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pose, the Daya Bay experiment is introduced including the procedure of the event
reconstruction. Several types of signals are then studied in detail and later they
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Introduction
Neutrinos are electrically neutral leptons first proposed in 1930 by Wolfgang Pauli
to allow for conservation of energy and angular momentum in beta decays. How-
ever, it took over twenty years until they were first observed in 1956 [1]. Since
then, three generations of neutrinos have been discovered along with correspond-
ing charged leptons – electron (e−) and electron neutrino (νe), muon (µ−) and
muon neutrino (νµ), tau lepton (τ−) and tau neutrino (ντ ).

Since neutrinos are the second most abundant particles in the universe after
the photons, it is important to study and understand their properties. The Stan-
dard Model of particle physics describes neutrinos as massless and interacting
only via weak interaction. However, the fact that neutrino flavor can change
between its creation and detection in a phenomenon called neutrino oscillation
(its experimental discovery was awarded by the Nobel Prize in 2015) showed
that neutrinos have nonzero masses. Moreover, it is likely that the oscillations
of neutrinos and antineutrinos differ (CP-symmetry1 is violated), which could
shed light on why we live in matter-rich world. Precise measurement of neutrino
oscillation and the parameters that drive it is thus crucial for our understanding
of the universe.

One of experiments measuring neutrino oscillation is the Daya Bay Reactor
Neutrino Experiment, which is very much in the focus of this thesis. It discovered
the nonzero value of the θ13 neutrino mixing angle in 2012 [2] and currently
provides the world’s most precise measurement of this parameter [3]. Such results
cannot be obtained without precise energy calibration. The main goal of the work
presented here is to improve the energy calibration of the Daya Bay detectors.

The thesis is organized as follows. The theoretical framework of neutrino
oscillation is presented in Chapter 1 along with introduction of the relevant pa-
rameters and overview of experiments that measure these parameters. The Daya
Bay experiment is introduced in Chapter 2 with overview of the detector system
and the physics program, which covers far more than just neutrino oscillation
measurement that we focus on.

In Chapter 3, we will go through the process of event reconstruction in the
Daya Bay experiment. One step in the reconstruction chain is the application of
the nonuniformity correction, which we need to understand, so that later we can
make a better updated version. However, before we get there we first need to
identify suitable signals that would allow us to study and quantify the detector
response. We will thus dedicate Chapter 4 to a detailed assessment of signals at
hand and their further usefulness.

Having identified the appropriate signals, we will move on to scrutinize the
original nonuniformity correction and eventually design a new improved version
in Chapter 5. Finally, we will use preliminary results from two distinct Daya Bay
neutrino oscillation analyses to assess what the impact of the improved correction
on the determination of the oscillation parameters is.

1Combined charged conjugation and parity symmetry.
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1. Neutrino Oscillation
The history of neutrino oscillation as a concept goes back to 1957 when it was
proposed by Bruno Pontecorvo with the assumption of neutrinos being composite
particles undergoing neutrino-antineutrino transition [4]. In 1962, Maki, Naka-
gawa and Sakata elaborated on the idea with the difference that they considered
mixing between neutrino flavor states instead [5]. This idea was again revisited
by Pontecorvo in 1967 with neutrino oscillation described as a transition between
neutrinos of different flavors (for example νe ↔ νµ). In the early 1970s, solar
neutrino problem arose when only about one-third of expected solar neutrino
flux was observed by the Homestake experiment[6] and neutrino mixing offered
an explanation. However, it took many years until the first compelling evidence
for neutrino oscillation was provided by the Super-Kamiokande experiment in
1998 [7], this time based on the observation of the zenith angle dependence of the
atmospheric neutrino flux. Many experiments have followed since then measur-
ing the oscillation of neutrinos from various sources and determining the driving
parameters. Almost all of the measurements are consistent with nowadays well-
established three active neutrino framework.

Natural units (c = 1, ℏ = 1) are used throughout this chapter unless stated
otherwise.

1.1 Neutrino Mixing
The phenomenon of neutrino oscillation stems from two characteristics of neutri-
nos. First, their flavor eigenstates |νe⟩, |νµ⟩, |ντ ⟩ (generally denoted |να⟩) are not
identical to the mass eigenstates |ν1⟩, |ν2⟩, |ν3⟩ (generally denoted |νi⟩). Second,
there are differences between masses of the neutrino mass eigenstates (which also
means that at least two of the three masses are nonzero).

The neutrino mixing between the flavor and mass eigenstates is given by

|να⟩ =
3∑

i=1
U∗

αi |νi⟩ , (1.1)

where U is a unitary in general complex mixing matrix also known as Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix. Its elements are given by

Uαi ≡ ⟨να|νi⟩ . (1.2)

Analogous expression for antineutrinos can be derived using the CPT symmetry

Ūαi ≡ ⟨ν̄α|ν̄i⟩ = ⟨νi|να⟩ ≡ U∗
αi, (1.3)

which leads to
|ν̄α⟩ =

3∑
i=1

Uαi |ν̄i⟩ . (1.4)

Let us consider for a moment that there are n neutrino species. The PMNS
matrix is then n × n complex unitary matrix, which can be parameterized by n2

independent parameters: 1
2n(n−1) angles and 1

2n(n+1) phases. We can remove n
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phases by redefinition of n non-physical phases of charged leptons. In addition to
that, (n − 1) more phases can be removed if neutrinos are Dirac particles1. Even
though these phases cannot be removed, if neutrinos are Majorana particles2,
they do not affect neutrino oscillation. Either way, we end up with (n − 1)2

parameters relevant to neutrino oscillation, out of which 1
2n(n − 1) are mixing

angles and 1
2(n − 1)(n − 2) are phases.

In particular, in the framework of three active neutrinos, the PMNS matrix
is then given by 4 parameters – 3 mixing angles (commonly denoted θ12, θ13, θ23)
and one phase δ which if nonzero can lead to CP-symmetry violation in neutrino
oscillation. The PMNS matrix takes form

Uαi =

⎛⎜⎝1 0 0
0 c23 s23
0 −s23 c23

⎞⎟⎠
⎛⎜⎝ c13 0 s13e

iδ

0 1 0
−s13e

−iδ 0 c13

⎞⎟⎠
⎛⎜⎝ c12 s12 0

−s12 c12 0
0 0 1

⎞⎟⎠ , (1.5)

where sij is shortened notation for sin(θij) and cij for cos(θij).

1.2 Neutrino Oscillation in Vacuum
As all neutrinos that we focus on in this thesis have energy of the order of MeV
or higher while their masses are on sub-eV scale, we can safely assume that they
are ultrarelativistic. That allows us to use simplified formula for energy Ei of the
i-th neutrino mass eigenstate |νi⟩

Ei =
√

p2
i + m2

i
∼= pi + m2

i

2Ei

, (1.6)

where pi and mi denote its momentum and mass respectively. Assuming that
neutrino mass eigenstate propagates as a plane wave, its evolution is described
as

|νi(t, L)⟩ = e−iEite+ipiL |νi⟩ , (1.7)
where L is the distance that the neutrino traversed and t is the time it took.

We will assume now that we have a neutrino created in weak interaction along
with a corresponding charged lepton, i.e. neutrino created in a particular flavor
eigenstate. As it was shown in Eq. 1.1, such flavor eigenstate can be written as
a superposition of mass eigenstates, for its propagation thus follows

|να(t, L)⟩ =
3∑

i=1
U∗

αi |νi(t, L)⟩ . (1.8)

This allows us to calculate the probability Pαβ that neutrino created in |να⟩ flavor
eigenstate is later found in |νβ⟩ flavor eigenstate

Pαβ = | ⟨νβ|να(t, L)⟩ |2 = |
3∑

i=1

3∑
j=1

U∗
αiUβj ⟨νj|νi(t, L)⟩ |2. (1.9)

1If neutrinos are Dirac particles, neutrino and antineutrino are different particles and the
total lepton number is in presently known processes conserved.

2If neutrinos are Majorana particles, neutrino and antineutrino are in fact the same particle
differing only in helicity. If neutrinos also have nonzero masses, there are processes involving
them where the lepton number is not conserved.
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Combining Eq. (1.7) and Eq. (1.9) we get

Pαβ =
3∑

i=1

3∑
j=1

e−iϕij(L,t)U∗
αiUβiUαjU

∗
βj, (1.10)

where ϕij(t, L) is a relative phase factor stemming from propagation of neutrino
mass eigenstates |νi⟩ with differing masses. Using ultrarelativistic limit t = L
and Eq. 1.6, we get

ϕij(t, L) = (Ei − Ej)t − (pi − pj)L ∼=
(m2

i − m2
j)L

2E
≡

∆m2
ijL

2E
. (1.11)

Eq. (1.10) can be further altered (along with restoration of ℏ and c)

Pαβ = δβα − 4
∑
i<j

Re[U∗
αiUβiUαjU

∗
βj] sin2

(
∆m2

ijL

4ℏcE

)
+

+ 2
∑
i<j

Im[U∗
αiUβiUαjU

∗
βj] sin

(
∆m2

ijL

2ℏcE

)
. (1.12)

Looking closer at Eq. (1.12), the first two terms remain the same even if we
interchange initial and final neutrino state, i.e. they keep the T-symmetry3 with
Pαβ = Pβα. These two terms are also not affected by interchange of neutrinos for
antineutrinos or vice versa, i.e. they keep the CP-symmetry with Pαβ = Pᾱβ̄.

On the other hand, the third terms violates these symmetries – if it is nonzero,
these symmetries are not conserved in neutrino oscillation. Most notably, CP-
symmetry violation introduces difference between oscillation of neutrinos and
antineutrinos and thus, generally speaking, difference in behavior of matter and
antimatter. One of necessary conditions for that is the PMNS matrix being com-
plex due to δ ̸= 0, π (along with nonzero values of all θ12, θ23, θ13). Nevertheless,
even if that is satisfied, CPT symmetry still guarantees that Pαβ = Pβ̄ᾱ even if
Pαβ ̸= Pβα, Pαβ ̸= Pᾱβ̄. Note that when survival probability of |να⟩ neutrino
flavor Pαα is measured in neutrino disappearance experiments4, this CP- and T-
violating term is not relevant; it plays a role in neutrino appearance experiments
where the presence of |νβ⟩ neutrino flavor in |να⟩ neutrino flux is measured.

When we look at the CP- and T-symmetry conserving part of Eq. (1.12), the
oscillatory behavior is apparent there – the amplitude is given by the relevant
elements of the PMNS matrix and the oscillation length measured in L/E de-
pends on the differences between squares of neutrino masses ∆m2

ij. The distance
between two maxima (or minima) is then(

L

E

)
period

= 4πℏc

∆m2
ij

. (1.13)

For practical purposes it is useful to evaluate the constants in phase factor ϕij in
suitable units

ϕij

2 ≡
∆m2

ijL

4Eℏc
.= 1.27

(
∆m2

ij

eV2

)(
L

m

)(MeV
E

)
(1.14)

3Time-reversal symmetry.
4Neutrino disappearance experiments measure how neutrino flux of a particular neutrino

flavor decreases due to neutrino oscillation. In contrast, neutrino appearance experiments
search for a neutrino flavor that was not originally present in the neutrino flux, but appears
due to neutrino oscillation.
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In neutrino oscillation experiments, detectors are commonly placed in the first
disappearance minimum or appearance maximum. Position of such minimum or
maximum is given by

(
L

m

)(MeV
E

)
≈ π

2.54

(
eV2

∆m2
ij

)
. (1.15)

More about the physics of neutrino oscillation can be found in Refs. [8], [9]
or [10].

1.3 Neutrino Oscillation Parameters
There are six parameters that determine neutrino oscillation in the three active
neutrino framework:

• Two independent differences between squares of masses (any 2-element sub-
set of ∆m2

21, ∆m2
31, ∆m2

32 is sufficient, the third one is then given by
∆m2

31 = ∆m2
32 + ∆m2

21)

• Three mixing angels (θ12, θ13, θ23)

• A CP-violating phase (δ)

These parameters are measured in a number of experiments using variety of
neutrino sources, most prominent of which are solar neutrinos (νe’s created in
solar thermonuclear reactions), reactor neutrinos (ν̄e emitted from neutron-rich
nuclei originating in fission in nuclear reactors), atmospheric neutrinos that are
produced when cosmic rays hit atmosphere (νµ, ν̄µ, νe, ν̄e coming from decays of
pions, muons, kaons etc.) and accelerator neutrinos (νµ, ν̄µ from decays of pions
produced by accelerators).

The values of neutrino oscillation parameters according to the global fit by the
Particle Data Group [11] are listed in Tab. 1.1. There are, however, still several
unknowns regarding the neutrino oscillation.

The question of the neutrino mass ordering (also called neutrino mass hierar-
chy) is not yet resolved, i.e. whether the ν3 mass eigenstate is the heaviest (nor-
mal mass ordering) or the lightest (inverted mass ordering) among neutrino mass
eigenstates. If the best-fit value of a particular oscillation parameter depends on
the mass ordering, values for both mass orderings are included in Tab. 1.1.

Currently, there is experimental preference for the normal mass ordering at
2 σ – 3 σ level [11]. JUNO experiment [12], which is under construction in China,
has neutrino mass ordering determination as the main goal and hopefully it will
help to resolve this question.

Arguably even more important question of whether CP-symmetry is violated
in neutrino oscillation or not has also not yet been fully answered. It hinges on the
value of the phase δ. Status of its measurement is described in the corresponding
section at the end of the chapter.
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Table 1.1: Global fit values of neutrino oscillation parameters according to Par-
ticle Data Group [11]. When different, values for both mass orderings are listed.

Parameter Value ± standard deviation

∆m2
21 (7.53 ± 0.18) · 10−5 eV2

∆m2
32 (2.453 ± 0.033) · 10−3 eV2 (normal ordering)

∆m2
32 (−2.536 ± 0.034) · 10−3 eV2 (inverted ordering)

sin2 θ12 0.307 ± 0.013

sin2 θ23 0.546 ± 0.021 (normal ordering)

sin2 θ23 0.539 ± 0.022 (inverted ordering)

sin2 θ13 0.0220 ± 0.0007

δ 4.27+0.63
−0.50 rad

Measurement of θ12 and ∆m2
21

Let us now review how the solar parameters were determined. As the θ12 mixing
angle is significantly larger than θ13, the oscillation of νe and ν̄e is mostly deter-
mined by θ12 and ∆m2

21, which means that the survival probability is given by
two neutrino approximation up to a certain precision

Pee(L/E) = Pēē(L/E) ∼= 1 − sin2(2θsol) sin2
(

∆m2
solL

4ℏcE

)
, (1.16)

where effective parameters ∆m2
sol

∼= ∆m2
21 and θsol

∼= θ21 are used. The sol in
subscript stands for “solar” as these parameters were first measured using solar νe.
Due to the fact that solar core is significantly larger than oscillation length (and
due to decoherence) we cannot observe individual oscillation waves, only their
average. Another important factor is the effect that solar matter has on passing
neutrinos. Neutrinos with energies Eν ≲ 0.5 MeV are rather unaffected by solar
matter [10] and their mean survival probability (as νe’s) is 1 − 0.5 sin2(2θsol).
Meanwhile neutrinos with higher energies tend to leave Sun in mass eigenstate
ν2 (the heavier from ν1, ν2) with νe content sin2(θsol) ≃ 1/3 which explains the
problem of missing solar neutrinos.

Solar neutrinos were observed in experiments like Homestake [6], SAGE [13],
GALLEX [14], Super-Kamiokande [15], SNO [16] and Borexino [17], neutrino
oscillation guided by ∆m2

21 and θ12 was also measured using reactor antineutrinos
in the KamLAND experiment [18] providing the most precise value of ∆m2

21. The
neutrino oscillation waves observed by the KamLAND experiment are shown in
Fig. 1.1.

As listed in Tab. 1.1, the best-fit values of the relevant oscillation parameters
were determined to be sin2 2θ12 = 0.85 ± 0.02 [11] which corresponds to θ12 ≈ 34◦

and ∆m2
21 = (7.53±0.18)·10−5 eV2 [11], which means that the first disappearance

minimum of νe and ν̄e lies in the distance of 16.4 km/MeV in vacuum (note that
the sign of ∆m2

21 is known based on the effect of solar matter).
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Figure 1.1: KamLAND’s measurement of ratio of the observed ν̄e spectrum to
the spectrum that would be expected without neutrino oscillation as a function
of L0/E, where L0 = 180 km is the flux-weighted average reactor baseline and E
is the ν̄e energy. Figure taken from Ref. [18].

Measurement of θ23 and ∆m2
32

The absolute value of ∆m2
31 or ∆m2

32 is about 33 times bigger than ∆m2
21. This

places the first disappearance minimum to about 0.5 km/MeV for both ∆m2
32

and ∆m2
31 driven oscillations. However, as mentioned above, it is not yet known

whether ν3 is the heaviest or the lightest mass eigenstate (i.e. the sign of ∆m2
31

or ∆m2
32).

The oscillation driven by ∆m2
31 and ∆m2

32 was first observed by the Super-
Kamiokande experiment in 1998 [7]. Two-neutrino framework can be used to
describe this oscillation with good precision

Pµµ(L/E) = Pµ̄µ̄(L/E) ∼= 1 − sin2(2θatm) sin2
(

∆m2
atmL

4ℏcE

)
, (1.17)

where θatm ≈ θ23 and ∆m2
atm ≈ ∆m2

31 ≈ ∆m2
32. The subscript atm stands for

“atmospheric” reflecting the fact that oscillation driven by these parameters plays
an important role in the observation of atmospheric νµ and ν̄µ flux.

Later on, νµ and ν̄µ beams produced using particle accelerators became an
essential tool to study neutrino oscillation driven by ∆m2

32 and ∆m2
31. These

were studied in experiments like K2K [19], succeeded by T2K [20], MINOS, MI-
NOS+ [21] and NOνA [22].

Along with uncertainty regarding the sign of ∆m2
32 and ∆m2

31, there is also
ambiguity regarding the value of θ23. As sin2 2θ23 ≈ 1, it follows that θ23 ≈ 45◦,
however it is not entirely clear whether θ23 > 45◦ or θ23 < 45◦ (i.e. to which
octant θ23 belongs).

Measurement of θ13 and ∆m2
31

Being the smallest one out from the three mixing angles, θ13 was the last one to
be measured, its nonzero value was discovered in 2012 by the Daya Bay experi-
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ment [2]. There are currently two strategies employed in θ13 determination. One
is to use reactor ν̄e disappearance in a similar way to θ12, but with shorter base-
line as in the experiments Double Chooz [23], RENO [24] and the aforementioned
Daya Bay experiment, which provides the world’s most precise measurement of
sin2 2θ13 = 0.0851 ± 0.0024 [3] corresponding to θ13 ≈ 8.5◦.

The other strategy is to use accelerator νe (ν̄e) appearance in νµ (ν̄µ) beam in
the already mentioned experiments T2K, MINOS, MINOS+, NOνA. Apart from
sin2 2θ13 mixing angle, ∆m2

31 or ∆m2
32 mass splitting is also measured in these

experiments. The Daya Bay’s measurement of the mass splitting is of comparable
precision as the ones provided by the leading accelerator neutrino experiments.

Measurement of the CP-violating Phase δ

Our knowledge regarding the δ-phase stems mostly from νe (ν̄e) appearance in
accelerator neutrino experiments T2K [25] and NOvA [22], but there is currently
tension between results from these two experiments. For CP-symmetry to be
violated in neutrino oscillation it is necessary that δ ̸= 0, π along with nonzero
values of all 3 mixing angles, which is likely satisfied as δ = 4.27+0.63

−0.50 rad according
to the global fit[11], but no value of δ has been excluded at 5 σ level so far.
Next-generation experiments DUNE [26] and Hyper-Kamiokande [27], which are
currently under construction, will provide precise measurement of δ.
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2. The Daya Bay Experiment
The Daya Bay Reactor Neutrino Experiment was designed to measure the θ13
mixing angle by studying reactor antineutrino disappearance caused by neutrino
oscillation at about 2 km baseline. It began data taking in December 2011 and
finished operation at the end of 2020. The location of the experiment is about
55 km northeast from Hong Kong in Southeast China, in the proximity of the
Daya Bay and Ling Ao nuclear power plants as shown in Fig. 2.1. These power
plants operate in total six 2.9 GWth pressurized water reactors, which makes
them one of the most powerful nuclear complexes in the world. Each reactor
isotropically emits ∼ 6 × 1020 ν̄e/s originating in beta-decays of fission fragments
and thus serves as an intense and pure source of ν̄e’s with energies up to ∼10 MeV.

Figure 2.1: Layout of the Daya Bay experiment. Six reactor cores serve as a pow-
erful and pure source of ν̄e’s. Mostly unoscillated flux and spectrum is sampled
by two near experimental halls (EH1 & EH2) while the far hall (EH3) sees the
largest effect of the oscillation driven by the θ13 mixing angle. All experimental
halls are placed underground to suppress cosmic rays with corresponding over-
burdens indicated.

2.1 Detector Configuration
The Daya Bay experiment nominally utilized 8 antineutrino detectors (ADs) of
identical design which were located in 3 underground experimental halls (EHs)
as listed1 in Tab. 2.1 along with overburdens (experimental halls are located

1Note that different AD labels based on installation order can be found in the Daya Bay
literature.
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underground for suppression of cosmic rays and associated backgrounds) and
distances from the individual reactor cores. The idea behind the experimental
layout is that EH1 (containing 2 ADs) is located close to the Daya Bay nuclear
power plant and EH2 (also containing 2 ADs) close to the Ling Ao nuclear power
plant (EH1 and EH2 are thus labeled as the “near halls”) with the aim to sample
the reactor ν̄e flux and spectrum only minimally affected by neutrino oscillation.
EH3 is located in almost 2 km distance (thus labeled as the “far hall”), where the
maximal disappearance of reactor ν̄e due to neutrino oscillation driven by the θ13
mixing angle can be observed.

Table 2.1: List of experimental halls with corresponding depths, detectors and
distances between each detector and each reactor core [28]. D1 and D2 stand for
the Daya Bay nuclear power plant reactors, whereas L1, L2, L3 and L4 stand for
Ling Ao reactors. List of baselines with full precision of 18 mm can be found in
Ref. [29].

Hall Depth Detector Baseline [m] with respect to reactor:
[m] short (long) label D1 D2 L1 L2 L3 L4

EH1 93 AD1 (EH1-AD1) 362 372 903 817 1354 1265
AD2 (EH1-AD2) 358 368 903 817 1354 1266

EH2 100 AD3 (EH2-AD1) 1332 1358 468 490 558 499
AD4 (EH2-AD2) 1337 1363 473 495 559 501

EH3 324

AD5 (EH3-AD1) 1920 1894 1533 1534 1551 1525
AD6 (EH3-AD2) 1918 1892 1535 1535 1555 1528
AD7 (EH3-AD3) 1925 1900 1539 1539 1556 1530
AD8 (EH3-AD4) 1923 1898 1541 1541 1560 1533

2.2 Data-taking Periods
While the Daya Bay experiment was designed to operate with 8 ADs, not all of
them were operational all the time. Only 6 ADs were present from the start of
data taking in December 2011 to July 2012 in so called “6-AD period” which was
followed by a shutdown during which the other two ADs (EH2-AD2 and EH3-
AD4) were installed. The period of full configuration (“8-AD period”) began in
October 2012 and lasted until December 2016 when EH1-AD1 was repurposed
to study liquid scintillator properties for the JUNO experiment currently under
construction [12]. The experiment continued in configuration with 7 ADs from
January 2017 until the end of data-taking in December 2020 (“7-AD period”).

2.3 Detector System
Each hall contains an instrumented water pool in which the corresponding ADs
are placed, as shown in Fig. 2.2 for a near hall as an example. The water pool
shields the ADs from gammas coming from natural radioactivity in the sur-
rounding rock and muon-induced neutrons. It is optically separated into two
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sections – inner and outer one. Both are instrumented by PMTs in order to de-
tect Cherenkov light produced by passing muons and thus serve as a veto. On top
of the water pools, 4-layer resistive plate chamber (RPC) system was installed to
improve the muon detection, but it was later phased out.

Figure 2.2: Cross section of the detector system of a near hall containing two
antineutrino detectors. Instrumented water pool divided into two sections sep-
arated by tyvek sheets serves as both passive shielding from radiation and as a
Cherenkov detector for muons. System of resistive plate chambers covers the pool
for improved muon identification [29].

Each individual AD consists of three nested cylindrical regions as shown in
Fig. 2.3. The innermost volume is contained in a vessel made from 11 mm thick
acrylic with height and diameter of 3 m and contains 20 t of liquid scintillator
doped with gadolinium at 0.1% mass fraction (thus being referred to as “GdLS”).
It is surrounded by 22 t of liquid scintillator without gadolinium doping inside
17 mm thick 4 m by 4 m vessel (this volume is referred to as “LS”). These
two volumes are nested in a 5 m by 5 m stainless steel vessel (SSV) filled with
mineral oil (labeled as “MO”), which does not scintillate and serves as a buffer
shielding the LS and GdLS from outside radiactivity. There are 192 inward-facing
8-inch photomultiplier tubes (PMTs) arranged in 8 rows and 24 columns mounted
around the perimeter of the mineral oil volume. They collect scintillation light
produced by ionizing particles in GdLS and LS volumes. The top and bottom of
the AD are not instrumented by PMTs, instead there are specular reflectors that
help with collection of the scintillation light.

Three automated calibration units (ACUs) are mounted on the top of SSV.
Two are connected to the GdLS volume by calibration tubes – the first one
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Figure 2.3: Cross section of an antineutrino detector. Gadolinium-doped liquid
scintillator (GdLS) in the center is surrounded by scintillator without doping
(LS) which in turn is nested in mineral oil (MO). Scintillation light is detected
by 192 PMTs mounted in eight rows. On top, three automated calibration units
(ACUs) are placed [29].

(ACU-A) is located above the center of the AD and deploys calibration sources
or LEDs along the AD axis, the second one (ACU-B) operates at the distance of
1350 mm from the axis. The third one (ACU-C) is connected to the LS volume at
1772.5 mm from the axis. The tube in the center (under ACU-A) also connects the
GdLS and LS volumes to concentric overflow tanks located on the SSV lid. The
air above the overflow tanks is continuously purged with dry nitrogen, the same
applies for the space above scintillator surface in ACU-B and ACU-C calibration
tubes.

2.4 Antineutrino Detection
When an ionizing particle passes through the liquid scintillator, photons are emit-
ted and detected by PMTs allowing for determination of position and deposited
energy (details about event reconstruction can be found in the Chapter 3). The
reactor antineutrinos are detected via the inverse beta decay (IBD) reaction on
a free proton

ν̄e + p → e+ + n, (2.1)

which has a threshold of about 1.8 MeV.
As liquid scintillator based on linear alkylbenzene is a hydrocarbon compound,
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free protons are abundant there for antineutrinos to interact with. Positron cre-
ated in IBD quickly looses energy and eventually annihilates emitting in most
cases two gammas, which also promptly deposit their energy. Neutron, on the
other hand, thermalizes first and then is captured on a nucleus. In GdLS, it is
most likely gadolinium (nGd) with mean capture time ∼30 µs. Gamma cascade
is emitted with energy ∼8 MeV. Even if a gamma escapes the GdLS, it is likely
contained in LS thus minimizing energy leakage. Meanwhile, neutrons in LS are
mainly captured on hydrogen (nH) with mean capture time ∼200 µs. A single
2.2 MeV gamma is then emitted. The detection scheme is outlined in Fig. 2.4.
The spatial (≲ 50 cm) and temporal coincidence of the prompt positron signal
and the delayed neutron capture signal allows for a powerful background rejection
in general. The energy of the prompt signal Eprompt can be directly related to the
incoming antineutrino energy Eν̄e as

Eν̄e ≃ Eprompt + 0.78 MeV. (2.2)

Figure 2.4: Scheme of ν̄e interaction and detection in the Daya Bay experiment.
As ν̄e interacts via IBD, positron and neutron are created. The positron quickly
loses energy and annihilates giving us the prompt signal. The neutron first ther-
malizes and after that gets captured on a nucleus. In GdLS, it is most likely
gadolinium, in LS hydrogen with mean capture times ∼30 µs and ∼200 µs re-
spectively. The gamma(s) emitted after the neutron capture give us the delayed
signal. Figure taken from Ref. [30].
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2.5 Selection of Physics Results

2.5.1 Neutrino Oscillation in the Three Neutrino Frame-
work

The survival probability of ν̄e in the three neutrino framework is given by

Pēē = 1 − cos4(θ13) sin2(2θ12) sin2
(

∆m2
21L

4ℏcE

)
−

− sin2(2θ13)
[
cos2(θ12) sin2

(
∆m2

31L

4ℏcE

)
+ sin2(θ12) sin2

(
∆m2

32L

4ℏcE

)]
, (2.3)

where L is the distance traversed by ν̄e and E is its energy. Note that in short
baseline experiments such as Daya Bay, the part of the oscillation that is driven
by ∆m2

21 has only minor impact on the oscillation probability.
Eq. 2.3 can be rewritten as

Pēē ≃ 1 − cos4(θ13) sin2(2θ12) sin2
(

∆m2
21L

4ℏcE

)
− sin2(2θ13) sin2

(
∆m2

eeL

4ℏcE

)
, (2.4)

where we used an effective mass splitting ∆m2
ee, which is independent of mass

ordering, and it is defined as

sin2
(

∆m2
eeL

4E

)
≃ cos2(θ12) sin2

(
∆m2

31L

4E

)
+ sin2(θ12) sin2

(
∆m2

32L

4E

)
. (2.5)

Daya Bay was the first experiment to discover the nonzero value of the θ13
mixing angle just in 2012 using nGd sample [2]. Since then, several improved
measurements have been published ([31, 32, 33] and most notably Ref. [29] where
the experiment and measurement are described in great detail) with the latest one
corresponding to 3158 days of data taking [3]. During that time, unprecedented
sample of over 5.5 million IBD candidates in total with almost 0.7 million in the
far hall (EH3) were collected.

By comparing ν̄e flux and energy spectral shape across all ADs (the difference
between the near halls and the far hall being essential) as shown in the left panel of
Fig. 2.5 the values of the parameters driving the oscillation were determined with
the results sin2 2θ13 = 0.0852 ± 0.0024 and ∆m2

ee = (2.519 ± 0.060) × 10−3 eV2

using the ∆m2
ee effective mass splitting. With the full three neutrino framework,

the results are sin2 2θ13 = 0.0851±0.0024 and ∆m2
32 = (2.466 ± 0.060)×10−3 eV2

(normal mass ordering) or ∆m2
32 = (−2.571 ± 0.060) × 10−3 eV2 (inverted mass

ordering) [3]. The best fit and the confidence regions are shown in the right
panel of Fig. 2.5. This Daya Bay’s final measurement of sin2 2θ13 using the full
data set has the world’s best precision of 2.8%. The ∆m2

32 mass splitting is also
measured with a leading precision comparable to that achieved by the accelerator
experiments.

The neutrino oscillation measurement can be also performed using IBD sam-
ple with neutron capture on hydrogen (nH). So far, only analysis comparing
antineutrino rates across all ADs based on 621 days of data taking has been pub-
lished with the result sin2 2θ13 = 0.071 ± 0.011 [34]. Measurement based on nH
is largely independent from the nGd measurement, since the statistical samples
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Figure 2.5: (Left) Energy spectrum of reactor antineutrinos detected in the far
hall ADs (black points ) is compared to the prediction based on the near halls
data assuming no oscillations (blue line) and with the best oscillation fit (red
line) [3]. (Right) The best fit of sin2 2θ13 and ∆m2

ee and the 1, 2, 3σ confidence
regions [3].

are completely distinct and systematical uncertainties are mostly different too.
Analysis using nH suffers from larger systematics, especially larger background
dominated by the accidental coincidences of two uncorrelated signals. A spectral
analysis is currently under preparation, which means that precise energy calibra-
tion is needed especially in LS, where most of the IBD interaction resulting in
nH occur. The goal of this thesis is to improve the uniformity of the AD energy
reconstruction with focus on this ongoing neutrino oscillation analysis based on
nH.

2.5.2 Search for Sterile Neutrino Mixing
Even though most experiments are in line with the model of three active neutrino
mixing, there are some anomalies which do not conform to it and which can be
explained by introduction of sterile neutrinos [35], most notably in LSND [36] and
MiniBooNE [37] experiments. The possibility of sterile neutrino mixing can be
probed using 3 (active) + 1 (sterile) framework. In the Daya Bay experiment, this
would introduce additional oscillation driven by new parameters ∆m2

41 and θ14.
Daya Bay’s layout with multiple baselines allows it to explore several orders of
|∆m2

41|. Based on 1230 days of data taking, no deviation from the three neutrino
model was observed [38] resulting in limits on sin2 2θ14 for almost four orders
of magnitude in |∆m2

41| with the limits for |∆m2
41| < 0.2 eV2 being the most

stringent ones up to date, as shown in the left panel of Fig. 2.6.
The limits imposed by the Daya Bay experiment can be extended by limits

from the Bugey-3 experiment [42]. When combined with the results from the
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Figure 2.6: (Left) Exclusion region at 90% C.L. from Daya Bay based on Feldman-
Cousins (blue line) and CLs (gray line) statistical methods along with excluded
region from Bugey-3 (green dashed line) and combination of both experiments
(black line) [38]. (Right) Exclusion region at 99% CLs based on combination
of the Daya Bay, Bugey-3, MINOS and MINOS+ experiments (right of the red
line) compared with 99% C.L. allowed region from the LSND and MiniBooNE
experiments [38]. A global fit [39, 40] excluding Daya Bay, Bugey-3, MINOS
and MINOS+ is ruled at >99% C.L. along with a fit to appearance experiments
only [41].

MINOS and MINOS+ experiments [43] they allow to assess the findings of LSND
and MiniBooNE which observed an excess of νe/ν̄e in νµ/ν̄µ beam. This excess
points to the sterile neutrino mixing with ∆m2

41 ∼ 1 eV2 and an effective mixing
angle sin2 2θµe ≡ sin2 2θ14 sin2 θ24. While the value of θ14 is constrained by the
Daya Bay and Bugey-3 ν̄e disappearance experiments, limits on θ24 are provided
by the MINOS and MINOS+ measurement of νµ/ν̄µ disappearance. Thus when
results from these experiments were combined, strong constrains on the sterile
neutrino mixing over seven orders of magnitude in ∆m2

41 were imposed. As shown
in the right panel, the LSND and MiniBooNE 99% C.L. allowed regions were
excluded at 99% CLs for ∆m2

41 < 1.2 eV2. Thus the anomalies observed in these
experiments were likely not caused by sterile neutrinos. In addition to that, global
fit to the experiments searching for sterile neutrinos [39, 40] as well as fit only to
the appearance experiments [41] were fully excluded on more than 99% C.L..

2.5.3 Measurement of the Reactor Antineutrino Flux and
Spectrum

Precise measurement of the reactor ν̄e flux was performed using 2.2 million IBD
candidates collected in the near halls over 1230 days [44]. The average IBD yield
was determined to be (5.91 ± 0.09) × 10−43 cm2/fission. While it is consistent
with previous experimental results as shown in the left panel of Fig. 2.7, when
compared to the Huber-Mueller model [45, 46] the ratio of measured to predicted
yield is 0.952 ± 0.014 ± 0.023, where the first uncertainty is experimental and the
second one comes from the theoretical model. This discrepancy is called “reactor
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antineutrino anomaly”.

Figure 2.7: (Left) The ratio of measured reactor antineutrino yield to the Huber-
Mueller theoretical prediction as a function of the distance from reactor to detec-
tor [44]. Each ratio is corrected for the effect of neutrino oscillation. The Daya
Bay measurement is shown at the flux weighted baseline (578 m) of the two near
halls. (Right) IBD yield per fission, σf , versus effective 239Pu (bottom axis) or
235U (top axis) fission fraction [47].

Using the same data set, correlations between reactor core fuel evolution and
changes in the reactor antineutrino flux and energy spectrum were also ana-
lyzed [47]. Fuel-dependent variation in the IBD yield was observed (as shown in
the right panel of Fig. 2.7) rejecting the hypothesis of a constant antineutrino
flux as a function of the 239Pu fission fraction at 10 standard deviations and the
hypothesis of a constant antineutrino energy spectrum at 5.1 standard devia-
tions. Individual yields of the two most prominent fissile isotopes 235U and 239Pu
were determined to be (6.17 ± 0.17) and (4.27 ± 0.26) × 10−43 cm2/fission respec-
tively (shown in the left panel of Fig. 2.8) suggesting that 235U is the primary
contributor to the reactor antineutrino anomaly.

Along with improved measurement of the prompt energy spectrum of reactor
antineutrinos, individual antineutrino spectra from 235U and 239Pu fissions were
extracted using evolution of the prompt spectrum as a function of the isotope
fission fractions based on 3.5 million IBD candidates collected in the near halls
over 1958 days [48]. Total spectrum showed discrepancy of over 5 standard devi-
ations when compared to Huber-Mueller model, especially significant in 4-6 MeV
“bump” region (> 6 standard deviations).

Joint analysis with the PROSPECT experiment, which detects ν̄e’s from
highly enriched uranium compact research reactor core, was also performed [49].
It showed that the measured 235U antineutrino spectra are consistent between the
two experiments. Combined analysis then reduced correlation between extracted
235U and 239Pu spectra (shown in the right panel of Fig. 2.8) and it also reduced
235U spectrum shape uncertainty.
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Figure 2.8: (Left) Combined measurement of 235U and 239Pu IBD yields per fission
σ235 and σ239 [47]. The red triangle indicates the best fit with corresponding
contours in green while prediction of thr Huber-Mueller model is shown in black.
(Right) Top – 235U and 239Pu antineutrino spectra unfolded from the jointly
deconvolved Daya Bay and PROSPECT measurements [49]. Bottom – ratio of
the measurements to their respective models.

22



3. Event Reconstruction
When a particle deposits energy in one of the sensitive volumes of the AD, scin-
tillation light is produced, propagates and part of the photons are eventually
detected by PMTs. The position and energy of the interaction thus needs to be
deduced from the spatial and temporal PMT hit pattern as well as from the in-
formation about spatial non-uniformity (resulting mostly from optical properties
determining light propagation, geometric acceptance of PMTs etc.), nonlinear
energy response of the liquid scintillator and electronics nonlinearity.

First, the analog signal given by a PMT is processed by an analog-to-digital
converter (ADC) measuring the collected charge and a time-to-digital converter
(TDC) extracting information about the hit time. For the next steps proper
calibration is needed in order to extract physical quantities from ADC and TDC
values.

3.1 Time and PMT Gain Calibration
LED calibration source was used to synchronize individual PMTs to eliminate
the effect of different cable lengths. The absolute timing is then given by GPS-
synchronized time stamp with 25 ns precision.

To reconstruct position and deposited energy of an event, we need to deter-
mine the conversion between ADC counts and number of photoelectrons regis-
tered by a PMT, i.e. to establish the gain of each PMT channel. The gain of
a particular PMT depends on many factors such as the input voltage, ambient
temperature or orientation with respect to the local magnetic field. It thus fol-
lows that the gain is generally not stable in time and needs to be determined for
each PMT individually on continuous basis.

PMT dark noise (primarily single photoelectrons originating from thermal
emissions in the photocatode) was used on daily basis to establish the mean
charge Q

SPE induced by a single photoelectron in ADC counts (on average about
19 counts/photoelectron).

3.2 Position Reconstruction
The coordinate system used in event reconstruction has its origin in the center of
the GdLS. Both cylindrical (r,z,ϕ) and Cartesian (x, y, z) coordinate systems are
used with z-axis points up along the axis of symmetry of the cylindrically-shaped
detector and x- and y-axes define the horizontal plane and are connected to the
cylindrical coordinates in the standard way (x = r cos ϕ, y = r sin ϕ).

There are several event reconstruction algorithms used in the Daya Bay exper-
iment, but we will focus on the one referred as “reconstruction B” in Ref. [29] and
its extension, which are also called “AdSimple” and “AdSimpleNL” within the
Daya Bay collaboration – these labels will be used further on. The AdSimpleNL
method will be used in the analysis described in Chapters 4 and 5.

In order to reconstruct event position (it works the same way in both AdSimple
and AdSimpleNL), a library of 9600 charge templates generated in Monte Carlo
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simulation is employed with each template corresponding to one position on grid
with 20 bins in r direction, 20 bins in z direction and 24 bins in ϕ direction. The
charge pattern of the event that is being reconstructed is then compared to these
templates by calculating χ2 [29]

χ2(r, z, ϕ) =
192∑
i=1

(
−2 ln Poisson(Nobs

i |N temp
i (r, z, ϕ))

Poisson(Nobs
i |Nobs

i )

)
, (3.1)

where Poisson(n|µ) stands for Poisson probability of observing n photoelectrons
when the mean value is µ, Nobs

i is the observed number of photoelectrons by the
i-th PMT and N temp

i (r, z, ϕ) is the expected number of photoelectrons in the i-th
PMT predicted by the template corresponding to the simulated event position
(r, z, ϕ).

The reconstruction precision is further increased by interpolation between few
best-matching simulated templates. For each coordinate, the χ2 of the template
that yielded minimal value and the two neighboring ones was fitted by a parabolic
function. The final position is then taken from the minimum of the parabolic
function.

The performance of the AdSimple postion reconstruction was tested using the
calibration system with 60Co source and it was shown that reconstruction bias
was < 20 cm and the resolution < 40 cm [29].

3.3 Energy Reconstruction
Let us assume that an event happened in the AD and we have its reconstructed
position (r, z, ϕ) and charge collected by each PMT (Qi for i-th PMT) along
with current gain calibration for each PMT (QSPE

i giving us the number of ADC
counts per photoelectron for i-th PMT). The reconstructed energy Erec is then
given by [29]

Erec =
⎛⎝192∑

i=1
f ∗

SCNL
Qi

Q
SPE
i

⎞⎠ fact(t)
NPE(t)fAP

fpos(r, z, ϕ, t), (3.2)

where fact(t) is the active PMT correction, NPE photoelectron yield, fAP is a
factor correcting for PMT afterpulses caused by shower muons and fpos(r, z, ϕ, t)
is the non-uniformity correction. The AdSimple reconstruction method does not
use single channel nonlinearity correction f ∗

SCNL (hence the asterix) – it was in-
troduced in its derivative method AdSimpleNL. Let us now look at each of these
factors in a bit more detail.

3.3.1 Single Channel Nonlinearity Correction
The single channel nonlinearity correction factor f ∗

SCNL is only present in AdSim-
pleNL reconstruction method, which was derived from AdSimple in 2017 after
extensive study of Daya Bay energy response nonlinearity [50]. It corrects the
nonlinearity of PMTs and front-end electronics, which will be discussed in more
detail in Section 3.3.5.
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3.3.2 Active PMT Correction
If some PMT channels were not working during a certain period (due to being
disconnected, broken or due to the corresponding channel(s) in the high-voltage
module being broken), their absence needed to be compensated by factor fact(t) =
192/N(t), where N(t) stands for the number of PMT channels operating at the
given time (out of 192 in total).

3.3.3 Photoelectron Yield
The average number of photoelectrons observed by PMTs as a result of particle
interaction of fixed energy varied both from AD to AD and for a single AD in
time. The conversion factor between deposited energy and number of photoelec-
trons thus had to be determined for each AD individually on a regular basis.
For that purpose, we can use a peak of known energy and the observed number
of photoelectrons to make a conversion between these two quantities. In AdSim-
ple(NL) reconstruction method, peak from neutron capture on Gadolinium (nGd)
was used, where the neutrons come from spallation of nuclei (mainly carbon) in-
duced by cosmic-ray muons (SPNs – spallation neutrons). The flux of muons gets
lower with increasing overburden which means that the sufficient statistics for a
calibration point was accumulated approximately once per day in the shallower
near halls and once per week in the deeper far hall.

If the neutron is captured on Gd, it is either 155Gd or 157Gd isotope. The
abundance of 157Gd is 15.65%, its thermal neutron capture cross section is 257,000
barn and energy released in gamma cascade is 7.937 MeV. The second isotope
155Gd has similar abundance of 14.80%, but lower neutron capture cross section
of 60,700 barn, while the energy released is 8.536 MeV [51]. This means that the
neutron captures on 155Gd constitute 22.7% of 157Gd captures and the observed
nGd peak in fact consists of two peaks which are mostly merged together due to
energy resolution.

The fitting of the nGd peak is performed using double Crystall Ball (CB)
function [52] which consists of two CB functions. A single (unnormalized) CB
function of energy E is defined using parameters µ, σ, n and α

fCB(E; µ, σ, n, α) =
⎧⎨⎩ exp

(
− (E−µ)2

2σ2

)
for E−µ

σ
> −α (peak)

A ·
(
B − E−µ

σ

)−n
for E−µ

σ
≤ −α (tail)

(3.3)

A =
(

n

|α|

)n

· e− α
2 , B = n

|α|
− |α|.

As we can see, CB function has two parts sewn together at the point given by
parameter α. Above this point it is a Gaussian function with mean µ and standard
deviation σ. If there was no energy leakage, this would be sufficient, however,
as the gammas from the cascade may deposit their energy or part of it in non-
scintillating volumes, tail towards smaller energies appears. This is reflected by
the second part of CB function with parameter n defining its shape.

To fit the nGd double peak we need to introduce double CB function

fDCB = N1 · fCB1(E; µ1, σ1, n1, α1) + N2 · fCB2(E; µ2, σ2, n2, α2), (3.4)
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where index 1 corresponds to neutron capture on 157Gd and index 2 to capture on
155Gd. Fortunately, the number of free parameters in Eq. 3.4 can be reduced as
there are particular relations between these parameters. First, the normalization
factor N is directly proportional to the abundance and the neutron cross section
of the isotope, which are known quantities. The relation between N1 and N2 is
thus given as

N2 = 0.227 N1. (3.5)
Next, we also know the energies released when a neutron is captured on each
isotope. These energies correspond to parameters µ1 and µ2, the relation between
them is then

µ2 = 1.0755 µ1. (3.6)
In a similar fashion with the assumption that σ ∝ √

µ, we get

σ2 =
√

1.0755 σ1. (3.7)

Lastly, we can assume that both 157Gd and 155Gd peaks have the same shape
defined by α and n parameters

α2 = α1, n2 = n1. (3.8)

By fitting the SPN nGd spectrum by the double CB function, we get the value
of peak mean µ1 in units of photoelectrons. We can thus establish the conversion
factor between these two quantities, which is on average about 168 photoelec-
trons/MeV. The exact dependence on AD and time is shown in Fig. 3.1.

Figure 3.1: Observed photoelectron (PE) yield as a function of time for each AD
individually. All ADs showed consistent sub-percent yearly decline of photoelec-
tron yield. Figure taken from [53].

There is, however, one more factor we need to account for. Shower muons
cause massive production of scintillation light, which leads to PMT afterpulsing
and thus temporarily slightly shifting the energy scale when compared to IBD
nGd [54]. The shift increases with muon energy and we thus need fAP correction
factor to account for it. The fAP factor was derived using the assumption that
when muon energy is extrapolated to zero there should be match between SPN
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and IBD nGd energies. The mean muon energy varies between EHs because
of different overburdens, which is the source of differences in the values of fAP
between EHs. The fAP value of ADs in the same hall tends to be quite similar.
Parameters of cosmic muon flux and fAP values are summarized in Tab. 3.1.

Table 3.1: Overburdens of EHs in meters-water-equivalent (mwe), mean muon
energy ⟨Eµ⟩ and rate Rµ in each EH. Correction factor fAP is listed for each AD.

Hall Overburden ⟨Eµ⟩ Rµ Detector fAP

EH1 250 mwe 57 GeV 1.27 Hz/m2 EH1-AD1 0.9927
EH1-AD2 0.9934

EH2 265 mwe 58 GeV 0.95 Hz/m2 EH2-AD1 0.9921
EH1-AD2 0.9922

EH3 860 mwe 137 GeV 0.056 Hz/m2

EH3-AD1 0.9901
EH3-AD2 0.9904
EH3-AD3 0.9899
EH3-AD4 0.9895

3.3.4 Nonuniformity correction
The amount of light that reaches the PMTs depends on the position of the light
production due to the experiment geometry, geometrical acceptance of PMTs,
optical properties of liquid scintillator, acrylic vessels and mineral oil. The quan-
tum efficiency (probability that an incident photon causes electron emission from
the photocathode) may vary between PMTs and even the collection efficiency
(probability that the photoelectron reaches the first dynode) is affected by ori-
entation of the PMT with respect to the local magnetic field. The reconstructed
energy would deviate between about -6% and +15% from the nominal energy1

depending on the position in the AD (as illustrated in Fig. 3.2) if no correction
was applied. That would seriously affect the energy scale and the energy resolu-
tion. It is thus clear that precise correction is necessary. Even though all ADs
behave in a similar way, there is generally up to 2% difference between the ADs.
It thus follows that the correction has to be applied for each AD individually so
that these differences can be addressed.

The nonuniformity correction for AdSimple(NL) reconstruction method has
a form of a function of reconstructed coordinates r, z, ϕ, t. It is factorized into
three parts

fpos(r, z, ϕ, t) = fϕ(ϕ)frz(r, z)frt(r, t), (3.9)
where fϕ denotes azimuthal correction, frz the main spatial correction working on
r-z coordinate space and frt time-dependent correction which is also r-dependent.
First two correction factors, fϕ(ϕ) and frz(r, z), are determined for each AD
independently. While the nonuniformity patterns are qualitatively similar, there
are quantitative differences that need to be addressed. On the other hand, the
last correction factor frt(r, t) was found to be even quantitatively similar between
ADs enough for it to be common for all ADs.

1Energy given by fitting of SPN nGd peak as described in Section 3.3.3. As nGd occurs only
in GdLS, nominal photoelectron yield is calculated for GdLS as whole.
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Azimuthal Correction

The azimuthal correction aims to eliminate residual effect of local Earth’s mag-
netic field. While the PMTs were wrapped in truncated conical magnetic shields,
there is still a residual effect resulting in deviation of reconstructed energy up to
1 % depending on the azimuthal angle ϕ. The correction factor is calculated as

fϕ(ϕ) = 1
1 + αcorr

0 sin(ϕ − ϕcorr
0 ) , (3.10)

where αcorr
0 and ϕcorr

0 are data-driven parameters with values listed in Tab. 3.2.
The orientation of the correction given by parameter ϕcorr

0 is calculated in the local
coordinate system of the particular EH. The values of ϕcorr

0 are thus rather similar
for ADs in the same EH as expected for effect caused by residual geomagnetic field,
but differ between EHs as the local coordinate system of each EH is differently
oriented with respect to the geomagnetic field. On the other hand, the differences
in amplitude αcorr

0 suggest that the level of shielding (or PMT susceptibility)
varies between the ADs, even in the same EH. Apart from geomagnetic field,
the azimuthal nonuniformity was also affected by several PMTs which stopped
working during the operation of the experiment. The impact of these dead PMTs
on nouniformity was not addressed by the aforementioned correction and it seems
unlikely that it even could be addressed by a correction in the form of Eq. 3.10
as a dead PMT would be expected to have a rather localized and time-dependent
(before vs. after the PMT stopped working) effect. For that and other reasons,
the correction given by Eq. 3.10 will be scrutinized and a new improved correction
will be presented in Chapter 5.

Table 3.2: Parameters which are used for fϕ(ϕ) azimuthal nouniformity correction
factor calculation as described by Eq. 3.10.

Detector αcorr
0 [10−2] ϕcorr

0 [◦]
EH1-AD1 0.348 138.3
EH1-AD2 0.657 141.5
EH2-AD2 0.675 -5.0
EH2-AD2 0.424 7.4
EH3-AD1 0.427 68.0
EH3-AD2 1.115 60.2
EH3-AD3 0.670 35.0
EH3-AD4 0.997 47.5

Spatial Correction

The spatial nonuniformity correction is given by frz(r, z) term in Eq. 3.9 and
addresses the differences (between −6% and +15%) in observed energy depending
on the r-z position in the AD. In contrast to the azimuthal correction described by
a continuous function, spatial correction uses discrete 2D map MNU to calculate
the corresponding factor

frz(r, z) = 1
MNU(r2, z) . (3.11)
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The MNU nonuniformity map covers the AD sensitive volume with 10 bins on
the r2-axis uniformly spanning interval (0 m2, 4 m2) and 10 bins on the z-axis
uniformly spanning interval (−2 m, 2 m), in total 100 voxels. The square of
radius, r2, is used instead of r so that each voxel corresponds to the same volume
and thus contains approximately the same number of events for the correction
determination. The value in each bin indicates relative amount of scintillation
light that is detected for an event in that particular spatial voxel compared to
the GdLS average. MNU(r2, z) in Eq. 3.11 then stands for a value in the voxel
corresponding to r2, z coordinates. If an event is reconstructed outside of the
MNU grid, correction factor from the nearest voxel is used instead. An example
of the nonuniformity map used for EH1-AD1 is shown in in Fig. 3.2.

Figure 3.2: An example of the nonuniformity map MNU, which is used in AdSim-
pleNL reconstruction in EH1-AD1. The value in each bin indicates the relative
amount of scintillation light that is detected for an event in that particular voxel
compared to the GdLS average. In general more scintillation light is detected
with increasing r and decreasing |z|. The pattern is very similar for all ADs.
During the correction, factor of 1/MNU is applied.

In AdSimple(NL), the map MNU is constructed using SPN nGd peak for
voxels that are completely inside GdLS, SPN nH peak for voxels inside LS and
arithmetic average of both for bins that cover the boundary of GdLS and LS as
illustrated in Fig. 3.3.

The fitting of nGd peak is performed by the double CB function as described
by Eqs. 3.3 and 3.4 with additional decreasing exponential function that is aimed
to account for tail going to higher energies

fnGd = fDCB + e− E
λ , λ > 0. (3.12)

On the other hand, the nH peak is fitted by the so-called Daya Bay (DYB) func-
tion also referred to as the Calorimeter function given by Eqs.3.13 and 3.14 and
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Figure 3.3: Scheme of r2-z spatial nonuniformity correction. SPN nGd signal is
used in GdLS and SPN nH signal in LS. In the intermediate region, arithmetic
average of both is used. Figure taken from Ref. [55].

described in detail in Ref. [56]. As suggested in Fig. 3.4, the idea behind the
DYB function is that without energy resolution smearing there would be a true
energy spectrum. It would consist from a peak represented by delta function
and a leakage tail going from the peak energy to lower energies represented by
exponential function, constant function or combination of both. The final func-
tion is then obtained by applying Gaussian smearing with a common standard
deviation for all energies to the true energy spectrum. The crucial difference to
the CB function is that there is no sewing point but both smeared peak and tail
in principle span the whole energy range.

The building blocks of DYB function are defined as

fpeak(E; µ, σ) = 1
σ

√
2π

e− (E−µ)2

2σ2

fexp-tail(E; µ, σ, λ) = λ

2 e
σ2λ2+2λE

2

[
erf

(
µ − E − σ2λ√

2σ

)
− erf

(
−E − σ2λ√

2σ

)]

fconst-tail(E; µ, σ) = 1
µ

[
erf

(
µ − E√

2σ

)
− erf

(
−E√

2σ

)]
, (3.13)

where µ stands for the true peak energy, σ for the energy resolution and λ de-
scribes the steepness of the exponential tail. Each of the DYB function building
blocks is normalized to 1 so a scaling factor is needed when fitting data. For the
purpose of SPN nH fitting for nonuniformity map determination DYB function
with one exponential tail and one constant tail is used

fnH-map(E; N, α, β, µ, σ, λ) =
Nαfpeak(E; µ, σ) + N(1 − α)[βfexp-tail(E; µ, σ, λ) + (1 − β)fconst-tail(E; µ, σ)],

(3.14)
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where N is the normalization, α ∈ (0, 1) determines the fraction of events that
belong to the peak and β ∈ (0, 1) determines how the rest is distributed between
the two tails.

Figure 3.4: The idea behind the Daya Bay function is that (a) before energy
smearing the true energy spectrum consists from a peak represented by a delta
function and a leakage tail represented by an exponential function (more com-
plicated form is also possible). After Gaussian smearing (b) we get spectrum as
it is expected to be measured – we cannot distinguish whether an event belongs
to the peak or tail. (c) The decomposition of the contributions of the peak part
and the tail part of the measured spectrum is shown – we can see that both parts
overlap as there is no sewing like in the CB function. Figure taken from Ref. [56].

Time-dependent Correction

The nonuniormity pattern is not perfectly stable and over time it changed a
bit, most likely due to slight degradation of the attenuation length of the liquid
scintillator, which means that photons from the center are progressively less likely
to reach PMTs and be detected when compared to photons produced near the
edge. It was found out that this effect depends only on time t and radius r and
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thus the time-dependent correction has a form of

frt(r, t) = 1 − (β0 + β1r
2)t, (3.15)

where the data-driven parameters β0 and β1 are common for all ADs and both
AdSimple and AdSimpleNL reconstruction methods. In order to construct the
correction, each AD was divided into eight slices in r2 and the data were sampled
in half a year periods. The SPN nH peak was fitted in each segment and period so
that time-dependent deviation from initial nonuniformity could be quantified as
illustrated in Fig. 3.5. Data from all ADs showed that they are rather consistent
with each other and fit was made using model described by Eq. 3.15 as shown in
Fig. 3.6 determining the values of the parameters β0 = −1.16 · 10−3 year−1 and
β1 = 7.5 · 10−4 m−2 year−1.

Figure 3.5: An example of the time-dependent non-uniformity obtained by EH1-
AD2 (very similar for all ADs) when no time-dependent correction is applied.
Each color represents an annular section of the AD covering a range of square
of radius R2 [m2], most of the sections being 0.5 m2 wide. We can see that over
time (x-axis) the observed energy (y-axis represents relative difference from the
initial value) increases for higher radii and decreases for smaller radii [57].

Shortcomings of the Nonuniformity Correction

The nonuniformity correction described above has been successfully employed in
a number of analyses (some of them are described in Section 2.5). Most of the
analyses measuring neutrinos primarily used nGd and thus were restricted mostly
to GdLS, where the nonuniformity correction works very well. However, there
is still room for improvement, especially in LS. There are both old phenomena
which influence the nonuniformity pattern and which were not fully addressed
and new phenomena that require new methods to be dealt with (most notably
dead PMTs). Overall, the issues of the nonuniformity correction described above
can be summarized as:

• Dead PMTs introduce localized and time-dependent (before vs. after PMT
stopped working) decrease of reconstructed energy in their vicinity. The
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Figure 3.6: Fit of the time-dependent nonuniformity model described by Eq. 3.15
for data from all ADs determining the values of β0 and β1 parameters. Each point
represents pace of energy change over time (y-axis) for an annular AD section
with mean square radius r2 value indicated on x-axis (essentially slopes of the
lines like the ones drawn in Fig. 3.5 are plotted here as a function of r2) [57].

original correction is not equipped to deal with this phenomenon as the
time-dependent part of the correction works only with r-dependence, while
strong ϕ- and z-dependence is also present in the effect of dead PMTs.
Moreover, the time-dependent correction is common for all ADs, while the
dead PMTs are highly AD-specific.

• The azimuthal correction does not fully describe the effect of the residual
geomagnetic field as it lacks the r-dependence which is present in the data.

• The fitting of the nGd peak can be improved as it uses double CB function
instead of better motivated double DYB function.

• While the r2-z nonuniformity correction maps used by AdSimpleNL mostly
differ by less than 2% AD to AD, there are several outliers which raise
suspicion. Most notably the relative energy of EH3-AD4 bottom right voxel
shown in the right panel of Fig. 3.7 is between 4.8% – 7.5% higher than
in the same voxel in other ADs (which are quite consistent) as well as in
neighboring voxels. Analogously, top right voxel of EH3-AD3 in the left
panel of Fig. 3.7 shows significantly lower energy. There are more outliers
among other ADs, but the two mentioned above are the most significant
ones. The cause of these outliers is most likely inaccurate fitting of the nH
peak.

Correct and precise energy reconstruction is crucial for neutrino oscillation and
other analyses. Generally speaking, most of the issues are less of a problem in
GdLS, but grow in significance in LS. It is thus the neutrino oscillation analysis
based on nH that is most affected. Our main focus is to improve the correction
for this analysis.
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Figure 3.7: The AdSimpleNL nonuniformity map MNU used in EH3-AD3 (left)
and EH3-AD4 (right) event reconstruction. Note that the value in the high-
lighted voxel in EH3-AD3 (EH3-AD4) is suspiciously lower (higher) than in the
surrounding voxels (or the same voxel in other ADs – the maximal difference
there is about 9% between EH3-AD1 and EH3-AD3).

Especially the dead PMTs have notable impact on the nonuniformity pattern
in their vicinity, most of all in EH2-AD2 where two PMTs quite close to each
other stopped working around the beginning of 2017. Moreover, the dead PMTs
differ from AD to AD, thus potentially introducing a bias between near and far
halls if not addressed. Such bias would be most detrimental for the neutrino
oscillation measurement as it is based on comparison of measurements from these
two groups of ADs. While the problem of the dead PMTs can be up to a certain
extend mitigated by not using the data after 2017 as many of the dead PMTs
stopped working around that time, it is still very important to actually carefully
assess the impact of the dead PMTs and other issues and design new (residual)
correction if necessary.

For the reasons stated above, the nonuniformity correction described here
needs to be further scrutinized and eventually new updated version needs to be
introduced. However, this requires a long procedure starting with selection of
suitable signals and devising fitting of their energy spectra as described in Chap-
ter 4 and continues with updated correction construction and implementation
described in Chapter 5. But before we get to that, we will first finish the descrip-
tion of the event reconstruction chain.

3.3.5 Nonlinearity Correction
The reconstructed energy scale is calibrated by the nGd gamma signal at about
8 MeV and is thus equal to the deposited energy for that particular signal. How-
ever, when we observe different types of particle or the same type with different
energy, the reconstructed energy does not correspond perfectly (or even roughly
in some cases) to the deposited energy, as there is also nonlinear energy response
which needs to be taken into account. It essentially consists of two parts – liquid
scintillator nonlinearity (the relation between deposited energy and the amount of
scintillation light produced) and electronics nonlinearity (the relation between the
number of photoelectrons collected by a PMT and the number of photoelectrons
reconstructed).
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Electronics Nonlinearity

Unlike liquid scintillator nonlinearity, electronics nonlinearity is not dependent on
the particle type. It is caused by the fact that the PMTs and front-end electronics
(FEE) that digitize PMT signal have intrinsic nonlinearities. The main source
is the tendency of the summing circuit to underestimate the charge collected by
a PMT when there are several pulses that do not perfectly overlap. As a result
10% nonlinearity is introduced in the energy region between 0 MeV and 12 MeV.
For that reason, detailed study of electronics and subsequently liquid scintillator
nonlinearity was carried out as described in Ref. [50].

In order to study the performance of FEE, 192-channel (corresponding to
192 PMTs) flash analog-to-digital converter (FADC) was installed in EH1-AD1
in 2015 and acquired data simultaneously with the FEE readout system. FADC
digitized the raw PMT waveforms at 1 GHz and thus could determine the charge
without the aforementioned problems of FEE. By comparing the outputs of FADC
and FEE, appropriate correction factor (f ∗

SCNL in Eq. 3.2) was determined. It
is common for all PMTs, but applied for each PMT signal individually. The
ratio of charge obtained with FEE and FADC (1/f ∗

SCNL) is drawn in Fig. 3.8.
The corresponding factor f ∗

SCNL is used in AdSimpleNL energy reconstruction
described by Eq. 3.2, but not in the older AdSimple method.

Figure 3.8: The ratio between charge obtained using front-end electronics (FEE)
and flash analog-to-digital converter (FADC), inverse of which is used for single
channel nonlinearity correction [50]. As we can see, when more photoelectrons
(p.e.) are registered by a PMT, FEE tends to underestimate the charge compared
to FADC.

Liquid Scintillator Nonlinearity

The amount of light produced in liquid scintillator is in general not directly
proportional to the deposited energy. This nonlinearity is mainly caused by two
processes – quenching and Cherenkov light production.
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If speed (β) of a charged particle exceeds the speed of light in the medium (1/n,
where n is the refractive index), Cherenkov light is produced. For an electron
or positron the threshold for Cherenkov light production in liquid scintillator
is about 0.2 MeV of kinetic energy. As a result, particles with higher energy
above the threshold produce Cherenkov light in addition to the scintillation, while
the particles below the threshold do not, thus adding to the liquid scintillator
nonlinear energy response.

The other and bigger reason for the liquid scintillator nonlinearity are quench-
ing interactions between excited molecules along the path of the incident particle,
i.e., interactions that drain the energy which would otherwise go into lumines-
cence. The higher the energy deposition density dE/dx caused by a particle is,
the higher the density of excited molecules is and it is thus more likely their exci-
tation energy is drained by quenching instead of production of scintillation light.
This phenomenon can be described by a semi-empirical Birks’ formula [58] giv-
ing us the relation between deposited energy Edep and energy that was actually
converted to scintillation photons ESC

ESC(Edep) =
∫ Edep

0

dE

1 + kB
dE
dx

, (3.16)

where kB is the Birks’ coefficient.
The effect of quenching is especially impactful when it comes to alpha par-

ticles. As mentioned before, the light yield is calibrated using SPN nGd signal.
The energy of the gamma cascade is eventually transferred to electrons whose ion-
izing losses cause emission of scintillation light. It thus follows that for electrons,
positrons and gammas the reconstructed energy at least roughly corresponds to
the deposited energy. On the other hand, alpha particles of similar energies move
much slower, have much higher energy deposition density and thus are much more
affected by quenching. As a result, the reconstructed energy of an alpha particle
without nonlinearity correction is much lower that the kinetic energy it lost in
the liquid scintillator (for example alpha from 214Po decay has kinetic energy of
7.7 MeV [59], but reconstructed energy is only 0.9 MeV).

Once the electronics nonlinearity was measured, liquid scintillator nonlinearity
was also decoupled from the overall nonlinearity and determined for gammas,
electrons and positron. The nonlinearity curve for gammas is shown in Fig. 3.9,
the curve for electrons is qualitatively and to a certain extent quantitatively
similar.

Nonlinearity Correction

When we want to deduce the energy deposited by a particle from the recon-
structed energy, we need to apply the nonlinearity correction. In AdSimple,
there is just one correction that covers both liquid scintillator and electronics
nonlinearity. It is common for all ADs, but depends on the particle type.

On the contrary, the electronics nonlinearity in AdSimpleNL is already taken
care of by the single channel nonlinearity correction mentioned above. However,
liquid scintillator nonlinearity correction still needs to be applied in a similar
fashion to AdSimple (common for all ADs, different for different particle types)
if we want to deduce the deposited energy.
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Figure 3.9: Liquid scintillator nonlinearity curve (ratio between energy than went
to light production and deposited energy normalized to 1 at 2.2 MeV) for gamma
rays [50]. Gamma sources that were used for the measured are marked by blue
circles.

While it is crucial when for example determining the reactor antineutrino
spectrum, there are other cases where it does not really play a role and recon-
structed energy is completely sufficient to work with. For example, in the study
of detector nonuniformity, we are interested only in the relative variation of the
reconstructed energy as a function of position in the AD and not the absolute
energy. For that reason, in the Chapters 4 and 5 we will not apply the nonlin-
earity correction as it is not needed for our purposes. We will thus work with the
reconstructed energy, which is close to the deposited energy for gamma and beta
signal, but much lower for alpha signal.
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4. Signals for Energy Response
Study
There are several signals which can be used for the study of detector nonunifor-
mity and other aspects of the energy response. As mentioned before, SPN nH
and nGd provide valuable gamma energy lines. Other promising options are sev-
eral prominent correlated decays coming from natural radioactivity because the
temporal and spatial correlation of prompt and delayed signal allows for great
suppression of background as with IBDs. There are three decay chains occurring
in nature – Actinium (Ac), Uranium (U) and Thorium (Th) series, however in
each of these series there is only one useful pair of correlated decays:

• Th-series: 212Bi → 212Po → 208Pb correlated beta-alpha decays.

• U-series: 214Bi → 214Po → 210Pb correlated beta-alpha decays.

• Ac-series: 219Rn → 215Po → 211Pb correlated alpha-alpha decays.

There are naturally other decays in these decay chains, but corresponding
half-lives are too long for efficient coincidence measurement by the Daya Bay
experiment. The only suitable correlated pairs (listed above) are centered around
short-lived isotopes of polonium – 212Po, 214Po and 215Po. However, in order to
reduce confusion, we will refer to each of these correlated decays by the series it
belongs to (Ac-series, U-series, Th-series) rather than by the polonium nucleon
number.

Ambient natural radioactivity gamma sources like 40K and 208Tl can be also
used for certain purposes, but they are less useful for nonuniformity study as they
cannot be fully isolated from background.

4.1 Natural Radioactivity Correlated Decays
In the past, correlated decays coming from natural radioactivity were employed
to check the performance of the original nonuniformity correction [60, 61]. In
contrast to that, our aim is to use these correlated decays not only to scrutinize
the original correction, but also to construct a new updated version. We thus
need to study their properties in great detail to properly assess which correlated
decays are suitable for our purposes and how they can be used to extract the
energy scale without introducing any unwanted biases.

In order to study the correlated decays, we must first perform a dedicated
data selection. As the amount of unfiltered data is enormous, certain selection
cuts must be applied in order to extract a sample of the correlated decays.

4.1.1 Loose Selection
For purpose of this study, full data set covering experiment operation between
2011 and 2020 was used with AdSimpleNL reconstruction method. List of the
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Table 4.1: Loose selection cuts for correlated decays.

Coincidence time (1 µs, 2000 µs)
Prompt energy (0.5 MeV, 15 MeV)
Delayed energy (0.5 MeV, 15 MeV)

Flasher cuts (Quadrant)2 + (Qmax
0.45 )2 > 1

Q2-inch > 100 photoelectrons
IWP, OWP muon veto (nHit > 12) 600 µs
AD muon veto (energy > 20 MeV) 1000 µs

Shower muon veto (energy > 2500 MeV) 1 s

Multiplicity cut
No other signal > 0.5 MeV

or muon in (-400 µs, 2400 µs)
around prompt signal

loose (common for all series) selection criteria is summarized in Tab. 4.1, how-
ever, the meaning of individual cuts and the logic behind them also needs to be
discussed.

• Coincidence time (time difference between delayed and prompt
signals): The goal of the selection is to isolate a sample of pairs of corre-
lated decays. Such a pair consists of prompt signal followed by a delayed
one with mean time difference (mean lifetime) of about 0.43 µs for Th-
series [62], 236 µs for U-series [59] and 2569 µs for Ac-series [63]. As our
main focus will be on the U-series, coincidence interval (“window”) was set
to (1 µs, 2000 µs), which needs to cover enough statistics for both desired
signal and background, which would be later subtracted. The coincidence
window is not optimal for Ac-series and Th-series, but they suffer from other
problems which hinder their usefulness for nonuniformity study anyway as
we will see in Sections 4.2 and 4.3. The lower limit of 1 µs is a result of
detector dead time needed to read out the prompt event.

• Prompt & delayed energy: The lower bound on energy for events that
we save in our selection was set to 0.5 MeV as it is close to the detection
threshold (the detection efficiency reaches 100% at approximately 0.7 MeV).
The reconstructed energy of beta and alpha decays we are interested in goes
up to 3.5 MeV1. However, since the background rate is very low for energies
> 3.5 MeV, expanding the selection up to 15 MeV does not increase the
statistics much and also allows for study of IBD nGd.

• Flasher cuts: Apart from physical events associated with ionizing parti-
cles causing production of scintillation light there are also so-called flashers
which are a result of a spontaneous light emission by PMTs caused by sparks
from electrostatic discharges (the high operating voltage makes PMTs prone
to electrostatic breakdown). Appropriate cuts were applied in order to re-
move the flashers following the procedure described in Ref. [29].

1The energy deposited by alpha particles in these decays is higher, but the amount of
scintillation light is reduced due to liquid scintillator nonlinearity as described in Section 3.3.5.
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• Muon veto: Correlated decays that we are interested in come from natural
radioactivity in the ADs. However, there are also correlated signals that
follow after muon passes through the detector system, such as multiple
spallation neutron captures or decays of cosmogenic isotopes. As these
would pose contamination in our sample, their presence is minimized by
excluding the data which follow in a certain interval after muon was detected
– 600 µs if more than 12 PMTs were hit in either section of a water pool,
1000 µs if an event (presumably muon) deposited between 20 MeV and
2500 MeV in the scintillating volume and 1 s if the deposited energy was
over 2500 MeV in which case muon-induced shower likely happened.

• Multiplicity cut: It is required that there is no signal > 0.5 MeV other
than one prompt and one delayed in the coincidence window or 400 µs
before or after it in order to avoid multiple counting of individual signals
and to make the prompt-delayed selection unambiguous.

The loose selection allows us to overview some properties of the correlated
decays and design fine selection cuts tailored for each series separately. However,
most of the principles and procedures we will use are common for all series and
differ only in values of their parameters. We shall therefore make a general
overview first before delving into series-specific details.

4.1.2 Background Subtraction
Even though the loose selection aims to pick out correlated decays, lot of un-
wanted signals pass the selection too, which then needs to be dealt with. The
most prominent group are accidental coincidences of signals from ambient radioac-
tivity. As they are not really correlated and just happen to occur in close temporal
(and spatial) proximity, the coincidence time distribution of these accidentals is
flat. On the contrary, the distribution of coincidence times for correlated de-
cays is given by an exponential function driven by corresponding polonium mean
lifetime. This fact can be utilized for background subtraction.

The method we will use for background subtraction utilizes signal and back-
ground windows, where each window corresponds to a certain coincidence time
interval. The simplest configuration is one signal window covering interval (t1, t2)
and one background window (t3, t4). Assuming that the lengths of the windows
are the same, i.e.

t2 − t1 = t4 − t3, (4.1)

we can get a clean sample of correlated signals without uncorrelated background
by simply subtracting the data in the background window from the data in the
signal window. As the uncorrelated signal has uniform coincidence time distribu-
tion, the numbers of events in the signal and background windows are in principle
the same and thus they get subtracted completely. On the contrary, correlated
signals tend to concentrate at lower coincidence times (presumably in the signal
window) and thus part of them remains after the subtraction. This procedure is
outlined in Fig. 4.1 along with comparison of coincidence time distributions of all
three series.
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Figure 4.1: Coincidence time distribution obtained with loose selection for corre-
lated decays and additional prompt-delayed distance cut < 750 mm and delayed
energy cut (0.7 MeV, 1.4 MeV). Data from all 8 ADs are included. Contribution
from individual series based on fit to the data (black line) are shown – Th-series
(red), U-series (green), Ac-series (blue) along with contribution of uncorrelated
background (brown). One possible configuration of signal and background win-
dows is marked out. Even though it leads to background subtraction, it is not
really optimized for any particular one of the correlated decays – signal window
is too long for Th-series and too short for U-series and Ac-series.

If the lengths of signal and background windows are different, appropriate
weighting factor wbkg for events in background window can be used

wbkg = t2 − t1

t4 − t3
. (4.2)

While the length of the signal window is usually chosen in proportion to the
corresponding half-life, the background window can be longer in order to reduce
statistical fluctuations.

In some cases, we would like to subtract not only uncorrelated background,
but another correlated signal with mean lifetime τC too. For example when
we want to study U-series, we want to subtract Ac-series events along with the
uncorrelated background. Obviously, this cannot be done with only one signal and
one background window – one more needs to be added. Let us first assume that we
are interested in correlated signal with mean lifetime τS which is shorter than the
one we would like to subtract (τS < τC). Such situation can be solved by adding
one more signal window after the background window as illustrated in Fig. 4.2.
This way we can balance the number of correlated background events in the signal
and background windows as the first signal window has the highest rate of these
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events and the second signal window the lowest one while the background window
is somewhere in between. Depending on their lengths, the windows are assigned
weighting factors. The calculation of these factors is described in Appendix A.

Figure 4.2: Illustration of the background subtraction method using two signal
windows and one background window on top of coincidence time distribution
with cuts aimed to highlight U-series and Ac-series. The windows are set in the
way that weighting factors are all equal (= 1) and their configuration allows us to
subtract uncorrelated signal as well one correlated signal (Ac-series in this case).
Most of U-series signal is, on the other hand, concentrated in the first signal
window and only small fraction in the background window.

Analogous procedure can be applied if we want to subtract a correlated signal
with shorter mean lifetime (τS > τC), the only difference is that we need to
use different configuration of coincidence time windows: background – signal –
background. The calculation of corresponding weighting factors is again included
in Appendix A.

4.1.3 Quantities of Interest

Before delving into the individual correlated decays, it will be useful to go through
the most relevant quantities that we will study as some of them are quite sim-
ilar for all of the correlated decays and some, on the contrary, can be used to
differentiate between them and further reduce the background that needs to be
subtracted.

43



Prompt-Delayed Distance

The distance between prompt and delayed signal is a parameter that allows us
to greatly suppress uncorrelated background. This is outlined in Fig. 4.3 show-
ing decomposition of distance distribution obtained with the loose selection into
correlated and uncorrelated signals up to 1500 mm of distance. At such distance,
there are virtually no correlated signals while the number of uncorrelated signals
continues to rise steadily.

Figure 4.3: Decomposition of the distance distribution obtained with the loose
selection into correlated and uncorrelated signals. Coincidence time distribution
of each distance bin was analyzed to obtain the correlated and uncorrelated frac-
tion (similar to what is described in the Appendix B). Data from all ADs were
aggregated for that purpose.

The distance distributions of the three series have similar shapes as shown in
Fig. 4.4. Common value of distance cut was used in the fine selection for all series
– events with distance < 750 mm were selected.

The differences between the series are not necessarily caused by actually dif-
ferent physical distances between prompt and delayed events, but rather by the
position reconstruction precision, which depends on the energy of the event and
the part of AD it took place in.

Prompt and Delayed Energy

Imposing further cuts on prompt and/or delayed energy is another way to re-
duce both uncorrelated and correlated background. Overview of the situation
is depicted in Fig. 4.5, where prompt vs. delayed energy plot is shown with
contributions from individual sources marked.
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Figure 4.4: Comparison of normalized distance distributions of correlated decays
of Th-, U- and Ac-series obtained using fine selection cuts (except distance cut)
described in sections dedicated to the particular series. The distance cut at
750 mm common for all series is indicated by orange dash-dottedline.

Out from the various signals (prompt or delayed) at hand, we are mostly
interested in the alpha signals for two main reasons. First, the alpha particle
deposits energy over a very short track which means there is likely no energy
leakage (part of the energy deposited outside of the sensitive volume). Second,
if there is only one energy line, we get an easily fitted Gaussian peak with the
width corresponding to the energy resolution. This is mostly the case with delayed
signals of all series, while the prompt signals are caused by beta decays for U-
series and Th-series and alpha for Ac-series. However, all of the prompt signals
have a significant admixture of gammas.

The delayed signal of Th-series is quite separated from others at around
1.2 MeV, but U-series and Ac-series delayed energies are very similar around
0.9 MeV. Thus, special care must be taken when disentangling these two. One
can use the fact that Ac-series prompt signal does not exceed 1.3 MeV while
U-series prompt peak-like structure is positioned around 2.2 MeV.

Pseudorate

While it is possible to calculate the actual rate of signals caused by a particular
series, it is quite complicated procedure, which requires a lot of variables to be
taken into account (various efficiencies related to the cuts etc.). Moreover, for
most purposes we do not need to know the absolute rate, but just whether it is
stable or if it changes over time. For that reason, the concept of a pseudorate
was introduced.
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Figure 4.5: The plot of prompt versus delayed energy for pairs of correlated decays
obtained with loose selection, signal window (1 µs, 200 µs), background window
(201 µ, 400 µs) and distance cut 750 mm for data from all 8 ADs. Contributions
from individual series are marked as well as from IBD nH.

Even though the point of pseudorate is to provide a reasonably well obtainable
variable directly proportional do the actual rate, the procedure of its calculation
is still quite complicated and can be found in Appendix B. The result is indeed
a variable which copies the changes of the actual rate over time, which provides
us with valuable insights to the properties of the studied correlated decays.

Spatial Distribution

Spatial distribution is an important characteristic of each type of signal. When
studying the detector energy response, we need to know whether our observation
is related to the whole volume of AD or just part of it. Similarly, we can only
study nonuniformity using a particular signal in the part of the AD where that
signal is present.

Spatial distribution is usually obtained by dividing the AD to a number of
voxels and counting events that belong to the desired series using fine cuts and
background subtraction as described above. The obtained values can be used to
create a spatial distribution map and assess whether the statistics in each voxel
is sufficient for further analysis. The values in the voxels can also be normalized
using pseudorate as described in the previous subsection. It is especially useful if
we want to study the time stability of spatial distribution.
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4.1.4 Fine Selection Cuts

In the following sections, we will look into the individual correlated decays, their
features and potential usefulness for nonuniformity and other studies. For that
purpose, we will use fine selection cuts tailored for each series individually. These
cuts include signal and background windows, distance, prompt and delayed energy
cuts. However, it should be noted that not all cuts will be used for all purposes.
For example, signal and background windows are irrelevant when studying coin-
cidence time distribution. Calculation of pseudorate uses only one coincidence
time window which may or may not coincide with the signal window. Prompt
energy cut is not applied when prompt energy spectrum itself is studied and the
same applies for delayed energy. On the other hand, study of spatial distribution
usually utilizes all the fine selection cuts available.

4.2 Th-Series

When talking about correlated decays from Th-series, we have in mind correlated
beta–alpha decays 212Bi → 212Po → 208Pb. The correlation time is given by 212Po
mean lifetime 0.431 µs.

Table 4.2: Fine selection cuts and coefficients for Th-series.

1st signal window (1 µs, 3 µs)
Coefficient 1

Background window (3 µs, 10 µs)
Coefficient (wB) 0.5

2nd signal window (10 µs, 15 µs)
Coefficient (wS) 0.3

Maximal distance 750 mm
Prompt energy (0.5 MeV, 2.2 MeV)
Delayed energy (0.95 MeV, 1.4 MeV)

4.2.1 Signal and Background Windows

Even if we start our signal window at the lowest available limit of 1 µs, we
still loose over 90% of statistics due to short 212Po mean lifetime. On the other
hand, we can make the signal window also very short and thus reduce both
correlated and uncorraleted backgrounds. In the fine selection, we use the first
signal window (1 µs, 3 µs), which covers 99.9% of Th-series signals that survive
over 1 µs, the background window of (3 µs, 10 µs) and the second signal window
(10 µs, 15 µs), which allows for complete removal of U-series contamination and
lowering the Ac-series contamination to 3 × 10−7% of the original level. Full list
of fine selection parameters is in Tab. 4.2 including the weighting factors for the
signal and background windows. The procedure of their calculation is described
in Appendix A.
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4.2.2 Prompt and Delayed Energy
The prompt signal is caused by beta decay 212Bi →212 Po with Q-value 2251.5 keV,
which occurs in 64% of all 212Bi decays [64], the remaining 36% are alpha decays
212Bi →208 Tl not interesting for us. Out from the beta decays, 86% lead directly
to the ground state of 212Po, the rest lead to excited states followed by gamma(s)
emission. The prompt energy spectrum obtained with cuts listed in Tab. 4.2
is shown in the left panel Fig. 4.6. It was not used for energy scale study and
therefore no appropriate fitting function was devised.

Figure 4.6: Th-series prompt (left) and delayed (right) energy spectra obtained
by EH1-AD1 using cuts listed in Tab. 4.2. The prompt spectrum is only min-
imally affected by energy leakage as majority of the 212Bi beta decays are not
accompanied by gamma emission and even if gamma is emitted, it is unlikely to
deposit energy outside of the sensitive volume as the Th-series is present only in
GdLS. The delayed energy spectrum is fitted by a simple Gaussian function (red
line).

The delayed signal of Th-series is caused by 212Po alpha decay with Q-value
8954.1 keV [62], but the reconstructed energy is only about 1.2 MeV due to the
liquid scintillator quenching. As there is only one energy line with no accom-
panying gammas, the signal is very well described by a Gaussian function with
width given by energy resolution, as it is illustrated in the right panel of Fig. 4.6.
This makes it suitable for energy response studies.

4.2.3 Pseudorate
Pseudorate of Th-series was studied using fine cuts listed in Tab. 4.2, except for
the fact that only one coincidence time window is used in pseudorate determina-
tion. For Th-series, it is identical to the first signal window (1 µs, 3 µs). As it is
shown in Fig. 4.7, the pseudorate is consistent among ADs in the same hall, but
differs between the halls due to the multiplicity cut and muon veto efficiencies.
The actual rate is expected to be the same for all ADs as they share the same
GdLS mixture.

The major finding is that the pseudorate significantly decreased to about a
third of the initial value over the 9 years of the Daya Bay operation. Explanation
of this phenomenon can be found in the upper part of the Th decay chain assuming
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Figure 4.7: Th-series pseudorate of all ADs fitted by the function described by
Eq. 4.3. During nine years of Daya Bay operation, the pseudorate decreased to
about a third of the initial value.

that it is not necessarily in equilibrium. If we take into the account the fact that
we study pseudorate across the span of months and years, there are only 3 decays
which cannot be treated as instant:

1. 232Th decay with mean lifetime 20 × 109 years [65], which is long enough
for us to consider its activity as constant over the Daya Bay operation.

2. 228Ra decay with mean lifetime 8.3 years [65].

3. 228Th decay with mean lifetime 2.76 years [66]. This is the last “long-lived”
isotope in the Th decay chain before the 212Bi → 212Po → 208Pb correlated
decays, its activity thus should correspond to the pseudorate we observed.

If we consider that the initial activities of these isotopes as free parameters, we
get following formula for 228Th activity A3(t) (which should be equal to the 212Po
activity and directly proportional to the pseudorate) as a function of time t that
passed since the beginning of the Daya Bay data taking

A3(t) = A1,0 + (A3,0 − A1,0) e
− t

τ3 + τ2

τ2 − τ3
(A2,0 − A1,0)(e− t

τ2 − e
− t

τ3 ), (4.3)

where A1,0, A2,0, A3,0 stand for initial (t = 0) activities of 232Th, 228Ra and 228Th
respectively and τ1, τ2 and τ3 are corresponding mean lifetimes. We can use
Eq. 4.3 to fit the observed pseudorate and we get a good match to the data when
the 232Th and 228Ra initial activities are set to ∼ 36% and ∼ 23% of the initial
228Th activity respectively. The reason why 228Th is initially disproportionately
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prevalent compared to the other isotopes is likely linked to the the processes of
Gd production and Gd doping preparation as Th-series is present only in GdLS
(see Section 4.2.4 for more details).

The fact that Th-series pseudorate changes so much over time does not dis-
qualify it from use for energy response studies, however one needs to bear in mind
that the beginning of Daya Bay operation will be overrepresented in the whole
data set if no correction is made.

4.2.4 Spatial Distribution
The spatial distribution of Th-series was obtained using fine selection cuts listed
in Tab. 4.2 and then normalized to the observed pseudorate. Two sets of spatial
distribution maps were created – one shows the AD in r2-z coordinates and
the other one in x-y coordinates as illustrated in Fig. 4.8. It was found out
that Th-series contamination is present only in GdLS and is likely linked to the
Gd doping as the Gd compound used for that purpose contains traces of other
elements, which end up in the scintillator as well. This means that Th-series has
only limited use for energy response study despite the fact that its short mean
lifetime allows for very efficient background subtraction and the delayed energy
peak can be easily fitted.

Figure 4.8: Examples of Th-series spatial distribution in r2-z (left) and x-y
(right) coordinates for EH1-AD1. Th-series contamination is present only in
GdLS (|z| < 1.5 m, r2 = x2 + y2 < 2.25 m2 – the boundary of GdLS is marked
by red dashed line), however some events are reconstructed just outside due to
position reconstruction resolution. All ADs follow the same pattern.

4.3 Ac-Series
By Ac-series we mean correlated alpha–alpha decays 219Rn → 215Po → 211Pb
with coincidence time given by 215Po mean lifetime 2569 µs.

4.3.1 Signal and Background Windows
As mentioned before, coincidence time window (1 µs, 2000 µs) is not optimal for
Ac-series selection as it is even shorter than its mean lifetime. However, it can
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Table 4.3: Fine selection cuts and coefficients for Ac-series.

1st background window (5 µs, 165.2 µs)
Coefficient (wB1) 1
Signal window (165.2 µs, 1162.8 µs)

Coefficient 1
2nd background window (1162.8 µs, 2000 µs)

Coefficient (wB2) 1
Maximal distance 750 mm

Prompt energy (0.65 MeV, 1.1 MeV)
Delayed energy (0.7 MeV, 1.05 MeV)

still be used to a certain extent with appropriately chosen signal and background
windows.

In order to avoid Th-series contamination, we do not use any pairs with coin-
cidence time < 5 µs (only 10−3% of Th-series decays pass such selection). As both
prompt and delayed energy spectra of Ac-series are overlapping with U-series, we
cannot use prompt or delayed energy cuts to disentangle Ac-series from U-series
(though it is possible the other way round), hence we need to set the signal and
background windows to do the job. The procedure described in Appendix A
was used to obtain the boundaries of signal and background windows and cor-
responding weighting factors, which are listed in Tab. 4.3 along with other fine
selection parameters. Unfortunately, while removing both Th-series and U-series
contamination, the coincidence time selection preserves only 6.4 % of Ac-series
correlated decays.

4.3.2 Prompt and Delayed Energy
The prompt signal is caused by 219Rn alpha decay with Q-value 6946.1 keV [67].
Most of the decays (79.4%) go directly to the ground state with no accompanying
gamma emission. The peak mean is then only ∼0.75 MeV due to liquid scintillator
quenching. Rest of the decays lead to the excited states of 215Po. In 12.9% of
cases 271.2 keV of gamma energy is released and in 7.5% of cases it is 401.8 keV.
There are many more energy lines, but their contributions are negligible.

Since signal caused by a gamma is much less quenched by liquid scintillator
than the one caused by an alpha particle, we get a combination of three peaks in
the reconstructed spectrum, however the two smaller ones are not distinguishable
one from the other as shown in the left panel of Fig. 4.9. Though not optimal,
position of the main peak can be in principle used for an energy response study.
For that purpose, the prompt energy spectrum can be fitted by double Gaussian
function – first Gaussian function for the main peak and the second one for the two
minor peaks together. As they are mostly merged, the second Gaussian function
covers them reasonably well. If we tried to fit them individually (resulting in
triple Gaussian function for the prompt energy spectrum), we would have too
many free parameters which could make the fitting unstable. More refined fitting
function could be devised, but double Gaussian function was considered sufficient
given the limited use of this signal for further studies.

The delayed signal is caused by 215Po alpha decay with Q-value 7526.3 keV [63]
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Figure 4.9: Ac-series prompt (left) and delayed (right) energy spectra obtained
by EH1-AD1 using cuts listed in Tab. 4.3. The prompt consists of several peaks
– the main peak at ∼0.75 MeV corresponds to pure alpha decay, two minor peaks
constituting a bump at ∼1.0 MeV are caused by less quenched gammas together
with the alpha decay. Double Gaussian function was used to fit the spectrum
with index 1 stands for the main peak and index 2 for the minor peaks. The
delayed spectrum is fitted by a simple Gaussian function.

leading to the reconstructed energy ∼ 0.9 MeV due to the liquid scintillator
quenching. Decays to excited states of 211Pb are possible, but we can neglect
them due to their low probability (< 0.1% in total). As a result, the delayed
energy spectrum can be very well described by a Gaussian function as shown in
the right panel of Fig. 4.9 and is thus in principle suitable for energy response
studies.

4.3.3 Pseudorate

Ac-series pseudorate was obtained using cuts listed in Tab. 4.3 and one coinci-
dence time window set to (5 µs, 2000 µs). The result is shown in Fig. 4.10. As
for Th-series, the pseudorate is consistent between ADs that share the same hall
and we can again observe its decrease, but this time not so significant (about a
quarter in 9 years).

This can be once more explained by the upper part of Ac decay chain not
being in equilibrium. The last “long-lived” isotope before the 219Rn is 227Ac with
mean lifetime 31.41 years [68], which is preceded by 231Pa with 4.726 · 104 years
mean lifetime [68]. If we assume that activity of 231Pa is constant A1,0 and in
principle different from 227Ac initial activity A2,0, we get following expression for
227Ac activity as function of time since the beginning of data taking A2(t)

A2(t) = A1,0 + (A2,0 − A1,0)e− t
τ2 , (4.4)

where τ2 stands for 227Ac mean lifetime. The observed pseudorate was fitted
by this function with A1,0 and A2,0 as free parameters and it matched the data
reasonably well with 231Pa initial activity being on average 7% of the 227Ac initial
activity.
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Figure 4.10: Ac-series pseudorate of all ADs fitted by function described by
Eq. 4.4. During nine years of Daya Bay operation, the pseudorate decreased
by about one quarter of the initial value.

4.3.4 Spatial Distribution
Fine selection cuts listed in Tab. 4.3 were used to obtain spatial distribution of
Ac-series contamination and then it was normalized to the observed pseudorate.
Both r2-z and x-y maps were created and an example is shown in Fig. 4.11.
Simlarly to Th-series, Ac-series contamination is also present only in GdLS and
likely linked to the Gd doping. This along with the fact that Ac-series coincidence
time is too long for efficient selection makes Ac-series only marginally useful for
energy response studies.

4.4 U-Series
By U-series we mean correlated beta-alpha decays 214Bi → 214Po → 210Pb. The
correlation time is given by 214Po mean lifetime 236.0 µs and it is coincidentally
similar to the mean neutron capture time in LS of about 200 µs. There is another
rare but observable correlated decay in the U decay chain – 234Pa → 234mU →
234U. As it is not really useful for nonuniformity study, we will not discuss it this
section, instead it is described in Appendix C.

4.4.1 Signal and Background Windows
Similarly to Ac-series fine selection, we can avoid Th-series contamination by
using only data with coincidence time > 5 µs. However, as delayed energy of U-
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Figure 4.11: Example of Ac-series spatial distribution in r2-z (left) and x-y (right)
coordinates for EH1-AD1. Ac-series contamination is present only in GdLS (|z| <
1.5 m, r2 = x2 + y2 < 2.25 m2 – the boundary of GdLS is marked by red dashed
line), even though some events are reconstructed just outside due to position
reconstruction resolution. All ADs follow the same pattern.

series is almost the same as the one of Ac-series and prompt energy also overlaps,
we need to take special care to disentangle these two sets of correlated decays.
There are two basic approaches at hand with parameters of both of them listed
in Tab. 4.4:

• (Fine selection U1) Using the fact that Ac-series prompt energy goes up to
∼1.25 MeV, while the prompt energy of U-series goes up to 3.5 MeV, we can
set the lower bound of prompt energy cut to 1.5 MeV to completely eliminate
Ac-series contamination. Signal window (5 µs, 705 µs) and background
window (705 µs, 2000 µs) was used in this approach, which yields 79.2% of
U-series correlated decays (inefficiency of prompt energy cut not included).
However, we cannot study U-series prompt energy below 1.5 MeV this way.

• (Fine selection U2) We can use two signal windows (5 µs, 455.6 µs) and
(1453.1 µs, 2000 µs) and one background window (455.6 µs, 1453.1 µs) to
eliminate Ac-series contamination, which provides us with 69.3% of U-series
correlated decays. This way, we can study even the lower part of U-series
prompt energy spectrum (and other properties of the events that have lower
prompt energy), but the cost is smaller efficiency and the need to subtract
more background which leads to an increase of the statistical uncertainties.

4.4.2 Prompt and Delayed Energy
The prompt signal is caused by 214Bi beta decay with Q-value 3269 keV [69]. The
beta decay goes directly to the ground state of 214Po only in 19% of cases, oth-
erwise, deexcitation by a gamma cascade occurs. As a result, the prompt energy
spectrum has a peak-like structure around 2.3 MeV if there is no energy leakage.
However, as it stems from complicated combination of beta and gamma(s) sig-
nals, potential fitting would be difficult. An example of such spectrum is shown
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Table 4.4: Fine selection cuts and coefficients for U-series.

Selection U1 Selection U2
1st Signal window (5 µs, 705 µs) (5 µs, 455.6 µs)

Coefficient 1 1
Background window (705 µs, 2000 µs) (455.6 µs, 1453.1 µs)

Coefficient wB 0.54 1
2nd Signal window – (1453.1 µs, 2000 µs)

Coefficient wS – 1
Maximal distance 750 mm 750 mm

Prompt energy (1.5 MeV, 3.2 MeV) (0.5 MeV, 3.2 MeV)
Delayed energy (0.7 MeV, 1.2 MeV) (0.7 MeV, 1.2 MeV)

Figure 4.12: U-series prompt (left) and delayed (right) energy spectra obtained
by EH1-AD1 using U2 cuts listed in Tab. 4.4 and additional spatial cut to GdLS
so that the spectra would be minimally affected by energy leakage. While there
is peak-like structure around 2.3 MeV in the prompt spectrum, it is caused by a
complicated combination of beta and gamma signals and thus cannot be easily
fitted. Large statistical errors between 0.5 MeV and 1.0 MeV there are caused by
subtraction of Ac-series spectrum. On the contrary, the delayed spectrum in the
GdLS shown in the right panel can be fitted by a simple Gaussian function (red
line).

in the left panel of Fig. 4.12, where data only from GdLS were used to avoid
distortion caused by energy leakage.

The delayed signal of U-series is caused by 214Po alpha decay with Q-value
7833.5 keV [59], but the reconstructed energy is only about 0.9 MeV due to the
liquid scintillator quenching. The decay goes to the ground state of 210Pb in
99.99% of cases. The decay to the excited state with 0.01% probability which
is deexcited by 799.7 keV gamma can be thus for most purposes neglected. As
a result, we would expect to observe a simple Gaussian peak. That is indeed
the case when we restrict the study to only GdLS as shown in the right panel of
Fig. 4.12, which makes the situation similar to Th-series and Ac-series where we
were naturally restricted to GdLS by their occurrence.

The problems arise once we move closer to the AD edge. Even though alpha
particles cannot have energy leakage the same way as gamma particles do (only
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decays occurring up to tens of µm from the surface of the acrylic vessel can have
parts of the energy deposited in both the sensitive and the insensitive volumes),
there are events with significantly lower delayed energy happening at certain
places around the ADs’ edges. Prompt energy is also affected, however, it is
harder to study the impact there as it is also suffers from the regular gamma
energy leakage. Since dealing with these so-called “low energy events” is of great
importance for energy fitting in further studies, they will be discussed separately
in Section 4.4.4.

4.4.3 Pseudorate and Spatial Distribution
For U-series, pseudorate and spatial distribution are closely tied together with
several phenomena affecting both. For that reason, we shall first overview the
general situation and then look into these phenomena in detail.

In order to study U-series pseudorate, U1 selection cuts listed in Tab. 4.4 were
used with only one coincidence time window set to (5 µs, 500 µs). The result
is shown in Fig. 4.13. The basic trend of the pseudorate is constant which is
to be expected as the last long-lived isotope in the decay chain before 214Bi is
226Ra with mean lifetime 2308 years [70] and thus no fundamental change of 214Bi
activity should occur over the span of 9 years. There are, however, other features
which make the U-series quite different from Th-series and Ac-series.

• In contrast to Th-series and Ac-series the pseudorate of U-series measured
by ADs sharing the same EH is not always consistent. While it is quite
similar in EH1, there are noticeable differences in EH3 and EH2-AD2 pseu-
dorate is over 30% higher than that of EH2-AD1 (and slightly decreasing
over time).

• There are temporary spikes in pseudorate, most notably in October 2012
in EH1 after the shutdown during which EH2-AD2 and EH3-AD4 were
installed and in August 2017 in EH3. There are more for which to be
visible better temporal resolution is needed.

These issues will be discussed in more detail later, however we can still get
better understanding of what is going on by simply looking at the pseudorate
in GdLS and LS separately as shown in Fig. 4.14. The pseudorate baseline is
more stable in GdLS, but the spikes in EH1 are actually more pronounced there
compared to LS. Moreover, EH2-AD2 pseudorate is consistent with that of EH2-
AD1 in GdLS, but almost two times higher in LS, meaning that there is additional
U-series contamination there when compared to other ADs. Besides, EH2-AD2
pseudorate clearly decreases over time in LS as well as pseudorate of EH3 ADs.

The spatial distribution was studied using selection U1 as listed in Tab. 4.4 and
normalized to pseudorate. Unlike Th-series and Ac-series, there are considerable
differences between the ADs. For that reason, spatial distributions are shown in
Fig. 4.15 and Fig. 4.16 for each AD individually. The most notable difference to
Th-series and Ac-series is that U-series (meaning 214Bi and further) is present not
only in GdLS, but also in LS, albeit not uniformly. This leads us to the question
whether there is 226Ra (last long-lived isotope before 214Bi) contamination in LS
or there is another reason for the 214Bi presence in LS.
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Figure 4.13: U-series pseudorate of all ADs. Whole sensitive volume of each
AD was used for the measurement. The pseudorate baseline is rather stable for
most ADs, except for occasional spikes. EH2-AD2 which has significantly higher
pseudorate than EH2-AD1 and has slightly decreasing trend (observed to a lesser
extent also in EH3).

Figure 4.14: Comparison of U-series pseudorate in GdLS (left) and LS (right) of
all ADs. Apparently, the excessive EH2-AD2 pseudorate is caused by additional
contamination in the LS volume as the EH2-AD2 pseudorate is consistent with
EH2-AD1 in GdLS, but much higher in LS. Another thing worth noting is that
the pseudorate spikes in EH1 are much more pronounced in GdLS than in LS.

In each decay chain, there is one Rn isotope. As a noble gas, Rn can travel
certain distance before decaying, however, 220Rn of Th-series has mean lifetime
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Figure 4.15: U-series spatial distribution in r2-z coordinates of all ADs. The z-
axis scale is the same for ADs sharing the same EH. Apparently, U-series events
are present both in GdLS (marked by red dashed line) and LS volumes, but the
exact distribution pattern may differ between ADs – espeacially EH2-AD2 stands
out.
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Figure 4.16: U-series spatial distribution in x-y coordinates of all ADs with GdLS
volume marked by dashed red line. The z-axis scale is the same for ADs sharing
the same EH. The most notable features are the extra contamination in EH2-AD2
and hotspot around y = −1.5 m and x = 0.6 m which coincides with ACU-B
position and is most notable in EH1-AD1, EH1-AD2 and EH2-AD1.
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80 s [71] and 219Rn of Ac-series only 5.7 s [67] and thus can travel much smaller
distance than 222Rn of U-series with mean lifetime 5.5 days [72]. It is thus con-
ceivable that U-series contamination in the form of 226Ra is present only in GdLS
and it is 222Rn that permeates the LS volume. There are several indications for
that:

• We have already observed that 228Ra from Th decay chain is present only
in GdLS. It would be difficult to explain how 226Ra, different isotope of the
same element, ended up in both GdLS and LS.

• The spatial distribution of the rare decay 234Pa → 234mU → 234U in the up-
per part of the U decay chain before 222Rn was studied. Even though there is
very limited statistics regarding this decay, there is a strong indication that
it is present only in GdLS. The propertion of the 234Pa → 234mU → 234U
correlated decays are described in detail in Appendix C.

If 222Rn is indeed responsible for U-series contamination in the LS volume, a
question of where it comes from arises, which – as we will see – is to a certain ex-
tent connected to the phenomenon of pseudorate spikes and the hotspot observed
by most ADs around y = −1.5 m, x = 0.6 m and z = 2 m in spatial distribution
maps shown in Fig. 4.16.

Pseudorate Spikes

The pseudorate spikes cannot be explained by initial out-of-equilibrium contam-
ination by the isotopes from the U decay chain as it was possible with Th-series
and Ac-series pseudorate decreases. The contamination causing the spikes thus
has to come from outside, most likely in the form of 222Rn.

There are three calibration pipes leading from the LS and GdLS sensitive
volumes to the ACUs as shown in Fig. 4.17, the calibration pipe in the middle
under ACU-A also connects the sensitive volumes to the overflow tanks on top
of the stainless steel vessel and there is strong evidence suggesting that that is
where the extra contamination causing the spikes of pseudorate comes from:

• By dividing the nine years of operation into 500 periods lasting about
6.5 days each, we get time resolution good enough to see how the pseu-
dorate spikes unfold within the AD volume. As illustrated in Fig. 4.18,
we can see that the pseudorate increase starts in the upper central part of
GdLS below ACU-A, spreads to the rest of GdLS and then starts to disap-
pear as the 222Rn that was sucked into GdLS from the overflow tanks dies
out with mean lifetime of 5.5 days.

• Thanks to many sensors, we can check what the AD temperature and liquid
scintillator level were at any time. When compared to the measured pseu-
dorate, clear correlation appeared – whenever there was significant drop in
temperature, the level of liquid scintillator dropped too and spike of pseu-
dorate appeared as illustrated in Fig. 4.19 . It did not matter whether the
temperature first rose above the baseline and then dropped back or first
dropped and then rose back to the baseline. The important part is that
once the GdLS level drops, scintillator from the overflow tank is sucked
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Figure 4.17: Orthogonal slice through the top of an AD showing overflow tanks
and calibration tubes used for ACUs to deploy calibration sources to various parts
of the ADs – ACU-C on the left-hand side deploys the sources to the LS (dark
red), ACU-A in the middle along the central axis of the GdLS (green) and ACU-B
on the right-hand along the GdLS boundary. The calibration tube in the middle
also connects the LS and GdLS volumes to the overflow tanks on the top of the
stainless steel vessel. Figure taken from Ref. [28].

to the main volume. Based on the size of overflow tank, the change of
scintillator level and the pseudorate increase, we can asses that the 222Rn
contamination in the GdLS overflow tank can be in the order of 1000×
higher than in GdLS main volume.

With the origin of the pseudorate spikes understood, we can ask whether this
could affect further analyses using U-series. Fortunately, the spikes are quite
short-lived so that the statistics they add is on percent level of the overall statis-
tics at maximum. Moreover, once the 222Rn enters the main volume, its and
subsequent decays are in principle no different from the decays of intrinsically
present 222Rn. The only part of this phenomenon which could have some effect
on the nonuniformity study and which we should thus keep in mind are the de-
cays inside the ACU-A calibration pipe, where the light collection efficiency could
be slightly different from its surroundings (like LS volume it goes through) and
which at the same time can get slightly overrepresented due to the high rate of
decays during the pseudorate spikes.

Hotspot under ACU-B

The hotspot located around the position y = −1.5 m and x = 0.6 m, which
coincides with ACU-B position, is most prominent in EH1-AD1, EH1-AD2 and
EH2-AD1 as shown in Fig. 4.16. It is observable, but not very distinct in EH3-
AD1 and EH3-AD4 and barely observable in EH3-AD2 and EH3-AD3. Regarding
EH2-AD2, as there is extra contamination, it is difficult to assess whether higher
rate under ACU-B has the same origin as in other ADs or not. However, there is
indication that it has the same origin – when we compare the pseudorate within
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Figure 4.18: The spatial distributions in r2-z coordinates covering the beginning
and peaking of U-series pseudorate spike in EH1-AD1 at the end of June 2014
shown in detail in Fig. 4.19. Each plot covers about 6.5 days. The first one
shows the regular situation before the spike begins. In the second plot, we can
see beginning of the pseudorate increase in the upper central part of GdLS under
ACU-A, which then spreads to the rest of GdLS in the third plot and starts to
die out in last plot as the 222Rn contamination has mean lifetime of 5.5 days.

the hotspot (defined as x ∈ (0.5 m, 0.75 m) and y ∈ (-1.75 m, -1.25 m), z cut
was not used) between ADs in EH2 as shown in Fig. 4.20, we can see that both
ADs follow similar pattern with correlation coefficient 0.76. In EH1, the hotspot
pseudorate of both ADs is even more consistent with correlation coefficient 0.81.
Regarding EH3, the hotspot there is less pronounced, but for EH3-AD1 compared
with EH3-AD2, EH3-AD3 and EH3-AD4 we get correlation coefficients 0.46, 0.41
and 0.65 respectively.

The origin of the hotspot is likely similar to the pseudorate spikes – 222Rn
contamination, this time entering the main active volume through the ACU-
B calibration pipe, but these two phenomena are not correlated in time. The
hotspot presence has more continuous character, even though there is quite a big
variation in pseudorate as illustrated Fig. 4.20. Whatever the original source of
222Rn is, it is likely common on the level of EH and probably distributed by the
cover gas system (more about Daya Bay gas system in Ref. [73]).

Regarding the impact on further analyses, the same remarks as for the pseu-
dorate spikes apply – caution must by taken when this particular part of AD is
used for further (nonuniformity) studies as the decays inside the calibration pipe
could be overrepresented compared to its immediate surroundings and at the
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Figure 4.19: Illustration of the connection between EH1-AD1 U-series pseudorate,
AD temperature and scintillator level. As the temperature dropped by 0.6◦C, the
scintillator level dropped by about 8 mm, which led to about 10 l of scintillator
being sucked from to overflow tank to the GdLS volume and 40% increase of
pseudorate. That corresponds to the 222Rn contamination in overflow tank being
of the order of 1000× higher than in GdLS main volume.

Figure 4.20: Comparison of the hotspot (defined as x ∈ (0.5 m, 0.75 m) and
y ∈ (-1.75 m, -1.25 m)) pseudorate of EH2-AD1 and EH2-AD2. As we can see,
the hotspot pseudorate varies quite a lot, but both ADs follow similar pattern.

same time have slightly different light collection efficiency. As we will see, it will
be relevant especially for azimuthal nonuniformity study and the new correction
design.

Higher Rate in EH2-AD2

As clearly shown in Figs. 4.15 and 4.16, EH2-AD2 has significantly higher (about
70%) U-series contamination in the LS volume when compared to other ADs.
The additional contamination is not distributed uniformly, but tends to create
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one or more hotspots which move around the LS as illustrated in Fig. 4.21. The
hotspot(s) then tend to stay around the top or the bottom of the AD and more
rarely around the middle and their movement along the z-axis can be quantified by
mean z-position of the observed U-series signal in a given period. This is shown
in Fig. 4.22 with the full 9 years of data divided into 500 periods of 6.5 days
each. Interestingly enough, when we plot the mean z-position as function of
time of EH2-AD1 over the plot of EH2-AD2, we get almost the same pattern,
just with smaller amplitude. The correlation coefficient between these two is
0.96. Whatever the source of the U-series extra contamination in EH2-AD2 is,
the movement of the contamination is clearly correlated between the ADs in EH2
and the same actually applies for EH1 with correlation coefficient 0.89 and similar
situation is also in EH3. Correlation coefficient between EHs is much lower – ∼ 0.3
between EH1 and EH2, ∼ 0.1 between EH1 and EH3 and ∼ 0.2 between EH2
and EH3. This means that the correlation is not caused by processes that are
common for all three halls like stirring of liquid scintillator caused by deployment
of the calibration sources from the ACUs on regular weekly basis. Regarding x
and y coordinates, no significant correlation between ADs was observed.

Figure 4.21: Four examples of EH2-AD2 U-series spatial distributions in r2-z
coordinates, where each histogram corresponds to about 6.5 days of data taking.
In the top left and bottom plots, we can see the hotspot of higher pseudorate
present in various parts of the AD. In the top right plot, there is slightly higher
pseudorate in the whole LS (outside of the red dashed line) instead of localized
hotspot.

The cause of the change of the U-series mean z-postion remains unclear as
no connection to the AD temperature, scintillator level or humidity of the cover
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Figure 4.22: Comparison of the evolution of U-series signal mean z-position in
EH2-AD1 and EH2-AD2. The nonzero value of the z-mean is caused by uneven
U-series contamination distribution in AD. For EH2-AD2, LS is the main con-
tributor to the high z-mean amplitude (in GdLS, mean z-position stays within
0.1 m from zero for both ADs). Even though U-series contamination in LS is
significantly higher in EH2-AD2 than EH2-AD1, similar behavior of the z-mean
suggest that U-series contamination in EH2-AD2 is not fundamentally different
from other ADs in any other aspect than its rate in LS.

gas was found. The U-series extra contamination in EH2-AD2 raises a question
of whether EH2-AD2 U-series can be used consistently with other ADs. How-
ever, the similarity in mean z-position behavior suggests that EH2-AD2 is not
fundamentally different from other ADs in any aspect except the rate in LS.

4.4.4 Low Energy Events
Despite the fact that the U-series delayed energy spectrum has simple Gaussian
shape in GdLS as expected and already shown in Fig. 4.12, when we look at
the top and bottom of LS, events with lower energy also pass our selection as
illustrated in Fig. 4.23. As these low energy events pose a notable hindrance in
the fitting of the regular peak, a detailed look into their properties is needed.

As mentioned above, alpha particles deposit energy over a very short distance
in liquid scintillator (tens of µm) and thus they cannot be affected by energy leak-
age in the same way as gammas, which can scatter outside of the sensitive volume
depositing only part of their energy inside. We would thus expect a minimum of
U-series events with Edelayed < 0.65 MeV as it is indeed the case in GdLS, where
the delayed peak has a simple Gaussian shape as shown in Fig. 4.12. Since our
ultimate goal is to use U-series delayed signal to study the ADs’ nonuniformity
and propose new correction, we need to be able to extract the peak mean from
the delayed energy spectrum at any position of the detector. A simple Gaussian
peak can be easily fitted, but if it sits upon a pedestal consisting of low energy
events, the fitting might be biased. Therefore, it is necessary to find a way to
eliminate the low energy events or at least suppress them. If that is not possible
then the fitting function must be altered to accommodate for them.

Regarding the prompt energy spectrum, it is much more difficult to assess the
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Figure 4.23: Illustration of the phenomenon of low energy events in the U-series
delayed spectrum obtained by EH3-AD2 with U1 fine selection cuts and additional
spatial cut |z| >1.75 m. The Gaussian shape of the regular Gaussian peak is
highlighted by the red line.

impact of the low energy events for two reasons. First, there is no lower bound
in the spectrum below which we could clearly identify the low energy events
as with the delayed spectrum. Second, due to the gamma contribution to the
prompt spectrum, it is affected by regular energy leakage around the edges of the
sensitive volume, which obscures whatever effect the cause of low energy events
has.

In order to study spatial distribution, pseudorate and coincidence time of the
low energy events, delayed energy cut Edelayed ∈ (0.5 MeV, 0.65 MeV) was used
instead the one listed in U1 and U2 selections parameters. Modified prompt
energy cut Eprompt ∈ (0.5 MeV, 1.5 MeV) can be also used to highlight the low
energy events, but its effect varies quite a bit depending on the position inside
the AD.

Generally speaking, the number of the low energy events compared to the reg-
ular events varies widely between ADs, but they tend to appear at the same spots
for all ADs. An example of the spatial distribution obtained with both modified
prompt and delayed energy cuts is shown in Fig. 4.24. EH3-AD2 was chosen as
an example as it suffers from the low energy events relatively heavily. Large part
of such events there (and in other ADs too) are concentrated around the upper
outer edge of LS (labeled as “Spot A”). Then there are two less prominent spots
– Spot B in the bottom outer part of LS and Spot C in the upper central part
of the AD. Each of these spots have a slightly different properties and thus they
need to be studied individually.
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Figure 4.24: Spatial distribution of low energy events in EH3-AD2 obtained
using U2 selection with modified cuts Eprompt ∈ (0.5 MeV, 1.5 MeV) and
Edelayed ∈ (0.5 MeV, 0.65 MeV). While most of the low energy events are observed
around the outer top part of the AD, they are not restricted to a particular az-
imuth thus ruling out ACUs as a direct source. Even though the (pseudo)rate
of low energy events differs quite a lot between ADs, the spatial distribution is
quite consistent.

Spot A

For the study of the low energy events in Spot A, spatial cuts r2 ∈ (3 m2, 4 m2)
and z ∈ (1.7 m, 2 m) were used. Unlike the other spots, there is sufficient
statistics for us to make a check of how the pseudorate of these low energy events
evolved over time. The result is shown in Fig. 4.25. The low energy events are not
restricted to a certain time interval (like a U-series pseudorate spikes), but occur
during the whole operation more or less uniformly. It is thus clear that we cannot
get a cleaner sample of these low energy events by restricting the selection to a
certain period of time. It is also apparent that the pseudorate differs quite a bit
between ADs, even the ones in the same EH. There is especially high spread in
EH3 with EH3-AD2 having triple the low energy events pseudorate of EH3-AD4.

The coincidence time distribution is an important parameter that can help
determine whether the low energy events are really caused by sequential 214Bi and
214Po decays or by a different signal that passes our selection. The coincidence
time distribution of each AD was fitted as illustrated in Fig. 4.26 for EH3-AD2.
The fitted mean lifetime of each AD was within statistical uncertainty from the
214Po mean lifetime of 236.0 µs. There is no other known source besides U-series
correlated decay that would show this exact coincidence time distribution.

As mentioned before, the prompt energy spectrum is a bit more difficult to
analyze. Nevertheless, we can still compare the prompt spectrum that corre-
sponds to regular delayed energy Edelayed ∈ (0.7 MeV, 1.2 MeV) and the one
corresponding to low delayed energy Edelayed ∈ (0.5 MeV, 0.65 MeV). An exam-
ple is shown in Fig. 4.27. Generally speaking, lower delayed energy is corre-
lated with lower prompt energy, hence we can increase the fraction of low en-
ergy events in our selection for Spot A by modifying the prompt energy cut to
Eprompt ∈ (0.5 MeV, 1.5 MeV). We will use this fact to study the delayed spectrum
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Figure 4.25: Pseudorate of U-series low energy events in Spot A. Even though,
it is not perfectly stable, there are no significant changes that would hint at the
origin of these events.

Figure 4.26: Coincidence time distribution of Spot A low energy events in EH3-
AD2. As it consistent with 214Po mean lifetime (236.0 µs), we can conclude that
the low energy events in Spot A are caused by U-series correlated decays.

of Spot A.
In the delayed spectrum, the low energy events manifest as a peak-like struc-

ture centered about 0.5 MeV – 0.6 MeV (it should be noted that the detection
efficiency under 0.7 MeV starts to fall below 100%, which influences the shape)
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Figure 4.27: Comparison of two prompt energy spectra obtained by EH3-AD2
with Spot A spatial cuts r2 > 3 m and z > 1.7 m and most of U1 fine selection
cuts except for modified delayed energy cut. (Left) Edelayed ∈ (0.5 MeV, 0.65 MeV)
cut used to obtain the prompt spectrum corresponding to the low energy events.
(Right) Edelayed ∈ (0.8 MeV, 1.2 MeV) cut used to obtain a regular spectrum for
reference.

separated or semi-separated from the main peak with mean around 0.9 MeV
(this applies for Spot A, situation is different in Spot B and C). Four examples
are shown in Fig. 4.28 along with fitting function which will be discussed in the
next paragraphs. Even though it is conceivable that there are U-series decays
happening outside of the sensitive volume with only gammas penetrating inside,
it does not really match the observation in Spot A (but might explain Spot B
as we will see). Unlike 214Bi, there is only one relevant gamma line occurring
in 214Po decay – 799.7 keV with 0.01% intensity. If fully absorbed in sensitive
volume, peak around 0.75 MeV could be expected to be observed when liquid
scintillator nonlinearity is taken into account. However, that is where the dip
between the regular peak and the low energy peak is located. The position of the
low energy peak has a better correspondence to the Compton edge expected at
0.55 MeV, but there is no explanation at hand as to why only Compton edge and
no full energy peak would be visible in a detector of the size and shape used in
Daya Bay.

Whatever the origin of the low energy events is, it is clear that there is no
feasible way to completely remove them from the delayed energy spectrum. The
prompt energy cut used by U1 selection, Eprompt ∈ (1.5 MeV, 3.2 MeV), fortu-
nately removes bigger part of the low energy events. In theory, we could set the
lower bound even higher to remove almost all of them, but as a consequence we
would lose much of the statistics needed for nonuniformity study and new correc-
tion design. It is thus necessary to adjust the fitting function to include the low
energy events. As their origin is unclear we have to search for the proper function
empirically. The simplest choice is to add second Gaussian function, so that the
first one corresponds to the regular peak and the second one to the low energy
events peak-like structure. This proved to proved match the low energy events
in Spot A very well. Few examples are shown in Fig. 4.28. The fitting function
can be further tested when we look at low energy events which happen to be
reconstructed outside of the sensitive volume with r2 > 3 m2 and z > 2 m as
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Figure 4.28: Four example of delayed spectra obtained with U2 fine selection cuts
with modification Eprompt ∈ (0.5 MeV, 1.5 MeV) and Spot A spatial cuts. The
ranges of y-axes were set in the way that the main peak has the same height in
all plots so that the low energy events contamination can be easily compared.
EH1-AD2 and a group of EH3 ADs were chosen for that purpose as they have
the lowest and highest admixture of low energy events respectively. The spectra
are fitted by a double Gaussian function.

the regular peak is even smaller there. While we cannot infer much from clearly
not perfectly reconstructed data, the fact that the fitting function still matches
the data there (two examples shown in Fig. 4.29) is a good sign. In conclusion,
double Gaussian function can be used to fit the delayed spectrum of Spot B and
– as we will see – in other parts of the ADs as well.

Spot B

In order to study low energy events in Spot B, spatial cuts r2 ∈ (1.8 m2, 3.4 m2)
and z ∈ (-2 m, -1.6 m) were used. However, low energy event properties like
pseudorate evolution over time cannot be studied in the same detail as we did
with Spot A because there is significantly lower statistics in Spot B. The highest
Spot B contamination is in EH3-AD3 followed by EH3-AD2, EH3-AD1 and EH2-
AD1, meanwhile there is almost none in EH2-AD2.

To make sure U-series correlated decays are really responsible for the observed
low energy events, the coincidence time distribution was studied and it was found
out that it is consistent with 214Po mean lifetime.

In contrast to Spot A, the low energy events in the delayed spectrum of Spot
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Figure 4.29: Two examples of delayed energy spectra reconstructed outside the
sensitive volume (r2 > 3 m2, z > 2 m) above the Spot A, where there is very
low fraction of regular events (otherwise U2 fine selection cuts with modification
Eprompt ∈ (0.5 MeV, 1.5 MeV) were used). Delayed energy spectra are fitted by
a double Gaussian function, which matches the data reasonably well.

B do not manifest as a separate peak-like structure around 0.5 MeV, but instead
they take a form of what looks like an increased tail from the regular peak towards
lower energies as illustrated in Fig. 4.30 for EH3-AD3 which is the most affected
AD and EH2-AD2 which is the least affected one. We can also see that the double
Gaussian function introduced before matches the data very well.

Figure 4.30: Two examples of Spot B delayed energy spectra that were obtained
using U1 fine selection along with the Spot B spatial cut r2 ∈ (1.8 m2, 3.4 m2)
and z ∈ (-2 m, -1.6 m). The ADs we chosen in order to highlight the differences
in Spot B low energy events contamination levels – EH2-AD2 is the least affected
one and EH3-AD3 is the most affected one. Double Gaussian function was used
for the fitting.

The fitted low energy mean tends to be around 0.75 MeV which is where
we would expect the 799.7 keV gamma present in 0.01% of 214Po decays to be
reconstructed if the alpha particle did not reach the sensitive volume. If that is
indeed the case, DYB function as described by Eq. 3.13 and Eq. 3.14 (with one
exponential tail for simplicity) would be in theory more appropriate to model
the low energy events spectrum than a simple Gaussian function. There is quite
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an important distinction between the two as illustrated in Fig. 4.31 – while the
DYB function has a tail towards lower energies incorporated in the formula, the
Gaussian function does not have such tail. Instead, the fitting converges on a
large value of sigma. This makes the fitted Gaussian function wider towards
both lower and higher energies. Thus, when there is a tail towards lower energies
in the data, both functions can somehow match it, but as a result they end up
differing greatly in the shape towards higher energies. If we view the function
describing the low energy events as a pedestal upon which the regular peak sits,
it is obvious that the shape of the pedestal directly influences the fitted mean of
the regular peak. To highlight this fact, the fitting functions of the regular peak
and that of the low energy events are drawn separately in Fig. 4.31 so that the
impact of the latter on the former can be seen.

There is, however, an important caveat regardind the DYB function. If we
use it to model the low energy events, we end up with a lot of free parameters
(3 from the regular Gaussian peak and 5 from the DYB function) which makes
the fitting rather unstable and prone to converging to non-physical values. This
problem can be solved by fixing the low energy mean to the values expected for
799.7 keV gamma – 0.75 MeV mean and 0.07 MeV sigma. After that the fitting
tends to converge successfully and the influence of the low energy events model on
regular peak mean fitting can be assessed. As shown for EH3-AD3 in Fig. 4.31,
there is about 0.4% difference in fitted regular peak mean between the Gaussian
and the DYB function low energy events model. As it is the most affected AD,
the difference in other ADs is similar or smaller.

Figure 4.31: Comparison of how two different functions fit the Spot B delayed
spectrum in EH3-AD3. We can see the decomposition of the fitting function into
the part corresponding to the regular peak (Gaussian function in both panels,
drawn in green) and the part responsible for the low energy events (Gaussian
function in the left panel, DYB function with one exponential tail in the right
panel, both drawn in blue).

The question of which low energy model in Spot B is correct cannot be an-
swered with absolute certainty, but we can assess that a wrong model might
introduce up to 0.4% error in the regular peak energy determination.
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Spot C

The spatial cuts used to investigate Spot C were set to r2 ∈ (0 m2, 0.3 m2) and
z ∈ (1.3 m, 2.0 m), which makes this spot smaller in volume (and corresponding
statistics) than the other spots. Another difference is that the low energy events
properties in Spot C are very consistent across all ADs. It was also found out that
the prompt energy cut does not have a big impact on the shape of the delayed
spectrum and thus regular cut Eprompt ∈ (1.5 MeV, 3.2 MeV) could be used to
further study Spot C. Using this cut along with Edelayed ∈ (0.5 MeV, 0.65 MeV) a
check of the coincidence time distributions in all ADs was made confirming that
they are consistent with 214Po mean lifetime.

Regarding the delayed energy spectrum, the low energy events in Spot C take
a form of a flat tail with height of about 1⁄10 of the regular peak as illustrated in
Fig.. 4.32. Even though it is not completely clear what their origin is, it is likely
related to the calibration tube connecting the sensitive volumes with the overflow
tanks. As we have already seen when discussing pseudorate spikes, there is much
higher U-series contamination in the overflow tanks which in turn might lead to
excessive decays inside the calibration tube, where the light collection efficiency
could be lower than in its surroundings resulting in lower reconstructed energy.
Unfortunately, even if that is the case, we cannot predict the shape of the low
energy events delayed spectrum without a detail Monte Carlo study. The most
straightforward option of how to include Spot C low energy events in the fitting
is again to use a Gaussian function as we did with the other spots. Once again,
it matches the data well as illustrated in the left panel of Fig. 4.32.

Another low energy model which matches the data reasonably well is the
constant tail of DYB function described in Eq. 3.13 with the endpoint (µ in
Eq. 3.13) set to the regular peak energy and with the same sigma. Fitting using
this model is shown in the right panel of Fig. 4.32 and it leads to the regular
peak mean being reconstructed at up to 0.4% higher energy than with Gaussian
function model of low energy events.

Figure 4.32: The delayed spectrum of EH3-AD3 obtained with U1 fine selection
cuts and Spot C spatial cut r2 ∈ (0 m2, 0.3 m2) and z ∈ (1.3 m, 2.0 m). The
spectra in other ADs are very similar. Two different models for low energy events
were used – (left) Gaussian function and (right) constant tail from DYB function.

As mentioned before, we cannot decide with certainty which low energy model
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is correct, but if we use simple Gaussian model, our bias in regular peak mean
determination is likely within 0.4%. Moreover, even if we base a new nonunifor-
mity correction on the wrong assumption regarding Spot C, it will be consistent
across all ADs and will not create a near – far bias, something that we especially
would like to avoid.

4.4.5 Delayed energy peak fitting
As we have shown, the regular delayed peak can be fitted by a Gaussian function.
In some parts of the ADs, there are also low energy events which cannot be
removed and thus need to be included in the fit. The simplest option which
matches the data in all parts of the ADs is to use a second Gaussian function.
As that brings the total number of parameters to 6, it was necessary to put some
constrains on their values to ensure good convergence. The final fitting function
for U-series thus has a form of

FU(E; NR, µR, σR, NL, µL, σL) =

= NR exp
(

−(E − µR)2

2σ2
R

)
+ NL exp

(
−(E − µL)2

2σ2
L

)
(4.5)

µL ∈ (0.5 MeV, 0.8 MeV)
σL ∈ (0.06 MeV, 0.2 MeV)

where index “R” denotes the regular peak and “L” the low energy events. The
corresponding fitting range is (0.5 MeV, 1.25 MeV), the lower bound is set so
that the low energy events shape can be properly parameterized. This fitting
function and range will be used for U-series throughout the rest of this thesis,
unless stated otherwise.

4.4.6 Summary
The U-series correlated decays are present in the whole AD (unlike Th-series
and Ac-series), which makes its delayed alpha signal a promising candidate for
detector nonuniformity study and new updated correction construction. The
pseudorate of U-series is mostly stable with occasional spikes, which are unlikely
to affect the measurement of nonuniformity. The same applies for higher rate
in EH2-AD2. Low energy events can in principle affect the nonuniformity mea-
surement. Their origin is not fully understood and while the double Gaussian
function matches the data well, it cannot be ruled out that the low energy events
cause a certain bias in the fitted mean of the regular alpha peak in some parts
of the ADs. Nevertheless, out of the all the correlated decays available, U-series
delayed alpha is still the signal that is the most suitable for nonuniformity study
and new correction construction.

4.5 Spallation Neutrons Captures
Spallation neutrons (SPNs) originate in interactions of cosmic-ray muons with
ADs and surrounding matter. Similarly to neutrons from IBDs, SPNs also lose
energy and eventually get captured on a nucleus. The capture time is about 30 µs
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in GdLS and the neutron is most likely captured on gadolinium (nGd) resulting
in about 8 MeV released in a gamma cascade (details in Section 3.3.3) and less
likely (about 15%) on hydrogen (nH) with 2.2 MeV gamma released. In LS, nH is
predominant with capture time of about 200 µs. While these signals were already
used in the original nonuniformity correction, their selection and fitting can be
improved so that we could obtain more precise results.

The basic idea of the selection we are going to use is to identify suitable
showering muons and save the events that follow in a certain time interval while
discarding non-physical flasher events. From the selected interval one signal and
one background window are carved out. In order to remove events uncorrelated
to the incident showering muon, spectrum from the background window is then
subtracted from the spectrum corresponding to the signal window in a similar
way to what we did with correlated decays in Section 4.1.2

We will employ only one selection common for both nH and nGd with values
of the cuts listed in Tab. 4.5. The reasoning behind them is following:

• Showering muon energy: Generally speaking, the number of spallation
neutrons per muon increases with increasing observed muon energy. The
lower bound is thus set in the way that there are not too many muons which
produce no spallation neutrons. On the contrary, the upper bound is aimed
to reduce the pile-up of spallation neutron captures.

• Flasher cuts: Group of cuts commonly used in the Daya Bay experiment
aimed to remove events caused by PMTs sparking were applied. More
details can be found in Ref. [29].

• SPN event energy: Starts at 0.7 MeV where the detection efficiency
reaches 100% and ends at 20 MeV thus covering both nH and nGd energy
ranges.

• Signal and background windows: The signal windows start at 20 µs
after the showering muon in order to avoid re-triggering which can happen
after large amount of energy is deposited in the AD. Unfortunately, it also
means loss of part of the statistics, more in GdLS with shorter neutron
capture time and less in LS. On the other hand, the signal window ending
at 500 µs covers over 80% of nH captures in the LS.

Table 4.5: Selection cuts for SPN nGd and nH

Shower muon energy (1.8 GeV, 2.5 GeV)

Flasher cuts

(Quadrant)2 + (Qmax
0.45 )2 > 1

4 × (1 − time PSD)2 + 1.8 × (1 − time PSD1)2 > 1
Q2inch > 100 p.e.

time psd local rms>13 & kurtosis>1 & flasher ring=8
flasher column ≥ 4 & flasher column ≤ 9

SPN event energy (0.7 MeV, 12.0 MeV)
Signal window (20 µs, 500 µs)

Background window (520 µs, 1000 µs)
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As a result of the selection and background subtraction, we obtain an energy
spectrum which contains both nGd and nH peaks. However, the number of nH
and nGd events we obtain varies greatly between the halls – there is far lower
muon rate in the deepest EH3 than in the shallower near halls as summarized in
Tab. 3.1.

4.5.1 SPN nH
SPN nH signal is caused by a single 2.2 MeV gamma. While the nH capture itself
is dominant in LS and occurs only for about 15% of neutrons in GdLS, the spatial
distribution illustrated in Fig. 4.33 is also affected by the fact that the gamma
can travel a certain distance before depositing its energy, which mostly manifests
in some gammas from nH captures in LS depositing energy in GdLS and being
reconstructed there. Therefore we do not see a sharp GdLS-LS boundary in the
spatial distribution, but just continuous decrease from LS to GdLS. Either way,
there is statistics available for nonuniformity study and new correction creation
in the whole AD.

Figure 4.33: Example of a spatial distribution of SPN nH events obtained by EH1-
AD1 with cuts listed in Tab. 4.5 and additional energy cut (1.1 MeV, 2.7 MeV).
Note that while most events are reconstructed in LS, there is also significant
number in GdLS.

The fitting function for the nH peak is the same as the one used for the
original correction – DYB function with one exponential and one constant tail
described by Eqs. 3.13 and 3.14. The difference is in the fitting range – while
in the original correction (1.9 MeV, 3.0 MeV) was used, now we will change it
to (1.1 MeV, 2.7 MeV). The reason is that given the number of free parameters
the fitting may not converge properly on too narrow range resulting in the issues
illustrated in Fig. 3.7. Extended fitting range should mitigate this issue. Two
examples of nH DYB fits are shown in Fig. 4.34, one from the middle of the AD,
where there is almost no leakage tail, and one from the outer part, where the
leakage tail is quite prominent. There is, however, a question whether the DYB
function really can fit this wide range of spectral shapes (from no leakage tail to
large leakage tail) without introducing a bias into the peak mean value, when we
consider the fact that it is still a heuristic function that does not match the data
absolutely perfectly. Moreover, there are also SPN nH gammas from MO that can
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scatter inside LS depositing part of their energy there further altering the shape
of the energy spectrum. Whether or not these issues are a significant problem for
the nonuniformity determination is unfortunately impossible to decide without a
very precise and detailed Monte Carlo study. While IBD nH toy Monte Carlo is
available, its applicability to SPN nH is limited as shown in Ref. [74].

Figure 4.34: Two examples of SPN nH peak obtained by EH1-AD1 selected to
highlight the variety of spectral shapes. In the left panel, data from AD center
defined as r2 < 0.4 m2, |z| < 0.4 m were used resulting in essentially no leakage
tail. The opposite situation is shown in the right panel – there is huge leakage
tail around the edge of the AD defined as r2 > 3.6 m2 and z > 1.6 m. The energy
spectrum is fitted by the DYB function described by Eqs. 3.13 and 3.14 and the
contributions of the true peak and individual leakage tails are drawn in different
colors.

4.5.2 SPN nGd
The nGd neutron capture can occur only in GdLS and the following gamma
cascade is less likely to have the centroid of the deposited energy far from the
nucleus when compared to nH single gamma. The spatial distribution of nGd
events is thus restricted to GdLS and its close surroundings as shown in Fig. 4.35.
Therefore if we want to use it for creating residual nonuniformity correction, it
needs to be combined with another signal that occurs in LS.

The fitting of the SPN nGd we will use is notably different from the one
described by Eq. 3.12 in Section 3.3.4. First, double DYB function is used instead
of the double CB function as it is better motivated [56]. We will use the version
of DYB function that has single exponential tail as a building block and combine
two of them

fnGd-map(E; N, α, β, µ, σ, λ) =
N1[α1fpeak(E; µ1, σ1) + (1 − α1)fexp tail(E; µ, σ1, λ1)]+

N2[α2fpeak(E; µ2, σ2) + (1 − α2)fexp tail(E; µ, σ2, λ2)]. (4.6)

The next step is analogous to what we did with the double CB function – we
will keep the same relations between the parameters described by Eqs. 3.5, 3.6,
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Figure 4.35: Example of a spatial distribution of SPN nGd events ob-
tained by EH1-AD1 with cuts listed in Tab. 4.5 and additional energy cut
(6.0 MeV, 10.4 MeV). As expected, the vast majority is reconstructed in GdLS.

3.7. Only instead of double CB-specific Eq. 3.8 we will assume that

α1 = α2, λ1 = λ2, (4.7)

but the meaning (ensuring that both peaks have the same shape) is the same.
Another difference is that we will drop the decreasing exponential pedestal in-
troduced in Eq. 3.12 as the tail towards higher enegies is greatly reduced by
introducing the 2.5 GeV upper bound on the showering muon energy [55]. The
change of the fitting function leads to up to 0.7% different fitted peak mean
around the edge of GdLS [55]. The fitting range is (6.0 MeV, 10.4 MeV) and two
examples of fits are shown in Fig. 4.36.

Figure 4.36: Two examples of SPN nGd peak obtained by EH1-AD1. The plot
in the left panel corresponds to the AD center (r2 < 0.4 m2, |z| < 0.4 m) where
there is virtually no energy leakage. The plot in the right panel comes from the
edge of GdLS (2 m2 < r2 < 2.4 m2, -1.6 m < z < −0.8 m) and shows notable
leakage tail. The spectra are fitted by the double DYB function (red line) with
contributions from true peaks and leakage tails drawn separately in green and
blue respectively.
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5. Improved Nonuniformity
Correction
Now that we have described which signals are available to us and how the energy
scale can be determined using them, we can move on to further scrutinize the
original nonuniformity correction described in Section 3.3.4 and eventually design
a new improved one.

5.1 Azimuthal Nonuniformity
The residual Earth magnetic field (EMF) and the dead PMTs are the main con-
tributors to the azimuthal nonuniformity, both highly AD-dependent. As we use
U-series to study azimuthal nonuniformity, there is also the issue of the hotspot
under ACU-B described in Section 4.4.3 which needs to be addressed. Each of
these phenomena has slightly different properties, hence we will discuss them in
the following sections before we design new residual correction.

5.1.1 EMF Effect
In the fully reconstructed data, the EMF effect is partially addressed by the
correction described in Section 3.3.4. This actually hinders further analysis as
we would like to measure the EMF effect without any distortion added later on.
There are two ways to get around this problem:

• The azimuthal correction can be simply retracted by applying the inverse
correction factor, i.e. by multiplying the reconstructed energy E by factor
from Eq. 3.10 we get energy with retracted azimuthal correction ERAC

ERAC = E × f−1
ϕ (ϕ) = E × [1 + αcorr

0 sin(ϕ − ϕcorr
0 )]. (5.1)

The parameters αcorr
0 and ϕcorr

0 are listed in Tab. 3.2. This way, the full
EMF effect should be restored so that it can be properly parameterized.
The r2-z and time-dependent corrections are kept resulting in what we will
call semi-corrected energy ERAC.

• Raw energy with no nonuniformity correction applied at all can be also used.
However, as we would like to eventually construct new residual correction
on top of the regular energy, going back to raw energy is a bit overkill, but
it is still very useful to check the findings obtained with the semi-corrected
energy.

We thus have three data-sets available using different energy variables – regular,
semi-corrected and raw energy – to study the EMF effect and particularly what
its dependence on r is1.

1It should be noted that the EMF effect has minimal impact on the incident particle and
scintillation light production, but it affects the collection efficiency of PMTs depending on
their orientation with respect to the EMF. The reconstructed energy is thus dependent on how
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In order to study the r-dependence of the EMF effect, ADs were divided
into 4 concentric rings (defined as intervals in r2 coordinate) of similar volumes.
Each concentric ring was then divided further into 12 bins along the ϕ-axis, thus
dividing each AD into 48 voxels in total. U-series delayed energy spectrum for
each voxel was obtained, fitted according to Section 4.4.5 and relative energy
deviation Erel of each voxel from the ring’s average was calculated. This way
we obtain Erel(ϕ) dependence for each ring, examples of which are shown in the
left panels of Fig. 5.1. EH3-AD2 before March 2017 was picked as the example
because the EMF effect there is strong and at the same time it was minimally
affected by dead PMTs. The Erel(ϕ) dependence is shown for raw energy, semi-
corrected energy and regular energy respectively so that clear comparison can
be made. As expected, revoking the azimuthal correction (semi-corrected energy
in the middle left panel) very well restores the full EMF effect seen with raw
energy in the top left panel. Meanwhile, it is apparent that the EMF effect is
still present in regular energy after azimuthal correction (bottom left panel), only
the amplitude is shifted. The shift is generally such that the effect is on average
canceled in GdLS (as was the aim of the original correction), i.e. the black and
red points tend to have similar absolute values but opposite sign.

The Erel(ϕ) dependence was fitted by a function analogous to Eq. 3.10

Erel(ϕ) = α cos(ϕ − ϕ0), (5.2)

which provides us with the amplitude of the EMF effect α and its orientation ϕ0
with respect to the AD’s coordinate system. This allows us to determine the α(r)
dependence, where the average value of r was determined as the average radius
of events in each particular ring. As illustrated in the right panels of Fig. 5.1 the
dependence can be reasonably well modeled as linear function

α(r) = κr + α0 (5.3)

with slope κ and offset α0. All types of energy variable used have similar slope of
α(r) dependence, but the offset differs. For semi-corrected and raw energies, we
get the fitted value α0 ∼ 0 as expected – there should be no azimuthal nonuni-
formity right in the center of the detector2 unless it is artificially introduced by a
flawed correction, which is exactly what happened to the regular energy variable.
The shape of α(r) dependence remained the same, but all the values shifted by
α0 ≃ αcorr

0 , where αcorr
0 is the value used in the original correction. All ADs follow

the same principles, but the slope differs quite a lot even between ADs in the same
EH. Besides that, in some ADs the effect of dead PMTs interferes with the EMF
effect. More examples of the EMF effect and the dependence of its amplitude on
radius can be found in Appendix D.

As we have clearly shown, the original azimuthal nonuniformity correction is
insufficient and it is thus more practical to revoke it and base the new correction
on the semi-corrected energy for which the EMF effect amplitude dependence on
radius can be modeled as

α(r) = κr (5.4)
the scintillation light is distributed between the PMTs. Generally speaking, as r increases,
increasing proportion of the scintillation light gets detected by lower number of PMTs. If these
PMTs are affected by EMF one way or the other, the impact on the reconstructed energy also
gets bigger. Similar argument also applies for dead PMTs.

2When r = 0 m, changing ϕ does not lead to any actual change of position.

80



Figure 5.1: The plots to the left show the EMF effect in the dependence of
relative energy on the azimuthal angle for 4 concentric rings in EH3-AD2, each
ring shown in a different color. The dependence is fitted by α cos(ϕ − ϕ0), where
α is the amplitude of the EMF effect in the particular ring. The dependence
of the α on radius r is drawn in the plots to the right, showing that it can be
modeled by a linear function α(r) = κr + α0. Three rows of plots correspond to
different energy variables – raw energy, semi-corrected energy and regular energy
respectively. Data from before March 2017 were used in order to avoid the effect
of dead PMTs.

without any offset. We will use this variable for the following study of the effect
of the dead PMTs and the calibration tube below ACU-B.
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5.1.2 Dead PMTs

Next to the EMF effect, dead PMTs have the biggest impact on the azimuthal
nonuniformity. The difference is that their effect is more localized, not only in ϕ,
but also in z. In order to study and quantify it, ADs were divided into 96 voxels
– 8 rows along the z-axis (we will refer to them as “z-rows”) with 12 columns
along the ϕ-axis each (“ϕ-columns”). As with the EMF effect, U-series delayed
energy spectrum in each voxel was fitted and relative energy deviation from the
average was calculated. This provides us with ϕ-z nonuniformity map, example
of which is shown in Fig. 5.2. Such map reflects both the EMF effect and the
dead PMTs effect averaged over r. The calibration tube under ACU-B also plays
a role and it will be discussed in the next section. EH2-AD2 was chosen as an
example because the EMF effect there is rather weak so that we can focus on the
two dead PMTs close to the top. The impact they have on the nonuniformity
map is apparent – the reconstructed energy is in general several percent lower
in the direction of the dead PMTs. The effect gets bigger with increasing r (i.e.
closer to the dead PMT), but the exact form of its dependence on r is difficult to
determine due to limited statistics and it seems to vary case by case (probably due
to the dead PMT position, interference with other effects or proximity of other
dead PMTs if there are any). As we have already established linear dependence
on r for the EMF effect, it is reasonable to use the same model for the effect of
dead PMTs as that will allow us to create a relatively simple and straightforward
correction in ϕ-z coordinates with r-dependence. It may be a bit imprecise, but
it will be still a great improvement when compared to the original correction with
no r-dependence.

Figure 5.2: Example of a ϕ-z nonuniformity map obtained by EH2-AD2 using
U-series semi-corrected energy. It is based on data after December 2016, around
which time the two PMTs near the top stopped working. The dead PMTs are
marked by red circles with diameter proportional to the fraction of time they
were dead in the particular period. Apart from the dead PMTs, we can also see
lower energy observed around the ACU-B calibration tube and the EMF effect is
also visible in the lower half with maximal energy about 100◦, though it is rather
weak in EH2-AD2 compared to other ADs.
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Table 5.1: AD-specific time division points and number of dead PMTs (not work-
ing > 30% of data-taking).

AD Time division point Dead PMTs
EH1-AD1 None 0
EH1-AD2 2018-02-28 1
EH2-AD1 2015-03-31 1
EH2-AD2 2016-12-31 2
EH3-AD1 2016-03-31 0
EH3-AD2 2018-02-28 1
EH3-AD3 2018-03-31 1
EH3-AD4 2015-09-30 2

Another issue with the effect of dead PMTs is that there is a discontinuity in
the nonuniformity pattern at the moment the particular PMT stopped working.
In theory, when we construct new azimuthal correction, it can be done for the
period of PMT working and not working separately, but in practice it is not al-
ways possible as minimal length of such period is limited by available statistics.
Still, for most ADs the whole duration of the operation can be divided into two
parts that reasonably well reflect the PMT dying moments and retain sufficient
statistics. The time divisions for each AD are listed in Tab. 5.1. There is an ex-
ception of EH1-AD1 which has only one time part as it was decommissioned from
Daya Bay experiment already in 2016 and had not suffered from any significant
dead PMTs during its operation. The number of PMTs that were not working
for more than 30% of Daya Bay operation can be also found in Tab. 5.1.

5.1.3 ACU-B Tube Effect
As illustrated in Fig. 5.2, in EH2-AD2 the reconstructed energy under the ACU-
B is lower than in the surrounding areas, region with ϕ ∈ (270◦, 330◦) and z ∈
(1 m, 2 m) will be considered as affected. A similar effect can be clearly observed
in EH1-AD1, EH3-AD1 and EH3-AD2 too, other ADs unfortunately have dead
PMTs in the same area or nearby, which makes it difficult to assess what the
exact impact of the ACU-B effect is. The question then arises whether this effect
is universal for all signal types or unique to the U-series. The evidence suggests
that the latter is the case. The connection between U-series spatial distribution,
ACU-B and its possible implications have been already discussed in Section 4.4.3.
Moreover, there is no indication of ACU-B effect in analogous ϕ-z nonuniformity
maps obtained using SPN nH (other signals such as Ac-series, Th-series see no
effect either, but their informative value is limited as they occur only in GdLS).

With ACU-B effect being unique to the U-series, it is necessary to address it
before creating a new correction intended for use in a neutrino oscillation analysis.
Using data from EH2-AD2, EH3-AD1 and EH3-AD2 (EH1-AD1 was omitted
due to its short operation) it was found out that the effect is mostly limited to
the events with r ∈ (0.75 m, 1.5 m), thus we can work with a concentric ring
analogous to the ones we used in the study of EMF effect3. Within this ring,

3ACU-B effect is likely spatially limited even more, but too narrow ring does not have
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the effect can be approximately quantified by calculating the difference to the
average of neighboring bins4 as illustrated in Fig. 5.3. Four voxels marked in

Figure 5.3: The scheme of the calculation of the localized ACU-B correction. The
voxels labeled in red are considered as affected (the numbers in square brackets
denote to which z-row and ϕ-column the voxel belongs) and average energy de-
viation from reference voxels in purple is calculated and used for the localized
correction. The ϕ-z nonuniformity map was obtained by EH3-AD1 with radial
cut r ∈ (0.75 m, 1.5 m).

red are considered to be affected by the ACU-B effect – two in the top (8th)
z-row and two in the z-row below (7th) and eight voxels marked in purple are
considered to be reference ones. Then, for each affected voxel, average difference
to the reference voxels in the same row is calculated

fk
ACU[i, j] = Ek

rel[i, j] − 1
4(Ek

rel[i, 8] + Ek
rel[i, 9] + Ek

rel[i, 12] + Ek
rel[i, 1]),

i ∈ {7, 8}, (5.5)
j ∈ {10, 11}

where Ek
rel[i, j] stands for relative energy deviation of the voxel in the i-th z-

row and j-th ϕ-column in the k-th AD. Next we calculate the localized ACU-B
correction factors from the average value from the three ADs in which ACU-B
effect is unobscured by dead PMTs

f̃ACU[i, j] = 1
3
∑

k

fk
ACU[i, j], (5.6)

k ∈ {EH2-AD2, EH3-AD1, EH3-AD2},

their values are listed in Tab. 5.2. The localized correction factor is then used at
the stage of U-series fine data selection for events with r ∈ (0.75 m, 1.5 m) and

statistics sufficient to study the effect.
4This in principle also brings a certain bias coming from the EMF effect, but it is expected

to be about one order of magnitude smaller then the ACU-B effect itself, main reason being
that the EMF effect is rather weak in EH2-AD2 and EH3-AD1.
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the values of z-, ϕ-coordinates corresponding to the voxels affected by ACU-B
effect. Reconstructed energy of these events is multiplied by factor

1 − f̃ACU[i, j]. (5.7)

An example of ϕ-z nonuniformity map after the localized ACU-B effect correction
is shown in Fig. 5.4.

Figure 5.4: Example of the localized ACU-B correction impact on the ϕ-z nonuni-
formity map. This correction aims to remove the area of low relative energy
around the ACU-B tube. Note that the relative energy values in other voxels
change too as the AD average is also different after application of the localized
ACU-B correction.

5.1.4 Construction of the New Azimuthal Correction
Having discussed all the necessary building blocks for the new azimuthal correc-
tion (or ϕ-z(-r-t) correction to be more precise), which will be applied on top
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Table 5.2: Values of local ACU-B effect correction factor f̃ACU

z-row
ϕ-column 10 11

8 -3.46% -1.20%
7 -1.02% -0.42%

of the regular energy already containing the original nonuniformity correction
described in Section 3.3.4, we can now proceed to its construction. It has been
shown that the ϕ-z nonuniformity maps reflect both EMF and dead PMTs ef-
fects. However, there is a question of its normalization. If the values in the voxels
were defined as relative U-series delayed peak mean deviation from the whole AD
average, then such map would also partially correct the nonuniformity along the
z axis, which is something the following residual r2-z correction is supposed to
do. Moreover, the original r2-z correction has issues, which may lead to shifting
of the reconstructed energy of the whole z-row. In such shifted z-row, the simple
r-dependence of the EMF and dead PMTs effects described by Eq. 5.4 might not
work properly. To avoid this and to keep the new azimuthal and residual r2-z
corrections decoupled, the values in the voxels of the ϕ-z nonuniformity maps are
calculated as relative deviation from the z-row average.

The fact that the nonuniformity pattern suddenly changes when a PMT stops
working can be mostly addressed by dividing the whole duration of operation
into two AD-specific periods – before and after the PMT stopped working. The
time division points for each AD are listed in Tab. 5.1. However, they do not
always perfectly match the date when the PMT(s) in the particular AD stopped
working for one or two reasons. First, we had to always ensure that each time
period contains sufficient statistics, i.e. it is not too short. Second, in certain
ADs more PMTs died at different times resulting in the division point selected
sometime in between if possible.

Regarding the r-dependence of EMF and dead PMTs effects, both can be
modeled as directly proportional to r if the original azimuthal correction is re-
voked. Therefore we start our new correction by applying Eq. 5.1 and creating
ϕ-z nonuniformity maps based on ERAC with ACU-B local correction also applied.
Such maps have 12 bins along the ϕ-axis, 8 bins along the z-axis (96 voxels in
total) and 2 AD-specific time bins. Moreover, when a map is created, each voxel
corresponds to a certain average radius r0, which is determined by the distribu-
tion of the U-series events in the AD. This radius is generally z-dependent5 and
it can be easily obtained from data for the 8 z-rows of each map. The ϕ-z(-r-t)
correction thus takes a form

EAZ(ϕ, z, r, t) = ERAC(ϕ) ×
(

1 − MRAC(ϕ, z, t) r

r0(z)

)
=

= E × [1 + αcorr
0 sin(ϕ − ϕcorr

0 )] ×
(

1 − MRAC(ϕ, z, t) r

r0(z)

)
, (5.8)

where EAZ is the new ϕ-z(-r-t)-corrected energy. To obtain it, the original az-
5As there is higher rate of U-series in the GdLS, it pulls the average radius r0 to smaller

values for |z| < 1.5 m.
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imuthal correction is revoked from the reconstructed energy E, which leads to
the semi-corrected energy ERAC defined in Eq 5.1. Using it together with the
localized ACU-B correction, we can construct the ϕ-z nonuniformity map MRAC
and the associated mean radius r0(z) for each AD and corresponding time bin in-
dividually. MRAC and r0(z) are then used to correct the azimuthal nonuniformity
caused mainly by the EMF and dead PMTs effects.

In practice, radius-normalized maps defined as

M̃RAC(ϕ, z, t) = MRAC(ϕ, z, t)
r0(z) . (5.9)

are used in the correction implementation. All the individual M̃RAC maps can be
found in Appendix E.

5.2 Residual r2-z Nonuniformity
After the application of the new azimuthal correction, r2-z correction also needs
to be updated using the new EAZ energy variable (it will be used as the default
energy variable throughout this section). Although the new azimuthal correction
is constructed in the way that it has only minimal impact on r2-z nonuniformity,
any differences it causes still need to be addressed. Moreover, it is also an op-
portunity to address the remaining effect of the dead PMTs and the issues of
SPN nH and nGd fitting, which likely cause the outlier voxels in the original r2-z
correction.

We can either use a single type of signal in the whole AD or sew the correction
map using two types of signals in a similar fashion to the original correction.
Regarding the first option, there are only two signals present in the whole AD
– U-series delayed alpha and SPN nH. Both signals have issues around the edge
of the LS – the desirable simple Gaussian spectrum of U-series alpha signal is
polluted by low energy events, while SPN nH leakage tail causes the spectrum to
have significantly different shape than in the center, possibly biasing the fitted
mean value – but there are no better options. We will thus create the residual
correction maps for both signals. In addition to that, we will also sew a third set
of maps using SPN nGd in GdLS and U-series alpha in LS.

Regarding the U-series alpha signal, there is also the issue with events under
ACU-B, which have lower reconstructed energy as we have seen in Section 5.1.3.
There we have concluded that the ACU-B effect is specific for U-series and not
present with other types of signal. In order to avoid any bias this might cause,
events with r2 ∈ (1.6 m2, 2.4 m2), z ∈ (1.2 m, 2.0 m), ϕ ∈ (270◦, 300◦) will not
be used for U-series alpha r2-z residual correction construction.

The new residual r2-z correction will follow the template described in Sec-
tion 3.3.4. The same division of AD into 10 uniform bins along r2-axis and 10
uniform bins along z-axis creating in total 100 voxles will be used. The energy
spectrum in each voxel is fitted by functions described in Sections 4.4.5, 4.5.1
and 4.5.2. This way we obtain absolute energy maps. As a next step we need
to transform them to relative energy maps, which we will use in the correction.
However, there is question of which benchmark should be used for the relative
energy calculation. As the overall energy scale is calibrated by nGd, we would
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like the SPN nGd peak mean not to be shifted by the correction. Since SPN nGd
occurs only in GdLS, we will use the average of the voxels covering GdLS (i.e.
voxels with r2 < 2.4 m2 and |z| < 1.6 m) and calculate the relative energy with
respect to this average. This way we obtain relative energy maps, examples of
which are shown in Fig. 5.5. The first one is map based on U-series delayed alpha,
the second one on SPN nH and the third is sewn from SPN nGd in GdLS (and
little part of LS) inside the red dashed line and U-series alpha in LS outside of it.
The red dashed line also marks the area in respect to which the relative energy
deviation is calulated. When we look at the map based on SPN nH, it is apparent
that there are several outliers, which are not present in the U-series alpha map.
This is likely caused by the SPN nH fitting and it only confirms the fact that the
convergence of the SPN nH fit is quite hard and unstable. It is especially notable
in EH3, where the SPN nH (and nGd) statistics is much lower than in the near
halls. All the r2-z residual correction maps can be found in Appendix E.

Figure 5.5: Comparison of EH3-AD4 r2-z residual nonuniformity correction maps
based on U-series alpha (top left), SPN nH (top right) and combination of SPN
nGd and U-series alpha (bottom), where alpha signal is used in the volume outside
the dashed red rectangle (and the values are thus the same as in the top left U-
series alpha map) and SPN nGd in the volume inside (mostly GdLS). In the
bottom right of each map, the outlier voxel from the original correction shown in
Fig. 3.7 is highlighted by violet dashed line.
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5.2.1 Outlier Voxels of the Original Correction

EH3-AD4 (first time period) was selected as an example in Fig. 5.5 because there
is the most significant outlier of the original correction – the voxel in the bottom
right part of the AD map in the right panel of Fig. 3.7, where the correction factor
differs on average by 6.6% from the other ADs. Our suspicion was that this outlier
in the original map was caused by the fitting unable to find a correct value. The
maps shown in Fig. 5.5 show residual nonuniformity after the application of the
original correction (and the new azimuthal one, which does not have much effect
here) and if we look at the maps based on U-series (top left and bottom panel), we
see 4% lower energy in this particular voxel. This fact only supports the suspicion
that EH3-AD4 does not really differ that much from other ADs regarding this
voxel, but instead fitting used in original correction construction is responsible
for the outlier. On the other hand, the new SPN-nH map is quite consistent with
the original correction in this particular voxel. This either means that our new
SPN nH fitting suffered from the same issues as the original one in this particular
voxel or the difference is caused by the different properties of gamma and alpha
signal in general. However, the fact that the U-series alpha maps are much more
consistent with the original correction in all other ADs when it comes to this
particular voxel suggests that the former is the case.

Regarding other outliers in the original maps, we can generally observe corre-
sponding relative energy deviations to a certain extent in all the residual nonuni-
formity maps, confirming they are a result of wrong fitting (or other issues) of
the original correction.

5.2.2 Effect of the Dead PMTs

The effect of the dead PMTs can be also observed in the residual r2-z nonuni-
formity maps6, especially in EH2-AD2, where two PMTs stopped working just
before or soon after the end of 2016. The EH2-AD2 maps are shown in Fig. 5.6,
where we can compare the situation before and after the end of 2016 as observed
using U-series alpha and SPN nH signals. The effect of dead PMTs in other ADs
is not as noticeable, but still observable in EH1-AD2, EH2-AD1, EH3-AD2, EH3-
AD3 and EH3-AD4 when using the U-series alpha signal. It manifests as lower
reconstructed energy in the voxels with z coordinate close to the dead PMT and
r2 > 2.5 m2. When using SPN nH, the effect is less pronounced and in certain
ADs not even clearly observable.

The presence of the dead PMTs effect (especially when using U-series alpha
signal) makes it clear that the original correction is not sufficient as it lacks the
ability to address this localized, strongly time-dependent effect.

6Note that the previously applied new azimuthal correction has not completely removed
the effect of the dead PMTs, it only leveled the effect along the AD perimeter. If before the
new azimuthal correction there was significantly lower energy around the ϕ and z coordinates
corresponding to a dead PMT, after this correction, there is slightly lower energy uniformly
distributed along the whole perimeter. To get it to the nominal level, subsequent (residual)
r2-z correction is necessary.
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Figure 5.6: EH2-AD2 r2-z residual nonuniformity maps based on U-series alpha
signal (top row) and SPN nH (bottom row) for period before the end of 2016
(left plots) and after (right plots). The effect of two dead PMTs, which stopped
working around the end of 2016, can be clearly seen as lower reconstructed energy
in the upper outer part of the AD with alpha signal. It is also visible with SPN
nH, but much less distinctively. This is likely caused by the fact that while
the alpha particle energy deposition is essentially point-like, nH gamma tends to
scatter and deposit its energy over a certain volume.

5.2.3 Comparison of Maps Based on Different Signals

The r2-z residual nonuniformity maps based on various signals do not differ only
in the areas affected by dead PMTs or in outlier voxels but also in general features.
It is clearly visible when we make average maps of all ADs, which are shown in
Fig. 5.7. First time period was used as we would like to see and compare features
unrelated to the dead PMTs.

Starting our comparison in GdLS, the differences between the signals are not
that big there. The average maps based on U-series alpha signal and SPN nGd
(from the map sewn from SPN nGd & U-series alpha) are mostly within 0.5%
from each other as well as from the original correction. The average SPN nH map
is slightly more different, but still within 1% from every other one.

The situation changes once we move to LS. First, there is no SPN nGd avail-
able there. Second, the difference between U-series alpha and SPN nH maps (as
well as between them and the original) is notably higher than in GdLS. The val-
ues in the SPN nH map are on average ∼1.5% higher than in the U-series alpha
map and generally tend to continuously increase as we get closer to the edge. In
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Figure 5.7: Comparison of r2-z residual nonuniformity maps based on various
signals. The maps are averaged over all ADs. The top left map is based on U-
series alpha, the top right one on SPN nH and the bottom one is sewn from SPN
nGd and U-series alpha. The red dashed rectangle approximately corresponds
to GdLS. The top right and bottom maps are identical outside the red dashed
line as they both use U-series alpha signal there. Note that the z-axis range is
narrower than in previous plots.

contrast to that, with U-series alpha the area of lowest observed energy is located
just outside the GdLS (2.4 m2 < r2 < 2.8 m2) and at the top (and to lesser extent
bottom) in the outer part of the AD (|z| > 1.6 m, r2 > 2.4 m2). The outer top of
the AD is also the place where most low energy events occur as described in Sec-
tion 4.4.4. However, there is no clear correlation between the rate of low energy
events in an AD and relative energy deviation in the outer top area of ther2-z
residual nonuniformity maps. The low energy events are thus unlikely to be a
major cause of this energy deviation. Moreover, the U-series alpha spectrum is
purely Gaussian for r2 ∼ 2.5 m2 and z ∼ 0 m and we observe lower reconstructed
energy there nonetheless. Hence, we can conclude that the differences between
U-series alpha and SPN nH maps are for the most part not caused by U-series low
energy events, but by different energy deposition (point-like alpha vs. scattering
gamma) or by bias of SPN nH fitting stemming from the interplay of the main
peak and the two tails.

91



5.2.4 Construction of the Residual r2-z Correction
With the residual nonuniformity maps at hand, we can proceed to the construc-
tion of the r2-z part of our improved correction, building on top of the new
azimuthal correction that was presented in the previous section

ENC(ϕ, z, r, t) = EAZ(ϕ, z, r, t) × 1
1 + MRZ(r, z, t) , (5.10)

where ENC is our new fully corrected energy, which takes the new azimuthally
corrected energy EAZ and applies a correction factor based on the residual r2-
z nonuniformity map MRZ(r, z, t). Each voxel of such map contains the rela-
tive energy deviation with respect to the GdLS average as we have described
above. Following the azimuthal correction, MRZ maps are created for each AD
and two AD-specific time periods individually with the time division points listed
in Tab. 5.1. All the maps can be found in Appendix E.

5.3 Improved Correction – Summary
Even though the whole procedure described above might seem complicated, lot
of what we went through are technicalities of correction maps creation and prop-
erties. The application of the improved correction is rather straightforward and
it can be summarized in three steps:

1. Revoking of the original azimuthal correction.

2. Application of the ϕ-z correction map with built-in r-dependence and time
dependence reflected by two time periods. The map is based on U-series
alpha signal.

3. Application of the residual r2-z correction map, which is also time period
dependent. Three sets of maps are available based on various signals –
U-series alpha, SPN nH and combination of SPN nGd and U-series alpha.

All the correction factors, maps and time periods are AD-dependent.
As there are three options to choose from regarding the residual r2-z correc-

tion, the question arises as to which one should be primarily used. Since the
differences between the U-series alpha, SPN nH and SPN nGd & U-series alpha
correction maps can be directly or indirectly attributed to the nature of used
signals and their energy deposition, we can assume that the preferable correction
map is the one that is based on a signal behaving in a similar way to the one
we would like to study. If we want to use gamma signals in our study, then
SPN nH or SPN nGd map in GdLS might be appropriate. If we are interested
in signal with more or less point-like energy deposition like alpha or beta, then
U-series alpha map is more suitable. However, in most analyses we would like
to precisely determine the energy of an incident neutrino, which is related to the
energy of positron created in IBD interaction by Eq. 2.2. The positron does not
match neatly to any of our categories. It first deposits its kinetic energy in a
very localized manner (across units of mm) and then annihilates creating two
gammas of 511 keV each. This is all detected simultaneously as IBD prompt sig-
nal. When measuring reactor antineutrinos, the maximum of the corresponding
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prompt spectrum is at about 3 MeV, which means that ∼2 MeV is deposited
locally and ∼1 MeV via 511 keV gammas. Moreover, the mean free path of a
511 keV gamma is about two times shorter than that of 2.2 MeV gamma used in
SPN nH map construction, which also leads to more localized energy deposition.
Overall, we would expect the U-series alpha correction map to be better suited
for the measurement of reactor antineutrino energy.

5.4 Impact of the Improved Nonuniformity Cor-
rection

The importance of the improved nonuniformity correction varies greatly depend-
ing on which part of the AD is used. We can thus expect that the impact of
the correction choice will differ greatly between the neutrino oscillation analysis
based on nGd and the one based on nH. The reason is that the IBD interactions
resulting in nGd occur predominantly in GdLS, where our improved correction
introduces only small changes and the original one works very well. In contrast
to that, IBD interaction resulting in nH occur mostly in LS, where the improved
correction has much more significant impact.

Regarding the choice of the correction version, three options have been em-
ployed in the aforementioned analyses – the original correction, the improved
correction with r2-z map sewed using SPN nGd signal in GdLS and U-series al-
pha in LS and and the one with r2-z map based on U-series alpha only. For
simplicity, we will refer to them as “original correction”, “SPN nGd & alpha cor-
rection” and “alpha only correction” respectively. However, it should be noted
that only simplified versions of the improved correction were employed in the
oscillation analysis based on nGd as we will discuss in the following section.

5.4.1 Neutrino Oscillation Analysis Based on nGd
Since the impact of the improved correction (compared to the original one) on the
oscillation analysis based on nGd was expected to be minimal, only a simplified
version of the improved correction was used. This version did not include the
azimuthal part and thus had only one step – application of the r2-z residual
correction map. These maps were based on regular reconstructed energy and used
fixed time division point (2017-03-31) for all ADs, otherwise their construction
followed the exact same procedure as in the full version of the improved correction
described in this thesis.

There were several groups working on the oscillation analysis. We overview
preliminary results from two of them to assess the impact of the simplified version
of the improved correction. These preliminary results are listed in Tab. 5.3 based
on Ref. [75] (Analysis 1) and Ref. [76] (Analysis 2). As we can see there, the
impact of the correction choice on this analysis is minimal – the values of sin2 2θ13
and ∆m2

32 parameters remain almost unchanged. While there is an improvement
of χ2

min/NDF in certain configurations, there is no strong preference for either
correction.

It was eventually decided that the simplified SPN nGd & alpha correction
would be applied in the final neutrino oscillation analysis based nGd described
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Table 5.3: Preliminary results from the neutrino oscillation analysis based on
nGd for several nonuniformity correction options. Values taken from Ref. [75]
(Analysis 1) and Ref. [76] (Analysis 2). Normal mass ordering was assumed.

Correction sin2 2θ13 ∆m2
32[10−3 eV2] χ2

min/NDF

Analysis 1
Original 0.0858 ± 0.0023 2.430 ± 0.056 613.1/578

nGd & alpha 0.0857 ± 0.0023 2.433 ± 0.056 606.6/578
Alpha only 0.0856 ± 0.0023 2.433 ± 0.056 620.0/578

Analysis 2
Original 0.0854 ± 0.0025 2.465 ± 0.053 559.5/541

nGd & alpha 0.0855 ± 0.0025 2.465 ± 0.053 565.4/541
Alpha only 0.0854 ± 0.0025 2.465 ± 0.053 543.2/541

in Ref. [3].

5.4.2 Neutrino Oscillation Analysis Based on nH
The application of the improved nonuniformity correction grows significantly in
importance when events occurring predominantly in LS are analyzed as in the
neutrino oscillation analysis based on nH.

While performing the whole oscillation analysis would be far beyond the scope
of this thesis, we can still take a look at what is being observed in the currently
ongoing oscillation analysis, which is aimed towards the upcoming publication
of neutrino oscillation measurement based on nH. Unlike the previous oscillation
analysis published in Ref. [34], which fitted sin2 2θ13 using only the measured reac-
tor antineutrino rates across the ADs, this ongoing analysis fits both antineutrino
rates and energy spectral shapes to obtain both sin2 2θ13 and ∆m2

ee. To assess
the impact of the improved nonuniformity correction, we will show preliminary
results from one of the working groups – collaboration of University of Califor-
nia Berkeley, Charles University, University of California Irvine and Shandong
University [77]. This analysis uses data only up to August 2017 and thus avoids
the effects of some of the dead PMTs that our improved nonuniformity correc-
tion aims to address. Nevertheless, the impact of the improved correction is still
considerable.

While the impact of the correction choice on the θ13 and ∆m2
ee oscillation

parameters determination is of the highest interest to us, we will first take a
look at some intermediate steps. In Fig. 5.8, we can see examples of the prompt
and delayed IBD energy spectra with the three nonuniformity correction options
mentioned above. The differences in the prompt spectra, which are related to
the incident antineutrino energy by Eq. 2.2, are barely observable (both the SPN
nGd & alpha and alpha only corrections cause slight shift towards higher ener-
gies), but it is enough to influence θ13 and ∆m2

ee determination. The right panel
shows delayed spectra with the IBD nH peak fitted by the DYB function with
one exponential tail, which can be described by Eqs. 3.13 and 3.14.The fitting
range is (1.6 MeV, 2.8 MeV). As the nH peak is narrower than the prompt spec-
trum, the impact of the correction choice there is more notable. Moreover, using
parameters obtained from the fit, we can compare how IBD nH peak mean and
energy resolution are affected across the ADs.
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Figure 5.8: Comparison of prompt (left) and delayed (right) IBD spectra obtained
using three nonuniformity correction options. The delayed spectrum is fitted
by the DYB function with one exponential tail. EH2-AD1 was chosen for this
example as it has the highest statistics of all ADs.

In Fig. 5.9 we can observe how the IBD nH peak mean and energy resolution
change depending on the nonuniformity correction choice. Generally speaking,
both the SPN nGd & alpha and alpha only corrections have similar effect of shift-
ing the IBD nH peak to higher energies when compared to the original correction.
Depending on the AD, the shift is 0.15% – 0.45% with the SPN nGd & alpha cor-
rection and 0.2% – 0.5% with the alpha only correction. Both of these correction
versions also lead to a slightly better alignment between the ADs meaning that
the means of the IBD peaks are within 0.45%, 0.40% and 0.35% bands around
the average using the original, alpha only and SPN nGd & alpha corrections
respectively. Ideally, we would observe the same IBD nH peak mean for all ADs.

Figure 5.9: IBD nH peak mean (left) and energy resolution (right) for three
nonuniformity correction options. The values were obtained by fitting of the IBD
nH peak, example of which is shown in Fig. 5.8.

Regarding the energy resolution of IBD nH peak shown in the right panel of
Fig. 5.9, there is no unambiguous trend. Both the SPN nGd & alpha and alpha
only corrections tend to improve the energy resolution more often than worsen
it, the alpha only correction performs mostly better than the SPN nGd & alpha
correction in this regard. However, in several ADs, the original correction per-
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Table 5.4: Preliminary results from neutrino oscillation analysis based on nH for
three nonuniformity correction options.

Correction sin2 2θ13 ∆m2
ee [10−3 eV2] χ2

min/NDF
Original 0.0807+0.0073

−0.0075 2.65+0.13
−0.14 147.5/134

SPN nGd & alpha 0.0785+0.0075
−0.0073 2.66+0.14

−0.14 154.6/134
Alpha only 0.0824+0.0072

−0.0072 2.66+0.13
−0.14 149.4/134

forms the best. While we would like to see the SPN nGd & alpha and alpha only
corrections to improve the energy resolution in all ADs, we need to keep in mind
that both of these corrections use the r2-z map based on U-series alpha in LS,
while the original correction uses SPN nH, i.e. signal of the same nature as IBD
nH. The alpha signal was chosen for r2-z map construction to provide the best
correction not for the delayed IBD nH signal, but for the prompt positron signal,
which is more similar in energy deposition to alphas than to gammas. While the
delayed signal serves to identify the IBD events, the prompt spectrum actually
goes to the fitter and is responsible for sin2 2θ13 and ∆m2

ee determination. Unfor-
tunately, as the energy spectrum of observed reactor antineutrinos is continuous
with complicated shape, we cannot easily fit the prompt spectrum and determine
how the choice of the correction affects the energy resolution there.

The impact of the correction choice on sin2 2θ13 and ∆m2
ee determination is

summarized in Tab. 5.4. The relative uncertainty of sin2 2θ13 measurement is
9%. While the SPN nGd & alpha correction causes almost 3% decrease in the
measured value (about a third of the uncertainty) when compared to the original
correction, the alpha only correction causes the value of sin2 2θ13 to increase by
little over 2% (about a quarter of the uncertainty). This is rather surprising as we
would expect both these corrections to influence the sin2 2θ13 fitting in the same
direction, because they have similar impact on the prompt and delayed spectra.
However, we need to keep in mind that the results are still preliminary. Either
way, while the choice of the correction version does not completely change the
sin2 2θ13 value, its impact is certainly not negligible.

The relative uncertainty of ∆m2
ee determination is about 5% and the impact

of the correction choice there is smaller than for sin2 2θ13. The SPN nGd & alpha
and alpha only corrections cause shift higher of 0.6% and 0.4% respectively when
compared to the original correction, which is about a tenth of the uncertainty.

To sum up, the impact of the choice of the nonuniformity correction version on
the neutrino oscillation analysis based on nH is considerable unlike the oscillation
analysis based on nGd where it was negligible. While the original correction has
the lowest χ2

min, we have more confidence in the results obtained with the SPN
nGd & alpha and alpha only corrections, because they address several issues of
the original correction as we have discussed in this chapter. Moreover, we have
seen that the energy resolution of IBD nH peak on average improved despite
the fact that both the SPN nGd & alpha and alpha only corrections are tuned
for particles with localized energy deposition in LS and not gammas as is the
original correction. However, we need to bear in mind that the work on the
neutrino oscillation analysis based on nH is still in progress and the results we
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have shown are preliminary.
Currently, there is no clear preference between the SPN nGd & alpha and

alpha only corrections as to which one will be used for the final result.
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Conclusion
The main goal of this work was to scrutinize the detector nonuniformity correction
used in the Daya Bay experiment and design a new improved version especially
with regards to the neutrino oscillation analysis based on nH which is currently
being worked on.

To provide context for this task, we started the thesis by description of the
physics behind neutrino oscillation, parameters that drive it and ways these pa-
rameters are measured. After that the Daya Bay experiment was introduced
along with overview of its detector system and physics program. Next we focused
on the procedure of event reconstruction with emphasis on the original nonuni-
formity correction and especially its shortcomings, most notably the absence of
radial dependence in the azimuthal part of the correction and general lack of
means to deal with dead PMTs. It was clearly shown that a revision of the origi-
nal correction is necessary. However, such revision would not be possible without
a suitable set of signals that allow us to extract information about the energy
scale in various parts of the detectors.

We thus proceeded to a very detailed overview of various types of signals,
which I carried out in order to assess their usefulness for a nonuniformity study.
While there are several naturally occurring correlated decays, it was found out
that their presence is linked to gadolinium doping and thus limited to GdLS,
except for U-series with 214Bi → 214Po → 210Pb correlated decays, which are also
present in LS due to 222Rn contamination. Moreover, its delayed alpha signal
has only one significant energy line, so it can be reasonably well fitted. This
makes it a promising signal for a nonuniformity study despite some issues which
were also investigated and addressed. Besides these correlated decays, gamma
signals from captures of spallation neutrons on hydrogen and gadolinium were
also checked. Eventually, these three signals (U-series alpha, SPN nH and SPN
nGd) were selected to be used for the construction of an improved version of the
nonuniformity correction.

Having the signals, their selection and fitting prepared, we moved on to my
scrutiny of the original nonuniformity correction and finally creation of an im-
proved one. Starting with the azimuthal part of the correction, it was shown that
the original version is inadequate, so much so that the easiest way to deal with
it was to completely revoke it and then design a new azimuthal correction es-
sentially from scratch using U-series alpha signal. This new azimuthal correction
reflects both the effect of dead PMTs and Earth’s magnetic field with data-driven
radial dependence included.

The issues of the original r2-z correction were not that serious, hence it was
decided to make a residual correction on top of the current one. Three residual
correction maps were constructed based on the aforementioned signals. They
reflect the effect of the dead PMTs and also address other issues of the original
correction.

At the end of the thesis, I briefly assessed the impact of the improved correc-
tion on the neutrino oscillation analyses using data provided by several working
groups. The impact was minimal in the analysis based on nGd, because its statis-
tics comes mostly from GdLS, where the differences between the original and the
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improved correction are rather small. On the contrary, in the oscillation anal-
ysis based on nH, the impact of the improved correction is quite considerable,
especially for determination of sin2 2θ13. Besides that, the improved correction
on average improves the energy resolution of the IBD nH peak.

Eventually, the simplified version of the improved correction based on SPN
nGd in GdLS and U-series alpha in LS was employed in the final neutrino oscil-
lation analysis based on nGd. The full versions of the improved correction based
on SPN nGd in GdLS and U-series alpha in LS and the one based on U-series
alpha in the whole AD are currently employed in the ongoing oscillation analysis
based on nH, which fits both antineutrino rates and energy spectral shapes. It
has not been yet decided which one will be selected for the final result.
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A. Calculation of Background
Subtraction Factors
When performing the fine selection of a particular correlated decay with mean
lifetime τS, it can happen that we would like to subtract not only uncorrelated
background, but another correlated signal with mean lifetime τC too. Such task
can be done using three coincidence time windows. If τS < τC, then the appropri-
ate configuration is signal – background – signal window. Assuming that the first
signal window covers coincidence time interval (t1, t2), background window (t3, t4)
and second signal window (t5, t6), with corresponding sets of correlated pairs de-
noted as S1, B and S2 respectively, we get the final data-set F by background
subtraction

F = S1 − wBB + wSS2, (A.1)
where wB and wS are weighting factors for the background and second signal
window respectively. This procedure could be also viewed as background addition
for S2 as there is minimum of the desired correlated signal, but it allows to cancel
out the unwanted correlated signal.

The weighting factors in Eq. A.1 are set in the way that both uncorrelated
and one unwanted type of correlated signal are subtracted. The uncorrelated
signal has flat coincidence time distribution

PU(t) = NU. (A.2)

When we plug it in the Eq.A.1, we get following condition∫ t2

t1
PU(t)dt − wB

∫ t4

t3
PU(t)dt + wS

∫ t6

t5
PU(t)dt = 0. (A.3)

For the unwanted correlated signal with exponential coincidence time distribution

PC(t) = NC · e
− t

τC (A.4)
we get analogous condition∫ t2

t1
PC(t)dt − wB

∫ t4

t3
PC(t)dt + wS

∫ t6

t5
PC(t)dt = 0. (A.5)

Thus, we have two linear Eqs. A.3 and A.5 with two variables wB and wS which
can be easily solved giving us values of wB and wS for given signal and background
windows (of non-zero length)

wB = (t2 − t1)(e− t5
τC − e

− t6
τC ) − (t6 − t5)(e− t1

τC − e
− t2

τC )

(t4 − t3)(e− t5
τC − e

− t6
τC ) − (t6 − t5)(e− t3

τC − e
− t4

τC )
(A.6a)

wS = (t2 − t1)(e− t3
τC − e

− t4
τC ) − (t4 − t3)(e− t1

τC − e
− t2

τC )
(t4 − t3)(e− t5

τC − e
− t6

τC ) − (t6 − t5)(e− t3
τC − e

− t4
τC )

. (A.6b)

If we want to subtract correlated signal with shorter mean lifetime than that
of correlated signal we are interested in (τS > τC), we can use an analogous
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procedure employing three coincidence time windows with following ordering:
background – signal – background. The subtraction then takes form

F = −wB1B1 + S − wB2B2, (A.7)

which leads to following formulae for the weighting factors

wB1 = (t4 − t3)(e− t5
τC − e

− t6
τC ) − (t6 − t5)(e− t3

τC − e
− t4

τC )
(t2 − t1)(e− t5

τC − e
− t6

τC ) − (t6 − t5)(e− t1
τC − e

− t2
τC )

(A.8a)

wB2 = (t2 − t1)(e− t3
τC − e

− t4
τC ) − (t4 − t3)(e− t1

τC − e
− t2

τC )

(t4 − t3)(e− t5
τC − e

− t6
τC ) − (t6 − t5)(e− t3

τC − e
− t4

τC )
. (A.8b)

If we then want to keep the coefficients close to 1, we can set the length of the
B1 window to roughly one half-life of the unwanted correlated signal so that it
accumulates the same statistics as the following longer signal window.
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B. Pseudorate Calculation
The concept of pseudorate was introduced in order to provide a reasonably well
obtainable variable for correlated decays which is directly proportional to the ac-
tual rate and thus copies its changes over time given that some basic assumptions
are met. Pseudorate for a particular type of correlated decay is calculated in two
steps:

1. Applying fine cuts on the loose selection1, histogram of time differences u
between subsequent pairs of correlated decay candidates (including uncor-
related background as we cannot distinguish these two on pair to pair basis)
is made for the part of AD and period of interest. Assuming that the decay
is a random process of constant rate over the selected period (as well as
any background), the u distribution should follow an exponential function
as shown in Fig. B.1

P (u) = Nue− u
⟨u⟩ , (B.1)

where Nu is normalization factor and ⟨u⟩ is the mean time difference be-
tween subsequent candidate pairs inversely proportional to the rough pseu-
dorate ρ̃ which encompasses both correlated and uncorrelated signals

ρ̃ = 1
⟨u⟩

. (B.2)

There are in principle two ways of extracting the ⟨u⟩ – either by performing
the exponential fit or by just taking the mean value of the distribution. Even
though the former approach can in principle have some problems2, most of
the time both can be used with similar results as illustrated in Fig. B.3. As
it is simpler, the latter approach is utilized from now on.

2. While the rough pseudorate could be a useful variable, it contains by con-
struction contributions from both correlated decays and uncorrelated signal.
The way to deal with that is to make a histogram of coincidence times (t)
for each period and AD part as well. Such histogram then can be fitted as
shown in Fig. B.2, presumably with one exponential function correspond-
ing to the chosen correlated decay of mean lifetime τ and constant function
corresponding to the uncorrelated background contribution

P (t) = NSe− t
τ + NB, (B.3)

where “S” in the subscript stands for signal and “B” for background. Using
the values NS, NB from the fit and τ either from the fit or as a tabulated
value, we can calculate the contribution from the correlated decay. For a

1Note that the pseudorate calculation does not use signal and background windows, instead
only one coincidence time window is employed, which may or may not correspond to the signal
window.

2It can happen, albeit rarely, that the pseudorate quickly changes in the period of interest
and as a result the u distribution becomes distorted essentially into a combination of exponential
functions with various slopes, which cannot be easily fitted by a simple exponential function.
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Figure B.1: An example of the distribution of time differences between subsequent
pairs of correlated decays obtained using U-series fine cuts as listed in Tab. 4.4
on first two months of EH1-AD1 data. Mean value of the histogram does not
match the fitted value ⟨u⟩ perfectly, but for most purposes either can be used.

Figure B.2: An example of correlation time histogram used for U-series pseudo-
rate correction. The histogram is fitted by formula described by Eq. B.3, values
of parameters NS and NB are determined and used to calculate pseudorate cor-
rection using Eq. B.4.
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window covering (t1, t2) interval of coincidence time, the correlated decay
relative contribution is

η =
∫ t2

t1
NSe− t

τ dt∫ t2
t1

NSe− t
τ dt +

∫ t2
t1

NBdt
=

NSτ
(
e− t1

τ − e− t2
τ

)
NSτ

(
e− t1

τ − e− t2
τ

)
+ NB(t2 − t1)

. (B.4)

Combining Eq. B.2 and Eq. B.4 we get the final formula for pseudorate ρ
that corresponds to correlated decays of interest only

ρ = ηρ̃ = 1
⟨u⟩

NSτ
(
e− t1

τ − e− t2
τ

)
NSτ

(
e− t1

τ − e− t2
τ

)
+ NB(t2 − t1)

, (B.5)

given the assumption that only one type of correlated signal has made
it pass our cuts. Nevertheless, this approach can be easily extended to
account for more types of correlated decays passing the cuts simultaneously
by appropriately adding them to the coincidence time fitting.
The downside of using coincidence time distribution to correct the rough
pseudorate is that it also brings additional uncertainties and statistical fluc-
tuations as illustrated in Fig. B.3.

Figure B.3: Comparison of the rough pseudorate ρ̃ corresponding to both corre-
lated and uncorrelated signals and the final pseudorate ρ for Ac-series EH1-AD2
for the whole period of data-taking. Moreover, each of these quantities are deter-
mined both by directly taking the mean time difference between correlated pairs
⟨u⟩ and by performing an exponential function fit described by Eq. B.1 and shown
in Fig. B.1. While the choice of ⟨u⟩ determination (mean value or fit) has little
impact, the determination of the correlated decays contribution (as described by
Eq. B.4) introduces uncertainties which are propagated to the final pseudorate.

111



One of the assumptions we have made is that the rate of uncorrelated signals
causing accidental coincidences is constant. If it changes over time, the correc-
tion described by Eq. B.4 prevents direct influence on pseudorate measurement,
however, changing singles rate can still influence it indirectly by changing the
multiplicity cut efficiency. Fortunately, the singles rate is quite stable except for
a slight temporary excess at the beginning of data taking in EH3 which is illus-
trated in Fig. B.4 by the means of accidental coincidences pseudorate which is
roughly proportional to square of singles rate. As shown in Figs. 4.7, 4.10, 4.13,
this excess is not significant enough to cause the pseudorate measurement of
individual series to be distorted.

Figure B.4: Pseudorate of accidental coincidences caused by singles with
Eprompt ∈ (1.5 MeV, 3.2 MeV), Edelayed ∈ (0.5 MeV, 3.2 MeV) and coincidence
time in (1000 µs, 2000 µs) which is roughly proportional to the square of corre-
sponding singles rate. There is only slight excess of the accidentals pseudorate
in the beginning of data taking in EH3, otherwise the pseudorate of all ADs is
stable.

Apart from the singles rate, muon rate also has an effect on detection efficiency
and if it changed substantially, the pseudorate measurement could be distorted.
Fortunately, muon rate is stable except for up to 1% seasonal variation [78], which
has negligible impact on pseudorate measurement.
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C. Rare 234Pa – 234mU – 234U
Correlated Decay
While the correlated decays centered around 212Po, 214Po, 215Po are most promi-
nent and most useful for detector response study, there is one more decay present
in the 238U decay chain with mean coincidence time suitable for measurement:
234Pa → 234mU → 234U. The 234mU isomer mean lifetime is quite convenient
48 µs, but this state is populated only in 0.03% of all 234Pa decays [79]. This
means we have very limited statistics to work with, but it is still insightful to
look into this correlated decay in more detail.

Table C.1: Fine selection cuts for 234Pa → 234mU → 234U correlated decay.

Signal window (5 µs, 100 µs)
Coefficient 1

Background window (100 µs, 2000 µs)
Coefficient wB 0.05

Maximal distance 250 mm
Prompt energy (0.5 MeV, 0.7 MeV)
Delayed energy (1.25 MeV, 1.5 MeV)

C.1 Fine Selection
The fine selection parameters are listed in Tab. C.1. The signal coincidence time
window starts at 5 µs to avoid Th-series contamination and ends at 100 µ at
about two mean lifetimes of 48 µs yielding about 78% of 234Pa → 234mU → 234U
decays.

Meanwhile, Ac-series and U-series contamination is minimized by setting lower
bound on the delayed energy to 1.25 MeV. In addition to that, the maximal dis-
tance was set to 250 mm in order to improve the signal to uncorrelated background
ratio. This leads to further loss of already limited statistics. In order to offset
it, data from all ADs were merged together. As a result, we can take a look into
the prompt and delayed energy spectra and most importantly the spatial distri-
bution. However, the statistics is still not sufficient for a pseudorate evolution
study.

C.2 Coincidence Time
The coincidence time distribution obtained with relevant cuts from Tab. C.1 is
shown in Fig. C.1. The mean lifetime was fitted in order to verify that 234mU
is responsible for the observed signal. The result is indeed consistent with the
expectation of 48 µs.
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Figure C.1: Coincidence time distribution of 234Pa → 234mU → 234U correlated
decays obtained with relevant cuts from Tab. C.1. The measured mean lifetime is
consistent with expectation of 48 µs thus confirming that the 234Pa → 234mU →
234U is indeed responsible for the observed correlated signals.

C.3 Prompt Energy
The prompt signal which corresponds to populating of the 234mU metastable state
is caused by a combination of beta and gamma decay of a particular 234Pa isomer
with overall probability of 0.03% out from all 234Pa decays. The maximal energy
of the beta decay is 668 keV and it is immediately followed by a 131 keV gamma
emission [79], the observed prompt energy thus should go up to ∼0.8 MeV. This
is consistent with the data shown in Fig. C.2..

C.4 Delayed Energy
The delayed signal is caused by deexcitation of 234mU by a gamma cascade with
total energy of 1421 keV [79]. As we can see in Fig. C.3, the reconstructed energy
mean is only ∼1.29 MeV, likely due to the liquid scintillator nonlinearity. While
the peak can be fitted and theoretically used for detector energy response study,
the statistics is far too limited for that purpose.

C.5 Spatial Distribution
As shown in Fig. C.4, the 234Pa → 234mU → 234U correlated decays are present
only in GdLS with just a small part reconstructed in LS. A rather surprising
feature is that in GdLS the number of observed events decreases with radius.
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Figure C.2: Prompt energy spectrum of 234Pa → 234mU → 234U correlated decay
obtained with relevant cuts from Tab. C.1 and data from all ADs. Note that the
shape of the spectrum below 0.7 MeV is affected by imperfect detection efficiency.

Figure C.3: Delayed energy spectrum obtained with relevant cuts from Tab. C.1
and data from all ADs. The 234mU peak is centered around 1.3 MeV. The much
bigger peak to the left is caused by a combination of Ac-series and U-series sig-
nal – for that reason, lower bound of 1.25 MeV on the delayed energy cut was
adopted. The spectrum is fitted by double Gaussian function (red line) with both
contributing parts also drawn separately in green and blue.
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However, this is most likely caused by detection efficiency for events with energy
< 0.7 MeV decreasing towards the center of the AD and not by the actual physical
spatial distribution of 234Pa. The fact that the presence of 234Pa from the upper
part of the U decay chain is limited to the GdLS suggests that the observed
contamination of 214Bi → 214Po → 210Pb decays (labeled as U-series) in LS is
caused by 222Rn coming from outside of LS.

Figure C.4: Spatial distribution of 234Pa → 234mU → 234U correlated decays ob-
tained with cuts from Tab. C.1. Most of the events are observed in the outer part
of GdLS as the detection efficiency for the prompt energy < 0.7 MeV required by
the selection gets lower with decreasing radius. Meanwhile, the 234Pa contamina-
tion in the LS seems to be negligible (there are quite large statistical fluctuations
there though).
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D. More Examples of EMF Effect
on Azimuthal Nonuniformity

Figure D.1: Three more examples of the EMF effect on azimuthal nonuniformity
using semi-corrected energy. (Left) Dependence of the relative energy on the
azimuthal angle for 4 concentric rings in each AD, each ring shown in a different
color. The dependence is fitted by α cos(ϕ − ϕ0), where α is the amplitude of
the EMF effect in the particular ring. (Right) The dependence of α on radius
r fitted by a linear function α(r) = κr + α0. ADs with pronounced EMF effect
were selected and data from before March 2017 were used in order to reduce the
impact of the dead PMTs.
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E. Nonuniformity Maps Used in
the Improved Correction

Figure E.1: Radius-normalized M̃RAC maps used by the new azimuthal correction
in the near halls. Note that EH1-AD1 has only one time period.
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Figure E.2: Radius-normalized M̃RAC maps used by the new azimuthal correction
in the far hall.
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Figure E.3: Residual r2-z nonuniformity maps MRZ based on U-series alpha signal
for ADs in the near halls. Note that EH1-AD1 has only one time period.
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Figure E.4: Residual r2-z nonuniformity maps MRZ based on U-series alpha signal
for ADs in the far hall.
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Figure E.5: Residual r2-z nonuniformity maps MRZ based on SPN nH signal for
ADs in the near halls. Note that EH1-AD1 has only one time period.
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Figure E.6: Residual r2-z nonuniformity maps MRZ based on SPN nH signal for
ADs in the far hall.
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Figure E.7: Residual r2-z nonuniformity maps MRZ based on SPN nGd signal in
GdLS and U-series alpha in LS for ADs in the near halls. Note that EH1-AD1
has only one time period.
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Figure E.8: Residual r2-z nonuniformity maps MRZ based on SPN nGd signal in
GdLS and U-series alpha in LS for ADs in the far hall.
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