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1. Introduction

In the current environment, data and the movement of some data are present
in every organization and corporation. Be it tracking customer purchases, the
organization’s financial history or personal employee data. With that comes a
lot of responsibility and complexity in managing how we transform and move
individual pieces from place to place. Understanding these movements helps us
not only manage our resources but also often comply with necessary legislation
and regulations or understand the complexities of our own systems.

A great example where understanding implemented processes with data, be
it simple moving or transformation, proves handy is compliance with various
legislation. In the thesis upon which this work builds upon [1], the author brings a
very good example. In the European Union, every subject that processes personal
data wholly or partly by automated means is required to comply with the General
Data Protection Regulation (GDPR). One of the implications of this regulation is
known as the Right to Be Forgotten or the Right for Erasure. Whenever a person
wants all his information deleted from the system, we need to know precisely
where the original information was propagated - ignoring other legal details. With
complex systems where no single person understands every bit of the system, this
is hard to prove or validate. Visualization of how personal data is moved around
provides one way to ensure this data can be tracked and properly managed.

1.1 Data Lineage

The process of following data from its source through any form of transformation
to its destination is referred to as data lineage. Through this process, we are able
to track data in complex systems and visualize them in graphs with adjusted
filters to suit our use case. In the introduction, we discussed one use case where
data lineage is useful. Let’s discuss a few more use cases.

The process of migrating systems to cloud infrastructure exceeds its budget
in about 75 % of cases and time schedule by 38 %, of which 13 % is by more than
three quarters as surveyed by McKinsey [2]. Mapping data flow and its further
visualization in graphs may help us find errors in our own analysis and see the
domain from another perspective. For example, we can double-check whether
everything can be migrated to the cloud. Cloud infrastructure may often reside
in a different country which means that some additional regulations may apply.
Even if we have a professional legal consultant, they may not at first be aware of
the data that should not be migrated at all. This is partly one of the reasons the
company Meta [3] received the biggest fine historically for GDPR violation [4],
which would be terminating for many.

Data lineage can also prove very useful for reducing error rates and faster
error resolution. If finding duplicity in code is difficult, finding duplicity in data
management across complex systems is ambitious. Data lineage may help us with
reducing unnecessary data growth and keep things a little simpler. Understanding
where new data restrictions will have an influence even before we implement them
provides a helpful insight into the restrictions themselves. It also works the other
way around. If the end data quality does not meet the standards required with
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data lineage, it is much less demanding to find sources that can be enhanced and
improve the end data quality as a result.

We can track data lineage in several ways. The most obvious and challenging
one is to understand the system operating with data. This approach is highly
unscalable, unreproducible, error-prone and creates an eminent bus factor [5].
Usually, it should not be even considered. The natural solution to this is to
automate data lineage. Company impreva [6] states four options to create lineage:

1. discover patterns,

2. data tagging,

3. use self-contained lineage,

4. static analysis.

The first option of discovering patterns involves analysis of metadata and
discovering patterns in between them. For example, columns with the same or
very similar names may point to the same data at a different time of its life cycle.
It is easy to see that this approach will not provide reliable lineage. The upside
is that it can be applied to different technologies without modifications ie. SQL
and Oracle.

The second option is commonly used in other industries in various forms.
The essence is to mark data with recognizable marks and track its flow through
the system. The imminent downside is that this usually requires the system to
support data tagging. A similar approach is supposedly used to trace original
render leakers in Apple as stated by 9to5mac [7].

Self-contained lineage is an excellent and reliable way to gather lineage. If
the technology we use provides a way to view data at all of its points of the life
cycle, we immediately get the lineage. However, the technology must be built
with this in mind from the ground up. As with the data tagging approach, this
method fails to provide any further lineage outside of the technology. Therefore,
it is often combined with other tools and approaches. We can see this method
work with Databricks Unity Catalog [8].

The last approach is to perform static analysis of any arbitrary technology
that we need the lineage of. This means reading the metadata and often the
source code itself, interpreting it and creating an abstraction with required lin-
eage. At first sight, this is apparently a tedious task to automate since the barrier
to getting any lineage at all is very high. On the other hand, this approach is
highly customizable and granular. Such analysis is often performed by specialized
tools. One such tool is Manta Flow [9]. This thesis was developed in coopera-
tion with the company Manta, an IBM Company and builds upon its existing
infrastructure.

1.2 Goals

In this thesis, we aim to enhance the performance and usability of the C# scanner,
which is a part of a larger static analysis tool called Manta Flow developed by
Manta, an IBM Company [9]. The C# scanner is a unit specialised in data flow

4



analysis of C# programs by inspecting the compiled CIL code. We plan to extend
the usability and enhance the performance of this scanner based on the needs and
requests of both Manta’s customers and internal requests. We will refer to these
customers as stakeholders. Many of the goals we set for this thesis that will extend
the tool’s usability come directly from use cases provided by stakeholders or were
discovered as necessary when analyzing stakeholder input. That is because Manta
has a highly customer-first oriented development culture. Some crucial decisions
may, therefore, appear arbitrary. The goals themselves can be divided into two
separate categories — usability improvements and performance enhancements.

Usability Improvements

Usability improvements will enhance the features of the scanner with the aim of
making it usable for real-life scenarios provided by stakeholders. Even though
the C# scanner is already able to analyse non-trivial programs, it lacks some
features in the context of data management and processing systems. We will ex-
tend the entry point extraction to web endpoints in order to support ASP.NET
applications. This requires supporting more C# language features that are ig-
nored at this point. Another goal is to enable the use of C# scanner as a reusable
service that can be called from other technologies on demand. It should analyse
embedded code and create a subgraph that can be merged into the graph of the
source technology. Numerous stakeholders do not use the C# scanner directly
but would like to analyse embedded code inside other Extract-Transform-Load
technologies such as SQL Server Integration Services or Azure Data Factory. Note
that the goal is not to implement a fully functional service with integration to
the source technologies. It is rather to enable the scanner to be used in such a
way. Complete integration is outside of the scope of this thesis. Other goals are
set by analysis of different inputs by stakeholders that are analysed inaccurately
or plain wrong. The goal then is to analyse these inputs and make the analysis
more precise.

Performance Enhancements

The performance enhancement aims to enable the use of the C# scanner in the
context of both small code snippets embedded in other technologies as well as
large programs. Some analyses take tens of hours with obvious improvements
that have been validated before in other scanners inside the Manta tool. One
such improvement is a modification of flows that are required for the resulting
graph but do not bring any value to other parts of the code, yet they are still
propagated. For instance, any console output must be found and marked in the
graph. Its flow does not have to be propagated further throughout the analysis
since no new data can be created from the output.

1.3 Glossary

Action Method

An action method on a controller of a web application is a method that gets
called via HTTP request [10].
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ADF

Azure Data Factory or ADF is a serverless data integration service [11].

ASP.NET

ASP.NET is a cross-platform open-source framework for the development of web
applications and services in the .NET ecosystem [12].

CIL

Common Intermediate Language is an intermediate language defined by the Com-
mon Language Infrastructure specification [13]. It is used by the .NET runtime
environment for running C# code.

Dependency Injection

Dependency injection is a programming technique to provide resources to objects
or functions instead of having them create them [14].

ETL

ETL stands for Extract, Transform, Load. It is a data manipulation process in
the order of first extracting the data, arbitrary transformations and loading data
to a storehouse [15].

Protocol Buffers

Protocol Buffers are language-neutral data format used for serialization of struc-
tured data [16]. Its serialized form is not human-readable.

SSIS

SQL Server Integration Services or SSIS is a platform for building data integration
and transformation solutions [17].

XML Schema Definition

XML Schema Definition or XSD is a W3C recommendation on the formal de-
scription of an XML document. It is most often used for validation and code
generation purposes [18].

1.4 Outline

This thesis is split into several chapters. First, we will describe the high-level
architecture of Manta and a generic language scanner. After that, we will in-
troduce the C# scanner itself and explain any specifics of this scanner. After a
detailed description of the architecture and all individual parts of the scanner,
we will connect them in a description of an analysis life cycle to give a good
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overview of the analysis. We will pinpoint the limitations of the scanner’s cur-
rent state. Understanding the scanner’s intricacies, architecture and limitations,
we will analyse individual problems and requirements individually in great detail
and propose solutions. Then, we will describe the implemented solution and how
to use the Manta Flow tool and the C# scanner in more detail. We will conclude
this thesis with an evaluation of our work and a proper conclusion.
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2. Manta

This thesis was developed as a project inside the Manta company. Manta originat-
ed as an internal project inside Profinit [19]. Later, it separated and continued to
grow, eventually being bought by an IBM [20] in late 2023 [21] and was renamed
to Manta, an IBM company. We will refer to it only as Manta.

Manta’s software provides data lineage on more than 50 [22] technologies rang-
ing from databases, ETL and modelling tools, reporting and analytics software
to programming languages. These include Sqoop, Qlik Sense, PostgreSQL, Power
BI, Oracle, Teradata Database, Cobol and many more. Internally, each tech-
nology is handled by its own so-called scanner unit. Data lineage can then be
integrated into customer pipelines using extensive OpenManta API or visualized
in Manta’s own graph visualizer as comprehensible graphs. Those graphs can be
modified to show different levels of granularity. One example of such a graph can
be seen in Figure 2.1. This graph represents a code that reads some value from
the standard input and then inserts it into the MSSQL ReportServer database in
the USERCONTACTINFO table, USERID column.

Figure 2.1: Screenshot of a Manta data flow graph viewer with a graph repre-
senting data lineage of a sample C# console application, which reads data from
the standard input and inserts them into a database.

This chapter will explain the high-level architecture of Manta’s technology
and its scanners. We will also introduce previous work on the C# part, which is
the main focus of this thesis.
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2.1 Manta Architecture

The Manta platform consists of three major parts:

• Manta Admin GUI,

• Manta Flow Server,

• Manta Flow CLI.

Manta Admin GUI is a Java server application that provides a graphical and
programming interface for managing the Manta platform, such as installation,
updating, authorization, configuration and other setup actions. Every responsi-
bility is contained in its own tool, bound together by Admin GUI. In this part,
the user sets up individual scanners and launches analysis. The web interface can
be seen in Figure 2.2.

Figure 2.2: Screenshot of the Manta Admin GUI

Manta Flow Server is the second part where users spend most of their time.
This part has three important responsibilities. One, it contains the web interface
for data flow graph visualization, which can be seen in Figure 2.3. It contains
a selector of analysis, a picker for parts of the graph that are supposed to be
visualized and lastly, a section with the level of detail to display. Two, it stores
all metadata from analysis in the internal data lineage repository. Finally, it
exposes programming API for third-party integration with user applications and
data pipelines.
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Figure 2.3: Screenshot of a Manta Admin GUI

The last part of the platform is Manta Flow CLI. This part is made of
technology-specific scanners. It is a command-line program that performs static
analysis over its input and produces data flow. This part interests us the most
as the C# scanner resides here. Individual processes are grouped into scenarios
which represent a unit of analysis. For example, the whole C# source code anal-
ysis is made of an Extractor scenario and a Dataflow scenario. We will discuss
these in more detail in the following chapter about C# scanner architecture in
Section 3.2. This means that to perform an analysis of a specific technology,
we will set up the workflow in the Admin GUI to run relevant scenarios of the
technology. Depending on what we want to do with the result, we might add
scenarios to visualize data flow directly in the Admin Flow Server.

Figure 2.4 shows how the three components interact and communicate. The
Admin GUI provides configuration to the Manta Flow CLI, including paths to
source code. Manta Flow CLI executes static analysis via technology-specific
scanners and creates an output which is transferred to the Manta Flow Server.
There, we can send an update about the finished scenario back to the Admin
GUI or visualize the data flow graph. Lastly, users can integrate the graph via
exposed API into their applications.
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Figure 2.4: Simplified general architecture of Manta consisting of three main
modules: Manta Flow Server, Manta Flow CLI and Manta Admin GUI

As we can see, the Manta platform is highly automated in the sense that the
only human interaction is needed in the configuration. Every other part of the
analysis, except configuration, is done automatically for us.

2.2 Scanner Architecture

Each technology is handled by a so-called Scanner. Such scanners are, for exam-
ple, SSIS Scanner, Databircks scanner or C# scanner. Scanners differ slightly in
the details of their architectures because of the technology specifics. The overall
high-level architecture tends to follow the same pattern. With that being said,
we will focus on the programming language scanners as that is the theme of this
thesis. In this section, we will go through the high-level architecture that tends
to be common for all programming language scanners. The scanner is separated
into two major components: the Connector and the Dataflow generator .

2.2.1 Connector

The connector’s main task is first to extract important metadata that will be used
in the analysis. Its second task is the static analysis itself. These two distinct
responsibilities are split up into two separate modules — the Extractor and the
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Reader. The connector’s goal is to generate a representation of the metadata
from which the dataflow generator can create a graph.

Extractor

Extractor is the first phase of static analysis. Its job is to gather required meta-
data and satisfy pre-conditions of static analysis. That may include connecting
to some connection provided in the configuration and extracting any metadata
necessary. For example, database schemas, definitions, ETL pipeline metadata,
or source code. All these additional resources are stored in a local repository
available for the Reader. Note that this implies that any input, including lan-
guage libraries, that might have to be analyzed must be gathered and copied to
the local repository. Even though programs must have exactly one runtime entry
point, this is not the case with data lineage. Data may enter the application from
various places, such as REST endpoints. One of the responsibilities of the Ex-
tractor is, therefore, an entry-point analysis and extraction. Database scanners
additionally create a dictionary, which is a data structure that contains informa-
tion about the database’s schema and is ready to help answer queries about the
structure of the tables and their columns. This is useful for resolving database
queries using the Database Query Service later in the analysis.

Reader

The second part of the connector is the Reader. Its purpose is to read all provided
metadata and create a general model of the input. This model is common for all
language scanners with minor deviations. The model is later used to create the
graph itself. For programming language scanners, this is also where the actual
analysis of the source code happens, and the worklist algorithm is used. This
algorithm will be explained in greater detail in the next chapter about the C#
scanner in Section 3.2.4. The Reader tends to contain the most complex logic,
and most of the analysis time is spent there. Therefore, it offers the most room
for improvement.

2.2.2 Dataflow generator

The dataflow generator is the second part of any scanner. Its main purpose
is to generate a final graph from the connector’s output. To accomplish this,
it must perform several tasks varying from technology to technology. Filtering
unnecessary orphan nodes, validating and verifying connector’s output, dealing
with not-yet analyzed parts and merging graphs. Unresolved parts include SQL
queries or embedded code snippets. Since many technologies use one SQL di-
alect, it doesn’t make sense for each technology to implement its own SQL query
resolver. The Dataflow Query Service takes care of it. The service analyzes the
query and outputs a final graph, which must be merged into the source tech-
nology’s graph. Merging is performed back again in the dataflow generator. An
excellent example is a programming language with a database framework where
we write queries. These queries are marked by the language scanner but are
resolved later in the dataflow generator. The same may apply to programming
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languages, as we may encounter some embedded code snippets throughout the
analysis, which are resolved using the Embedded Code Service.

In Figure 2.5, we can see an overview of an arbitrary programming language
scanner. It is separated into two scenarios which are marked by colored boxes
with dashed lines. Even though the extractor is logically part of a connector
(marked with a red box) and is specific for each technology, just like the reader
is, it usually has a separate scenario — Extractor Scenario marked with the
dashed blue box. This allows us to launch it independently from the reader
and dataflow generator, which share one scenario together — Dataflow Scenario
marked with the dashed green box. That only makes sense because their common
goal is to analyze its output and generate an output graph useful to the end-
user. To only run an extractor and gather entry points is a valid scenario. To
run only a reader and obtain an abstract model whose representation is only
understandable to the dataflow generator is groundless. In practice, the case
usually is that both scenarios are run together. After all, the extractor prepares
an input for the reader. At the top of the figure is an extractor that takes an
input program and input configuration. As a part of the Extractor Scenario,
it creates Exctracted Configuration, which is then passed to the reader inside of
the Dataflow Scenario. The reader creates a model representation of the lineage
called Connector Output. Finally, the dataflow generator transforms the output,
optionally using the embedded code service and dataflow query service, into the
final graph representation.

Figure 2.5: Architecture of an arbitrary programming language scanner.
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2.3 Previous Work

This thesis builds upon multiple previous projects developed by this thesis su-
pervisor himself - doc. RNDr. Pavel Parı́zek, Ph.D., and students of Charles
University, faculty of Mathematics and Physics, in cooperation with the Manta
company, where it is already used in production. Implementation decisions in
these projects have implications for our own implementation. Therefore, we will
introduce them briefly. The C# scanner started as a software project in 2020
called Data Lineage Analysis of C# Programs for Manta [23]. In this project,
the foundations of the C# scanner were set, and all the vital parts were imple-
mented. This includes the extractor, the reader and the dataflow generator. The
team took heavy inspiration from an existing bytecode scanner, referred to as Ja-
va scanner or bytecode scanner interchangeably. Java scanner was first developed
by doc. RNDr. Pavel Parı́zek, Ph.D., later extended by students as a thesis in
cooperation with Manta. Many key decisions remained the same, even with the
same reasoning. For example, the Java scanner analyses compiled bytecode in-
stead of the text source code. The same applies to the C# scanner, although the
bytecode in our domain is called CIL or Common Intermediate Language. This
has multiple advantages which can be explored in the software project documen-
tation. Relevant parts for our thesis will be explained in Chapter 3, dedicated to
the C# Scanner.

After successful completion, it continued to be worked on by Manta employ-
ees as the scanner was still in an experimental state with highly limited real-life
scenario usability. Another project was a thesis by Dalibor Zeman called Extend-
ing Data Lineage Analysis Towards .NET Frameworks [1]. Zeman’s work added
extensive feature upgrades demanded by various Manta’s customers.
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3. C# Scanner

Now that we have established a high-level description of Manta in general and
its scanners, we can get into the description of the C# scanner and C# itself.
In this chapter, we will first explain the C# language domain, and then we will
take a look into the implementation details of the C# scanner that are relevant
to our thesis. We will explain in detail the purpose of individual modules active
throughout the analysis. In the end, with the knowledge we have gathered, we
will shed a little bit of light on the current limitations of the scanner.

3.1 C# Language

First, we will explain the C# language and how it works. It is a high-level pro-
gramming language whose toolchain and compilers are open-sourced. C# source
code is first compiled into an intermediate language called Common Interme-
diate Language (CIL) using the Roslyn compiler. This intermediate language
is platform-independent and is usually stored in executable files or dynamically
linked libraries. On this platform, the .NET runtime, or more precisely Com-
mon Language Runtime (CLR), then compiles this intermediate language using
RyuJIT just-in-time compiler to native code for the front-end of the CPU. An
important note is that CLR is a stack-based virtual machine. RyuJIT is dynamic
and performs several compilation optimizations.

For the purpose of data lineage analysis, we have two options for the C#
programming language. We can either inspect high-level C# code, or we can
inspect its compiled counterpart CIL. Note that this decision was not made by us
but by the authors of the original C# scanner in Manta. Authors have decided
on CIL for multiple reasons:

• The CIL rarely introduces changes compared to new syntactic sugar added
to the C# language. With every change of the language, we risk the need
to modify the scanner in order to support the analysis of code written with
new language versions.

• It allows us to use the scanner for other .NET languages that emit CIL,
such as F# or Visual Basic .NET.

• It is less memory-demanding than working with abstract syntax tree repre-
sentation.

• There is already a similar Java bytecode scanner which follows the same
principles. That allows us to learn from many design decisions made there
and apply the same crucial algorithms.

The code snippet in Listing 3.1 shows an example of a simple C# console
application. It is a program that takes input from the user, parses it as an integer,
adds another number to it and prints the result into the console. If we take a look
at Listing 3.2, we can see selected parts of its emitted CIL as presented by the
Rider IDE. We can see that most of the important information for data lineage is
preserved. For method calls, we have a call opcode with the method signature.
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We only don’t know the object upon which this method is called. This has to
be resolved by runtime. For local variable loading, we have a ldloc.x where x

is a number of the local variable. Metadata about these variables is defined in
metadata tables bundled with CIL. However, the instance is again not always
known. This is very similar to Java bytecode.

1 int a = Int32.Parse(Console.ReadLine () ?? string.Empty);

2 int b = 2;

3 int c = a + b;

4

5 Console.WriteLine($"The result is: {c}");

Listing 3.1: Simple C# program

1 IL_0000: call string

[System.Console]System.Console::ReadLine ()

2 IL_0005: dup

3 IL_0006: brtrue.s IL_000e

4 IL_0008: pop

5 ...

6 IL_0016: ldloc.0 // a

7 IL_0017: ldloc.1 // b

8 IL_0018: add

9 ...

10 IL_0041: call void

[System.Console]System.Console::WriteLine(string)

11 IL_0046: nop

12 IL_0047: ret

Listing 3.2: CIL of a simple C# program

One exception to the similarity between CIL and Java bytecode is, for ex-
ample, the differentiation of arithmetical operations on simple number types. In
Listing 3.3, we can see a side-to-side comparison of emitted CIL and Java byte-
code, respectively, together with high-level code. Apart from indexing from 1 for
Java bytecode, we can see that Java bytecode opcodes have an i prefix, signal-
ising an instruction on integer operands. CIL doesn’t have this prefix. Thus,
operand types must be deducted by runtime. With that being said, this does not
bother us that much as for data lineage. The concrete type of a simple type is
often irrelevant. Further analysis has been done by the authors of the software
project, and the base has already been implemented and is working. This short
overview and knowledge of C# and CIL should be sufficient for the purpose of
this thesis.

1 /*

2 IL_0000: ldc.i4.s 21 | BIPUSH 21

3 IL_0002: stloc.0 | ISTORE 1

4 IL_0003: ldc.i4.s 21 | BIPUSH 21

5 IL_0005: stloc.1 | ISTORE 2

6 IL_0006: ldloc.0 | ILOAD 1

7 IL_0007: ldloc.1 | ILOAD 2

8 IL_0008: add | IADD

9 IL_0009: stloc.2 | ISTORE 3

10 */

11 int a = 21;

12 int b = 21;
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13 int c = a + b;

Listing 3.3: Integer addition in C#/CIL and Java bytecode.

3.2 Architecture

Like other programming language scanners, C# scanner analysis consists of two
scenarios. The Csharp Extractor Master Scenario and Csharp Dataflow Master
Scenario. The core of the C# scanner is written in C# itself. That complicates
things a little bit, as the rest of the Manta is written in Java. The interaction
between those two parts is solved by launching the C# part as an extra process
from the Java application. The implication of this is that any piece of information
we want to pass from one part to another must be serialized in Java and read in
C#. We can divide parts of the scanner based on what language it is written in.
There are three Java wrappers for C# parts:

• manta-connector-csharp,

• manta-connector-csharp-extractor,

• manta-connector-csharp-runner.

Their main purpose is to implement a common interface to be able to in-
tegrate the C# scanner into the rest of the platform. The manta-connector-

csharp-extractor contains data class ExtractorConfigurationData with ex-
tractor configuration. Everything must be serializable because the extractor
implementation itself is in the C# part. Instead of a functional class that
would serve as an abstraction which could be used throughout the analysis,
the configuration is a simple data class with paths to the input application
and paths telling us where to serialize extracted entry points and other anal-
ysis configurations. The rest of this module is an abstraction to run the sce-
nario through a spring bean configuration. The ExtractorScenario class in-
vokes the CSharpApplicationRunner class from the manta-connector-csharp-
runner module. This helper class prepares common arguments and logging
for the C# process and executes it. The same approach is mirrored for the
manta-connector-csharp module, which is technically the reader part of the
scanner as presented in Figure 2.5. This module also contains the serializable
ReaderConfiguration class. The ConnectorOutputReader class is a part of the
dataflow scenario, and its purpose is to again invoke the CSharpApplicationRun-
ner class and execute the C# process with analysis.

The complete C# implementation of the scanner is grouped into one assembly
made out of 23 projects. Each project plays a different role throughout the
analysis. We will go through the key projects and explain their roles.

3.2.1 Intermediate Code Infrastructure

In order to be able to statically analyse CIL we have to be able to read it first.
The IntermediateCodeInfrastucture class is an abstraction above the CIL. In-
ternally, it uses the Mono.Cecil library [24], which itself parses metadata tables
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and provides access to any type, method or any other definition that was present
in the code before compilation. This representation is language-independent and
follows the CIL nomenclature. CIL nomenclature is sometimes a little bit differ-
ent from what programmers are used to at C#. For example, the access modifiers
are differentiated differently in CIL than they are in C#. The Microsoft docu-
mentation defines the keyword protected in C# as: ”The type or member can
be accessed only by code in the same class or a class that is derived from it.” [25].
Meanwhile, a protected member compiled into CIL carries the modifier family
defined in the ECMA-335 standard [13]. We can observe this behaviour in a
member definition and its CIL counterpart in Listing 3.4. The CIL counterpart
is written into a readable form by the Sharplab.io tool [26].

1 /*

2 .class public auto ansi beforefieldinit Program

3 extends [System.Runtime]System.Object

4 {

5 // Fields

6 .field family int32 a

7 ...

8 }

9 */

10 public class Program{

11 protected int a;

12 }

Listing 3.4: The C# protected access modifier in code and its CIL representation
as family.

Another example is that top-level classes defined in the C# code as internal
carry the modifier private in CIL. Note that private is a valid access modifier
in the C# code. Using the CIL nomenclature would allow us to use it without
any modification for other .NET languages as well. However, at the start of the
development of this scanner, it was decided to internally create an abstraction
at the higher level of C# and use the C# nomenclature. Some obtainable infor-
mation from Mono.Cecil is therefore not available in our infrastructure as it was
not necessary for C#.

Two important abstractions are the ClassHiearchy class and the CallGraph
class. The class hierarchy allows us to create quick queries for what classes a
particular class inherits from or which classes implement a particular interface.
These queries are very important when building the call graph. In the CIL, we
don’t always have enough information to determine which method is being called.
That is determined by the runtime. This problem is called a reachability problem.
In the C# scanner, it is resolved using the Rapid Type Analysis [27]. Suppose
class declarations as defined in Listing 3.5. An interface Animal with a contract
for a method Speak and two classes Dog and Cat implementing this interface.

1 public interface Animal {

2 public abstract void Speak();

3 }

4

5 public class Dog : Animal {

6 public void Speak() {

7 System.Console.WriteLine("Bark");

8 }
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9 }

10

11 public class Cat : Animal {

12 public void Speak() {

13 System.Console.WriteLine("Meow");

14 }

15 }

Listing 3.5: C# virtual method definitions example.

Now, let’s suppose a simple Mainmethod where we call the function GetAnimal
and assign its return value to the variable animal. Then, we call the method
Speak on this variable. This code snippet and its generated CIL can be seen at
Listing 3.6. The GetAnimal’s method signature is Animal GetAnimal (). This
means that the call of method Speak is a virtual call whose implementation is
determined by the runtime. Note that it doesn’t matter if its implementation al-
ways returns an instance of the same type. Its CIL must always contain a virtual
call with the return type Animal.

1 /*

2 IL_0000: nop

3 IL_0001: call class Animal Program :: GetAnimal ()

4 IL_0006: stloc.0

5 IL_0007: ldloc.0

6 IL_0008: callvirt instance void Animal :: Speak()

7 IL_000d: nop

8 IL_000e: ret

9 */

10 public class Program{

11 public static void Main(){

12 var animal = GetAnimal ();

13

14 animal.Speak();

15 }

16

17 public static Animal GetAnimal (){

18

19 return new Cat();

20 }

21 }

Listing 3.6: C# virtual method call example.

To create a call graph for the Main method we have to go through all the
call instructions in the method’s body. On each call instruction, we register the
method that is being called. For virtual calls, it is a bit more difficult. We need to
take into account the implementation of the method instead of using the interface
method. This is where we query the class hierarchy for all implementations of the
method. Simple comparing signatures to determine reachability isn’t sufficient as
the target class names differ. We could consider all the possible implementations
for the method. In our case, that would be Cat.Speak() and Dog.Speak(). This
would result in a big portion of false positives as most of the implementations
may never even be called in the first place. The C# scanner uses a more advanced
Rapid Type Analysis algorithm. The improvement is that it tracks instantiated
classes and uses them to further reduce the pool of potential implementations.
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The only instantiated class in the code Listing 3.6 is Cat. Therefore, the only
call registered would be of the method Cat.Speak(). Note that for the purpose
of the analysis, we also have to register the interface call Animal.Speak() itself.
This is further explained in Section 3.2.4.

3.2.2 Intermediate Code Simulator

Another major project of the scanner is the IntermediateCodeSimulator project.
Its purpose is fairly simple: to simulate code execution and create abstractions to
help us with the analysis. The simulation traverses instructions of every reach-
able method from the entry-point method and interprets each instruction using a
visitor pattern. Because the .NET virtual machine is stack-based, the simulation
is also stack-based. When necessary, it creates an expression that makes further
analysis easier. There are many different expressions, such as MethodExpression,
ArithmeticExpression, ConstantExpression and many others. For instance,
the ConstantExpression class with its value of 0 is created on instructions that
load a fixed value onto a stack (ldc.i4.0, ldc.i4.1, ldc.i4.2, ldc.i4.3 etc.).
The MethodExpression class is created on the ldftn instruction. These expres-
sions are used, for example, for computing alias analysis.

3.2.3 Alias Analysis

Another problem that has to be solved concerning dataflow analysis is the aliasing
of variables. Suppose the code snippet from Listing 3.7. First, an instance of class
A is created and assigned to the variable a. Lambda that writes to the console
is assigned to its field functionCall. After that, an alias x of the variable a

is created. Then, a new lambda that writes to a file is assigned to the field
functionCall. Eventually, the functionCall is invoked and called through the
variable x. If alias analysis was omitted, the only detectable dataflow would be
the write to the console. The write to the file is assigned to the original variable
and only after the creation of the alias. That means that if we do not propagate
the assignment of the new lambda into all of the a’s aliases, any following call
of x.functionCall() would only consider the console output. For data lineage,
this is unacceptable behaviour.

1 public class A

2 {

3 public Action functionCall;

4 }

5

6 public class Program{

7 public static void Main(){

8 A a = new A();

9 a.functionCall = () => Console.WriteLine("FIRST");

10

11 var x = a;

12

13 a.functionCall = () => File.WriteAllText("output.log",

"SECOND");

14

15 x.functionCall ();

16 }
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17 }

Listing 3.7: C# snippet with the variable a aliased with variable x.

The complete alias analysis is implemented inside the AliasAnalysis project.
The project offers both lazy and eager analysis. Just like in the intermediate code
simulator, we use the visitor pattern to go over all instructions, which may create
an alias and record it in AliasCollection. These instructions are, for example,
st.loc for assigning into a local variable or stelem for assigning into an array.

3.2.4 Symbolic Analysis

The main core of the analysis, which creates dataflow, is in the SymbolicAnalysis
project. Precisely, the StaticAnalyzer class performs the static analysis and
outputs an object of the ProgramFlowData class with complete information about
the data flow. On the inside, the analyzer first analyzes aliases using the Alias-
Analyzer class and then performs the static analysis of all reachable methods
from the provided entry point method. In brief, the symbolic analysis works
with the method descriptors and expressions in the body of this method from the
IntermediateCodeInfrastructure project, analyses them as necessary with the
worklist algorithm and creates data flows associated with these expressions. Let’s
first discuss the worklist algorithm and how individual methods are analysed, and
then we shall explain how exactly any data flow is created.

Worklist Algorithm

One approach to performing static analysis to obtain dataflow information would
be to simulate execution, recursing one level deeper on each method call and con-
tinuing to analyse there. There are two particular problems with this approach.
One, it may lead to deep recursions. Two, this approach explodes very quickly
when methods call each other. Another approach is called the worklist algo-
rithm and is generally used in various static analysis problems such as liveness or
dataflow analysis.

The worklist algorithm is based on the idea of performing only as much neces-
sary work as needed. It starts with a set of items to be analysed called a worklist.
Items from the worklist are analysed one after the other completely until there is
none left. This means that it is not a set but rather a queue. While analysing,
it may happen that analysis of one item may influence other items, even those
already analysed. In that case, they are added back to the queue.

In our case, we start with an entry point method. Using the class hierarchy,
we gather all reachable methods and add them to the worklist. It is necessary to
track the data flow of these methods in their invocation contexts. Each method
is invoked in some context that contains currently tracked expressions, flows and
other entities that define the method’s environment at the time of its invocation.
After analysing a single method in its specific invocation context, we have to
evaluate whether the data flow has changed. If it did, we must add all callers and
callees to the worklist. That is because the caller’s dataflow might now change
since it may get a different result when processing the call (the invocation context
has changed). The same applies to the called methods. The data flow that is
considered in callee’s call analysis is now different, and it may lead to a different
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analysis result. On the other hand, if the data flow has not changed, we don’t
have to add anything to the worklist and continue with the next method.

Method Handlers

The worklist algorithm processes each method separately. Analysis of methods
is performed via so-called method handlers. All handlers implement the com-
mon interface IMethodHandler with a contract for two methods CanHandle and
TryHandle, which are essential for the worklist algorithm. Both accept a method
descriptor from the IntermediateCodeInfrastructure project and return a
boolean. Each handler operates on a pre-defined set of methods that are hard-
coded in the code. For instance, methods System.String System.Console::

ReadLine() and System.Int32 System.Console::Read() are both in the set of
methods handled by InputOutputHandler. Signatures for these and other rel-
evant methods are directly hard-coded into the source code in their respective
handler. When simulating the code of a method, we have access to the com-
plete signature of a method being called. That allows us to hard-code methods
by their signature. To make life easier, there is a process to generalize some of
the signatures. For example, method System.Void System.Console::Write-

Line(System.String) is defined with substituted argument type System.Void

System.Console::WriteLine(?). This argument is matched later and can be
substituted by any type.

There are three special kinds of handlers. The AnalyzingMethodHanlder, the
IdentityHandler and the SemanticDescriptionsHandler. The Analyzing-

MethodHanlder inspects the CIL code of the method and simulates it using the
IntermediateCodeSimulator. This handler is used for the user-defined meth-
ods in which we are looking for the data flow. The IdentityHandler is used
as a fallback for AnalyzingMehtodHandler. Whenever a method is set to be
omitted or ignored (usually due to unsupported functionality or to prevent re-
cursion into library functions), we only propagate data flows from arguments to
return value when applicable using the IdentityHandler. The last is Semantic-
DescriptionsHandler, which handles a set of methods whose calls are very com-
mon in any code. Such methods are, for instance, various getters on all collections
from the standard library, their constructor methods, string operations or linq
operations. The documentation of the initial software project describes this han-
dler as one that ”...handles all methods, which should be analyzed by its semantics
and not by its CIL code...” [23].

The other six method handlers are called plugin handlers. They were de-
veloped as a part of an optional plugin and are not vital for the core of the
analysis, although the result graphs without those plugins are useless. They
can be included or excluded in the analysis as necessary. These plugins include
AdoNetHandler, EntityFrameworkCoreHandler or InputOutputHandler. Each
handles methods from a specific library or logical part of code. For example, the
AdoNetHandler operates on methods that expose data access services in the .NET
framework. The InputOutputHandler handles any file and standard output and
input operations such as System.Console.WriteLine(string).

In general, a handler accepts some source flows, performs some well-defined
action and propagates them into a sink. These sources and sinks are called end-
points. An endpoint represents the source or target, respectively, of data flows.
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They can be arguments, the receiver itself (the instance the method is called on) or
return values. Each handler can implement its own special endpoints, such as the
ConsoleOutEndpoint in the InputOutputHandler, to signalize some special, un-
common case. The propagation routine then carries the logic that is necessary to
perform for a given method. To see an example, let’s take a look at a handler reg-
istered for writing into a text writer in Listing 3.8. This handler operates on any
method with the signature of System.Void System.IO.TextWriter::Write(?)

with an arbitrary first argument. It gathers flows from the first argument, which
is the content to be written. Transforms it inside the InputOutputPropagation-
Routine.StreamWrite singleton. Finally, any outgoing flows are then transferred
to the receiver.

1 handler.AddHandler(Signature.Parse("System.Void

System.IO.TextWriter :: Write (?)"),

2 new IOFlowHandlerBuilder ()

3 .AllowCallbacks ()

4 .PropagationMode(InputOutputPropagationRoutine

5 .StreamWrite)

6 .PropagateFromArgument (1)

7 .PropagateToReceiver ()

8 .Build ());

Listing 3.8: Definition of a handler for the method Void TextWriter::Write(?)

that propagates flows from the first argument into the receiver via the
InputOutputPropagationRoutine.StreamWrite routine.

It is clear that it would be very tedious and unscalable to have a handler
for every single library method. Even the example in the Listing 3.8 would not
be very helpful as the method System.IO.Stream::Write is abstract and must
be overridden in every implementation. This is resolved by the process of how
handlers for methods are selected. Any encountered method call is first searched
by its direct signature as is. If no handler with such a signature is found, the
type the method is defined on is queried for ancestors, starting with interfaces
and then types. Adequately modified signature is tried to be found with each
ancestor type. This process is visualised in the flow graph in Figure 3.1. The
terms unused interface and unused type represent a type that was not used in the
algorithm cycle before. In other words, each type is tested only once.
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Figure 3.1: A flow graph of handler selection for encountered method. Terms
unused interface and unused type represent a type that was not used in the
algorithm.

It is important to mention two details. The process of handler selection is
sensitive to what is searched first — implemented interfaces or inherited types.
A method in C# can implement multiple interfaces. Therefore, the order in which
we process them may also influence the result. Another very important side effect
of this handler selection is that the order in which we search for handlers also
matters. Theoretically, two plugins may contain handlers for the same interface
method, resulting in a preference for the first plugin being processed. This is,
however, very unlikely as the purpose of the plugins is to handle methods specific
to some library or framework. In other words, they are as specific and specialised
as possible.
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Data Flow Creation

Now that we understand how the worklist algorithm analyses individual meth-
ods, we should discuss what it means that a data flow is created and how
exactly that happens. Suppose an arbitrary entry-point method that is ana-
lyzed by the AnalyzingMethodHandler. On instructions such as the ldc.i4.0

a ContstantExpression is created. This expression is then transformed into a
ConstantFlow on demand when it’s needed for the flow analysis. For simplifi-
cation, we can imagine that whenever a constant is loaded at some point in the
program, a ConstantFlow is created and propagated further. In other words,
if we get a constant from an argument and we use it to index into a database
column, this ConstantFlow is tracked and represents an edge from an argument
to the database query. There are over forty different kinds of flow classes. Simi-
lar to propagation routines and endpoints, plugins can create their own flows as
necessary to make abstraction easier.

Other flows are created inside the propagation routines. A good example of
this is writing into a file. Suppose a code snippet that opens a file and writes some
arbitrary text into it. This C# code snippet can be seen at Listing 3.9 together
with selected CIL instructions that are important for this example. Once the
AnalyzingMethodHandler tries to resolve the first call instruction, it finds an
InputOutputHandler with set FileStreamPathPropagationRoutine. We can
see the definition of this handler at Listing 3.10. The logic of its propagation
routine is to find all possible names from the flows in the zeroth argument and
create a new FilePathFlow, which is propagated into the return value repre-
senting the writer. Later, a callvirt instruction is encountered, and a different
handler is found. The definition of this handler is shown in the Listing 3.8. That
handler’s propagation routine finds all possible FilePathFlows, such as the one
created earlier, to determine which file is being written to. Then, it will create
a FileStreamFlow using the information about the file from the FilePathFlow

and content from the argument endpoint. This completes the complex analysis
of writing into a file. As a result, we are left with FileStreamFlow with the
required information about both the file and the content.

1 /*

2 IL_0000: ldstr "demo.txt"

3 IL_0005: call class [System.Runtime]System.IO.StreamWriter

[System.Runtime]System.IO.File:: AppendText(string)

4 IL_000a: stloc.0

5 ...

6 IL_000d: ldstr "sample text"

7 IL_0012: callvirt instance void

[System.Runtime]System.IO.TextWriter ::Write(string)

8 ...

9 */

10 using (System.IO.StreamWriter streamWriter =

System.IO.File.AppendText("demo.txt"))

11 {

12 streamWriter.Write("sample text");

13 }

Listing 3.9: C# code example of writing into a file with corresponding selected
CIL instructions.
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1 handler.AddHandler(Signature.Parse("System.IO.StreamWriter

System.IO.File:: AppendText(System.String)"),

2 new IOFlowHandlerBuilder ()

3 .PropagationMode(

4 InputOutputPropagationRoutine.FileStreamPath)

5 .PropagateFromArgument (0)

6 .PropagateToReturnValue ()

7 .Build ());

Listing 3.10: Definition of a handler for method StreamWriter File::Append-

Text(String) that propagates flows from the first argument into the receiver via
the InputOutputPropagationRoutine.FileStreamPath.

All flow data is gathered in a complex structure inside of the ProgramFlowData
class. The ProgramFlowData class contains flow data of the whole program. In its
field Methods, it keeps track of all flows associated with every expression for each
part of every method for each of the method’s invocation contexts. This structure
is visualised in Figure 3.2. It shows a simplified representation structure of how
individual data flows are stored for the whole program.

Figure 3.2: Diagram of how ProgramFlowData stores data flows for every part of
every method.

3.2.5 Analysis Result Transformer

The last important project, which is a little specific to the C# scanner, is the
AnalysisResultsTransformer project. Its purpose is to process the result of
the symbolic analysis and transform it into a serializable graph structure under-
standable by the DataflowGenerator project in Java. The raw output of the
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symbolic analysis is the ProgramFlowData class with a rather complex structure.
In order to simplify this structure and omit unnecessary data being serialized,
the AnalyisisResultsTransformer class was born. Another added benefit is
that now the interface is stable, and we can modify the ProgramFlowData class
as necessary without worrying about affecting external modules.

Symbol analysis result transformation is handled in the ResultsTransformer
class. It uses node separators that are specific for each type of node. The
FileStreamNodeSeparator class handles flows corresponding to read and write
operations in the program and creates nodes for them. The EntryPointsNode-

Separator class handles all various data flow entry points or exit points. Such
as fields, arguments, and return values, but also console input and output. The
separator searches for all relevant flows and determines their origin and, if ap-
plicable, any incoming edges. Finally, all nodes and edges are gathered in the
data class AnalysisResultsGraph, which is the main output of the transformer.
The graph is then serialized using protocol buffers, which is necessary to be able
to transfer data flow information further to the data flow generator, which is
implemented in Java.

3.2.6 Analysis Runner

Analysis Runner is the last project that glues all parts of the analysis together.
It prepares the context for the analysis. This includes creating a class hierarchy
and a call graph, collecting and registering plugin handlers in the correct order
and configuring the overall analysis context based on user configuration. Then,
it runs the symbolic analysis itself and transforms the result into a serializable
graph.

3.3 Analysis Life Cycle

Now that we understand all the individual parts of the scanner, we can take a
look at a simple example and use it to explain the analysis life cycle.

Usecase: User Survey

Let’s start with a real-life scenario, which we will simplify for the purpose of this
thesis and use to explain the analysis. Suppose we gather potential customer
data via a survey where customers fill out forms with details and can sign up for
a newsletter. This information is serialized into a flat file. We have an automated
job that validates this information for each respondent, anonymizes the personal
details, and creates a record in a database used for sending newsletters and a
database with the rest of the gathered data. Suppose we also want to inform
users who have not completed their profiles and can not join the newsletter.
Information about these customers is serialized into a separate file which is then
processed by another job. We can see this process on a diagram in Figure 3.3.

The highly simplified code snippet that represents the implementation of this
process in Listing 3.11. Implementation details, such as reading user data from
file or database queries, are ignored and hidden behind their respective method
calls. This code first connects to both databases it will be working with. Then,
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it reads the data from the survey, filters incomplete profiles and reports them in
another file. The next part is filtering user profiles subscribed to the newsletter
and saving them into a special database. Finally, data is anonymised and inserted
into another database.

1 var NewsletterDB = GetNewsLetterDatabase ();

2 var DataDB = GetSurveyDatabase ();

3

4 var surveyData = ReadAllUserDataFromFile("survey_data.csv");

5

6 var validatedData = ValidateAndSave(surveyData ,

"incomplete_profiles.csv");

7

8 AggregateNewsletterAndSave(validatedData , NewsletterDB);

9

10 AnonymiseAndSave(validatedData , DataDB);

Listing 3.11: Code snippet representing implementation of use case with user
survey processing. This code snippet hides implementation details in method
calls.

Figure 3.3: User survey processing diagram that validates user data, saves in-
complete data into a flat file, saves newsletter to users that opted in and saves
anonymised survey data into a database.

We will get a very simple graph if we think about the data lineage in this use
case. We can see such a graph in Figure 3.4 generated by the Manta software. It
only contains one input file read node with the input file, one node for processing
with three output edges that lead into two separate databases and one flat file.
There is one more transition block with details about the queries.

Before we dive into the analysis life cycle, it is worth mentioning some interest-
ing insights that are not very obvious at first sight. In general code, information
about a database we are operating with is gathered in one place, but operations
on this database are performed somewhere else. This is usually the case with
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files as well. We must keep track of this information and use it later on action
calls upon these databases and files. Even though our diagram in Figure 3.3 has
three different processing cells for each row number 6, 8 and 10 of the program
in Listing 3.11, the final produced graph has only a single node with three cells
and three output edges. That is because, from the data lineage point of view, the
place of processing itself is not as important. It may all happen inside one method
or in separate calls, as it is in our use case. Data flows into the called method
(e.g. AggregateNewsletterAndSave), where it gets saved into a database (that
is a valid data flow) and then back to the caller for further processing.

Figure 3.4: Generated data lineage graph of a user survey processing use case
3.11.

The Life Cycle

The input for the analysis is some console application with its source code shown
in Listing 3.11. The first part of the analysis is the extractor scenario. That begins
in the Java part of the program inside the manta-connector-csharp-extractor.
The ExtractorScenario obtains extractor configuration from a bean and serial-
izes it into a file. Then, it calls the CSharpApplicationRunner from the manta-
connector-csharp-runner package. It sets up arguments for the C# part and
invokes it in a different process. From here, we enter the part implemented in C#,
and the C# console application CSharpScanner is executed. The provided CLI
arguments direct the execution further into the extractor part. The individual
steps are:

1. create analysis configuration,

2. extract entry points from all input files,

3. serialize analysis and entry point configuration into a file.

The analysis configuration is for the reader, the second scenario. It simply
gathers information about excluded namespaces and directories containing input
for the analysis. The entry point extraction is also fairly simple. It first creates a
class hierarchy from source metadata and filters methods that satisfy some entry
point conditions. For example, the console application entry point must be a
static public method called Main. It must satisfy more conditions enumerated in
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the documentation [28]. Once it finds all entry points, they are serialized into a
file together with the configuration. This concludes the extractor scenario.

The second scenario to be run is the dataflow scenario. Like the extractor one,
this starts in Java inside the manta-connector-csharp package, where just CLI
arguments are prepared and then in manta-connector-csharp-runner, the C#
part is invoked in an extra process. The CSharpScanner recognizes the dataflow
scenario and executes the Connector. The steps of the connector are:

1. deserialize configurations and entry points,

2. to create an input for symbolic analysis,

3. prepare static analysis context with class hierarchy and call graph,

4. collect plugin handlers and initialize them,

5. perform alias analysis,

6. using the worklist algorithm it analyses the entry points,

7. transforms the result into a serializable graph and writes it into a file.

The deserialization and creation of input for symbolic analysis happen still
inside of the Connector class. Then, we move into SymbolicAnalysis, where
we initialize the class hierarchy and the call graph. After that, method plugin
handlers are gathered and initialized based on the provided configuration. We
may want to explicitly ignore some, such as handling console input and out-
put. What’s left is the analysis itself. Alias analysis is initiated, but since it is
evaluated lazily, the work is done later. The provided entry point acts as the
beginning of the worklist algorithm. Once the analysis reaches a fixed point, the
AnalysisResultsTransformer class creates nodes and a graph containing only
necessary information for data flow. This graph is serialized, and we return back
to the Java part. Here, the data flow generator calls a query service if it is neces-
sary to resolve some database queries. After everything is done, we are left with
a graph that can be used in further scenarios for visualisation or export.

3.4 Current Limitations

The current C# scanner is already capable of analyzing non-trivial programs.
However, very often, those programs are cherry-picked or fine-tuned. Sometimes,
only small scanner fixes are required to serve an edge-case scenario. Sometimes, it
requires completely new features. The focus of feature development often changes
because the scanner features are developed based on stakeholders’ requirements
and not by a pre-defined list or specification. This brings in several limitations.
One is that what is important to one stakeholder may not be to others. This
results in some half-baked solutions. For example, one part of a framework that
is required by some stakeholders gets implemented, but the rest of the framework
is omitted as it is not deemed necessary. An example of this is a comprehensive
refactoring of the dataflow generator performed by the team responsible for the
bytecode scanner. This refactoring altered C# scanner behaviour because some
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magic constants were previously used to mark lineage from unknown database
columns. These constants were removed and replaced with a proper abstraction
in the Java part of the dataflow generator. Magic constants were left in the C#
scanner, resulting in invalid lineage in some special cases. Another good example
is tied to the C# language itself. In most cases, it is not required to differentiate
between some language constructs, such as classes and enums. As a result, enums
are considered to be a regular class, just like any other.

The entry point extraction is another limitation of the current C# scanner.
Currently, only the standard console application entry point is considered. Look-
ing at other entry points, such as web endpoints, is much more interesting for
many applications, especially web applications. In other cases, we don’t want to
analyse a C# program at all but just a snippet of code written in C#, which is a
part of other technology. This is called an embedded code. Stakeholders use the
possibility of embedding custom code snippets into other technologies fairly often.
That means that even though they do not directly use the C# scanner, perhaps
some other technology, such as SSIS, they would use the scanner indirectly. C#
scanner currently has no capability to analyse any embedded code, let alone be
used as an embedded code analyser service from within other scanners.

Another major issue for the C# scanner is its performance. Some inputs take
tens of hours to finish the analysis. One of the issues is that unnecessary data
is dragged throughout the analysis without any impact. A good example is any
output operation. For example, writing into the console output never propagates
any data flow further, yet it is now tracked as a flow and checked throughout
the whole analysis’s life, slowing down the analysis as a result and enforcing
bigger memory constraints. There are some known improvements that could be
implemented. These improvements were deployed to the bytecode scanner and
proved worthy. Other bottlenecks will have to be found and analysed before
implementation.

31



4. Requirements and Analysis

In this chapter, we will dive deeper into individual improvements and issues solved
in the scope of this thesis. To do that, we split them into two different categories.
One category is for goals and requirements set by stakeholders. The other is set
by addressing the technical debt of the codebase. We will analyse them in more
detail.

4.1 Stakeholder Requirements

The main source of feature requests and bug reports are stakeholders themselves
since Manta has a customer-first ideology.

4.1.1 ASP.NET Endpoints

One of the requirements is to enable the analysis of web applications written in
ASP.NET [12]. A generic web application written using the ASP.NET framework
is a regular console application with the Mainmethod entry point that is executed.
The framework itself takes care of correctly handling the web endpoints. If we
think of data flow analysis with the Main method as an entry point, we either
get into a very complex analysis of the framework functions or ignore them and
do not get any lineage at all. In order to get lineage from the web endpoints, we
have to consider them as entry points of the analysis. ASP.NET web APIs can
be implemented in two very different ways. We can either go with a controller-
based approach where each controller is a class with individual endpoints. This
class has to satisfy some special requirements in order to be registered by the
framework. The other approach is calledMinimal APIs. They are simple lambdas
or methods. The design hides the host class and focuses on extension methods
that take those lambdas or functions as an argument. It is important to note that
these two approaches are not equivalent. The minimal APIs do not yet support
some capabilities [29], such as but not limited to:

• no built-in support for validation,

• no built-in support for model binding,

• no support for application parts or the application model.

Most of these perform some modifications and configuration of the ASP.NET
framework. Details are unimportant for the scope of this thesis. A low-code
ASP.NET application with minimal APIs can be seen in Listing 4.1. It con-
sists of an app builder that returns "Hello World!" on GET request to the
base_url/HelloWorld. The web endpoint is defined on line 35. In the com-
ment, we can see part of the metadata as visualised by the Rider IDE. This
metadata was simplified for the purpose of this example. First, we can see that
there is a new class <>c generated by the compiler, as we can see by the cus-
tom attribute CompilerGeneratedAttribute and its illegal name. This nested
class contains the method <<Main>$>b__0_0. This is our lambda function from
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line 36. The term for such methods is anonymous method. It also contains the
static delegate <>9__0_0, which is assigned the mentioned method on initializa-
tion. The metadata snippet also shows part of the CIL of the Main function.
Specifically, we can see the opcodes for loading the first local variable (the app),
then sequentially loading arguments of the call: the string "\" and the dele-
gate to our compiler-generated lambda function. It is not always the rule that
the second argument, the delegate, is a compiler-generated method that can be
found in a specific compiler-generated class. That is because we can create a
local function manually, and it also gets compiler-generated sugar and name.
This function, however, lives inside the class it is defined at. This difference in
generated CIL of anonymous methods and local functions exists because of the
original intention, backwards compatibility and design as described in this Stack-
Overflow question [30]. To fan the flames, not all compiler-generated functions
in the before-mentioned class have to act as web endpoint lambdas.

In conclusion, to support loading the correct method as an entry point in our
analysis, we would have to analyze all app.MapGet calls and their equivalents like
MapPost. From there, we will look at the last argument and use the delegate’s
method as an entry point. It is important to note that we do not really care what
type of HTTP method is analysed, nor what its name is. Those characteristics
are irrelevant to the data lineage.

1 /*

2 .class nested private sealed auto ansi serializable

beforefieldinit

3 '<>c' extends System.Object

4 {

5 .custom instance void System.Runtime.CompilerServices

6 .CompilerGeneratedAttribute ::. ctor()

7 .field public static initonly class Program/'<>c' '<>9'

8 .field public static class System.Func ̀1<string > '<>9__0_0 '

9

10 ...

11

12 .method assembly hidebysig instance string

13 '<<Main >$>b__0_0 '() cil managed

14 {

15 ldstr "Hello World !"

16 ret

17 }

18 }

19

20 ...

21

22 .method private hidebysig static void

23 '<Main >$'( string [] args) cil managed

24 {

25 ...

26 ldloc .1

27 ldstr "/"

28 stsfld class System.Func ̀1<string >

Program/'<>c'::'<>9__0_0 '

29 call class

Builder.EndpointRouteBuilderExtensions :: MapGet(class

IEndpointRouteBuilder , string , class System.Delegate)
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30 ...

31 }

32 */

33 var builder = WebApplication.CreateBuilder(args);

34 var app = builder.Build();

35

36 app.MapGet("/HelloWorld", () => "Hello World!");

37

38 app.Run();

Listing 4.1: Low-code ASP.NET application with minimal APIs.

The same web API defined using the controller approach is in Listing 4.2.
Things are much more simple here. We can see the metadata in the comment.
From the Microsoft documentation [31], we know that a controller must extend
the ControllerBase. For its methods to be considered action methods, they must
be public and either follow the naming convention of having the correct HTTP
method prefix (GET, POST, PUT, etc.) or have a specific attribute specifying
the HTTP method [32], among other requirements for the method itself [33]. We
can see this attribute in the code snippet. The important thing is that we can
get all this information from the metadata without analysing the CIL as it is
with the minimal API approach. Since we need to check all methods to see if
they satisfy those conditions, analysing the CIL would nontrivially slow down the
extraction process with minimal results, as web APIs are generally uncommon.
The minimal API approach is also less common. None of the stakeholders use
it. Due to those reasons, it was decided that the extraction of controller-based
endpoints was sufficient.

1 /*

2 .class public auto ansi beforefieldinit

3 APIWithControllers.Controllers.HelloWorldController

4 extends Microsoft.AspNetCore.Mvc.ControllerBase

5 {

6 .custom instance void

Microsoft.AspNetCore.Mvc.ApiControllerAttribute ::. ctor()

7 .custom instance void

Microsoft.AspNetCore.Mvc.RouteAttribute ::. ctor(string)

8 ...

9 .method public hidebysig instance string

10 Get() cil managed

11 {

12 .custom instance void

Microsoft.AspNetCore.Mvc.HttpGetAttribute ::. ctor()

13 ...

14 }

15 }

16 */

17 [ApiController]

18 [Route("[controller]")]

19 public class HelloWorldController : ControllerBase

20 {

21 [HttpGet]

22 public String Get()

23 {

24 return "Hello World!";

25 }
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26 }

Listing 4.2: Low-code ASP.NET controller.

4.1.2 Embedded Code Service

Another requirement that comes directly from stakeholders is using the C# scan-
ner as a service to analyse embedded code in different technologies. A lot of
Extract-Transform-Load (ETL) technologies allow users to define custom oper-
ations outside of the standard toolset. Should that be a special kind of trans-
formation or special input or output. Such technologies are, for example, Azure
Data Factory (ADF ) or SQL Server Integration Services (SSIS ). Manta already
has scanners for both of these technologies. The goal is to extend the C# scanner
to be ready to be used as a service from said scanners, analyze C# code snippets,
create a graph and report this graph to the source technology (ADF or SSIS).
The source technology will then merge the graph with its generated graph. This
service should be reusable for multiple embedded code snippets throughout the
analysis cycle. There is already a similar service that is used inside of the dataflow
generator — Query Service. This service is used to resolve SQL queries. Just like
embedded code, SQL queries are used in multiple technologies, and it does not
make sense to implement the resolver again every time. There is an existing em-
bedded code service for the Python programming language, which was developed
in 2023 as a part of a Master thesis by Michal Jurčo [34]. We can use this service
as a starting point for the solution of most problems. The service was designed
to be a blueprint usable for other language scanners as well. In fact, the service
used a lot of ideas from the query service itself.

We have to ensure a few things for the scanner to be suitable as a service.

• The input for the C# scanner is supported.

• We can get all the necessary information from the source technology for the
analysis.

• The expected output can be merged into the source technology’s graph.

This translates into several requirements:

• The input for the C# scanner must be compiled C# code — CIL.

• We must be able to detect the entry point statically, i.e. it must not require
reflection.

• Any additional input from source technology is serializable.

• The output is serializable.

A decent analysis of ETL technologies can be seen in the master thesis by
Michal Jurčo [34]. However, the key points demanded by stakeholders are missing.
Let’s look closer at three technologies utilizing embedded C# code that are the
most relevant for the purpose of C# scanner in terms of demand.
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Azure Data Factory

According to the Microsoft documentation, the Azure Data Factory, or ADF,
is ”the cloud-based ETL and data integration service that allows you to create
data-driven workflows for orchestrating data movement and transforming data at
scale.”[11]. ADF supports so-called custom activities [35]. The activities can
actually be any program executable on the target operating system of respective
Azure Batch Pool nodes. This is partially possible thanks to the generic way data
is transferred to the custom activity. Any data or information that could be of
use is serialized into a JSON document and must be deserialized in the custom
activity. If we want to pass some output from the activity for further processing,
it must be serialized into a JSON document again. Standard and error output are
saved into a special service inside of the ADF. In the context of the C# scanner,
this means that the embedded code is a standard console application without any
additional complexities.

SQL Server Integration Service

SQL Server Integration Service, or SSIS, is another platform for data integration
and transformation. In the SSIS graphical user interface, users can set up complex
pipelines using so-called components. These components serve different purposes
that can be used in an integration service.

• Task — Perform a predefined unit of work.

• Connection Manager — Connect to external data sources.

• Log Provider — Logging.

• Enumerator — Iterating over objects.

• Data Flow Component — Sources, transformations or destinations.

All these components were mentioned in the thesis by Michal Jurčo. There was
an example of a source component, but some important details were missing. One
missing detail is that there are multiple versions of tasks — Data Flow Tasks,
Data Preparation Tasks, Workflow Tasks, etc. [36]. Another detail is that users
can define custom data flow objects, tasks and script tasks. Data flow objects are
the connection managers, log providers, etc. Tasks are actions performed on each
row of data. Finally, a script task is an action performed only once per object.

The way these are implemented differs as well. Data flow objects and tasks
must implement some special interface or an abstract class in order to be valid
and usable [37] [38]. On the other hand, script tasks use specially generated
partial classes that are handled internally by the SSIS [39]. That means there is
no need to implement a special interface.

In the context of embedded code service, this means we must ensure a correct
entry point is extracted. For custom data flow objects and tasks, we must look
for classes that implement relevant abstract classes or interfaces and use relevant
methods as entry points. Script tasks always reside in the same class, as it is
partial implementation. The entry point method is also always the same.
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Any incoming and outgoing data is saved in objects accessible via the Dts

object from the Microsoft.SqlServer.Dts.Runtime namespace. For example,
any variables are stored in the Variable property of Dts. In SSIS, they are
set up in two different modes: ReadOnlyVariables and ReadWriteVariables.
During analysis, we have to be able to access those variables. A perfect way
to handle such methods is to implement a new method handler plugin. In this
case, it would be a plugin specific for SSIS operating over methods from the
Microsoft.SqlServer.Dts.Runtime namespace. If we encounter a getter for a
variable, some handler will create a new flow based on the variable. The issue of
accessing the values of this kind of data still remains. Should the variable contain
a connection to some database, we need access to the value that can be passed to
the query service. A similar problem was encountered in the Python embedded
code service. We discuss this later in this section.

Microsoft SQL Server

Microsoft SQL Server is a relational database management system. Users can
define so-called CLR user-defined functions and types. Types are unimportant
from the data flow point of view. They are only an abstraction. Functions further
differentiate into scalar-valued functions, table-valued functions and aggregates
[40]. This differentiation is solely formal. They first have to be defined in SQL
with all necessary details about the assembly and function signature. This com-
pletely solves the entry point extraction. The body of the methods is an arbitrary
method which can be analysed.

Input

An important note is that all three technologies require the embedded code to be
compiled into CIL. This is a crucial detail because the C# scanner can analyse
only CIL, not the source code directly. This is a rule, not an exception, because
the source technology would have to include a compiler. An entry point is always
well-defined and can be analysed statically.

Suppose an example of a simple transformation on an arbitrary database
column that propagates the data into two newly created datasets. This could be
a custom task in SSIS. The embedded code graph must have one incoming edge
from the outside. This edge should come from the source column node. At the
embedded code service, we do not have this node nor any information that it
even exists. We need to transfer additional information into the service.

Insight and Outsight

Apart from the code to analyze and the graph on output, we may need to transfer
some additional information. In the SSIS technology, we have access to variables
that may hold crucial information for the analysis. These variables can be passed
into the embedded code. This works the other way as well. Some crucial data may
be generated in the code and written into variables. In the source technology, we
need a way to observe the new data. A very good solution for this in the Python
embedded code service is called Insight and Outsight. It was not a part of the
thesis by Michal Jurčo, but it is described in great detail. The naming is from the
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source technology point of view. Insight provides a way for source technology to
look at data coming from the embedded code, whereas outsight provides a way
for embedded code service to look at data incoming from the source technology.
The implementation in Python embedded code service utilises a kind of observer
design pattern where the source technology implements its own insighter and
outsighter. These two classes record any interesting operations and materialize
them into insight or outsight on demand. The key point in its implementation
is that the entire codebase is written in Java. The source technology can easily
share an implementation of these observers with the service. The C# scanner is
implemented in C#. We can either create an interop between those two languages
or force source technology to implement the observer in C# and have it report
everything and serialize it. The latter is a much simpler solution and in the
context of such a massive product, having the C# scanner itself launched as an
external process without interop, it does not make sense to implement any kind
of interop.

Output

The output of the embedded code service is the graph itself. Its serialization is
possible. Let’s again suppose an example from above. Simple transformation on
an arbitrary database column that propagates the data into two newly created
datasets. Thanks to insight and outsight, we can now carry additional information
about the database column. How do you use it to merge the embedded code
graph with the source technology graph? We could implement a special node
for each technology. Similarly to the insighter and outsigher, this would be the
responsibility of the source technology. Such nodes would carry all the necessary
information required to successfully connect edges from source technology to the
embedded code and back. This approach is naive and hard to maintain. We can
instead use the already existing infrastructure of insight and outsight to carry
necessary information about edges. Simple dummy node facilitating inputs or
outputs of the embedded code graph. This node is called a pin node. This
abstraction was also described in great detail in the thesis by Michal Jurčo.

Merging of the two graphs is reduced to simple mapping of edges. Output
edges from an input pin node to nodes of the embedded code graph. Input edges
of all output pin nodes into their respective nodes in the source technology, if
they exist. This process is visualised in Figure 4.1. The embedded code graph
contains one input pin node with two outgoing edges into two dataset nodes.
The source graph, on the other hand, has one output pin node with an incoming
edge from a database. These two pin nodes are, in fact, the same. The process
is about eliminating the pin node and replacing the edges with their contracted
alternatives. The information about what should be pinned where is carried in
the insight and outsight and shall be gathered in the method handler plugins for
each respective source technology.
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Figure 4.1: Merging of embedded code graph with the source technology graph
using pin node. Figure taken from thesis by Michal Jurčo [34].

Conclusion

Based on a deeper analysis of the source technologies that may use the embedded
code service, we understand that the design of the current Python embedded code
service is sufficient for the C# embedded code service as well. There is one ex-
ception to the rule. The service was designed so that each programming language
should implement its own version in contrast to one super service operating on
all languages (Python, C#, Java, etc.). The thesis states a common interface for
the service. This is currently non-existent, presumably by accident, because it is
dependent on a part of the Python scanner. With that being said, it is important
to state that this is not an issue for the C# embedded code service, as it is written
in a completely different programming language and is separated from the rest
of the codebase. As a result, all of this infrastructure must be duplicated on the
C# part of the codebase.

Another thing is that the insight and outsight must be serialized and also
duplicated on the Java and C# part of the codebase. This should be an imple-
mentation detail of the service. The API of the service should match the one
designed for the Python embedded code service.

The design for embedded code services and its interaction with source technol-
ogy set by Michal Jurčo in his thesis [34] can be seen in Figure 4.2. As discussed,

39



this design is insufficient for the C# scanner. For the embedded code service,
we must create the class CSharpEmbeddedCodeService. Its input is the code to
be analysed (CIL) and other source-technology-specific information. The service
first performs orchestration. This is again specific to each source technology. Note
that the orchestration includes running the extractor, which may not be obvious
at first. In our case, the two most interesting technologies are ADF and SSIS,
as discussed. The orchestration was designed to be performed only before the
analysis of the code. Since running the C# scanner requires an interop between
two languages and data serialization, post-analysis orchestration (i.e. deserial-
ization) is required. This implies that everything must be performed eagerly. In
comparison, the Python embedded code service utilizes exposed API from the
source technology because everything is implemented in Java and evaluates as
much data as possible lazily.

Each source technology is somehow unique. Some additional helpers and
classes must be implemented for a source technology to use the embedded code
service. Such helpers are:

1. an insighter,

2. an insight,

3. an outsight,

4. an orchestrator,

5. a configuration.

An insighter is a helper that materializes the insight. Insight should be gen-
erated lazily on demand to restrain unnecessary computation. Throughout the
analysis, events that alter the insight are collected by the insighter. This is im-
possible because any interaction between Java and C# is impossible or tedious.
An insight must be fully generated and serialized before the CIL code analysis
is finished and later deserialized in Java and used as necessary. The outsight is
generated by the source technology. The outsight must be serialized as well. The
orchestrator’s job is to prepare the input for the analysis. It includes running the
extractor, serialization and any other additional configuration setup. Configura-
tion for embedded code may differ from the one for regular programs. The only
change in the embedded code service design is that there is a second round of
orchestration after the connector run. This post-orchestration deserializes insight
and makes it available for the source technology.
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Figure 4.2: General design of an embedded code service.

4.2 Addressing Technical Debt

The second group of goals and requirements comes from the existing technical
debt. As stated before, the scanner was developed in iterations, mainly as a
university-related project. This resulted in some technical debt that had to be
addressed in order to clear the scanner of inefficient approaches and unnecessary
technology complexity. Most of the addressed issues were discovered while testing
edge case scenarios. Some of them were also encountered in other scanners, and
their solutions improved the scanner overall.

4.2.1 Unknown Column Support

As a part of an extensive refactoring performed by other teams using common
infrastructure with the C# scanner, the dataflow generator part was modified.
This resulted in some scenarios failing completely. One of the reasons is the
refactoring of how unknown columns are tracked. In most cases we are unable to
tell exactly what is the index or name of the column we are querying. Take the
code from Listing 4.3. We access some column args[1]. Currently, the scanner
differentiates two types of columns: indexed and named, characterised by their
index and name, respectively. In case this characteristic is unknown, some special
magic value of -1 or an empty string is used as its index and name, respectively.
In fact, even if an enumeration of a query or some scalar query is executed,
such as SELECT COUNT(*) FROM USERS, an indexed column with an index of -1
is created.
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1 using (var connection = new SqlConnection(args [0]))

2 {

3 connection.Open();

4 var cmd = new SqlCommand("SELECT * FROM USERS", connection);

5 var reader = cmd.ExecuteReader ();

6 while (reader.Read())

7 {

8 Console.WriteLine($"User: {reader[args [1]]}.");

9 }

10 }

Listing 4.3: Query from an unknown named column.

We have to implement an abstraction of an unknown column that will be
used in scenarios where the index or name is unknown. This abstraction should
follow concepts set by indexed and named columns and shall be used only in
cases where the column is unknown. The enumeration of database queries is also
a valid reason to use an unknown column. If it is unknown, we have to defensively
anticipate any of the possible columns.

It is debatable whether scalar queries should be tracked in the first place.
Scalar information from a query of some databases does not propagate any con-
crete data as it is generally understood. If we look at a graph in Figure 4.3, that
would be generated in case of an unknown column query (or enumeration over all
columns) as well as an arbitrary scalar query. Suppose both queries are executed,
and their result is written into a file. In both cases, the graph contains a node
with an SQL statement and an output flow into a stream and file. On the other
hand, this information may be vital for some use cases. Even scalar statistics of
some data may say a lot about it. We have three different ways to resolve this
issue:

1. Use an unknown column for any scalar query.

2. Create a special abstraction for scalar values.

3. Use the named column with the name being the scalar value queried.

The first approach is straightforward and does not require deep changes to
the current system. We only have to ensure that any scalar query is eventual-
ly represented as an unknown column. This approach neither requires further
changes in flow abstractions that are propagated throughout the analysis as they
are already supported. The downsight is that the graph information is somewhat
inaccurate.

The second approach requires a new abstraction, just like for the unknown
column. On one hand, the information would be accurate, but extensive changes
affecting other scanners would be required. We would be practically left with the
same situation as in the beginning but at a different scanner since they do not
support scalar queries but have a different way of representing it.

Finally, the last approach means using existing abstraction for the wrong pur-
pose. Just like now, an indexed column is incorrectly used for unknown columns.
Using a named column for scalar values would be incorrect. Similarly to the first
approach, not many changes would be necessary.
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Figure 4.3: Screenshot of a Manta data flow graph with a lineage of a program
executing a scalar query and writing the result into a file.

With those constraints in mind, together with the fact that other scanners
represent scalar queries as unknown columns as well, it was decided to use the
first approach.

4.2.2 Method Summary

A part of this thesis is to enhance the performance of the scanner. We aim to
implement several techniques that were, to some extent, already implemented in
other scanners. One such improvement is the introduction of the method sum-
mary. Throughout the analysis, we encounter a lot of situations that eventually
create output nodes. A simple example is Console.WriteLine() call. During
the analysis, we create a console data flow that indicates the writing operation
to the output. We propagate this flow throughout the analysis, validating and
checking this flow any time we want to change the flows. The only purpose of
this flow is to eventually become a console output node. This flow will not create
nor update any other flows because of its nature. On the contrary, the method
Console.ReadLine() generates a flow that must be propagated further through-
out the analysis to map the flow of the data read. The goal is to mark output
flows in a summary of the analyzed method, hence the name Method Summary.
This summary will carry information about all flows that eventually create out-
put nodes and do not contribute anyhow to the rest of the data flow analysis.
Such flows are console output flows and file write flows.

Upon further analysis of the codebase it is discovered that method sum-
mary can be used for further improvements in the final part of the analysis.
When the result of the symbolic analysis is transformed into a graph within the
ResultsTransformer class, it is searched for all flows in all methods in all of their
invocation contexts. These flows are then filtered one by another by their type
and, if applicable, transformed into a node. The method summary can be used as
a cache for those interesting flows. We can effectively remove one iteration loop
using the method summary. We search in all methods in all of their invocation
contexts, which is the minimum we can do to provide complete lineage.

Another insight from further analysis is that determining flow origins can be
simplified. Once the flow that will create a node is found (when iterating over all
flows of all invocation contexts of all methods in the ResultsTransformer class),
its origin must be found. That is done by iterating over a map of all callers
from the flow’s invocation context and then filtering the one caller with the same
invocation context as the method being processed in the current iteration of the

43



transformation. This complex querying and comparison consists of computing
multiple hash-codes as everything is saved in dictionary-like data structures. It
was discovered that non-trivial time is spent computing those hashes. The im-
provement is surprisingly straightforward. Since the origin is naturally known at
the flow creation, we can use that location instead.

4.2.3 Wrong Method Handler Selection

Method handler selection is another feature deficiency discovered by use case
scenario analysis and testing. Suppose the following scenario in Listing 4.4. An
interface IAnimal and two classes Dog and Cat implementing said interface. Let’s
suppose we have three method handler plugins: an animal plugin implemented in
the AnimalPlugin class, a dog plugin implemented in the DogPlugin class and
finally, a cat plugin implemented in the CatPlugin class. They are registered
in order AnimalPlugin first, DogPlugin second and CatPlugin last. Let’s also
suppose that:

• AnimalPlugin has a handler for method void IAnimal::DoSound(),

• DogPlugin has a handler for method void Dog::DoSound(),

• CatPlugin has a handler for method void Cat::DoSound().

1 interface IAnimal{

2 public void DoSound ();

3 }

4

5 public class Dog: IAnimal {

6 public void DoSound () {

7 Console.WriteLine("Bark");

8 }

9 }

10

11 public class Cat: IAnimal {

12 public void DoSound () {

13 File.WriteAllText("WriteFile.txt", "Meow");

14 }

15 }

Listing 4.4: C# example of simple classes implementing an interface.

Currently, the search for method handlers is in a depth-first-search (DFS)
manner1. If a call of void Cat::DoSound() is encountered, it is searched for a
direct handler of the method in the plugins in order they are registered. Starting
with the AnimalPlugin. There is no such handler. Now, instead of searching
for direct implementations in other plugins, it is searching for handlers of the
interface override2 of the method. The method is contracted from the IAnimal

interface. Therefore, we look for void IAnimal::DoSound() method handler in
the same plugin. There is one in the AnimalPlugin class. We use this handler

1It is first iterated over all possible overrides of the method before considering the next

plugin.
2It is not actually an override as the inheritance is in a reverse direction.
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and consider this call to be processed. It is easy to see that this is not correct.
The desired handler is in the class CatPlugin.

This process of searching for a correct handler in plugins is visualised in a
sequence diagram in Figure 4.4. We can see three plugins registered in order
PluginA, PluginB and PluginC. When searching for a method from class Class
that implements an interface Interface with a contract for a method Method, we
first look for the class method handler in PluginA. If nothing is found, we look
for the interface method handler in PluginA. If nothing is found, we continue
searching through other plugins in this manner.

Figure 4.4: Sequence diagram of a search for method handler in a depth-first-
search manner.

The correct approach is to search for handlers in a breath-first-search manner.
First, iterate through all plugins to look for direct handlers of a method and only
then look for overrides 3 of the method. In our example, we would look for a
direct handler in the AnimalPlugin class, then DogPlugin class and finally in
the CatPlugin class. We would find the correct handler in the last plugin. A
generalized example can be seen in Figure 4.5.

There is a concrete application in the scanner. Enumeration is by default han-
dled in the semantic descriptor handler (registered as the first handler), which
handles most of the default calls such as System.Collections.IEnumerator

System.Collections.IEnumerable::GetEnumerator(). This is called in ev-
ery for-cycle. Database query enumeration overrides this call. The method’s
signature is System.Collections.IEnumerator System.Data.Common.DbData-

Reader::GetEnumerator(). The handler for this method is registered in the
ADO.NET plugin, which is registered only as a second handler. This is a more
specific signature, as it is an override, than the one in the semantic descriptor. It

3It is an opposite override because we start with overrides and continue with original defi-

nitions of the method.
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Figure 4.5: Sequence diagram of a search for method handler in a breath-first-
search manner.

will never be triggered as this call is always resolved before even considering the
second plugin.

It is good to mention that even this approach has its limitations. C# language
allows a class to implement multiple interfaces. A class can also implement an
interface and inherit from a different class. This means that the order in which
method plugin handlers are registered matters. Suppose a class that implements
two interfaces contracting a method with the same signature. If there were two
different plugins with method handlers for each interface, the one registered first
would always get selected. It is easy to see that it is unclear which plugin is
correct. Fortunately, this situation should not happen as it is a bad design by
nature. Plugin handlers tend to be very specific and always differ, at least in the
namespace, as we can see in the example with enumeration.

4.2.4 Multiple Handlers on Single Call

Another issue with handler selection is that multiple handlers are selected and
invoked for a single virtual call. Suppose a class hierarchy from the Listing 4.4
again. We have an interface IAnimal with a method doSound and two classes
Dog and Cat that implement the interface. Suppose two method plugin handlers:

• PluginA handles method void IAnimal::DoSound().

• PluginB handles methods void Dog::DoSound() and
void Cat::DoSound().

We can see this situation visualised in Figure 4.6. Suppose a code snippet in
Listing 4.5. Instances of Cat and Dog classes are initialized, a random instance is
assigned to a variable a, and finally, a DoSound method is called on this variable.
The last call is compiled into a virtual call instruction of a method with signature
System.Void IAnimal::DoSound(). What handler should be used for this call?
This is resolved in two steps.

1. It is searched for all potential method targets of the virtual call. That
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Figure 4.6: Diagram with two classes implementing a common interface and two
plugins with handlers for those methods.

means all suitable method overrides must be found using the Rapid-Type
analysis (RTA).

2. These method targets are then tested to see if some handler that would
handle them exists.

The starting points for the RTA are the type of the virtual call itself and then
suitable instantiated types. The RTA searches for overrides in the derivates of
the current class.

The type of the virtual call is IAnimal. There is a handler in the plugin
A. Then, all possible implementations and overrides are analysed. Those are
Cat::DoSound() and Dog::DoSound(). There are handlers in plugin B for them.
After this, instantiated types are tested. Cat and Dog. Their respective handlers
from plugin B were already used. This translates into important insights:

1. RTA must consider the type of the virtual call itself.

2. Every suitable handler found along the way of the class hierarchy is used.

1 Cat c = new Cat();

2 Dog d = new Dog();

3

4 Animal a = getAnimal (); // returns cat or dog randomly

5

6 a.DoSound ();

Listing 4.5: Example of a situation where multiple method handlers get selected.

This second point is an invalid behaviour. Only the most specific handler
should be used. A real-life example is a virtual call for scalar query execution.
Whenever a method Object Common.DbCommand::ExecuteScalar() is called on
an instance of SqlClient.SqlCommand4 class, two different handlers are invoked.
One handler for the method on type SqlCommand and a different handler for the
method on type DbCommand. Note that the class SqlCommand is a derivative of the
class DbCommand. This results in imprecise graphs because only the most specific
method should be considered. The solution is only to consider the leaves of the
class hierarchy tree in the RTA.

4Part of a namespace was ignored for clarity.
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Figure 4.7: Diagram with three classes implementing a common interface and
two plugins with handlers for some of those methods.

First, we will prove that the first insight is, in fact, a correct behaviour.
Assume only handlers for methods in the leaves of the class hierarchy tree are
considered. Assume also a third class Bird implementing the IAnimal interface.
No additional changes in plugins and handlers are made. This situation is in
Figure 4.7. The code snippet stays the same as well. The only change is that the
getAnimal() function now randomly returns any of the three. If the algorithm
did not consider the type the call instruction is called on, e.g. IAnimal in this
case, we would never consider the handler from plugin A. However, that is the
most specific handler for the method Bird::DoSound(). Since we do not initialize
the Bird class anywhere, the RTA would never consider its method.

If we look only for handlers of methods in the leaves of the class hierarchy
tree 5, we will ensure the correctness of the algorithm while decreasing the load.
In theory, this improvement should simplify the analysis quite a bit. We would
skip a non-trivial number of handlers. In practice, it may be that this does not
happen very often. We usually have handlers only for very specific methods and
none for its base classes. We will only search for fewer handlers as there will not
be as many method targets. The final amount of handlers will usually be the
same. Note that this problem does not occur for non-virtual calls because they
only have one implementation to choose from.

4.2.5 Protocol Buffers

The last improvement is the replacement of Protocol Buffers in the C# scanner
with better-suited technology. Protocol Buffers are used to serialize output from
the C# part of the scanner to be deserialized in the dataflow generator in the
Java part. This improvement was mainly implemented by other team members
in the Manta company. However, it plays a key role in other improvements and
is worth mentioning here to shed light on the reasoning behind them.

The reasons for replacing Protocol Buffers with a different format are:

1. Protocol Buffers are another library that needs to be maintained in both
Java and C#.

2. Protocol Buffers are not a text readable format.

5In case there is no direct handler for the method in the leaf, we still have to traverse up in

the class hierarchy in breath-first-search order to find the handler.
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3. Due to the nature of the C# scanner, Protocol buffers do not have a single
format definition but duplicated definitions in Java and C#.

4. Due to the illegibility of the format, it is difficult to create integration tests
of the entire C# Scanner.

Protocol Buffers bring unreasonable complexity with very little or even no added
value compared to some more traditional formats. The XML format was selected
as a replacement. Even though Protocol Buffers are supposed to be faster and
more lightweight [16] than XML serialization, the disadvantages outweigh the
advantages. The key advantages are:

1. XML is human-readable.

2. XML is easy to test.

3. There is an existing and tested deserialization functionality in the Java part
of the scanner that can be reused.

4. There is an existing XML schema for our use case.

5. There is a solid XML serialization library in the C# standard library.

The listed advantages of the XML format solve all issues with the Protocol
Buffers. Using any other format does not make sense because of its wide use
in other scanners and the already existing and tested implementation of the seri-
alizer.

The change from Protocol Buffers to XML format enabled further testing
automatisation. Until now, integration testing of the C# part of the scanner
was very tedious. Other automated tests that would verify details of the analysis
output are complex and also often fail to report minor changes that alter the
final graph. One way to test this automatically is to write complex conditions
on the analysis output structure. Such tests are very hard to read and orient
in. Another approach is to diff-check the serialized output. This is possible with
Protocol Buffers, but it is nearly impossible to debug failed tests. The XML
format brings a good compromise to this problem. The readability of the format
makes it easy to understand what may be wrong with the output. Minor changes
that alter the final graph are easy to catch, and the tests are easy to update. The
expected output is updated or replaced with a new one completely. Catching
errors earlier in the process also makes testing the whole analysis process easier.
It is a common practice to test even small changes manually, which is very time-
consuming. Automatic integration testing of the scanner, or at least its part, also
greatly reduces errors caught in manual testing.
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5. Design and Implementation

In this chapter, we will explain the concrete design and implementation details
for each feature and improvement to the C# scanner. We will explain important
details that help to understand the overall solution and how individual changes
influence and complete each other, contributing to the common goal of this thesis.
This chapter will partially mirror and extend the previous chapter, where we
explained the requirements set by stakeholders and internal needs.

5.1 ASP.NET Endpoints

During its scenario, the extractor processor gathers all implementations of the
IEntrypointExtractor interface via dependency injection. There are two classes
implementing said interface. The AbstractMethodExtractor class is an abstrac-
tion for common code, and the MainMethodExtractor class extends it and im-
plements the abstract method bool IsMatchingMethod(IMethodDescriptor).
Its implementation returns true if the provided method is the main entry point
method of a console application. False otherwise.

To implement another entry point extractor, we had to create a class that
implements the interface. We simply extended the AbstractMethodExtractor

class and implemented IsMatchingMethod in such a way that it returns true if
the provided method is an action method of some controller. To validate the
method, we had to check if the method resides in a controller and if it is a valid
action method. Conditions for a class to be a controller are:

1. It is public.

2. It is instantiable.

3. It does not carry NonController attribute.

4. It is labelled as a controller, which translates to either of:

(a) it carries the attribute Controller or,

(b) itself or any of its parent classes carry Controller suffix.

The decision algorithm of whether a class is a controller can be seen in Figure
5.1. First, we have to test the existence of the NonController attribute. Then,
we can check the existence of the Controller attribute. If we do not have an
answer yet, we can start searching through parent classes until we either reach
one that has the Controller suffix or it does not have a parent class. Note
that we had to check the existence of attribute NonController first because it
overwrites the Controller suffix. Once we verify that the method resides inside
of a controller, we can check whether it is an action method. The action method
must satisfy the following conditions:

1. It is public.

2. It is not an extension method.
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Figure 5.1: Diagram of an algorithm to decide whether a class is a controller.

3. It is not a property getter or setter method.

4. It is not a constructor.

5. It does not have generic parameters.

6. It does not have reference variables (ref or out).

7. It does not have NonAction attribute.

To test the action method, we used a simple logical conjunction over all of
the conditions. Note that testing for extension methods can be done with static-
ness. The infrastructure does not yet support access modifiers or observing type
instantiability.

5.1.1 Access Modifiers

Access modifiers are missing throughout the whole infrastructure. We had to de-
fine accessibility modifier properties in the IFieldDescriptor interface, IMethod-
Descriptor interface and ITypeDescriptor interface. The Mono.Cecil library
offers API with information about the access modifiers. Its naming convention
follows the CIL nomenclature. The C# scanner follows the C# nomenclature
even though it could be used for other dotnet languages. Some access modifiers
have two keywords (private protected or protected internal) but logically
mean one thing. They are represented by one property. There is one extra access
modifier in CIL that does not have a direct variant in the C# language. For
completeness, it was implemented into the infrastructure, and its name stayed
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C# CIL
private NestedPrivate

public Public

NotPublic NotPublic

internal NestedAssembly

protected NestedFamily

private protected NestedFamilyAndAssembly

protected internal NestedFamilyOrAssembly

Table 5.1: Mapping of access modifiers of types from C# to CIL nomenclature.

C# CIL
private Private

public Public

internal Assembly

protected Family

private protected FamilyAndAssembly

protected internal FamilyOrAssembly

Table 5.2: Mapping of access modifiers of methods and fields from C# to CIL
nomenclature.

unchanged. Mapping from between the nomenclatures for types can be seen in
Table 5.1. Mapping for methods and fields is in Table 5.2.

5.1.2 Type Instantiability

Type instantiability (staticness) is another missing piece of the existing infras-
tructure. There is no single keyword in CIL that would state that a class is static.
Instead, static classes are compiled into classes that are abstract and sealed at
the same time. That is an otherwise illogical and illegal combination. Note that
structures can not be static. We used Mono.Cecil for obtaining this data and
incorporated it in our infrastructure.

5.2 Embedded Code Service

Embedded code service is specialised for every programming language. The re-
design of the C# scanner to be used as a service can be split into four steps.

1. Decouple extractor and connector runners from scenarios.

2. Add embedded code service orchestrator.

3. Add pin node support.

4. Add insight and outsight.

The first step is to decouple the logic of running the extraction or analysis
from the scenario. It was tightly coupled. Because the main analysis and ex-
traction happens inside the C# part of the scanner, the code itself was already
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fairly stateless and could be very easily reused for the service without any major
changes. However, the analysis orchestration logic, such as the serialization of
analysis settings, was implemented inside of the ExtractorScenario class and
ConnectorOutputReader class, respectively. This was separated and decoupled
into its own stateless classes Extractor and Connector. These can be reused
from general scenarios for analysing C# applications as well as from other scan-
ners as a part of the service.

As stated in the previous chapter, the source technology must provide a few
helper class implementations to use the service. These include:

1. an insighter,

2. an insight,

3. an outsight,

4. an orchestrator,

5. a configuration.

Insighter’s only job is to collect events and eventually create an insight. The
insighter does not affect the data flow in any way. It records events that require
exact data values. For data lineage, we are only interested in the flow of general
data, not its value. The insighter closely cooperates with propagation routines
designed for it. In the original design, the sole existence of the insighter was to
create an immutable insight in the end. Since C# serializes the insight at the end
of the analysis, making it virtually immutable, the need for an insighter perishes.
To reduce the complexity, we only provided an interface for the insight that every
source technology must implement. Thanks to this common interface Insight,
we can enforce serializability. The same applies to the interface Outsight. The
orchestrator is also specific for each technology and must implement the com-
mon interface Orchestrator. This interface has three methods. The method
preOrchestrate is called before the analysis. Its purpose is to prepare the input
(copy input files), set up the configuration and serialize everything for the analy-
sis. The method postOrchestrate is called after the analysis. It is supposed to
deserialize any output of the analysis that may be required by the source technol-
ogy. The last method is getInsight, which is supposed to deserialise the insight
and return it.

5.2.1 Pin Nodes

The third step is adding a pin node support. The dataflow generator already
supports pin nodes. It works with intermediate nodes. These are managed inside
of the manta-lib-dataflow-model library. We had to create a new type for the
pin node there and provide its implementation in the scanner. Finally, we had to
ensure that all beans that require a reference to the pin node have it.

The implementation inside of the scanner was fairly straightforward and fol-
lows already-set standards. The flow from the pins is registered inside of the
new InputPinFlow and OutputPinFlow classes. These flows will be generated
inside of propagation routines specialised for the concrete source technology. The
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flows are registered inside of the MethodSummary class for the same reason as
console input and output, as described in the previous chapter. These flows are
processed in the results transformer. Two new node separator methods were im-
plemented for them. One creates input pins, and the other outputs pins. The
class ExternallEntryPoint represents the pin nodes. It is a specialisation of the
EntryPoint class since it is exactly that.

5.2.2 Insight and Outsight

The last step is the integration of insight and outsight to the scanner. Simi-
larly to pin flows, it will be used in propagation routines specific to the source
technology. Both insight and outsight are specialised for the technology. We
must determine what technology invoked the service and initialize it accordingly.
The source technology is stated inside the configuration. We provided an inter-
face Inisght and Outsight that both extend IXmlSerializable. This way, we
enforce serializability and hide it as an implementation detail.

5.3 Unknown Database Column Support

Unknown database queries now use the class UnknownDataReaderFlow. This
is used for database query enumeration and scalar queries. It implements the
common abstract class ValueFlowData. The only information it contains is
the command itself and its invocation context. It complements the generic
class DataReaderFlow<T> used for indexable and named columns. This new
flow is generated in the scalar execution routine inside of the ExecuteScalar-

PropagationRoutine class. The other use is in the routines dedicated to the
enumeration of a database query.

Unknown data flows are transformed in the results transformer to new nodes
represented by the UnknownTableColumnNode class. This correctly mirrors the
refactored implementation in the dataflow generator in Java. These nodes are
assigned to their correct database statements for further processing by the query
service in the dataflow generator.

5.3.1 Database Query Mapping

Another issue introduced by the dataflow generator refactoring that was not men-
tioned before was a new representation of command types. The nomenclature in
Java does not match the one from C#. Namely, a SELECT command is repre-
sented as GET command in the generator and is expected by the query service. A
simple mapper was a sufficient solution to this problem.

5.4 Method Summary

The complete information about the data flows of a method is gathered in-
side of the MethodFlowData class. This information was moved into the new
MethodSummary class. It keeps track of all flows that must be propagated further
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into callers and callees. Newly, it separates flows that do not have to be propa-
gated in sets. These are used in the results separator to transform the result into
a graph more efficiently. Tracked flows are in the following classes:

• ConsoleFlow both for input and output,

• FileStreamFlow both for input and output,

• UnknownDataReaderFlow both for scalar queries and query enumeration,

• DataReaderFlow<int> for indexed columns,

• DataReaderFlow<string> for named columns,

• InputPinFlow,

• OutputPinFlow.

Any propagation routine that generated these flows had to be modified. Out-
put flows are marked in the summary and not propagated further. The input
flows are propagated. Even though all propagation routines that generate these
flows are encapsulated in a common abstraction, this change required fine testing.

5.4.1 Flow Locations

The results transformer gathers information about the flow’s origin. This in-
formation is available at the flow creation, but the implementation incorrectly
registers the method’s zeroeth instruction. For example, when processing the
call instruction of the System.Void System.Console::Write(?) method, its
origin is noted as the zeroeth instruction of said method. The point where the
call instruction was called should be registered instead. To change this was
fairly simple. All places where flows are created must be checked and correct-
ed. However, it also requires fine testing that exposes additional implementation
mistakes, such as wrong handler selection, described in the following section.

5.5 Method Handler Selection

Handler selection was reworked in two ways:

1. search for the correct handler in a breath-first search manner,

2. select only the most specific handler for each method call.

In Figure 5.2, we can see a diagram of how a search for a method handler is
now performed. Input is a method of some type. We then proceed to traverse
the class hierarchy in a breadth-first search order. Checking the base class first
and then the implemented interfaces. We construct a method signature with the
given type and check for handlers in all registered plugins. If no suitable handler
is found before trying all classes in the hierarchy, there is no handler for the
method. Visualisation of the order in which types are tried can be seen in Figure
5.3. Suppose we have a method from class B and three handlers registered in
order from one to three. Numbers next to the class represent the order in which
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Figure 5.2: Handler selection algorithm diagram.

they will be tested. Starting with the method in class B from the first handler
to the third. If no handler is suitable, the parent class A of the current class B
is tried. Then, any interface that the class B implements. After that, we try the
parent class of class A (if it exists) and its interface implementations (if any).
This algorithm was implemented in the MethodHandlerView class inside of the
TryHandleImpl method where the handler selection takes place.

Possible method targets are selected on the callvirt and other instructions
invoking virtual methods before searching for the handler. This search must
only pick one method target as described in the previous Section 4.2.4. This
algorithm was implemented in the class DynamicContextSensitiveCallGraph

in the method GetPossibleTargets. It gathers all possible runtime instances
of the type the method is called on using RTA. For each instance, it considers
exactly one method target in the leaf of the class hierarchy tree where classes
implement the method. The handler search algorithm described above is applied
for each target method found.

5.5.1 Support Database Query Enumeration

A direct result of the introduction of the method summary, fix of the flow ori-
gin locations and the subsequent method handler search algorithm was an in-
valid database query enumeration. It was briefly described in the Section 4.2.4.
Query enumeration in C# used to be done by enumerating the result via the
get_Current() method. This method is generally handled by the SemanticDes-
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Figure 5.3: Enumeration of order in which classes are tested for handler existence.
Starting in class B with handlers registered in order from 1 to 3. Numbers in circles
represent the resulting order.

criptionsHandler. Enumeration of the database was previously resolved by
gathering all callers of the get_Current() method (regardless of the type this
method is implemented in) and later checking if there is any CommandFlow in-
stance originating from the same program point. The new approach tracks the
GetEnumerator() method on the DbDataReader class. This particular method
of this type or any of its overrides is always called before query enumeration.
Thanks to this trick, we are able to track such calls and not mistake them for
any other enumeration without having to compare flow origins.

5.6 Remove Protocol Buffers

Protocol Buffers were replaced with XML serialization. Serialization and deseri-
alization on the Java part were already implemented for other scanners. Thanks
to already existing XML Schema Definition describing the model used in Java,
we only had to create the same model in C#. A tool called xsd, which is a part
of Visual Studio 2022, can generate such models for us. That makes any future
changes easier to process because any changes in Java still must be mirrored in
C#. The mapper was implemented in the IntermediateModel.Xml namespace
inside of the Connector project. Protocol Buffers were also used for the serializa-
tion of the configuration generated in the extractor. The remaining configuration
files were already serialized to JSON, and introducing another XML schema would
increase the maintenance necessary. The only requirement for configuration files
is to make them readable. They are only accessed from the C# code; thus, using
JSON was a valid option in this case.

5.7 Testing

The introduction of XML as a means to perform analysis opened doors for more
semi-automatic testing of the whole scanner. The scanner has a decent amount
of automated tests that test part of the dataflow scenario. These tests perform
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the analysis and then compare the analysis result with expected results that are
saved in an XML. This XML is custom for testing purposes and does not follow
any schema. In fact, these XMLs were generated by running the analysis and
dumping the results into the XML. This means that a lot of accidental mistakes
were generated this way and are part of the test. This resulted in passing tests
even though the implementation was incorrect. A lot of manual testing was
required to check that every known use case was functional, even after minor
changes. Manual testing included generating the graphs completely and manually
observing them in the Manta graph visualizer. Thanks to the serialization of the
analysis output into an XML, we were able to automate part of the process. We
can run the complete C# analysis, including the extraction, and compare the
generated XMLs automatically with their functional versions. XML allows us
to observe the differences directly, which is not the case with Protocol Buffers.
This way, the complete C# part of the scanner can be automatically tested using
simple scripts. These scripts can be found in the cli-tests folder inside of the
C# solution. The run_and_check_serialized_output.bat script performs five
steps to generate the output XML.

1. Clean any temporary files from previous failed runs.

2. Build and move input program to expected locations.

3. Run extractor with correctly set configuration.

4. Run connector with correctly set configuration.

5. Clean the input and any temporary files.

Note that manual testing is still required to test the dataflow generator as a
part of the scanner run.

5.8 Other

In this section, we will describe other minor changes made to the scanner.

Enum Differentiation

One of the existing invalid infrastructure implementations was enum identifica-
tion. The library Mono.Cecil was correctly used to determine whether a type is
an enum. Or, in other words, extends the System.Enum type. This was only done
for classes and not structures, where it was hardcoded that the type could not be
an enum. It should be the other way around. A class can never be an enum, but
a structure can.

Try-catch Resolving

Another infrastructure deficiency was the invalid handling of exceptions. Pre-
viously, the code simulator checked whether it was inside of a catch clause (to
handle it correctly) using the Mono.Cecil library. It used an API to get excep-
tion handlers of the method. This call does not differentiate between catch and
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finally clauses. This resulted in endless stack growth by adding an exception
object onto the stack on entering the finally clause. We fixed the filtering of
the exception clauses by their handler type.

Configurable Logging

Logging used to be set strictly to one level of detail. This has many issues. It
logs a lot of data, which may not be desired on every analysis run. Some logged
data may be sensitive to the customer, even though that should not happen
intentionally. Logging level configuration was added to the configuration, which
is set on warning level by default. Logging into a file was also turned off on non-
release versions of Manta to avoid dumping sensitive information and creating a
vulnerability.
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6. User Documentation

In this chapter, we will explain how to execute the analysis of a C# program
via the Manta Admin UI web interface. Then, we will explain the lineage in the
resulting graph. This chapter is not intended as a manual for the Manta platform
and is by no means an exhaustive guide to the Manta platform. Its content is
limited to using the C# scanner and only briefly explains some features of the
Manta platform that allow us to observe the results of an analysis. For a detailed
manual, see the official Manta documentation.

Access to the Manta installer and license is available only to Manta customers
and Manta employees. This is a major obstacle for the reader. For that reason,
this documentation is accompanied by images of the platform to give readers
without access to the platform and the license key at least an idea about the
platform.

6.1 Analysis Execution

If we want to run an analysis of some technology in Manta, we have to set up the
scanner first.

Setting Up the Analysis

Once you log in to the Manta Admin UI, click the Add collection button on the
main page and select C# under Programming languages. You will see a connection
setup page. Figure 6.1 shows this page with marked settings. The settings 4 -
7 are shared across all C# scanners unless redefined.

1 The first required setting is the name of the connection that has to be
unique for a given technology.

2 The second required setting defines a directory where all input, output and
temporary data will be stored throughout the analysis.

3 In the third box, we can set up custom settings for the extractor in the form
of JSON. This is not required because the default settings are generated on
each analysis run.

4 This toggle ensures that even if two files use different letter cases, their
names will be unified as all lowercase text and connected in the graph.

5 The fifth setting defines where the input for the analysis is placed. Its
default location is set to the input directory under csharp inside a directory
whose name is defined in setting 2 .

6 Second to last setting defines the location of a temporary directory.

7 The last setting defines the directory where the extractor output is placed.
Its default value is the same as setting 6 .
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Figure 6.1: Page with C# connection configuration setup.

After creating the connection, you can go to the Process Manager window
and select New Workflow. We should see a workflow configuration setup like in
Figure 6.2.

1 This section shows all available scenarios of connected scanners in section

1a . Scenarios can be dragged and dropped into 1b to apply them in this

workflow.

2 The only required textbox is for the workflow’s name.

3 This textbox is for a detailed workflow description.

4 Revision type defines whether a revision’s major or minor version is creat-
ed. All metadata and its lineage are grouped in a revision, which is their
snapshot in time. Major revisions are snapshots of all selected connections
at the same point in time. Minor revisions build upon the last major re-
vision. They add (not update) new lineage and metadata to the revision.
This may lead to inaccurate lineage.

5 Advanced settings allow us to create more complex workflows. If disabled,
essential scenarios are automatically injected into the workflow and dis-
played in the designer 1b . When enabled, several extra scenarios are

displayed in the menu 1a and none are automatically injected into the

workflow.

6 This textbox states the limit for parallel processes running simultaneously.
However, this setting is irrelevant for the C# scanner since it can not run
in parallel.

7 In the last section, we can define environment variables with additional
runtime settings, which can be seen in Table 6.1.
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Value Description
csharp.input.exclusions List of namespaces to exclude from the anal-

ysis. Namespaces can be written as a regular
expression or the substring the namespace
starts with e.g. System, Microsoft.

csharp.connector.plugins Names of plugins that are enabled e.g. Main,
InputOutput, AdoNet.

csharp.logging.dir Directory where logs should be saved e.g.
./logs.

csharp.logging.level Level of logging e.g. Info.

Table 6.1: Table of available environment variables and their descriptions.

Figure 6.2: Process manager page with workflow configuration setup.

Running the Analysis

To run the analysis, you must prepare the input in a zip folder named input.
The archive should contain all compiled sources to analyze. Select your workflow
in the process manager window, and click the Execute this Workflow button
at the top left-hand corner. Upload your zip folder with the input and start
the analysis. The workflow run should be displayed in the Workflow queue.
We should see it in the Workflow history after it is finished, as displayed in
Figure 6.3. We can see detailed information about each scenario grouped by the
technology and the connection of the scenario. The information includes return

62



Figure 6.3: Displayed information about a finished workflow run.

code, approximate execution time and logs. The workflow and scenarios can
obtain several states throughout its execution, such as RUNNING, SUCCESS,
FAILED or TERMINATED.

6.2 Examining the Analysis Result

To see the analysis result graph, we have to go to the Manta Flow Viewer. This
page can be seen in Figure 6.4. On the left side, we can see a revision selector.
Under the selector, there is a set of lineage nodes that can be selected for visu-
alisation. First, select a node to visualize in the area marked with 1 in Figure
6.4. If you select any node in the hierarchy, all subnodes are automatically in-
cluded. You must confirm the selection by clicking the plus button marked with
2 . It should appear in the Selected for lineage area marked with 3 . Press the
Visualize button below to see the lineage graph between selected nodes.

Figure 6.4: Manta Flow Viewer with selected revision of a C# code analysis.
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In Figure 6.5, we can see a graph generated by the analysis of the source
code in Listing 6.1. The graph is generated at the highest level of detail with
indirect edges visible. Each node in the graph has a specific colour set based on
the node’s technology. Database and file nodes are blue. Nodes from the C#
application are beige. Each node is made of sub-nodes representing the hierarchy
for corresponding technology. Each node contains a black sub-node marking the
selected node in the flow viewer. For example, the blue node on the left-hand side
is made of six nodes in total. The nodes, in order from the outermost, represent
the database technology, concrete database, database schema, table and finally,
the column. The C# nodes follow the same hierarchy adjusted to C#. The
technology, connection ID (specified during the configuration), namespace, class,
method and finally, concrete data flows.

We can see two types of edges: blue dashed and black full lines. Black edges
represent direct data flow. For example, we can see that there flows data from
the parameter of the Main(String[]) method to the first parameter1 of both
SQL statements. In the code, we can review this on lines 12 and 23, where the
parameter value is added to the command. The value comes from the argument of
the Test(int) method. This method is called on line 31, with the corresponding
parameter value being the argument of the Main method. The blue dashed edges
represent indirect data flow. Indirect data flow affects the flow, but the data
is somehow processed and not used directly. From the graph, we can see that
the first parameter of the SQL statement indirectly affects the columns that are
processed further. We can check this in the code as well. Both queries have a
WHERE clause that is parametrized. Hence, the first parameter affects the resulting
columns.

1 namespace cli_test_basic;

2

3 class Program

4 {

5 private const string FileName = "output.txt";

6 public static string Test(int type)

7 {

8 using (var connection = new SqlConnection("Data Source =

some.datasource.com; Initial Catalog =

BIReportServer; User ID =

someUserId;Password=somePassword"))

9 {

10 connection.Open();

11 var cmd = new SqlCommand("SELECT * FROM dbo.Users

WHERE UserType=@type", connection);

12 cmd.Parameters.AddWithValue("@type", type);

13 var reader = cmd.ExecuteReader ();

14 while (reader.Read())

15 {

16 var name = reader["UserName"]. ToString ();

17 var id = reader["UserId"]. ToString ();

18 Console.WriteLine($"Found user {name} with id

{id}.");

19 }

20 reader.Close ();

21

1To see that it is a parameter, click on the node and read its detailed description.
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22 var cmdCount = new SqlCommand("SELECT COUNT (*) FROM

dbo.Users WHERE UserType=@type", connection);

23 cmdCount.Parameters.AddWithValue("@type", type);

24

25 return cmdCount.ExecuteScalar ().ToString ();

26 }

27 }

28

29 public static void Main(string [] args)

30 {

31 File.WriteAllText(FileName , Test(int.Parse(args [0])));

32 }

33 }

Listing 6.1: C# program that executes a database query and writes columns
UserName and UserId to standard output. Then executes a scalar query whose
output is written into a file called output.txt.

Figure 6.5: Data lineage graph of the C# program in Listing 6.1 a C# code
analysis.
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7. Evaluation

In this chapter, we will look at the results of the changes described in this thesis.
We will showcase examples of code that was impossible to analyse before, or
its analysis resulted in inaccurate lineage. The graphs presented in this chapter
were all generated by the Manta software. The code will be provided for some
use cases where it is important to display nuances leading to different graphs.
In other cases, the code logic will be described in text or can be found in the
attachment to this thesis. We will also verify that there was no regression in the
already functional use cases and propose possible future work on the C# scanner.

7.1 New Supported Use Cases

Firstly, we will introduce new supported use cases. In general, all new features
are covered by unit tests as well as end-to-end manual tests, which are the only
ones that test the integration of the C# scanner with the rest of the platform.

ASP.NET Endpoint Extraction

ASP.NET applications are now supported. Extraction of endpoints is well cov-
ered with unit tests as well as integration tests. Integration tests focus on the
extraction of entry points rather than the data flow analysis. In Figure 7.1,
we can see a graph of a simple ASP.NET application with one controller called
WeatherForecastController that contains all possible types of actions (GET,
DELETE, HEAD, OPTIONS, PATCH, POST, PUT). This graph contains little to no lin-
eage. There is a little bit of lineage in POST and PUT, where we return the data
from the argument. It is important to mention that this graph is a result of a
single scenario run where all entry points (including the Main method) were found
and then analysed separately and merged into a single graph.

Unknown Column Support

Another major new use case is the support of unknown columns. Figures 7.2 and
7.3 show graphs with an unknown column. In Figure 7.2, we have a graph of an
application that executes a simple SELECT * FROM dbo.Users WHERE UserType

=@type query. The Figure shows that the database column UserType indirectly
affects the result and that we are querying from some unknown column because
of the *. More importantly, we query this result with the Main method argument.
Because this piece of data is not statically known, we do not know exactly what
the index or name is. Compare this with the graph in Figure 7.4 where the index
of the column being queried is 56.

Figure 7.3 contains unknown columns that were created by scalar queries.
In this case, there was the SELECT MAX(*) FROM dbo.Users WHERE UserType=

@type query with the parameter being substituted with an input from the console.
We can see that the above-mentioned graphs are very similar, as expected from
the analysis.
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Embedded Code Service

The last major feature improvement was enabling the use of C# scanner as an
embedded code service. This feature is fully implemented and finished, including
insight, outsight and pin nodes, but its full capability is limited by source tech-
nologies using the service. Currently, no technology is actively using C# scanner
as a service. All of its individual parts were tested, and its integral part does
not affect the run of classic run scenarios in any way, thanks to the good design
choices.

7.2 Regression Testing

All existing functionality is covered by unit tests, end-to-end manual tests and
newly added automated integration tests. Modification of the existing algorithm
is also covered by new test cases that were missing. By the nature of some of
the tests, they had to be updated to comply with the new design. We will show
graphs declaring a functional solution for selected problems.

Database Enumeration

In Figure 7.5, we can see two graphs of the same C# application. This application
iterates over all arguments of the Main method and prints them into the console.
Then, it executes the database query of SELECT UserName FROM dbo.Users and
outputs its first result into the console. We can see the code in Listing 7.1. The
top graph shows a case where the enumeration call is handled by two method
handlers. One correctly propagates data from the arguments, but the second is
mistaking this enumeration with a database enumeration. This is resolved in the
bottom graph with the correct handler selection algorithm.

1 var cmd = new SqlCommand("SELECT UserName FROM dbo.Users");

2

3 using (var connection = new SqlConnection("Data Source =

some.datasource.com; Initial Catalog = BIReportServer; User

ID = someUserId;Password=somePassword"))

4 {

5 connection.Open();

6

7 // This enum should not be connected to the db

8 foreach (var arg in args)

9 {

10 Console.WriteLine(arg);

11 }

12

13 cmd.Connection = connection;

14 Console.WriteLine(cmd.ExecuteReader ()[0]. ToString ());

15 }

Listing 7.1: C# application with argument enumeration and basic database
query.
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Others

Other changes implemented as a part of our solution improved the overall lineage
precision while preserving correctness. We can see this in Figure 7.6 with two
graphs of the same application. The application executes three database queries
and writes the first column into the console. The code can be seen in Listing 7.2.
The top graph was generated before our solution was implemented. Note that it
contains a lot of unnecessary nodes that do not exist in the source code. It should
contain at least three different database statements, but they are merged into one.
The bottom graph correctly shows only nodes that are in the source code, and
it also contains five database statements. There are five statements because the
second statement (line 7 in Listing 7.2) is created by string concatenation of three
parts, which is handled as three possible strings by the analysis.

1 private static string _contacts = "SELECT * FROM

dbo.UserContactInfo";

2 static void Main(string [] args)

3 {

4 List <SqlCommand > commands = new List <SqlCommand >()

5 {

6 new SqlCommand("SELECT * FROM dbo.Users"),

7 new SqlCommand($"SELECT {args [0]} FROM dbo.Users"),

8 new SqlCommand(_contacts)

9 };

10

11 using (var connection = new SqlConnection("Data Source =

some.datasource.com; Initial Catalog = BIReportServer;

User ID = someUserId;Password=somePassword"))

12 {

13 connection.Open();

14

15 foreach (var command in commands)

16 {

17 command.Connection = connection;

18 using (var reader = command.ExecuteReader ())

19 {

20 while (reader.Read())

21 {

22 Console.WriteLine(reader [0]);

23 }

24 reader.Close ();

25 }

26 }

27 }

28 }

Listing 7.2: C# application that executes three database commands and writes
the first column to the console.

7.3 Future Work

The scanner can already analyse non-trivial applications, but the ability to anal-
yse production code varies from stakeholder to stakeholder. There are still a lot
of frameworks that the scanner could support, but whether they should be sup-
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ported depends mainly on the current stakeholder needs. While support of new
frameworks may be very beneficial and not the most difficult task, the codebase
is covered by a few unfinished or imprecise algorithms that may be even easier
to implement and provide a huge benefit in the long term. Such improvements
include:

• Analysis of backward jumps.

• Incomplete implementation of routines in the Entity Framework handler.

• Named parameter node support.

Backwards jumps in the CIL are not properly recognized at some edge cas-
es during the analysis, which may result in slightly imprecise graphs that are
missing some lineage. While the support for the Entity Framework is working
well and provides the most important lineage, it can provide more information
with indirect data flows that are currently missing. Finally, all parameters are
now represented with their index in the query, even though we can statically
determine the parameter’s name in the query. The dataflow generator already
supports named parameters, but the implementation in the scanner is missing.

Another future work not directly connected to the C# scanner is using the C#
scanner as an embedded code service from other technologies. With the scanner
being fully equipped to support this scenario, it should easily broaden the use
spectrum. To use the service from other technology, there is going to be a need
to implement some specific method extractors and handlers for the technology.
These changes should be of a smaller scale and fit the capability of the scanner
perfectly.
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Figure 7.1: Graph of a simple ASP.NET application with all possible controller
actions.
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Figure 7.2: Graph of C# program querying an unknown column in the database.

Figure 7.3: Graph of C# program executing a scalar query (MAX).
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Figure 7.4: Graph of C# program that decides what table it will query in runtime
via branch.

Figure 7.5: Two graphs of the same C# program that enumerates arguments
and outputs them into the console and executes database query and writes its
first column into the console. The top graph shows an invalid unknown column
because of the enumeration. The bottom graph correctly does not contain an
unknown column.

72



Figure 7.6: Two graphs of the same C# program that executes three database
commands and writes the first column into the console.
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8. Conclusion

In this thesis, we have successfully improved the lineage precision and correct-
ness of the already existing C# scanner, which is a part of the Manta platform
software.

The scanner supports the analysis of ASP.NET web applications, including
its web endpoints. It can be used as an independent embedded code service
for analysing code snippets for external scanner technologies according to set
standards across the Manta platform. With that being said, to be used as a
service, a few details specific to the technology using it may still have to be
implemented. However, the complete infrastructure for that is already available.
Our solution introduced numerous concepts on various levels of abstraction, from
low-level CIL code analysis to high-level algorithms that increase the efficiency
of the scanner and lineage precision by modifying the fundamental parts of the
analysis algorithm. Last but not least, we have reduced the technical debt of the
scanner in relation to the rest of the platform and semi-automated the testing
process of the scanner.

In the previous chapter, we have shown that all vital parts are fully functional,
and all existing scenarios are supported. Scenarios that provided incomplete or
inaccurate lineage were improved, and new scenarios were well-tested.

The implementation design follows a set standard held across the Manta plat-
form and should be easily extendable with little knowledge of the scanner insights.
This includes the extensions needed for the use of the embedded code service.
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during the implementation of the thesis solution. Sources are grouped by the pro-
gramming language and further by the project they belong to. The subdirectory
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Subdirectory tex contains all LATEX sources of this thesis, including all used
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