
MASTER THESIS

Jaroslav Nejedlý

Neural representations for differentiable
volume rendering

Department of Software and Computer Science Education

Supervisor of the master thesis: Tobias Rittig, PhD
Study programme: Computer Science

Study branch: Computer Graphics and Game
Development

Prague 2024

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I’m extremely grateful to my supervisor Dr. Tobias Rittig. Without consultations
with him, his helpful insights and his patience, this work would be impossible to
make. I am also thankful to the Computer Graphics Group at Charles University
for letting me use their infrastructure, especially the compute servers. Lastly, I’d
like to mention my wife Sarah, who thoroughly supported me while I was working
on this thesis.

ii

Název práce: Reprezentačńı neuronové śıtě pro diferencovatelné renderováńı ob-
jemu

Autor: Jaroslav Nejedlý

Katedra: Katedra softwaru a výuky informatiky

Vedoućı diplomové práce: Tobias Rittig, PhD, Katedra softwaru a výuky infor-
matiky

Abstrakt: Tato práce prozkoumává možnost použit́ı reprezentačńıch neuronových
śıt́ı jako datových struktur pro modely předpov́ıdaj́ıćı vzhled. Představujeme
representačńı śı̌t, která je adaptaćı populárńı NeRF śıtě. Tato reprezentačńı śı̌t
je studována na 2D obrázćıch i trojrozměrných volumetrických datech. Tato
práce také vyhodnocuje výstupy modelu, který předpov́ıdá vzhled, do kterého je
použita reprezentačńı śı̌t jako zdroj dat.

Naše analýza ukazuje, že reprezentace 2D obrázk̊u a jednoduchých volumet-
rických útvar̊u je realizováno s obstojnou kvalitu. Nicméně, výstupy vzhled
předpov́ıdaj́ıćı śıtě jsou suboptimálńı.

Vyvodili jsme, že reprezentačńı śıtě představené v této práci by měli být vylepšeny
a že model předpov́ıdaj́ıćı vzhled by měl být doladěn s použit́ım reprezentačńı
śıtě na vstupu.

Kĺıčová slova: reprezentačńı śıtě, neurálńı renderováńı, MLP, NeRF

iii

Title: Neural representations for differentiable volume rendering

Author: Jaroslav Nejedlý

Department: Department of Software and Computer Science Education

Supervisor: Tobias Rittig, PhD, Department of Software and Computer Science
Education

Abstract: This thesis investigates the possibility of using a representation neural
network as a data structure for an appearance prediction model. We present the
representation network as an adaptation of the popular neural radiance field net-
work. The representation network is studied on 2D images as well as volumetric
data. This thesis also evaluates the outputs of the appearance prediction network
which uses the representation network.

Our analysis shows a decent quality of the representation network for 2D images
and simple volumetric data. However, the outputs of the appearance prediction
network are suboptimal.

We conclude that the representation network presented in this thesis should be
improved and the appearance prediction model should be fine-tuned to the rep-
resentation network as its input.

Keywords: representation network, neural rendering, MLP, NeRF

iv

Contents

Introduction 2

1 Background 4
1.1 Signal processing . 4
1.2 Machine learning . 7
1.3 Rendering . 11

2 Related Work 15
2.1 Scattering prediction . 15
2.2 Neural radiance fields . 17

2.2.1 Training . 19

3 Method 21
3.1 Representation network . 22

3.1.1 2D image representation 22
3.1.2 Representation of a set of blurred images 23
3.1.3 Volume representation . 24

3.2 Appearance prediction network 27

4 Implementation 29

5 Results 30
5.1 Representation of 2D images . 30
5.2 Representation of a set of blurred image 32
5.3 Representing volume . 35

5.3.1 Simple volumes . 35
5.3.2 Complex volume . 41

5.4 Appearance prediction network 45
5.4.1 Simple volumes . 46
5.4.2 Complex volume . 48

6 Discussion 50

Conclusion 52

Bibliography 53

List of Figures 56

List of Tables 59

List of Abbreviations 60

A Attachments 61
A.1 Contents of Electronic Attachment 61
A.2 Documentation . 61

1

Introduction
In the past few years, 3D printing has become more popular among the general
public as well as among various research groups. A lot of attention is paid to color
3D printing as it has some challenges associated with it. Given the small size of
the individual droplets, during the calibration of the color, special attention has
to be provided to the volumetric interactions between the light and the material.
As the light can travel through many droplets before being absorbed or scattered
away. This makes it computationally intensive to predict the appearance of the
final product. Rittig et al. [2021] accelerated the prediction of light scattering
by using a neural network. In our thesis, we attempt to swap the data structure
used by this scattering prediction network with our solution, the representation
network.

We aim to represent the volumetric data with a shallow neural network, that
given a spatial position as its input outputs desired volumetric properties. Tradi-
tionally, volumetric data is represented by grids. Given the sparse nature of the
data, appropriate representation of grids can be memory efficient. On the other
hand, the neural network approach promises the data structure to be differen-
tiable. This could open the door for various optimization algorithms that would
optimize the distribution of 3D printer droplets to match some desired look. For
example, Elek et al. [2017] try to optimize this droplet distribution using more
traditional techniques like Monte Carlo rendering and dense gird representation.
Differentiability is a desired property for optimization as shown by Nindel et al.
[2021].

The field of representation neural networks is subject to very active investi-
gation. Since the start of our research, there have been several advancements.
For example, Karnewar et al. [2022] combine grid-based and neural network ap-
proaches to achieve promising results. Müller et al. [2022] use spatial hashing
functions to accelerate the positional encoding, which enables nearly instant train-
ing times on high-end hardware. However, we decided to use only purely neural
concepts.

Our representation network is based on the earlier work of Mildenhall et al.
[2020] and Barron et al. [2021] who introduced a network that can store high-
frequency details by utilizing so-called Fourier feature networks. These work by
enhancing the input to the network by positional encoding. We focus on ex-
ploring the ideas behind Fourier feature networks and frequency-based encoding.
We also try to connect the representation network with the scattering prediction
network to evaluate the possibility of future applications and improvements.

In the first chapter, we will introduce the necessary background and theoreti-
cal knowledge about signal processing, particularly about Fourier transforms and
convolutions. We will also include information about modern machine learning al-
gorithms and strategies as well as neural network architectures. The first chapter
also includes information about the light transport equation and rendering.

The second chapter focuses in detail on the previous work that our solution
builds upon. The first is the light scattering prediction with neural networks, we
will explore how the network works in detail, especially what kind of inputs it
requires. The second is the Neural radiance fields and other works derived from

2

them. We will focus on the exact inner workings of such representation networks
and how can we adapt them to our intended usage.

The third chapter will discuss our solution in detail from a theoretical perspec-
tive. Mainly focusing on the architecture of the representation networks, their
training, and the connection to the scattering prediction network. The fourth
chapter will briefly discuss the actual implementation details of the solution de-
scribed in the third chapter. The implemented solution is provided in Attachment
A.1. The documentation of our software is presented in Attachment A.2.

In the fifth chapter, we present the results of the representation network. We
take a look at representing two-dimensional images as well as representing vol-
umes. The results of appearance prediction network that uses our representation
network are also unveiled in the fifth chapter. And in the final, sixth, chapter
we discuss these results. We also discuss limitations and issues present in our
method and possible future work that would improve upon our result.

3

1. Background
In this chapter, we introduce terminology, equations, and principles that are
fundamental to our work. These topics include machine learning, rendering, and
signal processing. The last mentioned is used in various parts of the thesis as
it includes equations that describe operations on signals. These operations have
important properties that are used in our method as well as in previous work.
An understanding of the fundamentals of machine learning and artificial neural
networks is important as our work proposes a new way of representing voxel data
with representation neural networks. We use this representation to predict the
appearance of color 3D prints, so a brief introduction to light transport algorithms
is included in the rendering section.

1.1 Signal processing
Signal processing plays an important role in analyzing, capturing, and manipu-
lating visual data. Various algorithms in this field can give us information about
signal quality or they can help us to understand the frequency composition. Other
functions can modify the signal in ways that correspond to various effects. Let’s
explore some of these functions and algorithms.

Fourier transform A key function in signal processing is a Fourier transform
that facilitates a transition between spatial and frequency domains. These two
domains refer to the variables that are used to parameterize the signal. In the
spatial domain, we use three-dimensional coordinates that describe the actual
position in the space, usually denoted as x, y, and z. In the frequency domain,
we use frequencies of the signal to describe the amplitude and phase at that
frequency. For example, a pure sine signal would be represented by a single point
in the frequency domain.

For multi-dimensional domains, we use wave vectors instead of frequencies.
These describe the direction as well as the frequency of a signal. To obtain am-
plitude and phase in a single number we describe these parameters as a complex
number, so it shouldn’t be a surprise that the output of Fourier transform is a
complex number.

To better understand these terms, let’s focus on a simple one-dimensional
signal first. The following equation describes the Fourier transform of a one-
dimensional function:

F(ξ) =
∫︂ ∞

−∞
f(x) exp (−i2πξx)dx (1.1)

Where f(x) is the function being transformed, F (ξ) is the result of the trans-
form. Note that the original function operates on real numbers, whereas its
Fourier counterpart is a complex function.

If the original function f operated on time (x = t) then the parameter ξ of the
transform is frequency. By evaluating the Fourier transform for all frequencies
we get a frequency spectrum of the original function f .

4

However, for image processing, we are working with sampled values of a func-
tion and computing such integral for all frequencies is not feasible. Instead, we
can compute discrete Fourier transform (DFT) which for each sample of the in-
vestigated function produces a complex number each corresponding to a different
frequency. Given a sequence of numbers {fn}N

0 , we can compute DFT by the
following equation:

Fn(f) =
N∑︂

k=0
fk exp

(︄
−i2π

k

N + 1n

)︄
(1.2)

As you can see, Equation 1.2 is a finite discrete special case of Fourier trans-
form (1.1). From a known identity exp(−ix) = cos(x) + ı sin(x), we can conclude
that the sum in the DFT equation is a sum of sine and cosine functions of in-
creasing frequency.

Convolution Another important operation used in signal processing is a con-
volution of two functions. To intuitively understand convolutions we can think
of blurring a 2D image. This process involves combining the neighboring values
in some way. For example, the Gaussian blur weights the values by the Gaussian
function.

Mathematically, the convolution can be expressed by the following integral:

(f ∗ g)(t) =
∫︂ ∞

−∞
f(s)g(s − t)ds (1.3)

Where f and g are two generalized functions, usually one is a signal while the
other is a kernel. The shape of a kernel determines the output of the convolution
operation. For example, if g is a Dirac delta function, the output will be identi-
cally function f . As mentioned above, another example is Gaussian distribution,
which is commonly used to smooth out signals. The other smoothing kernel that
can be employed is a box-shaped kernel, whose output averages the signal with
equal weighting. These smoothing kernels have to be normalized in a way that
leads to the integral across the domain of the kernel evaluating as one. This
ensures that the amplitude of the signal isn’t affected.

Figure 1.1 shows the two different kernels. The Gaussian with a mean value
of zero and standard deviation (SD) of one in red and a box-shaped kernel with
a mean value of zero and radius of two. Equation 1.4 is expressing a Gaussian
curve g. The two parameters are mean µ and standard deviation σ. In this thesis,
we work with these two kernels.

g(x) = 1
σ

√
2π

exp
(︄

−1
2

(x − µ)2

σ2

)︄
(1.4)

F(ξ) = exp
(︃

−1
2ξ2σ2

)︃
(1.5)

Equation 1.5 shows a Fourier transform of a Gaussian kernel with a standard
deviation of σ. We can see that apart from the normalization constant the Fourier
transform of the Gaussian curve is the same curve except the standard deviation
is reciprocal.

5

Figure 1.1: Comparison of a box kernel (blue) and Gaussian kernel (red).

When applying convolution to a finitely sampled signal with a bounded do-
main, we encounter a problem: How should we handle the edges where the signal
starts and ends? Typically, this is handled by one of the following strategies:

1. Use a constant value for the points outside of the domain of the signal.
When a value of zero is used this would correspond to a direct application
of the mathematical formula described by Equation 1.3.

2. Mirroring the signal outside of its domain.

3. Wrapping the signal outside of its domain. This is especially useful for
periodic signals.

4. Cropping the signal or the kernel. When a signal is cropped the result of
a convolution will have smaller dimensions than the original signal sample
which might be undesired. When a kernel is cropped additional normaliza-
tion of the cropped kernel might be required.

5. Using the nearest value of the signal. For a one-dimensional signal, this
strategy would lead to repeating the final and last samples as many times
as needed. This is the strategy that we use in our work.

One of the advantages of the Fourier transform is that a convolution of two
functions is equal to the multiplication of their Fourier transforms. If we would
like to compute a convolution of any function with the Gaussian kernel in the
frequency domain, we could do so by computing the Fourier transform of said
function and multiplying it with the function described in Equation 1.5.

Signal metrics To compare different signals we can establish a metric that
would quantify the similarity of the two signals. Let’s define two signals: a noise-
free signal S and a signal, which is compromised with noise S ′. Given N samples
of the two signals, we can compute the mean squared error (MSE) of the noise
signal as follows:

MSE = 1
N

N∑︂
i=1

(Si − S ′
i)2 (1.6)

6

Sometimes, instead of using the MSE value as is, the square root of it is used.
In that case, we call it root-mean-square error (RMSE). We can easily extend
Equation 1.6 into two dimensions. Given a noise-free image I with dimensions w
and h and its noisy counterpart I ′ MSE value can be computed by the following
equation:

MSE = 1
w · h

w∑︂
x=1

h∑︂
y=1

(I(x, y) − I ′(x, y))2 (1.7)

To determine how noisy the image I ′ is, we can define a value that would
quantify the noisiness. A common term that is used to describe this phenomenon
is a peak signal-to-noise ratio (PSNR). Given that our image is normalized (e.g.
maximum value of the individual pixels never exceeds 1) we can compute PSNR
using this equation:

PSNR = −10 · log10(MSE) (1.8)

In the rest of our work, most of the equations described in this section will be
used on two- or even three-dimensional signals. The generalization into higher
dimensions shouldn’t be problematic as the signal dimensions are independent of
each other. We will also use normalized values where applicable. To normalize a
signal, we look for the largest value and divide all signal values by it.

1.2 Machine learning
Machine learning is a process of optimizing a function by a set of parameters so
that the function best approximates a given data set. Basically, the machine is
the computer and by optimizing the function it learns the target data. When the
training data contains inputs as well as the target values, the process is called
supervised machine learning. The basic technique that illustrates this process is
called gradient descent.

During training, the function is calculated on the provided inputs. A loss
function, that measures the distance to the desired value, is evaluated. From the
value of the loss function, a gradient with respect to the parameters is constructed
and a small step in the direction opposite to the gradient is taken. After sufficient
steps were taken, the loss function should be at a local minimum and thus the
optimized function approximates the given data.

Loss function There is a wide variety of functions that can be used to measure
loss. There is one constraint: the loss has to be differentiable, in order to compute
the gradient.

A common function that is widely used is MSE (Equation 1.6). Another
function that can be used is mean absolute percentage error (MAPE). The benefit
of MAPE is that it is a percentage error, which works great for both large and
small absolute values of the optimized function. Given N samples of optimized
function {f}N−1

0 and N samples of predicted values {f ′}N−1
0 , we can compute

MAPE as follows:

7

MAPE = 100
N

N−1∑︂
i=0

⃓⃓⃓⃓
⃓fi − f ′

i

fi

⃓⃓⃓⃓
⃓ (1.9)

Neural network building blocks Now, let’s focus on the actual architecture
of neural networks. A simple network architecture is a feed-forward network
consisting of layers that connect to the outputs of previous layers. The basic
layer type that is widely used is the dense layer also sometimes called the fully
connected layer. Dense layers are set of weights and biases that alter their input
by the following equation:

D = fa(W · i + b) (1.10)

Where D is the output of the dense layer, fa is the activation function, W
is the weights matrix, i is the input of the dense layer and b are biases of the
dense layer. Note that the input might not be a vector but rather a tensor of
any dimensions. Weighs and biases then have appropriate dimensions. Matrix
W and bias vector b are the parameters that are subject to optimization. We
take the derivatives with respect to these values to get the gradient along which
these values should be changed.

Activation function fa can be chosen from many widely used functions. Its role
is that it brings non-linearity into the system. The most popular mathematical
functions used as activation functions are tanh, relu, softplus, sigmoid, and others.
Equations (1.11), (1.12), (1.13), and (1.14) describe these functions:

tanh (x) = exp (x) − exp (−x)
exp (x) + exp (−x) (1.11)

ReLU (x) =

⎧⎨⎩0 x ≤ 0
x x > 0

(1.12)

Softplus(x) = ln (1 + exp (x)) (1.13)

Sigmoid(x) = σ(x) = 1
1 + exp (−x) (1.14)

Connecting multiple dense layers together, we can construct an intricate func-
tion with many parameters that can be optimized to represent a wide variety of
data. To get a meaningful output of the network we can connect a dense layer
with a smaller number of outputs. At a minimum, we would need three layers:
input, hidden, and output. Usually, more layers are used. Such a configuration
of a neural network is commonly referred to as a multilayer perceptron (MLP).
Figure 1.2 shows the typical architecture of MLP. Note, that the number of hid-
den layers might differ as well as their size. Also, notice that the final output
layer might use a different activation function.

Stochastic gradient descent To successfully optimize a neural network we
have to know the all partial derivatives of the nodes involved. Usually, we can
obtain the derivative of all functions involved in the optimization process by
automatic differentiation. From the derivative, we can compute the gradient with

8

Figure 1.2: Typical architecture of MLP networks.

respect to the optimized parameters and use it for the stochastic gradient descent
(SGD) algorithm. The SGD algorithm works by sampling a so-called minibatch of
m examples from the training dataset along with their target values. Using these
samples, the gradient g is calculated. The samples are taken randomly and in
theory, the batching should provide better gradients that take into account more
data at once. Once the gradient is calculated, the parameters of the network are
changed by −ϵ · g, where ϵ is a scalar value called learning rate.

According to Goodfellow et al. [2016], the learning rate is a crucial parameter
that determines the performance of the SGD optimization. Choosing a proper
rate is often done by trial and error as there is no scientific way of establishing
optimal value. The ideal tool for setting a learning rate is observing the learning
curves that plot the loss against the number of steps taken. Changing the sample
size m of the minibatch might require a change in the learning rate.

It is also important to decay the learning rate over the steps taken. Sampling
the minibatch from the training dataset introduces noise into the gradient cal-
culation. So even though mathematically, the magnitude of the gradient should
be decreasing as the parameters are reaching optimal value and at the minimum,
the gradient is zero. The noise causes the gradient to never be zero. The decayed
learning rate helps to reach the optimum without overshooting.

A simple way to decay the learning rate is to linearly interpolate between
the larger initial learning rate and the smaller final learning rate as suggested by
Goodfellow et al. [2016]. Another way is to use so-called cosine decay presented
by Loshchilov and Hutter [2017]:

ϵ = ϵmin + 1
2(ϵmax − ϵmin)

(︃
1 + cos

(︃
Tcur

Ttot

π
)︃)︃

(1.15)

Where ϵ is the learning rate for the current step Tcur; ϵmin and ϵmax are
minimal and maximal learning rates that we can choose and Ttot is the total

9

amount of steps to be taken. Note, that the original article describes also the
process of restarting the learning rate. This means that the learning rate is reset
to a higher value. For more detail refer to the article by Loshchilov and Hutter
[2017].

An update of the neural weights and biases is taken at every step. Once
all of the dataset is processed and all steps were taken, we call that an epoch.
The training of neural networks usually takes multiple epochs to arrive at the
optimum. The learning rate can be decayed based on epochs or the learning rate
can be updated every step. In the case of updating the learning rate every step,
the value Tcur represents all steps over all epochs.

Given how crucial the learning rate is for SGD, there are other optimization
algorithms that try to introduce an adaptive learning rate. Kingma and Ba [2014]
proposed an optimization algorithm with adaptive moments (Adam). In general,
momentum can be thought of as a way to carry over the gradient from previous
steps. Imagine a ball rolling downhill, the shape of the hill is our loss function, the
direction of the slope is our gradient and the velocity of the ball is the momentum.
Eventually, the ball will reach the valley, which means that it reached a minimum
of the loss function. Optimization algorithms with momentum require an extra
parameter that controls how much the momentum is affected by the gradient.
Goodfellow et al. [2016] states that in Adam, momentum is calculated as an
estimate of the first-order moment of the gradient. Adam also includes bias
corrections to the estimates of both first-order and second-order moments which
are computed as exponentially weighted moving averages. The smoothing factors
for the exponential weighting are parameters of the Adam algorithm.

There are multiple reasons to sample data in minibatches. The first reason,
as previously mentioned, is that it provides a better estimate of the gradient than
just taking one example from the dataset. The other is that it provides a per-
formance advantage as larger batches tend to utilize modern multicore hardware.
The ideal size of the minibatches is affected by several factors. The larger the
batch size is, the less frequent the updates are over one epoch. This balances
out the effect of a more precise gradient. Larger batches can also be limited by
the amount of available memory. Wilson and Martinez [2003] argues that smaller
batch size introduces a regularization effect in the neural network.

Generalization performance The power of modern machine learning algo-
rithms and neural networks lies in the ability to produce a reasonable prediction
even for inputs it was never trained on before. For that reason, it is a common
practice to split the available data into training and validation parts. The train-
ing part is used during the learning process, while the validation part is used to
evaluate the loss function along with any metrics without updating the weights
and biases of the neural network. Ideally, we want the loss function to be decreas-
ing even in the validation part of the data with each epoch. When the network
is doing well even with unseen inputs, we say that it is generalizing well. The
opposite phenomenon is overfitting, which happens when the network is trained
with a very small loss on training data, but validation data show a higher loss.

To monitor the performance of our optimization process as well as generaliza-
tion capabilities we can define more functions that similarly to loss measure the
difference between prediction and actual values. However, for various reasons, we

10

don’t want to include them in the SGD optimization process. These functions
are referred to as metrics. As metrics don’t participate in the training process
they don’t need to be differentiable. For example for a network that is used to
recognize shapes, we can use prediction accuracy as a metric.

One of the techniques that can improve the training of feed-forward MLP
networks is the utilization of skip connections. They work by skipping some
hidden layers and later concatenating with the output of those layers. This
concatenated vector is used as an input to the next layer.

1.3 Rendering
The term rendering in computer graphics refers to the process of creating a (usu-
ally) 2D image that represents some three-dimensional virtual scene. Physically-
based rendering tries to simulate how the light interacts with objects by eval-
uating physically correct equations and as such tries to predict the real-world
appearance of said virtual scene. To successfully predict the appearance of such
a scene, we have to understand the basic physical principles of light propagation.
To compute the pixel values of an image, we have to compute the incoming light
intensity hitting the pixel. The incoming light intensity can be expressed by the
following equation:

Lo(x, ωo, λ) = Le(x, ωo, λ) +
∫︂

Ω
fbrdf (x, ωi, ωo, λ)Li(x′, ωi, λ)(ωi · n)dωi (1.16)

Where Lo is the radiance coming from a point x in a direction ωo at wavelength
λ. It consists of two terms, the emission Le and reflected radiance expressed by
the integral. Notice that the integral evaluates recursively as the Li is essentially
the radiance from a point x′ coming in a direction ωi. The integral integrates
over solid angle Ω which corresponds to the hemisphere defined by surface nor-
mal n at point x. The bidirectional reflectance distribution function (BRDF)
fbrdf describes the interaction between light rays and the surface. It dictates the
distribution of directions of reflected light. For example, a matte surface would
have the distribution roughly equal in all directions and glossy material will have
a small cone where the majority of light will be reflected. To be more precise the
function fbrdf evaluates to the probability of a ray of a wavelength λ reflecting at
point x from direction ωi to direction ωo.

Equation 1.16 was introduced by Kajiya [1986] and serves as one of the fun-
damental equations in computer graphics. In this form, it describes the way light
interacts with surfaces. The integral is usually evaluated by the Monte Carlo in-
tegration method. The intersection between light rays and the scene is computed
by ray tracing. This technique is computationally intensive and thus reserved
for offline rendering. Even though in recent years attempts were made to enable
some ray-traced effects in real-time applications.

To obtain a color image, we should get three values for each pixel (red, green,
and blue subpixels). To do so, we can evaluate the equation over many different
wavelengths λ to obtain full spectral data at a given pixel and then multiply the
result with the channel spectral response curve to get the intensity of the color
subpixel we are interested in. Another option is to evaluate it over three color

11

primaries instead of full spectral rendering. Using the latter approach makes it
significantly easier to evaluate but at the cost of accuracy. Note that this form
of rendering equation wouldn’t allow us to account for spectral effects, such as
fluorescence.

As stated above, the rendering equation in the form presented in Equation 1.16
accounts only for interaction between light and the surfaces it hits. However, in
the real world, the light also interacts volumetrically with participating media.
The most common example is the atmosphere, this interaction turns the sky blue.
Other examples are liquids such as milk which has a white color thanks to the light
scattering inside its volume. And even solid materials experience some level of
light scattering. The most notable examples are skin, where longer wavelengths
(red color) travel further into the material than others. Other examples are
marble, wax, or plastic.

The participating media affects the light contribution by three processes as
stated in Pharr et al. [2016]:

1. Emission: The participating volume adds intensity from light-emitting par-
ticles. For example, a fire emits light because of ionized air particles. As
this effect isn’t the primary focus of our work we will ignore it.

2. Absorption: The light intensity is reduced as light is absorbed by the vol-
ume. For example, a cloud of thick black smoke is absorbing a lot of light.

3. Scattering: The light might change its direction due to collision with a
particle. For example, clouds have their distinct appearance because the
light that enters the cloud volume is bounced multiple times.

To precisely describe the effects of the interaction between participating media
and light we can use the following set of equations introduced by Kajiya and
Herzen [1984]:

L(x, ωo) =
∫︂ s

0
Tr(x ↔ xt)σs(xt)Li(xt, ωo)dt + Tr(x ↔ xs)L(xs, ωo) (1.17)

xt = x − ωot (1.17a)

Tr(x ↔ x′) = exp
(︄

−
∫︂ x′

x
σt(u)du

)︄
(1.17b)

Li(x, ω) =
∫︂

Ω
p(x, ωi, ωo)L(x, ωi)dωi (1.17c)

σt(x) = σs(x) + σa(x) (1.17d)

Note that this equation is simplified by omitting the emission term as well
as the fact that all functions depend on wavelength, similar to Equation 1.16.
Figure 1.3 illustrates the position of some points from the equation. The term
L(x, ωo) is the radiance coming into the point x from direction ωo. It consists of
the radiance reflected from point xs attenuated by the participating media. The
attenuation between points xs and x is expressed by the term Tr(x ↔ xs). The
overall radiance then consists also from the in-scattered light. The in-scattering

12

Figure 1.3: Multiple scattering inside a participating medium.

is expressed by the integral over the length s of the ray between points x and
xs. Inside this integral, there is the attenuation term Tr(x ↔ xt) again, but in
this case, it expresses the attenuation between points x and xt. The point xt is
computed as described in Equation 1.17a where t is the variable of the integral
from Equation 1.17. The amount of in-scattering is controlled by the scattering
coefficient σs.

To evaluate all the in-scattered light we have to compute the radiance incom-
ing from the volume Li(xt, ωo) which is described in Equation 1.17c. For every
point xt along the light ray, we have to integrate over all directions ωi across a
complete sphere Ω. Notice the difference to Equation 1.16, where we integrated
only across a hemisphere. The probability that the light will be scattered into
the direction ωo is controlled by the distribution function p(x, ωi, ωo), which is
called a phase function.

Equation 1.17b shows how the attenuation term Tr is computed. This term
combines the effects of absorption and out-scattering. It describes how much
the radiance is attenuated between points x and x′ and it is controlled by the
extinction coefficient σt. Note how we have to accumulate the extinction coef-
ficient over the length of a ray. This can be easily computed for homogeneous
media, but for inhomogeneous media, the computation is more difficult. As the
extinction coefficient combines the effects of absorption and out-scattering it is
simply a sum of absorption coefficient σa and scattering coefficient σs as stated
in Equation 1.17d.

The volume properties are controlled by three parameters: scattering coef-
ficient σs, absorption coefficient σa, and a phase function p. Values of these
parameters can be constant across a volume (typical for liquids and some solids),
in that case, we call the volume homogeneous, or the values might vary across
the volume (most gaseous volumes like smoke or clouds or solid materials com-
posed of smaller parts like color 3D prints), in that case, we call the volume
inhomogeneous.

Phase function p(ωi, ωo) is a distribution function that dictates the probabil-
ity that the direction ωi is scattered into the direction ωo. As it is a distribution,
it has to integrate over a whole sphere Ω to 1. The simplest phase function is
the uniform phase function, which has equal probability for all directions. An-

13

other phase function is Rayleigh scattering, which depends on the wavelength
and prefers forward and backward directions in opposition to perpendicular di-
rections. The wavelength dependency in Rayleigh scattering causes the sky to be
blue. The Rayleigh scattering is caused by smaller particles while larger particles
cause Mie scattering. Mie scattering phase function is complicated and is often
approximated by the Henyey-Greenstein phase function which has a single pa-
rameter g that controls whether the phase function is forward- or back-scattering.
The Henyey-Greenstein function is described by Equation 1.18 as stated by Jarosz
[2008]. It depends only on the angle between incoming and outgoing directions Θ
and the anisotropy parameter g. Note that the phase function in Equation 1.17c
together with the scattering coefficient in Equation 1.17 acts similarly to the
BRDF from Equation 1.16.

pHG(Θ) = 1 − g2

4π(1 + g2 − 2g cos(Θ)1.5) (1.18)

Absorption coefficient σa determines how much light intensity is irretrievably
lost by volume absorption. Absorption coefficients usually depend on wavelength.

The scattering coefficient σs determines how much light is scattered inside
the participating volume. The light can be scattered out which lowers the overall
light intensity passing through the volume. Or the light might be scattered into
the path which increases the intensity.

Another property that can be used to describe the volume is albedo. Albedo
is a unitless ratio of scattering and extinction coefficients, which can be expressed
as σs

σs+σa
. This property describes the ratio of light being absorbed and light being

scattered in each interaction. Materials with high albedo are particularly difficult
to render as there are longer paths inside them with lots of scattering events.

Evaluating Equation 1.17 is computationally even more intensive than ray
tracing as we have to evaluate the absorption and scattering coefficients in every
position across the length of a light ray. This technique is known as ray marching.
Given the computation intensity, there are attempts to estimate the volumetric
interaction with machine learning approaches as presented in the next chapter.

14

2. Related Work
This chapter will include an overview of the previous work that is used in our
thesis. These can be split into two categories: scattering prediction and repre-
sentation networks. The work presented in the section on scattering prediction
focuses on approximating light transport in participating media with neural net-
works. While the research on representation networks is mostly about networks
that describe the volumetric properties of different scenes.

2.1 Scattering prediction
As stated in the previous chapter, the evaluation of Equation 1.17 is computa-
tionally intensive. To speed up the estimation of the integral, Kallweit et al.
[2017] introduced a technique to compute the in-scattered radiance in clouds by
using a neural network. Later, Rittig et al. [2021] adapted this technique to 3D
printing application.

Kallweit et al. [2017] technique used a stencil with multiple scales that sampled
a cloud volume around a point where the in-scattered radiance was computed.
Also, the stencil was aligned with the oncoming light direction as seen in Fig-
ure 2.1. In each point of the stencil, scattering and absorption coefficients are
stored. For the coarser levels of the stencil, the coefficients are averaged over the
appropriate area.

The finer scales of the stencil help to focus the network on a fine detail around
the point of interest while the more coarse scales of the stencil help with the
approximation of in-scattered light from more distant areas. The stencil is then
inputted into the prediction network that produces a number that describes the
in-scattered radiance in the point of interest.

Architecture changes proposed by Rittig et al. [2021] include an axis-aligned
stencil instead of a stencil that is aligned towards the light direction. The align-
ment isn’t necessary as the stencils are centered around the point of interest and
the lighting of the 3d print is assumed to be diffuse without any preferential di-
rection. Another difference to the Kallweit et al. [2017] is that this network is
used to predict the whole appearance of the volume rather than to approximate
the indirect lightning contribution.

The architecture of the prediction network consists of multiple radiance predic-
tion neural networks (RPNN) blocks where each block accepts a different stencil
level. Each block also shares its weights with others which leads to better gener-
alization. The network also benefits from the radial symmetry of the problem at
hand, so the portions for each octet of the stencil are shared as well. The archi-
tecture of the network, as well as the relation between different stencil levels, are
depicted in Figure 2.2.

As the intended application is in 3D printing, the stencil dimensions are linked
to the voxel resolution of resin droplets produced by the 3D printer. These
printers have a different resolution in the three spatial axes, this result is that
stencils have nonuniform dimensions as well as all training data have nonuniform
voxel dimensions.

The neural network introduced by this paper is directly used in our work and

15

Figure 2.1: A stencil rotation and placement used by Kallweit et al. [2017]. Two
stencil levels are shown here. Image taken directly from Kallweit et al. [2017].

Figure 2.2: The architecture of the prediction network. The image on the left
shows how different stencil levels sample the volume around the point of interest.
The image in the middle shows an overview of the architecture of the network. D
denotes dense layers with trainable weights, ≡ blocks denote shared weights and
round blocks denote mathematical operations. The image on the right shows the
detail of one RPNN block. Image taken directly from Rittig et al. [2021].

16

it is referred to as the appearance prediction network. Our work focuses on the
data representation that is being fed into the network. The original architec-
ture used a summed-area table (SAT) (see Crow, Franklin C. [1984]) as its data
structure to quickly evaluate an average value across multiple voxels for coarser
stencil levels. This averaging corresponds to using a box-shaped kernel filter for
blurring the finer stencil levels. We have completely switched the data structure
for our representation network. This would in theory enable a differentiable scene
representation.

2.2 Neural radiance fields
Neural radiance fields (NeRF) were introduced by Mildenhall et al. [2020]. And
since then many authors improved upon it. For our purposes, the most notable
improvement was Barron et al. [2021] which deals with aliasing artifacts for dis-
tant objects.

NeRF network utilizes a positional encoding of the input parameters. The
usual approach is to use sine and cosine functions. However, Müller et al. [2021]
proposed a triangle function for better performance as transcendental functions
are notoriously slow to evaluate on a GPU. Also, Müller et al. [2022] proposed
a different type of positional encoding that relies on spatial hashing functions
which are even faster to evaluate.

Frequency-based positional encoding functions transform the input into out-
put with more dimensions, where each corresponds to a different frequency. This
allows the network to focus on higher-frequency detail. In the NeRF paper, the
positional encoding had 5-dimensional input, 3 for spatial coordinates and 2 for
direction. The output was a concatenation of the original input and the encoded
values computed as in Equation 2.1. The number of frequencies used for encoding
could be parameterized. The positional encoded input is fed to the MLP network
that essentially stores the information about a scene in its weights.

γ(p) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p
sin (s0p)
cos (s0p)
sin (s1p)
cos (s1p)
sin (s2p)
cos (s2p)

. . .
sin (sLp)
cos (sLp)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.1)

Equation Equation 2.1 describes the positional encoding used by NeRFs,
where γ is the positional encoding function, p is position (or more generally
the variable that is being encoded) and s is a hyperparameter that specifies the
spacing of frequencies and is always greater than one. Originally Mildenhall et al.
[2020] used s = 2. L controls the length of the output vector and it is also a hy-
perparameter. Comparing this equation with Equation 1.2 we can see why these
networks are sometimes called Fourier feature networks. The individual elements

17

of the output vector are essentially terms of the sum from the discrete Fourier
transform equation.

As noted in the NeRF paper, a similar technique is used in large language
model transformer networks Vaswani et al. [2017]. However, in this application,
we use positional encoding to provide a higher-frequency representation of the
continuous space. The transformer networks use positional encoding to add in-
formation about the position of a token.

As we stated in section 1.2, usually the goal of machine learning is to provide
good generalization capabilities. However, in neural radiance field application,
the model is purposefully overfitted to the given scene. That means, that for
each given scene, we have to fit a separate model. If we would like to represent a
different scene we will have to fit the model again. This fact might limit potential
applications as nontrivial time has to be spent when fitting the model. The time
spent on training the neural network for the particular scene might be reduced
by utilizing the meta-learning technique proposed by Tancik et al. [2021], which
optimizes the initialization of a particular representation network to an average of
many different scenes. This creates a starting point from where the convergence
is faster than from a random initialization.

The advantage of using a representation neural network is that it provides
differentiable scene representation. Or it can be used as an alternative to point
cloud scene representation.

Tancik et al. [2020] showed that the frequencies used in positional encoding
(Equation 2.1) can be drawn from a random distribution. Where the standard
deviation of such distribution is much more important than its shape. Their
work also showed the importance of positional encoding for representational MLP
networks.

Barron et al. [2021] introduced a technique that deals with aliasing artifacts
by sampling conical sections instead of points. The frequencies in positional
encoding are weighted based on the approximation of a conical volume. We
exploit this technique to produce scattering and absorption coefficients at different
scales similar to how mipmaps work for textures, hence the name Mip-NeRF.
The conical section volume is approximated by a multivariate Gaussian. The
covariance matrix of the multivariate Gaussian is proportional to the shape and
volume of the conical section. Given the covariance matrix and the mean we can
compute the integrated positional encoding by the following equation:

γ(µ, Σ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin (s0µ) · exp (−1
2diag(Σ)s0)

cos (s0µ) · exp (−1
2diag(Σ)s0)

sin (s1µ) · exp (−1
2diag(Σ)s2)

cos (s1µ) · exp (−1
2diag(Σ)s2)

...
sin (sLµ) · exp (−1

2diag(Σ)s2L)
cos (sLµ) · exp (−1

2diag(Σ)s2L)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.2)

Where γ is integrated positional encoding, µ is the mean value of the position,
and Σ is the covariance matrix of the multivariate Gaussian. The diagonal of the
covariance matrix contains standard deviations of each input coordinate. Com-
paring integrated positional encoding (Equation 2.2) to the original positional

18

Figure 2.3: A figure illustrating the difference of positional encoding between
NeRF and Mip-NeRF. Image taken directly from Barron et al. [2021].

encoding (Equation 2.1), we can see that the only difference is the attenuation of
vector components by the exponential factor. The attenuation is scaled by the
standard deviation of the multivariate Gaussian and the frequency. Amplitudes
of higher frequencies are clipped more with higher values of standard deviation.
This equation can be seen as a direct application of the convolution of the Fourier
transform of the original input with the Gaussian in the frequency domain, as
presented in section 1.1.

The difference between the two positional encoding functions is illustrated
in Figure 2.3. The figure shows a one-dimensional example of the two different
encoding functions. Notice that the higher frequencies in larger conical frustums
are attenuated compared to NeRF point samples. Also, note that the attenuation
is dependent on the size of the frustums.

2.2.1 Training
The training of the NeRF network is done using a dataset with multiple differ-
ent images of the same scene. For each image, there is a camera position and
camera direction, so that ray origin points and ray directions can be computed
for every pixel in the image. Using a ray marching technique the output of the
NeRF network is sampled along each ray. The opacity and color information are
computed and compared to the actual value of the pixel. It is important that the
ray marching algorithm is differentiable so that a gradient descent step can be
made.

As stated above, Mip-NeRF uses cones instead of rays with conical volume
samples instead of point samples. This means that the further away we are from
the camera, the larger the conical volume is, which in turn means that the high
frequencies in the positional encoding function (Equation 2.1) are attenuated.

19

Figure 2.4: A figure illustrating sampling techniques used by NeRF and Mip-
NeRF networks. The points represent sampling utilized by NeRF, while the
trapezoids represent sampling utilized by Mip-NeRF. Image taken directly from
Barron et al. [2021].

This ensures that the underlying MLP doesn’t hallucinate high-frequency output
when there shouldn’t be any, greatly reducing aliasing. Other than the difference
in sampling, the training approach is similar to the NeRF.

Figure 2.4 shows two sampling techniques used by NeRF and Mip-NeRF.
It shows two viewpoints that would correspond to two different images during
training. The dots show sample points of NeRF, while the conical frustums show
sample areas of Mip-NeRF.

20

3. Method
Our goal is to replace the data structure used by the original appearance predic-
tion network by Rittig et al. [2021]. To reiterate, summed-area tables were used
originally. We are aiming to replace it with the representation network inspired
by Mip-NeRF introduced by Barron et al. [2021]. For that reason, we conducted
a series of tests that would evaluate the performance of such a representation
network.

At first, we attempted to represent simple two-dimensional images. Next, we
focused on representing sets of images, where each set consists of the same image
that is blurred by increasing amounts. After these experiments, we attempted to
represent volumes. We designed a volumetric representation network and tested
it on volumes with different complexity. The last step was connecting the repre-
sentation and the appearance prediction networks in such a way that we could
predict the appearance of a 3D print, thus completing our goal of substituting
the data structure of the prediction network. Our overall pipeline is illustrated
in Figure 3.1 along with the training loop and the connection between the two
networks.

This chapter provides details about the architecture of these networks and
describes the connection between the two networks.

Appearance
network

Representation
network

Stencils
Stencils

Stencils

op
tim

iz
at

io
n

Representation
networkRaw data

Gaussian
filters

Training loop

Evaluation

Final
image

Input coordinates

Figure 3.1: The final pipeline, where the representation and the appearance pre-
diction networks are connected.

21

3.1 Representation network

3.1.1 2D image representation

Figure 3.2: Architecture of a network for single image representation. Note that
the group of 4 hidden layers might repeat based on the hyperparameters.

To evaluate the feasibility of our approach we decided to first experiment
with representing 2D images. The architecture of these networks was similar to
the architecture of NeRF by Mildenhall et al. [2020]. Unlike in the upcoming
example, positional encoding wasn’t attenuated as this isn’t needed when fitting
a single 2D image.

Architecture The input to the network is a two-dimensional point whose val-
ues are rescaled to lie between 0 and 1. This normalization of input coordinates
helps with the training process as it constrains the gradient magnitude to a mean-
ingful level. Our earlier experiments showed that using non-normalized coordi-
nates had poor results. The two dimensions are then processed by positional
encoding as described in Equation 2.1. The output of the encoding is fed into an
MLP network with skip connections, which outputs three numbers. Each number
corresponds to one of the three color channels.

The network architecture is controlled via a set of hyperparameters. Two
hyperparameters of the positional encoding function, where the first controls
the size of the output vector while the other is the scaling parameter s in the
Equation 2.1. The parameter s of the positional encoding influences how spread
apart the frequencies will be. Figure 3.2 illustrates the architecture of this simple
network.

Another set of hyperparameters controls the shape of the MLP network. We
can control the dimension of the first set of dense layers as well as their count.
The skip connections are realized as a concatenation of the positional encoded
inputs with the output of every fourth layer. After the first set of fully connected

22

layers, there is one dense layer that has also an adjustable dimension and connects
directly to the output layer which has three outputs for the red, the green, and
the blue channel. The activation function for all layers is ReLU (Equation 1.12).

Training The images we used for training were downscaled to a resolution of
128 by 128 pixels. The training process consists of randomizing the pixel positions
of the target image and feeding them into the network along with their target
pixel values. This process is repeated for as many epochs as requested. We use
the MSE as a loss function and PSNR as a metric. The learning rate is decayed
every epoch by using the cosine decay formula Equation 1.15, where the maximal
learning rate ϵmax is variable and minimal learning rate ϵmin is fixed to be 1

100 of
the ϵmax.

The represented image is rendered by generating a list of ordered positions that
correspond to appropriate pixel coordinates. We use these positions to evaluate
the representation network and obtain the resulting image.

3.1.2 Representation of a set of blurred images

Figure 3.3: Architecture of a network for single image representation. Note that
the group of 4 hidden layers might repeat based on the hyperparameters.

The next step in evaluating the feasibility of our approach was to test the rep-
resentation network with attenuated positional encoding as described by Equa-
tion 2.2. The architecture of this representation network was similar to the simple
one from the previous experiment. The only change was the attenuated positional
encoding.

Architecture The network has the same number of hyperparameters as the
MLP design after the position encoding step is the same as in the previous case.

23

In fact, the network is almost identical to the one used for single-image repre-
sentation. The only difference is the attenuation mask. This fact can be seen in
Figure 3.3, which shows the architecture of this representation network.

The inputs to the network are positions and the attenuation mask, which can
be computed based on the size of the Gaussian kernel used to blur the images.
The size of such kernel is determined by its standard deviation, which for mul-
tivariate Gaussian can be found on the diagonal of the covariance matrix. More
precisely, the square of standard deviation is on the diagonal of the matrix, which
appears directly in Equation 2.2. Therefore, for each blur level, we have a single
attenuation mask.

Training For training, we attempted several different strategies. Ordering the
images from coarsest details to finest while maintaining a similar strategy as
with single image representation, that is, randomizing input pixel positions and
feeding them to the network for training. The idea behind this was that the
convergence of the training with coarser detail is faster so the network would
spend less time training on the coarser levels. However, in practice, the results
of this strategy were suboptimal. Another training strategy was interleaving the
blur levels so that the level with the finest details is in-between different levels,
while still ordering the blur levels from coarsest to finest. The final strategy was
to sample positions as well as levels randomly, this yielded the best results in
terms of speed of convergence. This was our chosen strategy that we used in the
rest of our work.

3.1.3 Volume representation

Figure 3.4: Architecture of volumetric representation network. Note that the
group of 4 hidden layers might repeat based on the hyperparameters.

24

The final step was to prepare a volumetric representation network. Our volu-
metric representation network has a similar architecture to the network presented
in Barron et al. [2021]. However, the input is a three-dimensional position nor-
malized between 0 and 1. As with the 2D images, the normalization helps with
containing the gradients to a sensible level. The overall architecture is very similar
to the previous case of representing sets of blurred images.

Architecture The input is three spatial coordinates that are positionally en-
coded via Equation 2.1. Along with these three input coordinates, the network
is also fed with an attenuation mask. This mask is computed as the attenuation
part of Equation 2.2 in a comparable way as in the previous case. Because we
use the Gaussian kernels with known standard deviations to blur the input, we
can easily evaluate the equation for each blur level.

The output of positional encoding is inputted to an MLP with skip connec-
tions. The skip connections are implemented in the same way as described in the
previous two networks. Every fourth layer has the original MLP input concate-
nated with its inputs.

Before the final output layer, there are hidden layers with different widths.
This width is smaller than the width of the layers in the preceding MLP. There
are no skip connections in this final hidden layers segment. The output of the
final hidden layer is connected to the output layer, which outputs 2 values, the
scattering and absorption coefficients that are also normalized. We have found
out that keeping the output of the network between 0 and 1 is beneficial for the
overall performance.

To facilitate this output normalization we simply found the highest value for
each channel and then used a mapping function that transforms the full range
into the smaller range. The mapping function is a simple linear rescaling of the
original values. However, instead of using a range of 0 to 1, we have decided to
use an even smaller range, this was inspired by the label smoothing technique
described in Goodfellow et al. [2016]. In our implementation, we are using an
interval [0.05, 0.95]. During the interpretation of the output of the representation
network, we do the same process but reversed.

Overall, the hyperparameters are the same as in previous cases with the ad-
dition of configurable depth of the final hidden layers segment: The dimension of
the positional encoding and also the scaling of frequencies, the depth of the first
block of hidden layers, as well as the size of each layer, and the count of final
hidden layers, as well as their width.

Figure 3.4 shows our architecture. It is the same architecture as the one
described in subsection 3.1.2 with the inputs being three-dimensional and the
outputs being two-dimensional. Another difference is the configurable depth of
the final hidden layer segment. Compare it to Figure 3.3.

Training The data we are trying to represent is the output of a color 3D print-
ing device. These devices can deposit small droplets of different materials to form
the print as opposed to regular 3D printers, which deposit only a single material.
Also, the droplets are tiny to enable color mixing. The properties of materials
used in color 3D printing are well-defined. Table 3.1 contains these materials and
their scattering and absorption coefficients. The table also contains an entry for

25

Table 3.1: Materials used in 3D printers and their coefficients.

Red Green Blue
Material σs σa σs σa σs σa

Cyan 0.45 8.55 3.15 1.35 7.35 0.15
Magenta 2.45 0.05 0.30 2.70 9.00 1.00
Yellow 2.24 0.01 3.73 0.02 2.85 16.15
Black 1.75 3.25 1.93 3.58 2.28 4.23
White 5.99 0.01 9.00 0.003 23.98 0.02
Air 0.00 0.00 0.00 0.00 0.00 0.00

an air material, which is used in the data when there is no material deposited
by the 3D printer. Note that the air material has its scattering and absorption
coefficients set to zero. That means the air material doesn’t interact with light,
which is a reasonable assumption for the scales used in 3D printing.

The values in Table 3.1 and the phase function used are the same as the
values measured by Elek et al. [2017]1. Crucially, they are the same values as
Rittig et al. [2021] used for their prediction network. The phase function of
the materials might be different for each material. However, we can assume an
average phase function that would be the same for every material. For that
reason, we approximate the phase function as the Henyey-Greenstein function
with an anisotropy coefficient g = 0.4, see Equation 1.18. That is the same phase
function as Elek et al. [2017] used in their work.

The challenge in representing this kind of data is its noisiness. As with tradi-
tional printing, to create a desired color a mixture of materials must be used and
the small droplets of different materials are deposited next to each other. This
creates high-frequency features that are very difficult to represent with the neural
network.

Each volume was represented by three different representation networks. One
for red, one for green, and one for blue channel. The training data was pre-
processed by blurring into nine different levels. These were required by the ap-
pearance prediction network. We used Gaussian blur as opposed to Rittig et al.
[2021], who used a box-shaped kernel. However, the Gaussian kernel enables us
to use the attenuated positional encoding from Equation 2.2 as the attenuation
directly follows from the convolution in the frequency domain. Using a different
kernel for blurring would require a different function to be used as a factor. The
kernel size of each blur level was chosen to match the required blur level of the
appearance prediction network. We achieved this by selecting the standard devi-
ation of the Gaussian to be half of the box kernel radius. The relation between
these two kernels with this ratio of sizes is illustrated in Figure 1.1.

The sampling of the voxel grid was done in such a way that for each voxel
in each blur level, we produced a single sample that corresponds to the middle
of that voxel. In addition to these ”center” samples we added extra samples
across a voxel for the first blur level (without blur). This super-sampling option
is a hyperparameter of our representation network. In theory, multiple samples
should introduce more detail and higher frequencies into the training data for the

1Elek et al. [2017] state the values in terms of albedo and extinction coefficients. We have
recomputed their values to scattering and absorption coefficients.

26

finest level. However, it doubles the training time as there are twice as many
samples to train on. The increased precision on the finest level is required by the
fact, that the representation network might get evaluated at different resolutions
than it was trained on and these positions might not end up in the middle of a
voxel.

3.2 Appearance prediction network
As stated in section 2.1, we use the prediction network proposed by Rittig et al.
[2021]. We swap the summed-area table data structure for the representation
network mentioned above.

The first step in connecting the two networks is to compute the visible outer
voxels of the volume. For this purpose, we use two approaches depending on the
volume at hand. The first one utilizes an algorithm used by Rittig et al. [2021],
that iteratively ray-marches from outside of the volume towards the center and
seeks material that is different from the air material. We use this technique when
working with an unknown volume. The other approach relies on the fact that we
know the positions where the volume is occupied by the material, which is the
case for simple, generated volumes. Once these positions are found, we use them
to generate stencils for the prediction network.

Next, attenuation masks for each stencil blur level are computed. Then for
each position found by the previously described search algorithm, we generate
positions according to stencils used by the prediction network. These positions
are spaced out for each blur level by a factor of 2. For positions that lie outside
of the trained area and thus their value would be outside of the normalized range
of 0 to 1, we decided to clamp them to the said range. All data that were used
contained a small buffer of air between the actual voxels with materials and the
edge of the data array. Also, for each blur level, we override voxels on the edge
with values for air material (zeros). For that reason, the clamping of positions
shouldn’t introduce much distortion as the position outside of the data array is
assumed to be air.

Once we have all positions, we group them with the attenuation mask and
pass them into the representation network. The representation network outputs
stencils with scattering and absorption coefficients that we pass to the appear-
ance prediction network. The prediction network outputs a single number that
corresponds to the pixel intensity at that position.

We repeat said process for each color channel to get the final result. Theo-
retically, there can be as many color channels as needed, for example, if we were
to use spectral data then we would be able to predict the appearance based on
spectral rendering. However, we used a trichromatic approach with red, green,
and blue channels.

The major difference between our representation and the original data struc-
ture used by Rittig et al. [2021] was that we used the Gaussian kernel to average
the data for coarser stencil levels, while they used the box kernel. The standard
deviation of the Gaussian kernel was half of the box kernel radius. The relation
between these two kernels is illustrated in Figure 1.1. Due to this difference,
we decided to first test our approach by evaluating the prediction network on
the same data that was used to train the representation network. By querying

27

the processed data array at appropriate positions we constructed stencils for the
appearance prediction network. If the requested position was outside of the data
array, we clamped the position to the nearest edge to preserve the behavior of
the representation network query.

28

4. Implementation
We have implemented the discussed solution from chapter 3 using the Tensor-
flow 2 framework. To visualize the results we used Jupyter notebooks. We have
utilized Docker to bundle the whole software solution together into a container.
To prepare the setup of the container we used Docker Compose. The sources for
our solutions were coded in Python programming language.

The original appearance prediction network by Rittig et al. [2021] was imple-
mented in Tensorflow 1. Even though the conversion between Tensorflow versions
might be possible, we didn’t succeed. For that reason, we distribute the original
docker container of Rittig et al. [2021] complemented with our script that reads
the outputs of the representation network and feeds the appearance prediction
network. To obtain the appearance prediction, a set of stencils has to be gen-
erated using our Docker container. Once these stencils are generated, they can
be loaded into the appearance prediction network and the surface appearance is
computed.

Most of our results are presented in Jupyter notebooks. For instance, the im-
plementation of the image representing networks (presented in sections 3.1.1 and
3.1.2) is done in Jupyter notebooks as well as simple volumetric representation.
While the volumetric representation of complex volumes (presented in section
3.1.3) is handled in regular Python scripts.

The Tensorflow framework provides an implementation of various machine
learning algorithms. For instance, the Adam optimizer, the cosine learning rate
decay, the dense layer, the mean squared error loss function, and many more.
It also includes a framework that manages the training process with automatic
differentiation and application of the optimizer. Another useful interface included
in Tensorflow is tf.data, which can be used to generate, shuffle, and batch
data. The API of the Tensorflow package is provided in the Python programming
language, hence it was also the language of choice for our implementation.

As stated in the previous paragraph, for the random sampling of the generated
data we used the tf.data interface. This interface has a function to randomize
the order of the data. The major bottleneck we encountered was the fact that
the shuffling was happening on the CPU. This in theory should enable better
performance as the main training is done on the GPU and the otherwise idle
CPU would be used to prepare the data for the next batch. However, we have
found out that for the best results, we have to use very large shuffle buffers, ideally
as large as the whole dataset. This prevents any parallel operation whatsoever,
hurting the performance massively.

We used different hardware configurations to run our experiments. For small-
scale training and 2D image representation a computer with AMD Ryzen 5 3600
CPU and NVIDIA RTX 2060 GPU was used. Larger experiments, especially
volumetric representation network training ran on a compute server. We used
a server with Intel Xeon E5-2680 v3 CPU with 256 GB of RAM, and NVIDIA
Titan RTX GPU with 24 GB of video memory.

Our implementation is provided as an electronic attachment to this thesis,
see Attachment A.1. The documentation for the package is also attached to the
thesis, for that see Attachment A.2.

29

5. Results
This chapter reviews the results of our representation network. First, we look
at representing 2D images, where we evaluate the training progression and the
impact of the network capacity on the representation quality. In the next section,
we analyze the representation of a set of blurred images. This case should take
advantage of our Mip-NeRF-inspired architecture. The most important results
are related to the representation of volumetric data. We inspect the representa-
tion of simple synthetic volumes as well as one more complex volume. The last
section presents the results of the appearance prediction network and compares
the outputs that use the representation network with outputs that don’t use it.

5.1 Representation of 2D images

Figure 5.1: Result of 2D image representation network. The left image is the
target, the middle image is the representation network output and the image on
the right is the flip metric.

Table 5.1: Parameters of representation network used to represent a single image.

Hidden layers 8+1
Width of hidden layers 48
Width of final hidden layer 16
Positional encoding scale 2.0
Positional encoding size 16
Epochs 500
Initial learning rate 5 · 10−5

Batch size 64
Trainable parameters 23 683

For the representation of 2D images we used the network described in sub-
section 3.1.1. In this section, we will review the results of this representation for
one particular image.

Figure 5.1 shows the result of the representation network. The first image
from the left is the desired target image, the second image shows the representa-
tion network prediction and the final image on the right is the flip metric. The

30

Figure 5.2: Training progress of a representation network of a single image. The
blue line shows how the PSNR evolved over the training period, the red red line
shows the training loss.

Figure 5.3: Result of the larger 2D image representation network. The left image
is the target, the middle image is the representation network output and the
image on the right is the flip metric.

Table 5.2: Parameters of the larger representation network used to represent a
single image.

Hidden layers 12+1
Width of hidden layers 64
Width of final hidden layer 48
Positional encoding scale 1.75
Positional encoding size 16
Epochs 500
Initial learning rate 5 · 10−5

Batch size 64
Trainable parameters 61 763

31

flip metric was introduced by Andersson et al. [2020] and it helps to highlight
perceivable differences between the two images.

The overall representation of an image is reasonably good. High-frequency
details, like edges, are well preserved. However, the cloudiness in the dark por-
tion of the original image is missing in the representation. Probably the biggest
artifact is that the red color of the lips is missing and generally the predicted
image seems to be less saturated in color.

Figure 5.2 illustrates the training process, the two curves are the evolution
of loss and PSNR over training epochs. We can see that during training there
weren’t any anomalies that would suggest an incorrectly chosen learning rate.
The final PSNR after 500 epochs was approximately 33.8 db. The time required
for each epoch with NVIDIA RTX 2060 GPU and AMD Ryzen 5 3600 CPU was
approximately 5 s, and overall the training took about 44 minutes.

Table 5.1 contains the values for hyperparameters of the representation net-
work and parameters used for training. As stated in the previous chapter, the
target image had a resolution of 128 by 128 pixels with 3 color channels. We were
using a 32-bit floating point per channel, which means that in total we would need
49 152 floating point numbers. However, the representation network is comprised
of 23 683 32-bit floating point parameters, thus providing a certain compression
effect.

By sacrificing the compression effect, we can obtain better performance by
increasing the size of the representation network. Figure 5.3 shows the results
of the representation network with higher capacity, while Table 5.2 contains its
parameters. As you can see, the overall quality of the representation is much
better than in the case of the smaller network. The most noticeable artifacts
disappeared and the discrepancies were reduced mostly to the facial area. Addi-
tionally, the saturation of the image is improved over the prediction of the smaller
network even though the redness of the lips is still missing but to a lesser extent.
The flip metric also peaks at about half of the original maximum. The PSNR for
this representation network was about 41.0 db and the time it took to train the
network was approximately 55 minutes on the same machine as in the previous
case.

Our package that is provided with this thesis, Attachment A.1, contains
more examples of single-image representation networks. Those are available in a
Jupyter notebook called 2D Images.ipynb in the notebooks directory.

5.2 Representation of a set of blurred image
In this section we will take a look at representing multiple levels of detail with a
single network. The image, that we are representing, was blurred by five different
Gaussian kernels (the first kernel had a standard deviation of zero, so the blurred
image is the same as the source), resulting in five levels of detail. The sizes of these
kernels are given in Table 5.3. Figure 5.4 shows the results of a representation
network trained on this set of blurred images with frequency attenuation. Each
level of detail has its image triplet, where the leftmost image corresponds to the
output of the network, the middle image is the target and the rightmost is the
flip metric. The flip metric images are normalized to have the same range.

The images without fine details were represented quite well and even finely

32

(a)

(b)

(c)

(d)

Figure 5.4: Result of a representation network for a set of blurred 2D images.

33

(e)

Figure 5.4: Result of a representation network for a set of blurred 2D images.

Figure 5.5: The evolution of PSNR of individual levels and training loss over the
training period.

detailed images were represented well with all high-frequency details present.
Even though we used a network with the same number of trainable parameters
as in the case of the bigger model of single-image representation, the results
for the most detailed level are almost the same. But this time the representation
network can correctly represent even the blurred versions of the target image. The
difference in the PSNR between the finest detailed level and the representation
from the previous case is only 0.07 db as evidenced by Table 5.4 which contains
PSNR values for individual levels. Also, the flip metric looks qualitatively similar.

Figure 5.5 shows the evolution of the PSNR metric over the training period
as well as the loss function. Comparing this figure with Figure 5.2, the PSNR
values seem to be more noisy, so perhaps the learning rate was set a little bit too
high.

The network architecture is described in subsection 3.1.2 and Table 5.4 con-
tains the values of hyperparameters used to obtain these results. The results
shown in Figure 5.4 were obtained after training for 500 epochs. As there was
five times more data than in the case of a single image representation, each epoch
took more time. However, the additional time needed wasn’t five times longer.

34

The time required for each epoch with NVIDIA RTX 2060 GPU and AMD Ryzen
5 3600 CPU was approximately 20 s, so overall the training took about 173 min-
utes. Note that for each epoch the representation network was evaluated to
compute the PSNRs of each level, which negatively impacted the performance.

Our package that is provided with this thesis, Attachment A.1, contains more
examples of this type of representation network. Those are available in a Jupyter
notebook called 2D Blurred Images.ipynb in the notebooks directory.

Table 5.3: Standard deviations (SD)
of Gaussian kernels used to obtain
target images in Figure 5.4.

Level SD
4 (finest) 0
3 1
2 2
1 4
0 (coarsest) 8

Table 5.4: Values of PSNR for in-
dividual blur level. Ordered from
finest details to coarsest.

Level PSNR [db]
4 (finest) 40.9
3 43.8
2 46.0
1 45.9
0 (coarsest) 46.5

Table 5.5: Parameters of representation network used to represent multiple level
of details of an image.

Hidden layers 12+1
Width of hidden layers 64
Width of final hidden layer 48
Positional encoding scale 1.75
Positional encoding size 16
Epochs 500
Initial learning rate 5 · 10−5

Batch size 64
Trainable parameters 61 763

5.3 Representing volume
We have chosen to represent volumes with varying complexity and we can divide
them into two groups. The first group consists of simple volumes, which we
generated ourselves. Another group is volumes used by Rittig et al. [2021] to
train their appearance prediction network. These volumes are more complex
than the simple ones and contain a lot of small features which proved difficult to
represent to our representation network. From the second group, we selected one
volume to examine.

5.3.1 Simple volumes
The simple volumes were generated as a slab with a pattern in two dimensions
that is extruded into the vertical dimension. These patterns were chosen to give
us hints about the representation network performance in different conditions and

35

they can be seen in Figures 5.6 to 5.9. The image on the left represents a top-down
view and the image on the right is the vertical cut through the volume, indicated
by the red line. The printer materials are represented with their respective colors
and the air material is represented by gray color. As mentioned before, all volumes
have a small area on the outside filled with air material.

Table 5.6: Parameters of representation
network used to represent simple vol-
umes.

Hidden layers 8+1
Width of hidden layers 128
Width of final hidden layer 64
Positional encoding scale 1.20
Positional encoding size 24
Epochs 15
Initial learning rate 5 · 10−4

Batch size 64
Trainable parameters 161 730

Table 5.7: Standard deviations
(SD) of Gaussian kernels used
to create training data for vol-
umetric representation network
for simple volumes. The size is
proportional to the size of a sin-
gle voxel.

Level SD
0 (finest) 0
1 1
2 2
3 4
4 8
5 16
6 32
7 64
8 (coarsest) 128

The volumetric representation network architecture is described in Chapter
3.1.3. The parameters of this architecture used for simple volume are in Table 5.6.
The volumes were blurred to nine different levels, which is the number of levels
that the appearance prediction network expects. The sizes of Gaussian kernels
are in Table 5.3. As it is sufficient to show only one of the three color channels to
understand the quality of representation, we have trained representation networks
only for the red color channel.

Super-sampling The effect of super-sampling can be illustrated on black and
white edge volume. We can observe how the network responds to the changes in
the target data. To compare the difference, we have trained two networks, one
that samples just one sample per voxel for the first (finest) level and one that
samples eight additional samples located near the corners of the voxel.

Figures 5.10 and 5.11 show the difference between super-sampling and no
super-sampling. Figure 5.10 is a scatter plot of all values for scattering and
absorption coefficients of the first level of the volume. The black dots correspond
to the target values, all of which are located at three distinct positions, which
stand for three materials (black, white, and air). The red dots correspond to the
prediction by our representation networks, these aren’t located at a single point
but are spread around the target points. The size of this spread is larger for the
network trained without super-sampling, this indicates that the super-sampling
increases the accuracy of the representation network.

Figure 5.11 is a one-dimensional cut through the volume, focusing on the
area of the edge where the properties change. The cut consists of four voxels

36

Figure 5.6: Black and white edge volume. The size of this volume is 86 by 59 by
136 voxels.

Figure 5.7: Black and white checkerboard volume. The size of this volume is 76
by 49 by 131 voxels.

exactly in the middle of the volume. The representation network was queried
multiple times per voxel to visualize its interpolation capabilities. Again, the
network trained with super-sampling follows the target values more closely while
the other network smoothly interpolates between the values.

The super-sampled results clearly show the benefits of such an approach. For
this reason, we trained all other networks with super-sampling. However, it is
important to note that super-sampling introduces eight additional samples per
voxel, which nearly doubles the size of the training dataset. This leads to longer
training times. The super-sampled network took 1964 s to train with NVIDIA
RTX 2060 GPU and AMD Ryzen 5 3600 CPU. While the network without super-
sampling took 1006 s with the same hardware. Both networks were trained for 15
epochs as the rest of the other simple volumes.

Scattering and absorption coefficients representation We can examine
the representation of other simple volumes by studying the aggregate values of
scattering and absorption coefficients. Figures 5.12–5.14 show the values of said
coefficients by aggregating them for each volume and level separately. The black
dots represent values from the target volumes, while the red area around them
is the prediction of our representation network. The larger this area is the less

37

Figure 5.8: Colorful stripes consisting of all possible materials The size of this
volume is 86 by 59 by 136 voxels.

Figure 5.9: Colorful checkerboard volume. The size of this volume is 67 by 48 by
131 voxels.

precise the representation network is.
Figure 5.12 shows aggregate scattering and absorption coefficients of different

blur levels for black and white checker volume. Black dots denote the target
values and the red area around them shows the output of the representation
network. The sharpest level is shown in Figure 5.12a. The three distinct dots
that can be seen correspond to three materials: black, white, and air. Higher
levels of blur mix these three materials together, so there are more black dots
in Figures 5.12b–5.12d. The size of the red area is small so the quality of the
representation is still very good.

Because the whole volume is covered in a thin layer of air material on the
boundary, the scattering and absorption coefficients of higher levels tend to zero as
the blurring kernel size increases and we use the value on the boundary whenever
the blurring kernel needs value outside of the volume. Due to this phenomenon,
we omit the figures for higher levels of blur as the values are very close to zero
but they are available in the appropriate Jupyter notebook.

Training this network took 2046 s which is a little longer than in the case
of super-sampled black and white edge. Given the sizes of the volumes are the
same, the time should also be the same. We can use this difference to establish
the minimal uncertainty of time measurement.

38

(a) No super-sampling. (b) Super-sampling.

Figure 5.10: Scattering and absorption coefficients of the first level of black and
white edge volume. The black points correspond to the target values across
the whole volume. The red points correspond to the prediction of our repre-
sentation. Notice the larger spread around the black points in the case without
super-sampling.

36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0
X voxel index

0

1

2

3

4

5

6

Sc
at

te
rin

g
&

ab
so

rp
tio

n
[m

m
1]

Scattering s

Absorption a

(a) No super-sampling.

36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0
X voxel index

0

1

2

3

4

5

6

Sc
at

te
rin

g
&

ab
so

rp
tio

n
[m

m
1]

Scattering s

Absorption a

(b) Super-sampling.

Figure 5.11: Scattering and absorption coefficients of the first level of black and
white edge volume. The dashed lines correspond to the target values. The solid
lines correspond to our representation network. The representation network was
queried at multiple locations per voxel to give a smooth line. Notice that, in the
case with super-sampling enabled, the line is much steeper.

Figure 5.13 illustrates the aggregate values for the colorful stripes volume.
This volume has five different materials and air, this manifests as six different
black dots in Figure 5.13a. The values are again interpolated on higher levels,
resulting in more dots.

The representation of this volume is also good as red areas are still small.
This is as expected as the volume is similar in complexity to the previous one.
The time to obtain these results was 1981 s on the same hardware as the volumes
before. The shorter time than in the previous case can be explained by the volume
being about 2 % smaller.

39

Finally, Figure 5.14 depicts the results of the colorful checkerboard volume.
This is the most complex volume of all the simple volumes. The representation
isn’t as precise as it was in previous cases, which is evident from larger red areas
around black dots. For example, on the first level, the difference between this
volume and the previous one is about the same as the difference between enabled
or disabled super-sampling (compare Figures 5.11a and 5.14a).

The training time for this volume was 1721 s. The shorter time can be ex-
plained by the volume being smaller than previous ones by about 12 %. The
difference in times roughly matches the difference in size.

To create meaningful conclusions in the later chapters, we also trained the

(a) Level 0 (b) Level 1

(c) Level 2 (d) Level 3

Figure 5.12: Scattering and absorption coefficients of the red channel of black
and white checker volume, various blur levels. The black points correspond to
the target values across the whole volume. The red points correspond to the
prediction of the representation network.

40

(a) Level 0 (b) Level 1

(c) Level 2 (d) Level 3

Figure 5.13: Scattering and absorption coefficients of the red channel of colorful
stripes volume, various blur levels. The black points correspond to the target
values across the whole volume. The red points correspond to the prediction of
the representation network.

representation network on the colorful checkerboard volume for 35 epochs. We
chose the number of epochs so that the loss and MAPE metric would match the
values reached by previous volumes. This longer training took 4038 s which is
proportional to the increase in the number of epochs.

All results presented in this section can be viewed in Attachment A.1 inside a
Jupyter notebook called 3D volumes.ipynb. There are scattering and absorption
figures for levels of blur omitted from this section as well.

5.3.2 Complex volume
As stated above, complex volumes were taken from the training dataset of the
appearance prediction network presented by Rittig et al. [2021]. We will present
one such volume that will help us illustrate challenges presented by these more

41

complex volumes1. Figure 5.15 illustrates the overall composition of the volume
that we are representing. The first two figures from the left show cuts through
the middle of the volume in XY and XZ planes. The figure on the right shows
the outermost voxels of the volume. We obtained these voxels by ray-marching
through the volume in the XZ plane in the direction of the Y axis and when a
non-empty voxel was encountered it was displayed in this image.

We can see that the volume consists mostly of white material that is broken by
occasional magenta, yellow, black, or cyan material deposited near the surface.
These materials are mixed with dithering to create different colors, as in real-
world applications, which poses a real challenge to the representation network.

Table 5.8 shows the configuration of the representation network. The size of
1We used the volume: “Sphere 5 mm 9” from the training dataset of Rittig et al. [2021]

(a) Level 0 (b) Level 1

(c) Level 2 (d) Level 3

Figure 5.14: Scattering and absorption coefficients of the red channel of colorful
checkerboard volume, various blur levels. The black points correspond to the tar-
get values across the whole volume. The red points correspond to the prediction
of the representation network.

42

Table 5.8: Parameters of representation network used to represent complex vol-
umes.

Hidden layers 8+1
Width of hidden layers 512
Width of final hidden layer 256
Positional encoding scale 1.15
Positional encoding size 64
Epochs 100
Initial learning rate 5 · 10−4

Batch size 2048
Trainable parameters 2 367 234

Figure 5.15: Complex volume. The images on the left and in the middle show
the cut through the volume. The image on the right shows the outermost voxels
of the volume. The size of this volume is 194 by 62 by 124 voxels. Notice the
non-uniform size of voxels.

blurring kernels was the same as in the case of simple volumes (see Table 5.7) as
these sizes are dictated by the appearance prediction network. For the training
of this volume, we used the super-sampling for the most detailed level. The
representation network was trained on the server with Intel Xeon E5-2680 v3
CPU, and NVIDIA Titan RTX GPU. The training time for all three channels
was 1 575 minutes which averages to roughly 525 minutes per channel and 315 s
per epoch. Even though the training took place on more powerful hardware than
the training of the representation of simple volumes, the time per epoch is longer.
We attribute this to the volume being larger and to the representation network
containing more trainable parameters.

As with simple volumes, we will take a look only at a single channel, because
results for all three color channels are qualitatively the same. Figure 5.16 shows
the target and represented values of the scattering and absorption coefficients
in the same way as in the case of simple volumes (Figures 5.12–5.14). We can
see that the quality of the representation is much worse. On the first level, the
spread around the target values is much bigger than in any of the simple volumes.
The spread is also quite large on higher blur levels. However, it seems that there
are no outliers and while the predicted values are reasonably close to the target
values, the representation is certainly suboptimal.

Values in Table 5.9 were computed based on stencils that were later used

43

to generate the appearance predictions and as a base we used the training data.
Before calculating the RMSE, we normalized the values to the largest value in the
training data. This table includes all color channels. We can see that the value
for the complex volume is substantially larger than for simple volumes, despite
the fact that the representation network was trained for more epochs. The best
result is recorded for the colorful checkerboard which is the most complex of the
simple volume, we attribute this to more training epochs being used. The rest of
the simple volumes have similar quality of representation.

(a) Level 0 (b) Level 1

(c) Level 2 (d) Level 3

Figure 5.16: Scattering and absorption coefficients of the red channel of the
complex volume, various blur levels. The black points correspond to the target
values across the whole volume. The red points correspond to the prediction of
the representation network. Notice the large spread of predicted values, indicative
of suboptimal representation.

44

5.4 Appearance prediction network
Let’s investigate how well the representation network works with the appearance
prediction network. For this case, we ran two experiments, one with the afore-
mentioned simple volumes and one with the complex volume. Simple volumes
allowed us to examine individual artifacts more closely, while the complex volume
gave us overall insight into the usefulness of our approach.

Figure 5.17 explains different experiment configurations that we have used.
Config A corresponds to Rittig et al. [2021], Config B is modified to work with
Gaussian blurring instead of box averaging, Config C represents our solution, and
Config D utilizes Monte Carlo rendering and can be considered a ground truth.
Simple volumes were used in Config A, Config B, and Config C. While complex
volume was used in Config A, Config C, and Config D.

Config B

Representation
network

Raw data

Appearance
network

Monte Carlo
integration

Config D

Gaussian
filter

Box
filter

Config C

Config A

Figure 5.17: Diagram explaining different rendering configurations. Config A
uses the grid with box kernel and feeds directly into the appearance prediction
network, this corresponds to Rittig et al. [2021]. Config B uses the grid with
Gaussian blurring that also feeds into the appearance prediction network. Con-
fig C uses the representation network with Gaussian blurring. Config D takes
raw volumetric data and renders it with a Monte Carlo renderer, this can be
considered as ground truth.

Table 5.9: RMSE between representation network output and the Gaussian
blurred data for all values in all stencils used to create the appearance prediction.
The values were normalized before computing the RMSE.

Volume Epochs RMSE
Black and white edge 15 0.141
Black and white checkerboard 15 0.148
Colorful stripes 15 0.131
Colorful checkerboard 35 0.114
Complex volume 100 0.205

45

5.4.1 Simple volumes
For each of the simple volumes, we ran the appearance network with three dif-
ferent input sources. At first, we used the representation network as the source
of scattering and absorption coefficients. To evaluate the impact of the repre-
sentation network, we used two variants of the voxel grid directly, without our
representation network. By using two different kernels to blur the data, we ob-
tained two versions of the grid representation. Firstly, we used the Gaussian ker-
nel, which is the same kernel we used for our representation network. Secondly,
we used the box kernel, which was originally used by the appearance prediction
network.

The positions at which we evaluated the appearance prediction network co-
incide with the voxel grid, which means that there is no transformation applied.
Chosen positions were located on the top layer of the volume. We didn’t render
sides without the patterns that extend to the Z axis.

The output of the appearance prediction network is saved into a vdb file,
see Museth [2013] for details about the format. Final images are produced by
rendering vdb files in VoxelViewer application by Kužel [2021].

Figures 5.18–5.21 show the results of the appearance prediction network in
the described setting. The leftmost figure represents the prediction with the box
kernel applied to the source data, the middle figure depicts the prediction with
the Gaussian kernel applied to the source, and the rightmost figure shows the
prediction using the representation network. We can see that overall, there isn’t
a large difference between the predictions using the box and Gaussian kernels.
However, there is quite a large disparity between these images and the predictions
using the representation network.

Looking at the black and white edge volume in Figure 5.18, we can see that the
image produced with the representation network has a blue tint and the white
part of the volume has a significant amount of color noise in it. Additionally,
there are noticeable blocky artifacts visible. On the other hand, the transition of
colors on the edge is decent and sharp enough.

The issues with transitioning over an edge are visible on the checkerboard
pattern in Figure 5.19. There is a considerable amount of green voxels around
the edges. However, in this case, the overall tint of the volume isn’t as off as in
the previous case.

Subjectively, the best result is probably the prediction of the colorful stripes
volume as evident in Figure 5.20. The transitions between individual colors are
fine, although there are still some noisy patches present. Another artifact that
can be observed on this particular volume is the overall brightness difference.

The greatest brightness difference can be observed in the case of the colorful
checkerboard volume in Figure 5.21. Even though the overall pattern can be seen,
the individual rectangles are deformed by noise.

Stencils for the appearance prediction network were generated in Jupyter note-
books contained in Attachment A.1. Notebook 3D Volumes Mocked.ipynb con-
tains the code to generate stencils from the training data directly and notebook
3D volumes appearance.ipynb contains the code to generate stencils using the
representation network. Due to space limitations, we have elected not to include
the generated stencils with our work as they can be easily reproduced using the
appropriate notebooks.

46

(a) Config A
Box kernel

(b) Config B
Gaussian kernel

(c) Config C
Representation network

Figure 5.18: Appearance prediction of the black and white edge volume.

(a) Config A
Box kernel

(b) Config B
Gaussian kernel

(c) Config C
Representation network

Figure 5.19: Appearance prediction of the checker volume.

(a) Config A
Box kernel

(b) Config B
Gaussian kernel

(c) Config C
Representation network

Figure 5.20: Appearance prediction of the colorful stripes volume.

(a) Config A
Box kernel

(b) Config B
Gaussian kernel

(c) Config C
Representation network

Figure 5.21: Appearance prediction of the colorful checkerboard volume.

47

(a) Config D
Monte Carlo renderer

(b) Config A
Box kernel

(c) Config C
Representation network

Figure 5.22: Appearance prediction of the complex volume.

Table 5.10: RMSE of appearance prediction using representation network.

Volume Configurations used for comparison RMSE
Black and white edge Config C to Config A 0.190
Black and white checkerboard Config C to Config A 0.145
Colorful stripes Config C to Config A 0.154
Colorful checkerboard Config C to Config A 0.171
Complex volume Config C to Config D 0.356

5.4.2 Complex volume
Given that the complex volume is from the training set of the appearance pre-
diction network we have also the physically accurate prediction available, which
was obtained using Monte Carlo integration of the rendering equation (Equa-
tion 1.17). We can compare our results with this integration result as well as
with the output of the appearance prediction network.

In contrast to the previous case of simple volumes, there is a transformation
applied between the original voxel grid and the output voxel grid, resulting in
queries into the voxel grid that aren’t centered on the original voxel grid. We
speculate that this might bring in more inaccuracies in our representation network
even though we used super-sampling during the training.

Figure 5.22 depicts the complex volume in question. The previously mentioned
ground truth prediction image is portrayed in Figure 5.22a and even though
there is some noise, typical for Monte Carlo integration, all shapes and features
are clearly visible. Figure 5.22b displays the result of the original appearance
prediction network as presented by Rittig et al. [2021]. This result lacks the noise
but some features aren’t as clearly visible as in the ground truth case. Both of
these results are taken from Rittig et al. [2021] data.

Finally, Figure 5.22c shows the result using the representation network. A lot
of the artifacts present in the case of simple volumes can be collectively observed
in this image. For example, the image is brighter than the target. Also, there
is a lot of color noise and some features can’t be distinguished because of it. It
seems, that the sphere lacks the proper color and appears much whiter than the
target images. To give credit to our representation network, there are hints of
the surface structures apparent.

48

Table 5.10 describes the RMSE of different appearance predictions. Inter-
estingly, among simple volumes, there seems to be no correlation to the values
presented in Table 5.9 as the colorful checkerboard has the highest RMSE of
appearance prediction while having the lowest RMSE of representation. To cal-
culate the RMSE for the complex volume, we excluded all empty voxels to obtain
a more accurate result. We can see that there is a big difference between simple
and complex volumes, the difference in RMSE is almost twofold.

49

6. Discussion
2D images The results of representing single two-dimensional images show that
the representation networks greatly benefit from positional encoding as was shown
by Mildenhall et al. [2020]. Even a smaller network that offers data size com-
pression performs reasonably well. However, the compression ratio can’t compete
with purpose-built algorithms such as jpeg.

The larger representation network achieves better results, especially in the
area of color saturation, which is depicted more accurately. Nevertheless, when
comparing the number of trainable parameters with the number of floating point
values needed to represent the original image, this larger network requires more
space and is thus inefficient for encoding.

Interestingly, when using a representation network of the same size for rep-
resenting a series of blurred images, it handles the task well even though it can
represent more levels of detail. The image with the finest details is represented in
a comparatively same quality as it was in the case of representing a single image.
The difference in PSNR or maximum flip metric value is minimal and can be
explained as an error of measurement.

As expected, the coarser levels of detail are represented even better as evi-
denced by larger PSNR values as well as by flip metric. We should point out
the fact that even though there is less detail, the inputs to the network are also
limited because of the attenuation term.

Volumes The results of representing volumes are mixed. On the one hand, the
representation of simple synthetic volumes was done reasonably well. We were
able to achieve good results even with small networks in a very short time with a
minimal number of epochs. Also, we observed the precision of the representation
decreases as the complexity of a target volume increases.

On the other hand, the representation of more complex volumes with real-
world features wasn’t as promising. Even with a much larger capacity and much
longer training times, we couldn’t represent the fine details as well, as in the case
of simple volumes. The representation of coarser levels was better but still not
as good as with simple volumes.

We could also see the positive result of super-sampling. Providing extra sam-
pling points per voxel yielded crisper transitions on the first level as evidenced
by Figure 5.11. This is important for accurately representing the dithering na-
ture of the mixture space on the first level. Super-sampling isn’t as important
on higher levels as the transitions aren’t expected to be as sharp, because of the
applied blurring. Using super-sampling only on the first level looks like a good
compromise, as more samples prolong the training times significantly, hindering
the training performance.

In our method, we opted to use individual representation networks for each
of the three color channels. The upside of this approach is that it can be easily
extended into spectral rendering applications, where more channels are needed.
Another advantage might be the ability to tweak the representation network
parameters for each channel individually. However, we decided to use the same
values for each color. The disadvantage of this approach might be the fact that

50

the representation network might not be able to extract extra information from
the training data as it is unaware of the correlation between the values of different
channels.

Appearance prediction We were able to feed the appearance prediction net-
work with our representation network as evidenced by Figures 5.18–5.22. Unfor-
tunately, the results are disappointing and with several issues. Even the simple
volumes, where the representation was very accurate, displayed defects. It seems,
that the appearance prediction network is very sensitive to the precision of its
inputs as only a small deviation from the original values leads to artifacts in
the output as indicated by simple volumes. The complex volume example shows
many of the artifacts that can be seen with individual simple volumes. These in-
clude brightness increase, tint shift, lower saturation, and color noise. Despite all
these defects, the surface structure of the complex volume is somewhat apparent.

Limitations Our solution for a representing data structure has a significant
amount of limitations that prevent it from being a viable solution. One such
issue is the long training time. Each volume needs to be learned from scratch,
which takes so much time that it defeats the purpose of the appearance prediction
network as a faster way of rendering participating media.

Another limitation is the fact that the representation network parameters
have to be tweaked for each volume to obtain the best time-to-quality ratio. This
severely limits the generalization of our method to any volume.

In addition, the memory requirements are astronomical. We were able to
represent only very small volumes on a commonly available desktop computer.
Given the three-dimensional nature of the problem at hand, the scaling of the
memory requirements is cubic with respect to the length of the edge of a volume.

The biggest limitation is the sub-optimal results. Sadly, the amount of noise
and other artifacts in the output make our representation network unusable in
its intended application.

Future work Our work leaves significant space for improvements, which un-
fortunately lies outside of the scope of this thesis. Firstly, to address the slow
training times, a meta-learning approach might be used. This would train the
representation network on a vast set of volumes, creating an initial state that
should be hopefully optimized faster than a randomly initialized network. Be-
cause of the correlation between values of individual color channels, one might
also use the weights of the first channel as a starting point of training for the
subsequent channels.

Better results of the appearance prediction might be achieved by fine-tuning
the appearance prediction network on the data that was blurred with the Gaussian
kernel instead of the box kernel. Even though the results in subsection 5.4.1
indicate that the difference between box and Gaussian kernels isn’t as significant
as one might have thought. Another way to improve the appearance prediction
network might be fine-tuning the network directly on the volumes represented by
the representation network. This might help the appearance prediction network
to be more tolerant of its inputs and produce less noisy images.

51

Conclusion
In this thesis, the main aim was to study the representation networks. We have
evaluated their performance in various settings and investigated the possibility of
replacing the SAT data structure in the appearance prediction network by Rittig
et al. [2021].

We have successfully shown the benefits of positional encoding in representa-
tion networks for two-dimensional images. We have shown the implementation of
attenuated positional encoding to sets of blurred two-dimensional images and that
by masking the positional encoding in this manner, the representation network
can effectively represent multiple levels of details of the same image.

We attempted to represent the volumetric data with our implementation of the
representation network. We have shown that representing simple data is possible
with very few errors. However, more complex volumes, which corresponded to
the real-world application more closely, were missing some of the finer details and
were lacking the required accuracy. We have also shown the benefits of super-
sampling the training data to get better fine details in the results.

The intended application of our representation network as a data structure
in the appearance prediction network didn’t yield the expected results. Even for
the simple volumes, which were reasonably well represented, the outputs of the
appearance prediction model exhibited a significant amount of color noise. The
appearance prediction network produced significantly lighter output when it was
using the representation network as its input.

Overall we have found out that representation networks as presented in our
thesis aren’t suitable as a replacement for summed-area tables in appearance
prediction networks proposed by Rittig et al. [2021]. Additional work has to
be done to improve the representation of finer details. Also, the appearance
prediction network should be fine-tuned to reflect the change in the smoothing
kernel in the data structure.

We consider the results of our novel approach to be partial success. It showed
some promise, however, there are more downsides than upsides.

52

Bibliography
Pontus Andersson, Jim Nilsson, Tomas Akenine-Möller, Magnus Oskarsson, Kalle

Åström, and Mark D. Fairchild. FLIP: A Difference Evaluator for Alternat-
ing Images. Proceedings of the ACM on Computer Graphics and Interactive
Techniques, 3(2):15:1–15:23, 2020. doi: 10.1145/3406183.

Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo
Martin-Brualla, and Pratul P. Srinivasan. Mip-nerf: A multiscale representa-
tion for anti-aliasing neural radiance fields, 2021.

Crow, Franklin C. Summed-area tables for texture mapping. In Proceedings of
the 11th annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’84. ACM, January 1984. doi: 10.1145/800031.808600. URL http:
//dx.doi.org/10.1145/800031.808600.

Oskar Elek, Denis Sumin, Ran Zhang, Tim Weyrich, Karol Myszkowski, Bernd
Bickel, Alexander Wilkie, and Jaroslav Křivánek. Scattering-aware texture
reproduction for 3D printing. ACM Transactions on Graphics, 36(6):1–15,
November 2017. doi: 10.1145/3130800.3130890. URL https://doi.org/10.
1145/3130800.3130890.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

Wojciech Jarosz. Efficient Monte Carlo Methods for Light Transport in Scattering
Media. PhD thesis, UC San Diego, La Jolla, CA, USA, September 2008.

James T. Kajiya. The rendering equation. In Proceedings of the 13th annual con-
ference on Computer graphics and interactive techniques. ACM, August 1986.
doi: 10.1145/15922.15902. URL https://doi.org/10.1145/15922.15902.

James T. Kajiya and Brian P Von Herzen. Ray tracing volume densities. In
Proceedings of the 11th annual conference on Computer graphics and interactive
techniques - SIGGRAPH '84. ACM Press, 1984. doi: 10.1145/800031.808594.
URL https://doi.org/10.1145/800031.808594.

Simon Kallweit, Thomas Müller, Brian Mcwilliams, Markus Gross, and Jan
Novák. Deep scattering. ACM Transactions on Graphics, 36(6):1–11, Novem-
ber 2017. doi: 10.1145/3130800.3130880. URL https://doi.org/10.1145/
3130800.3130880.

Animesh Karnewar, Tobias Ritschel, Oliver Wang, and Niloy Mitra. ReLU Fields:
The Little Non-Linearity That Could. In ACM SIGGRAPH 2022 Conference
Proceedings, SIGGRAPH ’22, New York, NY, USA, 2022. Association for Com-
puting Machinery. ISBN 9781450393379. doi: 10.1145/3528233.3530707. URL
https://doi.org/10.1145/3528233.3530707.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2014. URL https://arxiv.org/abs/1412.6980.

53

http://dx.doi.org/10.1145/800031.808600
http://dx.doi.org/10.1145/800031.808600
https://doi.org/10.1145/3130800.3130890
https://doi.org/10.1145/3130800.3130890
http://www.deeplearningbook.org
https://doi.org/10.1145/15922.15902
https://doi.org/10.1145/800031.808594
https://doi.org/10.1145/3130800.3130880
https://doi.org/10.1145/3130800.3130880
https://doi.org/10.1145/3528233.3530707
https://arxiv.org/abs/1412.6980

Vojtěch Kužel. Real-time voxel visualization and editing for 3D printing. Master’s
thesis, Charles University, Faculty of Mathematics and Physics, Department
of Software and Computer Science Education, Prague, September 2021. URL
http://hdl.handle.net/20.500.11956/148776.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm
restarts, 2017.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi
Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields
for view synthesis, 2020.

Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. Real-time
neural radiance caching for path tracing. ACM Transactions on Graphics, 40
(4):1–16, July 2021. doi: 10.1145/3450626.3459812. URL https://doi.org/
10.1145/3450626.3459812.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant
neural graphics primitives with a multiresolution hash encoding. ACM Trans.
Graph., 41(4):102:1–102:15, July 2022. doi: 10.1145/3528223.3530127. URL
https://doi.org/10.1145/3528223.3530127.

Ken Museth. VDB: High-resolution sparse volumes with dynamic topology.
ACM Transactions on Graphics, 32(3):1–22, June 2013. ISSN 1557-7368.
doi: 10.1145/2487228.2487235. URL http://dx.doi.org/10.1145/2487228.
2487235.

Thomas Klaus Nindel, Tomáš Iser, Tobias Rittig, Alexander Wilkie, and Jaroslav
Křivánek. A gradient-based framework for 3D print appearance optimiza-
tion. ACM Transactions on Graphics, 40(4):1–15, July 2021. ISSN 1557-7368.
doi: 10.1145/3450626.3459844. URL http://dx.doi.org/10.1145/3450626.
3459844.

Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically Based Rendering.
Elsevier, 2016. ISBN 978-0-12-800645-0. doi: 10.1016/C2013-0-15557-2. URL
https://doi.org/10.1016/C2013-0-15557-2.

Tobias Rittig, Denis Sumin, Vahid Babaei, Piotr Didyk, Alexey Voloboy, Alexan-
der Wilkie, Bernd Bickel, Karol Myszkowski, Tim Weyrich, and Jaroslav
Křivánek. Neural acceleration of scattering-aware color 3d printing. Com-
puter Graphics Forum, 40(2):205–219, May 2021. doi: 10.1111/cgf.142626.
URL https://doi.org/10.1111/cgf.142626.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil,
Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron,
and Ren Ng. Fourier features let networks learn high frequency func-
tions in low dimensional domains. In H. Larochelle, M. Ranzato, R. Had-
sell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 7537–7547. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/55053683268957697aa39fba6f231c68-Paper.pdf.

54

http://hdl.handle.net/20.500.11956/148776
https://doi.org/10.1145/3450626.3459812
https://doi.org/10.1145/3450626.3459812
https://doi.org/10.1145/3528223.3530127
http://dx.doi.org/10.1145/2487228.2487235
http://dx.doi.org/10.1145/2487228.2487235
http://dx.doi.org/10.1145/3450626.3459844
http://dx.doi.org/10.1145/3450626.3459844
https://doi.org/10.1016/C2013-0-15557-2
https://doi.org/10.1111/cgf.142626
https://proceedings.neurips.cc/paper_files/paper/2020/file/55053683268957697aa39fba6f231c68-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/55053683268957697aa39fba6f231c68-Paper.pdf

Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi Schmidt, Pratul P. Srini-
vasan, Jonathan T. Barron, and Ren Ng. Learned initializations for optimizing
coordinate-based neural representations, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need, 2017.

D.Randall Wilson and Tony R. Martinez. The general inefficiency of batch train-
ing for gradient descent learning. Neural Networks, 16(10):1429–1451, Decem-
ber 2003. doi: 10.1016/s0893-6080(03)00138-2. URL https://doi.org/10.
1016/s0893-6080(03)00138-2.

55

https://doi.org/10.1016/s0893-6080(03)00138-2
https://doi.org/10.1016/s0893-6080(03)00138-2

List of Figures

1.1 Comparison of a box kernel (blue) and Gaussian kernel (red). . . 6
1.2 Typical architecture of MLP networks. 9
1.3 Multiple scattering inside a participating medium. 13

2.1 A stencil rotation and placement used by Kallweit et al. [2017].
Two stencil levels are shown here. Image taken directly from Kall-
weit et al. [2017]. 16

2.2 The architecture of the prediction network. The image on the left
shows how different stencil levels sample the volume around the
point of interest. The image in the middle shows an overview of the
architecture of the network. D denotes dense layers with trainable
weights, ≡ blocks denote shared weights and round blocks denote
mathematical operations. The image on the right shows the detail
of one RPNN block. Image taken directly from Rittig et al. [2021]. 16

2.3 A figure illustrating the difference of positional encoding between
NeRF and Mip-NeRF. Image taken directly from Barron et al. [2021]. 19

2.4 A figure illustrating sampling techniques used by NeRF and Mip-
NeRF networks. The points represent sampling utilized by NeRF,
while the trapezoids represent sampling utilized by Mip-NeRF. Im-
age taken directly from Barron et al. [2021]. 20

3.1 The final pipeline, where the representation and the appearance
prediction networks are connected. 21

3.2 Architecture of a network for single image representation. Note
that the group of 4 hidden layers might repeat based on the hy-
perparameters. 22

3.3 Architecture of a network for single image representation. Note
that the group of 4 hidden layers might repeat based on the hy-
perparameters. 23

3.4 Architecture of volumetric representation network. Note that the
group of 4 hidden layers might repeat based on the hyperparameters. 24

5.1 Result of 2D image representation network. The left image is the
target, the middle image is the representation network output and
the image on the right is the flip metric. 30

5.2 Training progress of a representation network of a single image.
The blue line shows how the PSNR evolved over the training pe-
riod, the red red line shows the training loss. 31

5.3 Result of the larger 2D image representation network. The left
image is the target, the middle image is the representation network
output and the image on the right is the flip metric. 31

5.4 Result of a representation network for a set of blurred 2D images. 33
5.4 Result of a representation network for a set of blurred 2D images. 34
5.5 The evolution of PSNR of individual levels and training loss over

the training period. 34

56

5.6 Black and white edge volume. The size of this volume is 86 by 59
by 136 voxels. 37

5.7 Black and white checkerboard volume. The size of this volume is
76 by 49 by 131 voxels. 37

5.8 Colorful stripes consisting of all possible materials The size of this
volume is 86 by 59 by 136 voxels. 38

5.9 Colorful checkerboard volume. The size of this volume is 67 by 48
by 131 voxels. 38

5.10 Scattering and absorption coefficients of the first level of black and
white edge volume. The black points correspond to the target
values across the whole volume. The red points correspond to the
prediction of our representation. Notice the larger spread around
the black points in the case without super-sampling. 39

5.11 Scattering and absorption coefficients of the first level of black and
white edge volume. The dashed lines correspond to the target
values. The solid lines correspond to our representation network.
The representation network was queried at multiple locations per
voxel to give a smooth line. Notice that, in the case with super-
sampling enabled, the line is much steeper. 39

5.12 Scattering and absorption coefficients of the red channel of black
and white checker volume, various blur levels. The black points
correspond to the target values across the whole volume. The red
points correspond to the prediction of the representation network. 40

5.13 Scattering and absorption coefficients of the red channel of colorful
stripes volume, various blur levels. The black points correspond to
the target values across the whole volume. The red points corre-
spond to the prediction of the representation network. 41

5.14 Scattering and absorption coefficients of the red channel of col-
orful checkerboard volume, various blur levels. The black points
correspond to the target values across the whole volume. The red
points correspond to the prediction of the representation network. 42

5.15 Complex volume. The images on the left and in the middle show
the cut through the volume. The image on the right shows the
outermost voxels of the volume. The size of this volume is 194 by
62 by 124 voxels. Notice the non-uniform size of voxels. 43

5.16 Scattering and absorption coefficients of the red channel of the
complex volume, various blur levels. The black points correspond
to the target values across the whole volume. The red points cor-
respond to the prediction of the representation network. Notice
the large spread of predicted values, indicative of suboptimal rep-
resentation. 44

57

5.17 Diagram explaining different rendering configurations. Config A
uses the grid with box kernel and feeds directly into the appear-
ance prediction network, this corresponds to Rittig et al. [2021].
Config B uses the grid with Gaussian blurring that also feeds into
the appearance prediction network. Config C uses the represen-
tation network with Gaussian blurring. Config D takes raw volu-
metric data and renders it with a Monte Carlo renderer, this can
be considered as ground truth. 45

5.18 Appearance prediction of the black and white edge volume. 47
5.19 Appearance prediction of the checker volume. 47
5.20 Appearance prediction of the colorful stripes volume. 47
5.21 Appearance prediction of the colorful checkerboard volume. 47
5.22 Appearance prediction of the complex volume. 48

58

List of Tables

3.1 Materials used in 3D printers and their coefficients. 26

5.1 Parameters of representation network used to represent a single
image. 30

5.2 Parameters of the larger representation network used to represent
a single image. 31

5.3 Standard deviations (SD) of Gaussian kernels used to obtain target
images in Figure 5.4. 35

5.4 Values of PSNR for individual blur level. Ordered from finest
details to coarsest. 35

5.5 Parameters of representation network used to represent multiple
level of details of an image. 35

5.6 Parameters of representation network used to represent simple vol-
umes. 36

5.7 Standard deviations (SD) of Gaussian kernels used to create train-
ing data for volumetric representation network for simple volumes.
The size is proportional to the size of a single voxel. 36

5.8 Parameters of representation network used to represent complex
volumes. 43

5.9 RMSE between representation network output and the Gaussian
blurred data for all values in all stencils used to create the appear-
ance prediction. The values were normalized before computing the
RMSE. 45

5.10 RMSE of appearance prediction using representation network. . . 48

A.1 Parameters of representation network JSON configuration. 64

59

List of Abbreviations
DFT – Discrete Fourier transform
SD – Standard deviation
MSE – Mean squared error
RMSE – Root-mean-square error
PSNR – Peak signal-to-noise ratio
MAPE – Mean absolute percentage error
MLP – Multilayer perceptron
SGD – Stochastic gradient descent
Adam – Optimization algorithm with adaptive moments
BRDF – Bidirectional reflectance distribution function
RPNN – Radiance prediction neural network
SAT – Summed-area table
NeRF – Neural radiance field
GPU – Graphics processing unit
CPU – Central processing unit
API – Application programming interface

60

A. Attachments

A.1 Contents of Electronic Attachment
The electronic attachment contains these items:

• AppearancePredictionNetwork – The original source code of Rittig et al. [2021].

• fabnn/predict stencils.py – Our script that loads stencils outputted by the
representation network and makes an appearance prediction.

• RepresentationNetwork – The source code for representation network.

• Dockerfile – The dockerfile is used to build the Docker image.
• docker-compose.yaml – A configuration for Docker Compose, that is used to
create an image and start up the container.

• dev-env – This folder contains all scripts with our implementation.
• data – This folder contains all data to be used for training.
• modules – A folder with most of our scripts.
• notebooks – Notebooks with experiments.
• scripts – Scripts contained here are used when running the container via
Docker Compose.

• pretrained – This folder contains configurations for the representation net-
work.

• results – This is where the results of notebooks are saved.
• third-party – Third-party libraries necessary for our package: OpenVDB and
Blosc implementation.

A.2 Documentation
As stated in chapter 4, we have used Docker to package our solution together.
The container was tested to run on Windows with WSL 2 as well as in the Linux
environment. We also provide the implementation of the appearance prediction
network as presented by Rittig et al. [2021] in a separate container complemented
by our script that can render the stencils outputted by the representation network.

Requirements
In order to run our solution, the system that is intended to be used with our
solution must include support for Linux-based Docker containers. The system
must also have an NVIDIA GPU with driver support for CUDA 11.8. The CUDA
toolkit is not required. A sufficient amount of RAM is also required. We tested
our solution with 32 GB of system RAM and at least 6 GB of video memory.

61

Interactive mode
To view the Jupyter notebooks, the Docker container should be started without
the Docker Compose command. We call this mode of operation an interactive
mode.

Setup

First, an image has to be built, to do so run the following command in the
RepresentationNetwork directory, where our Docker file is located:

docker build . -t <<your tag name>>

After the preparation of the image, the container can be created by the fol-
lowing command:

docker run -it --gpus all \
-p <<your jupyter port>>:8888 \
-v dev-env:/dev-env/ \
--name <<your container name>> \
<<your tag name from previous command>> bash

If everything finishes successfully, a bash environment in the newly created
container should be opened.

When the container is already created, but the container was stopped or the
bash environment was exited, following steps can be used to enter the container’s
command line. At first, the container has to be started by this command:

docker start <<your container name>>

Next, the interactive bash command should be executed:

docker exec -it <<your container name>> bash

Running a Jupyter server

When the setup is properly completed, the bash command line environment of
the container should be available. To start up the Jupyter server the following
command should be used:

LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libjemalloc.so.2 &&
jupyter notebook --ip 0.0.0.0 --port 8888 --allow-root

To open the provided notebooks navigate in your favorite browser to:

http://localhost:<<your jupyter port>>/notebooks

Copy the token from the container’s command line and paste it into the token
text field. After that, the following notebooks can be viewed:

• 2D Images.ipynb – An example of representation network presented in section
3.1.1.

62

• 2D Blurred Images.ipynb – An example of representation network presented in
section 3.1.2.

• 3D Volumes.ipynb – An example of representation network presented in section
5.3.

• 3D Volumes Appearance.ipynb – This notebook generates stencils for the ap-
pearance network using the representation network, as presented in section 5.4.1.

• 3D Volumes Mocked.ipynb – This notebook generates stencils for the appear-
ance network using the training data, as presented in section 5.4.1.

• Complex Volume Representation.ipynb – This notebook inspects the result of
complex volume representation, which was presented in section 5.3.2.

Training mode
To run a particular workload non-interactively, a Docker Compose might be used
to make the setup faster and easier. This workload is useful when the solution is
being deployed on the compute server for training. We provide a simple docker
compose configuration that can be edited to run the desired job.

To make use of the docker compose configuration file, copy the contents of
the RepresentationNetwork directory of electronic attachment to the desired
machine. Edit the docker-compose.yaml file by commenting out or modifying
the command (the last entry in the configuration file). These are the available
commands:

• repNet_training.py – This will train the representation network based on
the file containing the description of the voxels, specified as a file argument
(the file has to be located in the data folder and its name has to end with
_discrete_volume.gz). Other available arguments are: epoch (controlling the
number of epochs the training will take), model (a path to a JSON configuration
of the representation network), logdir (an optional path to the folder where to
store tensorboard logs), checkpoints (a boolean flag indicating whether to store
checkpoints during the training), suffix (an optional string that gets appended to
the trained network save name), restarts (how many times to repeat the training
with learning rate reset to the starting value).

• render_all.py – This will render the predicted volume into the vdb file. The
representation network is loaded from a standard location and is determined by
the combination of file, suffix, and designation parameters. The suffix parameter
is either "final" or the number of epochs, if a checkpoint should be used.
The model configuration JSON has to be provided and it has to be the same
configuration as the one used for the training.

• create_stencil.py – This command will produce the three files required by
the appearance prediction network. These files contain scattering and absorption
coefficients. Representation networks for all three channels must exist. The
suffix parameter is either "final" or the number of epoch if a checkpoint should
be used. The model configuration JSON has to be provided and it has to be the
same configuration as the one used for the training.

63

• main.py – This will run all previous commands successively. It has only one
parameter which is the file that will be used for training. There are the same
requirements for this input file as in the case of the training command. The
training runs for 100 epochs. The JSON configuration is taken from the rep-
Net.json in the pretrained directory.

Table A.1 contains the explanation of the options that are used to construct
the representation network. These options are defined in the JSON file that
has to be passed to the commands. The configuration is used to construct the
representation network model described in section 3.1.3.

Table A.1: Parameters of representation network JSON configuration.

JSON keyword Explanation

posenc_size The number of frequencies used for positional en-
coding

posenc_scale This controls the spacing of the frequencies on
the positional encoding

layer_depth The amount of hidden layers in the first part of
the network

layer_width The size of hidden layers in the first part of the
network

skip_connection How many hidden layers to skip when using skip
connections

layer_depth_2 The amount of hidden layers in the second part
of the network

layer_width_2 The size of hidden layers in the first second of
the network

output_dimensions The number of outputs (has to be)
batch_size The size of batches when training the netwok
learning_rate The initial learning rate

final_activation The name of the activation function used on the
output layer

log A path to a tensorborad log that will be created
or "No log"

Once the docker-compose.yaml is edited to run the desired script, execute
the following command to run the Docker container:

docker-compose up

Appearance prediction
The appearance prediction is also provided as a Docker container. It is the same
code as Rittig et al. [2021] provided for their work. We added our script that can
process stencils produced by our representation network.

To build a container navigate to AppearancePredictionNetwork directory
and run following command:

dokcer build -t neural-scattering-prediction:latest .

64

After that, you will have to copy the stencil files to the data/stencils di-
rectory. Stencil files produced by the representation network consist of three
different files. The first describes the shape of the output of the appearance pre-
diction network, this file has a suffix _out_shape.npy. The second file describes
the positions that should be populated in the appearance prediction output, this
file has a suffix _positions.npy. The last file contains all scattering and ab-
sorption coefficients for all stencil positions and all color channels, this file has
a suffix _stencils.npy. All three files have to be copied to the data directory
of the appearance prediction network. Next, the container can be started by the
following command:

docker run --rm \
--gpus all \
--mount type=bind,source="$(pwd)/data",target=/project/data \
neural-scattering-prediction:latest \
python fabnn/predict_stencils.py -s <<stencil_to_predict>>

The only parameter to change is the name of the stencil. For example, if there
are files named: cube_out_shape.npy, cube_positions.npy and
cube_stencils.npy, the parameter should be: -s cube. This command will
produce a .vdb file in the data/stencils directory.

65

	Introduction
	Background
	Signal processing
	Machine learning
	Rendering

	Related Work
	Scattering prediction
	Neural radiance fields
	Training

	Method
	Representation network
	2D image representation
	Representation of a set of blurred images
	Volume representation

	Appearance prediction network

	Implementation
	Results
	Representation of 2D images
	Representation of a set of blurred image
	Representing volume
	Simple volumes
	Complex volume

	Appearance prediction network
	Simple volumes
	Complex volume

	Discussion
	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachments
	Contents of Electronic Attachment
	Documentation

