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Introduction

The study of crowd behavior extends across various fields such as psychology, 

sociology, and informatics, offering insights into human behavior. The knowledge 

gained can be instrumental in various applications, ranging from enhancing safety 

measures  to  innovating  crowd  management  strategies  and  designing  spaces 

accommodating large human flows.

In this thesis, we analyze and develop methodologies to identify social groups 

using spatiotemporal data,  aiming to contribute to the field by proposing a novel 

algorithm  for  solving  this  problem.  Our  proposed  algorithm  utilizes  findings  of 

crowd behavior studies, from which we derive a new measure called group shape 

score.  The  thesis involves a comparison of our solution with two existing  widely 

used approaches to social group detection, namely Time-sequence DBSCAN [1] and 

Agglomerative Hierarchical Clustering with Hausdorff Distance [2]. The evaluation 

is  conducted  using  the  DIAMOR  dataset [3],  which  contains  ground  truth  data 

obtained by human observations, providing a benchmark for comparing our results.

Additionally,  we introduce a group shape score validator as  a  post-processing 

mechanism to refine the results obtained by any algorithm addressing this problem. 

This validator employs a group shape score  in a similar manner as our proposed 

algorithm.  We  test  this  on  both  selected  existing  approaches to  assess  its 

effectiveness in enhancing the precision of group detection results.

Acknowledging ethical considerations is crucial in this area of crowd behavior 

analysis  due  to  privacy  concerns.  It  is  vital  that  the  insights  gained  from  this 

discipline  are  utilized  ethically,  and  we  emphasize  the  importance  of  collective 

responsibility  within  the  context  of  this  thesis  to  prevent  any misuse  or  harmful 

actions. 
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1 Problem description

In this chapter, we present the problem of group detection among pedestrians. The 

significance of addressing this challenge extends to various practical applications, 

including but not limited to crowd management and behavioral analysis. The ability 

to differentiate and categorize groups of people within a given environment holds the 

potential for advancing decision-making systems in complex scenarios.

1.1 Social Groups

The definition of social groups is not consistent across different areas of expertise 

and scientific studies. A study by Jarosław Was and Krzysztof Kulakowski defines it 

as “A group in a crowd is interpreted as two or more persons who are connected by 

interpersonal relationships” [4]. For the purpose of this thesis, we shall define social 

groups as consisting of two or more individuals intentionally walking together. Such 

groups  usually  consist  of  family  members,  friends,  or  colleagues.  These  two 

definitions do not necessarily coincide with each other in all cases.

The difficulty of a group detection task from tracking data is apparent when we 

try to translate  the definition of  social  groups to a  strict  mathematical  or  logical 

formulation. For example, while walking closely together could be a good indicator 

of  pedestrians  forming  a  social  group,  in  many  situations,  pedestrians  share  a 

common goal and also a common walking path without forming a social group. In 

public transportation like the subway, it is common to have a limited number of exits 

and  entrances  that  every  passenger  can  walk  through.  In  such  situations,  many 

passengers share the same start and end point with very few available options for 

their path. In this situation grouping people only by their proximity to each other 

might prove inaccurate, especially during high-density situations.

Due  to  the  reasons  mentioned  above  another  problem arises  when  observing 

social  groups  in  video  footage  of  pedestrians.  The  difficulty  lies  not  only  in 

translating  this  problem  to  mathematical  representation  but  also  in  the  inherent 

subjectivity of visual interpretation of the footage.  Unless prior knowledge about 

observed individuals is available, it is a difficult task to distinguish between actual  

social  groups  and  people  just  sharing  a  similar  path  to  their  destination  and, 
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therefore,  obtain  ground  truth  about  given  video  footage.  For  simplification,  we 

assume ground truth data provided by human observation are true, but keeping in 

mind the possibility of human error in this interpretation.

1.2 Data for Group Detection

The approach to group detection varies based on the characteristics of the chosen 

dataset,  its  representation,  and pre-processing.  Some studies choose to work with 

video data of pedestrians. This allows researchers to observe and categorize human 

interactions  such  as  verbal  communication,  head  orientation,  hand  gestures,  etc. 

Since this task is inherently based on social interactions, the usage of video footage 

can prove to be advantageous.

In this thesis, we will be using two-dimensional temporal trajectories, without any 

other  additional  data.  This  choice  limits  us  to  position  and  movement-based 

algorithms.

Definition (Trajectory): For each pedestrian p we define their trajectory as 

T p=[ (xt 0 , y t 0 ) , (xt 1 , y t 1) ,⋯ , (x t n , y t n) ] ,
t i<t j⇒ i< j

where (x t i , y t i ) ∈ R2 are spatial coordinates at time t i ∈ R. Trajectory T p at time t 

will be denoted as T p [ t ]=(x t , y t )∈ T p. In the rest of the thesis, the terms pedestrian 

and (their) trajectory are used interchangeably.

1.3 Reduction to Clustering 

Clustering is the process of organizing a collection of items in a manner where 

items within the same cluster share more similarities than those in different clusters. 

Clustering aims to uncover natural groupings or patterns present in a dataset. Objects 

or data points that exhibit  common characteristics (commonly described as being 

“closer to each other”) are grouped together, forming clusters. This method aids in 

revealing inherent structures within data, making it a valuable tool for tasks such as 

identifying  similar  customer  behaviors,  categorizing  images,  or  organizing 

information. It was first introduced by Driver and Kroeber in 1932 [5].
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Definition  (Partition of Set): Let  T  be a set.  Partition of set T  is a non-empty 

collection C= {C1 , C2 ,⋯ ,Cm } such that:

 ∀ i :C i⊆ T ,

 ∀ i , j :C i∩C j=∅ ,

 ∪iC i=T .

Definition (Clustering):  Let  T={T 1 ,T 2 ,⋯ ,T n } be  a  set  of  objects  and 

C= {C1 , C2 ,⋯ ,Cm } is a partition of set T , then we say that C is a clustering of T  and 

C i are  called  clusters.  We can also  say  that  function  f :T→{1 ,2 ,⋯ ,m},  where 

f (T i )= j indicates that T i∈ C j describes clustering.

The  group  detection  problem can  be  looked  at  as  clustering.  Each  pedestrian 

represents  an object  that  we want  to categorize into a  group (cluster)  with other 

pedestrians  that  are  ‘similar’,  using  its  spatiotemporal  data.  Characteristics, 

according to which decision is made if spatiotemporal data are ‘similar’ and should 

belong to the same group, will be described later in the chapter 5. No pedestrian can 

be in more than one group. Formally definition for group detection problem:

Definition (Group  Detection  Problem):  Given  a  set  of  n trajectories 

T={T 1 ,T 2 ,⋯ ,T n } and ground truth clustering Ggt of T. Find groups {G1 ,G2 ,⋯ ,Gm } 

such that {G1 ,G2 ,⋯ ,Gm }=Ggt.

1.4 Evaluation of Clustering

To compare the results of different algorithms, we will use the Adjusted Rand 

Index (ARI) as our evaluation function. ARI evaluates the similarity between two 

clustering assignments, ignoring permutations. It provides a score that indicates how 

well the clustering results align with each other, accounting for the possibility of 

randomness.

We are going to use ARI as an evaluation function that quantifies the agreement 

between the true groupings of data points and the clusters computed by a clustering 

algorithm. The "adjusted" part considers what would be expected by random chance, 

providing a normalized measure that ranges from the worst value of -1 to the best 
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value of 1. Clusterings for which ARI is close to 0 can be interpreted as if produced 

by  a  random  algorithm,  and  any  value  of  ARI  lower  than  0  suggests  that  the 

algorithm by which it was produced is performing worse than the random one [6].

Definition (Adjusted Rand Index): Given a set of trajectories T={T 1 ,T 2 ,⋯ ,T n }, 

and  clusterigns  X={X1 , X 2 ,⋯ , Xr },  Y={Y 1 ,Y 2 ,⋯ ,Y s} of  T,  then  ARI  can  be 

calculated as:

        ARI (X ,Y )=
∑ij

(
nij
2

)−[∑i
(
ai
2

)∑ j
(
b j
2

)] /(n2)
1
2 [∑i

(
a i
2
)+∑ j

(
b j
2

)]−[∑i
(
ai
2

)∑ j
(
b j
2

)]/(n2)
,

where  nij=|X i∩Y j|, ∀ X i∈X :ai=∑
j=1

s

n1 j, and ∀Y j∈Y :b j=∑
i=1

r

ni1. 

ARI  serves  as  an  evaluation  function  of  clusterings.  Algorithms  approximate 

solution of group detection problem by producing a set of groups that are similar to  

the groups from the ground truth. The similarity is evaluated by ARI. 

Definition (Approximation  of  Group  Detection  Problem):  Given  a  set  of 

trajectories  T={T 1 ,T 2 ,⋯ ,T n } and  ground  truth  clustering  Ggt,  find  clustering 

G={G1 ,G2 ,⋯ ,Gm }such that ARI (G,Ggt) is maximalized.
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2 Existing methods

In this chapter,  we focus on understanding methods of social  group detection, 

emphasizing two techniques as benchmarks for our proposed algorithm's evaluation: 

Time-sequence  DBSCAN  and  Agglomerative  Hierarchical  Clustering  with 

Generalized Hausdorff Distance.

We aim to outline and examine these methods, considering their strengths and 

limitations. This forms the basis for evaluating their performance and comparing it 

with our suggested solution. This assessment is essential  for developing our own 

group detection algorithms, providing insights and a potential  roadmap for future 

improvements.

The  selection  of  Time-sequence  DBSCAN  was  motivated  by  its  great 

performance,  as  reported in the respective research paper.  The authors compared 

three  models  that  considered  overlapping  coexisting  time,  distance  between 

trajectories,  or  both,  demonstrating  notably  positive  results.  The  evaluation 

encompassed three datasets from the German university area at various times of the 

day, and the algorithm exhibited robust performance [1].

Agglomerative Hierarchical Clustering with Generalized Hausdorff Distance was 

chosen  for  its  contrasting  approach  compared  to  Time-sequence  DBSCAN.  This 

clustering  method  draws  inspiration  from  psychological  models  of  collective 

behavior. The algorithm underwent testing on diverse data sets, incorporating indoor, 

outdoor, and varying viewpoints [2].

2.1 Time–Sequence DBSCAN

DBSCAN (Density-Based  Spatial  Clustering  of  Applications  with  Noise)  was 

presented by Martin Ester, Hans-Peter Kriegel, Jiirg Sander, and Xiaowei Xu in 1996 

[7]. It belongs to the group of clustering algorithms used for class identification in 

spatial  databases.  According  to  their  paper,  DBSCAN  excels  in  large  spatial 

databases,  offering benefits  such as minimal domain knowledge requirements for 

input  parameters,  the  discovery  of  clusters  with  arbitrary  shapes,  and  efficient 

processing even in databases with a higher number of objects.
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DBSCAN uses the concept of core points – points with a high density of points 

around them – for cluster creation and border points – points that are reachable from 

core points – to distinguish between noise and points that are part of some cluster. It 

takes two parameters as input:

1. epsilon –  defines the radius of  a  circle  around points  for  conducting a 

range  query,  establishing  whether  other  points  are  considered  "close" 

(located inside the circle) or not

2.  minPoints – defines the minimum number of points required to start a 

cluster

DBSCAN is not a deterministic algorithm since border points may be associated 

with multiple clusters, and their assignment to the cluster depends on the core point 

from which they are first identified.

Time-sequence DBSCAN, introduced in  [1],  is  a  modification to  the standard 

DBSCAN algorithm.  This adaptation enables the application of DBSCAN on data 

with  a  temporal  dimension,  such  as  data  reflecting  the  movement  of  walking 

pedestrians over time. 

2.1.1Algorithm Description

The process involves running the original DBSCAN for each time step within the 

data. In the case of detecting groups from trajectories of walking pedestrians, the 

minimal size of clusters is 2. Therefore DBSCAN is run with  minPoints = 2. The 

other parameter of DBSCAN, epsilon, is for us to decide based on the specific data.

We monitor the number of time steps during which pedestrians share the same 

cluster.  Ultimately,  for  each  pair,  we  assess  their  total  time  steps  (the  union  of 

distinct time steps of each pedestrian) and compare it with the instances they were 

together in a cluster. If this ratio exceeds the new parameter  CTR (coexisting time 

ratio threshold), pedestrians are considered to belong to the same group.
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Following pseudocode is describing Time-Sequence DBSCAN in closer detail:

ALGORITHM: TIME-SEQUENCE DBSCAN

Input: T={T 1 ,T 2 ,⋯ ,T n }, epsilon, CTR

Output: G={G1 ,G2 ,⋯ ,Gm}

1: M  0n×n // coexistence matrix, counts how many times (i,j) are in a cluster

2: for t in T: // t are all time steps that exists for any trajectory in T

3: points  [T 1 [ t ] ,⋯ ,T n [ t ]]

4: C  DBSCAN(points, epsilon, 2) //minPoints = 2 for group detection

5: for C x in C:

6: for each pair (i,j) in C x:  M[i,j] += 1

7: end

8: end

9: cluster_pairs = []

10: for ∀ T i ,T j in T:

11: time  union of time steps covered by a pair

12: if M[i,j] / time > CTR:

13: cluster_pairs  cluster_pairs + pair

14: end

15: end

16: G  create clusters from cluster_pairs

17: return G

2.2 Agglomerative Hierarchical Clustering with Hausdorff 

Distance

Agglomerative  clustering,  or  bottom-up  clustering,  is  a  traditional  method  for 

grouping  observations  that  creates  a  cluster  tree.  Starting  with  individual 

observations,  the tree progressively forms subclusters  as one moves upwards.  To 

prevent  merging  into  a  single  large  cluster,  a  stopping  rule  is  needed  for  the 

agglomeration  algorithm.  Additionally,  rules  are  necessary  to  determine  which 

subcluster should merge next at each stage of the tree-building process [8].
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Agglomerative  Hierarchical  Clustering  with  Hausdorff  Distance,  developed by 

Weina  Ge,  Robert  T.  Collins,  and  R.  Barry  Ruback [2], builds  on  pedestrian 

detection and multi-object tracking methods, drawing inspiration from sociological 

models  of  collective human behavior.  It  autonomously identifies  small  groups of 

individuals traveling together through a bottom-up hierarchical clustering approach. 

The  innovation  lies  in  utilizing  a  generalized,  symmetric  Hausdorff  distance, 

specifically defined with respect to pairwise proximity and velocity. We will refer to 

Agglomerative Hierarchical Clustering with Hausdorff Distance as AHC.

2.2.1Algorithm Description

For this algorithm, a different definition of trajectory is used. The trajectory is a 

set of tuples (s,v,t), where s is the position, v is the velocity vector, and t is the time. 

si
t is a position s of trajectory i at the time t.

The distance measure w ijbetween two trajectories i and j is defined as:

w ij=
∑
t

wij
t

ρij|Γ|
, for i≠ j∧t∈ Γ ,

w ij
t =α N (‖s it−s jt‖)+(1−α )N (‖v it−v jt‖) ,
ρij=∑

t

δt ( i , j ) ,

δ t (i , j )={1 ‖sit−s jt‖<Γ s∧‖v it−v jt‖<Γ v
0 otherwise

,

where N  is a min-max normalization operator applied independently for each pair of 

trajectories to linearly scale their velocity and distance differences into the range [0,  

1], and weight is defined as α = 0.7.  Γ  is a temporal overlap between trajectories i 

and j. Γ s is a distance threshold, Γ v is a velocity threshold – both are inputs to the 

algorithm.

Modified Hausdorff distance introduced by Marie-Pierre Dubuisson and Anil E. 

Jain [9] is used to measure the inter-group closeness between two groups A and B:

H (A ,B )=
h ( A ,B )+h (B , A )

2
,
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h ( A ,B )=
∑
i=1

|A|

∑
j=1

⌈
|B|
2

⌉

d il

|A|× ⌈|B|
2

⌉
,

where d il is the lth smallest distance amongst all the distances w ij , j ∈ B. 

AHC starts with each individual in their own cluster. During each iteration, we 

select groups  A and  B with the lowest distance  H (A ,B ) and try to merge them. If 

merge is accepted depends on intragroup tightness. 

 For  any  group  of  size  k ≥1 we  create  graph  Gk in  which  vertices  represent 

members of the group. The edge between vertices  ni and  n j exists if  ρij<Γ t. This 

represents  a  need for  i and  j to  be “close together”  for  Γ t time steps.  The  time 

coexistence threshold Γ t is the last input needed for the algorithm.

Let  ek be the number of edges in  Gk and  êk+1 be the minimal number of edges 

desired in Gk+1 after merging with a single person. By definition e1=ê1=0. A person 

can be added to the existing Gk if they are connected to at least half of the members 

of Gk:

êk+1=ek+⌈ k
2
⌉ .

We can derive: êk=( k2 )
2

for even k, and êk=
k−1
2 (1+ k−12 ) for odd k. Two groups G p 

and Gq can be merged if they satisfy the intragroup tightness criterion:

e p+q≥ ê p+q+ (ep−ê p+eq−êq ) .

If the groups don’t satisfy the intragroup tightness criterion, the merge is denied, 

and the  algorithm continues  with  groups with  the  next  lowest  distance,  etc.  The 

algorithm stops and returns all groups after it fails to merge any two groups [2].
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3 Human Behavior in Groups

This chapter delves into how people behave in groups, particularly when walking 

together,  from  a  sociological  and  analytical  standpoint.  The  analysis  includes 

examining whether groups tend to cluster, form linear arrangements, or adopt more 

complex structures. Group size is also a key aspect we'll explore, investigating how 

and if it can provide useful insight into crowd dynamics. 

Findings from this chapter will be a key for creating our own metric based on 

group shapes. 

3.1 Group Shapes

In  a  study  done  by  Mehdi  Moussaid,  Niriaska  Perozo,  Simon  Garnier,  Dirk 

Helbing, and Guy Theraulaz [10], it was observed that a significant proportion of 

pedestrians prefer walking in groups. In the study, two populations were studied, and 

in both, over half of pedestrians were walking in groups rather than alone – 55% and 

70% of the population, respectively. It is also noted, that the environment influences 

this  distribution,  with  leisure  areas  like  commercial  walkways  showing  a  higher 

tendency for people to walk in groups.

When walking alone, a pedestrian needs to adapt its walking path to avoid other 

pedestrians and obstacles and to general infrastructure. In the case of an empty street, 

there is very little reason to observe anything other than a straightforward path from 

the starting point to the point of interest. This assumption changes when two or more  

people are walking together and talking to each other. In social groups, people adapt 

their walking paths to be able to talk to each other, gesture to each other, etc. This  

was observed in [4] [10].
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As seen in Figure 1 and Figure 2, people tend to walk next to each other from the 

view of  the  walking direction,  forming a  perpendicular  line  to  the  vector  of  the 

walking  direction.  This  is  easy  to  see  in  groups  of  two people  but  can  also  be 

observed in bigger groups. In groups of three, people usually walk in a wide, straight 

line, or in a “V”-shape, and in bigger groups, the shape could be described as a 

parabola.

Studies  have  shown  that  these  shapes  change  with  crowd  density  [10].  With 

increasing density, groups of two become closer to each other. Groups of three and 

higher are also closer to each other, and their “V”-shape gets more pronounced. This 

holds until the critical density is reached and the shape changes drastically. “In very 

high densities, V-like patterns are transformed into a lane aimed toward the direction 

of motion.” [4]

14

Figure 1: Group positions per crowd density and group size, Source: [9]



Figure 2: Group shapes per crowd density, Source: [4]

These group-shape findings will  be one of the factors when we build a group 

detection algorithm. 

3.2 Group Speeds

The study on the walking behavior of pedestrian social groups [10] found that the 

walking speed of pedestrians is influenced by both density levels and group size. 

Their observations can be seen in a Figure 3. At low density, individuals walk faster 

compared to higher density, aligning with prior research on pedestrian traffic  [11]. 

Additionally, their observation reveals a linear decrease in pedestrian walking speeds 

with  increased  group  size.  Interestingly,  the  density  level  does  not  significantly 

impact the slope of this group-size-related speed decrease. 

Another  study  was  done  at  the  Bus  Terminal  Area  [12] using  data  collected 

through a 45-minute video recording at the main lobby of the bus terminal revealed 

that  walking speed is  dependent  on multiple  individual  factors.  Male pedestrians 

walked faster than female pedestrians, with average speeds of 1.13 m/s and 1.07 m/s, 

respectively.  Additionally,  pedestrians  without  baggage  walked  faster  than  those 

carrying  baggage,  indicating  that  baggage  can  impact  walking  speed  due  to 

additional weight and potential distractions.
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Figure 3: Average Speed per Group Size, Source [10]

According to [13], groups of people walking together exhibit common behavioral 

patterns, such as moving at the same speed and reforming quickly when separated 

[14]. Small groups often display unintentional synchronization in stepping, which 

can be a result of shared feelings of unity and closeness, a phenomenon known as 

"mirroring" in the psychology [15].

3.3 Group Sizes

Another dimension of group behavior to consider is the group size. As previously 

noted, the size of a group influences the walking speeds of pedestrians within that 

group. According to some studies, the most prevalent groups typically comprise only 

two to four members [10], making larger groups significantly less frequent.
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4 Used Techniques

In this chapter, we will introduce all the techniques that we will need to build our 

algorithm.  Firstly,  we  are  going  to  explain  how  to  deal  with  misalignment  of 

trajectories. Next, we will introduce shared time steps, a measure that will quantify 

how many time steps two trajectories share. We will define the  distance between 

two  trajectories  and  the  cosine  similarity for  two  trajectories.  At  last,  we  will 

introduce  group shape score, a new way how to quantify the expected shape of a 

group.

4.1 Trajectory Misalignment 

When comparing the trajectories of two pedestrians, a significant challenge arises 

from the unavoidable discrepancy in trajectory lengths. This creates a problem of 

handling calculations that require values from both trajectories at a single time step,  

and only one trajectory has data for that time step.

We have opted for a straightforward approach: any measure requiring data from 

both  trajectories  will  be  computed  exclusively  on  intervals  during  which  data  is 

available from both trajectories. This strategy presents the risk of yielding misleading 

results. For example, a person leaving the tracking area might exhibit a small average 

distance  from another  pedestrian  entering  the  area  from the  same spot.  We will 

define common time steps to use in this chapter.

Definition (Common Time Steps): Let T i=[ (x i0 , yi 0) ,⋯ , (x in, y in ) ], 
T j=[ (x j0 , y j 0) ,⋯ , (x jm , y jm ) ] be two trajectories, then t ij will denote the intersection of 

their times steps:

t ij={i0 ,⋯ , in }∩ { j0 ,⋯ , jm }.

This problem is not limited to the beginning or ends of trajectories but could also 

happen in the middle of tracking data with tracking errors or people leaving the area 

and returning. This is completely avoided by choosing to interpolate missing data – 

which we will describe in the chapter dedicated to the dataset.
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4.2 Shared Time Steps

Since we are not penalizing other metrics for being calculated on potentially small  

amounts  of  data  when two trajectories  coexist,  we  must  introduce  a  measure  of 

shared time steps.

For any two trajectories T i , T j , let’s define their shared time steps St (T i , T j) as a 

percentage of time steps of the longer trajectory for which the shorter trajectory also 

exists. 

Let  T i=[ (x i0 , yi 0) ,⋯ , (x in, y in ) ] , T j=[ (x j0 , y j 0) ,⋯ , (x jm , y jm ) ] be  two  trajectories. 

Without loss of generality |T i|<|T j|. Then shared time steps will be calculated as: 

St (T i ,T j)=
|t ij|
|T j|

.

4.3 Distance

Distance is a core metric for group detection. For computing the distance between 

two trajectories,  we decided to use the median of distances of their  time-aligned 

positions.  Unlike  the  mean distance,  which  is  influenced by extreme values,  the 

median  is  the  middle  observation,  exactly  at  the  center  of  the  distribution.  The 

median is a robust measure, meaning it is less sensitive to outliers or extreme values, 

unlike the mean. 

When all distances are sorted, the median equals their middle point. For a list of 

distances of odd size n, the median equals the value on the n/2-th position. For even 

n,  the median equals  the mean value between the n/2-th distance and  (n/2)+1-th 

distance. Let  T i=[ ai 0 ,⋯ ,ain ] , T j=[b j 0 ,⋯ ,b jm ] be to trajectories, and  D is a list of 

distances ‖a t−b t‖ for every t ∈ t ij, then their distance will be calculated as:

d (T i ,T j )=med (D )

4.4 Cosine Similarity

Cosine similarity is a metric used to determine the cosine of the angle between 

two non-zero vectors in a multidimensional space. It is commonly employed in data 

analysis to assess the similarity between two vectors, regardless of their magnitudes. 
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The cosine  similarity  ranges  from -1  to  1,  where  a  value  of  1  indicates  perfect 

similarity, 0 denotes no similarity, and -1 implies perfect dissimilarity.

SC ( x , y )= x ∙ y
‖x‖∙‖y‖

,

where x ∙ y  is the dot product of vectors x and y, ‖x‖, ‖y‖ are lengths of vectors x 

and y, respectively.

For  two  trajectories  T i and  T j,  and  their  ordered  common  time  steps 

t ij=[0 ,1 , ... , n] we will  define their  cosine similarity  as  an average of  the cosine 

similarity between their displacement vectors:

SC (T i ,T j)=
1
n−1∑t=1

n

Sc(T i [t ]−T i [t−1 ], T j [t ]−T j [t−1 ])

4.5 Group Shape Score

So far, all measures mentioned have been used strictly for pairs of trajectories. In 

this section, we will use knowledge gained from 3.1 to define the group shape score, 

a measure calculated for set of n trajectories. 

Group  shape  score  measures  how the  shape  of  the  group  corresponds  to  our 

expections.  

4.5.1 Principal Component Analysis

Principal Components Analysis (PCA) is a method used for simplifying complex 

data  structures,  making  it  easier  to  understand  relationships  between  variables. 

Unlike focusing on why events occur, PCA centers on providing insights into how 

different factors in a dataset interact. It serves the purpose of distillation rather than 

causal analysis [16]. PCA finds utility in various fields. In ecology, it helps interpret 

natural connections, while in food science, it untangles relationships among different 

food properties [16] [17]. 

The primary goals of PCA are to streamline complex data, aid in interpretation, 

and enhance the overall understanding of relationships within the dataset [18]. PCA's 

significance lies in its mathematical foundations. Through numerical evaluations, it 

simplifies  datasets,  facilitating  subsequent  analyses.  PCA  takes  diverse 

measurements  and  condenses  them  into  a  few  principal  components,  capturing 
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essential  information  and  revealing  the  primary  data  structure  [18].  Principal 

components are designed to encapsulate the maximum variance within a dataset. In 

mathematical  terms,  the  first  principal  component  is  the  line  that  maximizes  the 

variance, ensuring the average squared distances from the projected points to the 

origin  are  optimized  [19].  Each  additional  principal  component  shows  in  which 

direction there is the next greatest variability while orthogonal to each other.

We use PCA as a dimensionality reduction and data transformation technique to 

detect the shape of the group. At any given time, the first principal component of a  

group describes in what direction the group spreads the most – effectively describing 

its “shape.” In isolation, this information does not mean anything. We also need to 

know the walking direction of the group – its  displacement vectors. To make these 

we need to define groups position. 

Figure 4: Example of the first PCA vector on four points

4.5.2 Centroid

We have  positions for each trajectory in the group but not for the whole group. 

We will define the group’s position as its centroid. The centroid of n 2D points is the 

point that represents the geometric center or average position of the set of points. It is 

a point that balances the distribution of points in both the x and y dimensions. The 

centroid C of a group G with n trajectories at time step t can be calculated by taking 

the mean of the positions of all trajectories included in the group G.

C t (G )=1
n
∑
i=0

n

T i[ t ]
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4.5.3 Evaluation

Now that we have a displacement vector and a vector that describes the group’s 

shape, we just need to compare them.

If a group has a perfectly “wide” shape, its shape vector is perpendicular to its 

displacement vector. On the other hand, a group that has a perfectly “long” shape has 

its shape vector and velocity vector parallel to each other. Visualization of this can be 

seen in Figure 5.

We need to define a function that would return the highest value for perpendicular 

vectors and the lowest for parallel vectors. We define the group shape score of group 

G at time t as:

Gst (G )={ θt90 if 0≤θ t≤ 90

1−
θt−90
90

if 90<θ t≤180

where θt is the angle between the velocity vector and the first principal component 

vector of a group at  time  t.  θt is in degrees and modulo 180. This function will 

linearly map angles from 0 to 90 degrees to interval [0,1] and between 90 and 180 

degrees  to  interval  [1,0].  Gst (G )=1,  for  perfectly  “wide”-shaped  group  G,  and 

Gst (G )=0, for perfectly “long”-shaped group G.

The total shape score of the group G is the average shape score across time steps 

that the whole group exists at:

Gs (G )= 1

|tG|∑t∈ t
G

G s t (G ) ,

where tG is the intersection of all time steps of all trajectories in the group.
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4.6 Breadth-First Search

Breadth-First Search (BFS) is a fundamental graph exploration algorithm, defined 

for a graph  G(V, E) with vertices  V and edges  E. It starts from a specified source 

vertex s, systematically traversing the edges to discover every reachable vertex from 

s. The algorithm employs a first-in, first-out (FIFO) queue to manage the exploration 

order,  progressing  in  waves  to  uncover  vertices  at  increasing  distances  from the 

source [20].

The BFS will be used in our algorithm to discover a connected component in a 

graph in which trajectories represent vertices and edges between them represent their 

‘similarity’.

4.7 Hyperparameter Optimization

Hyperparameter optimization is the method of adjusting settings in an algorithm 

to maximize its performance. This involves systematically exploring different values 

for these settings, aiming to minimize errors or enhance performance on validation 

data [21].  Different methods can be used to achieve this, for example, Grid search, 

Random search,  Bayesian  Optimization,  or  Evolutionary  algorithms [22].  In  this 

thesis,  we  will  focus  solely  on  Evolutionary  algorithms  to  approximate  optimal 

parameters for our algorithm.

4.7.1 Evolutionary Algorithms

Evolutionary Algorithms (EAs) operate  on a  population of  potential  solutions, 

employing  the  survival  of  the  fittest  principle  to  sequentially  improve 

approximations to a solution. In each generation, individuals are selected based on 

fitness  function  and  undergo  reproduction  with  variation  operators.  Evolutionary 

Algorithms  encompass  various  techniques,  such  as  evolutionary  programming, 

genetic  programming,  evolutionary  strategies,  or  swarm  intelligence.  EAs  are 

inspired by biology, using crossover, mutation, and natural selection mechanisms to 

progressively improve potential solutions. The typical EA begins by initializing a 

population, evaluating fitness of individuals, generating a new generation through 

breeding, and combining parent and child solutions to find optimal solutions  [23]. 
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Fitness refers to the measure of how well an individual solution in the population 

performs.  Crossover  entails  combination  of  genetic  information  from two parent 

individuals to produce offspring. Mutation introduces random modifications to an 

individual's genetic information. Individuals exhibiting higher fitness are favored by 

natural  selection,  increasing their  chances of being selected for reproduction [23]

 [24].

Our  primary  focus  in  the  context  of  this  thesis  will  be  on  an  evolutionary 

optimization.

4.7.2 Evolutionary Optimization

Evolutionary  optimization  involves  applying  an  EA  to  solve  problem  of 

hyperparameter  optimization.  The  process  starts  with  a  population  of  randomly 

generated hyperparameter configurations, their performance is evaluated by fitness 

function and individuals are ranked accordingly. New members replace the worst 

performers with hyperparameter values derived through mutation or recombination 

of  the best  performers.  This  process  continues until  a  stopping condition is  met, 

evolving the population toward an optimal solution [22]. The method is visualized in 

Figure 6.

Figure 6: Hyperparameter optimization using the evolutionary method; Source [22]

4.8 k-fold Cross-Validation

Cross-validation  is  a  statistical  method  for  the  comparison  and  evaluation  of 

algorithms. It works by dividing data into two segments: one for training a given 

algorithm and the second for validating the trained model.  In the standard cross-

validation  procedure,  training  and  validation  sets  alternate  in  successive  rounds, 

ensuring that each data point is validated. [25]

23



Cross-validation is  widely used in  machine learning,  data  mining,  and similar 

areas  for  performance  optimization,  offering  a  systematic  approach  to  help  train 

prediction models.

K-fold cross-validation is a type of cross-validation where data is partitioned into 

k equally sized segments. Through k iterations of training and validation, each round 

uses  a  k-th  fold  for  validation  and  the  remaining  folds  (k-1)  for  training.  This 

approach enables thorough and comprehensive evaluation [25] [26].  The process is 

described in Figure 7.

Figure 7: Illustration of k-fold cross-validation, Source: [26]
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5 Proposed Solution

In this chapter,  we will  show an algorithm composed of techniques and ideas 

presented in previous chapters. Our algorithm consists of two main steps for each 

pedestrian.  The  first  is  to  generate  group  candidates  based  on  being  “similar” 

enough.  To  decide  which  trajectories  are  “similar”  we  will  use  distance,  cosine 

similarity,  and shared time steps.  The second part  is  creating a group out  of  the 

candidates based on group shape scores using a greedy algorithm.

5.1 Algorithm Description

At the beginning of the algorithm, we calculate three similarity measures for each 

pair of pedestrians: 

1. distance similarity – measured by d (T i ,T j ) from 4.3,

2. cosine similarity – measured by Sc (T i ,T j )from 4.4,

3. shared time steps – measured by St (T i ,T j) from 4.2.

These measures will define how ‘similar’ two trajectories are. For every measure, 

there  exists  a  corresponding  threshold  in  the  algorithm’s  input  –

thrm=[thrd , thrsc , th r st ], that two trajectories have to pass to be considered ‘similar’. 

We create graph S in the following way:

 for each T i∈ T , create node ni,

 edge e ij between ni and n j exists if all conditions are met:

1. d (T i ,T j )< thrd,

2. Sc (T i ,T j )> thrsc,

3. St (T i ,T j)>thr st.
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The pool of all pedestrians is created, and then we start looping through the pool.  

From the  pool,  we randomly select  a  trajectory  T i. We are  interested in  finding 

pedestrians who could create a group with T i (group candidates for T i). We identify 

group candidates for T i by conducting a BFS on S starting from a node ni. The result 

of BFS is the connected component C i. By definition of edges in S, this component is 

composed of nodes that are ‘similar’ to trajectory  T i either directly (neighbors), or 

indirectly – for nodes that are not connected to ni, but there exists a path from ni to 

them. 

Once we have C i, we move to the second part of the algorithm – selecting those 

pedestrians that will create a group with the T i based on the group shape score. For 

next steps, the graph S is irrelevant – was only used to get candidates.

 In the beginning, the group consists only of the T i. We check each candidate to 

see if combining it with the current group would create a new valid group. For each 

group size, we have defined the group shape score threshold (input to the algorithm – 
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ALGORITHM: OUR GROUP DETECTION ALGORITHM

Input: trajectories T={T 1 ,T 2 ,⋯ ,T n }, measure thresholds thrm, groups shape 
score thresholds thr gs

Output: detected groups G={G1 ,G2 ,⋯ ,Gm}

1: S  getMeasureThresholdSatisfactoryGraph(T , thrm) 

2: G  {} //empty set

3: j  1 //group counter

4: P  T //pool

5: for each T i in P

6: C i  run BFS(T i) 

7: G j  getGroupUsingGroupShapeScore(T i , C i , th rgs) 

8: G.add(G j)

9: P.remove(G j) // removes each trajectory in G j from the pool

10 j++ //increase group counter

11: end

12: return detected_groups



thr gs=[th r2 , thr3 , th r4 , th r5+]) the group needs to pass to be valid. For group sizes of 

5 or bigger,  a single threshold is used.  For example,  thr gs = [0.4, 0.3, 0.1, 0.05] 

means that a group size of two has to have a shape score of 0.4 or higher, 0.3 for a 

group of three, 0.1 for a group of four, and 0.05 for a group of five and bigger.

Once we find such a candidate, we immediately add it to the current group and 

repeat  the  process  –  even  with  candidates  that  were  previously  declined.  Some 

candidates might be declined and still form a valid group when more candidates are 

added.

METHOD: GET GROUP USING GROUP SHAPE SCORE

Input: trajectory T i, group candidates C i, groups shape score thresholds thr gs

Output: group G j

1: G j {T i}

2: C i .remove(T i)

3: T new  getShapeFulfillingTrajectory(G j, C i , thrgs)

4: while T new is not None:

5: G j.add(T new)

6: C i .remove(T new)

7: T new  getShapeFulfillingTrajectory(G j, C i , thrgs)

8: end

9: return G j

Since this is a greedy approach, it is possible that we add a candidate to the group 

that prevents us from discovering a better group. This is an accepted risk since we 

cannot test all possible subsets of all candidates – for n candidates we would have to 

test 2n groups for their group shape score.

We stop once going through all the remaining candidates does not yield a new 

group member. It is possible that no candidate is added to the group and the only 

member is  the  T i.  The group is  added to the list  of  groups,  all  its  members are 

removed from the pool, and the process continues with another pedestrian from the 

pool.
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METHOD: GET SHAPE FULFILLING TRAJECTORY

Input: current group G j, group candidates C i , groups shape score thresholds thr gs

Output: trajectory T new

1: size  |G j|+1 //size  5 if size > 5

2: for each T x in C i:

3: G j
* G j∪ T x

4: if Gs (G j
*)> thrgs[size]: return T x

5: end

6: return None
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6 Dataset

There  are  many  available  datasets  of  tracking  data  for  pedestrians  in  public 

spaces, but not many include ground truth data for social grouping.  In this chapter, 

we will introduce the dataset used for this thesis, what preprocessing was needed, 

and general statistics.

6.1 DIAMOR Dataset

Using  a  laser  range-finder  tracking  system,  researchers  in  Japan tracked  the 

movement  of  pedestrians  on  two  separate  days  in  “two  large  straight  corridors 

connecting the Diamor shopping center in Osaka, with the railway station” [3]. For 

social group annotations, video cameras were used, and from recorded video, two 

members  of  nontechnical  staff  were  asked  to  label  groups [27].  The  DIAMOR 

dataset is available at [3]. 

Additionally,  tracking data for 6 days from the Asia and Pacific Trade Center 

(ATC) in Osaka is available.  For these, only a specific part of the area was covered 

with video cameras, and groups that did not move through this area were not labeled. 

This limitation is problematic for us, and therefore we did not use this data.

6.2 Data Format

For both days, two files are available – a personal tracking file and a group file. A 

person tracking file is a comma-separated file where each row represents data for one 

tracked person at a fixed time. Columns are:

 time [s], 

 pedestrian_id,

 position_x [mm],

 position_y [mm],

 velocity [mm/s],

 angle_of_motion (direction of velocity vector) [rad],

 facing_angle (body direction) [rad].
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We processed this file and removed facing_angle because even if this parameter 

could  improve  group  detection,  it  is  not  a  common  variable  in  datasets  and  its 

inclusion would make any findings less useful for datasets without it. Also, instead of 

velocity  and  angle_of_motion,  we  calculated  velocity_x  and  velocity_y  after 

interpolating and downsampling the dataset, which will be described later. 

The group file is a text file where each line represents one pedestrian (only those 

in any group are included), and it contains the following space-separated fields:

 pedestrian_id,

 group_size,

 partner_id_1,

 list of IDs of all other pedestrians in the group,

 number_of_interacting_partners,

 interaction_partner_id_1,

 list of IDs of all socially interacting partners

Interaction partners were removed for the same reason as facing_angle from the 

tracking file. We worked with groups as sets of pedestrian IDs.

6.3 Removal of Unsuitable Pedestrians

The first step that needed to be done was the removal of trajectories that were too 

short or too long. Neither extreme is interesting for our task – a trajectory that is too 

short does not have enough data to properly observe, and a trajectory that is too long 

belongs  to  a  person  who  is  probably  walking  nonstandardly.  We  removed  any 

pedestrian with a trajectory shorter than 8 seconds or longer than 120 seconds. 

For the first day, we removed around 25% of all pedestrians – only 37 for having 

a long trajectory. Unfortunately, it seems that the data for the second day are not 

optimal, and we had to remove more than half of the pedestrians due to their short  

trajectories. Even if we decided to lower the threshold to 4 seconds, we would still  

have  to  remove  12639  pedestrians.  These  unnaturally  short  trajectories  raise  a 

question about the data quality for the second day. 

For some groups,  not all  pedestrians were properly tracked – in such cases,  a 

pedestrian’s ID is replaced with “-1”. Our algorithm uses different group shape score 

thresholds  for  different  group sizes.  These  groups  might  be  problematic  as  their 

group shape score will be compared to an incorrect threshold. Therefore, we decided 
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to remove groups with untracked pedestrians completely from our data – including 

trajectories  of  all  pedestrians  tracked  properly  in  that  group.  Additionally,  some 

special cases were also removed from the dataset. For example, a parent with a baby 

stroller  was  labeled  as  a  group  of  two  people,  which  does  not  align  with  our 

definition of a group, and it is of no interest to us. For all these reasons, we had to  

remove 52 pedestrians from day 1 and 92 pedestrians from day 2. At the end there 

are 7346 pedestrians for day 1 and 11907 for day 2. The summary of statistics is in  

Table 1.

Day 1 Day 2

Original number of trajectories 9969 27639

Removed (short) 2534 15579

Removed (long) 37 61

Removed (other reasons) 52 92

New number of trajectories 7346 11907

Table 1: Statistics for trajectories in DIAMOR dataset

6.4 Downsampling of Trajectories

In  [12], it is stated that pedestrians walk at a speed of ~1m/s. On average, this 

dataset has a gap between two consecutive time steps of ~0.042s or ~24 updates per 

second. That means the average pedestrian moves by a few centimeters between two 

time steps. This level of detail is unnecessary for our use case and will only slow 

down any algorithm used. We downsampled the data, aiming for 0.25s between each 

time step.
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Unlike video cameras that record with fixed frames per second, this dataset has 

irregular gaps between consecutive time steps. We cannot have a constant gap unless 

we interpolate the majority of data.  At no point is that necessary for us,  and we 

would  rather  interpolate  less.  Therefore,  we  iterated  through  each  time  step, 

accumulating a time gap until the cumulative gap exceeded a quarter of a second. 

Subsequently,  we  marked  the  last  time  step  or  the  one  immediately  before  it,  

selecting the one that was closer to the target gap of a quarter of a second. Reset the  

counter and repeat until the last frame. We kept only data associated with marked 

time steps and removed every other from the dataset.

6.5 Interpolation of Missing Data

Observing the histogram of time gaps between consecutive time steps in Figure 8, 

it is evident that interpolation is also necessary to ensure a desired gap of a quarter of 

a second.  We interpolated data if the gap between two time steps was over half a 

second. For any gap like that, we insert a new time step in the middle of a gap. For  

larger gaps, we inserted more time steps proportionally. 

Figure 9: Distribution of interpolated time steps

On day 1, 87% of pedestrians have less than 10% time steps interpolated and 78% 

on day 2. Distribution of interpolated time steps is visible in Figure 9.
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6.6 Descriptive Statistics

As mentioned, after removing unsuitable pedestrians, there are 7346 and 11907 

pedestrians for day 1 and day 2, respectively. These pedestrians formed 728 groups 

on day 1, and despite an increase of 62% in pedestrian count on day 2, the increase in 

the  number  of  groups  was  marginal,  amounting  to  two  additional  groups.  The 

number of groups per size can be seen in Table 2.

Group Size 2 3 4 5+ All

Day 1 627 73 21 7 728

Day 2 630 82 12 6 730

Table 2: Number of groups per size in DIAMOR dataset

6.6.1 Speed of pedestrians

The average speed of pedestrians is illustrated in Figure 10. Due to the similarities 

of average speeds per group size, we are probably not able to use it for group size 

categorization.
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6.6.2 Density

On average, there are 12 pedestrians at each time step on day 1 and 20 on day 2, 

with standard deviations of 4.7 and 7.4, respectively (Figure 11).

Figure 11: Distribution of pedestrians in time steps

As described in 3.1, one of the key factors influencing the behavior of pedestrians 

and  the  group  shapes  they  form  during  locomotion  is  the  proximal  density  of 

surrounding  pedestrians.  For  lower  densities,  groups  form  “wide”  shapes  in  the 

direction of their locomotion, and only when the density reaches a critical point the 

“long” shapes are preferred.

In  a  study  [28],  where  the  highest  observed  pedestrian  density  reached  4.4 

pedestrians per  square meter,  researchers  identified creations of  river-like or  line 

formation  among  pedestrians.  However,  they  acknowledged  the  difficulty  in 

detecting  such  situations  and  emphasized  the  need  for  further  investigation.  The 

study highlighted that in these instances of high density, the formation of lines could 

potentially  be  attributed  to  individuals  creating  obstacles,  prompting  others  to 

organize themselves into a more compact shape for efficiency.

Regrettably,  even if  we account  for  removed pedestrians from the dataset,  on 

neither day 1 nor 2, densities aren’t high enough to properly test “long” shapes of  

groups. Consequently,  our algorithm will  be constrained to assume that long 

shapes are never anticipated.
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6.6.3 Group Shape Score

For each group from the ground truth provided, we measured the group shape 

score as described in 4.5 to see if the findings from 3.1 are valid for our dataset. As 

mentioned above, we only expect wide shapes with group shape scores above 0.5. 

Generally, a trend of decreasing scores with increasing group size is observed on 

Figure 12. Median values for day 1 are 0.82, 0.71, 0.33, and 0.48 for group sizes of 

2, 3, 4, and 5+, respectively. For day 2, median values are 0.85, 0.81, 0.57, and 0.28 

for the same sizes.

For  sizes  two  and  three  groups  are  forming  mostly  wide  shapes,  as  was 

anticipated. Especially for groups of two pedestrians, we have more than 80% and 

85% of  groups  with  a  group  shape  score  higher  than  0.7  on  day  1  and  day  2, 

respectively.

It  is important to keep in mind that for groups of size four,  we have only 21 

groups on day 1 and 12 groups on day 2. For groups of size five and bigger we have 

less than 10 groups for both days. That is not a big enough sample size to make any 

conclusions, but it needs to be noted that the values are lower than we expected and 

our algorithm might struggle for groups of these sizes. One more notable observation 

is that the biggest groups on day 2 not only were, in general, not wide, but even their 

maximum group shape score was 0.45. Meaning no group from that category could 

be described as “wide”. It is possible that more research in big groups is needed.

Figure 12: Distribution of group shape scores per group sizes
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7 Experiments

In  this  chapter, we  perform experiments  on  our  algorithm  and  previously 

introduced existing solutions for the group detection problem. We properly tested all 

algorithms only on day 1 of the DIAMOR dataset. We identified an anomaly on the 

day 2 part of the dataset, which we will explore in section 7.7.

7.1 Evolutionary Optimization

Our  proposed  algorithm  contains  many  different  parameters  that  need  to  be 

decided on before we can test it. These parameters include a distance threshold, a 

cosine similarity threshold, a shared time threshold, and, for each group size, a group 

score  threshold.  A  straightforward  way  to  optimize  the  solution  would  be  to 

experimentally test  all  combinations of values and decide on the best-performing 

ones. Regrettably, this method is time-inefficient due to the vast number of possible 

values.  Additionally,  each  parameter  is  interdependent  on  others,  resulting  in  a 

complex, multidimensional search space that is challenging to navigate through. To 

address  this  problem,  we  decided  to  utilize  a  hyper-parameter  evolutionary 

algorithm, as mentioned in 4.7, to approximate the best possible values.

7.1.1 Hyper-parameter Optimization for Our Algorithm

We define individuals for the evolutionary algorithm as a vector of parameters of 

our algorithm from 5.1 that we wish to optimize:

1. Distance threshold (thrd) – a number larger than 0,

2. Cosine similarity threshold (t h rsc) – a number between -1 and 1,

3. Time shared threshold (t h rst) – a number between 0 and 1,

4. List of group shape score thresholds (thr gs) – numbers between 0 and 1. 

The values in thr gs are always sorted from the highest to lowest (do not increase 

with size). From the analysis in 6.6.3, this is a valid limitation to use.

To calculate the fitness function for  an individual,  we run  our algorithm with 

parameters held by an individual. This returns a list of detected groups, which we can 
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compare to the ground truth group list by calculating the ARI value 1.4. This ARI 

value is the fitness of an individual. The higher the fitness value of an individual, the 

better the solution is.

Our  algorithm  uses  roulette  wheel  selection [29].  Using  this  selection  the 

probability  of  being  selected  is  proportional  to  the  fitness  of  each  individual, 

mimicking the concept of a roulette wheel in a casino. The probability pi of picking 

individual i is:

pi=
fi tness i

∑
j=0

n

fitnes s j

,

where n is the number of all individuals.

 We used  a  uniform crossover [30].  For  each  variable in  an  individual,  we 

produce a  random boolean – each represents  the parent  from which the variable 

should be taken for the first offspring. The second offspring is built by variables not 

chosen  by  the  first  offspring.  Please  remember  that  shape  score  thresholds  are 

considered to be one variable. Example in Table 3.

distance cosine similarity shared time shape score list

random boolean 0 1 1 0

parent 0 1300 0.4 0.5 [0.5, 0.4, 0.3, 0.2]

parent 1 2000 0.2 0.75 [0.9, 0.8, 0.7, 0.6]

offspring 0 1300 0.2 0.75 [0.5, 0.4, 0.3, 0.2]

offspring 1 2000 0.4 0.5 [0.9, 0.8, 0.7, 0.6]
Table 3: Example of  uniform crossover

For  mutation,  we  chose  to  use  the  Gaussian  mutation [31].  The  Gaussian 

mutation  for  each  variable  separately  adds  a  random  value  generated  from  a 

Gaussian distribution. We mutate every new offspring generated from the crossover 

method, but each variable has a separate  mutation rate – the probability that the 

variable  will  be  changed. Note  that  this  is  the  only  place  where  shape  score 

thresholds behave as separate variables – each value has its own mutation rate.
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The final hyper-parameter searching evolutionary algorithm will look as follows:

ALGORITHM: HYPER-PARAMETER SEARCHING EVOLUTIONARY ALGORITHM

Input: size of population, number of generations, parameters for mutation

Output: Individual with best fitness

1: population  init() //initialize 0-th population with random individuals

2: calculate fitness for each in population

3: for i = 0 to number of generations:

4: parents  population

5: new_offspring  []

6: while parents not empty:

7: parent_0, parent_1  randomly pop two individuals from parents

8: offspring  crossover(parent_0, parent_1)  //produces two

9: new_offspring  new_offspring + offspring

10: end

11: for individual in new_offspring:

12: mutate(individual)

13: fittness(individual)

14: end

15: population  select(population, new_offspring)

16: end

17: return max(population) //best individual from last population

We run EA with these parameters for all experiments on our dataset:

 population = 40,

 number of generations = 60,

 mutation rates for:

o distance threshold = 0.15,

o cosine similarity threshold = 0.15,

o shared time threshold = 0.1

o each value in the group shape score threshold = 0.1.
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7.2 Validation

To validate the results, we use k-fold Cross-Validation with k = 4. This means we 

perform four iterations (folds). Each iteration involves using 75% of the pedestrians 

in the dataset for training purposes, and the remaining 25% is reserved for testing the 

optimal model identified during the training phase. The order of pedestrians is based 

on the time of their first appearance in the dataset. For the first iteration, the first 

quarter of pedestrians is used as a testing set. For the second iteration, the second 

quarter, and so on. It is a common practice to shuffle the data as a pre-processing 

step, but in the context of our task and dataset, shuffling is not appropriate due to 

linear nature of the data. Results will be added and averaged to calculate the total  

success rate.

7.3 Performance of Our Algorithm

The best results for each fold were as follows:

 For k = 1, thrd = 1320, thr sc = 0.31, thr st = 0.29, thr gs = [0.34, 0.15, 0.06, 

0], ARI = 0.925.

 For k = 2, thrd = 1320, thr sc = 0.21, thr st = 0.29, thr gs = [0.34, 0.29, 0.18, 

0.04], ARI = 0.837.

 For k = 3, thrd = 1280, thr sc = 0.16, thr st = 0.26, thr gs = [0.35, 0.27, 0.02, 

0], ARI = 0.894. 

 For k = 4, thrd = 1322, thr sc = 0.28, thr st = 0.29, thr gs = [0.34, 0.15, 0.06, 

0.04], ARI = 0.919.

The average across all ARI results of 0.925, 0.837, 0.894, and 0.919 is 0.894. The 

results for all folds appear to be consistent, except for the second fold, with a score 

lower by ~0.06 than the average. 

To interpret  the results,  we combined all  four test  results  together,  and in the 

following two sections, we will analyze the data.
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7.3.1 Correctly Detected Groups by Group Size

Group size 2 3 4 5+ All

Number of groups 627 73 21 7 728

Detected 585 50 11 2 648

Table 4: Number of detected ground truth groups for our algorithm

Table 4 and  Figure 13 illustrates a percentage of successfully detected groups 

compared to ground truth data categorized by group size. We can observe a decrease 

in success rate with the increase in group size – from 93.3% for groups of size two 

down to 28.6% for groups of size five and bigger. 

For groups of two, we have a high success rate and a large sample size – detecting 

585 groups and failing to detect only 42. Groups consisting only of two pedestrians 

have the easiest dynamics, therefore they are more easily predicted. In larger groups, 

the  predictability  could  be  problematic.  Individuals  in  bigger  groups  can 

momentarily  pause,  disengage  from  the  group,  or  alter  their  trajectory,  thereby 

inducing changes to the overall group shape score.

Due to the small number of groups of size five or bigger, it is not possible to 

conclude with  a  high degree  of  certainty  whether  our  algorithm is  ineffective  at  

detecting  bigger  groups  or  if  these  results  are  influenced  by  chance.  However, 

considering the decrease in performance even for groups of three, it is likely that our 

algorithm is not well suited for the detection of large groups.
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7.3.2 False Positives by Group Size

We can gain interesting insights  when we take a  look at  the number of  false 

positives detected by our algorithm. We differentiate between a fully false positive 

group and a partially correct one. A group G can be partially correct for two reasons. 

Either  G⊂ Gt for some ground truth group  G t. Or the other way around,  G t ⊂ G. 

This means, that either algorithm omitted some pedestrians in the detected group or 

added some that do not belong to the group.

Group size 2 3 4 5+ All

Number of false positives 86 27 5 0 118

Table 5: Number of false positives for our algorithm

As seen in Table 5 and Figure 14, the highest number of false positives are in the 

first category for the groups of size two – 86 groups were incorrectly detected and 

40% of them are partially correct. Out of 27 false positives for groups of size three, 9 

of them are groups of size four or bigger that are missing one or more pedestrians. 

Since our algorithm failed to detect 15 groups of size four or bigger, this implies that 

60% were detected as groups of size three.
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7.4 Performance of Time–sequence DBSCAN

Time-sequence DBSCAN is easier to test as it requires only two parameters – 

epsilon and coexisting time ratio threshold (CTR). We used the same 4-fold cross-

validation as with our algorithm. In this case, due to the small number of parameters, 

we didn’t use an evolutionary algorithm, but we chose to search the parameter space 

for  the  correct  configuration.  We limited  ourselves  to  a  search  space  of  epsilon 

values ranging from 1100 to 1500, incrementally examined at intervals of 50. From 

our additional testing, it was clear that epsilon below 1100 and above 1500 was not 

optimal. The dataset’s positions of pedestrians are in millimeters, so a change of 50 

equals a change of 5 cm. CTR ranges from 0 to 1, and we tested it from 0.2 to 0.95, 

with intervals of 0.05.

The best results for each fold were as follows:

 For k = 1, epsilon = 1250, CTR = 0.4, ARI = 0.899,

 For k = 2, epsilon = 1200, CTR = 0.3, ARI = 0.835,

 For k = 3, epsilon = 1450, CTR = 0.6, ARI = 0.890,

 For k = 4, epsilon = 1250, CTR = 0.4, ARI = 0.889.

The average across all ARI results is 0.878. The performance is only marginally 

worse than that of our algorithm. Again, we can see consistent results, with the only 

deviation being the second fold, the result of which is way lower than the others.
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7.4.1 Results by Group Size

Group size 2 3 4 5+ All

Number of groups 627 73 21 7 728

Detected 579 48 10 2 639

Table 6: Number of detected ground truth groups for Time-Sequence DBSCAN

Time-sequence DBSCAN’s performance is very similar to that of our algorithm, 

even when looking at the success rate per group’s size (Figure 15 and Table 6). 

The number of detected groups of size two is almost the same. Our algorithm was 

able to detect 93.3% of groups of size two versus 92.3% detected by Time-sequence 

DBSCAN – a difference of one percentage point equals to 6 more groups. Groups of 

sizes three and four have bigger differences but looking at the absolute numbers, our 

algorithm detected two more groups of size three and one more group of size 4. The 

result for the groups of the biggest size is the same.

7.4.2 Incorrectly Detected Groups by Group Size

Compared to  our  algorithm,  Time-sequence  DBSCAN detected  19  more  false 

positive groups. The partially correct percentages are around the same levels. Unlike 

our algorithm, we also see false positives in the biggest category, and all three of 

them are partially correct (Figure 16 and Table 7).
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Group size 2 3 4 5+ All

Number of false positives 100 29 5 3 137

Table 7: Number of false positives for Time-Sequence DBSCAN

7.5 Performance Agglomerative Hierarchical Clustering

For testing of AHC we used the same technique as for Time-sequence DBSCAN. 

Distance  threshold  Γ d ranged  from  1000  to  1600  in  intervals  of  100.  Velocity 

threshold  Γ v ranged  from  80  to  170  in  intervals  of  10.  Time  coexistence  ratio 

threshold  Γ t ranged from 16 to 32 in intervals of 4.  The best results for each fold 

were as follows:

 For k = 1, Γ d = 1300, Γ v = 130, Γ t = 20, ARI = 0.856,

 For k = 2, Γ d = 1200, Γ v = 160, Γ t = 20, ARI = 0.836,

 For k = 3, Γ d = 1200, Γ v = 160, Γ t = 20, ARI = 0.859,

 For k = 4, Γ d = 1200, Γ v = 140, Γ t = 20, ARI = 0.856.

The average ARI for all folds is 0.852.

44

Figure 16: Distribution of false positives per group size for Time-Sequence 
DBSCAN



7.5.1 Results by Group Size

Figure 17: Distribution of ground truth groups for AHC

This time, there are more differences in the results to observe than between Time-

Sequence DBSCAN and our algorithm. The result ARI of 0.852 is  worse than our 

algorithm’s (0.894) and Time-sequence DBSCAN’s (0.878).

Group size 2 3 4 5+ All

Number of groups 627 73 21 7 728

Detected 589 16 1 0 606

Table 8: Number of detected ground truth groups for AHC

The AHC detected 93.9% of groups of size two, which is even better than what 

our algorithm was able to achieve (93.3%). Unfortunately, for all the other group 

sizes, the performance degraded significantly. Only 21.9% of groups of size three, 

and almost no detected groups of sizes beyond that (Figure 17 and Table 8). 

It is not entirely clear why this is happening. One of the possible explanations 

could be, that the condition for graph tightness (see 2.2.1) is too strict – for an edge 

to exist in the graph, it is required for two people to have a common velocity vector  

and distance at the same time – this might turn out to be challenging for pedestrians 

that are walking on the opposite ends of the group, and therefore might result in 

algorithm prioritizing smaller groups.
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False positives support this theory with a very high number of partially correct 

false positives. There are 179 false positives of size two, and 57 of them are size 

three, missing one person. Out of 17 false positives of size three, 7 are groups of size 

four missing one person. 

Figure 18: Distribution of false positives for AHC

Group size 2 3 4 5+ All

Number of false positives 179 17 2 0 198

Table 9: Number of false positives for AHC

7.6 Comparison of All Algorithms

Let’s look at the results of all three algorithms together. Our algorithm was the 

most successful in detecting groups, with 648 groups from ground truth detected. 

Time-Sequence DBSCAN had only 9 less, and the last was AHC with 606 groups 

(Table 10).

Looking at the false positives, the order is exactly the same. The best was our 

algorithm with 118 false positives. Time-Sequence DBSCAN had 19 more and AHC 

performed much worse with 198 false positives (Table 11).

We are satisfied with the performance of our algorithm. The number of detected 

ground  truth  groups  was  very  similar  to  the  Time-Sequence  DBSCAN,  and  the 

difference in score was mostly driven by having 14% fewer false positives.
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Group size 2 3 4 5+ All

Our Algorithm 585 50 11 2 648

Time-Sequence DBSCAN 579 48 10 2 639

AHC 589 16 1 0 606

Table 10: Number of detected ground truth groups for each algorithm

Group size 2 3 4 5+ All

Our Algorithm 86 27 5 0 118

Time-Sequence DBSCAN 100 29 5 3 137

AHC 179 17 2 0 198

Table 11: Number of false positives for each algorithm

7.7 Investigation of Results for Day 2 

We started to perform the same experiments as in previous sections on day 2 part 

of the dataset. During the testing, we noticed that the results were widely different, 

which prompted us to investigate if there might be a problem with the dataset for day 

2.

Figure 19: Performance of AHC per time coexistence threshold for day 1 and day 2, distance threshold = 2100, 
velocity threshold = 150

On a  Figure 19, we can see the performance of the AHC algorithm when the 

distance (Γ d)  and velocity (Γ v)  thresholds are fixed and only the time coexistence 

threshold  Γ t is changing. The AHC algorithm is improving remarkably for day 2 
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compared to day 1 and for completely different values of time coexistence threshold. 

The  highest  ARI  for  this  setup  was  around  0.92.  The  tests  we  tried  on  Time-

Sequence  DBSCAN  and  our  algorithm  had  the  opposite  result  –  performance 

decreased. Our algorithm’s ARI dropped to around 0.76. This change is beyond what 

we would consider normal behavior. 

We tried the performance of our algorithm by taking the best parameters for both 

day 1 and day 2 – without proper cross-validation, a simple experiment with the 

whole day being used for both training and testing. For day 1 we detected 653 out of 

728 groups from ground truth, and for day 2 we detected 641 out of 730 groups. This 

indicates that the lower performance on day 2 is not caused by the inability to detect 

true positives but rather by detecting too many false positives. 

We collected false positives from both experiments and in  Figure 20,  we can 

observe a distribution of these groups by the length of the whole group (number of 

unique time steps the group covers). After 50 time steps, the distributions are similar.  

The major difference is with groups that have 50 or fewer time steps. On its own, this 

does not prove anything – it is possible that day 2 has many groups with shorter 

trajectories that we are falsely detecting.
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As a next step, we wanted to see what ground truth groups look like – for this, we 

don’t need to run any algorithm. We collected all 728 and 730 ground truth groups 

for day 1 and day 2, respectively. Once again we can see in Figure 21 the distribution 

of these groups by length. We see two different distributions. Day 1 has two clearly 

defined peaks – one around the length of 55 and the other around the length of 175. 

In contrast, day 2 looks like the Gaussian distribution with a single peak around the 

length of 180. This is strange and should not happen when all data come from the 

same place, two days apart. 

In the Figure 22, we displayed all trajectories from ground truth groups for day 1 

and day 2, as well as false positives produced by our algorithm. All points in the 

figure are transparent (alpha = 0.3). From the picture for the first day, it is clear that  

almost  all  ground truth  groups of  length  less  than 100 are  walking in  a  vertical 

corridor that is on the left side – this makes sense as the horizontal corridor is much 

longer and most likely takes more than 100 time steps (~25 seconds) to walk through 

it. This also explains why we have seen two peaks in the distribution for the first day 

– one for people crossing the vertical corridor and one for the horizontal corridor. 

It  is  hard to believe that  on the second day, there wouldn't  be a single group 

walking  in  the  vertical  corridor  with  how  many  groups  were  detected  by  our 
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algorithm. The only reasonable conclusion is that the data for the second day are 

incorrect (incomplete), and we cannot judge accurately the results created from this 

day. Given these observations, for the rest of this thesis,  we will only use the first 

day for our experiments.

Figure 22: Trajectories with length of <100, separately for ground truth groups of day 1 and day 2, and false 
positives of day 2 from our algorithm

The last thing that needs explanation is why the AHC did not lose performance 

during testing on the second day. The opposite happened – its performance increased 

significantly. AHC uses graph tightness as a decider if two groups (represented by a 

graph) can be merged. The edge between persons i and j exists if ρij=∑
t

δt ( i , j )>Γt 

(for details see [2]). Instead of the percentage of time steps that  i and j are "close" 

together, AHC uses a constant number. When we set Γ t=100, what happens is that 

any two trajectories shorter than 100 time steps cannot have an edge between each 

50



other – and will  only decrease graph tightness.  This virtually removes all  groups 

shorter than Γ t . 

For day 1, the performance started dropping around Γ t=22 as one would expect 

because  short  groups  will  never  be  detected.  But  the  test  on the  day 2  behaved 

completely differently – instead of performance dropping around the same value, the 

performance kept increasing until Γ t=88. Looking back at the Figure 21, we can see 

that the shortest ground truth groups on day 2 are around 95 time steps long. AHC 

was "lucky" that it worked in this way, and it completely removed all the groups 

missing from the ground truth for high enough  Γ t while there were enough long 

groups that AHC was still able to detect.

51



8 Group Shape Score Validator

During the analysis of the DIAMOR dataset in  6.6.3, we noticed how well our 

expectations from group shape analysis aligned with the actual group shape scores of 

ground truth groups of sizes two and three.  This led to the idea that group shape 

scores  could  be  helpful  as  validation  at  the  end  of  any  algorithm that  produces 

detected groups. This process might not help with producing groups, but removing 

false positives is valuable and increases the overall quality of algorithms. Validation 

will be done only for group sizes two and three due to the small sample size for 

bigger groups.

For both sizes, we will define a threshold that every group of that size needs to 

pass to be included in the final detected groups. This is how validation is going to 

work: 

ALGORITHM: GROUP SHAPE SCORE VALIDATOR

Input: detected group G, group shape score thresholds thr gs

Output: filtered detected groups G'

1: G'   {}

2: for G i in G:

3: size  |Gi| // if size > 3, for purposes of this thesis, add group to  G'

5: if thr gs [size ]<Gs(G i): 

6: G' .add(G i) 

7: end

8: end

9: return G'

8.1 Thresholds Selection

We used k-fold cross-validation for testing the unmodified datasets, and we will 

use a similar approach for testing the validator. Just like before, we will use 4 folds 

for all experiments.
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For each fold, we will first analyze group shape scores of groups in the training 

part. The validator should maximize the number of removed false positives while 

concurrently minimizing the number of removed true positives. It seems appropriate 

that thresholds should be set so that most, if not all, ground truth groups from the 

training dataset would pass validation. The extra parameter that will  be added to 

Time-sequence DBSCAN and AHC is percentile. This parameter decides values for 

thr gs=[th r2 , thr3].  For  the  nth percentile,  thresholds  will  be  set  to  the  the  nth 

percentile of all group shape scores from a training set of groups of size two and 

three, separately.

In the following sections, we tested different percentiles, ranging from the 0 th to 

the 7th percentile.

8.2 Time-Sequence DBSCAN with Validator

We  followed  the  same  process  as  in  previous  experiments.  We  tested  all 

combinations of epsilon – ranged from 1100 to 1500, examined at intervals of 50,  

and  CTR  –  ranged  from  0.2  to  0.95,  with  intervals  of  0.05.  Now  with  extra 

combinations for percentile – whole numbers ranged from 0 to 7.

The best results for each fold were as follows:

 For k = 1, percentile = 3, epsilon = 1200, CTR = 0.30, ARI = 0.925,

 For k = 2, percentile = 6, epsilon = 1150, CTR = 0.25, ARI = 0.844,

 For k = 3, percentile = 1, epsilon = 1450, CTR = 0.60, ARI = 0.890,

 For k = 4, percentile = 2, epsilon = 1500, CTR = 0.50, ARI = 0.902.

The total  result  for  this  method is  0.890.  That  is  an improvement from  0.878 

which Time-Sequence DBSCAN achieved without validation.
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Figure 23: Distribution of ground truth groups for Time-Sequence DBSCAN

Group size 2 3 4 5+ All

Detected (original) 579 48 10 2 639

Detected (with validator) 568 49 11 2 630

Table 12: Number of detected ground truth groups for Time-Sequence DBSCAN with validator

The number of detected ground truth groups of size two decreased. This is not an 

unexpected result. Ground truth groups with low group shape scores will cause the 

validator to remove them from the detected groups. For groups of size three, we see 

the counterintuitive results – the number of detected ground truth groups increased 

by 1. This can happen due to the fact that the other constraints can be lowered (by 

increasing epsilon or decreasing CTR).  In total, the number of detected ground truth 

groups with validator was lower by 9.
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Figure 24: Distribution of false positives for Time-Sequence DBSCAN with validator

Group size 2 3 4 5+ All

Number of false positives (original) 100 29 5 3 137

Number of false positives (with validator) 72 29 6 3 110

Table 13: Number of false positives for Time-Sequence DBSCAN with validator

False positives have similar results. The number of false positives for size two 

lowered by 28, which we hoped to happen, and the number of false positives for size 

three did not change.

8.3 Agglomerative Hierarchical Clustering with Validator

We followed the same process as in previous experiments. Distance threshold Γ d 

ranged from 1000 to 1600 in intervals of 100, velocity threshold Γ v ranged from 80 

to 170, in intervals of 10, and time coexistence ratio threshold Γ t ranged from 16 to 

32 in intervals of 4. Like for Time-Sequence, the percentile is ranging from 0 to 7.

The best results for each fold were as follows:

• For k = 1, percentile = 5, Γ d = 1300, Γ v = 120, Γ t = 16, ARI = 0.881,

• For k = 2, percentile = 4, Γ d = 1200, Γ v = 160, Γ t = 20, ARI = 0.828,

• For k = 3, percentile = 4, Γ d = 1300, Γ v = 130, Γ t = 20, ARI = 0.864,
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• For k = 4, percentile = 3, Γ d = 1300, Γ v = 130, Γ t = 20, ARI = 0.880.

The result for AHC with validation is  0.863.  This is an improvement from  0.856 

without validation. 

Figure 25: Distribution of ground truth groups for AHC with the validator

Group size 2 3 4 5+ All

Detected (original) 589 16 1 0 606

Detected (with validator) 580 20 2 0 602

Table 14: Number of detected ground truth groups for AHC with the validator

The  number  of  detected  groups  decreased  only  marginally,  from  606  groups 

without  the  validator  to  602  with  validator.  We  see  similar  effect  as  for  Time-

Sequence DBSCAN – for groups of size two there is a decrease as expected but on 

the other hand, for groups of size three there is an increase. We assume the reason is 

the same as for Time-Sequence DBSCAN.
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Figure 26: Distribution of false positives for AHC with the validator

Group size 2 3 4 5+ All

Number of false positives 179 17 2 0 198

Number of false positives (with validator) 130 16 3 0 149

Table 15: Number of false positives for AHC with the validator

We see a nice decrease in false positives from 198 without a validator to 149 with 

the validator. The number of false positives of size two is 49. For groups of size 

three, the difference is only 1 group.

Regrettably, the validator also removed a lot of false positives that were partially 

correct. Before applying validator, the AHC detected 90 partially correct groups of 

size two and after applying validator, there were 71. This might be the reason why 

ARI did improve less than we would expect. AHC’s strong preference for groups of 

two  goes  against  the  validator  because  a  group  of  size  two  is  compared  to  the 

threshold we would expect from a group of size two. The validator makes a binary 

choice whether to keep the group or not. For groups of size two that are in reality  

groups of size three or bigger, this threshold is too strict, and therefore many get  

discarded in the process.
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9 Dataset Modification

When running experiments, we noticed our dataset was not as robust or variable 

as we would like. By the nature of the task, it is hard to get a dataset that has time 

steps with a high density of people and also includes a ground truth that can be fully  

trusted – the higher the density, the harder it is for human annotators to be able to 

recognize social groups.

 There are datasets capturing busy locations that have thousands of people moving 

through in minutes, but for these, it is almost impossible to truly say if people are  

walking together or not. It would probably require a highly controlled environment 

with auditors at every entry and exit point to confidently create a dataset with ground 

truth about social groups.

This chapter introduces a method of modifying datasets that could be beneficial 

when  algorithms  exhibit  very  similar  performance.  Ultimately,  we  will  test  our 

algorithms on a modified DIAMOR dataset.

9.1 Increasing Inner Group Distances

The aim of this modification is to increase the distance between pedestrians inside 

the groups while changing anything else as little as possible. The idea behind this 

modification is that if we increase the distance between pedestrians inside groups 

(based on the ground truth that we have) while other pedestrians are unchanged, we 

will somewhat simulate a higher density of a crowd. 

For each group, we calculate the group member’s general position relative to the 

group’s centroid – for this, we need some approximation of the general shape of the 

group. Based on our testing, it turns out that the group’s shape at the middle time 

step of the group’s existence in the dataset is a good approximation for this dataset. 

We calculate the centroid (4.5.2) of each group at the time step we selected for that 

group.

For each group member, we calculate a displacement vector from the centroid to 

that member. The new position of each group member is given by adding the scaled 

displacement vector to the centroid. We do that for every time step – essentially 
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making a constant shift across the whole trajectory. Example for one time step in 

Figure 27.

The  scale  of  the  displacement  vector  will  be  the  parameter  we will  focus  on 

during testing. A scale of 1.5 represents an increase in distance from pedestrians to 

centroid by 50%. 

Remember that the calculation of the displacement vector is done for one time 

step, and used for all time steps. That makes this modification a constant shift for 

pedestrians  in  groups,  and  therefore,  this  modification  does  not  change  the 

correlation of movement.

9.1.1 Testing Process

This time, instead of doing proper k-fold cross-validation, we will perform both 

training and testing on the whole dataset. We are looking for trends – how much the 

performance decreases with increasing inner group distance. We chose to omit the 

cross-validation due to time constraints. The decision to streamline the testing may 

limit  the  precision  of  results,  but  the  chosen  approach  should  be  adequate  to 

understand trends caused by our modification. 

For all algorithms, we tested the performance for  scale = 1 (no change), 1.5, 2, 

and 2.5,  where  scale =  1 is  used as  a  baseline for  comparison to  an unchanged 

dataset. Previous experiments used scale = 1 by default with k-fold cross-validation. 

Please  note  that  results  without  k-fold  validation  might  differ  from  these. 

Experiments for Time-sequence DBSCAN and AHC will also include group shape 
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validation for each test.  For a detailed analysis of results,  we are going to focus 

purely on scale = 2, as we believe it provides significant, yet hopefully still realistic, 

change to the dataset. 

9.2 Performance of Our Algorithm

Again, we run the evolutionary algorithm to search for the best parameters. These 

are the best-performing parameters for each stretch:

 For scale = 1, thrd = 1317, thr sc = 0.35, thr st = 0.30, thr gs = [0.32, 0.17, 

0.08, 0.06], ARI = 0.902,

 For scale = 1.5, thrd = 1841, thr sc = 0.27, thr st = 0.29, thr gs = [0.55, 0.49, 

0.39, 0.34], ARI = 0.857,

 For scale = 2, thrd = 2533, thr sc = 0.72, thr st = 0.35, thr gs = [0.56, 0.56, 

0.46, 0.26], ARI = 0.811,

 For scale = 2.5, thrd = 3272, thr sc = 0.68, thr st = 0.52, thr gs = [0.59, 0.56, 

0.50, 0.31], ARI = 0.768.

As  expected,  the  performance  is  dropping  with  each  increase  of  scale  as 

pedestrians that are part of some group are getting closer to other pedestrians. We 

can observe how the algorithm was forced to use an increased distance threshold thrd 

and, starting from scale = 1.5, how the shape thresholds thr gs increased. The number 

of false positives was likely too high (due to pedestrians being closer to each other),  

and it  was  more  beneficial  to  have higher  thresholds  that  would lower  the  false 

positives than to allow more people to create groups. 

Another  interesting  change  is  visible  on  thr sc,  which  for  scale  =  2  and  2.5 

increased from around 0.3 to around 0.7. The similarity of movement did not change, 

so  it  makes  sense  that  cosine  similarity  would  be  more  useful  as  the  distances 

increased.

9.2.1 Results by Group Size

As mentioned earlier, our primary focus is scale = 2. When compared to scale = 1, 

the number of detected ground truth groups dropped for all group sizes except the 

biggest  groups,  which  stayed  the  same.  For  groups  of  size  two,  the  number  of 

detected ground truth groups dropped from 587 to 501. For groups of size three, the 
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drop was from 53 to 42. The biggest drop by a percentage was for groups of size four 

– from 57.1% to just 19%.

Figure 28: Distribution of ground truth groups for our algorithm, scale = 2

Group size 2 3 4 5+ All

Detected (scale = 1) 587 53 12 2 728

Detected (scale = 2) 501 42 4 2 606

Table 16: Number of detected ground truth groups per group size for our algorithm, scale comparison

The  biggest  difference  between  these  two  scales  is  in  the  number  of  false 

positives.  For  scale =  2,  the  number  of  false  positives  increased  by  73%.  The 

increase in false positives is  happening for  all  group sizes,  and even the biggest  

groups are now falsely detected.

Group size 2 3 4 5+ All

False positives (scale = 1) 80 28 5 0 113

False positives (scale = 2) 131 42 10 12 195

Table 17: Number of false positives per group size for our algorithm, scale comparison
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9.3 Performance of Time-Sequence DBSCAN

The epsilon parameter of Time-Sequence DBSCAN was tested in different ranges 

for each scale. The tested ranges were, in our opinion, adequate, and lower or higher 

values did not provide any additional benefit. Epsilon was tested in increments of 

100. The range for CTR was the same as in previous experiments – range between 

0.2  and  0.95,  with  intervals  of  0.05.  For  tests  with  group  shape  validation,  the 

percentile ranged from 0 to 10, whole numbers only.

The best results for each scale:

 For scale = 1, epsilon = 1200, CTR = 0.30, ARI = 0.886,

 For scale = 1.5, epsilon = 1700, CTR = 0.60, ARI = 0.824,

 For scale = 2, epsilon = 2700, CTR = 0.80, ARI = 0.787,

 For scale = 2.5, epsilon = 3400, CTR = 0.85, ARI = 0.749.

And with group shape score validation:

 For scale = 1, percentile = 2, epsilon = 1200, CTR = 0.30, ARI = 0.899,

 For scale = 1.5, percentile = 5, epsilon = 1700, CTR = 0.50, ARI = 0.845,

 For scale = 2, percentile = 7, epsilon = 2700, CTR = 0.65, ARI = 0.811,

 For scale = 2.5, percentile = 7, epsilon = 3700, CTR = 0.80, ARI = 0.792.
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We see similar results as for our algorithm. The performance drops with each 

increase in scale, and epsilon is forced to increase. The CTR increases with scale as 

it tries to offset the higher epsilon. The same happens with percentile, which removes 

more false positives with a larger scale.

With the validator, the performance for scale = 2 was the same as the performance 

of our algorithm, and for  scale = 2.5, it  even surpassed our algorithm (0.792 vs. 

0.768).

9.3.1 Comparison of Results With and Without Validator

Our  primary  interest  lies  in  how  the  performance  changed  between  Time-

Sequence with and without the group shape score validator. These are the results for 

scale = 2.

Group size 2 3 4 5+ All

Detected 510 41 7 2 560

Detected (with validator) 488 45 8 3 544

Table 18: Number of detected ground truth groups for Time-Sequence DBSCAN, scale = 2

For groups of size two, without the validator, Time-Sequence DBSCAN detected 

71% more false positives than with the validator. For other sizes, the false positives 

increased. With the validator, we have 16 more false positives of size three. This 

happens because CTR declined from 0.8 without a validator to 0.6 with a validator. 

Validator provides a way how to remove wrongly detected groups, and in response, 

the CTR can be lowered to allow more groups to be detected. 

Group size 2 3 4 5+ All

Number of false positives 142 36 9 4 191

Number of false positives (with validator) 83 52 16 15 166

Table 19: Number of false positives per group size for Time-Sequence DBSCAN, scale = 2

9.4 Performance of Agglomerative Hierarchical Clustering

Now,  let’s  examine  the  performance  of  AHC.  The  AHC algorithm has  three 

parameters.  As  mentioned  earlier,  we  are  interested  in  trends  caused  by  our 

modification.  To  streamline  the  testing,  we  locked  the  Γ t parameter  to  22.  The 
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distance threshold was tested in ranges appropriate for the scale, in intervals of 100, 

and the velocity threshold in a range from 60 to 150, in intervals of 10. For tests with 

group shape validation, the percentile ranged from 0 to 10, whole numbers only.

The best results for each scale:

 For scale = 1, Γ d = 1300, Γ v = 130, ARI = 0.860,

 For scale = 1.5, Γ d = 1700, Γ v = 110, ARI = 0.770,

 For scale = 2, Γ d = 2100, Γ v = 100, ARI = 0.671,

 For scale = 2.5, Γ d = 2800, Γ v = 80, ARI = 0.588.

And with group shape score validation:

 For scale = 1, percentile = 2, Γ d = 1300, Γ v = 130, ARI = 0.869,

 For scale = 1.5, percentile = 5, Γ d = 1700, Γ v = 120, ARI = 0.800,

 For scale = 2, percentile = 7, Γ d = 2700, Γ v = 120, ARI = 0.757,

 For scale = 2.5, percentile = 7, Γ d = 3300, Γ v = 100, ARI = 0.722.

The AHC performance decreases with scale the most. For original data, the ARI 

is  0.860,  which  goes  down to  0.588 for  scale =  2.5.  The  validator  seems to  be 

providing a significant boost. For scale = 2 ARI improves from 0.671 to 0.757 and 

for scale = 2.5 ARI improves from 0.588 to 0.722.

9.4.1 Comparison of Results With and Without Validator

Once again, we will highlight the performance changes between AHC with and 

without the group shape score validator. These are the results for scale = 2.

Group size 2 3 4 5+ All

Detected 486 3 0 0 489

Detected (with validator) 481 12 0 0 493

Table 20: Number of detected ground truth groups for AHC, scale = 2

Like in previous experiments on AHC, we see that it was relatively effective in 

detecting groups of  size  two and ineffective  for  any other  sizes.  The number  of 

detected groups from ground truth is almost the same. The decreased number of false 
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positives is the main factor in increased ARI – from 311 without the validator to 214 

with the validator.

Group size 2 3 4 5+ All

Number of false positives 287 19 5 0 311

Number of false positives (with validator) 140 54 16 4 214

Table 21: Number of false positives per group size for AHC, scale = 2

9.5 Summary of All Algorithms

Our algorithm had the  best  ARI  when compared to  the  other  two algorithms 

without  the  group  shape  score  validator.  With  the  validator,  Time-Sequence 

DBSCAN had  the  same  ARI.  It  seems  like  our  validator  could  be  useful  when 

applied  to  algorithms  that  are  tested  on  datasets  with  lower  distances  between 

pedestrians, but more testing needs to be done.

In the following tables, you will find a summary of all algorithms and their results  

for scale = 2.

ARI

Our Algorithm 0.811

Time-Sequence DBSCAN original 0.787

with validator 0.811

AHC original 0.671

with validator 0.757

Table 22: ARI for all algorithms, scale = 2

Detection of ground truth groups:

Group size 2 3 4 5+ All

Our Algorithm 501 42 4 2 549

Time-Sequence DBSCAN original 510 41 7 2 560

with validator 488 45 8 3 544

AHC original 486 3 0 0 489

with validator 481 12 0 0 493

Table 23: Number of detected ground truth groups per group size for all algorithms, scale = 2
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False positives:

Group size 2 3 4 5+ All

Our Algorithm 131 42 10 12 195

Time-Sequence DBSCAN original 142 36 9 4 191

with validator 83 52 16 15 166

AHC original 287 19 5 0 311

with validator 140 54 16 4 214

Table 24: Number of false positives per group size for all algorithms, scale = 2
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10 Conclusion

In  this  thesis,  we  systematically  analyzed  group  crowd behavior,  focusing  on 

characteristics  like  group  shape,  distance,  and  size  from  a  sociological  angle. 

Drawing upon these insights, we developed an algorithm dedicated to solving the 

group detection problem. This proposed solution introduces a group shape score, a 

measure used to evaluate a group’s shape according to positioning and movement 

direction, and employs this measure as a decisive factor in determining the validity 

of groups.

The  evaluation  process  involved  a  comparative  analysis  against  two  existing 

solutions  —  Time-sequence  DBSCAN  [1] and  Agglomerative  Hierarchical 

Clustering with Hausdorff Distance [2]. We utilized the DIAMOR dataset [3] for this 

comparison. In this testing, our algorithm was consistently better, which was mainly 

driven by avoidance of false positives, having 14% fewer false positives than Time-

sequence DBSCAN and 40% fewer than Agglomerative Hierarchical Clustering.

We also introduced a validator as a possible addition to post-processing methods 

in group detection algorithms. This validator uses a similar approach to our proposed 

algorithm in scoring group shape and using it as a measure to verify existing group 

classifications. Its main contribution is eradicating false positive classifications from 

the  results.  Through testing,  the validator demonstrated that  it  could improve the 

performance  of  both  Time-sequence  DBSCAN  and  Agglomerative  Hierarchical 

Clustering on the DIAMOR dataset.

In order to properly test all aspects of proposed algorithm and validator, it would 

be beneficial to have a robust dataset exhibiting wide range of complex patterns for 

training and testing purposes. One example of such pattern is higher inner group 

distance. Regrettably, to create or obtain such a dataset is truly challenging. Due to 

this, we introduced a dataset modification in order to harden the conditions for group 

detection –  widening distances  between members  of  the  group.  As a  result,  this  

created a bigger gap between the performance of the algorithms. Our group shape 

validator  has  proven  effective  when  used  on  a  modified  dataset  improving  both 

Time-DBSCAN  and  Agglomerative  Hierarchical  Clustering  on  the  DIAMOR 
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dataset. More dataset modifications could be created and tested. This represents wide 

and open area for reaseach. 

In  future  work,  we  would  like  to  explore  using  data  featuring  higher-density 

situations or more obstacles, offering opportunities to observe different group shapes. 

Furthermore,  there  is  a  potential  to  enhance  our  algorithm  by  considering  the 

incorporation  of  visual  information  like  video  footage  and  exploring  aspects  of 

human interactions such as hand gestures, head movements, or eye contact.

At the end of this thesis, we express the hope that our work contributes valuable 

insights and offers potential avenues for improvement within the field.
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List of Abbreviations

AHC – Agglomerative Hierarchical Clustering

ARI – Adjusted Rand Index

BFS – Breadth-First Search

CTR – Coexisting Time Ratio

DBSCAN – Density-Based Spatial Clustering of Applications with Noise

EA – Evolutionary Algorithm

PCA – Principal Component Analysis
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