
MASTER THESIS

Filip Jurčák

Material picker: Material recognition in
images using machine learning

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the master thesis: Mgr. Petr Vévoda
Study programme: Computer Science - Artificial

Intelligence
Study branch: Machine learning

Prague 2023

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

ii

I would like to sincerely thank my supervisor for everything he had done for me
throughout the whole thesis, and there was a lot.
I would also like to thank my girlfriend Eďa for always pushing me to strive to
be my best self and always being by my side.

iii

iv

Title: Material picker: Material recognition in images using machine learning

Author: Filip Jurčák

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: Mgr. Petr Vévoda, Department of Software and Computer Science
Education

Abstract: The process of setting material properties for realistic appearance
after rendering is usually tiresome and often requires carefully crafted skill for
fine-tuning the parameters, as different combinations of these parameters can
produce different-looking materials. To simplify this process, we introduce a
solution to the texture transfer problem by creating a pipeline containing several
deep neural networks. These networks subsequently represent solutions to inverse
rendering and material segmentation by predicting intrinsic scene characteristics,
like diffuse and specular albedo, surface normals, glossiness, view vector, texture
coordinates, and segmentation, all from a single image. Artists can subsequently
plug these inferenced properties inside their 3D scene representations and thus
reduce the time needed to iterate over several design ideas. To train these
networks, we generated high-quality dataset of substantial size using physically-
based techniques to ensure good generalization on real-world images.

Keywords: inverse rendering, texture extraction, material recognition,
deep learning, material segmentation

v

vi

Contents

Introduction 3

1 Problem statement 5
1.1 Our goal . 5
1.2 Terminology and methods used in rendering 5

1.2.1 Rendering . 5
1.2.2 Bidirectional Reflectance Distribution Function 6
1.2.3 Reflection equation . 7
1.2.4 Monte Carlo integration 7
1.2.5 Inverse rendering . 8
1.2.6 Texture mapping . 9
1.2.7 Texture transfer . 9
1.2.8 Image inpainting . 10

1.3 Terminology and methods used in machine learning 11
1.3.1 Machine learning . 11
1.3.2 Neural networks . 11
1.3.3 Deep learning and deep neural networks 13
1.3.4 Convolutional neural networks 13
1.3.5 Residual neural network 14
1.3.6 Generative Adversarial Networks (GANs) 15
1.3.7 Diffusion models . 16

2 Prior work 17
2.1 Inverse rendering . 17
2.2 Material Classification and Segmentation 18
2.3 Texture transfer . 18

3 Our approach 21
3.1 Inverse rendering . 21
3.2 Material Segmentation . 24
3.3 Texture transfer . 25
3.4 Material Picker Pipeline . 26

4 Dataset 29
4.1 Main images and render elements 29
4.2 Light selects . 29
4.3 Environment maps . 31
4.4 Material segmentation . 31
4.5 Texture data . 32
4.6 Cloud data . 32
4.7 Filtering app . 33
4.8 Higher resolutions . 34
4.9 Dataset summary . 34

1

5 Implementation, network architecture and training 37
5.1 Implementation . 37
5.2 Network architecture . 37

5.2.1 EnvMap . 38
5.2.2 IRN . 38
5.2.3 MSN . 38

5.3 Training procedure . 39

6 Results 41
6.1 MSN . 41
6.2 IRN . 42
6.3 Material Picker pipeline results 45
6.4 Comparison to other work . 46

Conclusion 47

Bibliography 49

List of Figures 53

List of Abbreviations 55

A Comparison of results of direct renderer implementations 57

B Filtering app screenshots 59

C Material picker pipeline outputs 63

2

Introduction
Setting material appearance is one of the most crucial steps in modeling 3D scenes
and probably the most important one for creating a realistic model look. This
task is often long, tedious, and requires non-trivial skill, as a lot of parameters
need to be set up for a material to look realistic after rendering. The number
of parameters varies between used material models, but advanced models often
need tens of correctly set up parameters.
As a result of this thesis, we want to ease the whole process by providing artists
with a material picker tool. This tool is a series of deep neural networks that
estimate a number of intrinsic properties of an image, which would help us recover
material from a user-specified object in an image.
We do so by inventing a pipeline that attempts to solve several fundamental
problems in computer graphics and computer vision – inverse rendering, material
segmentation and texture transfer – all from a single image. Our method
performs per-pixel estimation of a number of intrinsic scene characteristics, such
as diffuse and specular albedo, surface normals, glossiness, view vector and
texture coordinates. After the estimation, we use the predicted properties to
segment each material in the input image. We then use all of these inferred
properties to extract texture of a user selected material in the input image.
To train all models in our pipeline, we present a way to create a modern dataset
by using advanced features of a physically-based V-Ray renderer to bridge the
gap between synthetic data and real images. This is crucial, as we most often
want to generalize well on real images, which is hard to achieve with synthetic
images only.
This work is continuation of our previous work in this area [Jurčák, 2020] and
some parts of the original text were re-used (mostly theoretical background).

3

4

1. Problem statement
Defining properties of materials in the scene is essential for matching appearance
of real world materials, but is time consuming. Even for very simple material
models like Phong reflection model, one needs to correctly set 7 attributes for
a single material, and there exist much more complex material models requiring
tens of values to set up to achieve more realistic look. On top of this, most of the
materials in the wild contain features that make them unique - bathroom tiles can
be of different patterns, wood floor can have different kinds of grain and so on.
These perceived surface details are stored in material texture. To mimic true to
life materials, creating authentic texture image by hand can be especially tiresome
task. This drill have to be repeated for every material used and although there
exist libraries with vast number of ready to use texture images, these libraries
don’t have to include exactly what user had in mind.

1.1 Our goal
The procedure of setting the properties can be dramatically simplified, as artists
and graphic designers typically create new looks from already existing artworks.
If they were able to transfer the desired material characteristics from an image of
these designs, it could be an enormous time saver. Our goal is therefore to offer
them a tool that would predict material attributes they work with the most from
just a single image.
To accomplish this goal, we need per-pixel estimation of several material
attributes, which can be achieved by doing inverse rendering of a scene. Based
on this estimation we will then perform material segmentation and let user select
for which material in the scene to determine underlying texture. We will cover
our approach more closely in chapter 3.
As we will show in chapter 2, there has been a lot of research lately regarding
inverse rendering. Using deep learning techniques to tackle problems from
different areas of interest proved to be very successful, so it was naturally applied
to the computer vision field, and in our case, to inverse rendering as well. We
believe that combination of these approaches will enable us to solve our task
successfully.
As this work requires knowledge of terminology, methods and concepts from both
computer graphics and machine learning, we elucidate both of these areas in the
next sections.

1.2 Terminology and methods used in rendering

1.2.1 Rendering
Rendering is a major subfield of the computer graphics area. It refers to a
sequence of steps that produces a 2D image from 3D representation of a scene
stored in a computer. During this sequence – which is also called the rendering
pipeline – the algorithm for handling rendering of a scene needs to take model
representations, apply transformations, map textures to objects, (optionally)

5

throw away parts of the scene which will not be rendered, illuminate the scene
from all the presented lights and finally draw an image from the view of the
camera. There are several types of renderings based on different rendering
algorithms, mostly divided into two categories: non-photorealistic rendering and
photorealistic rendering, sometimes also called physically based rendering (PBR).
The latter implements the concepts of transport and scattering of light in the real
world, which is far more computationally expensive than the former approach but
produces more plausible results.
As the primary goal of this thesis is to create a tool that could be used on real
world images, we employ only PBR techniques during generation of our data to
eliminate gap between real and synthetic images.
To look real when rendered, PBR needs (among other parameters) to have
correctly set up material model, usually referred to as BRDF.

1.2.2 Bidirectional Reflectance Distribution Function

Bidirectional Reflectance Distribution Function (or BRDF for short) is a
probabilistic function fr(ωi, ωo) (fr(ωi → ωo)) describing how light is reflected
based on surface attributes. More specifically, given incoming light direction ωi

and outgoing direction ωo, it gives the probability that a photon arriving from
direction ωi will be reflected to direction ωo.
There are several categories of BRDF models, of which the most impactful ones
are the physically-based BRDFs. To consider a BRDF model to be physically
based, it must meet the following properties:

• positivity: fr(ωi, ωo) ≥ 0

• obeying Helmholtz reciprocity: fr(ωi, ωo) = fr(ωo, ωi)

• conserving energy:
∫︁

Ω fr(ωi, ωo) cos θi dωi ≤ 1 ∀ωo

where cos θi represent decrease of radiance with increasing θi (angle between ωi

and surface normal).
To achieve realistic material look, it is important to use such BRDF that satisfies
these properties. Example of such BRDF can be physically based Phong BRDF,
which is equal to

fP hong
r = ρd

π
+ ρs(n + 2) cosn θr

2π
(1.1)

where ρd stands for diffuse albedo, ρs for specular albedo, n for glossiness and θr

for angle between view vector and reflected light vector.

6

Figure 1.1: Illustration of vectors used in physically based Phong BRDF. N is
normal vector, V is view vector, L is light vector, H is half vector between light
and view vector and R is reflected light vector. Taken from Wikipedia [2023]

1.2.3 Reflection equation
Knowing the BRDF of a surface allows us to compute how much light coming
from direction ωi is reflected from the surface to direction ωo. For that one
has to multiply radiance Li from direction ωi, BRDF fr(wi → wo) and cos θi.
Summarized in mathematical notation:

Lr(ωi → ωo) = Li(ωi) · fr(ωi → ωo) · cos θi (1.2)

In order to compute the total radiance reflected to direction ωo we need to sum
up the contributions from all light sources, direct or indirect. This can be done
by integrating these contributions over upper hemisphere H(x), which gives us
the following equation

Lr(ωo) =
∫︂

H(x)
Li(ωi) · fr(ωi → ωo) · cos θi dωi (1.3)

also called reflection equation. This integral generally does not have an analytical
solution and has to be computed numerically.

1.2.4 Monte Carlo integration
A typically used numerical method for solving integrals in rendering is Monte
Carlo integration. This technique uses random numbers to sample points at which
the integrand is evaluated. Let’s denote an integral that we want to approximate,
as

I =
∫︂

g(x)dx (1.4)

Monte Carlo estimator of I is defined as

⟨I⟩ = 1
N

N∑︂
k=1

g(Xk)
p(Xk) , (1.5)

where N is the number of samples taken, Xk, k = 1, ..., N are the samples and
p(x) is a probability density function from which the samples were drawn.

7

By substituting equation 1.3 into equation 1.5, the result is

⟨Lr(ωo)⟩ = 2π

N

N∑︂
k=1

Li(ωi,k)fr(ωi,k → ωo) cos θi,k (1.6)

where 2π stands for the probability density function (p(Xk) = 1
2π

) of uniform
sampling directions on the hemisphere and ωi,k, k = 1, ..., N are the sampled
directions.
An image can be rendered by evaluating equation 1.6 for positions in a scene
viewed from each of the image pixels. Given such an image, our goal is to estimate
what material (i.e. fr(ωi,k → ωo)) was used when the image was rendered.

1.2.5 Inverse rendering

One of the possible methods for estimating what materials are present in an image
is inverse rendering. Inverse rendering is one of the principal and long-standing
problems in computer vision and computer graphics. Its main goal is to, provided
an image or several images of a scene, estimate intrinsic properties of a scene,
like depth, albedo, normals, reflectance, lighting and others. This problem is
hard for several reasons, mainly, as stated in Li et al. [2019]: „This is an ill-posed
task: these scene factors interact in complex ways to form images and multiple
combinations of these factors may produce the same image.“ As we can see, there
is an infinite number of solutions for parameters for a single image, which makes
the problem hard or almost impossible to solve. However, some solutions are
statistically more admissible than others. Citing Barron and Malik [2015], which
says: „Our goal is therefore to recover the most likely explanation that explains
an input image.“ To make this work, we need to come up with such statistics that
would correctly approximate the real world. This is not straightforward, but
recent advances in both optimization and learning based approaches show that
it’s possible to estimate a handful of properties correctly [Barron and Malik, 2015]
and even better results when physically based datasets were used for training
neural networks [Sengupta et al., 2019],[Li et al., 2019]. With these properties in
hand, we want to estimate what is the material on the user-specified object in
the image.

Figure 1.2: Rendering vs inverse rendering; on the left individual scene elements
and on the right final output of the renderer, using elements on the left as input

8

1.2.6 Texture mapping
One step of the rendering pipeline is texture mapping. Texture mapping is a
process of obtaining texture information for each point on the surface that we
want to shade. To determine the color of the underlying material, the renderer
performs a texture lookup by sampling the corresponding texels (texture pixels)
for each point on the surface [Shirley and Marschner, 2009], so it’s a function
from surface space into the texture space. Denoted mathematically:

ϕ : S → T (1.7)
: (x, y, z) → (u, v) (1.8)

This mapping is called the texture coordinate function and needs to be defined
individually for every object present in the scene.

Figure 1.3: Example of texture mapping, taken from Shirley and Marschner [2009]

Yet not all mapping functions behave equally well when used for mapping
the texture onto the object’s surface. As most of the surfaces are not flat, used
mappings have to account for potential distortions after the texture is applied.
Some of the desired properties of a good mapping include:

• bijectivity: each point on the surface should map to different point in the
texture space (if the texture is not repeated)

• size distortion: mapping should preserve distances between points on the
surface and points in the texture

• shape distortion: mapping should preserve shapes, so shapes drawn in
surface space should map to similar shapes in texture space

• continuity: edges of the texture should follow up on each other to ensure a
small number of discontinuities

However, these properties usually go against each other, and choosing the right
mapping means balancing the aforementioned qualities to achieve the most
realistic look.

1.2.7 Texture transfer
As explained in previous section, artists usually have to specify which texture is
mapped to each surface as part of the scene preparation before the image can be
rendered. Artists often look for inspiration of these textures in already existing
work and then try to replicate what they have seen elsewhere. Reproducing

9

the texture from scratch however is very inefficient so artists usually look at
previously created textures in texture libraries and choose the one closest to the
desired appearance.
In these use cases, it would be beneficial to have access to the underlying texture,
but more often than not this information is not available. This problem was
termed texture transfer. The underlying issue in this problem is that „an object’s
texture as seen in a photograph is distorted by many factors, including pose,
geometry, and illumination.“ [Wang et al., 2016]. These deformations need to
be reversed to recover the original texture, but we usually neither have access
to full geometry of the object on which the texture was applied (as parts of the
object are occluded) nor all light sources (to remove all highlights), this reverse
mapping in general can’t be performed exactly. Some approximation is possible
nonetheless: we can estimate how the original mapping looked like from the non-
occluded part of the object. Most of the object’s surface is usually not covered
entirely by one texture image, but the texture pattern is rather repeated to wrap
around the object’s surface. By observing the geometry onto which the texture
was mapped on we can attempt to reverse the texture mapping process, in case
the texture is not distorted too much.

1.2.8 Image inpainting
Image inpaiting is a technique which objective is to replace selected parts of the
input image with plausible substitutions in such a way that (citing Jain et al.
[2023])„an observer cannot distinguish between the inpainted regions and real
regions of the output image.“ This problem was traditionally solved by diffusion
process, but in recent years using generative adversarial networks (more closely
explained in section 1.3.6) led to great progress in this area.
Examples where image inpainting is used include old photo restoration or photo-
editing, by allowing users to remove unwanted objects from the taken image or
replace them with objects of users’ choosing.

(a) Original image (b) Inpainted image

Figure 1.4: Example of object removal using inpaiting, inpainted part marked by
blue mask

We will use network trained to tackle image inpaiting as part of our own
solution to texture transfer problem, described later in chapter 3.

10

1.3 Terminology and methods used in machine
learning

1.3.1 Machine learning
Machine learning is a set of methods that allow computers to learn complex
concepts from simpler ones or from experience. We provide this experience in
a form of a dataset that consists of information (usually called features) about
the task for which we want to train the model. Generally, we let the algorithm
decide which features are important and how will individual feature contribute to
the final prediction. When the dataset includes the desired prediction amongst
its features, we refer to this type of machine learning as supervised machine
learning. There exists other types, such as unsupervised or semi-supervised
machine learning, but in our work we only use supervised learning methods.
Machine learning is an outstandingly fast advancing area of research and it helps
to push research forward in other areas as well. Computer graphics is not an
exception: one of the examples is calculating direct illumination by utilizing
machine learning techniques [Vévoda, Petr and Kondapaneni, Ivo and Křivánek,
Jaroslav, 2018].

1.3.2 Neural networks
Human brains consist of nerve cells, which are called neurons. These neurons
form large networks where they can propagate information from one neuron to
the other. The purpose of neural networks (NNs) as a machine learning method
is to mimic these networks to be able to learn and make decisions. The main
difference between neural networks and traditional programming is that while in
traditional programming we explicitly instruct a computer what to do in each
step of the program, we don’t instruct neural networks how to behave or how
to solve the task. We simply allow it to examine the provided data and let it
propose a solution. This solution can be viewed as mapping F ′, where F is the
underlying mapping that we want to approximate. F ′ should be optimal in some
sense - we need such F ′ that minimizes∑︁

x∈X error(F(x) − F ′(x))
|X|

where X is a set of inputs to the neural network.
Neural network consists of several layers, which are called input, hidden and
output layer, with input and output layers required in every neural network, but
any non-negative number of hidden layers is allowed. Every layer consists of
several neurons. In the most common type of neural network, all neurons from
previous layer are connected with all neurons in the next layer. These connections
are called weights and network learns them throughout the training. We can
see weights between one layer to other in figure 1.5 and an example of a simple
neural network in figure 1.6.
Neural network performs two operations – forward propagation and back-
propagation. The former is used to get the prediction, the latter to adjust
weights in the system to account for the computed error. During forward

11

x0...
xj...
xn

y1...
yi...
ym

wi,j

Figure 1.5: Connections between two layers of neural network, circles are neurons
and lines represent weights, weight wi,j represents connection between neuron j
in first layer and neuron i in second layer

Figure 1.6: Example of a simple neural network with input, hidden and output
layer. Circles represent neurons, lines between neurons show connections from
neuron in one layer to neuron in the next layer. Taken from Nielsen [2015].

propagation, neural network computes values for all neurons in the next layer
based on the previous layer. These values are then fed through some non-linearity
function f to keep all the values in certain range (for example between 0 ≤ x ≤ 1
or −1 ≤ x ≤ 1). Computed values are called activations of neurons. This
process repeats until the network computes values in the output layer. Equation
1.9 summarizes the process of computing activation of one neuron, where n and
m are the number of neurons in first layer and second layer respectively. Common
thing to help neural network learn better is to add a bias term to the layer and
initially set it as x0 = 1.

yi = f(
n∑︂

j=0
wi,j ∗ xj) ∀i ∈ {1, . . . , m} (1.9)

When we have computed the prediction, we need to adjust weights in a network to
account for the difference between predicted value and the actual value. The error
is then propagated back through the network in order to compute gradient, which
is in turn used by some optimization method (for example gradient descent) to
find local minimum of an error function, which is a metric for evaluating network’s
performance. The process of forward and back-propagation is repeated many
times for every entry in the dataset until the process converges into some local
minimum. This process is called training of the model. As the error function can
have many local optima to which the training can converge it is recommended

12

to train the model several times with different model initialization to prevent
getting stuck at some local optimum which is far from global optimum and to
ensure robustness of the model.
Similarly to what model we use and how the model is trained, it is equally
important to ensure the quality of the data on which we want to train the model.
If the data is noisy, so will be the output of the network and that will prevent
model from good generalization on unseen data. Machine learning models usually
require plenty of experience to grasp the right abstractions: if there are only
limited number of samples, straightforward approach is to just remember all of
them and not learn anything useful, so having enough data for training is as
substantial as having outlier-free data.

1.3.3 Deep learning and deep neural networks
Deep learning is a special kind of machine learning which is capable to learn
more complex functions than simpler methods of machine learning. Every neural
network that has more than one hidden layer can be considered a deep neural
network. These multiple layers help the network to develop several levels of
abstraction, which can give deep networks an upper hand in recognizing complex
patterns over other methods or models [Goodfellow et al., 2016]. This is why
so many solutions to pattern recognition problems employ this technique, but
because of the relatively high computation power required for it’s training, it
wasn’t used until very recently. Most models for inverse rendering use deep
convolutional neural networks, which we will define in the next section.

1.3.4 Convolutional neural networks
Convolutional neural networks (CNNs, or sometimes just convolutional
networks), are neural networks that are specially designed to process grid-like
structured data, like images or videos.
Neural networks use matrix multiplication and activation function to compute the
activation of neurons in the next layer. CNNs on the other hand, use a different
approach - at least in one of their layers, they use a special kind of linear operation
called convolution, which is defined as

s(t) =
∫︂

x(a) ∗ w(t − a)da

where x is often referred to as the input and function w as the kernel. The
output of the convolution is referred to as the feature map(s). Convolutional
layers convolve the input with the help of the kernel function – which is just a
function that transforms original input space into space, where it can be easier
to train the model due to change from non-linear to a linear problem – and pass
its result to the next layer. This is similar to the response of a neuron in our
brain to a specific impulse. Because of this property, CNN is a great model for
extracting edge information from images.
Convolution layer in CNNs consists of convolution stage, detector stage and
pooling stage. During convolution stage, several convolutions are run in parallel to
produce many layers of linear activations. During detector stage, all of these layers
are run through some non-linear function to produce activations in certain range.

13

Figure 1.7: Typical CNN architecture for digit recognition, taken from Sumit
Saha [2018]. The original image is run through several convolutional layers before
finally being flattened with digit predictions as output

Figure 1.8: Example of residual block

And finally, during pooling stage, we use pooling function to produce statistical
analysis of a specific neighbourhood in every layer. Typical CNN architecture for
digit recognition can be seen in figure 1.7.
Another important property of CNN is its effectiveness when compared to
traditional neural networks - performing convolution in layers of CNN is faster
and requires orders of magnitude less storage then using NN for the same kind of
problem [Goodfellow et al., 2016]. As a result, CNNs perform tremendously on
image recognition tasks and are now one of the state-of-the-art solutions for this
challenging problem.

1.3.5 Residual neural network
As we stated in section 1.3.3, deep networks have the ability to learn several
layers of abstraction, which means that depth is important. This is especially
valuable when working with images or videos, as these layers can help decompose
input image into low to high level features of the image. However, just
adding more and more layers brings problems like non-convergence of the whole
network or accuracy degradation. The former was mostly resolved by normalized
initialization, the latter by introduction of residual learning, with residual neural
network as its architecture [He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing
and Sun, Jian, 2016]. Residual neural network is network consisting of residual
blocks, as shown in figure 1.8. Idea behind this block architecture is that rather
than finding mapping H(x) that would be optimal for this block without any

14

Figure 1.9: Visualized GAN architecture, taken from Medium [2023].

prior, we reformulate the mapping that the block should learn to F(x) = H(x)−x,
so the output mapping then becomes F(x) + x = H(x). This substantially helps
with training, particularly in cases where output of the block should be very
similar to its input (meaning identity mapping is the optimal mapping). We
use residual blocks in our networks a lot because they enable us to train deeper
models, as they are easier to optimize than conventional CNN networks [He,
Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian, 2016].

1.3.6 Generative Adversarial Networks (GANs)

Generative Adversarial Networks are a class of machine learning algorithms used
for generative modeling. The architecture for this algorithm consists of two
models – Generator and Discriminator – that compete with each other during
training by acting like adversaries to one another. Generator’s input is random
noise sample and it outputs synthetic data (audio, text or images, depending on
the use case). This output is then batched with sample of real data from the
dataset and fed into the discriminator, whose task is to recognize if input image
is real or fake. During training, models take turns where in each turn only one
updates its weights, and thus getting better over time at their respective tasks.
The overall goal is to train such generator which outputs can’t be recognized from
real data by the discriminant [Goodfellow et al., 2014]. At runtime, discriminator
is not used and the generator infers the output by itself.
The ability of GANs to output realistic-looking and high-quality data make them
an ideal choice for various applications, such as image synthesis or image editing.
However, GANs suffer from several inherent difficulties: for example,
discriminator can easily recognize fake images produced by the generator at
the beginning of the training; on top of that, generator can sometimes produce
satisfactory output only for a subset of the desired distribution present in the
training data – this problem is called mode collapse. All of these problems can
be mitigated by using proper loss functions, but even small adjustments to the
parameters of these loss functions can lead to extremely unstable training. Due
to its limitations, GANs have been surpassed in recent years by another class of
generative machine learning algorithms, called diffusion models.

15

1.3.7 Diffusion models
Similarly to GANs, diffusion models also produce images from random noise
samples, but their training dynamic is different: during training they learn to
remove random Gaussian noise that is added to input image in several steps. This
dynamic is modeled by parameterized Markov chain. During inference, models
do the reverse operation: in multiple steps they add noise to the input sample
until the desired output quality is reached [Ho et al., 2020]. This leads to much
stable training compared to GANs and thus offer more room for experimentation.

16

2. Prior work
In this chapter, we would like to refer to research done related to the problems we
set out to solve: inverse rendering, material segmentation and texture transfer.
Although these topics have been studied for several decades now, significant
progress was achieved in only a past decade or so due to the inception of deep
learning methods.

2.1 Inverse rendering

As inverse rendering of a scene is difficult task, previous research in the field
focused either on subproblems of this problem (like inverse rendering of an object
instead of a whole scene), estimation of a small number of properties of a scene
[Li et al., 2019], [Sengupta et al., 2019] or a small number of materials [Bell et al.,
2015].
To estimate intrinsic characteristics of an image authors in Li et al. [2019] and
Sengupta et al. [2019] used deep neural networks. To obtain the data for training,
they augmented SUNCG dataset [Song et al., 2016] by mapping photorealistic
materials to geometries in this dataset or completely re-render images by using
physically based renderer, as the original dataset was rendered only with OpenGL
using Phong BRDF model and does not look realistic.
In Sengupta et al. [2019], authors proposed a pipeline for estimating diffuse
albedo, environment map and normals from a single image by using Inverse
Rendering Network (IRN) and combination of two modules - direct renderer
for computing direct illumination and Residual Appearance Renderer (RAR)
for computing shading and reflections - to re-synthesize the input image from
estimated components and to learn from real images where ground-truth data is
not available. To train IRN to correctly predict environment map, they had to
generate ground-truth data, as the environment map with which the scene was
rendered was used as exterior lighting, but it does not reflect illumination inside
the scene. To address this issue, they also trained neural net (EnvMap net) to
predict best average environment map for the whole scene (including illumination
inside the scene), which they then set as their ground-truth for this parameter
of IRN. The environment map predicted by IRN was then used in the direct
renderer to approximate incoming illumination using numerical quadrature.
Different approach was presented by Li et al. [2019]. In this paper, authors
were able to predict diffuse albedo, normals, specular roughness, depth,
and spatially-varying lighting, which is a technique for estimating per-pixel
illumination. Obtaining such data unwisely is computationally expensive and
memory consuming, thus they resolved to use spherical Gaussian lobes, that
preserve all lighting frequencies but require far less parameters to store. This very
detailed pre-computed irradiance enabled them to include differentiable renderer
into their pipeline and simulate image creation process without any rendering
related code written by the authors. Due to this precise estimation of parameters,
state-of-the-art object insertion and material editing were made possible.

17

2.2 Material Classification and Segmentation
Material segmentation is especially challenging, as real-world materials have a
rich texture, and the final look of the material is a combination of many scene
properties like lighting, depth, normals, and others.
There exists a large number of classifiers for classifying images into classes (like
dogs, cats, etc.): e.g. AlexNet [Krizhevsky et al., 2012], VGG [Simonyan and
Zisserman, 2014] and GoogLeNet [Szegedy et al., 2015]. These classifiers take an
input image and their output is per-class probability of the object in the image
belonging to that class. Most used approach to image segmentation we found
was the use of transfer learning on models pre-trained as classifiers [Long et al.,
2015], [Bell et al., 2015]. Transfer learning is method for re-using parts of already
trained model (and possibly change the output layers), and retrain only those
layers that were not taken from the pre-trained model.
In Long et al. [2015], authors removed final classification layer and used several
upsampling layers to output 21 feature maps of the same size as input image.
These 21 maps represented per pixel probability of the pixel belonging to 21
classes they had in the dataset. To get the final image they had to apply post-
processing by taking per-pixel maximum over these feature maps, with index of
the map that contained maximum assigned as the final value. It is worth noting
that the new model was trained on the exact same dataset as the pre-trained
model.
On the other hand, Bell et al. [2015] introduced completely new and larger
dataset with 23 material categories on which they fine-tuned a pre-trained model.
Authors thus proved that transfer learning also works on different dataset than
it was originally trained on, at least for image segmentation.
Unsurprisingly, the deeper the trained model was, the better it performed, with
either GoogLeNet (22 layers) or VGG (16 layers) as winners in both publications.
After introduction of residual networks, the state-of-the-art network for full
image segmentation became DeepLab [Chen et al., 2016], taking advantage of
its unprecedented depth - model that was retrained had more than 100 layers.
Different technique for segmentation into class was used by authors in He et al.
[2018]. Their network predicts several regions of interests from the input image
and each region is then further processed to decide whether the region contains
one of the objects of interest and bounding box coordinates of the object within
the selected region. Final part of the network is then trained to predict the
desired segmentation.

2.3 Texture transfer
Previous research in the area of texture transfer consisted mostly of solutions to
reduced problems instead of finding an answer to the original problem, mainly
because of the restricted access to ground-truth texture data for all the materials.
Li et al. [2019] used material estimation and predicted illumination from image
to enable material replacement or re-lighting of the scene under novel lighting
conditions using labeled data. This solution however did not include estimation
of the original texture, but only replacing it with another, so it did not fit our
desired use case.

18

In Munkberg et al. [2023] authors came up with solution to texture transfer
problem by framing it as an inverse rendering task. Their neural networks were
able to predict object topology, used materials and lighting, but their method was
developed under strong assumptions: they assumed objects were primary focus of
the image (covering substantial part of the photograph), were not rotated in any
considerable way and that image was taken by a camera with flashlight. These
restrictions limit usage of this solution to very small subset of scenarios that we
would like to support.
Another example, this time by applying unsupervised learning to this problem was
achieved by Wang et al. [2016]. In this work they attempted to transfer textures
from objects of specific shape to objects of similar shape using patch extraction
without having access to the underlying texture data. Data for this kind of task
is very hard to come by and obtaining it is immensely time-consuming, their
extraction capabilities were limited to some object shapes only and could not be
used for generic structures.
As generative models have taken huge step in the output image quality, in Carson
Katri [2023] authors utilized diffusion model to generate texture via text prompt
to guide the model to the desired texture output. Instead of starting from random
noise this tool also accepts texture image as input for only small refinements.
Although this approach is valid and definitely useful, we believe this is not the
solution to the original problem of texture transfer.

19

20

3. Our approach
3.1 Inverse rendering
As our start point we decided to replicate paper by Sengupta et al. [2019], as it
was easier to reproduce than other inverse rendering papers. In their approach
only diffuse albedo ρd, environment map and normals were estimated from IRN
so the only choice for BRDF was ideal diffuse BRDF defined as

fr = ρd

π
(3.1)

As most of the materials in real world are not only made of diffuse component,
we decided to use more sophisticated BRDF model, concretely physically based
Phong BRDF. To achieve this, on top of 3 properties estimated by Sengupta et
al. we altered the IRN’s architecture to also predict specular albedo, glossiness
and view vector by stacking more residual blocks for each added parameter.
When inspecting code for direct renderer written by Sengupta et al., we found
out that the equation for computing direct illumination was as follows:

fdirect =
4π ∗ π

2
648

648∑︂
i=1

ρd

π
∗ L(ωi) ∗ (ωi · N) (3.2)

where 648 corresponds to 18 × 36 light directions (one for each pixel of the
environment map predicted by IRN), ρd stands for diffuse albedo (and thus the
term ρd

π
for diffuse BRDF), ωi for direction of incoming light vector, L(ωi) for

incoming illumination from direction ωi (i.e. value of the corresponding pixel of
the environment map) and N for normal of the surface.
The term

4π ∗ π

2 / 648 (3.3)

corresponds to the size of one pixel of environment map when mapped to sphere.
Equation 3.2 is incorrect, as pixels mapped closer to the poles of the sphere will
occupy less sphere surface than those mapped closer to equator of the sphere. To
account for this distortion, the contribution of incoming light from direction ωi

should be multiplied by the constant size of a pixel (= 4π ∗ π
2 /648) times cosine of

deviation of the direction from the equator, i.e. cos θl for ωi = (θl, ϕl) in spherical
coordinates. To summarize, fixed direct render function derived from equation
3.2 is then

fdirect =
4π ∗ π

2
648

648∑︂
i=1

ρd

π
∗ L(ωi) ∗ cos θl ∗ (ωi · N) (3.4)

To recall, BRDF for physically based Phong is

fP hong
r = ρd

π
+ ρs(n + 2) cosn θr

2π
(3.5)

where ρd and ρs are diffuse and specular components respectively, n stands for
glossiness and cosn θr = (V · R)n, V representing view vector and R corresponds
to reflected vector, which is a light vector L flipped according to normal N and
its calculation is specified in equation 3.6.

R = 2(L · N)N − L (3.6)

21

This direct renderer implementation however has one problem: it only uses
environment lighting of fixed size, specifically 18 × 36, which leads to a problem
when the input image has much higher resolution than 240 × 320 pixels. We thus
adjusted the EnvMap network’s architecture to always predict lighting estimate
of 1

8th of the size of the input image. Direct renderer will have to account for
this variability, but this is not a problem since we will just sample more light
directions and this will directly reflect in the equation 3.3, where term 648 will be
replaced by the product of the sizes of the input environment map. In conclusion,
our direct render function with physically based Phong BRDF is defined as

fP hong =
4π ∗ π

2
s

s∑︂
i=1

(ρd

π
+ ρs(n + 2) cosn θr

2π
) ∗ Li(ωi) ∗ cos θl ∗ (ωi · N) (3.7)

where s stands for the product of the environment map spatial resolution. When
implemented by matrix multiplication, our direct renderer function runs almost
as fast as the original implementation of the direct renderer, even though our
function uses twice as many parameters. Comparison of results from original
direct render function and our own implementation can be found in Appendix A.
In addition to all the elements needed for Phong’s physically based BRDF, we
also updated the network to predict texture coordinates for each material in the
scene. For single material, these coordinates represent values of the mapping used
to wrap the material around the object’s surface. We can use this enumeration
of the function values to estimate how the original mapping function looked like
and by somehow reversing the process arrive at the original texture image. Not
all materials however have these coordinates, as sometimes only single color is
applied to the whole surface, which does not require any mapping. To help the
network learn the distinction between these two types of materials, we marked
the surfaces that use only single color as black. Our ground-truth data for texture
coordinates is shown in figure 3.1.

Figure 3.1: Texture coordinates element

We will show how we use this prediction in section 3.3 later in this chapter.
While investigating how IRN network improves its prediction over time during
our experiments, we noticed very strange behaviour with surface normals element,
as show in figure 3.2.

22

Figure 3.2: Surface normals output during training; from the early parts of the
training (left) to final parts of the training (right)

As we can see, network first learned where ceiling and floor are in the input
image, then started grasping concept of walls opposite to the camera and then
finally learned fill-in the side walls. This happened on all training images we
investigated. This was surprising and prevented the network to learn good
normals representation early in the training. The underlying issue had to do with
how data for this element were created: vectors were in global coordinates instead
of camera coordinates. This meant that if the scene was rotated horizontally in
space, normal vectors would look dramatically different on most of the object
surfaces, with the exception of ceilings and floors, which were usually equally
positioned in global coordinates. After we came to this realization we changed
normal and view vectors data in our dataset, which lead to much stable training
for these two elements.
Compared to our previous work [Jurčák, 2020], we decided to remove the RAR
network from our pipeline, as it was only necessary because the original authors
wanted to train networks on real photographs, for which they did not have ground-
truth data. As we already had more labeled data to train from than what was
included in their original dataset, we chose to get rid of this network completely.
With RAR not being part of our pipeline anymore we looked at other parts
that could get optimized, which turned out to be environment map prediction.
Environment lighting was estimated by IRN and used only by RAR’s training
loss and thus become obsolete to predict, so we removed the part of IRN network
that was responsible for the light approximation. As this light approximation
was only used in validation of predicted render elements, we decided to only use
it for fine-tuning of the IRN network, which, as consequence, meant that we also
didn’t have to use our direct renderer for all the training, but just for fine-tuning
as well..
The simplification of IRN training loss had another hidden benefit – as we
discovered, using our implementation of direct renderer presented huge bottleneck
mainly due to its GPU memory consumption. When we removed part of the loss
that was using the direct renderer, we were able to train with four times bigger
batch sizes, which sped up our training by the same factor. This was substantial
improvement, as previous training of IRN network took almost a week on much
smaller dataset, which would be unfeasible for us when scaled to our current
bigger dataset.

23

3.2 Material Segmentation
At first we tried to follow the transfer learning approach for material
segmentation. As our primary goal is not to know precisely what is the class of the
segmented material, our solution focused on material segmentation in the image
without classification, which slightly simplifies the problem. When initialized,
most architectures described in the previous chapter take number of classes as an
argument, with this number describing how many feature maps should the model
have in the output layer. To get a segmented image from neural network without
post-processing (as we do not have the exact number of classes for materials in real
world), we trained DeepLab model with 3 feature maps as output to mimic RGB
image. To our surprise, the model was not able to learn underlying segmentation,
even when trained from scratch, as shown in figure 3.3.

(a) Original image (b) GT segmentation (c) Predicted segmentation

Figure 3.3: Incorrect segmentation by DeepLab model

Similar issue would arise if we decided to replicate Mask R-CNN paper by
He et al. [2018]. Segmentation there was performed only for certain number of
classes, which is not satisfactory for our use case as we don’t care about the
particular material category but only need to segment the materials from each
other.
To solve this problem, we chose different architecture, in particular the
subnetwork that we are using in IRN for estimating normals or albedo. This
architecture had no problem to learn underlying segmentation, as presented in
figure 3.4. We named this network Material Segmentation Network, or MSN for
short. Exact architecture of the model is described in section 5.2.3.

(a) Original image (b) GT segmentation (c) Predicted segmentation

Figure 3.4: Proof of work - MSN

As part of our efforts to simplify the segmentation task even further, we also
tried amending our material segmentation data to only include edges between
different materials, as shown in figure 3.5.

24

(a) Original material segmentation (b) Black and white material
segmentation

Figure 3.5: Comparison of original and altered material ID element

With this data set as our desired output however the network was not able to
learn anything and mostly predicted full white image for any kind of input image:
this was understandable, as almost all the pixels in the ground-truth image were
white. We tried several architectures with various depths, but none of the models
worked and although we could try to use different weights for the black pixels
(e.g. black pixels having weight 1000× more than white pixels) we decided to
abandon the effort, as we were already satisfied with the results we were seeing
for our original problem setting.

3.3 Texture transfer
As we established earlier in chapter 1, no texture transfer solution will be perfect
because of the texture deformation after the texture is applied on surface, which
leads to incorrect approximation of the texture mapping function. In section 3.1
we discussed how we can estimate this mapping from the enumerated function
values by optimizing for the most probable function yielding these values, and by
obtaining its inverse we could arrive at the original texture.
After seeing that ResNet block model architecture worked also for segmentation,
we were eager to use it for texture extraction as well. This problem setting
however turned out to not be ideal usage for ResNet architecture, as we were
not able to output sufficient texture quality. Results were blurry, which can
sometimes happen when using L2 loss, but we were not able to achieve significant
progress with L1 as well. Some materials can have small presence in the overall
picture, so we attempted to simplify the problem by only trying to train network
on materials that occupied more than 10% of the whole image but again to no
success.
After reading about perceptual losses – losses that operate on higher-level features
than simple pixel-to-pixel losses [Johnson et al., 2016] – we experimented with
SSIM during our training, but this turned out to be yet another dead end.
As the last resort, we tried different approach: instead of trying to find the
inverse to mapping function from function values directly, we first simply re-
projected the texture using the obtained texture coordinates onto unit square,
but this can output texture with holes or other imperfections. This however, is
perfect environment to apply inpaiting network [Jain et al., 2023]. The authors

25

specifically tested their network on masked textures to asses performance of the
model, with outstandingly pleasant results even for very high spatial resolution.
We thus decided to use the network as-is, without any training on our part.
Example of texture extraction from single material is shown in figure 3.6.

(a) Original image (b) Predicted texture coordinates

(c) Predicted material
segmentation (d) Re-projected texture using

texture coordinates

(e) Inpainted texture

(f) Original texture used

Figure 3.6: Example of single texture extraction

3.4 Material Picker Pipeline
Our whole pipeline for material texture extraction is shown in figure 3.7.
Based on the results from previous work in this area (which was mentioned in
chapter 2) we believe our approach is the first attempt to solve the texture

26

transfer problem in a holistic way - that means, without any restrictions on
shape, illumination or the underlying texture used.

Figure 3.7: Our texture extraction pipeline; red line represents potential fine-
tuning of IRN

27

28

4. Dataset
The main goal of machine learning is to gain the ability to generalize well on new,
previously unseen data, in our case real-world images. This generalization is often
only possible if the testing data comes from the same distribution as the training
data. This distribution is in general difficult to obtain, especially in computer
vision and computer graphics where we usually work with real-world imagery, for
which it is problematic to obtain ground-truth data. While we can collect depth
and normals of a scene via depth sensors (as was done in [Nathan Silberman and
Fergus, 2012]), it is complicated to generate data for albedo, lighting or other
intrinsic scene properties.
We can however overcome the issue of generating high-quality ground-truth data
with physically based rendering. When we render a scene following physically
based techniques (thus, physically simulate light transportation in the scene), we
can generate real-world like images for which we can obtain many properties of
the rendered image, hence bridging the gap between synthetic datasets and real
images.

4.1 Main images and render elements
Because of the ongoing lawsuit with regards to SUNCG dataset [Futurism, 2019]
(used in several works mentioned in chapter 2) we could not have used this dataset
in our project, so we decided to render our own dataset using PBR techniques to
match the required image quality. At first, we started generating the dataset from
roughly 140 scenes downloaded from Evermotion website [Evermotion, 2020] by
placing around 10 virtual cameras inside every scene using 3ds Max [Autodesk,
2020]. Each scene was then exported to .vrscene file and rendered via V-Ray
renderer [Chaos Group, 2020a] from the viewports of these cameras to produce
unique geometry for every camera view, with example in figure 4.1. V-Ray
supports feature called render elements [Chaos Group, 2020c] that can be used to
output additional render outputs alongside the rendered image by modifying the
scene object file. Before rendering we therefore modify .vrscene files to generate
ground-truth data used for inverse rendering. Examples of the main images in
our dataset are shown in figure 4.2.

4.2 Light selects
To further enlarge the dataset, we made use of V-Ray’s Light select feature [Chaos
Group, 2020b] which renders additional images by using some subset of lights
present in the scene. We initially started with using only 1

10 of the lights present,
but we found out that V-Ray optimizes computation for the main image only,
which has most of the lights turned on. When only a subset of the lights is turned
on for the light select element, rendered image can be quite noisy, or due to poor
selection of the lights it can even be full black image.
We thus tried to do it the other way around - we used 9

10 of all lights in the
scene for each light select element. This approach at times produced images

29

Figure 4.1: Different camera views for the same scene

Figure 4.2: Examples of images in our dataset

30

Figure 4.3: Different lighting for the same camera view suitable for training

that were very similar to each other and because we want to have diverse set of
lighting conditions present in the rendered data, we couldn’t use these as well.
By combining these two approaches we generated up to 20 additional images per
scene under different illuminations, but usually only 5-7 were suitable for training
for most of the scenes.
Examples of good light alternations are shown in figure 4.3.

4.3 Environment maps
As we decided to replicate approach showed in Sengupta et al. [2019] we also had
to include environment maps into our dataset. To ensure that we had enough
maps for training, we opted for combination of publicly available HDRI maps on
HDRI Haven website [HDRI Haven, 2019] - with 105 maps - and our own dataset
of environment maps by generating 360◦ panoramas of 1

8 of size of the main image
for every scene, yielding around 11 thousand environment maps.
In total, we have about 55× more environment maps available than what was
used in Sengupta et al. [2019].

4.4 Material segmentation
To generate data for material segmentation, V-Ray provides Material ID render
element containing indices of all directly visible materials in the scene, one per
pixel. We modified output of the original render element by replacing each index
by an RGB color computed by taking the most frequent diffuse albedo ρ∗

d and
specular albedo ρ∗

s in all pixels with the same index and combining them using
formula:

ρ∗
d + ρ∗

s

2

31

In our testing, we found this to work well in assigning different colors to different
materials and not overlap too much. One problem, however, arises. For now,
we do not have to know the values of diffuse and specular albedo that made the
final pixel value in the segmented image. If we wanted to get those values (for
example, to adjust values predicted by neural net), we would have to choose an
invertible coding.

4.5 Texture data
As our main goal is to transfer textures from the input image, we also need to
know which texture was used for each material. We extracted these as separate
step of our data generation pipeline by using the Material ID element we utilized
for material segmentation. For each material ID, we render a scene where we
place square tile on which we map the material texture and position the camera
directly above this tile.

Figure 4.4: Texture extraction example, here showcasing extracture of diffuse
part of the texture

4.6 Cloud data
However, as the process of placing the cameras inside the scene manually is time-
consuming - when you place a camera in the scene, you have to render camera
preview to assure you accidentally did not hit a wall - and can’t be parallelized,
this approach would not allow us to create dataset of an appropriate size. We tried
some automation of the camera placement, but we couldn’t make the procedure
robust enough to always lead to usable outputs. Therefore, we had to explore
other options to extract data that we needed.
As this project was done in collaboration with of Chaos Group [Chaos Group,
2023b] we had access to data that customers uploaded to Chaos Cloud [Chaos
Group, 2023a], which is cloud-based service that allows users to speed up their
rendering times by leveraging powerful infrastructure to render their content
remotely. Users upload data to this service daily, so we had abundance of data,
but as these were user scenes, which a lot of them were not meant to be final
renders we realized we would have to filter out a lot of scenes that were not
finished or were not indoor scenes (as users of our tool would most probably be
indoor architects and would use the tool for indoor scenes only). Examples of
these kind of scenes are in figure 4.5.

32

Figure 4.5: Examples of incorrect user scenes that had to be filtered out

As we wanted to reduce time needed to produce high quality data, we extracted
correct data in several steps, leading to our data extracture pipeline:

1. Download batch of scenes from Chaos Cloud

2. Render scene previews in the batch

3. Filter out non-indoor or unfinished scenes, move correct scenes for final
render

4. Pre-process correct scenes for final render

5. Perform final render of the remaining scenes in the batch (generating main
image, render elements, environment map and texture data)

6. Filter out scenes that still have issues, which included:

• Check main images for noise
• Check environment maps
• Check light selects
• Check render elements
• Check texture elements

One batch of scenes usually contained around 500 scenes, from which only 100
were usually indoor scenes with enough quality to be used for our project. Scene
previews were rendered for 30 seconds only and final render was capped at 20
minutes.
If some images were still noisy in step 6, we would re-render them for about in
hour, but sometimes even this was not enough to achieve sufficiently low noise
level and these scenes had to be removed. Scenes were also removed if they
contained malformed data, e.g. missing material IDs (which messed up texture
extraction) or all black render elements.

4.7 Filtering app
To help with filtering such massive amount of data, we created a small app
using Flask [Pallets, 2023] for better visualization of results and to automate

33

manual work needed during filtering. The app was used in steps 3 and 6 of our
data extracture pipeline to conveniently see and filter several hundreds of scene
images. For checking validity of the render and texture elements, each scene is
evaluated separately. Screenshots from working version of the app can be found
in appendix B.

4.8 Higher resolutions
As we initially followed approach described in Sengupta et al. [2019], where
authors used input images of spatial resolution 240×320 (height × width), all our
data were rendered in this resolution as well. But as users might use our texture
extraction tool on images with much higher resolutions, we rendered more than
1
3 of our dataset in 480 × 640 resolution, and to test how our tool would perform
on even bigger images we rendered one batch of scenes in 960 × 1280 resolution.
The reason why we only rendered some of the scenes in higher resolutions was
time restriction - time needed to render image which resolution doubled grows by
a factor of four, which means that when it took 20 minutes to render image with
resolution 240 × 320, rendering this image in 480 × 640 would took 80 minutes.

4.9 Dataset summary
All of the rendering was done on 2 30-core CPU machines. We processed tens
of terabytes of raw scene files to extract tens of gigabytes of data in EXR
format, which was ten converted to several gigabytes of PNG data used for
training. In the end, our dataset consists of 11146 unique scene geometries,
around 11 thousand environment maps and around 60 thousand images under
different lighting conditions in total. Ground-truth data for each scene include
diffuse albedo, specular albedo, normals, depth, glossiness, view vector, per-pixel
material IDs and texture coordinates. Compared to our own previous work
[Jurčák, 2020] we have grown the dataset to 12× the initial size while adding
several render elements and textures data. In figure 4.6, you can see example of
ground-truth data for one scene.

Complexity of our scenes and richness of materials is unmatched to previously
used datasets, which makes this data superior for training.

As V-Ray supports more than 60 render elements and most of these elements
require only fraction of time to generate them when compared to render time of
the main image, our dataset is easily extendable with new properties for additional
work in the future.

34

(a) Main Image (b) Diffuse Albedo (c) Normals

(d) Specular Albedo (e) Glossiness (f) Material Segmentation

(g) View vector (h) Depth
(i) Env Map

Figure 4.6: Example of ground-truth data for a scene

35

36

5. Implementation, network
architecture and training

5.1 Implementation
Because of its excellent machine learning support and community, we chose to
write all of our code in Python and train all the models using the PyTorch
framework [PyTorch, 2020] because of its straightforward setup for distributing
training on multiple GPUs.
To help with quick experiments, we developed a framework for easy
experimentation setup via command line arguments. This framework took
care of initialization of the models, check-pointing and reporting during training
and made adding new models very straightforward. Progress of training and
validation errors was tracked by Tensorboard, which we had to integrate as
PyTorch does not come with any visualization tool out of the box. Also, to assess
any potential visual issues we also frequently saved outputs of the networks from
subset of training and validation data, which helped us investigate issues like the
one we mentioned in section 3.1.
As the final result we created 3ds Max plugin that encapsulates all our networks,
runs inference on image given by the user and extract texture from material
specified by the user.

Figure 5.1: Screenshot of our 3ds Max plugin

5.2 Network architecture
In this chapter we briefly present architecture details for all models that were
trained as part of our final solution. We will not present architecture of the
inpainting network, as we did not altered it in any way. For details about the
network and training details thus please refer to the original paper.

37

5.2.1 EnvMap

Our EnvMap model’s architecture is defined as follows:

ReflectionPad(3) → Conv7×7(3, 64) → Conv3×3(64, 128) →
Conv3×3(128, 256) → 4 × ResNetBlock(256) → Conv1×1(256, 256) →
→ Conv3×3(256, 128) → Conv3×3Tanh(128, 3) → Upsample(lh, lw)

where ConvN×N(x, y) indicate 2D convolutional layer with kernel of size
N × N and stride 2, x input channels and y output channels, succeeded by
batch normalization and ReLU activation; ConvN×NTanh(x, y) stands for
ConvN×N(x, y), but with Tanh as activation function; ReflectionPad(N)
represents reflection padding with N padded items in each direction;
Upsample(x, y) denotes layer that upsamples input into output with size
x × y using bilinear interpolation; 4 × ResNetBlock(N) is a series of 4
consecutive block, with each ResNetBlock being

ReflectionPad(1) → Conv3×3(N, N) → BN(N) → ReLU →
ReflectionPad(1) → Conv3×3(N, N) → BN(N)

where BN(N) denotes batch normalization over input of size N × N; lh
corresponds to the height and lw corresponds to the width of the output
environment map, since these are tied to the size of the input image (concretely
1
8 of the input image sides).

5.2.2 IRN

IRN consists of encoder Enc, defined as

ReflectionPad(3) → Conv7x7(3, 64) → Conv3x3(64, 128) → Conv3x3(128,
256)

which output is then fed through 15 × ResNetBlock for each estimated
parameter. Each parameter is then upsampled back to the original input size by
decoder Dec, defined as

TransConv3×3(256, 128) → TransdConv3×3(128, 64) → ReflectionPad(3) →
Conv7×7(64, 3) → Tanh

with glossinness as an exception, which the second-to-last layer is Conv7×7(64,
1). TransConvN×N(x, y) represent transposed convolution with kernel size N ×
N, x input and y output feature maps respectively.

5.2.3 MSN

Architecture for MSN is set as Enc → 9 × ResNetBlock → Dec with
ResnetBlock defined in section 5.2.1 and Enc and Dec defined in section 5.2.2.

38

5.3 Training procedure
We have performed all of our training on two GPU servers, each of them
equipped with two NVIDIA GeForce RTX 2080 Ti graphic cards. Thanks to this
graphic card’s big RAM, we were able to fit reasonably large batch sizes, which
significantly reduced training time and stabilized training across all models.
We trained all our networks using L1 loss. During our experiments we evaluated
other loss functions as well, but all of them led to inferior results.
Building upon our previous work, we began re-training networks on the new
dataset, starting with MSN which previously yielded very good results and was
faster to train than other networks. This network took about a week and a half
to train, including experiments with higher resolution data.
We then proceeded with EnvMap network by training it first on images produced
by our direct renderer and then fine-tuned on synthetic images from our dataset
by using ground-truth data for each scene and only optimizing the environment
lighting. This network was not trained on images with higher resolutions due to
direct renderer’s substantial memory consumption, which we did not have time
to optimize.
We left training of IRN network to the end, as it was the biggest network in our
pipeline and we first wanted to assess if our dataset does not produce issues for
other networks that had to be trained. This network took about 3 weeks to train
from scratch, so we had little time to fine tune it on higher resolution data. The
training is still ongoing and we hope that fine-tuning it will yield even better
results, as was the case with MSN.
We chose Adam [Kingma and Ba, 2014] as our optimizer for minimizing cost
function, as this optimization method outperformed all other methods like SGD
by constantly giving lower training and validation error. MSN was optimized with
constant learning rate α = 0.001 and IRN with constant α = 0.0001. Learning
rate schedulers were also tested, but compared to constant learning rates did not
produce better results.

39

40

6. Results
In this chapter, we present results of our trained models to see how well they
generalize.

6.1 MSN

Figure 6.1: Training and validation error for MSN; long blue and purple line
corresponds to training and validation errors on lowest resolution images, short
blue and red line in the lower left part corresponds to training and validation
errors on middle images resolution, green and grey corresponds to training and
validation errors on the highest resolution images

(a) First example: Original
image

(b) First example: GT
segmentation

(c) First example:
Predicted segmentation

(d) Second example:
Original image

(e) Second example: GT
segmentation

(f) Second example:
Predicted segmentation

Figure 6.2: MSN results on train data

As we can see from the error progress chart in figure 6.1, we achieved good
generalization of our model, with virtually no difference on lowest resolution

41

images (240 × 320). We then fine-tuned the model for only 10 epochs on the
middle resolution (480 × 640), which still improved the model. However, as we
had only one set of scenes in the highest resolution available, model started to
significantly overfit the data and we thus stopped the training after just few
epochs. Visual results on test data after the fine-tuning on middle resolution can
be found in figure 6.2.

6.2 IRN

Figure 6.3: Training and validation error for our best IRN training run

As we can see from figure 6.3, we were not able to achieve similar level of
generalization for IRN as we were for MSN, but results still look good visually,
as can

Figure 6.4: Fixing data helps with generalization; training (blue) and validation
(red) error for IRN training run before several render elements were fixed, training
(green) and validation (grey) error for IRN training run after the fix

In figure 6.4 how fixing problems in our dataset helped our model achieve
lower error on both training and also validation sets.
Example of outputs of the IRN network on testing data are shown in figures
6.5 and 6.6. Judging by visual output only we see that the best prediction
was achieved on elements that were fixed, meaning normals and view vector. As
learning these elements was relatively simple task compared to other elements,
where network had to learn how to decompose material appearance into several
properties, it did not come as a surprise.

42

(a) Original image (b) GT diffuse albedo (c) Predicted diffuse albedo

(d) GT normals (e) Predicted normals (f) GT specular albedo

(g) Predicted specular
albedo (h) GT glossiness (i) Predicted glossiness

(j) GT view vector (k) Predicted view vector (l) GT texture coordinates

(m) Predicted texture
coordinates

Figure 6.5: IRN results on test data #1

43

(a) Original image (b) GT diffuse albedo (c) Predicted diffuse albedo

(d) GT normals (e) Predicted normals (f) GT specular albedo

(g) Predicted specular
albedo (h) GT glossiness (i) Predicted glossiness

(j) GT view vector (k) Predicted view vector (l) GT texture coordinates

(m) Predicted texture
coordinates

Figure 6.6: IRN results on test data #2

44

6.3 Material Picker pipeline results
In figures 6.7, 6.8, 6.9 are examples of the whole pipeline output, where in each
figure: first image was original image; second row were ground-truth data; third
row predicted data by our trained networks; fourth row represented ground-truth
segmentation and what could be achieved by re-projecting the segmented material
and then inpainting it, comparing it to reference texture; fifth row the same as
fourth row but using predicted material segmentation.

Figure 6.7: Material picker pipeline example output # 1

Figure 6.8: Material picker pipeline example output # 2

45

Figure 6.9: Material picker pipeline example output # 3

We can see that when render elements are very well predicted, segmentation
network can segment materials more closely and thus capturing vital features
needed during re-projection. As we can see in figure 6.8, the segmented part is
very small and the inpaiting network can’t save this kind of situation. On the
other hand, there are also some very promising examples where the texture was
estimated correctly: very close approximation was achieved in figure 6.7, less
acceptable output in figure 6.9. More examples of the whole pipeline output are
shown in appendix C.

6.4 Comparison to other work
As we explained in chapter 2, the two publications related to inverse rendering
used improvements of the SUNCG dataset, which is a subject to an ongoing
lawsuit [Futurism, 2019], so authors of both papers could not made their datasets
or trained models publicly available. At the time of writing this thesis, the lawsuit
was still not resolved, so we were not able to try and compare the trained models
to our results.

46

Conclusion
In this thesis, we presented a method that attempts to solve texture transfer
problem by leveraging per-pixel estimation of material properties in the image
by training deep neural networks. We demonstrated that deep neural networks
are powerful learning representations that can learn useful priors, even when it
comes to such unconstrained problems like inverse rendering or segmentation.
Our pipeline collectively estimates diffuse and specular albedo, surface normals,
glossiness, view vector, and texture coordinates, alongside per-pixel material
segmentation, from a single image. These properties are then used to reproject
the segmented material (selected by the user) and inpaint parts of the texture
that we couldn’t predict correctly due to deformations or occlusions.
We packaged all the aforementioned effort into a 3ds Max plugin that serves as
a wrapper for all our trained models. By integrating our models directly into the
program, the estimated properties of a user-specified object in an image users can
now apply the predicted texture on any of the objects in their scene representation
and alter the texture if refinement is needed.
Before delivering this tool to the end-users we still have a lot of work to do to
make our models more robust and reliable, either through generating more data
or using better training procedures and architectures. We believe that fine-tuning
our network on higher resolution data is of upmost importance, as the models
improved dramatically after the fine-tuning. Generating more data in higher
resolutions will thus be our first step to improve the output quality.
No solution will ever be perfect, but by having access to the right tools (in our
case high-quality labeled dataset) we can make everyday lives of people that will
use our tool little bit easier.

47

48

Bibliography
Autodesk. 3ds Max. https://www.autodesk.com/products/3ds-max/

overview, 2020. Retrieved: 26-05-2020.

Jonathan T. Barron and Jitendra Malik. Shape, illumination, and reflectance
from shading. TPAMI, 2015.

Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala. Material recognition
in the wild with the materials in context database. Computer Vision and
Pattern Recognition (CVPR), 2015.

Carson Katri. Dream textures. https://github.com/carson-katri/
dream-textures, 2023. Retrieved: 16-07-2023.

Chaos Group. V-Ray. https://www.chaosgroup.com/vray/3ds-max, 2020a.
Retrieved: 21-04-2020.

Chaos Group. V-Ray light selects. https://docs.chaosgroup.com/display/
VRAY4MAX/VRayLightSelect, 2020b. Retrieved: 25-05-2020.

Chaos Group. V-Ray render elements. https://docs.chaosgroup.com/
display/VRAY4MAX/Render+Elements, 2020c. Retrieved: 21-04-2020.

Chaos Group. Chaos cloud. https://www.chaos.com/cloud-rendering, 2023a.
Retrieved: 15-07-2023.

Chaos Group. Chaos group. https://www.chaos.com/, 2023b. Retrieved: 15-
07-2023.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and
Alan Yuille. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE Transactions on
Pattern Analysis and Machine Intelligence, PP, 06 2016. doi: 10.1109/TPAMI.
2017.2699184.

Evermotion. Evermotion. https://evermotion.org/, 2020. Retrieved: 25-05-
2020.

Futurism. A startup is suing Facebook, Princeton for stealing its AI data. https:
//futurism.com/tech-suing-facebook-princeton-data, 2019. Retrieved:
26-05-2020.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative
adversarial networks, 2014.

HDRI Haven. HDRI Haven. https://hdrihaven.com/hdris/?c=indoor, 2019.
Retrieved: 26-05-2020.

49

https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/3ds-max/overview
https://github.com/carson-katri/dream-textures
https://github.com/carson-katri/dream-textures
https://www.chaosgroup.com/vray/3ds-max
https://docs.chaosgroup.com/display/VRAY4MAX/VRayLightSelect
https://docs.chaosgroup.com/display/VRAY4MAX/VRayLightSelect
https://docs.chaosgroup.com/display/VRAY4MAX/Render+Elements
https://docs.chaosgroup.com/display/VRAY4MAX/Render+Elements
https://www.chaos.com/cloud-rendering
https://www.chaos.com/
https://evermotion.org/
https://futurism.com/tech-suing-facebook-princeton-data
https://futurism.com/tech-suing-facebook-princeton-data
http://www.deeplearningbook.org
https://hdrihaven.com/hdris/?c=indoor

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn,
2018.

He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian. Deep
residual learning for image recognition. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic
models, 2020.

Jitesh Jain, Yuqian Zhou, Ning Yu, and Humphrey Shi. Keys to better image
inpainting: Structure and texture go hand in hand. In WACV, 2023.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time
style transfer and super-resolution, 2016.

Filip Jurčák. Material picker: Material recognition in images using deep learning.
Master’s thesis, Comenius University in Bratislava Faculty of Mathematics,
Physics and Informatics, Bratislava, Slovakia, 2020.

Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
International Conference on Learning Representations, 12 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

Zhengqin Li, Mohammad Shafiei, Ravi Ramamoorthi, Kalyan Sunkavalli,
and Manmohan Chandraker. Inverse rendering for complex indoor scenes:
Shape, spatially-varying lighting and SVBRDF from a single image. CoRR,
abs/1905.02722, 2019. URL http://arxiv.org/abs/1905.02722.

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic
segmentation. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3431–3440, 2015.

Medium. GAN architecture. https://miro.medium.com/v2/
1*-ucVYsbDnwa2NM-f5qm_Yg.png, 2023. Retrieved: 16-07-2023.

Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wenzheng Chen,
Alex Evans, Thomas Müller, and Sanja Fidler. Extracting triangular 3d models,
materials, and lighting from images, 2023.

Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. Indoor
Segmentation and Support Inference from RGBD Images. In ECCV, 2012.

Michael A Nielsen. Neural networks and deep learning, volume 2018. San
Francisco, CA, USA:: Determination press, 2015.

Pallets. Flask framework. https://flask.palletsprojects.com/en, 2023.
Retrieved: 15-07-2023.

50

http://arxiv.org/abs/1905.02722
https://miro.medium.com/v2/1*-ucVYsbDnwa2NM-f5qm_Yg.png
https://miro.medium.com/v2/1*-ucVYsbDnwa2NM-f5qm_Yg.png
https://flask.palletsprojects.com/en

PyTorch. PyTorch. https://pytorch.org/, 2020. Retrieved: 28-05-2020.

Soumyadip Sengupta, Jinwei Gu, Kihwan Kim, Guilin Liu, David W. Jacobs, and
Jan Kautz. Neural inverse rendering of an indoor scene from a single image.
CoRR, abs/1901.02453, 2019. URL http://arxiv.org/abs/1901.02453.

Peter Shirley and Steve Marschner. Fundamentals of Computer Graphics. A. K.
Peters, Ltd., USA, 3rd edition, 2009. ISBN 1568814690.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv 1409.1556, 09 2014.

Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas
Funkhouser. Semantic scene completion from a single depth image. arXiv
preprint arXiv:1611.08974, 2016.

Sumit Saha. A comprehensive guide to convolutional neural networks — the ELI5
way. https://towardsdatascience.com, 2018. Accessed: 02-03-2020.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich.
Going deeper with convolutions. In Computer Vision and Pattern Recognition
(CVPR), 2015. URL http://arxiv.org/abs/1409.4842.

Vévoda, Petr and Kondapaneni, Ivo and Křivánek, Jaroslav. Bayesian online
regression for adaptive direct illumination sampling. ACM Trans. Graph., 37
(4):125:1–125:12, July 2018. ISSN 0730-0301. doi: 10.1145/3197517.3201340.
URL http://doi.acm.org/10.1145/3197517.3201340.

Tuanfeng Y. Wang, Hao Su, Qixing Huang, Jingwei Huang, Leonidas Guibas,
and Niloy J. Mitra. Unsupervised Texture Transfer from Images to Model
Collections. ACM Trans. Graph., 35(6), 2016. ISSN 0730-0301. doi: 10.1145/
2980179.2982404. URL https://doi.org/10.1145/2980179.2982404.

Wikipedia. Phong reflection model. https://en.wikipedia.org/wiki/Phong_
reflection_model, 2023. Retrieved: 16-07-2023.

51

https://pytorch.org/
http://arxiv.org/abs/1901.02453
https://towardsdatascience.com
http://arxiv.org/abs/1409.4842
http://doi.acm.org/10.1145/3197517.3201340
https://doi.org/10.1145/2980179.2982404
https://en.wikipedia.org/wiki/Phong_reflection_model
https://en.wikipedia.org/wiki/Phong_reflection_model

52

List of Figures

1.1 Illustration of vectors used in physically based Phong BRDF . . . 7
1.2 Rendering vs inverse rendering . 8
1.3 Example of texture mapping . 9
1.4 Example of object removal using inpaiting, inpainted part marked

by blue mask . 10
1.5 Connections between two layers of neural network 12
1.6 Example of a simple neural network 12
1.7 Typical CNN architecture for digit recognition 14
1.8 Example of residual block . 14
1.9 Visualized GAN architecture . 15

3.1 Texture coordinates element . 22
3.2 Surface normals output during training 23
3.3 Incorrect segmentation by DeepLab model 24
3.4 Proof of work - MSN . 24
3.5 Comparison of original and altered material ID element 25
3.6 Example of single texture extraction 26
3.7 Our texture extraction pipeline 27

4.1 Different camera views for the same scene 30
4.2 Examples of images in our dataset 30
4.3 Different lighting for the same camera view suitable for training . 31
4.4 Texture extraction example . 32
4.5 Examples of incorrect user scenes that had to be filtered out . . . 33
4.6 Example of GT data for a scene 35

5.1 Screenshot of our 3ds Max plugin 37

6.1 Training and validation error for MSN 41
6.2 MSN results - train data . 41
6.3 Training (green) and validation (grey) error for our best IRN

training run . 42
6.4 Fixing data helps with generalization; training (blue) and

validation (red) error for IRN training run before several render
elements were fixed, training (green) and validation (grey) error
for IRN training run after the fix 42

6.5 IRN results on test data #1 . 43
6.6 IRN results on test data #2 . 44
6.7 Material picker pipeline example output # 1 45
6.8 Material picker pipeline example output # 2 45
6.9 Material picker pipeline example output # 3 46

A.1 Comparison of direct render results 57

B.1 Start page of our filtering app . 59
B.2 Scene previews after test render 59
B.3 Light selects subview of a scene 60

53

B.4 Render elements subview of a scene 60
B.5 Texture elements subview of a scene 61

54

List of Abbreviations
IRN Inverse Rendering Network

MSN Material Segmentation Network
TTN Texture Transfer Network
RAR Residual Appearance Network
PBR Physically-based rendering

BRDF Bidirectional Reflectance Distribution Function
GAN Generative Adversarial Network

55

56

A. Comparison of results of
direct renderer implementations
Here we present comparison of results between fixed direct renderer
implementation as defined in equation 3.4 and our own implementation using
physically correct Phong BRDF. As we can see in figure A.1, due to inclusion
of specular albedo and glossiness into the implementation, we can render much
better images that are more similar to the original image. Images were rendered
with an environment map inferred by our trained EnvMap model and ground-
truth data for each scene.

Figure A.1: Comparison of direct render results, with original image (left), image
rendered by original direct render implementation (middle) and image rendered
by our own implementation of direct render (right)

57

58

B. Filtering app screenshots

In this attachment you can see screenshots from the working version of filtering
app we used to extract data for our project.

Figure B.1: Start page of our filtering app

Figure B.2: Scene previews after test render

59

Figure B.3: Light selects subview of a scene

Figure B.4: Render elements subview of a scene

60

Figure B.5: Texture elements subview of a scene

61

62

C. Material picker pipeline
outputs

63

64

65

66

	Introduction
	Problem statement
	Our goal
	Terminology and methods used in rendering
	Rendering
	Bidirectional Reflectance Distribution Function
	Reflection equation
	Monte Carlo integration
	Inverse rendering
	Texture mapping
	Texture transfer
	Image inpainting

	Terminology and methods used in machine learning
	Machine learning
	Neural networks
	Deep learning and deep neural networks
	Convolutional neural networks
	Residual neural network
	Generative Adversarial Networks (GANs)
	Diffusion models

	Prior work
	Inverse rendering
	Material Classification and Segmentation
	Texture transfer

	Our approach
	Inverse rendering
	Material Segmentation
	Texture transfer
	Material Picker Pipeline

	Dataset
	Main images and render elements
	Light selects
	Environment maps
	Material segmentation
	Texture data
	Cloud data
	Filtering app
	Higher resolutions
	Dataset summary

	Implementation, network architecture and training
	Implementation
	Network architecture
	EnvMap
	IRN
	MSN

	Training procedure

	Results
	MSN
	IRN
	Material Picker pipeline results
	Comparison to other work

	Conclusion
	Bibliography
	List of Figures
	List of Abbreviations
	Comparison of results of direct renderer implementations
	Filtering app screenshots
	Material picker pipeline outputs

