For k = 2, epsilon = 1200, CTR = 0.3, ARI = 0.835,

 For k = 3, epsilon = 1450, CTR = 0.6, ARI = 0.890,

 For k = 4, epsilon = 1250, CTR = 0.4, ARI = 0.889.

The average across all ARI results is 0.878. The performance is only marginally

worse than that of our algorithm. Again, we can see consistent results, with the only

deviation being the second fold, the result of which is way lower than the others.

42

7.4.1 Results by Group Size

Group size 2 3 4 5+ All

Number of groups 627 73 21 7 728

Detected 579 48 10 2 639

Table 6: Number of detected ground truth groups for Time-Sequence DBSCAN

Time-sequence DBSCAN’s performance is very similar to that of our algorithm,

even when looking at the success rate per group’s size (Figure 15 and Table 6).

The number of detected groups of size two is almost the same. Our algorithm was

able to detect 93.3% of groups of size two versus 92.3% detected by Time-sequence

DBSCAN – a difference of one percentage point equals to 6 more groups. Groups of

sizes three and four have bigger differences but looking at the absolute numbers, our

algorithm detected two more groups of size three and one more group of size 4. The

result for the groups of the biggest size is the same.

7.4.2 Incorrectly Detected Groups by Group Size

Compared to our algorithm, Time-sequence DBSCAN detected 19 more false

positive groups. The partially correct percentages are around the same levels. Unlike

our algorithm, we also see false positives in the biggest category, and all three of

them are partially correct (Figure 16 and Table 7).

43

Figure 15: Distribution of ground truth groups for Time-Sequence DBSCAN

Group size 2 3 4 5+ All

Number of false positives 100 29 5 3 137

Table 7: Number of false positives for Time-Sequence DBSCAN

7.5 Performance Agglomerative Hierarchical Clustering

For testing of AHC we used the same technique as for Time-sequence DBSCAN.

Distance threshold Γ d ranged from 1000 to 1600 in intervals of 100. Velocity

threshold Γ v ranged from 80 to 170 in intervals of 10. Time coexistence ratio

threshold Γ t ranged from 16 to 32 in intervals of 4. The best results for each fold

were as follows:

 For k = 1, Γ d = 1300, Γ v = 130, Γ t = 20, ARI = 0.856,

 For k = 2, Γ d = 1200, Γ v = 160, Γ t = 20, ARI = 0.836,

 For k = 3, Γ d = 1200, Γ v = 160, Γ t = 20, ARI = 0.859,

 For k = 4, Γ d = 1200, Γ v = 140, Γ t = 20, ARI = 0.856.

The average ARI for all folds is 0.852.

44

Figure 16: Distribution of false positives per group size for Time-Sequence
DBSCAN

7.5.1 Results by Group Size

Figure 17: Distribution of ground truth groups for AHC

This time, there are more differences in the results to observe than between Time-

Sequence DBSCAN and our algorithm. The result ARI of 0.852 is worse than our

algorithm’s (0.894) and Time-sequence DBSCAN’s (0.878).

Group size 2 3 4 5+ All

Number of groups 627 73 21 7 728

Detected 589 16 1 0 606

Table 8: Number of detected ground truth groups for AHC

The AHC detected 93.9% of groups of size two, which is even better than what

our algorithm was able to achieve (93.3%). Unfortunately, for all the other group

sizes, the performance degraded significantly. Only 21.9% of groups of size three,

and almost no detected groups of sizes beyond that (Figure 17 and Table 8).

It is not entirely clear why this is happening. One of the possible explanations

could be, that the condition for graph tightness (see 2.2.1) is too strict – for an edge

to exist in the graph, it is required for two people to have a common velocity vector

and distance at the same time – this might turn out to be challenging for pedestrians

that are walking on the opposite ends of the group, and therefore might result in

algorithm prioritizing smaller groups.

45

False positives support this theory with a very high number of partially correct

false positives. There are 179 false positives of size two, and 57 of them are size

three, missing one person. Out of 17 false positives of size three, 7 are groups of size

four missing one person.

Figure 18: Distribution of false positives for AHC

Group size 2 3 4 5+ All

Number of false positives 179 17 2 0 198

Table 9: Number of false positives for AHC

7.6 Comparison of All Algorithms

Let’s look at the results of all three algorithms together. Our algorithm was the

most successful in detecting groups, with 648 groups from ground truth detected.

Time-Sequence DBSCAN had only 9 less, and the last was AHC with 606 groups

(Table 10).

Looking at the false positives, the order is exactly the same. The best was our

algorithm with 118 false positives. Time-Sequence DBSCAN had 19 more and AHC

performed much worse with 198 false positives (Table 11).

We are satisfied with the performance of our algorithm. The number of detected

ground truth groups was very similar to the Time-Sequence DBSCAN, and the

difference in score was mostly driven by having 14% fewer false positives.

46

Group size 2 3 4 5+ All

Our Algorithm 585 50 11 2 648

Time-Sequence DBSCAN 579 48 10 2 639

AHC 589 16 1 0 606

Table 10: Number of detected ground truth groups for each algorithm

Group size 2 3 4 5+ All

Our Algorithm 86 27 5 0 118

Time-Sequence DBSCAN 100 29 5 3 137

AHC 179 17 2 0 198

Table 11: Number of false positives for each algorithm

7.7 Investigation of Results for Day 2

We started to perform the same experiments as in previous sections on day 2 part

of the dataset. During the testing, we noticed that the results were widely different,

which prompted us to investigate if there might be a problem with the dataset for day

2.

Figure 19: Performance of AHC per time coexistence threshold for day 1 and day 2, distance threshold = 2100,
velocity threshold = 150

On a Figure 19, we can see the performance of the AHC algorithm when the

distance (Γ d) and velocity (Γ v) thresholds are fixed and only the time coexistence

threshold Γ t is changing. The AHC algorithm is improving remarkably for day 2

47

compared to day 1 and for completely different values of time coexistence threshold.

The highest ARI for this setup was around 0.92. The tests we tried on Time-

Sequence DBSCAN and our algorithm had the opposite result – performance

decreased. Our algorithm’s ARI dropped to around 0.76. This change is beyond what

we would consider normal behavior.

We tried the performance of our algorithm by taking the best parameters for both

day 1 and day 2 – without proper cross-validation, a simple experiment with the

whole day being used for both training and testing. For day 1 we detected 653 out of

728 groups from ground truth, and for day 2 we detected 641 out of 730 groups. This

indicates that the lower performance on day 2 is not caused by the inability to detect

true positives but rather by detecting too many false positives.

We collected false positives from both experiments and in Figure 20, we can

observe a distribution of these groups by the length of the whole group (number of

unique time steps the group covers). After 50 time steps, the distributions are similar.

The major difference is with groups that have 50 or fewer time steps. On its own, this

does not prove anything – it is possible that day 2 has many groups with shorter

trajectories that we are falsely detecting.

48

Figure 20: Distribution of false positives groups from our algorithm for day 1 and day 2

As a next step, we wanted to see what ground truth groups look like – for this, we

don’t need to run any algorithm. We collected all 728 and 730 ground truth groups

for day 1 and day 2, respectively. Once again we can see in Figure 21 the distribution

of these groups by length. We see two different distributions. Day 1 has two clearly

defined peaks – one around the length of 55 and the other around the length of 175.

In contrast, day 2 looks like the Gaussian distribution with a single peak around the

length of 180. This is strange and should not happen when all data come from the

same place, two days apart.

In the Figure 22, we displayed all trajectories from ground truth groups for day 1

and day 2, as well as false positives produced by our algorithm. All points in the

figure are transparent (alpha = 0.3). From the picture for the first day, it is clear that

almost all ground truth groups of length less than 100 are walking in a vertical

corridor that is on the left side – this makes sense as the horizontal corridor is much

longer and most likely takes more than 100 time steps (~25 seconds) to walk through

it. This also explains why we have seen two peaks in the distribution for the first day

– one for people crossing the vertical corridor and one for the horizontal corridor.

It is hard to believe that on the second day, there wouldn't be a single group

walking in the vertical corridor with how many groups were detected by our

49

Figure 21: Distribution of ground truth groups for both days, per length

algorithm. The only reasonable conclusion is that the data for the second day are

incorrect (incomplete), and we cannot judge accurately the results created from this

day. Given these observations, for the rest of this thesis, we will only use the first

day for our experiments.

Figure 22: Trajectories with length of <100, separately for ground truth groups of day 1 and day 2, and false
positives of day 2 from our algorithm

The last thing that needs explanation is why the AHC did not lose performance

during testing on the second day. The opposite happened – its performance increased

significantly. AHC uses graph tightness as a decider if two groups (represented by a

graph) can be merged. The edge between persons i and j exists if ρij=∑
t

δt (i , j)>Γt

(for details see [2]). Instead of the percentage of time steps that i and j are "close"

together, AHC uses a constant number. When we set Γ t=100, what happens is that

any two trajectories shorter than 100 time steps cannot have an edge between each

50

other – and will only decrease graph tightness. This virtually removes all groups

shorter than Γ t .

For day 1, the performance started dropping around Γ t=22 as one would expect

because short groups will never be detected. But the test on the day 2 behaved

completely differently – instead of performance dropping around the same value, the

performance kept increasing until Γ t=88. Looking back at the Figure 21, we can see

that the shortest ground truth groups on day 2 are around 95 time steps long. AHC

was "lucky" that it worked in this way, and it completely removed all the groups

missing from the ground truth for high enough Γ t while there were enough long

groups that AHC was still able to detect.

51

8 Group Shape Score Validator

During the analysis of the DIAMOR dataset in 6.6.3, we noticed how well our

expectations from group shape analysis aligned with the actual group shape scores of

ground truth groups of sizes two and three. This led to the idea that group shape

scores could be helpful as validation at the end of any algorithm that produces

detected groups. This process might not help with producing groups, but removing

false positives is valuable and increases the overall quality of algorithms. Validation

will be done only for group sizes two and three due to the small sample size for

bigger groups.

For both sizes, we will define a threshold that every group of that size needs to

pass to be included in the final detected groups. This is how validation is going to

work:

ALGORITHM: GROUP SHAPE SCORE VALIDATOR

Input: detected group G, group shape score thresholds thr gs

Output: filtered detected groups G'

1: G'  {}

2: for G i in G:

3: size  |Gi| // if size > 3, for purposes of this thesis, add group to G'

5: if thr gs [size]<Gs(G i):

6: G' .add(G i)

7: end

8: end

9: return G'

8.1 Thresholds Selection

We used k-fold cross-validation for testing the unmodified datasets, and we will

use a similar approach for testing the validator. Just like before, we will use 4 folds

for all experiments.

52

For each fold, we will first analyze group shape scores of groups in the training

part. The validator should maximize the number of removed false positives while

concurrently minimizing the number of removed true positives. It seems appropriate

that thresholds should be set so that most, if not all, ground truth groups from the

training dataset would pass validation. The extra parameter that will be added to

Time-sequence DBSCAN and AHC is percentile. This parameter decides values for

thr gs=[th r2 , thr3]. For the nth percentile, thresholds will be set to the the nth

percentile of all group shape scores from a training set of groups of size two and

three, separately.

In the following sections, we tested different percentiles, ranging from the 0 th to

the 7th percentile.

8.2 Time-Sequence DBSCAN with Validator

We followed the same process as in previous experiments. We tested all

combinations of epsilon – ranged from 1100 to 1500, examined at intervals of 50,

and CTR – ranged from 0.2 to 0.95, with intervals of 0.05. Now with extra

combinations for percentile – whole numbers ranged from 0 to 7.

The best results for each fold were as follows:

 For k = 1, percentile = 3, epsilon = 1200, CTR = 0.30, ARI = 0.925,

 For k = 2, percentile = 6, epsilon = 1150, CTR = 0.25, ARI = 0.844,

 For k = 3, percentile = 1, epsilon = 1450, CTR = 0.60, ARI = 0.890,

 For k = 4, percentile = 2, epsilon = 1500, CTR = 0.50, ARI = 0.902.

The total result for this method is 0.890. That is an improvement from 0.878

which Time-Sequence DBSCAN achieved without validation.

53

Figure 23: Distribution of ground truth groups for Time-Sequence DBSCAN

Group size 2 3 4 5+ All

Detected (original) 579 48 10 2 639

Detected (with validator) 568 49 11 2 630

Table 12: Number of detected ground truth groups for Time-Sequence DBSCAN with validator

The number of detected ground truth groups of size two decreased. This is not an

unexpected result. Ground truth groups with low group shape scores will cause the

validator to remove them from the detected groups. For groups of size three, we see

the counterintuitive results – the number of detected ground truth groups increased

by 1. This can happen due to the fact that the other constraints can be lowered (by

increasing epsilon or decreasing CTR). In total, the number of detected ground truth

groups with validator was lower by 9.

54

Figure 24: Distribution of false positives for Time-Sequence DBSCAN with validator

Group size 2 3 4 5+ All

Number of false positives (original) 100 29 5 3 137

Number of false positives (with validator) 72 29 6 3 110

Table 13: Number of false positives for Time-Sequence DBSCAN with validator

False positives have similar results. The number of false positives for size two

lowered by 28, which we hoped to happen, and the number of false positives for size

three did not change.

8.3 Agglomerative Hierarchical Clustering with Validator

We followed the same process as in previous experiments. Distance threshold Γ d

ranged from 1000 to 1600 in intervals of 100, velocity threshold Γ v ranged from 80

to 170, in intervals of 10, and time coexistence ratio threshold Γ t ranged from 16 to

32 in intervals of 4. Like for Time-Sequence, the percentile is ranging from 0 to 7.

The best results for each fold were as follows:

• For k = 1, percentile = 5, Γ d = 1300, Γ v = 120, Γ t = 16, ARI = 0.881,

• For k = 2, percentile = 4, Γ d = 1200, Γ v = 160, Γ t = 20, ARI = 0.828,

• For k = 3, percentile = 4, Γ d = 1300, Γ v = 130, Γ t = 20, ARI = 0.864,

55

• For k = 4, percentile = 3, Γ d = 1300, Γ v = 130, Γ t = 20, ARI = 0.880.

The result for AHC with validation is 0.863. This is an improvement from 0.856

without validation.

Figure 25: Distribution of ground truth groups for AHC with the validator

Group size 2 3 4 5+ All

Detected (original) 589 16 1 0 606

Detected (with validator) 580 20 2 0 602

Table 14: Number of detected ground truth groups for AHC with the validator

The number of detected groups decreased only marginally, from 606 groups

without the validator to 602 with validator. We see similar effect as for Time-

Sequence DBSCAN – for groups of size two there is a decrease as expected but on

the other hand, for groups of size three there is an increase. We assume the reason is

the same as for Time-Sequence DBSCAN.

56

Figure 26: Distribution of false positives for AHC with the validator

Group size 2 3 4 5+ All

Number of false positives 179 17 2 0 198

Number of false positives (with validator) 130 16 3 0 149

Table 15: Number of false positives for AHC with the validator

We see a nice decrease in false positives from 198 without a validator to 149 with

the validator. The number of false positives of size two is 49. For groups of size

three, the difference is only 1 group.

Regrettably, the validator also removed a lot of false positives that were partially

correct. Before applying validator, the AHC detected 90 partially correct groups of

size two and after applying validator, there were 71. This might be the reason why

ARI did improve less than we would expect. AHC’s strong preference for groups of

two goes against the validator because a group of size two is compared to the

threshold we would expect from a group of size two. The validator makes a binary

choice whether to keep the group or not. For groups of size two that are in reality

groups of size three or bigger, this threshold is too strict, and therefore many get

discarded in the process.

57

9 Dataset Modification

When running experiments, we noticed our dataset was not as robust or variable

as we would like. By the nature of the task, it is hard to get a dataset that has time

steps with a high density of people and also includes a ground truth that can be fully

trusted – the higher the density, the harder it is for human annotators to be able to

recognize social groups.

 There are datasets capturing busy locations that have thousands of people moving

through in minutes, but for these, it is almost impossible to truly say if people are

walking together or not. It would probably require a highly controlled environment

with auditors at every entry and exit point to confidently create a dataset with ground

truth about social groups.

This chapter introduces a method of modifying datasets that could be beneficial

when algorithms exhibit very similar performance. Ultimately, we will test our

algorithms on a modified DIAMOR dataset.

9.1 Increasing Inner Group Distances

The aim of this modification is to increase the distance between pedestrians inside

the groups while changing anything else as little as possible. The idea behind this

modification is that if we increase the distance between pedestrians inside groups

(based on the ground truth that we have) while other pedestrians are unchanged, we

will somewhat simulate a higher density of a crowd.

For each group, we calculate the group member’s general position relative to the

group’s centroid – for this, we need some approximation of the general shape of the

group. Based on our testing, it turns out that the group’s shape at the middle time

step of the group’s existence in the dataset is a good approximation for this dataset.

We calculate the centroid (4.5.2) of each group at the time step we selected for that

group.

For each group member, we calculate a displacement vector from the centroid to

that member. The new position of each group member is given by adding the scaled

displacement vector to the centroid. We do that for every time step – essentially

58

making a constant shift across the whole trajectory. Example for one time step in

Figure 27.

The scale of the displacement vector will be the parameter we will focus on

during testing. A scale of 1.5 represents an increase in distance from pedestrians to

centroid by 50%.

Remember that the calculation of the displacement vector is done for one time

step, and used for all time steps. That makes this modification a constant shift for

pedestrians in groups, and therefore, this modification does not change the

correlation of movement.

9.1.1 Testing Process

This time, instead of doing proper k-fold cross-validation, we will perform both

training and testing on the whole dataset. We are looking for trends – how much the

performance decreases with increasing inner group distance. We chose to omit the

cross-validation due to time constraints. The decision to streamline the testing may

limit the precision of results, but the chosen approach should be adequate to

understand trends caused by our modification.

For all algorithms, we tested the performance for scale = 1 (no change), 1.5, 2,

and 2.5, where scale = 1 is used as a baseline for comparison to an unchanged

dataset. Previous experiments used scale = 1 by default with k-fold cross-validation.

Please note that results without k-fold validation might differ from these.

Experiments for Time-sequence DBSCAN and AHC will also include group shape

59

Figure 27: Example of scaling process

validation for each test. For a detailed analysis of results, we are going to focus

purely on scale = 2, as we believe it provides significant, yet hopefully still realistic,

change to the dataset.

9.2 Performance of Our Algorithm

Again, we run the evolutionary algorithm to search for the best parameters. These

are the best-performing parameters for each stretch:

 For scale = 1, thrd = 1317, thr sc = 0.35, thr st = 0.30, thr gs = [0.32, 0.17,

0.08, 0.06], ARI = 0.902,

 For scale = 1.5, thrd = 1841, thr sc = 0.27, thr st = 0.29, thr gs = [0.55, 0.49,

0.39, 0.34], ARI = 0.857,

 For scale = 2, thrd = 2533, thr sc = 0.72, thr st = 0.35, thr gs = [0.56, 0.56,

0.46, 0.26], ARI = 0.811,

 For scale = 2.5, thrd = 3272, thr sc = 0.68, thr st = 0.52, thr gs = [0.59, 0.56,

0.50, 0.31], ARI = 0.768.

As expected, the performance is dropping with each increase of scale as

pedestrians that are part of some group are getting closer to other pedestrians. We

can observe how the algorithm was forced to use an increased distance threshold thrd

and, starting from scale = 1.5, how the shape thresholds thr gs increased. The number

of false positives was likely too high (due to pedestrians being closer to each other),

and it was more beneficial to have higher thresholds that would lower the false

positives than to allow more people to create groups.

Another interesting change is visible on thr sc, which for scale = 2 and 2.5

increased from around 0.3 to around 0.7. The similarity of movement did not change,

so it makes sense that cosine similarity would be more useful as the distances

increased.

9.2.1 Results by Group Size

As mentioned earlier, our primary focus is scale = 2. When compared to scale = 1,

the number of detected ground truth groups dropped for all group sizes except the

biggest groups, which stayed the same. For groups of size two, the number of

detected ground truth groups dropped from 587 to 501. For groups of size three, the

60

drop was from 53 to 42. The biggest drop by a percentage was for groups of size four

– from 57.1% to just 19%.

Figure 28: Distribution of ground truth groups for our algorithm, scale = 2

Group size 2 3 4 5+ All

Detected (scale = 1) 587 53 12 2 728

Detected (scale = 2) 501 42 4 2 606

Table 16: Number of detected ground truth groups per group size for our algorithm, scale comparison

The biggest difference between these two scales is in the number of false

positives. For scale = 2, the number of false positives increased by 73%. The

increase in false positives is happening for all group sizes, and even the biggest

groups are now falsely detected.

Group size 2 3 4 5+ All

False positives (scale = 1) 80 28 5 0 113

False positives (scale = 2) 131 42 10 12 195

Table 17: Number of false positives per group size for our algorithm, scale comparison

61

9.3 Performance of Time-Sequence DBSCAN

The epsilon parameter of Time-Sequence DBSCAN was tested in different ranges

for each scale. The tested ranges were, in our opinion, adequate, and lower or higher

values did not provide any additional benefit. Epsilon was tested in increments of

100. The range for CTR was the same as in previous experiments – range between

0.2 and 0.95, with intervals of 0.05. For tests with group shape validation, the

percentile ranged from 0 to 10, whole numbers only.

The best results for each scale:

 For scale = 1, epsilon = 1200, CTR = 0.30, ARI = 0.886,

 For scale = 1.5, epsilon = 1700, CTR = 0.60, ARI = 0.824,

 For scale = 2, epsilon = 2700, CTR = 0.80, ARI = 0.787,

 For scale = 2.5, epsilon = 3400, CTR = 0.85, ARI = 0.749.

And with group shape score validation:

 For scale = 1, percentile = 2, epsilon = 1200, CTR = 0.30, ARI = 0.899,

 For scale = 1.5, percentile = 5, epsilon = 1700, CTR = 0.50, ARI = 0.845,

 For scale = 2, percentile = 7, epsilon = 2700, CTR = 0.65, ARI = 0.811,

 For scale = 2.5, percentile = 7, epsilon = 3700, CTR = 0.80, ARI = 0.792.

62

Figure 29: Distribution of false positives for our algorithm, scale = 2

We see similar results as for our algorithm. The performance drops with each

increase in scale, and epsilon is forced to increase. The CTR increases with scale as

it tries to offset the higher epsilon. The same happens with percentile, which removes

more false positives with a larger scale.

With the validator, the performance for scale = 2 was the same as the performance

of our algorithm, and for scale = 2.5, it even surpassed our algorithm (0.792 vs.

0.768).

9.3.1 Comparison of Results With and Without Validator

Our primary interest lies in how the performance changed between Time-

Sequence with and without the group shape score validator. These are the results for

scale = 2.

Group size 2 3 4 5+ All

Detected 510 41 7 2 560

Detected (with validator) 488 45 8 3 544

Table 18: Number of detected ground truth groups for Time-Sequence DBSCAN, scale = 2

For groups of size two, without the validator, Time-Sequence DBSCAN detected

71% more false positives than with the validator. For other sizes, the false positives

increased. With the validator, we have 16 more false positives of size three. This

happens because CTR declined from 0.8 without a validator to 0.6 with a validator.

Validator provides a way how to remove wrongly detected groups, and in response,

the CTR can be lowered to allow more groups to be detected.

Group size 2 3 4 5+ All

Number of false positives 142 36 9 4 191

Number of false positives (with validator) 83 52 16 15 166

Table 19: Number of false positives per group size for Time-Sequence DBSCAN, scale = 2

9.4 Performance of Agglomerative Hierarchical Clustering

Now, let’s examine the performance of AHC. The AHC algorithm has three

parameters. As mentioned earlier, we are interested in trends caused by our

modification. To streamline the testing, we locked the Γ t parameter to 22. The

63

distance threshold was tested in ranges appropriate for the scale, in intervals of 100,

and the velocity threshold in a range from 60 to 150, in intervals of 10. For tests with

group shape validation, the percentile ranged from 0 to 10, whole numbers only.

The best results for each scale:

 For scale = 1, Γ d = 1300, Γ v = 130, ARI = 0.860,

 For scale = 1.5, Γ d = 1700, Γ v = 110, ARI = 0.770,

 For scale = 2, Γ d = 2100, Γ v = 100, ARI = 0.671,

 For scale = 2.5, Γ d = 2800, Γ v = 80, ARI = 0.588.

And with group shape score validation:

 For scale = 1, percentile = 2, Γ d = 1300, Γ v = 130, ARI = 0.869,

 For scale = 1.5, percentile = 5, Γ d = 1700, Γ v = 120, ARI = 0.800,

 For scale = 2, percentile = 7, Γ d = 2700, Γ v = 120, ARI = 0.757,

 For scale = 2.5, percentile = 7, Γ d = 3300, Γ v = 100, ARI = 0.722.

The AHC performance decreases with scale the most. For original data, the ARI

is 0.860, which goes down to 0.588 for scale = 2.5. The validator seems to be

providing a significant boost. For scale = 2 ARI improves from 0.671 to 0.757 and

for scale = 2.5 ARI improves from 0.588 to 0.722.

9.4.1 Comparison of Results With and Without Validator

Once again, we will highlight the performance changes between AHC with and

without the group shape score validator. These are the results for scale = 2.

Group size 2 3 4 5+ All

Detected 486 3 0 0 489

Detected (with validator) 481 12 0 0 493

Table 20: Number of detected ground truth groups for AHC, scale = 2

Like in previous experiments on AHC, we see that it was relatively effective in

detecting groups of size two and ineffective for any other sizes. The number of

detected groups from ground truth is almost the same. The decreased number of false

64

positives is the main factor in increased ARI – from 311 without the validator to 214

with the validator.

Group size 2 3 4 5+ All

Number of false positives 287 19 5 0 311

Number of false positives (with validator) 140 54 16 4 214

Table 21: Number of false positives per group size for AHC, scale = 2

9.5 Summary of All Algorithms

Our algorithm had the best ARI when compared to the other two algorithms

without the group shape score validator. With the validator, Time-Sequence

DBSCAN had the same ARI. It seems like our validator could be useful when

applied to algorithms that are tested on datasets with lower distances between

pedestrians, but more testing needs to be done.

In the following tables, you will find a summary of all algorithms and their results

for scale = 2.

ARI

Our Algorithm 0.811

Time-Sequence DBSCAN original 0.787

with validator 0.811

AHC original 0.671

with validator 0.757

Table 22: ARI for all algorithms, scale = 2

Detection of ground truth groups:

Group size 2 3 4 5+ All

Our Algorithm 501 42 4 2 549

Time-Sequence DBSCAN original 510 41 7 2 560

with validator 488 45 8 3 544

AHC original 486 3 0 0 489

with validator 481 12 0 0 493

Table 23: Number of detected ground truth groups per group size for all algorithms, scale = 2

65

False positives:

Group size 2 3 4 5+ All

Our Algorithm 131 42 10 12 195

Time-Sequence DBSCAN original 142 36 9 4 191

with validator 83 52 16 15 166

AHC original 287 19 5 0 311

with validator 140 54 16 4 214

Table 24: Number of false positives per group size for all algorithms, scale = 2

66

10 Conclusion

In this thesis, we systematically analyzed group crowd behavior, focusing on

characteristics like group shape, distance, and size from a sociological angle.

Drawing upon these insights, we developed an algorithm dedicated to solving the

group detection problem. This proposed solution introduces a group shape score, a

measure used to evaluate a group’s shape according to positioning and movement

direction, and employs this measure as a decisive factor in determining the validity

of groups.

The evaluation process involved a comparative analysis against two existing

solutions — Time-sequence DBSCAN [1] and Agglomerative Hierarchical

Clustering with Hausdorff Distance [2]. We utilized the DIAMOR dataset [3] for this

comparison. In this testing, our algorithm was consistently better, which was mainly

driven by avoidance of false positives, having 14% fewer false positives than Time-

sequence DBSCAN and 40% fewer than Agglomerative Hierarchical Clustering.

We also introduced a validator as a possible addition to post-processing methods

in group detection algorithms. This validator uses a similar approach to our proposed

algorithm in scoring group shape and using it as a measure to verify existing group

classifications. Its main contribution is eradicating false positive classifications from

the results. Through testing, the validator demonstrated that it could improve the

performance of both Time-sequence DBSCAN and Agglomerative Hierarchical

Clustering on the DIAMOR dataset.

In order to properly test all aspects of proposed algorithm and validator, it would

be beneficial to have a robust dataset exhibiting wide range of complex patterns for

training and testing purposes. One example of such pattern is higher inner group

distance. Regrettably, to create or obtain such a dataset is truly challenging. Due to

this, we introduced a dataset modification in order to harden the conditions for group

detection – widening distances between members of the group. As a result, this

created a bigger gap between the performance of the algorithms. Our group shape

validator has proven effective when used on a modified dataset improving both

Time-DBSCAN and Agglomerative Hierarchical Clustering on the DIAMOR

67

dataset. More dataset modifications could be created and tested. This represents wide

and open area for reaseach.

In future work, we would like to explore using data featuring higher-density

situations or more obstacles, offering opportunities to observe different group shapes.

Furthermore, there is a potential to enhance our algorithm by considering the

incorporation of visual information like video footage and exploring aspects of

human interactions such as hand gestures, head movements, or eye contact.

At the end of this thesis, we express the hope that our work contributes valuable

insights and offers potential avenues for improvement within the field.

68

Bibliography

[1] H. Cheng, Y. Li and M. Sester, “Pedestrian Group Detection in Shared Space,”
in 2019 IEEE Intelligent Vehicles Symposium (IV), 2019, pp. 1707-1714.

[2] W. Ge, R. T. Collins and R. B. Ruback, “Vision-Based Analysis of Small
Groups in Pedestrian Crowds,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 34, no. 5, pp. 1003-1016, 2012.

[3] F. Zanlungo, T. Ikeda and K. Takayuki, “Dataset: Pedestrian tracking with
group annotations,” 2015. [Online]. Available:
https://dil.atr.jp/ISL/sets/groups/. [Accessed 6 2023].

[4] J. Wąs and K. Kulakowski, Social Groups in Crowd, 2014.
[5] H. E. Driver and A. L. Kroeber, Quantitative Expression of Cultural

Relationship, 1932.
[6] L. Hubert and P. Arabie, “Comparing partitions,” Journal of Classification, vol.

2, no. 1, 1985.
[7] M. Ester, H. Kriegel, J. Sander and X. Xu, “A Density-Based Algorithm for

Discovering Clusters in Large Spatial Databases with Noise,” in Knowledge
Discovery and Data Mining, 1996.

[8] R. A. Meyers, Encyclopedia of Physical Science and Technology, San Diego:
Academic Press, 2002.

[9] M.-P. Dubuisson and A. Jain, “A modified Hausdorff distance for object
matching,” in Proceedings of 12th International Conference on Pattern
Recognition, Jerusalem, 1994, pp. 566-568.

[10] M. Moussaïd, N. Perozo, S. Garnier, D. Helbing and G. Theraulaz, “The
Walking Behaviour of Pedestrian Social Groups and Its Impact on Crowd
Dynamics,” PLOS ONE, vol. 5, pp. 1-7, 2010.

[11] A. Seyfried, B. Steffen, W. Klingsch and M. Boltes, “The fundamental diagram
of pedestrian movement revisited,” Journal of Statistical Mechanics: Theory
and Experiment, 2005.

[12] M. F. Mohamad Ali, M. S. Abustan, S. Abu Talib, I. Abustan, N. Abd Rahman
and H. Gotoh, “Psychological distance of pedestrian at the bus terminal area,”
E3S Web of Conferences, vol. 34, 2018.

[13] K. Katevas, H. Haddadi, L. N. Tokarchuk and R. G. Clegg, “Walking in Sync:
Two is Company, Three's a Crowd,” in Proceedings of the 2nd workshop on
Workshop on Physical Analytics, 2015.

[14] R. Shepherd, C. Clegg and M. Robinson, Understanding Crowd Behaviours,
Volume 1: Practical Guidance and Lessons Identified, 2010.

[15] T. L. Chartrand and J. A. Bargh, “The chameleon effect: The perception–
behavior link and social interaction,” Journal of Personality and Social
Psychology, vol. 76, no. 6, pp. 893-910, 1999.

[16] C. Syms, “Principal Component Analysis,” in Encyclopedia of Ecology,
Academic Press, 2008, pp. 2940-2949.

[17] A. F. Alkarkhi and W. . A. Alqaraghuli, Easy Statistics for Food Science with
R, Academic Press, 2019.

69

[18] H. Abdi and L. J. Williams, “Principal component analysis,” WIREs
Computational Statistics, vol. 2, no. 4, pp. 433-459, 2010.

[19] S. Holland, Principal Components Analysis, 2008.
[20] T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to Algorithms

(Fourth Edition), The MIT Press, 2022.
[21] F. Hutter, L. Kotthoff and J. Vanschoren, “Hyperparameter optimization,” in

AutoML: Methods, Systems, Challenges, Springer, 2019, pp. 3-38.
[22] D. Soper, “Greed Is Good: Rapid Hyperparameter Optimization and Model

Selection Using Greedy k-Fold Cross Validation,” Electronics, vol. 10, no. 16,
2021.

[23] D. Câmara, “Evolution and Evolutionary Algorithms,” in Bio-Inspired
Networking, Elsevier Science, 2015.

[24] G. Neumann, “Artificial Intelligence Programming,” in Encyclopedia of
Information Systems, Academic Press, 2003, pp. 31-45.

[25] P. Refaeilzadeh, L. Tang and H. Liu, “Cross-Validation,” in Encyclopedia of
Database Systems , Springer US, 2009, pp. 532-538.

[26] S. Raschka, “Model Evaluation, Model Selection, and Algorithm Selection in
Machine Learning,” 2020.

[27] F. Zanlungo, T. Ikeda and T. Kanda, “Potential for the dynamics of pedestrians
in a socially interacting group,” Physical Review E, vol. 89, no. 1, 2014.

[28] M. Federici, A. Gorrini, L. Manenti and G. Vizzari, Data Collection for
Modeling and Simulation: Case Study at the University of Milan-Bicocca,
2012.

[29] Z. Michalewicz and M. Schoenauer, “Evolutionary Algorithms,” in
Encyclopedia of Information Systems, Academic Press, 2003, pp. 259-267.

[30] G. Syswerda, “Uniform Crossover in Genetic Algorithms,” in Proceedings of
the 3rd International Conference on Genetic Algorithms, San Francisco, 1989.

[31] O. Bell, “Applications of Gaussian Mutation for Self Adaptation in
Evolutionary Genetic Algorithms,” 2022. [Online]. Available:
https://arxiv.org/abs/2201.00285.

[32] C. McPhail and R. Wohlstein, “Using Film to Analyze Pedestrian Behavior,”
Sociological Methods & Research, vol. 10, no. 3, pp. 347-375, 1982.

70

List of Abbreviations

AHC – Agglomerative Hierarchical Clustering

ARI – Adjusted Rand Index

BFS – Breadth-First Search

CTR – Coexisting Time Ratio

DBSCAN – Density-Based Spatial Clustering of Applications with Noise

EA – Evolutionary Algorithm

PCA – Principal Component Analysis

71

