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Abstract:

This thesis is concerned with computational complexity aspects of graph homo-
morphisms and related concepts. We are mainly interested in various polynomial
time versus NP-complete dichotomies. These results are especially popular thanks
to the seminal result of Hell and Nešetřil providing the complexity dichotomy for
graph homomorphism problems and the recent breakthrough result proving the
complexity dichotomy for constraint satisfaction problems.

The thesis is divided into three parts, all unified by the common goal to provide
complexity classifications of various graph homomorphism problems. The first
part is about list homomorphism problems for signed graphs. We study the
complexity of such problems and obtain a structural description and dichotomy
first for the case of targets being signed trees and then for the so-called separable
graphs.

The second part focuses on graph covering projections, also known as locally
bijective homomorphisms. To the best of our knowledge, we are the first to initi-
ate cataloguing the complexity of the corresponding problems for (mutli)graphs
with semi-edges. We have three larger goals here. (1) Providing the complete
dichotomy for one- and two-vertex target graphs. (2) Discuss and propose the
right definition of graph cover in the case of disconnected targets. (3) Explore
what happens when we introduce lists into the problem.

The final part is dedicated to acyclic colourings, which can be viewed as special
constrained colourings and hence homomorphisms to complete graphs. We study
the effect of restricting the class of input graphs to those with a forbidden induced
subgraph by providing a partial complexity dichotomy in the case where the
number of colours is a part of the input and the full dichotomy when the number
of colours is fixed.
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Chapter 1

Introduction

The theme of graph homomorphisms is a very active and fruitful area of math-
ematics and, more concretely, combinatorics and theoretical computer science.
This is certainly not an exaggeration, considering that the concept generalises
well-known and classical combinatorics problems, with maybe the most notable
example being graph colouring. Furthermore, graph homomorphisms are a spe-
cial case of the constrained satisfaction problems (CSPs). While the complexity
classification for graph homomorphism problems is now a standard result [102],
the classification for CSPs took a few decades. The study of CSP is undoubtedly
an important and very live topic spanning general algebra, theoretical computer
science, combinatorics, logic, and many other areas, and no doubt the effort be-
hind proving the CSP dichotomy conjecture (now a theorem [43, 173]) was a
driving force behind its popularity and appeal.

This introduction certainly cannot aim to provide a comprehensive introduction
to graph homomorphisms. The reason is quite simple: there is already a very nice,
coherent, complex, and relatively recent one written by Pavol Hell and Jaroslav
Nešetřil [103] (with the second edition in preparation). Let us at least provide a
brief minimum to make this thesis self-contained.

For the sake of generality and simplicity, we shall define graph homomorphisms
for digraphs. Digraphs are a pair consisting of a set V , called vertices, and a
binary relation E on V , called edges. A mapping f between the vertices of two
digraphs G and H is then called a digraph homomorphism if f(u)f(v) ∈ E(H)
whenever uv ∈ E(G). In accordance with [102], graphs are those digraphs with
edge relation being irreflexive and symmetric (those are also frequently denoted
as simple graphs or graphs without loops and multiedges).

However, for this thesis, the preceding definition of digraph homomorphism is
still not general enough (with the sole exception of Chapter 9). The reason is
rather simple. Both Part I and Part II of this thesis deal with special kinds of
graphs; in Part I, they are signed graphs, and in Part II, they are graphs with
semi-edges. These types of graphs are certainly not new and unknown, but on
the other hand, they are also not standard ones, especially when it comes to the
study of graph homomorphisms. Therefore, the definition of a graph is always
strictly tied to the corresponding part of the thesis. Programmers would say that
the scopes of the definitions are not global but local to the given part.

Finally, this is the reason why all the exhaustive literature review, motivations,
and connections are described in the corresponding chapters (Chapters 2, 5,
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1 Introduction

and 9) rather than in this brief introduction.

While each part pursues slightly different goals, there is one common motivation
behind our efforts, providing a unifying umbrella to all of these results. We want
to explore boundaries between efficient and non-efficient, in other words, polyno-
mial versus NP-complete dichotomies, for various generalisations and variations
of the classical graph homomorphism problem. I sincerely believe that the reader
will find our endeavour described in this thesis interesting.

Note on P versus NP and NP-hardness. In this thesis and its results
and dichotomies, we assume that P is not equal to NP. We also often omit the
obvious argumentation that a given problem belongs to NP, and thus in proving
NP-completeness results, we focus only on NP-hardness.

Papers used in this thesis
The contents of this thesis is based on the following papers:

1. [23] Jan Bok, Richard C. Brewster, Tomás Feder, Nikola Jedličková, and
Pavol Hell: List Homomorphism Problems for Signed Graphs. In 45th
International Symposium on Mathematical Foundations of Computer
Science, MFCS 2020, volume 170 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 170:20:1–20:14, 2020.

2. [24] Jan Bok, Richard C. Brewster, Tomás Feder, Pavol Hell, and Nikola
Jedličková: List Homomorphism Problems for Signed Graphs. Submit-
ted, 2021. https://arxiv.org/abs/2005.05547

3. [22] Jan Bok, Richard C. Brewster, Tomás Feder, Pavol Hell, and Nikola
Jedličková: List homomorphisms to separable signed graphs. In Al-
gorithms and Discrete Applied Mathematics - 8th International Con-
ference, CALDAM 2022, volume 13179 of Lecture Notes in Computer
Science, pages 22–35, 2022. https://doi.org/10.1007/978-3-030-
95018-7_3

4. [27] Jan Bok, Jiří Fiala, Petr Hliněný, Nikola Jedličková, and Jan Kra-
tochvíl: Computational Complexity of Covering Multigraphs with Semi-
Edges: Small Cases. In 46th International Symposium on Mathem-
atical Foundations of Computer Science, MFCS 2021, volume 202 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 21:1–
21:15, 2021.

5. [29] Jan Bok, Jiří Fiala, Nikola Jedličková, Jan Kratochvíl, and Michaela
Seifrtová: Computational Complexity of Covering Disconnected Multi-
graphs. In Fundamentals of Computation Theory, FCT 2021, volume
12867 of Lecture Notes in Computer Science, pages 85–89, 2021.

6

https://arxiv.org/abs/2005.05547
https://doi.org/10.1007/978-3-030-95018-7_3
https://doi.org/10.1007/978-3-030-95018-7_3


6. [28] Jan Bok, Jiří Fiala, Nikola Jedličková, Jan Kratochvíl, and Paweł
Rzążewski: List covering of regular multigraphs. In Combinatorial Al-
gorithms - 33rd International Workshop, IWOCA 2022, volume 13270
of Lecture Notes in Computer Science, pages 228–242, 2022. https:
//doi.org/10.1007/978-3-031-06678-8_17

7. [32] Jan Bok, Nikola Jedličková, Barnaby Martin, Daniël Paulusma,
and Siani Smith: Acyclic, Star and Injective Colouring: A Complexity
Picture for H-Free Graphs. In 28th Annual European Symposium on
Algorithms, ESA 2020, volume 173 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 173:22:1–22:22, 2020.

8. [31] Jan Bok, Nikola Jedličková, Barnaby Martin, Pascal Ochem, Dan-
iël Paulusma, and Siani Smith: Acyclic, Star and Injective Colouring:
A Complexity Picture for H-Free Graphs. Submitted, 2021. https:
//arxiv.org/abs/2008.09415

The papers are often substantially extended, unified better together, and based
on the respective journal versions either submitted or in preparation. At the
beginning of each chapter, we provide a list of publications we base on.

All of the results contained in this thesis have been included here with the approval
of every respective co-author. The contribution of the author of this thesis to each
paper is proportional to the number of co-authors.

Structure of the thesis
We shall now shortly describe the contents of this thesis in a rather informal
manner. We provide more detailed and formal introductions at the beginning of
each part.

It is worth noting that each part can be read without reading any other part. Also,
regarding Part I and Part II, the corresponding introductory chapters (Chapter 2
and 5) contain all necessary preliminaries to understand any subsequent chapter
in the given part.

Part I
The first part of the thesis studies the complexity of list homomorphism problems
for signed graphs.

The complexity of homomorphism (and list homomorphism) problems is a popu-
lar topic [103, 104]. For undirected graphs, it was shown in [102] that the problem
of deciding the existence of homomorphisms from an input graph to a fixed graph
H is polynomial if H is bipartite or has a loop and is NP-complete otherwise.
For general structures H, the corresponding problem leads to the so-called CSP
dichotomy conjecture [69, 112], which was only recently established [44, 173]. In
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1 Introduction

the list homomorphism problem for H, the input contains with each input graph
also lists of allowed images for each vertex. The list homomorphism problems
generally have a nicer behaviour than the homomorphism problems because the
lists facilitate recursion to subproblems.

Signed graphs are related to graphs with two symmetric binary relations; in
addition, they are equipped with an operation of switching. The possibility of
switching poses challenges when classifying the complexity of homomorphisms,
as the problem no longer appears to be a homomorphism problem for relational
structures. Nevertheless, it can be shown that it is equivalent to such a problem
and hence the results from [44, 173] imply that there these problems also enjoy
a dichotomy of polynomial versus NP-complete. For homomorphisms of signed
graphs (without lists), a concrete dichotomy classification was conjectured in [39],
and proved in [41]. Interestingly, for signed graphs, the list version no longer
seems easier to classify.

In Chapter 2 we properly introduce the area of homomorphisms of signed graphs
and speak in detail about the above-mentioned efforts. We also introduce crucial
tools for proving NP-completeness.

The next chapter, Chapter 3, provides a complete graph-theoretical classification
of complexity for the case of targets being signed trees. We first provide a clas-
sification for irreflexive (no loops) and reflexive (a loop on each vertex) signed
trees. Then we generalise further to the mixed (some vertices have loops, some do
not) signed trees by providing a suitable majority polymorphism and expanding
our list of forbidden induced subgraphs.

Finally, in Chapter 4 we focus on one particular class of target graphs — bipartite
irreflexive signed graphs in which the unicoloured edges form simple structures,
such as paths and cycles — and provide a full classification of the complexity of
the corresponding list homomorphism problem. In particular, our results confirm
a recent conjecture of Kim and Siggers [117] for this class of signed graphs.

Part II
The second part of the thesis is about graph coverings. A graph covering pro-
jection, also known as a locally bijective homomorphism, is a mapping between
vertices and edges of two graphs which preserves incidences and is a local bijection.
This notion stems from topological graph theory but has also found applications
in general combinatorics and theoretical computer science.

The main goal of this part’s four chapters is to start considering graph coverings
from the computational point of view for multigraphs with loops and possible
semi-edges (informally edges with only one endpoint, see Figure 1.1 for an initial
example). These graphs naturally appear in algebraic graph theory but so far
never received treatment in algorithmic graph theory.

8



Figure 1.1: An example of graphs we consider in Part II of the thesis. Multiedges
are in orange, loops in purple, and semi-edges in red colour.

Chapter 5 first surveys the motivations and literature on graph coverings and
then focuses on carefully introducing all the needed definitions. Chapter 6 aims
to provide the full complexity dichotomy for one-vertex and two-vertex target
graphs. Moreover, we aim (and succeed) at providing a strong dichotomy in
the sense that NP-hardness results have their inputs restricted to simple graphs
(or even simple bipartite graphs), while polynomial results have as their inputs
the most general graphs (in this context they are multigraphs with loops and
semi-edges).

Chapter 7 focuses on a long-neglected question of what should be the right defin-
ition of graph cover in the case of disconnected targets. While this is easy to
dismiss for the classical graph homomorphism problem, it is not the case here.
We introduce three different ways and show that one particular way is, in our
opinion, the best one. Our complexity results support this.

Chapter 8 concludes this part and stems from a similar motivation as the one
for Part I. What happens when we add lists to the problem? Our main result
is that List-H-Cover problem is NP-complete for every k-regular multigraph
H, if k > 2 and if it contains at least one vertex incident with no loops, with
no multiple edges and with at most one semi-edge. We apply the result for NP-
co/polytime dichotomy of the computational complexity of List-H-Cover of
cubic multigraphs.

Part III
The third part of the thesis, consisting of Chapter 9, is about the complexity of
acyclic colourings. It is a standard knowledge that graph colourings (assigning
natural numbers to vertices so that adjacent vertices differ in assigned numbers)
are, in fact, a special case of graph homomorphism. Namely, they correspond to
the homomorphisms into complete graphs. Acyclic colourings are those in which
the subgraph induced by any two colour classes does not contain a bicoloured
cycle (hence the term acyclic). See Figure 1.2 for an introductory example.

As the introductory section of Chapter 9 suggests, the notion was intensively
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1 Introduction

Figure 1.2: An example of an acyclically coloured graph on 13 vertices. In classical
colouring, two colours would be enough, but now three colours are needed.

studied, even from the computational point of view. However, the complexity
for H-free graphs (graphs with forbidden induced subgraph H) was not studied,
contrasting with the classical colouring [120]. We fill this gap by providing a
complete dichotomy for the case when the number of colours is fixed, and we
provide an almost complete dichotomy for the case when the number of colours
is given on input. We also provide a short overview of related results on special
types of acyclic colourings: star colouring and injective colouring.
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List homomorphisms of signed
graphs
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Chapter 2

Introduction to list homomorphism
problems for signed graphs

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Terminology and notation . . . . . . . . . . . . . . . . . . . 15
2.3 More background and connections to CSP . . . . . . . . . 20
2.4 Basic facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.2 Invertible pairs . . . . . . . . . . . . . . . . . . . . . . . . . . 27

This chapter is based on:

• [23] Jan Bok, Richard C. Brewster, Tomás Feder, Nikola Jedličková, and
Pavol Hell: List Homomorphism Problems for Signed Graphs. In 45th
International Symposium on Mathematical Foundations of Computer
Science, MFCS 2020, volume 170 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 170:20:1–20:14, 2020.

• [24] Jan Bok, Richard C. Brewster, Tomás Feder, Pavol Hell, and Nikola
Jedličková: List Homomorphism Problems for Signed Graphs. Submit-
ted, 2021. https://arxiv.org/abs/2005.05547

• [22] Jan Bok, Richard C. Brewster, Tomás Feder, Pavol Hell, and Nikola
Jedličková: List homomorphisms to separable signed graphs. In Al-
gorithms and Discrete Applied Mathematics - 8th International Con-
ference, CALDAM 2022, volume 13179 of Lecture Notes in Computer
Science, pages 22–35, 2022. https://doi.org/10.1007/978-3-030-
95018-7_3

2.1 Motivation
We investigate a problem at the confluence of two popular topics: graph homo-
morphisms and signed graphs. Their interplay was first considered in an unpub-
lished manuscript of Guenin [97], and has since become an established field of
study [148].
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2 Introduction to list homomorphism problems for signed graphs
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Figure 2.1: A reflexive path on three vertices and its bi-arc model. The colours
of the vertices of the graph correspond to the appropriate arcs in the model.

We now introduce the two topics separately. In the study of computational
aspects of graph homomorphisms, the central problem is one of existence – does
an input graph G admit a homomorphism to a fixed target graph H? (The graphs
considered here are undirected graphs with possible loops but no parallel edges.)
This is known as the graph homomorphism problem. It was shown in [102] that
this problem is polynomial-time solvable when H has a loop or is bipartite, and is
NP-complete otherwise. This is known as the dichotomy of graph homomorphisms
(see [103]). The core of a graph H is a subgraph of H with the smallest number of
vertices to which H admits a homomorphism; note that such a subgraph is unique
up to isomorphism. A graph with a loop has a vertex with a loop as its core,
and a (non-empty) bipartite graph has an edge as its core. Thus an equivalent
way of stating the graph dichotomy result is that the problem is polynomial-time
solvable when the core of H has at most one edge, and is NP-complete otherwise.

Before we proceed and add lists to the problem, we first need to introduce bi-arc
graphs.

Definition 2.1. Let C be a fixed circle with two specified points n and s. A bi-arc
graph is a graph H such that each vertex v ∈ V (H) can be associated with a pair
of intervals Nv, Sv where Nv contains n but not s and Sv contains s but not n
satisfying the following conditions:

1. Nv intersects Sw if and only if Sv intersects Nw, and

2. Nv intersects Sw if and only if vw is not an edge of H.

For an illustration, see Figure 2.1. Bi-arc graphs have turned out to be an in-
teresting class of graphs; for instance, this class of graphs includes all interval
graphs: a reflexive graph (each vertex has a loop) is a bi-arc graph if and only
if it is an interval graph. Moreover, an irreflexive graph is a bi-arc graph if and
only if it is bipartite and its complement is a circular arc graph [64].

14



2.2 Terminology and notation

Now suppose the input graph G is equipped with lists, L(v) ⊆ V (H), v ∈ V (G),
and we ask if there is a homomorphism f of G to H such that each f(v) ∈ L(v).
This is known as the graph list homomorphism problem. This problem also has a
dichotomy of possible complexities [65] — it is polynomial-time solvable when H
is a bi-arc graph and it is NP-complete otherwise.

These kinds of complexity questions found their most general formulation in the
context of constraint satisfaction problems. The Feder-Vardi dichotomy conjec-
ture [69] claimed that every constraint satisfaction problem with a fixed template
H is polynomial-time solvable or NP-complete. After a quarter century of con-
certed effort by researchers in theoretical computer science, universal algebra,
logic, and graph theory, the conjecture was proved in 2017, independently by
Bulatov [44] and Zhuk [173]. This exciting development focused research atten-
tion on additional homomorphism type dichotomies, including ones for signed
graphs [39, 41, 85].

The study of signed graphs goes back to [100, 101], and has been most notably
investigated in the papers of Zaslavsky [165, 166, 167, 168, 169], from the point of
view of colourings, matroids, or embeddings. Notably, they are of particular in-
terest in nowhere-zero flows for graphs embedded in non-orientable surfaces [114].
Following Guenin, homomorphisms of signed graphs have been pioneered in [40]
and [147]. The computational aspects of existence of homomorphisms in signed
graphs — given a fixed signed graph (H, π), does an input signed graph (G, σ)
admit a homomorphism to (H, π) — were studied in [39, 85], and eventually a
complete dichotomy classification was obtained in [41]. It is surprisingly similar
to the second way we stated the graph dichotomy result above, see Theorem 2.6,
and the discussion following it.

Although typically homomorphism problems tend to be easier to classify with
lists than without lists (lists allow for recursion to subgraphs), the complexity
of the list homomorphism problem for signed graphs appears difficult to classify.
If the analogy to (unsigned) graphs holds again, then the tractable cases of the
problem should identify an interesting class of signed graphs, generalizing bi-arc
graphs. In the following chapter, we begin the exploration of this concept, first
focusing on the case of signed trees. We find that there is interesting structure
to the tractable cases.

2.2 Terminology and notation
A signed graph is a graph G, with possible loops and multiple edges (at most two
loops per vertex and at most two edges between a pair of vertices), together with
a mapping σ : E(G) → {+, −}, assigning a sign (+ or −) to each edge and each
loop of G, so that different loops at a vertex have different signs, and similarly for
different edges between the same two vertices. For convenience, we shall usually
consider an edge to mean an edge or a loop, and to emphasize otherwise we
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2 Introduction to list homomorphism problems for signed graphs

Figure 2.2: Two switching equivalent signed graphs. To obtain from the graph
on the left the graph on the right, it suffices to switch at both left vertices of the
graph (in any order).

shall call it a non-loop edge. Thus we can say, for example, that each edge of
a signed graph has a sign, meaning both loops and non-loop edges. We denote
a signed graph by (G, σ), and call G its underlying graph and σ its signature.
When the signature name is not needed, we denote the signed graph (G, σ) by ˆ︁G
to emphasize that it has a signature even though we do not give it a name.

We also provide an alternative equivalent definition. A signed graph ˆ︁G consists of
a set V (G) and two symmetric binary relations +, −. We also view ˆ︁G as a graph
G with the vertex set V (G), the edge set + ∪ − (the underlying graph of ˆ︁G), and
a mapping σ : E(G) → {+, −}, assigning a sign (+ or −) to each edge of G. (A
loop is considered to be an edge.)

We now define the switching operation. This operation can be applied to any
vertex of a signed graph and it negates the signs of all its incident non-loop edges.
The signs of loops are unchanged by switching since the loop is incident twice to a
given vertex and thus its sign is negated twice as well. We say that two signatures
σ1, σ2 of a graph G are switching equivalent if we can obtain (G, σ2) from (G, σ1)
by a sequence of switchings. In that case we also say that the two signed graphs
(G, σ1) and (G, σ2) are switching equivalent. See an example in Figure 2.2. We
note a sequence of switchings may also be realized by negating all the edges of
a single edge cut. In a very formal way, a signed graph is an equivalence class
under the switching equivalence, and we sometimes use the notation ˆ︁G to mean
the entire class.

We will usually view signs of edges as colours, and call positive edges blue, and
negative edges red. It will be convenient to call a red-blue pair of edges with
the same endpoint(s) a bicoloured edge (this includes loops as well as non-loop
edges); however, formally they are two distinct edges. By contrast, we call edges
that are not part of such a pair unicoloured; moreover, when we refer to an edge
as blue or red we shall always mean the edge is unicoloured blue or red. We also
call an edge at least blue if it is either blue or bicoloured, and similarly for at least
red edges. The terms at least positive and at least negative are used in the same
sense.

Treating a pair of red-blue edges as one bicoloured edge is advantageous in many
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2.2 Terminology and notation

Figure 2.3: The signed graph on the left is neither balanced nor anti-balanced.
The signed graph on the right is anti-balanced and also balanced, despite having
all edges negative.

descriptions, but introduces an ambiguity when discussing walks, since a walk in
a signed graph could be seen as a sequence of incident vertices and edges, and
so selecting just one edge from a red-blue pair, or it could be interpreted as a
sequence of consecutively adjacent vertices, and hence contain some bicoloured
edges. This creates particular problem for cycles, since in the former view, a
bicoloured edge would be seen as a cycle of length two, with one red edge and
one blue edge. In the literature, the former approach is more common, but here
we take the latter approach. Of course, the two views coincide if only walks of
unicoloured edges are considered. The sign of a walk consisting of unicoloured
edges ˆ︁G is the product of the signs of its edges. Thus a walk of unicoloured edges
is negative if it has an odd number of negative (red) edges, and positive if it has
an even number of negative (red) edges. In the case of unicoloured cycles, we also
call a negative cycle unbalanced and a positive cycle balanced. Note that a vertex
with a red loop is a cycle with one negative edge, and hence is unbalanced.

A signed graph is balanced if all its cycles (if any) have an even number of red
edges and it is anti-balanced if each cycle has an even number of blue edges.
Since bicoloured edge can be viewed as a cycle of length two and thus is neither
balanced, nor anti-balanced, it may be useful to have a weaker notion. A weakly
balanced signed graph is a signed graph in which all unicoloured cycles (if any)
have an even number of red edges and a weakly anti-balanced signed graph is a
signed graph in which each unicoloured cycle has an even number of blue edges.1
For an illustration, see Figure 2.3 and Figure 2.4.

It was proved by Zaslavsky [166] that two signatures of G are switching equivalent
if and only if they define exactly the same set of negative (or positive) cycles. It
is easy to conclude that a signed graph is balanced if it is switching equivalent
to one without red edges (and bicoloured edges), and is anti-balanced if it is
switching equivalent to one without blue edges (and bicoloured edges); here we
view a bicoloured edge as both blue and red. Similarly, a weakly balanced signed

1We were only recently notified by Reza Naserasr that the term of weak balancedness actually
collides with the term weakly bipartite signed graph used by e.g. Guenin [96], Schrijver [156],
and others. (Where bipartite signed graph means actually balanced signed graph, not that the
underlying graph is bipartite.) In the future, we might decide to change the naming.
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2 Introduction to list homomorphism problems for signed graphs

Figure 2.4: The signed graph on the left is both weakly balanced and weakly anti-
balanced. The signed graph on the right is neither weakly balanced nor weakly
anti-balanced.

graph is switching equivalent to a signed graph with all edges and loops at least
blue, and a weakly anti-balanced signed graph is switching equivalent to a signed
graph with all edges and loops at least red. Thus we have a symmetry to viewing
the signs as colours, in particular ˆ︁G is weakly balanced if and only if ˆ︁G′, obtained
from ˆ︁G by exchanging the colour of each edge, is weakly anti-balanced.

We now consider homomorphisms of signed graphs. Since signed graphs ˆ︁G, ˆ︂H
can be viewed as equivalence classes, a homomorphism of signed graphs ˆ︁G to ˆ︂H
should be a homomorphism of one representative (G, σ) of ˆ︁G to one representative
(H, π) of ˆ︂H. It is easy to see that this definition can be simplified by prescribing
any fixed representative (H, π) of ˆ︂H. In other words, we now consider mapping
all possible representatives (G, σ′) of ˆ︁G to one fixed representative (H, π) of ˆ︂H.
At this point, a homomorphism f of one concrete (G, σ′) to (H, π) is just a
homomorphism of the underlying graph G to the underlying graph H preserving
the edge colours. Since there are multiple edges, we can either consider f to
be a mapping of vertices to vertices and edges to edges, preserving vertex-edge
incidences and edge-colours, as in [148], or simply state that blue edges map to
edges that are at least blue, red edges map to edges that are at least red, and
bicoloured edges map to bicoloured edges. Formally, we state it as follows.

Definition 2.2. We say that a mapping f : V (G) → V (H) is a homomorphism of
the signed graph (G, σ) to the signed graph (H, π), written as f : (G, σ) → (H, π),
if there exists a signed graph (G, σ′), switching equivalent to (G, σ), such that
whenever the edge uv is at least positive in (G, σ′), then f(u)f(v) is an edge that
is at least positive in (H, π), and whenever the edge uv is at least negative in
(G, σ′), then f(u)f(v) is an edge that is at least negative in (H, π).

There is an equivalent alternative definition (see [148]). A homomorphism of
the signed graph (G, σ) to the signed graph (H, π) is a homomorphism f of the
underlying graph G to the underlying graph H, which maps bicoloured edges
of (G, σ) to bicoloured edges of (H, π), and which for any closed walk W in
(G, σ) with only unicoloured edges for which the image walk f(W ) has also only
unicoloured edges, the sign of f(W ) in (H, π) is the same as the sign of W in
(G, σ). (In other words, negative closed walks map to negative closed walks and
positive closed walks map to positive closed walks.) This definition does not
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require switching the input graph before mapping it. The equivalence of the
two definitions follows from the theorem of Zaslavsky [166] cited above. That
result is constructive, and the actual switching required to produce the switching
equivalent signed graph (G, σ′) can be found in polynomial time [148].

We deduce the following fact.

Lemma 2.3. Suppose (G, σ) and (H, π) are signed graphs, and f is a mapping of
the vertices of G to the vertices of H. Then f is a homomorphism of the signed
graph (G, σ) to the signed graph (H, π) if and only if f is a homomorphism of
the underlying graph G to the underlying graph H, which moreover maps bicol-
oured edges of (G, σ) to bicoloured edges of (H, π), and for any closed walk W in
(G, σ) with only unicoloured edges for which the image walk f(W ) has also only
unicoloured edges, the signs of W and f(W ) are the same.

Note that each negative closed walk contains a negative cycle, and in particular
an irreflexive tree (H, π) has no negative closed walks except for those using
bicoloured edges. Thus if (H, π) is an irreflexive tree, then the condition simplifies
to having no negative cycle of (G, σ) mapped to unicoloured edges in (H, π)
(because the image would be a positive closed walk). For reflexive trees, the
condition requires that no negative cycle of (G, σ) maps to a positive closed walk
in (H, π), and no positive cycle of (G, σ) maps to a negative closed walk.

For our purposes, the simpler Definition 2.2 is sufficient. Note that whether
an edge is unicoloured or bicoloured is independent of switching, and that a
homomorphism can map a unicoloured edge or loop in ˆ︁G to a bicoloured edge or
loop in ˆ︂H but not conversely.

Let ˆ︂H be a fixed signed graph. The homomorphism problem S-Hom(ˆ︂H) takes
as input a signed graph ˆ︁G and asks whether there exists a homomorphism of ˆ︁G
to ˆ︂H. The formal definition of the list homomorphism problems for signed graphs
is very similar.

Definition 2.4. Let ˆ︂H be a fixed signed graph. The list homomorphism problem
List-S-Hom(ˆ︂H) takes as input a signed graph ˆ︁G with lists L(v) ⊆ V (H) for
every v ∈ V (G), and asks whether there exists a homomorphism f of ˆ︁G to ˆ︂H
such that f(v) ∈ L(v) for every v ∈ V (G).

We note that when ˆ︂H and ˆ︂H ′ are switching equivalent signed graphs, then any
homomorphism of an input signed graph ˆ︁G to ˆ︂H is also a homomorphism to ˆ︂H ′,
and therefore the problems S-Hom(ˆ︂H) and S-Hom(ˆ︂H ′), as well as the problems
List-S-Hom(ˆ︂H) and List-S-Hom(ˆ︂H ′), are equivalent.

We call a signed graph ˆ︂H connected if the underlying graph H is connected. We
call ˆ︂H reflexive if each vertex of H has a loop, and irreflexive if no vertex has a
loop. We call ˆ︂H a signed tree if H, with any existing loops removed, is a tree.
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We may assume that the target signed graph ˆ︂H is connected. This implies no
loss of generality for list homomorphism problems, as each component of an input
signed graph ˆ︁G can only be mapped to one component of a target signed graph ˆ︂H.

2.3 More background and connections to CSP
We now briefly introduce the constraint satisfaction problems (CSP), in the
format used in [69]. A relational system G consists of a set V (G) of vertices and a
family of relations R1, R2, . . . , Rk on V (G). Assume G is a relational system with
relations R1, R2, . . . , Rk and H a relational system with relations S1, S2, . . . , Sk,
where the arity of the corresponding relations Ri and Si is the same for all
i = 1, 2, . . . , k. A homomorphism of G to H is a mapping f : V (G) → V (H) that
preserves all relations, i.e., satisfies (v1, v2, . . . ) ∈ Ri =⇒ (f(v1), f(v2), . . . ) ∈ Si,
for all i = 1, 2, . . . , k. The constraint satisfaction problem with fixed template H
asks whether or not an input relational system G, with the same arities of cor-
responding relations as H, admits a homomorphism to H.

Note that when H has a single relation S, which is binary and symmetric, then
we obtain the graph homomorphism problem referred to at the beginning of
Section 2.1. When H has a single relation S, which is an arbitrary binary relation,
we obtain the digraph homomorphism problem [13] which is in a certain sense [69]
as difficult to classify as the general constraint satisfaction problem. When H has
two relations +, −, then we obtain a problem that is superficially similar to the
homomorphism problem for signed graphs, except that switching is not allowed.
This problem is called the edge-coloured graph homomorphism problem [38], and
it turns out to be similar to the digraph homomorphism problem in that it is
difficult to classify [39]. On the other hand, the homomorphism problem for
signed graphs [39, 41, 85], seems easier to classify, and exhibits a dichotomy
similar to the graph dichotomy classification, see Theorem 2.6.

List homomorphism problems are also special cases of constraint satisfaction
problems, as lists can be replaced by unary relations. Consider first the case
of graphs. Suppose H is a fixed graph, and form the relational system H# with
vertices V (H) and the following relations: one binary relation E(H) (this is a
symmetric relation corresponding to the undirected edges of the graph H), and
2|V (H)| − 1 unary relations RX on V (H), each consisting of a different non-empty
subset X of V (H). The constraint satisfaction problem with template H# has
inputs G with a symmetric binary relation E(G) (a graph) and unary relations
SX , X ⊆ V (H), and the question is whether or not a homomorphism exists. If a
vertex v ∈ V (G) is in the relation SX corresponding to RX , then any mapping
preserving the relations must map v to a vertex in X; thus imposing the relation
SX on v ∈ V (G) amounts to setting L(v) = X. Therefore the list homomorphism
problem for the graph H is formulated as the constraint satisfaction problem for
the template H#.
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Such a translation is also possible for homomorphism of signed graphs. Brewster
and Graves [40] introduced a useful construction. The switching graph (H+, π+)
has two vertices v1, v2 for each vertex v of (H, π), and each edge vw of (H, π) gives
rise to edges v1w1, v2w2 of colour π(vw) and edges v1w2, v2w1 of the opposite
colour. (This definition applies also for loops, i.e., when v = w.) Then each
homomorphism of the signed graph (G, σ) to the signed graph (H, π) corresponds
to a homomorphism of the edge-coloured graph (G, σ) to the edge-coloured graph
(H+, π+) and conversely. For list homomorphisms of signed graphs, we can use
the same transformation, modifying the lists of the input signed graph. If (G, σ)
has lists L(v), v ∈ V (G), then the new lists L+(v), v ∈ V (G), are defined as
follows: for any x ∈ L(v) with v ∈ V (G), we place both x1 and x2 in L+(v). It is
easy to see that the signed graph (G, σ) has a list homomorphism to the signed
graph (H, π) with respect to the lists L if and only if the edge-coloured graph
(G, σ) has a list homomorphism to the edge-coloured graph (H+, π+) with respect
to the lists L+. The new lists L+ are symmetric sets in H+, meaning that for any
x ∈ V (H), v ∈ V (G), we have x1 ∈ L+(v) if and only if we have x2 ∈ L+(v). Thus
we obtain the list homomorphism problem for the edge-coloured graph (H+, π+),
restricted to input instances (G, σ) with lists L that are symmetric in H+. As
above, we can transform this list homomorphism problem for the edge-coloured
graph (H+, π+), to a constraint satisfaction problem. The details are similar to
the construction of H#, except this time the new template (H+, π+)∗ is obtained
by adding unary relations RX = X only for sets X ⊆ V (H+) that are symmetric
in H+.

We conclude that our problems List-S-Hom(ˆ︂H) fit into the general constraint
satisfaction framework, and therefore it follows from [44, 173] that dichotomy
holds for problems List-S-Hom(ˆ︂H). We therefore ask which problems List-S-
Hom(ˆ︂H) are polynomial-time solvable and which are NP-complete.

The solution of the Feder-Vardi dichotomy conjecture involved an algebraic clas-
sification of the complexity pioneered by Jeavons [112]. A key role in this is
played by the notion of a polymorphism of a relational structure H. If H is a
digraph, then a polymorphism of H is a homomorphism f of some power H t to
H, i.e., a function f that assigns to each ordered t-tuple (v1, v2, . . . , vt) of ver-
tices of H a vertex f(v1, v2, . . . , vt) such that two coordinate-wise adjacent tuples
obtain adjacent images. For general templates, all relations must be similarly pre-
served. A polymorphism of order t = 3 is a majority if f(v, v, w) = f(v, w, v) =
f(w, v, v) = v for all v, w. A Siggers polymorphism is a polymorphism of order
t = 4, if f(a, r, e, a) = f(r, a, r, e) for all a, r, e. One formulation of the dicho-
tomy theorem proved by Bulatov [44] and Zhuk [173] states that the constraint
satisfaction problem for the template H is polynomial-time solvable if H admits
a Siggers polymorphism, and is NP-complete otherwise. Majority polymorph-
isms are less powerful, but it is known [69] that if H admits a majority then the
constraint satisfaction problem for the template H is polynomial-time solvable.
Moreover, it was shown in [65] that a graph H is a bi-arc graph if and only if the
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associated relational system H∗ admits a majority polymorphism. Thus the list
homomorphism problem for a graph H with possible loops is polynomial-time
solvable if H∗ admits a majority polymorphism, and is NP-complete otherwise.
It was observed in [117] that this is not true for signed graphs.

There is a convenient way to think of polymorphisms f of the relational system
(H+, π+)∗. A mapping f is a polymorphism of (H+, π+)∗ if and only if it is a
polymorphism of the edge-coloured graph (H+, π+) and if, for any symmetric set
X ⊆ V (H+), we have x1, x2, . . . , xt ∈ X then also f(x1, x2, . . . , xt) ∈ X. We call
such polymorphisms of (H+, π+) semi-conservative.

We can apply the dichotomy result of [44, 173] to obtain an algebraic classification.

Theorem 2.5. For any signed graph (H, π), the problem List-S-Hom(H, π)
is polynomial-time solvable if (H+, π+) admits a semi-conservative Siggers poly-
morphism, and is NP-complete otherwise.

As mentioned above, one can not replace the semi-conservative Siggers poly-
morphism by a semi-conservative majority polymorphism [117]. We focus here
on seeking a graph theoretic classification, at least for some classes of signed
graphs.

2.4 Basic facts
We first mention the dichotomy classification of the problems S-Hom(ˆ︂H) by
Brewster and Siggers [41], previously conjectured by Brewster, Foucaud, Hell,
and Naserasr [39]. A subgraph ˆ︁G of the signed graph ˆ︂H is the s-core (or also
signed core) of ˆ︂H if there is homomorphism f : ˆ︂H → ˆ︁G, and every homomorphismˆ︁G → ˆ︁G is a bijection on V (G). The letter s stands for signed. It is again easy
to see that the s-core is unique up to isomorphism and switching equivalence. In
counting edges we count each unicoloured edge as one and each bicoloured edge
as two.

Theorem 2.6. [41] The problem S-Hom(ˆ︂H) is polynomial-time solvable if the
s-core of ˆ︂H has at most two edges, and is NP-complete otherwise.

When the signature π has all edges positive, the problem S-Hom(H, π) is equi-
valent to the unsigned graph homomorphism problem, and the s-core of (H, π) is
just the core of H. To compare Theorem 2.6 with the graph dichotomy theorem
of [102] as discussed at the beginning Section 2.1, we observe that the core of a
graph cannot have exactly two edges, as a core must be either a single vertex (pos-
sibly with a loop), or a single edge, or a graph with at least three edges. Thus
Theorem 2.6 is stronger than the graph dichotomy theorem from [102], which
states that the graph homomorphism problem to H is polynomial-time solvable
if the core of H has at most one edge and is NP-complete otherwise. (How-
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ever, we note that the proof of Theorem 2.6 in [41] uses the graph dichotomy
theorem [102].)

Observe that an instance of the problem S-Hom(ˆ︂H) can be also viewed as an
instance of List-S-Hom(ˆ︂H) with all lists L(v) = V (H), therefore if S-Hom(ˆ︂H)
is NP-complete, then so is List-S-Hom(ˆ︂H). Moreover, if ˆ︂H ′ is an induced sub-
graph of ˆ︂H, then any instance of List-S-Hom(ˆ︂H ′) can be viewed as an instance of
List-S-Hom(ˆ︂H) (with the same lists), therefore if the problem List-S-Hom(ˆ︂H ′)
is NP-complete, then so is the problem List-S-Hom(ˆ︂H). This yields the NP-
completeness of List-S-Hom(ˆ︂H) for all signed graphs (ˆ︂H) that contain an in-
duced subgraph ˆ︂H ′ whose s-core has more than two edges. Furthermore, when
the signed graph ˆ︂H is weakly balanced, then we may assume that all edges
are at least blue, and the list homomorphism problem for H can be reduced
to List-S-Hom(ˆ︂H). In particular, we emphasize that List-S-Hom(ˆ︂H) is NP-
complete if ˆ︂H is a weakly balanced signed graph (or, by a symmetric argument,
a weakly anti-balanced signed graph), and the underlying graph H is not a bi-arc
graph [65].

Next we focus on the class of signed graphs that have no bicoloured loops and
no bicoloured edges. In this case, the following simple dichotomy — initially an-
nounced in [26] — describes the classification. It follows from our earlier remarks
that these signed graphs are balanced if and only if they are weakly balanced,
and similarly they are anti-balanced if and only if they are weakly anti-balanced.

Theorem 2.7. Suppose ˆ︂H is a connected signed graph without bicoloured loops
and edges. If the underlying graph H is a bi-arc graph, and ˆ︂H is balanced or anti-
balanced, then the problem List-S-Hom(ˆ︂H) is polynomial-time solvable. Other-
wise, the problem is NP-complete.

Proof. The polynomial cases follow from Feder et al. [65], by the following argu-
ment. Suppose ˆ︂H is balanced; we may assume all edges are blue. In [166], there
is a polynomial-time algorithm to decide if the input signed graph ˆ︁G is balanced.
It it is not balanced, there is no homomorphism of ˆ︁G to ˆ︂H. Otherwise, we may
assume that ˆ︁G has also all edges blue and hence there is a homomorphism of ˆ︁G toˆ︂H if and only if there is a homomorphism of G to H. Since H is a bi-arc graph,
this can be decided in polynomial time by the algorithm in [65]. The argument
is similar if ˆ︂H is anti-balanced. Otherwise, ˆ︂H contains a cycle which cannot be
switched to a blue cycle and a cycle which cannot be switched to a red cycle, in
which case the s-core of ˆ︂H contains at least three edges. (This is true even if the
cycles are just loops.)

We have observed that List-S-Hom(ˆ︂H) is NP-complete if the s-core of ˆ︂H has
more than two edges. Thus we will focus on signed graphs ˆ︂H whose s-cores
have at most two edges. This is not as simple as it sounds, as there are many
complex signed graphs with this property, including, for example, all irreflexive
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Figure 2.5: An example of a signed graph and of a chain in it (on the right).

bipartite signed graphs that contain a bicoloured edge, and all signed graphs
that contain a bicoloured loop. That these cases are not easy underlines the fact
that the assumptions in Theorem 2.7 cannot be weakened without significant
new breakthroughs. Consider, for example, allowing bicoloured edges but not
bicoloured loops. In this situation, we may focus on the case when there is a
bicoloured edge (else Theorem 2.7 applies), and so if there is any loop at all,
the s-core would have more than two edges. Thus we consider irreflexive signed
graphs. The s-core is still too big if the underlying graph has an odd cycle. So in
this case it remains to classify the irreflexive bipartite signed graphs that contain
a bicoloured edge. Even this case is complex. We explore homomorphisms to
irreflexive bipartite signed graphs in Chapter 4.

2.5 Tools
We now introduce basic tools for proving our NP-completeness results: chains
and invertible pairs. While invertible pairs have been introduced earlier in the
literature, chains are a completely new concept.

2.5.1 Chains
Definition 2.8. Let (U, D) be two walks in ˆ︂H of equal length, say U , with vertices
u = u0, u1, . . . , uk = v and D, with vertices u = d0, d1, . . . , dk = v. We say that
(U, D) is a chain, provided uu1, dk−1v are unicoloured edges and ud1, uk−1v are
bicoloured edges, and for each i, 1 ≤ i ≤ k − 2, we have

1. both uiui+1 and didi+1 are edges of ˆ︂H while diui+1 is not an edge of ˆ︂H, or

2. both uiui+1 and didi+1 are bicoloured edges of ˆ︂H while diui+1 is not a bicol-
oured edge of ˆ︂H.

See an example of a chain in Figure 2.5.

Let us remind that Not-All-Equal 3-SAT is a problem in which a formula is
given such that each clause has three unnegated variables, and we seek a truth
assignment in which at least one variable is true and at least one is false, in each
clause.
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Figure 2.6: The clause gadget for clause (x ∨ y ∨ z) in Theorem 2.9.

Theorem 2.9. If a signed graph ˆ︂H contains a chain, then List-S-Hom(ˆ︂H) is
NP-complete.

Proof. Suppose that ˆ︂H has a chain (U, D) as specified above. We shall reduce
from Not-All-Equal 3-SAT. For each clause x ∨ y ∨ z, we take three ver-
tices x, y, z, each with list {u}, and three vertices x′, y′, z′, each with list {v}.
For the triple x, y, z, we add three new vertices p(x, y), p(y, z), and p(z, x),
each with list {u1, d1}, and for the triple x′, y′, z′, we add three new vertices
p(x′, y′), p(y′, z′), p(z′, x′), each with list {uk−1, dk−1}. We connect these vertices
as follows:

• p(x, y) adjacent to x by a red edge and to y by a blue edge,

• p(y, z) adjacent to y by a red edge and to z by a blue edge,

• p(z, x) adjacent to z by a red edge and to x by a blue edge.

Analogously, the hexagon x′, p(x′, y′), y′, p(y′, z′), z′, p(z′, x′) will also be alternat-
ing in blue and red colours, with (say) p(x′, y′) adjacent to x′ by a red edge.

Moreover, we join each pair of vertices p(x, y) and p(x′, y′) by a separate path
P (x, y) of length k − 1, say p(x, y) = a1, a2, . . . , ak−2, ak−1 = p(x′, y′), where ai

has list {ui, di} and the edge aiai+1 is blue unless both uiui+1 and didi+1 are
bicoloured, in which case aiai+1 is also bicoloured. Paths P (z, x) and P (y, z) are
defined analogously. See Figure 2.6 for an illustration.

We observe for future reference that the path x, p(x, y) = a1, a2, . . . , ak−2, ak−1 =
p(x′, y′), x′, when considered by itself, admits a list homomorphism both to U and
to D. (To see this invoke Zaslavsky’s theorem characterizing switching equivalent
signatures, and use the fact that both U and D contain a bicoloured edge.)
Further we note there is no list homomorphism to any other subgraph of U ∪ D
where p(x, y) maps to d1 and p(x′, y′) maps to uk−1. (This follows from the
conditions in the definition of chain.)

If x occurs in several clauses, we link the occurrences by a new vertex p(x) with the
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2 Introduction to list homomorphism problems for signed graphs

list {u1} and blue edges to all occurrences of x. Since the edge uu1 is unicoloured,
this will ensure that all occurrences of the vertex x are switched or no occurrence
of x is switched. Hence, the variable x will take on the same truth value in all
clauses.

We denote the resulting graph (G, σ). We now claim that this instance of Not-
All-Equal 3-SAT is satisfiable if and only if (G, σ) admits a list homomorphism
to (H, π).

Let ˆ︁G(x, y, z) denote the subgraph of (G, σ) induced by P (x, y), P (z, x), P (y, z)
and x, y, z, x′, y′, z′. We claim that

(i) any list homomorphism of ˆ︁G(x, y, z) to U ∪ D must switch at either one or
two of the vertices x, y, z, and that

(ii) there are list homomorphisms of ˆ︁G(x, y, z) to U ∪ D that switch at any one
or any two of the vertices x, y, z.

Once this claim is proved, we can associate with every truth assignment a list
homomorphism of ˆ︁G(x, y, z) to U ∪ D where a vertex corresponding to a variable
is switched if and only if that variable is true, and conversely, setting a variable
true if its corresponding vertex was switched in the list homomorphism. (Recall
that we have ensured that all occurrences of a variable take on the same truth
value.)

We now prove (i). Since the lists are so restrictive, any list homomorphism is fully
described by what happens to the paths P (x, y), P (z, x), P (y, z), and whether
or not the vertices corresponding to x, y, z (and x′, y′, z′) are switched. Note
that U begins with a unicoloured edge and D ends with a unicoloured edge. If
neither x nor y or both x and y are switched, the edges xp(x, y) and p(x, y)y are
different colours, and in any list homomorphism of ˆ︁G(x, y, z) to U ∪ D we must
map P (x, y) to D. In particular, x′p(x′, y′) and p(x′, y′)y′ map to a unicoloured
edge and must have the same colour. Thus, if none or all of the vertices x, y, z
were switched, then the hexagon x′, p(x′, y′), y′, p(y′, z′), z′, p(z′, x′) has an even
number of red and even number of blue edges, which is impossible. (It started
with an odd number of each.)

For (ii), it remains to show that one or two of the vertices x, y, z can be switched
under a list homomorphism of ˆ︁G(x, y, z) to U ∪ D. Suppose first that only one
was switched; by symmetry assume it was x (so y and z were not switched). Now
edges x, p(x, y) and p(x, y), y have the same colour, and z, p(z, x) and p(z, x), x
have the same colour. By the above observation, we can map P (x, y) and P (z, x)
to U , and map P (y, z) to D. Note that the switchings necessary for these list ho-
momorphisms affect disjoint sets of vertices (the paths P (x, y), P (y, z), P (z, x)),
so the observation applies. If two vertices, say y and z were switched, the argu-
ment is almost the same and we omit it.
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2.5 Tools

a = 1

b = 10

2 3 4 5 6 7

8

9

U = 1− 2− 3− 4− 5− 6− 7− 6− 7− 6− 5− 4− 8− 9− 10

D = 10− 9− 10− 9− 10− 9 − 8 − 4 − 3 − 2 − 1− 2− 1− 2− 1

Figure 2.7: The graph F1.

2.5.2 Invertible pairs
Invertible pairs played an important role in classifying complexity of list ho-
momorphism problems for graphs. An invertible pair in an undirected graph
H is a pair of vertices a, b, with two walks U, D of the same length, where
U has vertices a = u0, u1, . . . , uk = b, uk+1, . . . , ut = a, and D has vertices
b = d0, d1, . . . , dk = a, dk+1, . . . , dt = b, such that for each i, 1 ≤ i ≤ k − 2,
both uiui+1 and didi+1 are edges of H, while diui+1 is not an edge of ˆ︂H. For sim-
plicity, we say that a signed graph has an invertible pair if its underlying graph
has an invertible pair. It follows from [23, 63, 105, 67] that we have the following
observation.

Theorem 2.10. If ˆ︂H has an invertible pair, then the list homomorphism problem
for ˆ︂H is NP-complete.

Figure 2.7 shows the graph F1, with an invertible pair 1, 10. The walks U, D
begin as indicated, then continue from 7, 10 to 7, 1 in a similar manner, and then
to 10, 1, and similarly for the second half, from 10, 1 to 1, 10.
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This chapter is based on:

• [23] Jan Bok, Richard C. Brewster, Tomás Feder, Nikola Jedličková, and
Pavol Hell: List Homomorphism Problems for Signed Graphs. In 45th
International Symposium on Mathematical Foundations of Computer
Science, MFCS 2020, volume 170 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 170:20:1–20:14, 2020.

• [24] Jan Bok, Richard C. Brewster, Tomás Feder, Pavol Hell, and Nikola
Jedličková: List Homomorphism Problems for Signed Graphs. Submit-
ted, 2021. https://arxiv.org/abs/2005.05547

In this chapter, we study the list homomorphism problem to a fixed target signed
tree. This will illustrate the difficulty of the general problem, since classifying
the complexity of the problem when H is a tree (with possible loops) is already
rather complicated.

The structure of the signed trees in the polynomial cases is interesting, suggesting
that the class of general signed graphs for which the problems are polynomial
may have nice structure, analogous to bi-arc graphs (which characterized the
polynomial cases of list homomorphisms to unsigned graphs).

We shall first treat the case of irreflexive trees, then the reflexive trees, and finally
we will consider the general case.

3.1 Irreflexive trees
In this section, ˆ︂H will always be an irreflexive tree. As trees do not have any
cycles, ˆ︂H is trivially weakly balanced, and hence we may assume that all edges
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blue path

bicolored path

a)

b)

c)

d)

1 2 3 k − 1 k
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k − 1k − 2 k4

4 5 6 7
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9

8

4 5 6 7

e)
1 2 3

8

4 5 6 7

9

Special case of e) of family J in Figure 3.8.

U = 3− 2− 1− 2− . . . . . . . . . . . . . . .− (k − 2)
D = 3− . . .− (k − 1)− k − (k − 1)− (k − 2)

U = 4− 8− 9− 8− 4− 5− 6− 7− 6− 5− 4
D = 4− 3− 2− 1− 2− 3− 4− 8− 9− 8− 4

U = 4− 3− 2− 1− 2− 3− 4− 8− 4
D = 4− 8− 4− 5− 6− 7− 6− 5− 4

U = 8− 4− 5− 6− 7− 6− 5− 4− 8− 9− 8
D = 8− 9− 8− 4− 3− 2− 1− 2− 3− 4− 8

k ≥ 4

k ≥ 6

Figure 3.1: The family F of signed irreflexive trees with NP-complete problems.

are at least blue.

Lemma 3.1. If the underlying graph H contains the graph F1 in Figure 2.7, then
List-S-Hom(ˆ︂H) is NP-complete.

Proof. If the underlying graph H contains the graph F1 in Figure 2.7, then H
contains an invertible pair, whence List-S-Hom(ˆ︂H) is NP-complete by The-
orem 2.10.

Lemma 3.2. If ˆ︂H contains one of the signed graphs in family F from Figure 3.1
as an induced subgraph, then List-S-Hom(ˆ︂H) is NP-complete.

Proof. For each signed tree in the family F we specify a chain either directly
in Figure 3.1, or, in case a), indirectly by reference to a more general situation
addressed in Figure 3.8. By Theorem 2.9, these signed trees yield NP-complete
list homomorphism problems. Thus any signed graph ˆ︂H that contains one of them
as an induced subgraph has also the problem List-S-Hom(ˆ︂H) NP-complete.

An irreflexive tree H is a 2-caterpillar if it contains a path P = v1v2 . . . vk, such
that each vertex of H is either on P , or is a child of a vertex on P , or is a
grandchild of a vertex on P , i.e., is adjacent to a child of a vertex on P . We also
say that H is a 2-caterpillar with respect to the spine P . (Note that the same tree
H can be a 2-caterpillar with respect to different spines P .) In such a situation,
let T1, T2, . . . , Tℓ be the connected components of H \P . Each Ti is a star adjacent
to a unique vertex vj on P . The tree Ti together with the edge joining it to vj is
called a rooted subtree of H (with respect to the spine P ), and is considered to be
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3.1 Irreflexive trees

rooted at vj. Note that there can be several rooted subtrees with the same root
vertex vj on the spine, but each rooted subtree at vj contains a unique child of
P (and possibly no grandchildren, or possibly several grandchildren).

We also use the term 2-caterpillar for any signed graph to mean that the under-
lying graph, with loops removed, is a 2-caterpillar.

If H is a 2-caterpillar with respect to the spine P , and additionally the bicoloured
edges of ˆ︂H form a connected subgraph, and there exists an integer d, with 1 ≤
d ≤ k, such that:

• all edges on the path v1v2 . . . vd are bicoloured, and all edges on the path
vdvd+1 . . . vk are blue,

• the edges of all subtrees rooted at v1, v2, . . . , vd−1 are bicoloured, except
possibly edges incident to leaves, and

• the edges of all subtrees rooted at vd+1, . . . , vk are all blue,

then we call ˆ︂H a good 2-caterpillar with respect to P = v1v2 . . . vk.

The vertex vd is called the dividing vertex of ˆ︂H. Note that the subtrees rooted
at vd are not limited by any condition except the connectivity of the subgraph
formed by the bicoloured edges. A typical example of a good 2-caterpillar is
depicted in Figure 3.2.

Lemma 3.3. Let ˆ︂H be an irreflexive signed tree. Then ˆ︂H is a good 2-caterpillar
if and only if it does not contain any of the graphs from family F in Figure 3.1
as an induced subgraph, and the underlying graph H does not contain the graph
F1 in Figure 2.7.

Proof. It is easy to check that none of the depicted signed graphs admits a suitable
spine, and hence they are not good 2-caterpillars. So assume ˆ︂H does not contain
any of the graphs in Figure 3.1 as an induced subgraph, and the underlying
graph H does not contain the graph F1 in Figure 2.7 as a subgraph. If H is not
a 2-caterpillar with respect to any spine, then the underlying graph H contains
the tree in Figure 2.7. The bicoloured edges of ˆ︂H induce a connected subgraph,
since there is no subgraph of type a) from Figure 3.1. Similarly, the unicoloured
edges between two non-leaf vertices of ˆ︂H induce a connected subgraph, since
there is no subgraph of type b) in Figure 3.1. It follows that there exists a path
P = v1v2 . . . vk with a dividing vertex vd as specified. The absence of classes b)

Figure 3.2: An example of a good 2-caterpillar.
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3 List homomorphism problems for signed trees

and c) from Figure 3.1 also ensures that, there is a suitable spine P = v1v2 . . . vk

with bicoloured edges on v1v2 . . . vd and blue edges on vdvd+1 . . . vk, and with all
subtrees of height two rooted at v1, . . . , vd−1 attached to P with a bicoloured
edge. (For this, we note that in the case c), as long as the edges 34 and 45 are
bicoloured, the subtree still yields an NP-complete problem even with any of the
edges 12, 23, 56, 67 unicoloured.) The absence of graphs d) and e) in Figure 3.1
ensures that all subtrees rooted at vd+1, . . . , vk have all edges blue.

Theorem 3.4. Let ˆ︂H be an irreflexive tree. If ˆ︂H is a good 2-caterpillar, then
List-S-Hom(ˆ︂H) is polynomial-time solvable. Otherwise, H contains a copy of
F1, or ˆ︂H contains one of the signed graphs in family F as an induced subgraph,
and the problem is NP-complete.

The second claim follows from Lemmas 3.1, 3.2 and 3.3. We prove the first claim
in a sequence of lemmas. Suppose that ˆ︂H is a good 2-caterpillar with respect to
the spine P = v1v2 . . . vk. Since H is bipartite, we may distinguish its vertices
as black and white. We may assume that the input signed graph ˆ︁G is connected
and bipartite, and the lists of the black vertices of G contain only black vertices
of H, and similarly for white vertices. (Since G is connected, there are only two
possible assignments of black and white colours to its vertices, and we consider
each separately.) For now, assume that v1 is white.

We distinguish four types of rooted subtrees of ˆ︂H with respect to the spine P .

• Type T1: a bicoloured edge vix;

• Type T2: a bicoloured edge vix, bicoloured edges xzj for a set of vertices
zj, and blue edges xtj for another set of vertices tj;

• Type T3: a blue edge vix and blue edges xtj for a set of vertices tj; and

• Type T4: a blue edge vix.

In the types T2 and T3 we assume that they are not of type T1 or T4, i.e., that at
least some zj or tj exist; but we allow in T2 either the set of zj or the set of tj to
be empty.

Recall that we assume that all edges of ˆ︂H are at least blue.

A bipartite min ordering of the bipartite graph H is a pair <b, <w, where <b is
a linear ordering of the black vertices and <w is a linear ordering of the white
vertices, such that for white vertices x <w x′ and black vertices y <b y′, if xy′, x′y
are both edges in H, then xy is also an edge in H. (This is also called underbar
property and the reason for it is perhaps better understood by Figure 3.3.) It
is known [69] that if a bipartite graph H has a bipartite min ordering, then the
list homomorphism problem for H can be solved in polynomial time as follows.
First apply the arc consistency test, which repeatedly visits edges xy and removes
from L(x) any vertex of H not adjacent to some vertex of L(y), and similarly
removes from L(y) any vertex of H not adjacent to some vertex of L(x). After arc
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3.1 Irreflexive trees

x x′

y y′

Figure 3.3: A visualisation of the underbar property.

consistency, if there is an empty list, no list homomorphism exists, and if all lists
are non-empty, choosing the minimum element of each list, according to <b or <w,
defines a list homomorphism as required. We call a bipartite min ordering of the
signed irreflexive tree ˆ︂H special if for any black vertices x, x′ and white vertices
y, y′, if xy is bicoloured and xy′ is blue, then y <w y′, and if xy is bicoloured and
x′y is blue, then x <b x′. In other words, the bicoloured neighbours of any vertex
appear before its unicoloured neighbours, both in <b and in <w.

Lemma 3.5. Every good 2-caterpillar ˆ︂H admits a special bipartite min ordering.

Proof. Let us first observe that any 2-caterpillar admits a bipartite min ordering
<b, <w with v1 <w v3 <w v5, . . . and v2 <b v4 <b v6, . . ., in which the vertices of
each subtree rooted at a vertex vi are placed as follows: all non-leaf children of
vi, as well as all leaf children of vi adjacent to vi by bicoloured edges, are ordered
between vi−1 and vi+1, all leaf children of vi adjacent to vi by unicoloured edges
are ordered between vi+1 and vi+3, and all grandchildren of vi are ordered between
vi and vi+2. Moreover, we ensure that the order of the grandchildren conforms to
the order of the children, i.e., if a child a of vi is ordered before a child b of vi then
the children of a are all ordered before the children of b. Finally, all children of vi

are ordered after all the grandchildren of vi−1. See Figure 3.4 for an illustration.

It remains to ensure that the bipartite min ordering we choose is in fact a special
bipartite min ordering, i.e., that each vertex has its neighbours joined by bicol-
oured edges ordered before its neighbours joined by unicoloured edges. Therefore
the subtrees rooted at each vi are handled as follows. We will order first the
vertices of subtrees of type T1, one at a time, then order the vertices of subtrees
of type T2, one at a time, then the vertices of subtrees of type T3, one at a time,
and finally the vertices of subtrees of type T4, one at a time. Each subtree of
type T1 consists of only one bicoloured edge, and we order these consecutively

v1

v2

v3

v4

v5

Figure 3.4: An example of special bipartite min ordering.
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3 List homomorphism problems for signed trees

between vi−1 and vi+1. Next in order will come the children of vi in subtrees of
type T2, still before vi+1, and in each of these subtrees we order first the grand-
children of vi incident to a bicoloured edge before those incident to a unicoloured
edge. We order the subtrees of type T3 similarly. Note that by the definition of a
good 2-caterpillar, the subtrees of type T3 can only be rooted at vertices vi with
d ≤ i ≤ k. Thus, if we have a blue child of vi ordered before vi+1, then vivi+1 is
unicoloured. Finally, for subtrees of type T4, we order their vertices (each a child
of vi) right after vi+1.

Lemma 3.6. If a signed irreflexive tree ˆ︂H admits a special bipartite min ordering,
then List-S-Hom(ˆ︂H) is polynomial-time solvable.

Proof. We describe a polynomial-time algorithm. Suppose ˆ︁G is the input signed
graph; we may assume ˆ︁G is connected, bipartite, and such that the black vertices
have lists with only the black vertices of ˆ︂H, and similarly for the white vertices.
The first step is to perform the arc consistency test for the existence of a ho-
momorphism of the underlying graphs G to H, using the special bipartite min
ordering <b, <w. We also perform the bicoloured arc consistency test, which re-
peatedly visits bicoloured edges xy of G and removes from L(x) any vertex of H
not adjacent to some vertex of L(y) by a bicoloured edge, and similarly removes
from L(y) any vertex of H not adjacent to some vertex of L(x) by a bicoloured
edge. If this yields an empty list, there is no list homomorphism of the underlying
graphs, and hence no list homomorphism of signed graphs. Otherwise, the min-
ima of all lists define a list homomorphism f : G → H of the underlying graphs,
by [69]. By the bicoloured arc consistency test, the minimum choices imply that
the image of a bicoloured edge under f is also a bicoloured edge. According to
Lemma 2.3 and the remark following it, f is also a list homomorphism of signed
graphs unless a negative cycle C of unicoloured edges of ˆ︁G maps to a closed walk
f(C) of blue edges in ˆ︂H. Now we make use of the properties of special bipartite
min ordering to repair the situation, if possible. Note that the fact that we choose
minimum possible values for f means that we cannot map C lower in the orders
<b, <w. We consider three possible cases.

• At least one of the edges of f(C) is in a subtree T of type T2 rooted at some
vi, with i ≤ d:
In this case, all edges of f(C) must be in T , since the edge of T incident
to vi is bicoloured. Assume without loss of generality that vi is white, x is
the unique child of vi in T , and xt1, . . . , xtm are the blue edges of T , where
x is black and t1, . . . , tm are white. Since f(C) is included in the edges
xt1, . . . , xtm and vi precedes in <w all vertices t1, . . . , tm, the final lists of
the white vertices in C do not include vi (since we assigned the minimum
value in each list). Therefore under any homomorphism the image of the
connected graph C either is included in the set of edges xt1, . . . , xtm, or
is disjoint from this set of edges. Since we have already explored the first
possibility, we can delete the vertices t1, . . . , tm from the lists of all white
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3.2 Reflexive trees

vertices of C and repeat the arc consistency test. This will check whether
there is possibly another list homomorphism of graphs G → H, which is
also a homomorphism of signed graphs ˆ︁G → ˆ︂H.

• At least one of the edges of f(C) is in a subtree of type T4 rooted at some
vi, i ≤ d − 1:
In this case, all edges of f(C) must be in subtrees of type T4 rooted at the
same vi. Assume again, without loss of generality, that vi is white and the
subtrees consist of the blue edges vix1, vix2, . . . , vixm, with each xj black.
Since <b, <w is a special bipartite min ordering, all vertices adjacent to vi

by a bicoloured edge are smaller in <b than x1, . . . , xm. Therefore no such
vertex can be in a list of a black vertex in C. This again means that the
image of C is either included in the set of edges vix1, vix2, . . . , vixm, or is
disjoint from this set of edges. We can delete all vertices x1, . . . , xm from
the lists of all black vertices of C and repeat as above.

• The edges of f(C) are included in the set of edges on the path vdvd+1 . . . vk

and in the subtrees of types T3 or T4 rooted at vd, . . . , vk:
In this case, the vertices in the lists of the cycle C are joined only by blue
edges, and there is no homomorphism of signed graphs ˆ︁G → ˆ︂H.

After we modified the image of one negative cycle C of ˆ︂H, we proceed to modify
another, until we either obtain a homomorphism of signed graph, or find that no
such homomorphism exists. The algorithm is polynomial, because arc consistency
can be performed in linear time [69], and each modification removes at least one
vertex of H from the list of at least one vertex of G. Recall that the graph H is
fixed, and hence its number of vertices is a constant k. If G has n vertices, then
this step will be performed at most kn times.

This concludes the main result of this section, Theorem 3.4.

3.2 Reflexive trees
We now turn to reflexive trees, and hence in this section, ˆ︂H will always be a
reflexive tree. It may have red, blue, or bicoloured loops, but we may again
assume that all non-loop unicoloured edges are of the same colour (blue or red).

Lemma 3.7. If ˆ︂H contains one of the reflexive trees from the family G in Fig-
ure 3.5 as an induced subgraph, then List-S-Hom(ˆ︂H) is NP-complete.

Proof. The signed trees in a), b) and c) are themselves s-cores with more than two
edges, so it follows from Theorem 2.6 that they yield NP-complete problems. The
signed trees in d) and h) have chains indicated in Figure 3.5, and hence also yield
NP-complete problems by Theorem 2.9. The remaining cases are again handled
in more general context in the next section, as indicated in Figure 3.5.
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k ≥ 2

Special case of g) of family J in Figure 3.8.

Special case of b) of family J in Figure 3.8.

U = 2− 1− 1− 2− . . .− (k − 1)

D = 2− 3− . . .− k − k − (k − 1)

Special case of e) in family J in Figure 3.8.

k ≥ 4

Special case of c) of family J in Figure 3.8.

Special case of h) of family J in Figure 3.8.

Special case of d) of family J in Figure 3.8.

1 2 3

Special case of k) of family J in Figure 3.8.

D = 2− 1− 2− 2

U = 2− 2− 3− 2

k ≥ 3

k ≥ 4

Special case of f) of family J in Figure 3.8.

Figure 3.5: The family G of signed reflexive trees with NP-complete problems.
(The dotted loops can be either blue, red or bicoloured.)
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Figure 3.6: The graph F2.

The next lemma is used to prove that in all polynomial cases ˆ︂H is a caterpillar.
Although this section is restricted to reflexive graphs, we will prove it in greater
generality for future use in a later section. To that end let F2 be the graph in
Figure 3.6 where each loop on the three leaves may or may not be present. Thus,
F2 represents a family of graphs, but we will abuse notation and simply refer to
F2 as any member of that family.

Lemma 3.8. If the underlying graph H contains the graph F2 in Figure 3.6, then
the problem List-S-Hom(ˆ︂H) is NP-complete.

Proof. Deciding if there exists a list homomorphism (of an unsigned graph) to
the graph F2 is NP-complete, as stated in [65] (and proved using results in [64]
and [66]). It would be natural to attempt a direct reduction of List-Hom(F2)
to List-S-Hom(ˆ︂H), as we have done here for the proof of Lemma 3.1. However,
this is complicated by the fact that the loops in ˆ︂H can be red, blue, or bicoloured.
Therefore, below we proceed on a different path, adapting to our setting the proof
of the reflexive case from from [63] (see Theorem 2.3 in that paper).

Suppose that ˆ︁F2 is a subgraph of ˆ︂H with underlying graph F2, and suppose thatˆ︁F2 has been switched so that all non-loop edges are at least blue. Label the leaves
of ˆ︁F2 by 0, 1, 2, and their respective neighbours by 0+, 1+, 2+, and finally label
the central vertex by c.

If all the unicoloured loops in ˆ︁F2 are blue, then we may restrict the input to
blue (there is no advantage to switching). Thus we may reduce the NP-complete
problem List-Hom(F2) [65] to List-S-Hom(ˆ︂H).

Similarly, if all unicoloured loops in ˆ︁F2 are red, then we can switch all non-loop
edges to red and apply the same logic. Thus we assume that there are both blue
and red unicoloured loops in ˆ︁F2.

We first prove that if some edge ci+, i ∈ {0, 1, 2} is not bicoloured, then the
problem List-S-Hom( ˆ︁F2) is NP-complete by showing that the copy of ˆ︁F2 contains
a member of the family G or J .

Note, any path between a blue loop and a red loop must have a vertex with a
bicoloured loop; otherwise, ˆ︁F2 contains a) or b) from family G. Thus at least one
of c, 0+, 1+, 2+ has a bicoloured loop.

Next, if none of the edges ci+ are bicoloured, then we either have a copy of c)
from family J when there is a bicoloured loop at some i+ or a copy of b) when
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3 List homomorphism problems for signed trees

there is bicoloured loop at c. If one of the ci+ edges is bicoloured, then we have
a copy of k) from family J . Finally if two of the edges are bicoloured, then we
have a copy of h) from family J . (We note that the chain in h) is applicable even
if the edges 12 or 45 are unicoloured.) Thus, all edges ci+ are bicoloured.

We now finish the proof using a modification of the proof in [63]. Given distinct
i and j in {0, 1, 2} and distinct subsets I and J of {0, 1, 2}, an (i, I, j, J)-chooser
is a path ˆ︁P with endpoints a and b, together with a list assignment L, such that
the following statement holds. For each list homomorphism f from ˆ︁P to ˆ︁F2,
either f(a) = i and f(b) ∈ I or f(a) = j and f(b) ∈ J . Moreover, for each
i′ ∈ I and j′ ∈ J , there are list homomorphisms g1, g2 from ˆ︁P to ˆ︁F2 such that
g1(a) = i, g1(b) = i′ and g2(a) = j, g2(b) = j′.

Suppose ˆ︁P is a (0, {0, 1}, 1, {1, 2})-chooser, ˆ︁P ′ is (0, {1, 2}, 1, {2, 0})-chooser, andˆ︁P ′′ is a (0, {2, 0}, 1, {0, 1})-chooser. Let ˆ︁T be the tree obtained by identifying the
b vertices in the three choosers and labelling the leaves respectively as a, a′, a′′.
It is easy to verify that ˆ︁T admits a list-homomorphism to ˆ︁F2 if, and only if, the
triple (a, a′, a′′) does not map to either (0, 0, 0) or (1, 1, 1). Consequently, we can
reduce an instance of Not-All-Equal 3-SAT to List-S-Hom( ˆ︁F2). For each
clause in the instance, create a copy of ˆ︁T and identify the vertices (a, a′, a′′) with
the three literals in the clause.

It remains to construct the choosers. First, we build a (0, {0, 2}, 1, {1, 2})-chooser.
By symmetry we then have (i, {i, k}, j, {j, k})-choosers for any distinct i, j, k ∈
{0, 1, 2}. Let Q be a path on q0, q1, . . . , q10 with lists

L(q0) = {0, 1} L(q6) = {0+, 2+, 1}
L(q1) = {0+, 1+} L(q7) = {0+, c, 1+}
L(q2) = {0, 1+} L(q8) = {0, 2+, 1}
L(q3) = {0+, c, 1+} L(q9) = {0+, 2+, 1+}
L(q4) = {0, 2+, 1} L(q10) = {0, 2, 1}
L(q5) = {0+, 2, 1+}

The path ˆ︁Q has all edges blue. In mapping ˆ︁Q to ˆ︂F2 first suppose q0 maps to 0.
Then q10 either maps to 0, in which case the loop 0+ is traversed twice, or q10
maps to 2, in which case the loop at 0+ and the loop at 2+ are each traversed
once. In the both cases if the loop at 0+ is unicoloured red, then switch at q6. In
the latter case, if there is a red loop at 2+, then we switch at q8. Note in the latter
case the bicoloured edges 0+c and c2+ allow the edges q6q7 and q7q8 to be of either
colour. A similar reasoning shows ˆ︁Q can map to ˆ︂F2 with q0 mapping to 1 and q10
mapping to either 1 or 2 but not to 0. Thus ˆ︁Q is a (0, {0, 2}, 1, {1, 2})-chooser.

The (0, {0}, 1, {2})-chooser ˆ︁R is a path with vertices r0, . . . , r6 and lists

{0, 1}, {0+, 1+}, {0, 1+}, {0+, c}, {0, 2+}, {0+, 2+}, {0, 2}.

All edges are blue. When ˆ︁R maps to the edge 00+, no switching is required as
00+ is at least blue. When ˆ︁R maps to the path 1, 1+, 1+, c, 2+, 2+, 2, switching
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at r2 (respectively r4) is required when there is a unicoloured red loop at 1+

(respectively 2+).

The required choosers are defined as follows. First, ˆ︁P is the (0, {0}, 1, {2})-
chooser followed by the (0, {0, 1}, 2, {1, 2})-chooser. Next ˆ︁P ′ is the concatena-
tion of the (0, {0}, 1, {2})-chooser, the (0, {1}, 2, {2})-chooser, the (1, {1}, 2, {0})-
chooser, and the (1, {1, 2}, 0, {0, 2})-chooser. Finally ˆ︁P ′′ is the concatenation of
the (0, {2}, 1, {1})-chooser and the (2, {0, 2}, 1, {0, 1})-chooser.

A tree H is a caterpillar if it contains a path P = v1 . . . vk such that each vertex
of H is on P or is adjacent to a vertex of P . Note that the path P , which we
again call the spine of H, is not unique, and we sometimes make it explicit by
saying that H is a caterpillar with spine P . A vertex x not on P is adjacent to
a unique neighbour vi on P , and we call the edge vix (with the loop at x) the
subtree rooted at vi. A vertex on the spine can have more than one subtree rooted
at it. We say that a signed graph ˆ︂H whose underlying graph H is a reflexive
caterpillar is a good caterpillar with respect to the spine v1 . . . vk if the bicoloured
edges of ˆ︂H form a connected subgraph, the unicoloured non-loop edges all have
the same colour c, and there exists an integer d, with 1 ≤ d ≤ k, such that

• all edges on the path v1v2 . . . vd are bicoloured, and all edges on the path
vdvd+1 . . . vk are unicoloured with colour c,

• all loops at the vertices v1, . . . , vd−1 and all non-loop edges of the subtrees
rooted at these vertices are bicoloured,

• all loops at the vertices vd+1, . . . , vk and all edges and loops of the subtrees
rooted at these vertices are unicoloured with colour c,

• if vd has a bicoloured loop, then all children of vd with bicoloured loops are
adjacent to vd by bicoloured edges,

• if vd has a unicoloured loop of colour c, then all children of vd have uni-
coloured loops of colour c, and are adjacent to vd by unicoloured edges,
and

• if d < k, then the loops of all children of vd adjacent to vd by unicoloured
edges also have colour c.

The vertex vd will again be called the dividing vertex. We also say that ˆ︂H is a good
caterpillar with preferred colour c. Figure 3.7 (on the left) shows an example of
good caterpillar with preferred colour blue. We emphasize that in the case d = k
(depicted in Figure 3.7 on the right), it is possible (if vd has a bicoloured loop)
that vd has some children with red loops and some with blue loops, adjacent to
vd by unicoloured edges.

Let G be the family of signed graphs depicted in Figure 3.5, together with the
family of complementary signed graphs where all unicoloured edges and loops are
red, rather than blue, and vice versa. Note that the complementary signed graphs
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Figure 3.7: Two good caterpillars with preferred colour blue: with d < k (left),
with d = k (right).

are not switching equivalent to the original signed graphs because switching does
not change the colour of loops.

Lemma 3.9. Let ˆ︂H be a reflexive signed tree. Then ˆ︂H is a good caterpillar if
and only if it does not contain any of the graphs in the family G as an induced
subgraph, and the underlying graph H does not contain the graph F2.

Proof. It is easy to see that none of the signed reflexive trees in Figure 3.5 is a
good caterpillar. By symmetry, the same is true for their complementary signed
graphs. It is also clear that the graph F2 (from Figure 3.6) is not a caterpillar.
We proceed to show that if the signed reflexive trees from family G in Figure 3.5
are excluded as induced subgraphs, then ˆ︂H is a good caterpillar with preferred
colour blue. (The complementary exclusions produce a good caterpillar with
preferred colour red.) Since the graphs g) are absent, the bicoloured non-loop
edges induce a connected subgraph. The exclusion of family h) similarly ensures
that all unicoloured non-loop edges induce a connected subgraph. By grouping
all bicoloured non-loop edges before all unicoloured non-loop edges, we conclude
that there exists a spine P = v1 . . . vk, and a dividing vertex vd. Thus, all edges
between v1, . . . , vd−1, and (since l) is excluded) all edges to their children, are
bicoloured. The exclusion of b) and c) ensures each bicoloured non-loop edge
has a bicoloured loop on (at least) one of its endpoints. Forbidding the family
d) ensures the vertices v1, . . . , vd−1 all have bicoloured loops. The exclusion of b)
and c) ensures each bicoloured non-loop edge has a bicoloured loop on (at least)
one of its endpoints. Forbidding the family d) ensures the vertices v1, . . . , vd−1
all have bicoloured loops.

The subgraph induced by vd+1, . . . , vk and their children must contain only blue
edges since the edge vdvd+1 is blue and the bicoloured edges induce a connected
subgraph. Forbidding a), e), and f) implies all the loops in this subgraph are also
blue. (Recall that when we say blue we always mean unicoloured blue.)

Now we distinguish two cases. If vd has a blue loop then by excluding families
a), b), c) and d) we conclude that all edges to its children are blue and all loops
of its children are also blue. In the case v1 = vd, if there is a bicoloured loop on
exactly one leaf of v1 (respectively vk), we renumber the vertices so that this leaf
becomes the first vertex of the spine, v1. (If it was a leaf of v1, this involves a
small shift of subscripts, if it was a leaf of vk, it also involves a reversal of the
ordering of subscripts.)

40



3.2 Reflexive trees

Now suppose that vd has a bicoloured loop. Excluding family e) ensures that any
child of vd with a bicoloured loop must be adjacent to vd by a bicoloured edge.

Finally if d < k, case m) implies that we can choose the spine so that no child of
vd has a red loop.

Families i), j), and k) ensure when there is a single bicoloured loop or a single
bicoloured non-loop edge, the spine can be chosen to begin with this loop or
edge.

Theorem 3.10. Let ˆ︂H be a reflexive tree. If ˆ︂H is a good caterpillar, then the
problem List-S-Hom(ˆ︂H) is polynomial-time solvable. Otherwise, H contains F2
from Figure 3.6, or ˆ︂H contains one of the signed graphs in family G as an induced
subgraph, and the problem is NP-complete.

Suppose that ˆ︂H is not a good caterpillar. If H is not a caterpillar, then it contains
F2 from Figure 3.6, and the problem is NP-complete by Lemma 3.8. Otherwise,ˆ︂H contains an induced subgraph from G, and the problem is NP-complete by
Lemma 3.7.

We prove the first statement. Thus assume that ˆ︂H is a good caterpillar, with
spine v1 . . . vk and dividing vertex vd. By symmetry, we may assume it is a
good caterpillar with preferred colour blue. We distinguish three types of rooted
subtrees.

• Type T1: a bicoloured edge vix with a bicoloured loop on x;

• Type T2: a bicoloured edge vix with a unicoloured loop on x;

• Type T3: a blue edge vix with a unicoloured loop on x.

There is a general version of min ordering we can use in this context. A min
ordering of a graph H is a linear ordering < of the vertices of H, such that
for vertices x < x′, y < y′, if xy′, x′y are both edges in H, then xy is also an
edge in H. It is again the case that if a graph H admits a min ordering, then
the list homomorphism problem for H can be solved in polynomial time by arc
consistency followed by making the minimum choice in each list [69]. Suppose
again that ˆ︂H is a good caterpillar with spine v1 . . . vk and preferred colour blue.
A special min ordering of ˆ︂H is a min ordering of the underlying graph H such
that for any vertices vi, x, x′ with edges vix, vix

′ we have x < x′ if

• the edge vix is bicoloured and the edge vix
′ is blue, or

• x has a bicoloured loop and x′ a unicoloured loop, or

• x has a blue loop and x′ has a red loop.

Lemma 3.11. Every good caterpillar ˆ︂H admits a special min ordering.
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Proof. It is again easy to see that the ordering v1 < v2 < . . . < vk of V (ˆ︂H) in
which the children of each vi are ordered between vi and vi+1 is a min ordering
of the underlying graph H. We may again assume that ˆ︂H has preferred colour
blue. To ensure that < is a special min ordering of ˆ︂H, we make sure that after
each vertex vi with i = 1, 2, . . . , d − 1, we first list the leaves of subtrees of type
T1, then the leaves of subtrees of type T2 with blue loop, and last the leaves of
subtrees of type T2 with red loop. If d = k, then we proceed the same way also
after vd, and then we list the leaves of subtrees of type T3 with blue loop, and
last the leaves of subtrees of type T3 with red loop. If d < k, we list after vd first
the leaves of subtrees of type T1, then the leaves of subtrees of type T2 with blue
loop, then the leaves of subtrees of type T2 with red loop, and last the leaves of
subtrees of type T3. For vertices vi, i > d, there are only subtrees of type T3, and
their leaves can be listed in any order.

We now describe our polynomial-time algorithm. As in the irreflexive case, we
first perform the arc consistency test to check for the existence of a homomorph-
ism of the underlying graphs (G to H). Then we also perform the bicoloured
arc consistency test. If we obtain an empty list, there is no list homomorphism.
Otherwise, taking again the minima of all lists (in the special min ordering <)
defines a list homomorphism f : G → H of the underlying graphs by [69], and
again by bicoloured arc consistency test we have that f maps bicoloured edges ofˆ︁G to bicoloured edges of ˆ︂H. Therefore, by Lemma 2.3 and the remarks following
it, f is also a list homomorphism of the signed graphs ˆ︁G → ˆ︂H, unless a negative
cycle C of unicoloured edges of ˆ︁G maps to a positive closed walk f(C) of uni-
coloured edges in ˆ︂H, or a positive cycle C of unicoloured edges of ˆ︁G maps to a
negative closed walk f(C) of unicoloured edges in ˆ︂H. The minimum choices in
all lists imply that no vertex x of C can be mapped to an image y with y < f(x).
We proceed to modify the images of such cycles C one by one, in the order of
increasing smallest vertex in f(C) (in the ordering <), until we either obtain a
homomorphism of signed graphs, or we find that no such homomorphism exists.

Let w be the leaf of the last subtree of type T2 rooted at vd (we let w = vd if
vd has no subtree of type T2). We note that if d < k, then all edges and loops
amongst the vertices that follow w in < are blue, by the properties of a special
min ordering. Also note that since the edges of f(C) are unicoloured, they do not
include a bicoloured loop on vd (if there is one). We distinguish three possible
cases.

• At least one vertex y of f(C) satisfies y ≤ w:
The only unicoloured closed walks including y are (red or blue) loops, so f
maps the entire cycle C to y. As in the reflexive case, we may remove y
from all lists of vertices of C and continue seeking a better homomorphism
of the underlying graphs (G to H).

• All vertices of f(C) except for vd follow w in the order < and d < k, or
d = k and vd does not have a subtree of Type T3 with red loop:
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In this case C is a negative cycle of unicoloured edges. The subgraph of ˆ︂H
induced by the vertices after w (in the order <) has only blue edges and
loops. Thus there is no homomorphism of signed graphs mapping ˆ︁G → ˆ︂H.

• All vertices of f(C) except for vd follow w in the order <, d = k and vd has
a subtree of Type T3 with red loop:
In this case a fairly complex situation may arise because f(C) can be a
closed walk using both red and blue loops, along with blue edges; see below.

We now consider the final case in detail. Since f chooses minimum possible values
of images (under <), we could only modify f by mapping some vertices of C that
were taken by f to a vertex with a blue loop, to vertex with a red loop instead,
if lists allow it. We show how to reduce this problem to solving a system of
linear equations modulo two, which can then be solved in polynomial time by
(say) Gaussian elimination. We begin by considering the pre-image (under f) of
all vertices in the subtrees of type T3 rooted at vd. We denote by P the set of
vertices v ∈ V (G) with f(v) equal to a vertex with a blue loop and by N the set
of vertices v ∈ V (G) with f(v) equal to a vertex with a red loop. We say that
a vertex x of G is a boundary point if f(x) = vd. The set of boundary points is
denoted by B. Thus the pre-image of the subtrees of type T3 rooted at vd is the
disjoint union B ∪ P ∪ N . We now focus on the subgraph ˆ︁G′ of ˆ︁G induced by
B ∪ P ∪ N . A region is a connected component of ˆ︁G′ \ B together with all its
boundary points, i.e. between any pair of vertices in a region there is a path with
no boundary point as an internal vertex.

Given a region r and boundary points x and y (not necessarily distinct), we
construct (possibly several) boolean equations on the corresponding variables,
using the same symbols x, y, and r. The variables x, y indicate whether or not
the corresponding boundary vertices x and y should be switched before mapping
them with f (true corresponds to switching), and the variable r indicates whether
the region r will be mapped by f to a blue loop or a red loop (true corresponds to
a blue loop). The equations depend of the parity and the sign of walks between
the two vertices. If c and d denote parities (even or odd), we say a walk W from
x to y in ˆ︁G′ is a (c, d)-walk if it contains no boundary points other than x and y,
the parity of the number of blue edges in W is c, and the parity of the number of
red edges in W is d. The equations generated by the (c, d)-walks are as follows.

• (odd,odd)-walk: We add the equation x = y + 1. This ensures that exactly
one of the boundary vertices has to be switched, in particular x and y must
be distinct. The image of the walk must be weakly balanced or weakly
anti-balanced (as the whole walk maps to exactly one subtree of type T3).
An even length walk with an odd number of red edges is neither. However,
if we switch at exactly one of the endpoints, we can freely map all of the
non-boundary points to a blue loop or a red loop.

• (even,even)-walk: We add the equation x = y. The reasoning is similar to
the previous case.
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• (odd,even)-walk: We add the equation x = y +r +1. The image of the walk
is a closed walk of odd length and positive sign. Thus if both or neither of x
and y are switched, then the walk remains positive and r = 1. Conversely,
switching exactly one of x or y makes the walk negative, and r = 0.

• (even,odd)-walk: We add the equation x = y+r. The argument is analogous
to the previous case.

It is possible that there are several kinds of walks between the same x, y, but we
only need to list one of each kind, so the number of equations is polynomial in
the size of G. A simple labelling procedure can be used for determining which
kinds of walks exist, for given boundary points x and y and a region r. We
start at the vertex x, and label its neighbours nx by the appropriate pairs (c, d),
determined by the signs of the edges xnx. Once a vertex is labelled by a pair
(c, d), we correspondingly label its neighbours; a vertex is only given a label (c, d)
once even if it is reached with that label several times. Thus a vertex has at most
four labels. Any time a vertex receives a new label its neighbours are checked
again. The process ends in polynomial time (in the size of the region) as each
edge of the region is traversed at most four times. The result is inherent in the
labels obtained by y.

Finally, for each region we examine the connected component of the non-boundary
vertices. Since the arc consistency procedure was done in the first step of the
algorithm, all lists of non-boundary points for a given region are the same. Also,
by the ordering <, these lists must only contain leaves of vd. Thus, the non-
boundary vertices of the region must map to a single loop. We ensure the choice
of the loop is consistent with the lists of each region. If the lists of vertices of
some region do not contain a vertex with a red loop, then we add the equation
r = 1 for the region. Similarly, if the lists do not contain a blue loop, then we
add the equation r = 0.

Such a system of boolean linear equations can be solved in polynomial time. Also,
the system itself is of polynomial size measured by the size of ˆ︁G. This completes
the proof.

3.3 General trees
In this section we handle signed trees ˆ︂H in general, i.e., trees in which some
vertices have loops while others do not. In homomorphism problems, reflexive and
irreflexive bipartite target graphs H tend to share some similarities, cf. e.g. [12,
63, 64], and also both tend to be simpler. For instance, the general version
of list homomorphisms for graphs with possible loops [65] is significantly more
involved than both the reflexive and irreflexive bipartite cases [63, 64]. Similarly,
considering general signed trees with possible loops introduces an additional level
of difficulty.
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To simplify the descriptions, we assume, without loss of generality, that all non-
loop unicoloured edges are blue, unless noted otherwise. In Figure 3.8 we introduce
our main NP-complete cases.

We first focus on signed trees ˆ︂H without bicoloured non-loop edges. If there
are no bicoloured loops either, then Theorem 2.7 implies that List-S-Hom(ˆ︂H) is
NP-complete when ˆ︂H has both a red loop and a blue loop, or when the underlying
graph is not a bi-arc tree. We now introduce NP-complete cases when bicoloured
loops are allowed.

Lemma 3.12. If ˆ︂H contains any of the graphs a)-d) in the family J in Figure 3.8,
then the problem List-S-Hom(ˆ︂H) is NP-complete.

Proof. For each of the signed graphs a), b), and c) in family J , we can apply
Theorem 2.9. The figure lists a chain for each of these forbidden subgraphs.

In the final case d), we reduce Not-All-Equal 3-SAT to List-S-Hom(H, π)
where (H, π) is the signed graph d) in family J . Let (T ′, σ′) be the signed graph
with the list assignments and signature shown in Figure 3.9. For each clause
(x, y, z) in the instance of Not-All-Equal 3-SAT, we create a copy of (T ′, σ′)
identifying the leaves x, y, z in T ′ with the variables in the clause.

We claim that (T ′, σ′) has a list homomorphism to (H, π) if and only if we switch
at exactly one or two elements of {x, y, z}. We can then view the switching at
one of {x, y, z} as setting the variable to true and, conversely, no switching as
setting to false.

Consider a mapping of (T ′, σ′) to (H, π). It is easy to see that either both x
and m are switched or neither is switched. We also observe that if m maps
to 1, then exactly one of m or y must be switched. On the other hand, if m
maps to 3, then neither or both of m and y is switched. (In the first case the
image of the path is a negative walk, while in the second case it is a positive
walk.) Thus, when m maps to 1, exactly one of x or y is switched, and when
m maps to 3, either both or neither x and y is switched. Finally, if m maps
to 1, then we are free to switch or not switch at z. On the other hand, if m
maps to 3, then we must switch at z if and only if we do not switch at m. In
conclusion, with m mapping to 1 the following truth values are possible for x, y, z
respectively: 1, 0, 0; 1, 0, 1; 0, 1, 0; 0, 1, 1, and with m mapping to 3 we obtain the
possible triples 1, 1, 0 and 0, 0, 1 for the variables x, y, z. These are precisely the
not-all-equal values as claimed.

If bicoloured edges are present, we use the following result.

Lemma 3.13. If ˆ︂H contains any of the graphs e)-n) in family J in Figure 3.8,
then the problem List-S-Hom(ˆ︂H) is NP-complete.
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U = 2− 1− 1− 2− . . . . . . . . .− (k − 1)
D = 2− 3− . . .− k − (k − 1)− (k − 1)

1 2 k

bicoloured path

disconnected loops

bicoloured path (possibly 3 = k − 1 with blue loop)
k ≥ 4, loops at 1 and k − 1 can be unicoloured by arbitrary colour

21 3 4 5

6

U = 3− 2− 1− 2− 1− 2− 3− 6− 6− 3
D = 3− 6− 6− 3− 4− 5− 4− 5− 4− 3

e)

g)

h)

i)

f)

n)

j)

U = 2− 2− 3− 4− 3− 2− 1− 2
D = 2− 1− 2− 3− 4− 3− 2− 21

1

2

2

3 4

D = 1− 2− 1− 1

k)

l)

m)

1 2 3 4

U = 1− 1− 2− 1

dotted edge can be bicoloured or unicoloured
D = 2− 3− 4− 3− 4− 3− 2− 1− 1− 2
U = 2− 1− 1− 2− 3− 4− 3− 4− 3− 2

4 5

1 2

1 2 k − 1k − 2

U = (k − 1)− k − (k + 1)− k − . . .− 2− 1− 1− 2− . . .− (k − 2)− (k − 1)
D = (k − 1)− (k − 2)− . . .− 2− 1− 1− 2− . . .− k − (k + 1)− k − (k − 1)

1 D = 2− 3− 4− 5− 4− 3− 2− 1− 2− 2
U = 2− 2− 1− 2− 3− 4− 5− 4− 3− 2

p)

q)

r)

3

bicoloured path

k k + 1

2 3

U = 1− 2− 3− 2− 1− 1
D = 1− 1− 2− 3− 2− 1

k ≥ 3

k ≥ 4

k ≥ 4

k ≥ 3

k ≥ 3

k ≥ 4

loop at 6 can be arbitrary but not missing

Figure 3.8: The family J . (The dotted loops can be arbitrary or missing, unless
stated otherwise.)
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y z{2}

{2}

{3}

{1, 4} {2, 3} {2}{1, 3}
m

x

{2, 3} {1, 4}

Figure 3.9: The gadget (T ′, σ′) for the case d) in family J .

Proof. For each of the signed graphs e)-n) in family J , except for the case j),
we can apply Theorem 2.9. The figure lists a chain for each of these forbidden
subgraphs. The case j) follows from a result in [68] implying that the problem
is NP-complete if the vertices with loops of any colour are disconnected. Thus
any signed graph ˆ︂H that contains one of the signed graphs in the cases e)-n)
of the family J as an induced subgraph has the problem List-S-Hom(ˆ︂H) NP-
complete.

In cases p), q), and r) in Figure 3.8 we present three additional NP-complete
trees we will use. Note that the case q) is a special case of p), with k = 2. The
case q) is also a special case of a) in family J , where the chain is specified in
general. However, the chain for the case p) when k > 2 is different, as shown in
the figure. (Note that the absence of a loop at 2 is crucial for the chain in p),
and for r), the absence of a loop at 4 is crucial, while the edges 12 or 45 could be
blue or bicoloured and the given chain would still apply.)

Thus we have the following lemma.

Lemma 3.14. If ˆ︂H contains any of the graphs p), q), r) in family J in Fig-
ure 3.8, then the problem List-S-Hom(ˆ︂H) is NP-complete.

If ˆ︂H is a signed graph, the bicoloured part of ˆ︂H is the graph Dˆ︁H (with possible
loops) consisting of all those edges and loops that occur as bicoloured edges and
loops in ˆ︂H, and all the vertices they contain. (Thus vertices of ˆ︂H not incident
with a bicoloured edge or loop are deleted.) Similarly, the blue part of ˆ︂H is the
graph Bˆ︁H with possible loops consisting of all those edges (and loops) that are at
least blue in ˆ︂H. Since we assume all non-loop edges of ˆ︂H are blue, every vertex
of ˆ︂H is included in Bˆ︁H . (We may think of B as standing for “blue” and D as
standing for “double”, in the sense of having both colours.)

We now denote by T the union of all the NP-complete tree families F , G, J .
There are further cases that cause the problem to be NP-complete. Theorem 2.7
implies, in the context of trees, that the problem is NP-complete if there are no
bicoloured edges or loops and there is both a red loop and a blue loop. Any signed
graph ˆ︂H which is not irreflexive and has a bicoloured edge but no bicoloured loops
yields an NP-complete homomorphism (and hence list homomorphism) problem
by Theorem 2.6, since the s-core contains at least one unicoloured loop and one
bicoloured edge (counted as two edges). As discussed earlier, if the vertices with
loops of any fixed colour induce a disconnected graph, the problem is NP-complete
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by [68]. Finally, as mentioned earlier, if the bicoloured part Dˆ︁H yields an NP-
complete list homomorphism problem, then so does ˆ︂H, since for bicoloured inputs,
this is the only part of ˆ︂H that can be used. Thus List-S-Hom(ˆ︂H) is also NP-
complete if the unsigned graph Dˆ︁H is not a bi-arc tree, i.e., contains one of the
trees in Figures 3 and 4 of [65]. Moreover, if ˆ︂H contains no red loops, then it
is also true that if the blue part Bˆ︁H yields an NP-complete list homomorphism
problem, then so does ˆ︂H. Indeed, if there are no red loops (or edges) in ˆ︂H,
then for an input signed graph ˆ︁G that has only blue edges, there is no cause for
switching. In other words a blue input ˆ︁G admits a signed list homomorphism
to ˆ︂H if and only if G admits a list edge-coloured homomorphism to H. This
is a reduction from the list homomorphism problem for Bˆ︁H to the signed list
homomorphism problem for ˆ︂H.

We say that a signed tree is colour-connected if each of the following subgraphs
is connected: the subgraph spanned by non-loop edges that are at least blue, the
subgraph spanned by non-loop edges that are at least red, the subgraph spanned
by non-loop edges that are bicoloured, the subgraph induced by the vertices with
loops that are at least blue, the subgraph induced by the vertices with loops that
are at least red, and the subgraph induced by the vertices with loops that are
bicoloured.

We call a signed tree ˆ︂H a good signed tree if it satisfies the following conditions.

1. If ˆ︂H has no bicoloured edge, then all the loops are of the same colour (red
or blue).

2. If ˆ︂H has a bicoloured non-loop edge, then it also has a bicoloured loop, or
it has no loops at all.

3. ˆ︂H is colour-connected.

4. The blue part Bˆ︁H is a bi-arc tree.

5. ˆ︂H contains no signed tree from the family T .

3.3.1 Assuming no red loops
In this subsection, we assume that ˆ︂H has no red loops. It follows from the previous
section, that if such ˆ︂H is not good, then List-S-Hom(ˆ︂H) is NP-complete. In
particular, ˆ︂H is colour-connected, since (as observed before), [68] implies that the
problem is NP-complete if the vertices with loops of any colour are disconnected,
and the family e) in J implies that the problem is NP-complete if the subgraph
spanned by non-loop edges that are bicoloured is not connected. Also recall that
all unicoloured non-loop edges are assumed to be blue, and thus all non-loop
edges that are at least red are in fact bicoloured. In the next subsection, we
prove this fact (that signed trees that are not good have NP-complete problems)
is true if we allow red loops as well.
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We first analyse the structure of good signed trees without red loops.

Let ˆ︂H be a good signed tree with no red loops and at least one bicoloured loop.
Since the blue part Bˆ︁H is a bi-arc tree, we can use the results of [65] and [66], which
together characterize bi-arc trees as trees in which vertices with loops induce a
connected subgraph, and which are either obtained from a reflexive caterpillar by
deleting the loops at a (possibly empty) subset of leaves (illustrated in Figure 3.10,
repeated from Figure 5 of [65]), or obtained from an irreflexive 2-caterpillar in
one of the following ways:

1. (possibly) adding a loop at a good vertex v, or

2. adding a loop at a good vertex v and on one neighbour w of v which has
the property that each neighbour of w other than v is a leaf, or

3. adding a loop at a good vertex v and on a (possibly empty) set of neighbours
of v that are leaves.

Here a good vertex is a vertex v for which there does not exist a path P of length
six with middle vertex u connected to v by a path (possibly of length zero) which
is disjoint from P . It is easy to see that if v is a good vertex, then there exists
a spine in which v is the first vertex, v = v1 (and, in case (2), the vertex w is a
child of v, not on the spine; similarly in case (3) the leaves of v to which loops
have been added are children of v not on the spine). These cases are illustrated
in Figure 3.11, repeated here from Figure 6 in [65]. The two 2-caterpillars in that
figure will be called Type (a) and Type (b), as shown.

Proposition 3.15. Let ˆ︂H be a good signed tree without red loops but with at least
one bicoloured loop.

Then ˆ︂H is either

• obtained from a good reflexive caterpillar (with spine v1, v2, . . . , vk) by

– removing loops at a subset S of leaves, and

– optionally replacing any bicoloured edges viu by blue edges for these
leaves u ∈ S, or

• is a signed 2-caterpillar (with spine v1, v2, . . . , vk) obtained from a bi-arc
tree by

– replacing each edge and loop by a bicoloured edge and loop (respect-
ively),

– optionally, for Type (b) 2-caterpillars, adding a blue loop at a leaf
adjacent to v1, and

– optionally adding, at a spine vertex vi or at a loopless child of a vi, a
blue edge leading to a new (loopless) leaf.
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v1 v2 vk

S1 S2 Sk

Figure 3.10: Bi-arc caterpillars from [65].

v1 v2 vk

T1 T2 Tk−2 Tk−1

v1 v2 vk

T1 T2 Tk−2 Tk−1

Type (a)

Type (b)

Figure 3.11: Bi-arc 2-caterpillars from [65].

Proof. Assume first that the blue part Bˆ︁H is a bi-arc tree of the first type, in
other words, a caterpillar with loops on all vertices on the spine and possibly
some leaves. We now proceed analogously to the proof of Lemma 3.9, using the
absence of signed trees from the family J instead of those from the family G. We
sketch the analogy, and leave the detailed proof to the reader. For this, it helps
to refer to the annotations in Figure 3.5 relating the cases of the family G to the
more general trees in the family J . It is also helpful to point out that the case
h) of the family G is closely related to the case i) of the family J (as well as to
b) of the family F). There is a common generalization to all three, but it has a
technical formulation we chose to omit, because other cases of the family J cover
the same situations; in particular the reader should note the case n), which is
also helpful in the omitted proof. The principal difference from the proof in the
reflexive case is caused by the requirement that certain loops in cases h) and l)
in G have to remain present in the corresponding cases in family J . This results
in the fact that some vertices v1, v2, . . . , vd−1 can have incident blue edges off the
spine, as long as they lead to vertices without loops, as enforced by the absence
of the signed trees from the family J .

Thus ˆ︂H is indeed a caterpillar obtained from a reflexive signed caterpillar by
removing loops at some leaves, and optionally replacing the bicoloured edges by
blue edges to some of those leaves.
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It remains to consider the case when the blue part Bˆ︁H is a 2-caterpillar obtained
by adding suitable loops to an irreflexive bi-arc tree, cf. the two bi-arc trees in
Figure 3.11. Specifically, there are two cases to consider.

In the first case, the blue part Bˆ︁H has two loops, at least one of which is bi-
coloured. According to [66], we may choose the spine so that one loop of Bˆ︁H is
at v1 and the other at its child u. If the loop at v1 is bicoloured in ˆ︂H, then the
absence of p) and q) in family J implies that we may assume the spine consists of
bicoloured edges only, and if a vertex vi on the spine has a (necessarily loopless)
neighbour w that is not a leaf, then the edge viw is bicoloured. The neighbour
u has a loop and needs to be considered separately. We first claim that the edge
uv1 must be bicoloured, else ˆ︂H contains the subtree n) from the family J (with
2 corresponding to v1), or g) from the family J (with k = 2). Moreover, if the
loop at u is unicoloured, then u must be a leaf, otherwise ˆ︂H would contain r)
from the family J . If the loop at v1 is unicoloured, then the loop at u must be
bicoloured (we assumed that a bicoloured loop exists). Now, unless ˆ︂H arose from
a reflexive caterpillar, it must contain a) from the family J (if uv1 is blue), or l)
from family J (if uv1 is bicoloured). (Note that in both cases, the chain applies
even if the edges 23, 34 are bicoloured.) In conclusion, in this case we either have
both loops at v1 and u (as well as the edge joining them) bicoloured, or the loop
at v1 and the edge uv1 is bicoloured, the loop at u is blue and a leaf. The former
situation is depicted on the left of Figure 3.13 (with u depicted on the spine),
and the latter situation is a special case of the tree on the right, with only one
child (u) of v1 having a (blue) loop. Thus going from Dˆ︁H to ˆ︂H we only added a
blue loop on a leaf u adjacent to v1, and then added some blue edges leading to
leaves from any spine vertex vi, or from any child of v2, v3, . . . , vk, or from any
child of v1 other than u.

In the second case, the blue part Bˆ︁H has one loop at v1 and possibly several other
loops at leaf children of v1. If the loop at v1 is bicoloured, and possibly some of
the loops at its children are also bicoloured, then the proof proceeds exactly as in
the previous case, concluding that any edge joining two vertices with loops must
be bicoloured (else there would be a copy of the subtree n) from the family J )
and the children of v1 with loops are leaves. If, say, leaf u has a bicoloured loop
and all other loops, including the loop at v1, are blue in ˆ︂H, we again obtain a
contradiction to the absence of a) from family J or l) from family J , unless ˆ︂H
arose from a reflexive caterpillar. In conclusion, in this case, going from Dˆ︁H to ˆ︂H
involved only the addition of blue loops on leaves adjacent to v1, and a possible
addition of some blue edges from spine vertices or from non-loop children of spine
vertices, leading to leaves as described.

3.3.2 Allowing red loops
We now consider signed graphs ˆ︂H in which red loops are allowed. We denote
by ˆ︂H ′ the signed tree obtained from ˆ︂H by deleting all vertices with red loops.
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Figure 3.12: Good signed trees obtained from a good reflexive tree by deleting
loops.

Type (a) Type (b)

Figure 3.13: Good signed trees obtained from a bi-arc tree as described in Pro-
position 3.16 .

We focus on the blue part Bˆ︂H′ instead of Bˆ︁H because ˆ︂H ′ has no red loops and
satisfies the assumptions of Proposition 3.15.

Proposition 3.16. Let ˆ︂H be a good signed tree with at least one bicoloured loop.
Then ˆ︂H is either

• obtained from a good reflexive caterpillar (with spine v1, v2, . . . , vk) by

– removing loops at a subset S of leaves, and

– optionally replacing any bicoloured edges viu by blue edges for these
leaves u ∈ S, or

• is a signed 2-caterpillar (with spine v1, v2, . . . , vk) obtained from a bi-arc
tree by

– replacing each edge and loop by bicoloured edge and loop (respectively),

– optionally, for Type (b) 2-caterpillars, adding a unicoloured loop at
any leaf adjacent to v1, and

– optionally adding, at a spine vertex vi or at a loopless child of a vi, a
blue edge leading to a new (loopless) leaf.

Proof. Since ˆ︂H ′ (defined above) satisfies the assumptions of Proposition 3.15,
the tree ˆ︂H ′ is described by the proposition, and we now consider where can the
vertices of Bˆ︁H − Bˆ︂H′ be added, without violating any of the assumptions on ˆ︂H.
Since the vertices with red loops must form a connected subgraph, they must be
adjacent to each other and then to vertices with bicoloured loops. We now take
in turn each case in the previous proof.
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For the first case, when ˆ︂H ′ is a caterpillar with reflexive spine vertices, adding a
vertex with a red loop adjacent to a vertex on the spine, results in another good
reflexive caterpillar with some loops on leaves removed. Adding a vertex with a
red loop to a leaf with a red loop either creates a copy of F2, or results in another
good caterpillar with a different spine, and possibly different preferred colour,
from which some loops at leaves have been removed.

For the second case, we may add a vertex w with a red loop joined to v1 by a
bicoloured edge. If we tried to add a vertex w with a red loop adjacent to a child
u of v1, then both uv1 and wu would need to be bicoloured, and u would have
to have a bicoloured loop or a red loop. In this case, the signed tree either is
a caterpillar with reflexive spine and we are in the previous case, or we would
obtain, in red, a path with three loops and two non-loops.

In both cases of the proof above, we note that when the red loops are deleted
(without deleting their vertices), we obtain a signed graph which also satisfies
the assumptions of Proposition 3.15. Moreover, if the red loops are all changed
to be blue, the same conclusion holds. These observations justify the following
corollary.

Corollary 3.17. Suppose ˆ︂H is a signed tree. If the blue part Bˆ︁H is not a bi-arc
tree, then List-S-Hom(ˆ︂H) is NP-complete. If the underlying unsigned tree is not
a bi-arc tree, then List-S-Hom(ˆ︂H) is NP-complete.

It follows from the first statement of Corollary 3.17 that if a signed tree is not
good then List-S-Hom(ˆ︂H) is NP-complete even if there are red loops in ˆ︂H.

We now state our main theorem of this section.

Theorem 3.18. If ˆ︂H is a good signed tree, then List-S-Hom(ˆ︂H) is polynomial-
time solvable.

We can explicitly state the dichotomy classification as follows.

Corollary 3.19. Let ˆ︂H be a signed tree.

If any of the following conditions apply, then List-S-Hom(ˆ︂H) is NP-complete.

1. ˆ︂H has no bicoloured loop, but there is a bicoloured (non-loop) edge and a
unicoloured loop.

2. ˆ︂H has no bicoloured edge, but there is a red loop and a blue loop.

3. The bicoloured part Dˆ︁H is not a bi-arc tree, i.e., contains a subgraph from
Figures 3 or 4 of [65].

4. The blue part Bˆ︁H is not a bi-arc tree, i.e., contains a subgraph from Figures
3 or 4 of [65].
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5. ˆ︂H contains a signed tree from the family T .

6. The set of vertices of ˆ︂H with red (respectively blue, or at least blue, or
bicoloured) loops induces a disconnected graph.

If none of the conditions apply, then List-S-Hom(ˆ︂H) polynomial-time solvable.

We also state the result in the more usual complementary way, where the poly-
nomial cases are enumerated first. Note that here all the conditions are required
to be satisfied to yield a polynomial case.

Corollary 3.20. Let ˆ︂H be a signed tree. If all of the following conditions apply,
then List-S-Hom(ˆ︂H) is polynomial-time solvable.

1. If ˆ︂H has a bicoloured non-loop edge, then it has a bicoloured loop, or it has
no loops at all.

2. If ˆ︂H has no bicoloured edge, then all unicoloured loops are of the same
colour.

3. The bicoloured part Dˆ︁H is a bi-arc tree.

4. The blue part Bˆ︁H is a bi-arc tree.

5. ˆ︂H contains no signed tree from the family T .

6. The vertices with red (respectively blue, respectively bicoloured) loops induce
a connected subgraph of ˆ︂H.

If at least one of the conditions fails, then List-S-Hom(ˆ︂H) is NP-complete.

We now return to the proof of Theorem 3.18.

Proof. We show that for a good signed tree ˆ︂H, the problem List-S-Hom(ˆ︂H) is
polynomial-time solvable. We may assume there is a bicoloured loop; otherwise
the result follows from Theorems 2.7 and 3.4. By Proposition 3.16 we distinguish
two cases.

For the first case, let ˆ︂H be a good signed tree obtained from a good reflexive
caterpillar (with spine v1, v2, . . . , vk) by removing loops at a subset S of leaves,
and optionally replacing any bicoloured edges viu by blue edges for the leaves
u ∈ S. (See an illustration in Figure 3.12.) As in the case of reflexive trees, we
use a special min ordering of ˆ︂H. This means that if a vertex vi (with 1 ≤ i ≤ d−1)
has a non-loop neighbour u connected by unicoloured edge, then u is ordered to
come after vi+1 in the special min ordering. Now we can use our algorithm for
reflexive trees, with the observation that if there is a negative cycle C mapped to
a unicoloured edge viu, then we can remove u from lists of all vertices in C and
continue in modifying the images of such cycles.
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For the second case, let ˆ︂H be a good signed 2-caterpillar (with spine v1, v2, . . . , vk),
obtained from a bi-arc tree by replacing edges and loops by bicoloured edges and
loops (respectively), optionally adding unicoloured loops at leaves of v1, and then
adding blue edges from the spine or children of the spine to loopless leaves. We
set T = V (ˆ︂H) and T ′ = V (Dˆ︁H); moreover, we set L = T \ T ′. It follows from
Corollary 3.19 that all vertices of L are loopless leaves in T incident with exactly
one blue edge. We also note that if two distinct vertices a and b in T ′ are adjacent
in ˆ︂H, then they are adjacent by a bicoloured edge.

To prove List-S-Hom(ˆ︂H) is polynomial-time solvable, we shall construct a suit-
able majority polymorphism. Recall that for a signed graph ˆ︂H, the switching
graph S(ˆ︂H) is constructed as follows. We represent ˆ︂H as (H, π) where the sig-
nature π has all unicoloured non-loop edges blue (positive), and define S(ˆ︂H) to
be the edge-coloured graph (H+, π+) in which each vertex x of H gives rise to
two vertices x, x′ of H+ and each edge xy of H gives rise to edges xy, x′y′ of the
colour π(xy) in H+ and edges xy′, x′y of the opposite colour; this definition also
applies to loops, by letting x = y. For any vertex x of H, we shall denote by
x∗ one of x, x′, and by s(x∗) the other one of x, x′. A majority polymorphism of
(H+, π+) is a ternary mapping F on the vertices of H+ such that F (x∗, y∗, z∗) is
adjacent to F (u∗, v∗, w∗) in blue (red) provided x∗ is adjacent to u∗ in blue (red),
y∗ is adjacent to v∗ in blue (red), and z∗ is adjacent to w∗ in blue (red, respect-
ively), and such that if two arguments from x∗, y∗, z∗ are equal, then the assigned
value F (x∗, y∗, z∗) is also equal to it. A semi-conservative majority polymorph-
ism assigns F (x∗, y∗, z∗) to be one of the values x∗, y∗, z∗, s(x∗), s(y∗), s(z∗), and a
conservative majority polymorphism assigns F (x∗, y∗, z∗) to be one of the values
x∗, y∗, z∗. As outlined in Section 2.3, if the edge-coloured graph (H+, π+) admits
a semi-conservative majority polymorphism, then the signed list homomorph-
ism problem for (H, π) is polynomial-time solvable. We shall in fact construct a
conservative majority polymorphism of (H+, π+).

First, to construct a conservative majority polymorphism F (x∗, y∗, z∗) for triples
(x∗, y∗, z∗) from V (H+), we will of course define values of triples with repetition
to be the repeated value,

F (x∗, y∗, y∗) = F (y∗, x∗, y∗) = F (y∗, y∗, x∗) = y∗.

Now we partition the triples (x∗, y∗, z∗) of distinct vertices of V (H+) into two sets
R1 and R2, where R1 consists of those triples (x∗, y∗, z∗) for which at most one
of x, y, z is in L, and R2 consists of triples that have at least two of x, y, z in L.
(The vertices x, y, z of ˆ︂H need not be distinct, as long as x∗, y∗, z∗ are distinct.)
Note that two triples (x∗

1, y∗
1, z∗

1), (x∗
2, y∗

2, z∗
2) that are coordinate-wise adjacent inˆ︂H cannot both be in R2, and if they are both in R1, then there is a coordinate

t ∈ {x, y, z} such that t1 = t2, or the edge t1t2 is bicoloured in ˆ︂H.

The definition of F (x∗, y∗, z∗) will differ for triples with (x, y, z) ∈ R1, where
we explicitly describe the value F (x∗, y∗, z∗), and for triples with (x, y, z) ∈ R2,
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where we merely prove that a suitable value F (x∗, y∗, z∗) exists.

First we consider the underlying unsigned tree of ˆ︂H. It clearly contains all edges
of Bˆ︁H , but it also contains loops that are red in ˆ︂H. By Corollary 3.17, this tree
(with vertex set T ), which we also denote by T , is a bi-arc tree, and hence has a
majority polymorphism f [65, 66].

We now describe the polymorphism f from [65], assuming, as above, that the
bi-arc tree T is one of the trees in Figure 3.11.

In both cases, T is a 2-caterpillar with spine v1, v2, . . . , vk, on which only v1 has
a loop, and either there is only one additional loop on a child of v1 (which may
have children), or any number of loops on children of v1 which must be leaves.
Following (a slight modification of) the notation of [65], we denote by Ti the
subtree rooted at the vertex vi of the spine as shown in Figure 3.13. (Note this
differs from our notation above in Section 3.1 where there is a rooted subtree for
each child of each vertex of the spine.) Each Ti is ordered by depth first search (in
the case of T1 giving higher priority to vertices with loops), and a total ordering
of T is obtained by concatenating these DFS orderings from T1 to T2 and so on.
We also colour the vertices of T by two colours, in a proper colouring ignoring the
self-adjacencies due to the loops. Below we refer to vertices in Ti other than the
root vi as being inside Ti. The value f(x, y, z) is defined as the majority of x, y, z
if two of the arguments x, y, z are equal, and otherwise it is defined according to
the following rules.

Rule (A). Assume x, y, z are distinct and in the same colour class. Let r(x),
r(y), r(z) be the (not necessarily distinct) roots of the trees containing x, y, z
respectively, and let vm be the median of these vertices on the spine. Then
f(x, y, z) is the vertex from amongst x, y, z in the tree Tm, and if there are more
than one in Tm, it is the first vertex in the DFS ordering unless one of the following
occurs, in which case it is the second vertex in the DFS ordering.

• All three vertices x, y, z lie inside Tm with m ≥ 2;

• all three vertices x, y, z lie inside T1 and at most one of them has a loop;

• exactly two of x, y, z lie inside T1 and exactly one of them has a loop;

• exactly two of x, y, z lie inside T1, neither has a loop, exactly one of them
is adjacent to the unique neighbour of v1 with a loop, and the third vertex
of x, y, z is not v1.

Rule (B). Assume x, y, z are distinct but not all in the same colour class.

Then f(x, y, z) is the first vertex in the DFS ordering of the two vertices in the
same colour class, except when {x, y, z} contains v1 and at least one of its leaf
neighbours with a loop, in which case f(x, y, z) = v1.
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We now use the above conservative majority f on T to define a conservative
majority F on triples in R1. We say that a vertex y dominates a vertex x in ˆ︂H
if any blue (or red) neighbour of x is also blue (red respectively) neighbour of y.

Rule (1). Assume that at least two of x∗, y∗, z∗ are equal, say y∗ = z∗. As
mentioned earlier, we define F (x∗, y∗, y∗) to be the repeated value,

F (x∗, y∗, y∗) = F (y∗, x∗, y∗) = F (y∗, y∗, x∗) = y∗.

Rule (2). Assume that x∗, y∗, z∗ are distinct but two of x, y, z are equal. Then
for triples (x∗, y∗, z∗) we define the value F to be the first version of the repeated
vertex, i.e.,

F (x∗, s(x∗), y∗) = F (x∗, y∗, s(x∗)) = F (y∗, x∗, s(x∗)) = x∗,

unless x ∈ L or x has a unicoloured loop in ˆ︂H and y dominates x in ˆ︂H, in which
case

F (x∗, s(x∗), y∗) = F (x∗, y∗, s(x∗)) = F (y∗, x∗, s(x∗)) = y∗.

(For example F (x, x′, y) = x′ and F (x′, x, y) = x′, but F (x, x′, y) = F (x′, x, y) =
y if y dominates x and x has a unicoloured loop or is in L.)

Rule (3). Assume x∗, y∗, z∗ are distinct and also x, y, z are distinct. For triples
(x∗, y∗, z∗), we define F (x∗, y∗, z∗) to be the argument in the same coordinate
as f(x, y, z), except if f(x, y, z) ∈ L and another vertex t ∈ {x, y, z} dominates
f(x, y, z), in which case we define F (x∗, y∗, z∗) to be the argument in the same
coordinate as t.

It is easy to check that if two triples (x∗, y∗, z∗) and (u∗, v∗, w∗) are coordinate-
wise adjacent in blue (red) in S(ˆ︂H), then (x, y, z) is adjacent to (u, v, w) in T
and hence f(x, y, z) is adjacent to f(u, v, w) in T . We now check that we can also
conclude that F (x∗, y∗, z∗) is adjacent to F (u∗, v∗, w∗) in blue (red respectively).

Case 1. Elements x, y, z are distinct and u, v, w are distinct.

If f(x, y, z) and f(u, v, w) choose the same coordinate, then F (x∗, y∗, z∗) and
F (u∗, v∗, w∗) also choose the same coordinate, and hence the values are adjacent in
the right colour. (This remains true even if one or both of the choices F (x∗, y∗, z∗)
and F (u∗, v∗, w∗) were modified by domination.) Otherwise, suppose without loss
of generality that f(x, y, z) = x and f(u, v, w) = v. Then the vertex x is adjacent
in T to both u and v and hence is not a loop-free leaf, and similarly v is not a
loop-free leaf. If x ̸= v, this means that the edge xv is bicoloured in ˆ︂H and hence
F (x∗, y∗, z∗) = x∗ is adjacent to F (u∗, v∗, w∗) = v∗ in both colours. If x = v,
the same argument applies if the loop xv is bicoloured, so let us assume it is
unicoloured. In this situation, Proposition 3.16 implies that the vertex x = v
must be a leaf child of v1 in T , and u = y = v1. This is governed by the special
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case of Rule (B) in the definition of the majority polymorphism f , which implies
that we would have f(x, y, z) = v1 contradicting f(x, y, z) = x, so this case does
not occur.

Case 2. Elements u, v, w are distinct but x, y, z are not distinct, say x = y (but
perhaps x∗ ̸= y∗).

This means that f(u, v, w) is adjacent to x = f(x, y, z) in T , and x is not a loop-
free leaf since it is adjacent to both u and v. We now observe that if F (u∗, v∗, w∗)
was chosen in the same coordinate as f(u, v, w), then it is in T ′, and otherwise
it was chosen in the same coordinate as some t ∈ T ′ (we used Rule (3)). Hence
f(u, v, w) or t is adjacent to x by a bicoloured edge in ˆ︂H, and F (u∗, v∗, w∗) adja-
cent to x∗ and to s(x∗) in both colours. (Note that F (x∗, y∗, z∗) is x∗ regardless
of whether y∗ = x∗ or y∗ = s(x∗).)

Case 3. Each triple x, y, z and u, v, w has exactly one repetition.

Suppose first that the repetition is in different positions, say x = y and v = w.

Then f(x, y, z) = x is adjacent to f(u, v, w) = v in T . If x ̸= v, then the
edge xv is bicoloured in ˆ︂H, and F (x∗, y∗, z∗) = x∗ or F (x∗, y∗, z∗) = s(x∗) and
F (u∗, v∗, w∗) = v∗ or F (u∗, v∗, w∗) = s(v∗) are adjacent in both colours. If
x = v, then the same argument applies if the loop is bicoloured, and if it is
unicoloured, then Proposition 3.16 implies that u = z and u has a bicoloured
loop and dominates x, whence F (x∗, y∗, z∗) = z∗ and F (u∗, v∗, w∗) = u∗ and the
adjacency is correct. On the other hand, if the repetition is in the same positions,
say x = y, u = v, then F (x∗, y∗, z∗) = x∗ is adjacent to F (u∗, v∗, w∗) = u∗ by the
definition of F , and hence the edge has the correct colour.

Case 4. One triple has all vertices the same, say, x = y = z (but possibly
x∗ ̸= y∗).

If we also have u = v = w, then by the pigeon principle some coordinate con-
tains both F (x∗, y∗, z∗) in (x∗, y∗, z∗) and F (u∗, v∗, w∗) in (u∗, v∗, w∗), and so we
have the correct adjacency. If x is joined to u by a bicoloured edge in ˆ︂H, then
F (x∗, y∗, z∗) is joined to F (u∗, v∗, w∗) with the correct adjacency (even in the
domination case of Rule 3). As both x, u ̸∈ L, the only way for the edge joining
them to be unicoloured, is x = u and the edge is a unicoloured loop. In this case
by Proposition 3.16, w dominates u and is joined to u = x with a bicoloured edge
in ˆ︂H, again ensuring the right adjacency.

Now we prove that one can extend the definition of F to R2 so that it re-
mains a polymorphism. (It is of course possible to define each F (u∗, v∗, w∗) for
(u∗, v∗, w∗) ∈ R2 directly, but we found the arguments become more transparent
if we only verify that a suitable choice for F (u∗, v∗, w∗) is always possible.)
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Consider first values F (x∗, y∗, z∗) with all three vertices x, y, z in L. This means
that x is incident in ˆ︂H with only one (necessarily blue) edge, say xx1, and similarly
for blue edges yy1, zz1. Thus in the switching graph S(ˆ︂H) the vertex x is incident
with only one blue edge, namely xx1, and one red edge, namely xx′

1, and similarly
for x′ and for y, y′, z, z′. Note that (x1, y1, z1) ∈ R1 because two vertices of L are
never adjacent. To choose the value of F (x∗, y∗, z∗), we only need to take into
account the existing values of F (x∗∗

1 , y∗∗
1 , z∗∗

1 ), where x∗∗
1 is also either x1 or x′

1, and
similarly for y∗∗

1 , z∗∗
1 . For example, (x, y′, z′) is coordinate-wise adjacent in blue

only to (x1, y′
1, z′

1) and in red only to (x′
1, y1, z1), and the choices of F (x1, y′

1, z′
1)

and F (x′
1, y1, z1) occur in the same coordinate, by the definition of F on R1; if, say,

F (x1, y′
1, z′

1) = x1 and F (x′
1, y1, z1) = x′

1, then setting F (x, y′, z′) = x ensures that
F (x, y′, z′) = x is adjacent to F (x1, y′

1, z′
1) = x1 in blue and to F (x′

1, y1, z1) = x′
1

in red, as required. Thus in general we can choose the value F (x∗, y∗, z∗) in the
same coordinate as F (x∗∗

1 , y∗∗
1 , z∗∗

1 ), and satisfy the polymorphism property. (Note
that this argument applies even if the vertices x, y, z are not distinct.)

It remains to consider the case when exactly two of x, y, z belong to L, say x ∈ L
and y ∈ L, with unique (blue) neighbours x1 and y1 in ˆ︂H, and z ̸∈ L, with
neighbours z1, . . . , zp. We want to show that there is a suitable value for each
F (x∗, y∗, z∗) that maintains the polymorphism property. In the proofs below, we
use the fact that (x∗, y∗, z∗) is coordinate-wise adjacent in at least blue to each
(x∗

1, y∗
1, z∗

i ) and possibly also (x∗
1, y∗

1, s(z∗
i )) (if the edge zzi is bicoloured), and adja-

cent in at least red to each (s(x∗
1), s(y∗

1), s(z∗
i )) and possibly also (s(x∗

1), s(y∗
1), z∗

i )
(if the edge zzi is bicoloured). In any event, we again denote the relevant triples
by (x∗∗

1 , y∗∗
1 , z∗∗

1 ).

Suppose that x, y, z are of the same colour. We observe that x and y cannot lie
on the spine, since they are in L.

Consider first the case that x, y lie inside the same tree Tr. Recall that we say
inside to mean x and y are not on the spine; thus vertices x1 and y1 also belong
to Tr, and so Tr is the median tree. If z also lies inside Tr, the argument is similar
to previous cases where F (x∗, y∗, z∗) is chosen according to the unique neighbours
of x∗, y∗, z∗. If no neighbour zi of z is in Tr, then each value F (x∗∗

1 , y∗∗
1 , z∗∗

i ) is
either x∗∗

1 or y∗∗
1 independently of the location of zi, and hence choosing corres-

pondingly F (x∗, y∗, z∗) = x∗ or = y∗ will ensure the polymorphism property. If
some neighbour zi of z lies in Tr, r > 1, then z is the root of Tr−1, or of Tr, or
of Tr+1, and in this case, we can choose F (x∗, y∗, z∗) = z∗. Indeed, in this case,
zzi is bicoloured, and zi = x1 = y1 (if z is in Tr−1 or Tr+1) or zx1, zy1 are also
bicoloured (if z is in Tr). If r = 1, then in addition to the previous case the
vertices z, z1, . . . , zp can have loops (the vertices x, y, x1, y1 do not have loops).
Since x1 and y1 have the same colour, if the colour of zi is different (when z = zi),
we have the value of F (x∗∗

1 , y∗∗
1 , z∗∗

i ) equal to the first or second coordinate, and
we can choose F (x∗, y∗, z∗) accordingly. Note that these arguments apply also
when y∗ = s(x∗), i.e., x = y.
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If x ∈ Tr, y ∈ Ts with r ̸= s, the arguments are similar. If no neighbour zj of z
lies in Tr or Ts, then we can choose F (x∗, y∗, z∗) = x∗ or = y∗ or z∗, depending
on which is the median tree, and if some zj lies in, say, Tr, then we can choose
F (x∗, y∗, z∗) = x∗ or = z∗ as above.

Next we consider the case when x, y, z do not have the same colour. We may
assume that x, y have different colours, since if x, y have the same colour and z
has a different colour then any relevant F (x∗∗

1 , y∗∗
1 , z∗∗

i ) is x∗∗
1 or y∗∗

1 regardless of
zi and we can choose F (x∗, y∗, z∗) accordingly. However, if z has a loop, then
we need to consider also F (x∗∗

1 , y∗∗
1 , z∗∗), which could be z∗∗ or s(z∗∗) if z is the

vertex v1; in that case we can set F (x∗, y∗, z∗) = z∗.

Thus assume without loss of generality that x, z have the same colour, but the
colour of y is different. Then unless z has a loop, F (x∗∗

1 , y∗∗
1 , z∗∗

i ) is x∗∗
1 or z∗∗

i ,
depending on whether zi precedes or follows x1 in the DFS ordering. If all neigh-
bours zi precede x1, or all follow x1, the uniform choice of F (x∗∗

1 , y∗∗
1 , z∗∗

i ) allows
one to choose F (x∗, y∗, z∗) accordingly. The only situation when some zi precedes
x1 and another zj follows x1 occurs when z is the root of the tree Tr containing
x. It is easy to see that in that case we can set F (x∗, y∗, z∗) = z∗. Finally, when
z has a loop, then we also need to consider F (x∗∗

1 , y∗∗
1 , z∗∗) = z∗∗ and we set

F (x∗, y∗, z∗) = z∗.

With this, the dichotomy is fully established. The next chapter will explore signed
graphs further beyond the class of signed trees.
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This chapter is based on:

• [22] Jan Bok, Richard C. Brewster, Tomás Feder, Pavol Hell, and Nikola
Jedličková: List homomorphisms to separable signed graphs. In Al-
gorithms and Discrete Applied Mathematics - 8th International Con-
ference, CALDAM 2022, volume 13179 of Lecture Notes in Computer
Science, pages 22–35, 2022. https://doi.org/10.1007/978-3-030-
95018-7_3

Understanding the complexity of finding list homomorphisms into irreflexive
signed graphs seems to be the heart of the problem and Kim and Siggers [117]
have conjectured a classification for these signed graphs. We focus on a special
case of irreflexive signed graphs, namely those in which the unicoloured edges
form a spanning path or cycle, and classify the complexity of list homomorph-
isms to these signed graphs. In particular, our results confirm the conjecture of
Kim and Siggers for this class of signed graphs.

4.1 Introduction and motivation
For weakly balanced irreflexive signed graphs, Kim and Siggers [117] suggest the
following conjecture.
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4 List homomorphism problems for separable signed graphs

Conjecture 4.1. [117] For a weakly balanced irreflexive signed graph ˆ︂H, the
list homomorphism problem is polynomial-time solvable if ˆ︂H has a special min
ordering; otherwise ˆ︂H contains a chain or an invertible pair and the problem is
NP-complete.

In fact, the formulation in the mentioned paper is slightly different: the con-
jecture is stated as an equivalence of the existence of a special min ordering,
the existence of a semi-conservative weak near-unanimity polymorphism, and the
absence of invertible pairs and chains; however the aim of the conjecture is the
above reformulation as a conjectured dichotomy classification.

Authors there prove that the existence of a special min ordering implies the exist-
ence of a semi-conservative majority which means that the problem is polynomial-
time solvable; so to confirm their conjecture, one needs to prove that the remain-
ing cases are NP-complete.

In the previous chapter in Theorem 3.4 we confirmed the above conjecture (both
in our formulation and in the original formulation from [117]), when ˆ︂H is an
irreflexive signed tree: the only NP-complete cases have a chain or an invertible
pair.

We now introduce the main definition of this chapter.

Definition 4.2. We say that an irreflexive signed graph ˆ︂H is path-separable
(cycle-separable) if the unicoloured edges of ˆ︂H form a spanning path (cycle) in
the underlying graph of ˆ︂H. We shall also call such paths and cycles hamiltonian.
For brevity, we also say a signed graph is separable if it is path-separable or
cycle-separable.

Main results. In this chapter we explicitly classify the complexity of the list ho-
momorphism problem for separable signed graphs ˆ︂H — see Theorems 4.3 and 4.5.
The descriptions suggest that the polynomial cases are rather rare and very nicely
structured. In particular, we confirm Conjecture 4.1 (in both formulations) in the
special case when ˆ︂H is a separable signed graph. Moreover, in our results we do
not assume that ˆ︂H is weakly balanced.

4.2 Path-separable signed graphs
We first observe that for any irreflexive signed graph ˆ︂H, the list homomorphism
problem for ˆ︂H is NP-complete if the underlying graph H contains an odd cycle,
since then the s-core of ˆ︂H has at least three edges and we can apply Theorem 2.6.
There is a natural transformation of each general problem to a problem for a
bipartite irreflexive signed graph, akin to what is done for unsigned graphs in [65].
This is explained in more detail in [117].
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However, for bipartite H, we don’t have a combinatorial classification beyond the
case of trees H, except in the case ˆ︂H has no bicoloured edges or loops (when
Theorem 2.7 applies), or when ˆ︂H has no unicoloured edges or loops (when the
problem essentially concerns unsigned graphs and thus is solved by [65]). There-
fore we may assume that both bicoloured and unicoloured edges are present. In
this section, we consider irreflexive signed graphs in which the unicoloured edges
form a spanning path.

We may assume the edges of P are all blue. In other words, all the edges of the
hamiltonian path P are blue, and all the other edges of ˆ︂H are bicoloured. Recall
that the distinction between unicoloured and bicoloured edges is independent of
switching, thus such a hamiltonian path P = v1v2 . . . vn is unique, if it exists.

We now show that the list homomorphism problem for ˆ︂H is also NP-complete if
H contains an induced cycle of length greater than four. Indeed, it suffices to
prove this if H is an even cycle of length k > 4. If all edges of H are unicoloured,
then the problem is NP-complete by Theorem 2.7, since an irreflexive cycle of
length k > 4 is not a bi-arc graph. If all edges of the cycle H are bicoloured, then
we can easily reduce from the previous case. If H contains both unicoloured and
bicoloured edges, then ˆ︂H contains an induced subgraph of type a) or b) in the
family F in Figure 3.1, and the problem is NP-complete by Theorem 2.9. (There
are cases when the subgraphs are not induced, but the chains from the proof of
Theorem 2.9 are still applicable.)

We further identify two additional cases of ˆ︂H with NP-complete list homomorph-
ism problems. An alternating 4-cycle is a 4-cycle v1v2v3v4 in which the edges
v1v2, v3v4 are bicoloured and the edges v2v3, v4v1 unicoloured. A 4-cycle pair con-
sists of 4-cycles v1v2v3v4 and v1v5v6v7, sharing the vertex v1, in which the edges
v1v2, v1v5 are bicoloured, and all other edges are unicoloured. An alternating 4-
cycle has the chain U = v1, v4, v3; D = v1, v2, v3, and a 4-cycle pair has the chain
U = v1, v4, v3, v2, v1; D = v1, v5, v6, v7, v1. Therefore, if a signed graph ˆ︂H contains
an alternating 4-cycle or a 4-cycle pair as an induced subgraph, then the list ho-
momorphism problem for ˆ︂H is NP-complete. Note that the latter chain requires
only v2v6 and v3v5 to be non-edges. The problem remains NP-complete as long
as these edges are absent; all other edges with endpoints in different 4-cycles can
be present. If both v2v6 and v3v5 are bicoloured edges, then there is an altern-
ating 4-cycle v2v3v5v6. Thus we conclude that the problem is NP-complete if ˆ︂H
contains a 4-cycle pair as a subgraph (not necessarily induced), unless exactly
one of v3v5 or v2v6 is a bicoloured edge.

From now on we will assume that ˆ︂H is a path-separable signed graph with the
unicoloured edges (all blue) forming a hamiltonian path P = v1, . . . , vn. We will
assume further that the list homomorphism problem for ˆ︂H is not NP-complete,
and derive information on the structure of ˆ︂H. In particular, the underlying graph
H is bipartite and does not contain any induced cycles of length greater than 4,
and ˆ︂H does not contain an alternating 4-cycle or a 4-cycle pair; more generally,

63



4 List homomorphism problems for separable signed graphs

ˆ︂H does not contain a chain. If ˆ︂H has no bicoloured edges (and hence no edges
not on P ), then the list homomorphism problem for ˆ︂H is polynomially solvable
by Theorem 2.7, since a path is a bi-arc graph. If there is a bicoloured edge in ˆ︂H,
then we may assume there is an edge vivi+3, otherwise there is an induced cycle
of length greater than 4.

A block in a path-separable signed graph ˆ︂H is a subpath vivi+1vi+2vi+3 of P ,
with the bicoloured edge vivi+3. The previous paragraph concluded that ˆ︂H must
contain a block. Note that if vivi+1vi+2vi+3 is a block, then vi+1vi+2vi+3vi+4
cannot be a block: in fact, vi+1vi+4 cannot be a bicoloured edge, otherwise ˆ︂H
would contain an alternating 4-cycle. However, vi+2vi+3vi+4vi+5 can again be a
block, and so can vi+4vi+5vi+6vi+7, etc. If both vivi+1vi+2vi+3 and vi+2vi+3vi+4vi+5
are blocks then vivi+5 must be a bicoloured edge, otherwise vivi+3vi+2vi+5 would
induce a signed graph of type a) in family F from Figure 3.1. A segment in ˆ︂H is
a maximal subpath vivi+1 . . . vi+2j+1 of P with j ≥ 1 that has all bicoloured edges
vi+evi+e+3, where e is even, 0 ≤ e ≤ 2j − 2. (A maximal subpath is not properly
contained in another such subpath.) Thus each subpath vi+evi+e+1vi+e+2vi+e+3 of
the segment is a block, and the segment is a consecutively intersecting sequence
of blocks; note that it can consist of just one block. Two segments can touch as
the second and third segment in Figure 4.1, or leave a gap as the first and second
segment in the same figure.

In a segment vivi+1 . . . vi+2j+1 we call each vertex vi+e with 0 ≤ e ≤ 2j − 2 a
forward source, and each vertex vi+o with 3 ≤ o ≤ 2j + 1 a backward source.
Thus forward sources are the beginning vertices of blocks in the segment, and the
backward sources are the ends of blocks in the segment. If a < b, we say the edge
vavb is a forward edge from va and a backward edge from vb. In this terminology,
each forward source has a forward edge to its corresponding backward source.
Because of the absence of a signed graph of type a) in family F from Figure 3.1,
we can in fact conclude, by the same argument as in the previous paragraph, that
each forward source in a segment has forward edges to all backward sources in
the segment.

We say that a segment vivi+1 . . . vi+2j+1 is right-leaning if vi+evi+e+o is a bicoloured
edge for all e is even, 0 ≤ e ≤ 2j−2, and all odd o ≥ 3; and we say it is left-leaning
if vi+2j+1−evi+2j+1−e−o is a bicoloured edge for all e even, 0 ≤ e ≤ 2j − 2 and all
odd o ≥ 3. Thus in a right-leaning segment each forward source has all possible
forward edges (that is, all edges to vertices of opposite colour in the bipartition,
including vertices with subscripts greater than i + 2j + 1). The concepts of left-
leaning segments, backward sources and backward edges are defined similarly.

We say that a path-separable signed graph ˆ︂H is right-segmented if all segments
are right-leaning, and there are no edges other than those mandated by this fact.
In other words, each forward source has all possible forward edges, and each
vertex which is not a forward source has no forward edges. Similarly, we say that
a path-separable signed graph ˆ︂H is left-segmented if all segments are left-leaning,
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to all white vertices

17 18 19 20

to all black vertices to all white
vertices

to all black vertices

v v v v v v v v v v v v v v vvv
3 4 5 6

v
7 8 9 10 11 12 13 14 15 16

Figure 4.1: An example of a left-right-segmented signed graph. The additional
bicoloured edges from all white vertices before v12 to all black vertices after v15
are not shown.

and there are no edges other than those mandated by this fact. In other words,
each backward source has all possible backward edges, and each vertex which is
not a backward source has no backward edges. Finally, ˆ︂H is left-right-segmented
if there is a unique segment vivi+1 . . . vi+2j+1 that is both left-leaning and right-
leaning, all segments preceding it are left-leaning, all segments following it are
right-leaning, and moreover there are additional bicoloured edges vi−evi+2j+o for
all even e ≥ 2 and all odd o ≥ 3, but no other edges. In other words, vertices
v1, v2, . . . , vi+2j+1 induce a left-segmented graph, vertices vi, vi+1, . . . , vn induce a
right-segmented graph, and in addition to the edges this requires there are all
the edges joining vi−e from v1, . . . , vi−1 to vi+o from vi+2j+2, . . . , vn, with even e
and odd o. A segmented graph is a path-separable signed graph that is right-
segmented or left-segmented or left-right-segmented. We also refer to vertices
with even subscripts as white and vertices with odd subscripts as black.

See Figure 4.1 for a non-trivial example. There are three segments in the fig-
ure, the left-leaning segment v5v6v7v8v9v10, the left- and right-leaning segment
v12v13v14v15, and the right-leaning segment v15v16v17v18v19v20. Thus this is a left-
right-segmented signed graph.

We are now ready to formulate the first of the two main results of this chapter.

Theorem 4.3. Let ˆ︂H be a path-separable signed graph. Then the list homo-
morphism problem for ˆ︂H is polynomial-time solvable if ˆ︂H is switching equivalent
to a segmented signed graph ˆ︂H. Otherwise, the problem is NP-complete.

The rest of the section will be devoted to the proof of this theorem.

4.2.1 NP-complete cases
Assume as above that ˆ︂H is a path-separable signed graph for which the list
homomorphism problem is not NP-complete, with the unicoloured edges all blue
and forming the hamiltonian path P = v1, . . . , vn. As noted above, there are
bicoloured edges forming segments, and possibly some other bicoloured edges.

Consider two consecutive segments, a segment S, ending with the block vi, vi+1,
vi+2, vi+3, and a segment S ′ beginning with the block vj, vj+1, vj+2, vj+3, where
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i + 3 ≤ j. Note that there can be no bicoloured edge joining two vertices from
the set {vi+1, . . . , vj+2}, because the segments S, S ′ are maximal and consecutive.
(If there is any edge joining two vertices of that set, there would have to be one
forming a 4-cycle with the unicoloured edges, since the underlying graph has no
induced cycles longer than 4.) We emphasize that this crucial observation will be
repeatedly used in the arguments in the next three paragraphs, usually without
specifically mentioning it.

We claim that either vi (the last forward source of the segment S) has forward
edges to all vi+3, vi+5, vi+7, . . . , vs for some s > j + 1, or symmetrically, vj+3
(the first backward source of the next segment S ′) has a backward edges to all
vj−2, vj−4, . . . , vt for some t < i + 2. In the former case we say that S precedes S ′,
in the latter case we say that S ′ precedes S.

In case that S precedes S ′, we now show that vi (the last forward source of S)
has forward edges to all vi+3, vi+5, vi+7, . . . , vs with s > j + 1. (When S ′ precedes
S, the argument symmetrically shows that vj+3 (the first backward source of S ′)
has a backward edges to all vj−2, vj−4, . . . , vt with t < i + 2.)

Suppose first that i and j have the same parity (are both even or both odd).
There must be other bicoloured edges, otherwise there is a signed graph of type a)
from the family F in Figure 3.1 induced on the vertices vi, vi+3, vi+4, . . . , vj, vj+3,
and hence a chain in ˆ︂H. Therefore, using the above crucial observation, there
must be extra edges incident with vi or vj+3. Moreover, as long as there is
no edge vivj+3, there would always be an induced subgraph of type a) from
the family F . On the other hand, if vivj+3 is an edge, then there is a chain
with U = vi, vi+1, vi+2, vi+3, vi, vj+3 and D = vi, vj+3, vj+2, vj+1, vj+2, vj+3, un-
less vi+2vj+3 or vivj+1 is an edge. (There is no edge vi+3vj+2 by our crucial
observation above.) Note that both vi+2vj+3 and vivj+1 cannot be edges, be-
cause of the chain U = vi, vi+1, vi+2, vj+3, D = vi, vj+1, vj+2, vj+3. Assume
that vivj+1 is an edge. Now we can repeat the argument: there would be a
chain with U = vi, vi+1, vi+2, vi+3, vi, vj+1 and D = vi, vj+1, vj, vj−1, vj, vj+1, un-
less vivj−1 is an edge. (In this case, we don’t need to consider vi+2vj+1, since
both lie in {vi+1, . . . , vj+2}.) We can continue this way until this argument im-
plies the already existing edge vivi+3, and conclude that vi is adjacent to all
vj+3, vj+1, vj−1, . . . , vi+3, which proves the claim with s = j + 3. If vi+2vj+3 is an
edge, we conclude symmetrically that the claim holds for t = i.

Now assume that the parity of i and j is different. This happens, for instance,
when i + 3 = j: in this case, we would have a 4-cycle pair unless one of
vivj+2, vi+1vj+3 is an edge. Both cannot be edges, as there would be an alternat-
ing 4-cycle. This verifies the claim when i + 3 = j. Otherwise, there again is a
signed graph of type a) from the family F in Figure 3.1, induced on the vertices
vi, vi+3, vi+4, . . . , vj, vj+3, so there must be extra edges incident with vi or vj+3.
Moreover, there would always remain such an induced subgraph unless there is a
vertex vp with i + 3 ≤ p ≤ j that is adjacent to both vi and vj+3. Thus let vp be
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such a vertex.

We first show that p can be chosen to be j or i + 3, i.e., that vj is adjacent to
vi, or vj+3 is adjacent to vi+3. Indeed, if vivj, vi+3vj+3 are not edges, then vivj+2
must also not be an edge (else we obtain a cycle of length greater than 4), and
we have the chain

U = vi, vi+1, vi+2, vi+3, vi, vp, vj+3, D = vi, vp, vj+3, vj+2, vj+1, vj+2, vj+3.

(Recall that we are still using the crucial observation that there is no bicoloured
edge joining two vertices from the set {vi+1, . . . , vj+2}.)

Consider now the case that p = j (or symmetrically p = i + 3). Since vivp is
an edge and there are no induced cycles of length greater than 4, the vertex vi

must also be adjacent to vj−2, vj−4, . . . , vi+5. Moreover, using again the crucial
observation, vi is also adjacent to vj+2, as otherwise we would have the chain
U = vi, vi+1, vi+2, vi+3, vi, vj and D = vi, vj, vj+1, vj+2, vj+1, vj. Thus the claim
holds, with s = j + 2. In the case p = i + 3, we obtain a symmetric situation,
proving the claim with t = i + 1.

We conclude that for any two consecutive segments, exactly one precedes the
other. For technical reasons, we also introduce two auxiliary segments, calling
the other segments normal. If the first normal segment S of ˆ︂H starts at vi with
i > 2, we introduce the left end-segment to consist of the vertices v1, v2, . . . , vi.
We say that the left end-segment precedes S if there is no edge vi−2vi+3, and we
say that S precedes the left end-segment if vi−2vi+3 is an edge. Similarly, if the
last normal segment S ′ ends at vk with k < n − 1, the right end-segment consists
of the vertices vk, vk+1, . . . , vn. The right end-segment precedes S ′ if vk−3vk+2 is
not an edge, and S ′ precedes the right end-segment if vk−3vk+2 is an edge. Then
it is still true that for any two consecutive segments, one precedes the other.

Suppose that we have the special situation where each segment (including the end-
segments) precedes the next segment. Consider again the last normal segment S ′,
ending in block vk−3, vk−2, vk−1, vk. We first note that since there are no induced
cycles of length greater than 4, and no blocks after the block vk−3, vk−2, vk−1, vk,
there cannot be any forward edges from vk−1, vk, vk+1, . . .. By the same argument
and the absence of alternating 4-cycles, there are no forward edges from vk−2
either.

Our special assumption implies that vk−3vk+2 is an edge. Then vk−3 has also
an edge to vk+4, otherwise we have a signed graph of type b) from family F
in Figure 3.1, induced on the vertices vk−1, vk−2, vk−3, vk+2, vk+3, vk+4. It is easy
to check that the subgraph is induced because otherwise there would be either
another block, or an alternating 4-cycle. Then we argue similarly that vk−3 has
also an edge to vk+6, and so on, concluding by induction that the last forward
source vk−3 has all possible forward edges, and that no vertex after vk−3 has any
forward edges. Because of the absence of alternating 4-cycles, also the vertex
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vk−4 has no forward edges, so if vk−5 is a forward source in S ′, we can use the
same arguments to conclude it has all forward edges. Thus each forward source
vk−o of S ′ (with odd o > 3) has all possible forward edges. Thus the last segment
S ′ is right-leaning, and there are no other forward edges (starting in its vertices
or later) than those mandated by this fact.

We proceed by induction from the last segment to the first segment to show that in
this special situation all segments are right-leaning and there are no other forward
edges at all. The proof is analogous to the preceding paragraph. Consider for
instance a segment S ending in block vi, vi+1, vi+2, vi+3: since it precedes the next
block, its last forward source, vi has all possible forward edges until vs where
s > j + 1 and the next segment begins with vj. Now the arguments can be
repeated, starting avoiding a signed graph of type b) from family F in Figure 3.1
induced on the vertices vi+2, vi+1, vi, vs, vs+1, vs+2. Finally, the vertices in the left
end-segment cannot have any forward edges, as the absence of other blocks and
of induced cycles of length greater than 4 implies there would have to be an edge
vf−5vf where vf is the first backward source, contrary to the assumption that the
left end-segment precedes the first normal segment.

Thus we have proved that if each segment precedes the next segment, then ˆ︂H is
a right-segmented graph. By symmetric arguments, we obtain the case of left-
segmented signed graphs by assuming that each segment precedes the previous
segment. It remains to consider the cases where some segment precedes, or is
preceded by, both its left and right neighbours.

It turns out that the case where two segments S1 and S3 both precede the in-
termediate segment S2 is impossible. Suppose S2 has vertices va, va+1, . . . , vb; in
particular, this implies that vavb is an edge. Since each segment before S2 precedes
the next segment, the previous arguments apply to the portion of the vertices be-
fore S2, and in particular the vertex va−2 is not a forward source, hence has no
forward edges; therefore va−2 is not adjacent to vb. By a symmetric argument,
there is no edge vavb+2. There is also no edge va−1vb+1 because it would form
an alternating 4-cycle with vavb. Therefore, va−2, va−1, va, vb, vb+1, vb+2 induce a
signed graph of type b) from family F in Figure 3.1, a contradiction.

We conclude that if S1 precedes the next segment S2, then S2 must precede
the following segment S3, and so on, and similarly if S1 precedes the previous
segment S2.

Hence it remains only to consider the situation where a unique segment S2, with
vertices va, va+1, . . . , vb precedes both its left neighbour S1 and its right neighbour
S3 and to the left of S1 each segment precedes its left neighbour, and to the right
of S3 each segment precedes its right neighbour. This implies that all segments
before S2 are left-leaning, all segments after S2 are right-leaning, while S2 is both
left-leaning and right-leaning. To prove that in this situation the signed graphˆ︂H is left-right-segmented, we show that all edges va−eva+o are present, with e
even and o odd. This is obvious when e = 0 and o ≤ b − a, by the observations
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following the definition of a segment. We also have the edges vavb+2, va−2vb since
the segment S2 is both left-leaning and right-leaning. Then we must have the edge
va−2vb+2 else there would be the chain U = va, va−1, va−2, vb, D = va, vb+2, vb+1, vb.
We have the edge vavb+4 since va is a forward source, and thus we must also
have the edge va−2vb+4, otherwise there is the chain U = va, va−1, va−2, vb+2, D =
va, vb+4, vb+3, vb+2. Continuing this way by induction on e+o we conclude that all
edges va−eva+o, with e even and o odd, must be present. This completes the proof
of NP-completeness for any path-separable signed graph that is not segmented.

4.2.2 Polynomial cases
To show that the problem is polynomial when ˆ︂H is a segmented signed graph,
we first show that ˆ︂H has a special bipartite min ordering.

We first describe a special bipartite min ordering of the vertices for the case of a
right-segmented signed graph, with the unicoloured path P . Consider two white
vertices u and v that are forward sources such that u precedes v on P . Then
all forward neighbours of v are also forward neighbours of u, and all backward
neighbours of u are also backward neighbours of v. White vertices z that are
not forward sources have edges from all black forward sources w that precede z
on P . We now construct a bipartite min ordering <: order the white vertices
that are forward sources in the forward order, then order the remaining white
vertices in the backward order. The same ordering is applied on black vertices.
It now follows from our observations above that this is a special min ordering.
For left-segmented graphs, the ordering is similar.

We now describe a special min ordering < for the case of a left-right-segmented
signed graph ˆ︂H; we consider its vertices in the order of the unicoloured path P .
We may assume the left-right-leaning segment begins with a white vertex a and
ends with a black vertex b. We denote by a′ the (black) successor of a on P , and
by b′ the (white) successor of a′ on P . We also denote by L the set of backward
sources and by R the set of forward sources of ˆ︂H, and denote by U the portion
of P from its first vertex to a′, and by V the remaining portion of P , from b′ to
its last vertex. Then the min ordering < we construct has white vertices ordered
as follows: first the vertices in U ∩ L listed in backward order on P , then the
vertices of U \ L listed in forward order on P , followed by the vertices in V ∩ R
in forward order, and then the vertices of V \ R in backward order. Similarly, the
black vertices are ordered as follows: first the vertices of V ∩ R in forward order,
then vertices of V \ R in backward order, then vertices of U ∩ L in backward
order, and finally the vertices of U \ L in forward order.

To check that < is a min ordering we consider where could a violation of the min
ordering property lie. A violation would consist of white vertices x < y and black
vertices s < t such that xt, ys are edges of ˆ︂H but xs is not.

We observe that all white vertices in U join all black vertices in V , and no black
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vertex in U joins a white vertex in V with the exception of a′ joining b′.

First assume that x lies in U ∩ L: then x is adjacent to all black vertices in V , all
black vertices before x on P and to its immediate successor and predecessor on
P . As x belongs to L, its predecessor and its successor belong to U\L and are
its only unicoloured neighbours. Therefore the non-neighbours of x are in U\L,
and ordered in < later than its neighbours. A violation cannot occur. Moreover,
we observe that its bicoloured neighbours all precede its unicoloured neighbours
in < and hence we also verify the special property of a min ordering for x.

Next consider the case that x lines in U\L: this implies s ∈ U and since s < t,
t ∈ U also. If s follows x on P , then s ∈ U\L giving t ∈ U\L which means xt
cannot be an edge. On the other hand, if s precedes x on P , the edge ys implies
y ∈ U and the ordering x < y implies y ∈ U\L giving ys cannot be an edge. It
is easy to check that the special property holds in this case also.

Now assume x ∈ V \R. Since x < y, we must have y ∈ V \R as well and y
precedes x on P . The only black vertices adjacent to y with a bicoloured edge
must lie to the left of y on P and therefore to the left of x. Such vertices join
x with a bicoloured edge as well. Thus s ̸∈ R and must be adjacent to y by
a unicoloured edge. Since s < t and t ∈ V (no black vertex in U can join x),
we have t precedes s on P and t ̸∈ L. Now tx cannot be an edge. The special
property is straightforward to verify.

Finally consider the case when x ∈ V ∩ R. Since x is a forward source s must
precede x on P . If s ∈ V , then s ∈ V \R as sx is not an edge. Since xt is an
edge, t ∈ V and s < t implies t ∈ V \R contradicting xt is an edge. If s ∈ U ,
then t ∈ U contradicting the existence of at least one of ys or xt.

It is easy to check that the special property holds in all cases, and that it also
holds for all black vertices. Thus our ordering is a special min ordering and we
can use the result from [117] which asserts that the existence of a special min
ordering ensures the existence of a polynomial-time algorithm. However, it is not
difficult to give a direct proof in this case and we will do so now.

4.2.3 Alternative polynomial-time algorithm
We offer the following alternative polynomial-time algorithm for a superclass
of segmented graphs. We shall use the special bipartite min ordering of the
segmented signed graph ˆ︂H we just described.

Theorem 4.4. Suppose ˆ︂H is a weakly balanced irreflexive signed graph, which
contains a unicoloured spanning subgraph. If ˆ︂H has a special bipartite min order-
ing, then List-S-Hom(ˆ︂H) is polynomial-time solvable.

Proof. We may assume all unicoloured edges in ˆ︂H are blue. We first argue that
the special min ordering < has the following additional property: if xy is an
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bicoloured edge and uv is an edge with u ≤ x, v ≤ y, then the edge uv is
also bicoloured. To show this, assume uv is a unicoloured edge. By the special
property of our min ordering, u ̸= x, v ̸= y. Now consider a unicoloured path R
from x to u, which exists by assumption. After x the path R must visit a vertex
z > y, otherwise the special property is violated. Thus there is an edge cd that
crosses xy, in the sense that x < c, d < y or c < x, y < d, and this is true for
any bicoloured edge x′y′, x′ ≤ x, y′ ≤ y. We may assume that x′y′ is a bicoloured
edge such that no bicoloured edge x′′y′′ has x′′ ≤ x′, y′′ < y′, and suppose that
c′d′ crosses x′y′ with (say) x′ < c′, d′ < y′. Then x′d′ must be an edge because <
is a min ordering, and it must be bicoloured by the special property at x′. This
contradicts the minimality of x′y′.

The additional property means we can use the following standard polynomial-time
list homomorphism algorithm [103]: we perform the consistency test (see [103]
Algorithm 4) for blue edges, and then choose in each remaining list the minimum
element in the order <. (If any list becomes empty there is no list homomorph-
ism [103].) By the standard arguments the properties of a min ordering ensure
that this is a list homomorphism of the blue edges [103], Corollary 5.25 . Finally,
the additional property ensures that this mapping also preserves bicoloured edges,
since if there is any bicoloured edge between two lists, then there is a bicoloured
edges joining their minimum elements in <. Therefore a list homomorphism exists
if and only the consistency test succeeds, and hence the problem is polynomial-
time solvable [103].

4.3 Cycle-separable signed graphs
As an application of Theorem 4.3, we now consider irreflexive signed graphs in
which the unicoloured edges form a spanning cycle. Recall that we say that an
irreflexive signed graph ˆ︂H is cycle-separable if the unicoloured edges of ˆ︂H form
a hamiltonian cycle C in the underlying graph H. In other words, we have a
hamiltonian cycle C whose edges are all unicoloured, and all the other edges ofˆ︂H are bicoloured. In contrast to the path-separable signed graphs, we cannot
assume the edges of C are all blue. (The hamiltonian cycle P = v1v2 . . . vn is
again unique.)

We first introduce three cycle-separable signed graphs for which the list homo-
morphism problem will turn out to be polynomial-time solvable. The signed
graph ˆ︃H0 is the 4-cycle with all edges unicoloured blue. The signed graph ˆ︃H1
consists of a a blue path b = t0, t1, t2, t3 = w, a red path b, s1, s2, w, together with
a bicoloured edge bw. The signed graph ˆ︂Hℓ consists of a blue path b, s1, s2, w,
a blue path b = t0, t1, t2, . . . , tℓ = w (with ℓ ≥ 3 odd), and all bicoloured edges
titj with even i and odd j, j > i + 1. (Note that this includes the edge bw.)
These three cycle separable signed graphs are illustrated in Figure 4.2. Note that
if the subscript ℓ is greater than 0, then it is odd. Moreover, both H1 and H3
have 6 vertices and differ only in the colours of the unicoloured edges forming
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b = t0

t1
t2 t3

w = tℓ

s1 s2s1 s2

t2t1

ˆ︂H0
ˆ︂H1

ˆ︂Hℓ

b = t0 w = t3

Figure 4.2: The cycle-separable signed graphs ˆ︂H0, ˆ︂H1, and ˆ︂Hℓ with ℓ ≥ 3 odd.

the hamiltonian cycle C: H1 has the cycle C unbalanced, and H3 has the cycle
C balanced.

For the rest of this section, our goal is to prove the following theorem.

Theorem 4.5. Let ˆ︂H be a cycle-separable signed graph. Then the the list homo-
morphism problem for ˆ︂H is polynomial-time solvable if ˆ︂H is switching equivalent
to ˆ︂H0, or to ˆ︂H1, or to ˆ︂Hℓ for some odd ℓ ≥ 3. Otherwise, the problem is NP-
complete.

4.3.1 NP-complete cases
Suppose ˆ︂H is a cycle-separable signed graph for which List-S-Hom(ˆ︂H) is not
NP-complete. As ˆ︂H is irreflexive, it must be bipartite. Further, if ˆ︂H has no
bicoloured edges, then it must be a balanced even cycle of length 4, namely it
must be ˆ︃H0.

Further suppose that ˆ︂H has at least 6 vertices and let us denote the hamiltonian
cycle as v0, v1, . . . , vn−1, v0. Without loss of generality all edges are blue with the
possible exception of v0v1. Consider ˆ︂H − v0. This is switching equivalent to a
segmented signed graph with hamiltonian path v1, v2, . . . , vn−1 (where n is even),
and thus it has the structure described above.

By symmetry, there is a right-leaning segment. Let vi be the first vertex of the
first right-leaning segment. Then vi+1 has degree 2 in ˆ︂H − v0 and degree 2 inˆ︂H unless v0vi+1 is a bicoloured edge. If v0vi+1 is an edge, then i + 1 is odd
and the forward source vi sends a bicoloured edge to each vo for o odd with
i + 3 ≤ o ≤ n − 1. Consequently, v0vi+1vivn−1v0 is an alternating 4-cycle contrary
to our assumption that List-S-Hom(ˆ︂H) is not NP-complete. We conclude vi+1
has degree 2 in ˆ︂H.

Rename the vertices of the underlying graph H so that v0 is a vertex of de-
gree two. The signed graph ˆ︂H − v0 is path-separable. We are assuming that
List-S-Hom(ˆ︂H − v0) is not NP-complete, so Theorem 4.3 implies that ˆ︂H − v0
is switching equivalent to a segmented signed graph with spanning path P =
v1, v2, . . . , vn−1. In particular, we may switch so the spanning path v1, v2, . . . , vn−1
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of unicoloured edges are all blue, the edge v0vn−1 is blue, and the edge v0v1 may
be red of blue (depending on the sign C).

By symmetry, we may assume v2 is adjacent to vn−1 (recall n is even), otherwiseˆ︂H contains an induced cycle of length greater than four. Thus we have a 4-cycle
v0, v1, v2, vn−1, v0.

Assume first that v2, v3, v4, v5, v2 is also a 4-cycle. Then we must have that
v4vn−1 is also an edge, otherwise ˆ︂H would have 4-cycle pair. If v1v4 is an
edge, then we have an alternating 4-cycle. If v6vn−1 is not an edge, then the
path v6, v5, v4, vn−1, v0, v1 is a case (b) of family F in Figure 3.1. Similarly,
v1v6 is not an edge and v2v7 is. By repeating this argument, we conclude
that v8vn−1, . . . , vn−4vn−1 and v2v9, . . . , v2vn−3 must also be edges. Thus us-
ing our descriptions of the polynomial path-separable cases, we conclude thatˆ︂H − v0 − v1 = v2, v3, . . . , vn−1 is just one segment. If vn−1, vn−2, vn−3, vn−4 is a
4-cycle, the argument is similar.

If neither v2, v3, v4, v5 nor vn−1, vn−2, vn−3, vn−4 is a 4-cycle, then from Theorem 4.3
we conclude that ˆ︂H −v0 is left-right-segmented, with a left-right-leaning segment
S not at the end of P . This is easy to dismiss, because there would be a P5
(case (b) of family F) involving the segment S and the vertex v0. In conclusionˆ︂H−v0−v1 is just one segment. We label the vertices of ˆ︂H as in Figure 4.2, namely,
the segment v2, . . . , vn−1 is b = t0, t1, . . . , tℓ = w and the path v2, v1, v0, vn−1 is
b, s1, s2, w.

If the cycle C is balanced, then ˆ︂H is switching equivalent to some ˆ︂Hℓ with ℓ ≥ 3. If
the cycle C is unbalanced and n = 6, then ˆ︂H is switching equivalent to ˆ︃H1. Below
we show that both these cases are polynomial-time solvable. Therefore, assume
that ˆ︂H has n > 6 and its hamiltonian cycle C is unbalanced. We now prove that
in this case List-S-Hom(ˆ︂H) is NP-complete. Without loss of generality, assume
the path b, t1, . . . , tℓ−1, w is blue and the path b, s1, s2, w is red. The vertices of
the segment b, s1, s2, w are called the s-vertices and the vertices of the segment
b, t1, . . . , tℓ−1, w are called the t-vertices.

We will reduce from one of the NP-complete cases of Boolean satisfiability dicho-
tomy theorem of Schaefer [155].

An instance of the problem is a set of Boolean variables V and a set of quadruples
R over these variables. The problem asks if there is an assignment of 0, 1 to the
variables so that for every quadruple (a′, b′, c′, d′) ∈ R, the Boolean expression
(a′ = b′ = c′ = d′) ∨ (a′ ̸= c′) is satisfied.

Schaeffer [155] proved that a Boolean constraint satisfaction problem is NP-
complete except for the well known polynomial cases of 2-SAT, Horn clauses,
co-Horn clauses, linear equations modulo two, or when the only satisfying assign-
ments are the all true or the all false assignments. To see that our problem is
not expressible as 2-SAT, consider the following three satisfying assignments for
(a′, b′, c′, d′): (1, 1, 1, 1), (1, 0, 0, 0), (0, 0, 1, 0). It is well known, see e.g. [58] Lemma
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4.9, that any problem expressible as 2-SAT has the property that the majority
function on three satisfying assignments must also be a satisfying assignment.
However, for our three assignments the majority function yields the assignment
(1, 0, 1, 0) which is not satisfying. Similarly, our problem is not expressible as
Horn clauses (respectively co-Horn clauses) because the minimum (respectively
maximum) function on the two satisfying assignments (0, 1, 1, 0), (1, 1, 0, 0) is not
a satisfying assignment, cf. Lemma 4.8 in [58]. Finally, our problem is not ex-
pressible by linear equations modulo two because the sum modulo two of the
three satisfying assignments (1, 1, 1, 1), (1, 1, 0, 1), (0, 1, 1, 1) results in the assign-
ment (0, 1, 0, 1) which is not satisfying, cf. Lemma 4.10 in [58]. Thus our problem
is one of the NP-complete cases.

Consider an instance R (over V ) of our satisfiability problem. We shall now
construct a signed graph ˆ︁G with lists such that ˆ︁G admits a list homomorphism
to ˆ︂H if and only if there is a satisfying assignment for the set of quadruples R.

For each quadruple (a′, b′, c′, d′), we construct a copy of the gadget Q(a′, b′, c′, d′)
(with lists) as in Figure 4.3. Observe that the images of a′, b′, c′ and d′ are all
fixed. The remaining vertices, which we call inner vertices, must all map to the
t-vertices or must all map to the s-vertices.

A variable, say r, can appear in multiple quadruples. In this case, there will be a
vertex corresponding to r for each quadruple. If r appears multiple times in the
first or second coordinate, then we add a vertex xr to ˆ︁G and a blue edge from xr to
each occurrence of r (in the first two coordinates). The vertex xr has the list {t1}.
Similarly, if r appears in the last two coordinates (corresponding to c′ and d′) of
multiple quadruples, then a vertex yr with list {tℓ−1} is added to ˆ︁G together with
blue edges joining yr to each occurrence of r in the last two coordinates. Finally
if r occurs in the first or second coordinate in one quadrangle, say as r′, and
in the third or fourth coordinate of another quadrangle, as r′′, then a blue path
r′, r1, r2, . . . , rℓ−1, r′′ is added to ˆ︁G with L(ri) = {ti} for each i = 1, 2, . . . , ℓ − 1.
This path needs only to be added once for the variable r. Observe at this point
between any two occurrences of r in ˆ︁G, there is a blue path whose image under
any homomorphism to ˆ︂H is uniquely determined by its lists. Moreover, the image
of each such path is a positive walk. Consequently, under any list homomorphismˆ︁G → ˆ︂H either no occurrence of r is switched or all occurrences of r are switched.

The repetition of some vertices in lists in the gadget ensures that each longest
path can be mapped to a walk of length k + 1 in ˆ︂H between b and w. If there is
some element r contained in the first or second position of two or more quadruples,
then we add a new vertex xr and a blue edge from xr to each occurrence of r. The
analogous argument can be used if an element is contained in the third or fourth
position of two or more quadruples. Furthermore, if there is some element r in
the first or second position of a quadruple and also in the third or fourth position
of another quadruple, then we add a blue path r1, . . . , rk−2 with L(ri) = {ti} and
connect each endpoint with one occurrence by a blue edge. Denote the resulting
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{b}

{t3, s1}

{t1, s1}

{b}

{t2, s2}
{t3, s1}

{tk−2, s1}

{tk−1, s2}

{tℓ−3, s2}

{w}

{w}

a′

b′

c′

d′

{t4, s2}

{t5, s1}

repeat vertices s1, s2

Figure 4.3: A quadruple gadget Q(a′, b′, c′, d′).

graph by ˆ︁G.

We claim that there exists a satisfying assignment for R if and only if there is a
list homomorphism from ˆ︁G to ˆ︂H.

Let f : ˆ︁G → ˆ︂H be a homomorphism. We define an assignment πf : V → {0, 1}
by setting the variable r to 1 if an occurrence of r in ˆ︁G is switched under the
homomorphism f and setting r to 0 otherwise. As observed above, under f , all
occurrences of r are switched or no occurrence is switched. Thus the assignment
πf is a well defined.

Furthermore, for a given quadruple gadget, its inner vertices must all choose
either the first element described in its list or the second in every possible list
homomorphism.

To complete the reduction we show πf is a satisfying truth assignment. Con-
sider a particular copy of the gadget Q(a′, b′, c′, d′) and consider the quadruple
(πf (a′), πf (b′), πf (c′), πf (d′)). Let P (u, v) denote the path from u to v in the copy
of Q. Initially, P (a′, b′) and P (c′, d′) are both positive paths, while

P (a′, c′), P (a′, d′), P (b′, c′), P (b′, d′)

are all negative. Switching the end point of a path changes the sign of the path
while switching an interior vertex of the path leaves its sign unchanged.

The last thing we need to argue is that certain switching of the endpoints of the
quadruple gadget are not possible and some of them are possible. We denote
a particular switching as a quadruple (sa′ , sb′ , sc′ , sd′) with zeroes and ones with
the meaning that one corresponds to not being switched and zero corresponds
to being switched. Let us also denote the path between two different occurrence
vertices x, y as P (x, y). The crucial observation is that after we fix switchings
at endpoints, the signs of the paths P (a′, c′), P (a′, d′), P (b′, c′), P (b′, d′) (let us
call them main paths) are invariant upon switching at some inner vertices of the
gadget.

The images of a′, b′, c′ and d′ under f are uniquely determined by their lists. The
remaining vertices, which we call inner vertices, must all map to the t-vertices or
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4 List homomorphism problems for separable signed graphs

must all map to the s-vertices. We consider the two cases.

• The internal vertices map to the t-vertices. In this case P (a′, c′) maps to
b, t1, t2, . . . , tℓ−1, w. This path is positive in ˆ︂H while P (a′, c′) is negative in
Q. Thus exactly one of a′ or c′ must be switched under f . That is, πf (a′) ̸=
πf (c′) and (πf (a′), πf (b′), πf (c′), πf (d′)) is a satisfying truth assignment.

• The internal vertices map to the s-vertices. In this case all of P (a′, c′),
P (a′, d′), P (b′, c′), and P (b′, d′) map to b, s1, s2, s1, . . . , s2, w. As the four
paths in Q and the image (walks) in ˆ︂H are all negative, it follows that
either all of {a′, b′, c′, d′} are switched or none is switched. Thus πf (a′) =
πf (b′) = πf (c′) = πf (d′) and again we have a satisfying truth assignment
for the quadruple.

Conversely, assume we have a satisfying truth assignment, say π : V → {0, 1}.
For each variable r, switch all occurrences of r if and only if π(r) = 1. As
observed above, all paths between occurrences of r are (still) positive and admit
a list homomorphism to ˆ︂H. Consider a particular quadruple Q(a′, b′, c′, d′). If
π(a′) ̸= π(c′), then (after switching), the path P (a′, c′) is positive; hence, we can
switch internal vertices in Q to make the path blue. We map it to b, t1, . . . , tℓ−1, w.
We map P (a′, b′) to b, t1, t2, t3, b. Since the edge bt3 is bicoloured, (after possibly
switching at the neighbour of b′) this mapping is a list homomorphism. A similar
analysis works for the path P (c′, d′). If π(a′) = π(b′) = π(c′) = π(d′), then all
or none of a′, b′, c′, d′ are switched. In this case, the internal vertices of Q can be
switched so all the edges are red. Hence, Q maps to the path b, s1, s2, w which
again is the desired list homomorphism.

We divide the analysis of possible switchings into two cases, based on the choice
of elements from lists of the quadruple gadget.

• The first elements of lists are being chosen. Under this mapping, we have
to make sure that P (a′, c′) is positive. As this path is negative without any
switching, we need to switch either at a′ and not in c′ or vice versa to have
this path positive. Switching at b′ or d′ does not affect this situation. Hence
the only admissible quadruples in this case are the ones where the first and
the third coordinates differ.

• The second elements of lists are being chosen. In this case, all main paths
have to map to a negative walk. This is true if we are in case (0, 0, 0, 0) and
subsequently in case (1, 1, 1, 1) as in that case, the sign of all main paths
remains the same as if we do not switch anywhere. Whenever we have a
quadruple with two coordinates having different values, the corresponding
path has to be positive and thus we arrive into problems. Hence (0, 0, 0, 0)
and (1, 1, 1, 1) are the only possible quadruples for this case.

The argument is concluded by observing that every satisfying assignment cor-
responds to a list homomorphism with the respective occurrences switched or
non-switched, and vice versa.
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4.3.2 Polynomial cases
Next we show that the list homomorphism problem for ˆ︂H can be solved in poly-
nomial time for all remaining cycle-separable signed graphs.

If ˆ︂H is switching equivalent to ˆ︂H0, then the list homomorphism problem for ˆ︂H is
polynomial-time solvable by Theorem 2.7.

Let ˆ︁G together with lists L be an instance of List-S-Hom(ˆ︂H). We may assume
G is connected and bipartite. We will call the vertices of parts of bipartition inˆ︁G black and white as well. First, we try mapping the black vertices of ˆ︁G to the
black vertices of ˆ︂H. If that fails, we try mapping the white vertices of ˆ︁G to the
black vertices of ˆ︂H. In the former case we remove all white (respectively black)
vertices from the lists of the black (respectively white) vertices in ˆ︁G. The latter
case is analogous.

First, we preform the arc consistency procedure (cf. [63]) and also the arc con-
sistency procedure for bicoloured edges. If there is a vertex with empty list after
this step, then no suitable list homomorphism exists. Otherwise, we define two
mappings f1 and f2 as follows.

• f1(v) = min{ti : ti ∈ L(v)},

• f2(v) = min{si : si ∈ L(v)}.

(Observe when L(v) consists of black vertices fj(v) is the vertex, ti or si for j = 1
or j = 2, with the smallest index, and conversely for the case L(v) consists of
white vertices fj(v) is the vertex with the largest index.) Let uv be a bicoloured
edge of ˆ︁G with u black and v white. Then by arc consistency there is a bicoloured
edge between a vertex from L(u) and a vertex from L(v). By the labelling of ˆ︂H, it
has the form t2it2j+3, where i ≤ j. By our observation, f1(u) = t2i′ where i′ ≤ i.
Similarly, f1(v) = t2j′+3 where j′ ≥ j. This implies i′ ≤ j′ and consequently,
f1(u)f2(v) is a bicoloured edge. A similar argument applies for f2. Similarly, if
uv is a unicoloured edge in ˆ︁G with u black and v white, then there is a (possibly
bicoloured) edge t2it2j+1 in ˆ︂H where t2i ∈ L(u) and t2j+1 ∈ L(v) with i ≤ j − 1.
Again f1(u) = t2i′ with i′ ≤ i and f1(v) = t2j′+1 with j′ ≥ j. This implies t2i′t2j′+1

is an edge of ˆ︂H. We conclude that both f1 and f2 are list homomorphisms from G
to H (the underlying graphs) with the additional property that vertices adjacent
by bicoloured edges in ˆ︁G map to vertices adjacent by bicoloured edges in ˆ︂H. We
now examine the signs of the unicoloured edges and determine the switchings
required to define a list homomorphism from ˆ︁G to ˆ︂H. We make the following
key observation. Due to the ordering on the vertices if, for example, f1(u)f1(v)
is a unicoloured edge in ˆ︂H (again u is black and v is white), then under no list
homomorphism of ˆ︁G to ˆ︂H (with lists L) does uv map to a bicoloured edge. (If
such a mapping did exist, then the bicoloured edge would remain as a possible
image during the consistency check, and a bicoloured edge would have end points
occurring first in the ordering <.)
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If b ∈ L(v) for some black vertex v, then f1(v) = f2(v) = b. Analogously,
if w ∈ L(v) for some white vertex v, then f1(v) = f2(v) = w. That is, any
vertex that can map to b (respectively w) will be mapped to b (respectively
w). Moreover, when examining the resigning of vertices (below), if there is no
resigning that works when v maps to b, then there is no homomorphism at all, as
b dominates all white vertices (in ˆ︂H). Similarly w dominates all black vertices.

Consequently, we can partition the vertices of ˆ︁G into those mapped to b or w
under f1 and under f2 and those vertices that can only map to interior vertices
of the two segments, i.e. to t1, . . . , tℓ−1 and s1, s2. The vertices in the pre-images
f−1

1 (b) = f−1
2 (b) and f−1

1 (w) = f−1
2 (w) are called boundary vertices. Removing

the boundary vertices from ˆ︁G leaves a union of components. Consider such a
component K. The subgraph of ˆ︁G induced by K is called a region. For each
region, either its vertices all map to s-vertices or all to t-vertices. (This is similar
to the polynomial algorithm of Section 3.3.) We now examine how to test if there
is a switching of the boundary vertices of ˆ︁G so that each region maps to ˆ︂H.

First suppose that ˆ︂H is switching equivalent to ˆ︂Hℓ with odd ℓ ≥ 3. Let K be some
region of ˆ︁G. If the lists of vertices of K contain only s-vertices or only t-vertices,
then there is no choice and we will use mappings f2 or f1, respectively. Now
suppose that the lists of vertices of K contains both s-vertices and t-vertices.
We claim we can use f1 to map K to ˆ︂H. If there is any list homomorphismˆ︁G → ˆ︂H under which K maps to s-vertices, then there is a switching of ˆ︁G such
that K, together with its boundary vertices, induces a subgraph having only
blue edges. (Recall b, s1, s2, w is a blue path.) The mapping f1 restricted to
K and its boundary vertices is a homomorphism of G to H. As each edge in
the segment containing the t-vertices is at least blue, f1 is a homomorphism of
the induced subgraph to ˆ︂H. Thus for any region that has both s-vertices and
t-vertices in its lists after the consistency checks, we may assume if is mappedˆ︂H under f1. The remaining regions must map to s-vertices and we may assume
they are mapped using f2. Moreover, by our key observation above, the edges
mapping to unicoloured edges under these mappings must map to unicoloured
edges under any mapping. In particular, the discovery of a cycle consisting of
unicoloured edges in G whose sign does not agree with the sign of its image under
our use of f1 and f2 certifies that G is a no-instance of the problem.

It now remains to determine the switching of boundary vertices to ensure the
signs of all unicoloured edges are positive.

That can be done by considering the subgraph of ˆ︁G induced by edges that map
to unicoloured edges of ˆ︂H (under our choices of f1 and f2), identifying the res-
ulting regions (of this unicoloured edge subgraph) between boundary points, and
using a system of equations modulo two similar to above. Specifically, for each
boundary vertex u, a Boolean variable xu is created. If there is a positive path
of unicoloured edges between two boundary vertices u and v in the same region,
then the equation xu = xv is added to the system. On the other hand, if there
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is a negative path from u to v, then xu ̸= xv is added to the system. There is a
solution to the system if and only if there is a set of switchings on boundary ver-
tices so that the homomorphism from G to H also preserves edge colours giving
a homomorphism from ˆ︁G to ˆ︂H. This completes the analysis of this case.

Now suppose that ˆ︂H is switching equivalent to ˆ︃H1. The t-vertices are the blue
path b, t1, t2, w and the s-vertices are the red path b, s1, s2, w. By the arc consist-
ency check, all bicoloured edges are mapped to bw. Thus the edges of the regions
and their edges to boundary vertices are all unicoloured.

Let K be a region. We need to decide whether K will be mapped to the s-vertices
or the t-vertices and to determine an appropriate switching of the boundary
vertices. (Under any list homomorphism to ˆ︃H1 the image of K is a single edge.
In particularly, K must be balanced. Hence we can switch vertices of K so that
it is all blue, and then identify the black vertices and identify the white vertices
so that K is now a single blue edge.) In particular, the region has boundary
vertices consisting of u1, u2, . . . mapping to b and v1, v2, . . . mapping to w. We
need to switch the boundary vertices so that the subgraph induced by region and
its boundary vertices is a balanced subgraph that maps to the t-vertices or an
anti-balanced subgraph that maps to the s-vertices.

Note that under any suitable homomorphism, the input graph ˆ︁G must be switched
so that walks from vi to vi′ in K must be positive and similarly for ui to uj′ . To
determine the switching we solve (in polynomial time) a system of linear equations
modulo two. (This is analogous to our method for irreflexive trees described more
fully in Section 3.1.) For each boundary vertex vi, we will introduce a variable
xi, and similarly for each uj, we introduce a variable yj.

If there is a positive walk from vi to vi′ , we add xi = xi′ to the system (and so
on for all pairs from x1, x2, . . .). If there is a negative walk, we add xi ̸= xi′ .
Similarly for u1, u2, . . . with the variables yj.

Finally, we introduce equations to determine the signs of walks from vi to uj. If
K can only map to t-vertices, then the walks between vi and uj must be positive.
We code the needed switching with xi = yj if there is a positive walk from vi to
uj in ˆ︁G and xi ̸= yj if there is a negative walk. Similarly, if K can only map to
the s-vertices, we must switch to make all walks between vi and uj negative. If K
has a choice, then we can use a variable zk that is 0 if K maps to t-vertices and
1 if K maps to s-vertices. For this situation, we add the equation xi = yi + zk if
there is a positive walk from vi to uj and xi = yi + zk + 1 if there is a negative
walk.

4.4 Conclusion
It seems difficult to give a full combinatorial classification of the complexity of list
homomorphism problems for general signed graphs. For irreflexive signed graphs,
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which are in a sense the core of the problem, there is a conjectured classification
in [117]. Here we have obtained a full dichotomy classification in the special case
of separable irreflexive signed graphs. The classification confirms the dichotomy
conjecture of [117] for this case, and also confirms that the only polynomial cases
enjoy a special min ordering and the only NP-complete cases have chains or
invertible pairs, as also conjectured in [117].
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This chapter is based on:

• [27] Jan Bok, Jiří Fiala, Petr Hliněný, Nikola Jedličková, and Jan Kra-
tochvíl: Computational Complexity of Covering Multigraphs with Semi-
Edges: Small Cases. In 46th International Symposium on Mathem-
atical Foundations of Computer Science, MFCS 2021, volume 202 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 21:1–
21:15, 2021.

• [29] Jan Bok, Jiří Fiala, Nikola Jedličková, Jan Kratochvíl, and Michaela
Seifrtová: Computational Complexity of Covering Disconnected Multi-
graphs. In Fundamentals of Computation Theory, FCT 2021, volume
12867 of Lecture Notes in Computer Science, pages 85–89, 2021.

• [28] Jan Bok, Jiří Fiala, Nikola Jedličková, Jan Kratochvíl, and Paweł
Rzążewski: List covering of regular multigraphs. In Combinatorial Al-
gorithms - 33rd International Workshop, IWOCA 2022, volume 13270
of Lecture Notes in Computer Science, pages 228–242, 2022. https:
//doi.org/10.1007/978-3-031-06678-8_17

5.1 Graph coverings and complexity
The notion of a graph covering (locally bijective graph homomorphism) is a dis-
cretization of coverings between surfaces or topological spaces, a notion well
known and deeply studied in classical topology [10, 18, 140, 174]. Graph cov-
erings have found many applications. Primarily as a tool for construction of
highly symmetric graphs [16, 59, 87, 95], or for embedding complete graphs in
surfaces of higher genus [93, 94, 154].

Graph coverings attracted attention of computer scientists as well. Angluin [7]
exploited graph covers when introducing models of local computations, namely by
showing that a graph and its cover cannot be distinguished by local computations.
Later, Litovsky et al. [134] proved that planar graphs and series-parallel graphs
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cannot be recognized by local computations, and Courcelle and Metivier [57]
showed that in fact no nontrivial minor-closed class of graphs can. In both of
these results, graph coverings were used as the main tool, as well as in more
recent papers of Chalopin et al. [47, 48]. Here, the authors presented a model for
distributed computations and addressed the algorithmic complexity of problems
associated with such a model. To this end, they used the existing results on NP-
completeness of the covering problem to provide their hardness results. In [49],
the authors study a close relation of packing bipartite graphs to a special variant
of graph coverings called pseudo-coverings.

Another connection to algorithmic theory comes through the notions of the de-
gree partition and the degree refinement matrix of a graph. These notions were
introduced by Corneill [54, 55] in hope of solving the graph isomorphism problem
efficiently. It can be easily seen that a graph and all of its covers have the same de-
gree refinement matrix. Motivated by this observation, Angluin and Gardiner [8]
proved that any two finite regular graphs of the same valency have a finite com-
mon cover, and conjectured the same for every two finite graphs with the same
degree refinement matrix, which was proved by Leighton [131].

The stress on finiteness of the common cover is natural. For every matrix, there
exists a universal cover, an infinite tree, that covers all graphs with this degree
refinement matrix. Trees are planar graphs, and this inspired naturally a ques-
tion of which graphs allow a finite planar cover. Negami observed that projective
planar graphs do (in fact, their double planar covers characterize their projective
embedding), and conjectured that these two classes actually coincide [150]. Des-
pite a serious effort of numerous authors, the problem is still open, although the
scope for possible failure of Negami’s conjecture has been significantly reduced
[9, 107, 108].

A natural computational complexity question is how difficult is to decide, given
two graphs, if one covers the other one. This question is obviously at least as
difficult as the graph isomorphism problem (consider two given graphs on the
same number of vertices). Its NP-completeness was proved by Bodlaender [19]
(in the case of both graphs being part of the input).

To the best of our knowledge, Abello et al. [1] were the first to ask about the
computational complexity of the H-Cover problem for a fixed target graph H.

Problem: H-Cover
Input: A graph G.

Question: Does G cover H?

Abello et al. [1] showed that deciding if an input graph covers the dumbbell graph
(edge with one loop on both endpoints) is NP-complete. (For future reference,
it is important to note that they allowed the input graph to contain loops.)
Furthermore, they asked for a complete characterization of the computational
complexity, depending on the parameter graphs H. Such a line of research was
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picked by Kratochvíl, Proskurowski, and Telle, who completely characterized the
complexity for simple target graphs with at most 6 vertices [126], and then noted
that in order to fully characterize the complexity of the H-cover problem for
simple target graphs, it is sufficient (but also necessary) to classify it for mixed
coloured multigraphs with minimum degree at least three [123]. The latter result
gives a hope for a more concise description of the characterization, but is also in
line with the original motivation of covers from topological graph theory, where
loops and multiedges are widely considered.

The complexity of covering 2-vertex multigraphs was fully characterized in [123],
the characterization for 3-vertex undirected multigraphs can be found in [127].
The most general NP-hardness result known so far is the hardness of covering
simple regular graphs of valency at least three [125, 73]. (Note that in order to
map a vertex of G to a vertex of H, they must be of the same degree, and thus
regular targets H are a natural and interesting special case.)

Let us point out that in all the above results it was assumed that H has no
multiple edges.

More recently, Bílka et al. [17] proved that covering several concrete small graphs
(including the complete graphs K4, K5 and K6) remains NP-hard for planar in-
puts. This shows that planarity does not help in graph covering problems in
general, yet the conjecture that the H-Cover problem restricted to planar in-
puts is at least as difficult as for general inputs, provided H itself has a finite
planar cover, remains still open. Planar graphs have also been considered by
Fiala et al. [77] who showed that for planar input graphs, H-RegularCover is
in FPT when parameterized by H. This is in fact the first and only paper on the
complexity of regular covers, i.e., covering projections determined by a regular
action of a group of automorphisms on the covering graph.

Locally constrained homomorphisms. Graph coverings were also extens-
ively studied under a unifying umbrella of locally constrained homomorphisms.
In these relaxations, homomorphisms can be either locally injective or locally
surjective and not necessarily locally bijective. In other words, we ask for the
existence of a homomorphism that is, respectively, surjective or injective in the
neighbourhood of each vertex.

The complexity of finding locally constrained homomorphisms was studied by
many authors. For locally surjective homomorphisms we know a complete dicho-
tomy [84]. The problem is polynomial-time solvable if the target graph H either
(a) has no edge, or (b) has a component that consists of a single vertex with a
loop, or (c) is simple and bipartite, with at least one component isomorphic to
K2. In all other cases the problem is NP-complete.

The dichotomy for locally injective homomorphisms is still unknown, despite
some work [80, 81]. However, we understand the complexity of the list variant of
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the problem [82]: it is polynomial-time solvable if every component of the target
graph has at most one cycle, and NP-complete otherwise.

Locally surjective homomorphisms play an important role in social sciences [84,
161], where they study the following problem, called Role Assignment.

Problem: Role Assignment
Input: A connected graph G and an integer h.

Question: Does there exist a connected graph H of size h (with
possible loops) such that there is a locally surjective ho-
momorphism from G to H?

Locally injective homomorphism have an interesting applied motivation as well.
A locally injective homomorphism into the complement of a path of length k
corresponds to an L(2, 1)-labelling of span k [92], an intensively studied notion
stemming from the theory of frequency assignment. On the other hand, generaliz-
ations include the notion of H(p, q)-colouring, a homomorphism into a fixed target
graph H with additional rules on the neighbourhoods of the vertices [76, 128].

Recall further that there is also some more work concerning the complexity of
locally surjective and injective homomorphisms if G is assumed to come from
some special class [14, 17, 50, 77, 152]. We also refer the reader to the survey
concerning various aspects of locally constrained homomorphisms [83] and to the
references in [141] (for injective variant). For every fixed graph H, the existence
of a locally injective homomorphism to H is provably at least as hard as the
H-cover problem. In this sense our hardness results extend the state of the art
also for the problem of existence of locally injective homomorphisms.

5.2 Graphs with semi-edges
Informally, semi-edges have, compared to the usual edges in graph theory, only
one endpoint. The notion of semi-edges has been introduced in the modern topo-
logical graph theory and it is becoming more and more frequently used (the ter-
minology has not yet stabilized; semi-edges are often called half-edges, edges with
free ends, and sometimes fins). Mednykh and Nedela wrote a monograph [145] in
which they summarize and survey the ambitions and efforts behind generalizing
the notion of graph coverings to the graphs with semi-edges. This generalization,
as the authors pinpoint, is not artificial as such graphs emerge “in the situation of
taking quotients of simple graphs by groups of automorphisms which are semireg-
ular on vertices and darts (arcs) and which may fix edges”. As the authors put it:
“A problem arises when one wants to consider quotients of such graphs (graphs
embedded to surfaces) by an involution fixing an edge e but transposing the
two incident vertices. The edge e is halved and mapped to a semi-edge — an
edge with one free end.” This direction of research proved to be very fruitful
and provided many applications and generalizations to various parts of algeb-
raic graph theory. For example, Malnič et al. [143] considered semi-edges during
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their study of abelian covers and as they write “...in order to have a broader
range of applications we allow graphs to have semi-edges.” To highlight a few
other contributions, the reader is invited to consult [149, 144], the surveys [129]
(containing a very nice introductory section on applications of coverings) and
(aforementioned) [145]. Finally, for more recent results, we point to the series
of papers [77, 78, 79]. It is also worth noting that the concept of graphs with
semi-edges was introduced independently and naturally in mathematical physics
by Getzler and Karpanov [89].

In the view of the theory of local computations, semi-edges and their covers prove
very natural, too, and it is even surprising that they have not been considered
before in the context. If a computer network is constructed as a cover of a small
template, the preimages of normal edges in the covering projection are matchings
completely connecting nodes of two types (the end-vertices of the covered edge).
Preimages of loops are disjoint cycles with nodes of the same type. And preimages
of semi-edges are matchings on vertices of the same type. The role of semi-edges
was spotted by Woodhouse et al. [160, 164] who have generalized the fundamental
theorem of Leighton [131] on finite common covers of graphs with the same degree
refinement matrix to graphs with semi-edges.

5.3 Formal definitions
In this section we formally define what we call graphs. A graph has a set of vertices
and a set of edges (also referred to as links). As it is standard in topological graph
theory, we automatically allow multiple edges and loops. Every ordinary edge is
connecting two vertices, every loop is incident with only one vertex. On top of
these, we also allow semi-edges. Each semi-edge is also incident with only one
vertex. The difference between loops and semi-edges is that a loop contributes
two to the degree of its vertex, while a semi-edge only one.

A very elegant description of ordinary edges, loops and semi-edges through the
concept of darts is used in more algebraic-based papers on covers. The following
formal definition is a reformulation of the one given in [145].

Definition 5.1. A graph is a triple (D, V, Λ), where D is a set of darts, and V
and Λ are each a partition of D into disjoint sets. Moreover, all sets in Λ have
size one or two.

With this definition, the vertices of a graph (D, V, Λ) are the sets of V (note
that empty sets correspond to isolated vertices, and since we are interested in
covers of connected graphs by connected ones, we assume that all sets of V are
non-empty). The sets of Λ are referred to as links, and they are of three types:
loops (2-element sets with both darts from the same set of V ), (ordinary) edges
(2-element sets intersecting two different sets of V ), and semi-edges (1-element
sets). After this explanation it should be clear that this definition is equivalent
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Figure 5.1: An example of a graph presented in a usual graph-theoretical way
(left) and using the dart-based Definition 5.1 (right).

to a definition of multigraphs which is standard in the graph theory community.1

Definition 5.2. A graph is an ordered triple (V, Λ, ι), for Λ = E ∪ L ∪ S, where
ι is the incidence mapping ι : Λ −→ V ∪

(︂
V
2

)︂
such that ι(e) ∈ V for all e ∈ L ∪ S

and ι(e) ∈
(︂

V
2

)︂
for all s ∈ E.

For a further comparison of Definitions 5.1 and 5.2, see Figure 5.1. Since we
consider multiple edges of the same type incident with the same vertex (or with
the same pair of vertices), the edges are given by their names and the incidence
mapping ι expresses which vertex (or vertices) ‘belong’ to a particular edge. The
degree of a vertex is then defined as follows.

Definition 5.3. For a graph G = (V, Λ = E ∪ L ∪ S, ι), the degree of a vertex
u ∈ V is defined as

degG(u) = pS(u) + pE(u) + 2pL(u),

where pS(u) ( pL(u)) is the number of semi-edges e ∈ S (of loops e ∈ L) such that
ι(e) = u, and pE(u) is the number of ordinary edges e ∈ E such that u ∈ ι(e).

We call a graph G simple if pS(u) = pL(u) = 0 for every vertex u ∈ V (G) (the
graph has no loops or semi-edges) and ι(e) ̸= ι(e′) for every two distinct e, e′ ∈ E
(the graph has no multiple (ordinary) edges). We call G semi-simple if pS(u) ≤ 1
and pL(u) = 0 for every vertex u ∈ V (G) and ι(e) ̸= ι(e′) for every two distinct
e, e′ ∈ E.

Note that in the language of Definition 5.1, the degree of a vertex v ∈ V is simply
|v|. We say that a graph is regular if all its vertices have the same degree and we
say it is k-regular if all its vertices have the same degree k.

1More formally, to see that both approaches are equivalent we show how the dart rep-
resentation of a graph can be converted into the incidence one, and vice-versa. First, given
G = (D, V, Λ), we define ι(e) = {v : e ∩ v ̸= ∅}. For the reverse transformation, given G =
(V, E∪L∪S, ι), we define the set of darts as D = {(ι(e), e) : e ∈ S∪L}∪{(v, e) : v ∈ ι(e), e ∈ E},
and then the partition V is given by the equivalence relation ∼V : (v1, e1) ∼V (v2, e2) if v1 = v2,
and the partition Λ by ∼Λ: (v1, e1) ∼Λ (v2, e2) if e1 = e2.
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In this language, the main object of our study, a graph cover (or equivalently a
covering projection), is defined as follows.

Definition 5.4. We say that a graph G = (DG, VG, ΛG) covers a connected graph
H = (DH , VH , ΛH) (denoted as G −→ H) if there exists a map f : DG → DH

such that:

• The map f is surjective.

• For every u ∈ VG, there is a u′ ∈ VH such that the restriction of f onto u
is a bijection between u and u′.

• For every e ∈ ΛG, there is an e′ ∈ ΛH such that f(e) = e′.

The map f is called graph cover (or covering projection).

Compare the compactness of this definition with Proposition 5.5, which is the
definition of (multi)graph covering in the standard language of Definition 5.2.

The fact that a loop contributes 2 to the degree of its vertex may seem not
obvious at first sight, but becomes natural when graphs are considered embedded
to surfaces, and is absolutely obvious when we look at the definition of a covering
projection (for the sake of exactness, the definition is somewhat technical).

Proposition 5.5. A graph G covers a graph H if and only if G allows a pair of
mappings fV : V (G) −→ V (H) and fΛ : Λ(G) −→ Λ(H) such that

1. fΛ(e) ∈ L(H) for every e ∈ L(G) and fΛ(e) ∈ S(H) for every e ∈ S(G),

2. ι(fΛ(e)) = fV (ι(e)) for every e ∈ L(G) ∪ S(G),

3. for every link e ∈ Λ(G) such that fΛ(e) ∈ S(H) ∪ L(H) and ι(e) = {u, v},
we have ι(fΛ(e)) = fV (u) = fV (v),

4. for every link e ∈ Λ(G) such that fΛ(e) ∈ E(H) and ι(e) = {u, v} (note
that it must be fV (u) ̸= fV (v)), we have ι(fΛ(e)) = {fV (u), fV (v)},

5. for every loop e ∈ L(H), f−1(e) is a disjoint union of loops and cycles
spanning all vertices u ∈ V (G) such that fV (u) = ι(e),

6. for every semi-edge e ∈ S(H), f−1(e) is a disjoint union of edges and semi-
edges spanning all vertices u ∈ V (G) such that fV (u) = ι(e), and

7. for every edge e ∈ E(H), f−1(e) is a disjoint union of edges (i.e., a match-
ing) spanning all vertices u ∈ V (G) such that fV (u) ∈ ι(e).

See an example of a covering projection in Figure 5.2. Conditions 1–4 express
the fact that fV and fE commute with ι, i.e., that f is a homomorphism from G
to H. Conditions 5–7 express that this homomorphism is locally bijective:

• for every ordinary edge e incident with fV (u) in H, there is exactly one
ordinary edge of G which is incident with u and mapped to e by fE;
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G H

Figure 5.2: An example of a covering. The vertex mapping of the covering from
G to H is determined by the shape of the vertices, the edge mapping by the
colours of the edges.

• for every semi-edge e incident to fV (u) in H, there is exactly one semi-
edge, or exactly one ordinary edge (but not both) in G incident with u and
mapped to e by fE;

• and for every loop e incident with fV (u) in H, there is exactly one loop or
exactly two ordinary edges (but not both) of G which are incident with u
and mapped to e by fE.

Even though the aforementioned definitions of graphs and graph covers through
darts are neat and compact, we shall often work with the standard definition of
graphs and the equivalent description of graph covers given by Proposition 5.5.
The reason is that they are better suited for describing our reductions and un-
derstanding the illustrative figures.

It is clear that a covering projection (more precisely, its vertex mapping) preserves
degrees. One may ask when (or if) a degree preserving vertex mapping can be
extended to a covering projection. An obvious necessary condition is described
by the following definition.

Definition 5.6. A vertex mapping fV : V (G) −→ V (H) between graphs G and
H is called degree-obedient if

1. for any two distinct vertices u, v ∈ V (H) and any vertex x ∈ f−1
V (u), the

number of ordinary edges e of H such that ι(e) = {u, v} equals the number
of ordinary edges of G with one end-vertex x and the other one in f−1

V (v),
and

2. for every vertex u ∈ V (H) and any vertex x ∈ f−1
V (u), the value pS(H)(u) +

2pL(H)(u) equals pS(G)(x) + 2pL(G)(x) + r, where r is the number of edges of
G with one end-vertex x and the other one from f−1

V (u) \ {x},

3. for every vertex u ∈ V (H) and any vertex x ∈ f−1
V (u), pS(G)(x) ≤ pS(H)(u).

We conclude the introductory chapter with shorthand definition for one- and
two-vertex graphs, a quick reminder of Cartesian product of graphs, and with an
explanation of the term garbage collection.
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5.3 Formal definitions

One-vertex and two-vertex graphs. It shall be useful for our purposes to
specifically denote one-vertex and two-vertex graphs. Let us denote by F (b, c)
the one-vertex graph with b semi-edges and c loops and by W (k, m, ℓ, p, q) the
two-vertex graph with k semi-edges and m loops at one vertex, p loops and q
semi-edges at the other one, and ℓ > 0 multiple edges connecting the two vertices
(these edges are referred to as bars). In other words, W (k, m, ℓ, p, q) is obtained
from the disjoint union of F (k, m) and F (q, p) by connecting their vertices by ℓ
parallel edges. Note that the graph in Figure 5.1 is in fact W (2, 2, 2, 1, 1) and, as
an additional example, see the graph H from Figure 5.2 which is isomorphic to
both W (1, 1, 2, 1, 0) and W (0, 1, 2, 1, 1).

Product. Let us recall that the product G × H of graphs G and H is defined
as the graph with the vertex set being the Cartesian product V (G) × V (H) and
with vertices (u, v) and (u′, v′) being adjacent in G×H if and only if u is adjacent
to u′, and v is adjacent to v′.

Garbage collection. We use the term garbage collection throughout this part
of the thesis. Loosely speaking, it denotes gadgets or parts of constructions
inserted into reductions to ensure that the low-degree vertices of edge or vertex
gadgets have the “right degree”.
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This chapter is based on:

• [27] Jan Bok, Jiří Fiala, Petr Hliněný, Nikola Jedličková, and Jan Kra-
tochvíl: Computational Complexity of Covering Multigraphs with Semi-
Edges: Small Cases. In 46th International Symposium on Mathem-
atical Foundations of Computer Science, MFCS 2021, volume 202 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 21:1–
21:15, 2021.

We initiate the study of computational complexity of graph coverings, also know
as locally bijective graph homomorphisms, for graphs with semi-edges.

In 1991, Abello et al. [1] asked for a classification of the computational complexity
of deciding if an input graph covers a fixed target graph, in the ordinary setting
of graphs without semi-edges. Although many general results are known, the full
classification is still open. In spite of that, we propose to study the more general
case of covering graphs composed of edges (including multiedges and loops) and
semi-edges.

We show that the presence of semi-edges makes the covering problem considerably
harder; e.g., it is no longer sufficient to specify the vertex mapping induced by the
covering, but one necessarily has to deal with the edge mapping as well. We show
some solvable cases and, in particular, completely characterize the complexity of
the already very nontrivial problem of covering one- and two-vertex (multi)graphs
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with semi-edges. Our NP-hardness results are proven for simple input graphs,
and in the case of regular two-vertex target graphs, even for bipartite ones.

We remark that our new characterization results also strengthen previously known
results for covering graphs without semi-edges, and they in turn apply to an
infinite class of simple target graphs with at most two vertices of degree more
than two. Some of the results are moreover proven in a more general setting (for
example, finding k-tuples of pairwise disjoint perfect matchings in regular graphs,
or finding equitable partitions of regular bipartite graphs).

6.1 Overview of our results
In Section 6.2 we show major differences between covering graphs with and
without semi-edges. We further provide an evidence that the situation is some-
what clearer if the source graph is bipartite. In Theorem 6.4 we prove that if
the source graph is bipartite and has no semi-edges, then every degree-obedient
vertex mapping can be extended to a covering, while if semi-edges are allowed
in the bipartite source graph, it can be at least decided in polynomial time if a
degree-obedient mapping is extendable to a covering.

In order to present our results in the strongest possible form, we aim at proving
the hardness results for restricted classes of input graphs, while the polynomial
ones for the most general inputs. In particular, we only allow simple graphs
as inputs when we prove NP-hardness, and on the other hand, we allow loops,
multiple edges as well as semi-edges when we present polynomial-time algorithms.

The first NP-hardness result is proven in Theorem 6.5, namely that covering
semi-simple regular graphs of valency at least 3 is NP-hard even for simple bi-
partite input graphs. In Sections 6.3 and 6.4 we give a complete classification
of the computational complexity of covering graphs with one and two vertices.
This extends the main result of [123] to graphs with semi-edges. Moreover, we
strengthen the hardness results of [123] considerably by showing that all NP-hard
cases of covering regular two-vertex graphs (even those without semi-edges) re-
main NP-hard for simple bipartite input graphs. Note that through the reduction
from [124], our results on the complexity of covering one- or two-vertex graphs
provide characterization results on infinitely many simple graphs which contain
at most two vertices of degrees greater than 2.

All considered computational problems are clearly in the class NP, and thus we
only concentrate on the NP-hardness proofs in the NP-completeness results. We
restrict our attention to connected target graphs, in which case it suffices to
consider only connected input graphs. In this case every cover is a k-fold cover
for some k, which means that the preimage of every vertex has the same size.
The treatment of the case in which the target is a disconnected graph is provided
in Chapter 7.
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6.2 The impact of semi-edges
First, we discuss the necessity of specifying the edge mapping in a covering projec-
tion — a major difference between covering graphs with and without semi-edges.
In other words, we discuss when a degree mapping can always be extended to a
covering, and when this question can be decided efficiently. The following pro-
position follows straightforwardly from the definitions of Chapter 5.

Proposition 6.1. For every graph covering projection between two graphs, the
vertex mapping induced by this projection is degree-obedient.

Proposition 6.2. If H has no semi-edges, then for any graph G, any degree-
obedient mapping from the vertex set of G onto the vertex set of H can be extended
to a graph covering projection of G to H.

Proof. For simple graphs G, this is proved already in [123]. If multiple edges and
loops are allowed, we use a similar approach. The key point is that Petersen’s
theorem [153] about 2-factorization of regular graphs of even valence is true for
multigraphs without semi-edges as well, and the same holds true for König-Hall
theorem [136] on 1-factorization of regular bipartite multigraphs.

As we will see soon, the presence of semi-edges changes the situation a lot. Even
for simple graphs, degree-obedient vertex mappings to a graph with semi-edges
may not extend to a graph covering projection, and the possibility of such an
extension may even be NP-complete.

Observation 6.3. Let F (3, 0) be the graph with one vertex and three semi-edges
pending on this vertex. Then a simple graph covers F (3, 0) if and only if it is
3-regular and 3-edge-colourable. Testing 3-edge-colourability is well known to be
NP-hard for simple graphs.

However, if the input graph is bipartite, the situation gets much easier.

Theorem 6.4. If a graph G is bipartite, then for any graph H, it can be decided
in polynomial time whether a degree-obedient mapping from the vertex set of G
onto the vertex set of H can be extended to a graph covering projection of G to H.
In particular, if G has no semi-edges and is bipartite, then every degree-obedient
mapping from the vertex set of G onto the vertex set of H can be extended to a
graph covering projection of G to H.

Proof. Let G be a bipartite graph and let fV : V (G) −→ V (H) be a degree-
obedient mapping from the vertex set of G to a vertex set of H. We seek an edge
mapping fE : E(G) −→ E(H) such that (fV , fE) is a covering projection of G
to H. For every edge or semi-edge s of G, its image under fE is restricted to be
chosen from edges with corresponding end-vertices: if s is a semi-edge on vertex
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u, fE(s) must be a semi-edge on fV (u), and if s is an edge with end-vertices u
and v (a loop, when u = v), fE(s) must be an edge with end-vertices fV (u) and
fV (v) (a loop or a semi-edge, if fV (u) = fV (v) ).

Consider two distinct vertices x, y ∈ V (H), and let them be connected by k edges
e1, e2, . . . , ek in H. The bipartite subgraph ˜︃Gx,y of G with classes of bipartition
f−1

V (x) and f−1
V (y) and edges of G with end-points in different classes is k-regular.

By König-Hall theorem, it is k-edge colourable. If φ : E( ˜︃Gx,y) −→ {1, 2, . . . , k} is
such a colouring, then fE : E( ˜︃Gx,y) −→ {e1, e2, . . . , ek} defined by fE(h) = eφ(h)
is a covering projection onto the set of parallel edges between x and y in H.

The situation is more complex for loops and semi-edges of H. Consider a vertex
x ∈ V (H) and the subgraph ˜︃Gx of G induced by f−1

V (x). If x has b semi-edges
and c loops in H, ˜︃Gx is (b + 2c)-regular. Let s(u) be the number of semi-edges
of G incident with u, and set g(u) = b − s(u). In a covering projection, for every
u ∈ f−1

V (x), exactly g(u) of edges incident with u must map onto semi-edges of H
incident with x. Hence a covering projection on the edges of ˜︃Gx exists only if ˜︃Gx

has a g-factor for the above defined function g. This can be decided in polynomial
time (e.g., by network flow algorithms, since ˜︃Gx is a bipartite graph, but even
for general graphs the existence of a g-factor can be reduced to the maximum
matching problem). If such a g-factor exists, it is b-edge-colourable (here and
only here we use the assumption that G is bipartite), and such an edge-colouring
defines a mapping fE from the edges of the g-factor onto the semi-edges of H
incident with x. For every vertex u ∈ f−1

V (x), g(u) edges of G incident with u are
mapped onto g(u) distinct semi-edges incident with x in H, and b − g(u) = s(u)
semi-edges remain available as images of the s(u) semi-edges incident with u in
G. What remains is to define fE for the so far unmapped edges of ˜︃Gx. But
these form a 2c-regular graph which covers c loops on x in H (a consequence
of Petersen’s theorem, or König-Hall theorem since G is bipartite and hence the
edges of a 2c-regular bipartite graph can be partitioned into 2c perfect matchings
and these matchings can be paired into c disjoint spanning cycles, each covering
one loop).

If ˜︃Gx has no semi-edges, then it is bipartite (b + 2c)-regular and as such it always
has a b-factor. Hence for a bipartite graph without semi-edges, a degree-obedient
vertex mapping can always be extended to a graph covering projection.

Now we prove that covering semi-simple regular graphs is always NP-complete
(this is the case when every vertex of the target graph is incident with at most
one semi-edge, and the graph has no multiple edges nor loops). See Figure 6.1
for examples of semi-simple graphs H defining such hard cases.

Theorem 6.5. Let H be a semi-simple k-regular graph, with k ≥ 3. Then the
H-Cover problem is NP-complete even for simple bipartite input graphs.

Proof. Consider H ′ = H × K2. This graph is simple, k-regular and bipartite,
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Figure 6.1: Examples of small semi-simple graphs which define NP-complete
covering problems.

hence the H ′-Cover problem is NP-complete by [125]. Given an input k-regular
graph G, it is easy to see that G covers H ′ if and only it is bipartite and covers
H. Since bipartiteness can be checked in polynomial time, the claim follows.

6.3 One-vertex target graphs
We start the section by proving a slightly more general hardness result, which
may be of interest on its own. In particular, it implies that for every d ≥ 3, it is
NP-complete to decide if a simple d-regular graph contains an even 2-factor, i.e.,
a spanning 2-regular subgraph whose every cycle has even length.

Theorem 6.6. For every k ≥ 2 and every d ≥ k + 1, it is NP-complete to decide
if a simple d-regular graph contains k pairwise disjoint perfect matchings.

Proof. The complement of the union of k pairwise disjoint perfect matchings in
a (k + 1)-regular graph is a perfect matching as well, and thus a (k + 1)-regular
graph contains k pairwise disjoint perfect matchings if and only if it is (k + 1)-
edge colourable. Hence for d = k+1, the claim follows from the NP-completeness
of d-edge colourability of d-regular graphs which has been proven by Leven and
Galil [132].

Let d ≥ k + 2. We prove the claim by a reduction from (k + 1)-edge colourability
of (k + 1)-regular graphs (using [132] again). Fix a graph H with one vertex,
say x, of degree d − 2 and all other vertices having degrees d, and such that H
contains d − 2 pairwise disjoint perfect matchings (such a graph can be easily
constructed, see the end of the proof). Given a (k + 1)-regular graph G whose
(k + 1)-edge colourability is questioned, we construct a graph G′ as follows: The
graph G′ contains two disjoint copies G1, G2 of G such that the two clones of each
vertex u of G in G1 and G2 are connected together by d−k−1 paths of lengths 2.
Moreover, the middle vertices in each of those paths play the role of the vertex x
in a copy of H (each copy of H is private to its path). See Figure 6.2. Formally,

V (G′) = V (G1) ∪ V (G2) ∪
⋃︂

u∈V (G)

d−k−1⋃︂
i=1

V (Hu,i), and
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G1 G2

Hu,1

Hu,2

Hu,3

u1 u2

xu,1

xu,2

xu,3

Figure 6.2: An illustration for the construction of the graph G′ in the proof of
Theorem 6.6.

E(G′) = E(G1) ∪ E(G2) ∪
⋃︂

u∈V (G)

d−k−1⋃︂
i=1

(E(Hu,i) ∪ {u1xu,i, u2xu,i},

where
V (Gj) = {uj : u ∈ V (G)} and E(Gj) = {ujvj : uv ∈ E(G)}

for j = 1, 2, and

V (Hu,i) = {yu,i : y ∈ V (H)} and E(Hu,i) = {yu,izu,i : yz ∈ E(H)}

for u ∈ V (G) and i = 1, 2, . . . , d − k − 1.

We claim that G′ has k pairwise disjoint perfect matchings if and only if χ′(G) =
k + 1 (where χ′(G) denotes the chromatic index of graph G, i.e. the smallest
number of colours needed to colour the edges). In one direction, if G is k-edge
colourable, then for each j = 1, 2, the graph Gj has k pairwise disjoint perfect
matchings, say M j

h, h = 1, 2, . . . , k. By the assumption on H, each Hu,i has
k ≤ d − 2 pairwise disjoint matchings, say Mu,i

h , h = 1, 2, . . . , k, for all u ∈ V (G)
and i = 1, 2, . . . , d − k − 1. Then

Mh = M1
h ∪ M2

h ∪
⋃︂

u∈V (G)

d−k−1⋃︂
i=1

Mu,i
h ,

for h = 1, 2, . . . , k, are k pairwise disjoint perfect matchings in G′.

For the opposite implication, note that no perfect matching of G′ contains any
of the edges ujxu,i, u ∈ V (G), i = 1, 2, . . . , d − k − 1, j = 1, 2, because each Hu,i

has an even number of vertices and each xu,i is an articulation in G′. So, for
every perfect matching M in G′, M ∩ E(G1) is a perfect matching in G. Thus
if Mh, h = 1, 2, . . . , k are pairwise disjoint perfect matchings in G′, then {uv ∈
E(G) : u1v1 ∈ Mh}, h = 1, 2, . . . , k are k pairwise disjoint perfect matchings in
G, and hence χ′(G) = k + 1.

To complete the proof, let us show an explicit construction of the auxiliary graph
H. Fix an odd number t ≥ d + 1. It is well known that the complete graph Kt+1
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is t-edge colourable, i.e., its edge set E(Kt+1) can be partitioned into t perfect
matchings, say M1, M2, . . . , Mt. Choose vertices x, y, z so that xy ∈ M1, xz ∈ M2,
and assume without loss of generality that yz ∈ Mt. Define the graph H as
follows:

V (H) = V (Kt+1),

E(H) = (
d⋃︂

i=1
Mi \ {xy, xz}) ∪ {yz}.

Then degHx = d − 2 and degHu = d for all u ∈ V (H) \ {x}. Moreover, H has
d − 2 pairwise disjoint perfect matchings M3, M4, . . . , Md.

Now we are ready to prove a dichotomy theorem on the complexity of covering
one-vertex graphs. Let us remind that F (b, c) is the one-vertex graph with b
semi-edges and c loops.

Before proving the next theorem, let us pinpoint that matchings here can consist
of both edges and semi-edges. The generalisation is straightforward, putting
semi-edges into matchings can be done by a simple preprocessing, and the notion
of perfectness naturally applies to such “generalised matchings”.

Theorem 6.7. The F (b, c)-Cover problem is polynomial-time solvable if b ≤ 1,
or b = 2 and c = 0, and it is NP-complete otherwise, even for simple graphs.

Proof. In every case, the input graph G has to be (b+2c)-regular, since otherwise
it cannot cover F (b, c). This condition can be checked in polynomial time. Next
observe that a (b + 2c)-regular graph G covers F (b, c) if and only if it contains
b pairwise disjoint perfect matchings whose removal leaves us with a 2c-regular
graph without semi-edges. Indeed, these matchings are the preimages of the b
semi-edges in a covering projection. The remaining 2c-regular graph without
semi-edges can be always partitioned into c pairwise disjoint 2-factors by the well
known Petersen’s theorem [136, 153], and each of the 2-factors will cover one of
the c loops of F (b, c). Note that a possible presence of loops in the input graph
does not cause any problems.

The polynomially solvable cases then follow easily:

• If b = 0, the checking is trivial.

• If b = 1, the existence of a perfect matching can be checked in polyno-
mial time, for instance by a simple adaptation of Edmonds’ blossom al-
gorithm [60]. The only thing we have to be careful about is that any possible
semi-edges in the input graph have to be added to the perfect matching.
This can be done by a simple preprocessing.

• If b = 2 and c = 0, G itself has to be a 2-regular graph and hence it contains
two disjoint perfect matchings if and only if it contains at least one perfect
matching, i.e., when all connected components of G are even.
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6 Complexity of covering small multigraphs with semi-edges

The NP-complete cases follow from Theorem 6.6 by setting k = b and d =
b + 2c.

6.4 Two-vertex target graphs
Recall that W (k, m, ℓ, p, q) is the two-vertex graph with k semi-edges and m loops
at one vertex, p loops and q semi-edges at the other one, and ℓ > 0 multiple edges
connecting the two vertices.

We can now state the full dichotomy for two-vertex targets.

Theorem 6.8. The W (k, m, ℓ, p, q)-Cover problem is solvable in polynomial
time in the following cases:

1. k + 2m ̸= 2p + q and (k ≤ 1 or k = 2 and m = 0) and (q ≤ 1 or q = 2 and
p = 0),

2. k + 2m = 2p + q and ℓ = 1 and k = q ≤ 1 and m = p = 0,

3. k + 2m = 2p + q and ℓ > 1 and k = m = p = q = 0,

and it is NP-complete otherwise.

Note that Case 1 applies to non-regular target graph W , while Cases 2 and 3
apply to regular graphs W , i.e., they cover all cases when k +2m+ ℓ = 2p+ q + ℓ.

We will refer to the vertex with k semi-edges as blue and the vertex with q
semi-edges as red. In a covering projection f = (fV , fE) from a graph G onto
W (k, m, ℓ, p, q), we view the restricted vertex mapping fV as a colouring of V (G).
We call a vertex u ∈ V (G) blue (red) if fV maps u onto the blue (red, respectively)
vertex of W (k, m, ℓ, p, q).

We divide the proof of Theorem 6.8 into a sequence of claims, proved in the
following subsections. This allows us to state several hardness results in a stronger
form.

6.4.1 Polynomial parts of Theorem 6.8
We follow the case-distinction from the statement of Theorem 6.8:

1. If k +2m ̸= 2p+q, then the two vertex degrees of W (k, m, ℓ, p, q) are differ-
ent, and the vertex restricted mapping is uniquely defined for any possible
graph covering projection from the input graph G to W (k, m, ℓ, p, q). For
this colouring of G, if it exists, we check if it is degree-obedient. If not,
then G does not cover W (k, m, ℓ, p, q). If yes, we check using Theorem 6.6
whether the blue subgraph of G covers F (k, m) and whether the red sub-
graph of G covers F (q, p). If any one of them does not, then G does not
cover W (k, m, ℓ, p, q). If both of them do, then G covers W (k, m, ℓ, p, q),
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v w

Figure 6.3: A gadget G3,4 from Proposition 6.9.

since the “remaining” subgraph of G formed by edges with one end-vertex
red and the other one blue is ℓ-regular and bipartite, thus covering the ℓ
parallel edges of W (k, m, ℓ, p, q) (Proposition 6.2).

2. In Case 2, the input graph G covers W (1, 0, 1, 0, 1) only if G is 2-regular. If
this holds, then G is a disjoint union of cycles and paths with one semi-edge
attached to each of its endpoints. In both cases, it is easy to see that such
components cover W (1, 0, 1, 0, 1) if and only if their length is divisible by 4.
For the subcase of k = q = 0, see the next point.

3. The input graph G covers W (0, 0, ℓ, 0, 0) only if it is a bipartite ℓ-regular
graph without semi-edges, but in that case it does cover W (0, 0, ℓ, 0, 0), as
follows from Proposition 6.2.

6.4.2 NP-hardness for non-regular target graphs
Proposition 6.9. Let the parameters k, m, p, q be such that k + 2m ̸= 2p + q,
and ((k ≥ 3 or k = 2 and m ≥ 1), or (q ≥ 3 or q = 2 and p ≥ 1)). Then the
W (k, m, ℓ, p, q)-Cover problem is NP-complete.

Proof. The parameters imply that at least one of the problems F (k, m)-Cover
and F (q, p)-Cover is NP-complete by Section 6.3. Without loss of generality
assume that this is the case of F (q, p)-Cover.

Let a = k +2m and b = 2p+q and let c be the smallest even number greater than
both a and b. We shall construct a gadget which will be used in our reduction.
We shall start with the construction for ℓ = 1.

We take two disjoint copies of Kc and denote the vertices in the cliques as
x1, . . . , xc and y1, . . . , yc, respectively. Remove (c − b − 1) edge-disjoint perfect
matchings, corresponding to (c − b − 1) colour classes in some fixed (c − 1)-edge-
colouring of Kc, from the first copy of Kc, and remove (c − a − 1) edge-disjoint
perfect matchings, corresponding to (c−a−1) colour classes in some fixed (c−1)-
edge-colouring of Kc, from the second one. Add two new vertices v, w and connect
them by edges vx1 and wy1. Furthermore, add edges xiyi for all 2 ≤ i ≤ c.

We denote the resulting graph by Ga,b. See Figure 6.3 for an example.

If ℓ > 1, take ℓ disjoint copies of Ga,b and denote their v-vertices as v1, . . . , vℓ and
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w2

w1v1

v2

Figure 6.4: A gadget G3,2,4 from Proposition 6.9.

their w-vertices as w1, . . . , wℓ. Furthermore, denote the corresponding vertices in
the j-th copy (1 ≤ j ≤ ℓ) of Ga,b as xj,1, . . . , xj,c and yj,1, . . . , yj,c.

Insert edges between vertices v1, . . . , vℓ and x1,1, . . . , xℓ,1 so that they induce a
complete bipartite graph with one part being v1, . . . , vℓ and the other part be-
ing x1,1, . . . , xℓ,1. The analogous construction will be done for w1, . . . , wℓ and
y1,1, . . . , yℓ,1. Moreover, for each i ∈ {2, . . . , c}, insert edges between x1,i, . . . , xℓ,i

and y1,i, . . . , yℓ,i so that they induce a complete bipartite graph with one part be-
ing x1,i, . . . , xℓ,i and the other part being y1,i, . . . , yℓ,i. Denote the resulting graph
as Ga,ℓ,b (for ℓ = 1, we set Ga,1,b = Ga,b). See Figure 6.4 for an example.

We will reduce from the problem F (q, p)-Cover, which is NP-complete for these
parameters by the results of the preceding section. Let G be an instance of
F (q, p)-Cover with n vertices. Without loss of generality we may assume that
n is even. We shall construct a new graph G′ in the following way. Take ℓ copies
of the graph G and denote their vertices as tj,1, . . . , tj,n in the j-th copy, respect-
ively. Take ℓ copies of a graph with n vertices that covers F (k, m) (any a-regular
bipartite graph on n vertices will do) and denote their vertices as uj,1, . . . , uj,n

in the j-th copy, respectively. For each h, 1 ≤ h ≤ n, take a new extra copy
of Ga,ℓ,b, denote their v and w vertices as vh,1, . . . , vh,ℓ, wh,1, . . . , wh,ℓ in the h-th
copy, respectively, and identify vh,j with uj,h and wh,j with tj,h for each 1 ≤ j ≤ ℓ
and 1 ≤ h ≤ n. Note that the constructed graph G′ is linear in the size of G. We
claim that G′ covers W (k, m, ℓ, p, q) if and only if G covers F (q, p).

For the ‘only if’ direction, suppose that G′ covers W (k, m, ℓ, p, q). First of all,
because of the different degrees of the vertices of W (k, m, ℓ, p, q), we have a clear
information about the vertex mapping part of the covering projection. In par-
ticular, the v and y vertices of the copies of Ga,ℓ,b are mapped onto the vertex
of degree a + ℓ in W (k, m, ℓ, p, q), while the x and w ones are mapped onto the
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vertex of degree b + ℓ. Hence the edges of each copy of G must map onto the
loops and half-edges incident with the vertex of degree b + ℓ in W (k, m, ℓ, p, q),
and hence G covers F (q, p).

For the other direction, the covering projection from G′ onto W (k, m, ℓ, p, q) is
constructed as follows. Map the v and y vertices of the copies of Ga,ℓ,b onto the
vertex of degree a + ℓ in W (k, m, ℓ, p, q), and the x and w ones onto the vertex of
degree b+ℓ. This is a degree obedient vertex mapping of V (G′) onto the vertices of
W (k, m, ℓ, p, q). The edges of G′ with one end-vertex of degree a+ℓ and the other
one of degree b+ℓ induce a bipartite ℓ-regular graph, and therefore can be mapped
to the ℓ bars of W (k, m, ℓ, p, q) in a locally bijective way. If we delete these edges,
G′ falls apart into several components of connectivity. The components induced
by the x vertices from copies of Ga,ℓ,b are a-regular a-edge colourable subgraphs
of Ga,ℓ,b and hence their edges cover F (k, m). The components induced by the
y vertices from copies of Ga,ℓ,b are b-regular b-edge colourable subgraphs of Ga,ℓ,b

and hence their edges cover F (q, p). The components induced by the v vertices
induce copies of the a-regular a-edge colourable graph chosen in the construction
of G′, and hence they cover F (k, m). Last but not least, the components induced
by the w vertices are isomorphic to G, whose edges cover F (q, p) by the hypothesis
of the ‘if’ direction of the proof. Putting all these edge mappings together we
obtain a covering projection from G′ onto W (k, m, ℓ, p, q), which concludes the
proof.

6.4.3 NP-hardness for connected regular target graphs
The aim of this subsection is to conclude the proof of Theorem 6.8 by showing
the NP-hardness for the case of ℓ ≥ 1 and k + 2m = 2p + q. We will actually
prove a result which is more general in two directions. First, we formulate the
result in the language of colourings of vertices, and then we prove the hardness
for bipartite inputs. This might seem surprising, as we have seen in Section 6.2
that bipartite graphs can make things easier. Moreover, this strengthening in
fact allows us to prove the result in a unified, and hence simpler, way.

Note that the following definition of a relaxation of usual proper 2-colouring
resembles the so-called defective 2-colouring (see survey of Wood [162]). However,
the definitions are not equivalent and we are not aware of any deeper connection
at the moment.

Definition 6.10. A (b, c)-colouring of a graph is a 2-colouring of its vertices such
that every vertex has b neighbours of its own colour and c neighbours of the other
colour. (Note that (b, c)-colouring is proper if and only if b = 0.)

Observation 6.11. For any parameters k, m, ℓ, p, q such that k + 2m = 2p + q, a
bipartite graph G with no semi-edges covers W (k, m, ℓ, p, q) if and only if it allows
a (k + 2m, ℓ)-colouring.
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Proof. On one hand, any graph covering projection from G to W (k, m, ℓ, p, q)
induces a (k + 2m, ℓ)-colouring of G, provided k + 2m = 2p + q. On the other
hand, a (k + 2m, ℓ)-colouring of G is a degree-obedient vertex mapping from G
to W (k, m, ℓ, p, q), again provided that k + 2m = 2p + q. If G is bipartite and has
no semi-edges, then this mapping can be extended to a graph covering projection
by Theorem 6.4.

In view of the previous observation, we will be proving the NP-hardness results
for the following problem:

Problem: (a, b)-colouring
Input: A graph G.

Question: Does G allow an (a, b)-colouring?

Theorem 6.12. For every pair of positive integers b, c such that b + c ≥ 3, the
(b, c)-colouring problem is NP-complete even for simple bipartite graphs.

Theorem 6.12 and Observation 6.11 imply the following proposition, which con-
cludes the proof of Theorem 6.8.

Proposition 6.13. The W (k, m, ℓ, p, q)-Cover problem is NP-complete for
simple bipartite input graphs for all parameter sets such that k+2m = 2p+q ≥ 1,
ℓ ≥ 1, and k + 2m + ℓ ≥ 3.

The rest of this subsection is devoted to the proof of Theorem 6.12.

Observation 6.14. A bipartite graph G allows a (b, c)-colouring if and only if it
allows a (c, b)-colouring.

Proof. Let A and B be the classes of bipartition of V (G) and assume that G has
a (b, c)-colouring using red and blue colours. By swapping these colours on the
set B we obtain a (c, b)-colouring.

Corollary 6.15. The problems (b, c)-colouring and (c, b)-colouring are
polynomially equivalent on bipartite graphs.

Proposition 6.16. For every b ≥ 2, the problem (b, 1)-colouring is NP-
complete even for simple bipartite graphs on input.

We will develop the proof as a series of claims. We first consider (2, 1)-colouring
of cubic bipartite graphs. Through our arguments the classes of bipartition will
be indicated in figures by vertex shapes — squares and triangles, while for the
(2, 1)-colouring we use red and blue colours.

Observe first that whenever a graph G contains a C4 as an induced subgraph then
in any (2, 1)-colouring of G it is impossible to colour exactly three vertices of the
C4 by the same colour. The reason is that in such a case the remaining vertex
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a) b)

Figure 6.5: Partial (2, 1)-colourings of an 8-vertex auxiliary subgraph.

a) b)

H1
P1 P2 P3 P4

Figure 6.6: A 20-vertex auxiliary graph H1 and its possible partial (2, 1)-
colourings.

would be adjacent to two vertices of the opposite colour, which is not allowed.
By the same argument we deduce that if both colours are used on the C4 then
vertices of the same colour are adjacent.

The following two observations are immediate.

Observation 6.17. Whenever a graph G contains as a subgraph the graph on
8 vertices depicted in Figure 6.5 a) then in any in any (2, 1)-colouring of G the
colour classes match on the subgraph one of the three patterns depicted in red and
blue colours in Figure 6.5 b).

Observation 6.18. Whenever a graph G contains as a subgraph the graph H1
on 20 vertices depicted in Figure 6.6 a) then in any in any (2, 1)-colouring of G
the colour classes match on H1 one of the four patterns depicted in red and blue
colours in Figure 6.6 b).

Lemma 6.19. Let a graph G contains as a subgraph the graph H2 depicted in
Figure 6.7 a). Then in any (2, 1)-colouring of G the vertices u1 and u2 have the
same colour and their neighbours w1, w2 the opposite colour.

Proof. The graph H2 contains three induced copies of H1. If the pattern P1 of
Figure 6.6 b) was used on some copy, then the same pattern must be used on
all three copies. Consequently, the vertex w1 has two neighbours of the opposite
colour as indicated in Figure 6.7 b), which is not allowed. This excludes the
pattern P1 from our reasoning.

If the pattern P4 was used on the middle copy of H1, then the vertices v1 and v2
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a) b)

u1

u2

v1

v2

c)

w1

w2

d)

v1

v2

w1

H2

Figure 6.7: Forcing the same colour on u1 and u2.

have two neighbours of the opposite colour as indicated in Figure 6.7 c), which
is also not allowed.

Therefore the middle copy of H1 uses either pattern P2 or P3 and the claim
follows. Note that both patterns might be used on the same H2 see, Figure 6.7
a) and d)

Lemma 6.20. The problem (2, 1)-colouring is NP-complete even for simple
bipartite graphs.

Proof. We reduce from the well known NP-complete problem Not-All-Equal
3-SAT [88], which given a formula ϕ in CNF without negation, consisting of
clauses C1, . . . , Cm, where each Cj is a disjunction of exactly three distinct literals,
asks whether ϕ has a truth assignment such that each clause contains a negatively
valued literal.

For given ϕ we build a bipartite cubic graph G that allows a (2, 1)-colouring if and
only if ϕ allows required assignment. The graph has several functional blocks:
variable gadgets, clause gadgets enforcing the valid truth assignment already
for a partial (2, 1)-colouring and also garbage collection allowing to extend the
partial colouring to the entire cubic graph. By partial (2, 1)-colouring we mean a
restriction of a (2, 1)-colouring to a subgraph, i.e. a vertex 2-colouring where every
vertex has at most two neighbours of its own colour and at most one neighbour
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uz
2i uz′

2i′ uz′′

2i′′

uz
2i−1 uz′

2i′−1 uz′′

2i′′−1

a) b)F

F ×K2

Figure 6.8: Garbage collection and the overall construction for Theorem 6.20.
Clause gadgets are in the corners of the part b).

of the other colour.

For a variable z that in ϕ has k occurrences, we build a variable gadget consisting
of a cyclic chain of 2k graphs H1 linked together with further vertices uz

i and vz
i

so each three consecutive copies of H1 induce the graph H2 of Figure 6.7 a). In
this gadget the colour of uz

1, . . . , uz
2k represent the truth assignment of z.

The clause gadget for a clause Cj is a claw K1,3. When a variable z occurs in a
clause Cj we add an edge between an uz

2i and a unique leaf of the clause gadget
K1,3 so that each clause gadget is linked to a distinct uz

2i.

Observe that any partial (2, 1)-colouring of the so far formed graph corresponds
to the valid truth assignments and vice-versa: leaves of each clause gadget K1,3
are not monochromatic, while the edges added between the vertex and clause
gadget have both end of the same colour as each uz

2i has already a neighbour vz
2i

of the other colour.

It remains to extend the graph to a cubic graph so that the partial (2, 1)-colouring
is preserved within a “full” (2, 1)-colouring. We first add further copies of clause
gadgets and link them to the vertex gadgets by the same process so that each uz

2i

is linked to exactly two clause gadgets and then repeat the same process twice
for vertices uz

2i−1 with odd valued indices. Now the only vertices that do not have
degree three are the former leaves of clause gadgets, where each is now of degree
two.

For this purpose we involve an auxiliary graph F and one of its partial (2, 1)-
colourings depicted in Figure 6.8 a). For each clause Cj we take a copy of the
bipartite graph F × K2 and merge its 12 vertices of degree one with the twelve
vertices of degree two stemming from the four copies of the clause gadgets as
shown in Figure 6.8 a). The merged vertices are indicated by big symbols.

This step completes the construction of the desired simple cubic bipartite graph
G that allows a (2, 1)-colouring if and only if ϕ allows not all equal truth assign-
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ment. The way how such truth assignment can be derived from a (2, 1)-colouring
has been already discussed. In the opposite way, the truth assignment yields a
colouring of the vertex gadgets, say blue colour would represent truly evaluated
variables, while red negative ones. Then the colouring can be completed to clause
gadgets and auxiliary graphs F × K2 by using patterns depicted in Figure 6.8.
In the last step we involve the standard lift of a colouring to a product, namely
that the same colour is used on the two copies of a vertex in the F × K2 as the
original vertex has in F .

Proof of Proposition 6.16. For b ≥ 3 we reduce the (2, 1)-colouring to (b, 1)-
colouring. Let G be a bipartite cubic graph whose (2, 1)-colouring has to be
decided.

First we construct an auxiliary graph F consisting of two disjoint unions of Kb,b

with classes of bipartition A1, B1, A2 and B2 that are joined together by two
perfect matchings, one between sets A1 and A2 and the other between B1 and
B2. Finally, we add two vertices u and v, make u adjacent to some u′ ∈ A1 and
v adjacent to some v′ ∈ B1 and remove the edge (u′, v′).

We claim that in any partial (b, 1)-colouring of F the vertices u, v, u′ and v′ receive
the same colour. Observe first that the complete bipartite graph Kb,b on A2 and
B2 is monochromatic as otherwise one vertex would have at least two neighbours
of the opposite colour. Now each vertex of A2 and B2 has a neighbours of the
same colour, say red, so the sets A1 and B1 are blue. The vertex u′ now has a
single red neighbour and b − 1 blue neighbours so u is blue as well. Analogously
for v and v′.

We take two copies G1 and G2 of the graph G and for each w ∈ VG we insert
b − 2 copies F w

1 , . . . , F w
b−2 of the graph F , where we identify w1 with uw

1 , . . . , uw
b−2

and also w2 with vw
1 , . . . , vw

b−2. By this process we get a bipartite (b + 1)-regular
graph H.

The fact that graph H allows an (b, 1)-colouring if and only if G allows an (2, 1)-
colouring follows from the fact that the all b−2 neighbours of any w1 outside G1,
i.e. inside the copies of F , have the same colour as w1.

Proposition 6.21. For every c ≥ 2 and b ≥ c+2, the (b, c)-colouring problem
is NP-complete even for simple bipartite graphs.

Proof. We will prove (1, c)-colouring ∝ (b, c)-colouring for simple bipart-
ite inputs. Given a simple bipartite (1 + c)-regular graph G as input of (1, c)-
colouring, construct a graph G′ by taking two disjoint copies G1, G2 of G and
connecting them by “bridges” as follows. Let H be a graph with two pendant ver-
tices x, t of degree 1 and all other vertices of degree b + c. Let y be the neighbour
of x and s the neighbour of t in H. The vertices of degree b+c in H will be called
its inner vertices. Let the companion vertices of G1 and G2 that are copies of a
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G1 G2

Hu,1

Hu,2

Hu,b−2

u1 u2

yu,1

yu,2

yu,b−1

su,1

su,2

su,b−1

Figure 6.9: An illustration to the construction of graph G′ from Proposition 6.21.

vertex u of G be denoted by u1 and u2, respectively. For every vertex u ∈ V (G),
take b−1 copies Hu,i, i = 1, 2, . . . , b−1 of H, with vertices of Hu,i denoted by zu,i,
for z ∈ V (H). For every u ∈ V (G), identify the vertices xu,i, i = 1, 2, . . . , b − 1
with the vertex u1 and identify the vertices tu,i, i = 1, 2, . . . , b − 1 with the vertex
u2. See an illustration in Figure 6.9.

Lemma 6.22. Suppose that the number of inner vertices of H is divisible by 4.
Let φ : V (H) −→ {red, blue} be a red-blue colouring of the vertices of H such
that every inner vertex has exactly b neighbours of its own colour (and hence c
neighbours of the other colour). Then either φ(x) = φ(y) = φ(s) = φ(t), or
φ(x) = φ(s) ̸= φ(y) = φ(t).

Proof. Let α be the number of inner vertices that are coloured red, and let β be
the number of inner vertices that are coloured blue. Every red inner vertex has c
blue neighbours, and so H has αc red-blue edges, with at most two of them being
the pendant ones. Similarly, H has βc red-blue edges, with at most two of them
being the pendant ones. Hence

αc − ϵr = βc − ϵb

for some ϵr, ϵb ∈ {0, 1, 2} (even with some restriction, e.g., ϵr, ϵb cannot be both
equal to 2, but that is not important). Therefore,

|(α − β)c| ≤ 2.

If c > 2, this immediately implies α = β. If c = 2, we might get |α − β| = 1,
but then α and β would be of different parities, contradicting the assumption of
α + β being even. We conclude that α = β, and this quantity is even.

Suppose x and y have the same colour, say the red one. Then both s and t must
be red as well, because

• φ(s) = red, φ(t) = blue would yield αc − 1 = βc, which is impossible,

• φ(s) = blue, φ(t) = red would yield αc = βc − 1, which is impossible, and
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Hy sx t

Hy sx t

Hy sx t

Hy sx t

Hy sx t

Hy sx t

Figure 6.10: Feasible (in the left) and infeasible (in the right) red-blue colourings
of a bridge graph H.

• φ(s) = φ(t) = blue would imply that the red subgraph of H has an odd
number of vertices of odd degree (either 1, if b is even, or α + 1 if b is odd),
which is impossible by the well known Handshaking lemma.

Let x and y have different colours, say x is red and y is blue. Then s and t cannot
have the same colour by an argument symmetric to the one above. We cannot
have s blue and t red, since αc = βc − 2 in such a case, which is not possible
since α + β is divisible by 4. Hence s must be red and y blue. This concludes the
proof of Lemma 6.22. (See Figure 6.10 for an illustration of feasible and infeasible
colourings of H.)

Lemma 6.23. For every c ≥ 2 and b ≥ c+2, there exists a bridge graph H whose
number of inner vertices is divisible by 4 and which allows a (b, c)-colouring such
that all four vertices x, y, s, t have the same colour.

Proof. Take two disjoint copies of the complete bipartite graph Kb,b. Let the
classes of bipartition in one of them be A and B, and the classes of bipartition
in the other one C and D. Pick an edge ys such that y ∈ A and s ∈ B.
Add c disjoint perfect matchings between A and C, and other c disjoint perfect
matching between B and D. In this way we have obtained a (b + c)-regular
bipartite graph with 4b vertices. Delete the edge ys and add pendant edges xy
and st with new extra vertices x, t of degree 1 to obtain the desired bridge graph
H. Indeed, colouring A ∪ B ∪ {x, t} red and C ∪ D blue yields a (b, c)-colouring
such that the 4 vertices x, y, s, t get the same colour. See an illustrative example
in Figure 6.11.

Let us return to the proof of Proposition 6.21. Given a simple bipartite graph G,
we construct G′ as described using the bridge graph H from Lemma 6.23. This
G′ is simple, and since H was created from a bipartite graph, G′ is bipartite as
well. The proof of the proposition now follows from the following lemma.
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A
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c-regular

complete bipartite

y
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x

t

b-regular

Figure 6.11: An example of the bridge graph H for b = 4 and c = 2.

Lemma 6.24. The graph G′ allows a (b, c)-colouring if and only if G allows a
(1, c)-colouring.

Proof. Suppose G′ allows a (b, c)-colouring, say φ. Consider a vertex u ∈ V (G).
Lemma 6.22 implies that either

• φ(u1) = φ(yu,i) = φ(su,i) = φ(u2) for all i = 1, 2, . . . , b − 1, or

• φ(u1) = φ(su,i) ̸= φ(yu,i) = φ(u2) for all i = 1, 2, . . . , b − 1.

But the latter would mean that u1 has b−1 > c neighbours of the opposite colour,
which is too many. Hence every vertex u1 has b − 1 neighbours of its own colour
in the bridge graphs, and therefore the restriction of φ to G1 is a (1, c)-colouring
of G1 (which is isomorphic to G).

On the other hand, if G allows a (1, c)-colouring, use the same colouring on G1
and G2 and colour the bridges so that for every u ∈ V (G), both u1 and u2 have
all their b − 1 neighbours in the bridge graphs coloured with their own colour.
This is possible by Lemma 6.23, and this gives a (b, c)-colouring of G′.

Proposition 6.25. For every c ≥ 2, the (c + 1, c)-colouring problem is NP-
complete even for simple bipartite graphs.

Proof. We will prove (1, c)-colouring ∝ (c + 1, c)-colouring for simple bi-
partite inputs. Given a simple bipartite (1 + c)-regular graph G as input of
(1, c)-colouring, construct a graph G′ by taking two disjoint copies G1, G2 of
G and connecting them by “bridges”, similarly as in the proof of Proposition 6.21.
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Figure 6.12: An example of the bridge graph H for c = 3.

But this time we will describe the bridge graph H explicitly from the very be-
ginning of the proof. It has 4(c + 1) “inner” vertices of degree 2c + 1 and two
“connector” vertices of degree c. The inner part of H is created from two copies of
the complete bipartite graph Kc+1,c+1 whose classes of bipartition are connected
by cocktail-party graphs (i.e., complete bipartite graphs minus a perfect match-
ing), and in one of the copies c independent edges are deleted and replaced by
edges leading to the connector vertices. The graph is illustrated in Figure 6.12,
but since we will heavily rely on its structure in the proof of its properties, we
also describe it formally:

V (H) ={x, y} ∪
c+1⋃︂
i=1

{ri, si, ti, wi},

E(H) =
c⋃︂

i=1
{xri, yti} ∪

⎛⎝ c+1⋃︂
i,j=1

{ritj} \
c⋃︂

i=1
{riri}

⎞⎠
∪

c+1⋃︂
i,j=1

{siwj} ∪

⎛⎝ c+1⋃︂
i,j=1

{risj, tiwj} \
c+1⋃︂
i=1

{risi, tiwi}

⎞⎠
(6.1)

where for the sake of brevity, but also to stress their special roles, we write
r = rc+1, s = sc+1, t = tc+1 and w = wc+1.

In the construction of G′, for every u ∈ V (G), let the companion vertices in G1
and G2 which are copies of u be again denoted by u1 and u2, respectively. We
take a copy Hu of H and unify its connector vertices with u1 and u2. See an
illustrative example in Figure 6.13. Note finally, that G′ is a bipartite graph,
since H is bipartite and the distance of x and y in H is odd.
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G1 G2
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u1 u2
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Figure 6.13: An illustration to the construction of G′ from Proposition 6.25.
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2a

2b

3

Figure 6.14: An illustration to the case analysis of Lemma 6.26.

Lemma 6.26. Let φ : V (H) −→ {red, blue} be a red-blue colouring of the vertices
of H such that every inner vertex has exactly c + 1 neighbours of its own colour
(and hence c neighbours of the other colour). Then φ(x) = φ(ri) = φ(ti) = φ(y)
for all i = 1, 2, . . . , c.

Proof. Suppose φ(x) = red. We will prove the result by a case analysis. In the
illustrative Figure 6.14, the assumptions of the cases are marked with dark red
and blue, the colourings that are derived from them by light red and blue, and
the vertices that cause contradictions are stressed by arrows.

Case 1: φ(ri) = red for all i = 1, 2, . . . , c.

Subcase 1a: φ(r) = red
In this case any two vertices si, sj will end up with the same number of red
neighbours, regardless of the colours on w1, . . . , wc+1. Therefore all si’s must
have the same colour. Every vertex wi then already has c + 1 neighbours of this
colour among si’s, and thus all vertices wi have the same colour as the si’s. If
this colour were red, every si would have 2c + 1 red neighbours and no blue ones.
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Hence φ(si) = φ(wi) = blue for all i = 1, 2, . . . , c + 1. Then each wi has already
c+1 neighbours of its own colour, and so all the other neighbours (i.e., the vertices
ti, i = 1, 2, . . . , c + 1) are red. Now t1 has only c red neighbours among the ri’s,
and therefore y must be red as well.

Subcase 1b: φ(a) = blue
In this case, each si, i = 1, 2, . . . , c will end up seeing less red neighbours than
s, regardless of the colours on wi’s (s has a red neighbour ri, while ri is not a
neighbour of si, and the private neighbour r of si is blue). Hence s must be red
and all si, i = 1, 2, . . . , c are blue. To supply the si’s with correct numbers of red
neighbours, exactly one of the wi’s must be red, all others are blue. The red one
has just one red neighbour among si’s, and hence at least c of the ti’s are red.
The blue vertices among wi’s have c blue neighbours among si’s, and so at least
one of the ti’s is blue. It follows that φ(wi) ̸= φ(ti) for all i = 1, 2, . . . , c + 1.
Since every ri, i = 1, 2, . . . , c has two red neighbours x and s, it should have only
(and exactly) c − 2 red neighbours among ti’s, and hence φ(ti) = φ(ri) = red
for i = 1, 2, . . . , c. Then φ(t) = blue. Since t1 has so far c red neighbours (c − 1
among ri’s and one among wi’s), y must be red.

Case 2: φ(ri) = blue for all i = 1, 2, . . . , c.

Subcase 2a: φ(r) = red
Any two si, sj, i, j = 1, 2, . . . , c will end up with the same number of red neigh-
bours (regardless the colouring of the wi’s), and hence all si, i = 1, 2, . . . , c have
the same colour. Since r is not a neighbour of s, s will end up with less red
neighbours than s1. Therefore, φ(si) = red for i = 1, 2, . . . , c, and φ(s) = blue.
Since x is red, every ri, i = 1, 2, . . . , c must have c blue neighbours among the
ti’s, and because c ≥ 2, it follows that all ti’s (including t = tc+1) are blue. But
then the red vertex r has too many (c + 1) blue neighbours, a contradiction.

Subcase 2b: φ(a) = blue
Any two si vertices will end up with the same number of red neighbours, and
hence all si’s (including s) have the same colour, and this colour must be blue,
since a blue vertex r1 would have c + 1 red neighbours otherwise. Now every wi

has already c + 1 blue neighbours (the si’s), and thus all wi’s are blue. But this
causes a contradiction, since now each si has all 2c + 1 neighbours blue.

Case 3: At least one of the ri’s for i = 1, 2, . . . , c is red and at least one of them
is blue.

Consider i and j such that φ(ri) = φ(rj). Regardless the colouring of wi’s, the
vertices si and sj will end up with the same number of red neighbours, and
hence φ(si) = φ(sj). If, on the other hand, φ(ri) ̸= φ(rj), say φ(ri) = red and
φ(rj) = blue, then si will end up with less red neighbours than sj, and hence
φ(si) = blue and φ(sj) = red. We conclude that for every i = 1, 2, . . . , c + 1, ri

and si get different colours.

Now consider two vertices ti, tj, i, j = 1, 2, . . . , c. If φ(ri) = φ(rj), then ri and
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rj have the same number of red neighbours among {x} ∪ {s1, s2, . . . , sc+1} ∪
({t1, t2, . . . , tc+1} \ {ti, tj}). In order to end up with the same number of red
neighbours in total, it must be φ(ti) = φ(tj). If ri and rj got different col-
ours, say φ(ri) = red and φ(rj) = blue, then among {x} ∪ {s1, s2, . . . , sc+1} ∪
({t1, t2, . . . , tc+1}\{ti, tj}), ri has one more red neighbours than rj. But the same
difference should apply to the total number of red neighbours of ri and rj, and
hence φ(ti) = φ(tj). We conclude that all vertices tj, j = 1, 2, . . . , c have the same
colour. Since the graph H is symmetric, this is either Case 1 or Case 2 from the
standpoint of the ti’s. These cases have already been treated and either they lead
to a contradiction, or they require that all vertices ri, i = 1, 2, . . . , ℓ get the same
colour. Which contradicts the assumption of Case 3.

To conclude the proof of Proposition 6.25 it only remains to prove the following
lemma.

Lemma 6.27. The graph G′ allows a (c + 1, c)-colouring if and only if G allows
a (1, c)-colouring.

Proof. Suppose φ is a (c + 1, c)-colouring of G′. It follows from Lemma 6.26 that
every vertex u1 ∈ V (G1) has c neighbours of its own colour in the corresponding
bridge Hu, and thus the restriction of φ to G1 is a (1, c)-colouring of G1 (which
is isomorphic to G).

If G allows a (1, c)-colouring, use it on both G1 and G2 and colour the bridges so
that for every u ∈ V (G), the ri and ti vertices of Hu get the same colour as u and
the vertices si and wi of Hu get the opposite colour. This is a (c + 1, c)-colouring
of G′.

With this, the proof of Proposition 6.25 concludes.

Proposition 6.28. For every b ≥ 2, the (b, b)-colouring problem is NP-com-
plete even for simple bipartite graphs.

Proof. We will reduce from the following problem.

Problem: (k-in-2k)-SATq

Input: A formula ϕ with clauses C1, . . . , Cm in CNF without
negations, each Ci is a disjunction of exactly 2k distinct
literals and every variable occurs exactly q times.

Question: Does there exist a satisfying assignment of ϕ such that
exactly k literals are true in each Ci?

The problem (k-in-2k)-SATq was proved to be NP-complete by Kratochvíl [121]
for every k ≥ 2, q ≥ 3.
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Let ϕ be an instance of (b-in-2b)-SATq, b ≥ 2, with each variable occurring
q = b + 1 times. Let C1, . . . , Cm be the clauses of ϕ.

Our clause gadget is a complete bipartite graph Kb,2b. The vertices in the bigger
part correspond to variables. More formally, for every variable x occurring in a
clause Ci, the clause gadget has a vertex yi

x in its bigger part. To make sure that
each variable has an even number of occurrences, we will duplicate each clause
gadget and we will refer to these copies as the left and right ones, with their y
vertices being denoted by yi,l

x and yi,r
x , respectively.

For each variable x, we will construct a variable gadget Vb in the following way.
Take complete bipartite graph K2b+1,2b+1 and denote its vertices in one part as
u1, . . . , u2b+1 and in the other part as v1, . . . , v2b+1. Remove the edges uivi for
each 1 ≤ i ≤ 2b + 1 and the edges uivi+b for each 2 ≤ i ≤ b + 1. Take two copies
K1, K2 of the resulting graph and add a new vertex connected to vb+2, . . . , v2b+1
in K1 and u2, . . . , ub+1 in K2.

Add a new vertex connected to u2, . . . , ub+1 in K1 (this vertex will be called the
left vertex) and add a new vertex connected to vb+2, . . . , v2b+1 in K2 (called the
right one). Take b + 1 disjoint copies of this graph and add 2b + 2 new vertices
x1, . . . , x2b+2 which shall correspond to the occurrences of the variable x. We shall
call x1, . . . , xb+1 the left occurrences of x and xb+2, . . . , x2b+2 the right occurrences
of x.

Now we shall insert edges between the left occurrences of x and the left vertices
so that they induce a b-regular bipartite graph with one part being x1, . . . , xb+1
and the second one being the left vertices. An analogous construction will be
done with xb+2, . . . , x2b+2 and the right vertices. See Figure 6.15 for an example.

To complete the construction, in the left copy of each clause gadget, we identify
each vertex of the part of the size 2b with the respective left occurrences of the
variable x and in the right copy of each clause gadget, we identify each vertex
of the part of the size 2b with the respective right occurrences of the variable x.
Formally, if Ci is the j-th clause containing the variable x, we identify yi,l

x with
xj and yi,r

x with xb+1+j. The resulting graph shall be called G.

We claim that the formula ϕ is satisfiable if and only if G has a (b, b)-colouring.

First suppose that ϕ is satisfiable and take some satisfying assignment π. We
will construct a suitable colouring in the following way. For a variable x, if
π(x) = true, then colour x1, . . . , x2b+2 by blue colour and otherwise, colour all
x1, . . . , x2b+2 by red colour. colour all vertices in the smaller parts of the left
copies of clause gadgets by red colour and all vertices in the smaller parts of the
right copies of clause gadgets by blue colour. In the variable gadgets, vertices
of one class of bipartition will be coloured the same regardless the value of the
corresponding variable while the colouring of the the other class of bipartition
will depend on its value. The left vertices (connecting x1, . . . , xb+1 to K1) will
be all coloured blue, the right vertices (connecting xb+2, . . . , x2b+2 to K2) will
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x1
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Figure 6.15: A variable gadget V2 for variable x with a (b, b)-colouring corres-
ponding to valuation π(x) = true.

be all coloured red. The vi’s of K1’s will always be coloured so that v1 and
vb+2, . . . , v2b+1 are red and v2, . . . , vb+1 are blue, the ui’s of K2’s will always be
coloured so that u1, . . . , ub+1 are blue and ub+2, . . . , u2b+1 are red. In the other
class of bipartition, if π(x) = true, then on top of all the occurrences x1, . . . , x2b+2,
also all the “middle” vertices connecting K1’s to K2’s, the vertices ub+2, . . . , u2b+1
in K1’s and the vertices v2, . . . , vb+1 in K2’s will be coloured blue, while the
vertices u1, . . . , ub+1 of K1’s and the vertices v1, vb+2, . . . , v2b+1 in K2’s will be
coloured red. If π(x) = false, the colours of the vertices in this class of bipartition
will be swapped. See an example in Figure 6.15 for a variable evaluated to true.
Since in every clause, there are exactly b variables set to true, all vertices in the
smaller parts of clause gadgets have exactly b red and exactly b blue neighbours.
It can be shown by a detailed case analysis that the same holds for all vertices,
and so this is a (b, b)-colouring of G.

Suppose that G has a (b, b)-colouring, and fix one such colouring. For a variable
x, we set x to be true if all x1, . . . , x2b+2 are coloured by blue colour and we set it
to be false if all x1, . . . , x2b+2 are coloured by red colour. We need to prove that
such assignment always exists and that it is a satisfying assignment.

First we prove that in every (b, b)-colouring either all of x1, . . . , x2b+2 are coloured
blue or all of x1, . . . , x2b+2 are coloured red. Recall the subgraph K1 of a variable
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gadget with vertices u1, . . . , u2b+1 in one part and v1, . . . , v2b+1 in the other part.

We claim that in every (b, b)-colouring of Vb restricted to some copy of K1 and
its two adjacent vertices, the vertices u2, . . . , ub+1 are either all red or all blue.
Suppose for a contradiction that in some (b, b)-colouring there exist indices i, j ∈
{2, . . . , b + 1} such that ui is coloured by red and uj is coloured by blue. Since
v1 is adjacent to all u2, . . . , u2b+1, exactly b of them are coloured red and exactly
b of them are coloured blue. Since vi is not adjacent to ui, we need to colour u1
by red. However, since vj is not adjacent to uj, we have to colour u1 by blue, a
contradiction.

Suppose without loss of generality that all u2, . . . , ub+1 are blue. As argued above,
all ub+2, . . . , u2b+1 are then red. All of them are neighbours of v2, and hence u1 is
blue. Let w be the vertex outside of K1 adjacent to vb+2, . . . , v2b+1 in K1. Since
v2b+1 has only b − 1 red neighbours in K1, w must be red. Similar arguments
apply to K2. Thus, u2, . . . , ub+1 in K1 and vb+1, . . . , v2b+1 in K2 always have the
same colour. Then all b occurrences of the variable adjacent to the left vertex
of K1 and all b occurrences adjacent to the the right vertex of K2 get the same
colour. Since b ≥ 2, it follows from the construction between the occurrences and
variable gadgets that all occurrences of the variable have the same colour.

It remains to be proven that this is a satisfying assignment. Since the vertices of
the smaller parts of clause gadgets have degree 2b, exactly b vertices of the bigger
part of each clause are coloured by red and exactly b vertices of the bigger part
of each clause are coloured by blue. Thus, exactly b variables in each clause are
set to be true. This concludes the proof.

6.5 Conclusion
The main goal of this chapter was to initiate the study of the computational
complexity of covering graphs with semi-edges. We have exhibited a new level
of difficulty that semi-edges bring to coverings by showing a connection to edge-
colourings. We have presented a complete classification of the computational
complexity of covering graphs with at most two vertices, which is already a quite
nontrivial task. In the case of one-vertex target graphs, the problem becomes
polynomial-time solvable if the input graph is bipartite, while in the case of
two-vertex target graphs, bipartiteness of the input graphs does not help. This
provides a strengthening of known results on covering two-vertex graphs without
semi-edges.
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Seifrtová: Computational Complexity of Covering Disconnected Multi-
graphs. In Fundamentals of Computation Theory, FCT 2021, volume
12867 of Lecture Notes in Computer Science, pages 85–89, 2021.

The notion of graph covers is a discretization of covering spaces introduced and
deeply studied in topology. In discrete mathematics and theoretical computer sci-
ence, they have attained a lot of attention from both the structural and complex-
ity perspectives. Nonetheless, disconnected graphs were usually omitted from the
considerations with the explanation that it is sufficient to understand coverings
of the connected components of the target graph by components of the source
one. However, different (but equivalent) versions of the definition of covers of
connected graphs generalize to nonequivalent definitions of disconnected graphs.
The aim of this chapter is to summarize this issue and to compare three different
approaches to covers of disconnected graphs: 1) locally bijective homomorphisms,
2) globally surjective locally bijective homomorphisms (which we call surjective
covers), and 3) locally bijective homomorphisms which cover every vertex the
same number of times (which we call equitable covers). The standpoint of our
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comparison is the complexity of deciding if an input graph covers a fixed target
graph. We show that both surjective and equitable covers satisfy what certainly
is a natural and welcome property: covering a disconnected graph is polynomial
time decidable if such it is for every connected component of the graph, and it
is NP-complete if it is NP-complete for at least one of its components. Despite
of this, we argue that the third variant, equitable covers, is the most suitable
one when considering covers of coloured (multi)graphs. We conclude the chapter
by a complete characterization of the complexity of covering 2-vertex coloured
multigraphs with semi-edges.

7.1 Motivation and overview of our results
In all the literature devoted to the computational aspects of graph covers, only
covers of connected graphs have been considered so far. The authors of [122] jus-
tify this by claiming in Fact 2.b that “For a disconnected graph H, the H-Cover
problem is polynomially solvable (NP-complete) if and only if the Hi-cover prob-
lem is polynomially solvable (NP-complete) for every (for some) connected com-
ponent Hi of H.” Though this seems to be a plausible and desirable property, a
closer look shows that the validity of this statement depends on the exact defin-
ition of covers for disconnected graphs. Namely in the case of multigraphs with
semi-edges when the existence of a covering projection does not follow from the
existence of a degree-obedient vertex mapping anymore.

The purpose of this chapter is to have a closer look at covers of disconnected
graphs in three points of view: the definition, complexity results, and the role of
disconnected subgraphs in coloured multigraphs. In Section 7.3 we first discuss
what are the possible definitions of covers of disconnected graphs — locally biject-
ive homomorphisms are a natural generalization from the algebraic graph theory
standpoint, globally surjective locally bijective homomorphisms (surjective cov-
ers) seem to have been understood by the topological graph theory community as
the generalization from the standpoint of topological motivation, and a novel and
more restrictive definition of equitable covers, in which every vertex of the target
graph is required to be covered by the same number of vertices of the source
one. The goal of this chapter is to convince the reader that the most appropriate
definition is the last one. In Section 7.4 we inspect the three possible definitions
under the microscope of computational complexity.

The main result is that the above mentioned Fact 2.b is true for surjective cov-
ers, and remains true also for the newly proposed definition of equitable covers
of disconnected graphs. The NP-hardness part of the statement is proven for
instances when the input graphs are required to be simple. Lastly, in Section 7.5
we review the concept of covers of coloured graphs and show that in this context
the notion of equitable covers is indeed the most natural one. We justify our
approach by providing a characterization of polynomial/NP-complete instances
of the H-Cover problem for coloured mixed multigraphs with semi-edges.
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We note that, again, we present the results in the utmost generality and strength.
We consider (multi)graphs with semi-edges as the inputs for polynomial algori-
thms, and we prove the NP-completeness results for simple input graphs.

7.2 Additional preliminaries
We now introduce a couple of slightly technical definitions in order to be rigorous.

The multiedge between u and v is an inclusion-wise maximal subset of links that
connect u and v, i.e. {e ∈ E : e ∩ v ̸= ∅ ∧ v ∩ e ̸= ∅} and the cardinality of
this set is the multiplicity of the (multi)edge uv. In the same way we define the
multiplicity of a loop or of a semi-edge.

In case of simple graphs we use also the traditional notation for an edge as e = uv
and we write G = (V, E).

A graph H = (D′, V ′, Λ′) is a subgraph of a graph G = (D, V, Λ) if their sets of
darts satisfy D′ ⊆ D and their partitions fulfil V ′ = V |D′ and Λ′ = Λ|D′ .

A path in graph G is a sequence of distinct darts such that consecutive darts
either constitute an edge or a vertex of degree 2. A path is closed if the first pair
as well as the last pair constitute edges. In such a case we say that it connects
the vertex containing the first dart to the vertex of the last one. If the first pair
and the last pair are vertices then the path is open. In all other cases (including
a sequence of length 1) the path is half-way.

By a component of a graph we mean an inclusion-wise maximal induced subgraph
such that every two of its vertices are connected by a subgraph isomorphic to a
path. We say that a graph is connected if it has only a single component.

7.3 What is a cover of a disconnected graph?
Throughout this section and the rest of the chapter we assume that we are given
two (possibly disconnected) graphs G and H, and we are interested in determining
whether G covers H. In particular, in this section, we discuss what it means that
G covers H. We assume that G has p components of connectivity, G1, G2, . . . , Gp,
and H has q components, H1, H2, . . . , Hq. It is reasonable to request that a
covering projection maps each component of G onto some component of H, and
this restricted mapping must be a covering. The questions we are raising are:

1. Should the covering projection be globally surjective, i.e., must the preimage
of every vertex of H be non-empty?

2. Should the preimages of the vertices of H be of the same size?

Clearly, the “yes” answer to the latter question implies the “yes” answer to the
former one. Note also that both these questions are the first ones at hand when
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G

H

f

h

Figure 7.1: An example of differences in definitions of covers of disconnected
graphs. The mapping h : G → H is a locally bijective homomorphism, but not a
surjective cover, while f : G → H is a locally bijective homomorphism, surjective
cover, and also k-fold cover.

trying to generalize graph covers to disconnected graphs since the answer is pos-
itive in the case of connected graphs (and it is customary to call a projection
that covers every vertex k times a k-fold cover). In the following definition, we
identify the variants of the definition of covers of disconnected graphs depending
on the outcome of these questions.

Definition 7.1. Let G and H be graphs and let us have a mapping f : G −→ H.

• We say that f is a locally bijective homomorphism of G to H if for each
component Gi of G, the restricted mapping F |Gi

: Gi −→ H is a covering
projection of Gi onto some component of H. We write G −→lb H if such a
mapping exists.

• We say that f is a surjective covering projection of G to H if for each
component Gi of G, the restricted mapping F |Gi

: Gi −→ H is a covering
projection of Gi onto some component of H, and f is surjective. We write
G −→sur H if such a mapping exists.

• We say that f is an equitable covering projection of G to H if for each
component Gi of G, the restricted mapping F |Gi

: Gi −→ H is a covering
projection of Gi onto some component of H, and for every two vertices
u, v ∈ V (H), |f−1(u)| = |f−1(v)|. We write G −→equit H if such a mapping
exists.

See Figure 7.1 for an illustration of differences between the three variants.

A useful tool both for describing and discussing the variants, as well as for al-
gorithmic considerations, is introduced in the following definition.
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Definition 7.2. Given graphs G and H with components of connectivity G1, G2,
. . . , Gp, and H1, H2, . . . , Hq, respectively, the covering pattern of the pair G, H is
the weighted bipartite graph Cov(G, H) = ({g1, g2, . . . , gp, h1, h2, . . . , hq}, {gihj :
Gi −→ Hj}) with edge weights rij = r(gihj) = |V (Gi)|

|V (Hj)| .

The following observation follows directly from the definitions, but will be useful
in the computational complexity considerations.

Observation 7.3. Let G and H be graphs. Then the following holds.

• We have G −→lb H if and only if the degree of every vertex gi, i = 1, 2, . . . , p
in Cov(G, H) is greater than zero.

• We have G −→sur H if and only if the degree of every vertex gi, i =
1, 2, . . . , p in Cov(G, H) is greater than zero and Cov(G, H) has a matching
of size q.

• We have G −→equit H if and only if Cov(G, H) has a spanning sub-
graph Map(G, H) such that every vertex gi, i = 1, 2, . . . , p has degree 1 in
Map(G, H) and for every vertex hj of Cov(G, H),

∑︂
i:gihj∈E(Map(G,H))

rij = k, where k = |V (G)|
|V (H)| .

7.4 Complexity results
It would be a desirable situation if H-Cover is polynomial-time solvable when-
ever Hi-Cover is polynomial-time solvable for every component Hi of H, while
H-Cover is NP-complete whenever Hi-Cover is NP-complete for some com-
ponent Hi of H. This is the point of view under which we will inspect the three
possible definitions of covers of disconnected graphs that we have introduced in
the previous section.

To strengthen the results, we again allow arbitrary input graphs (i.e., with mul-
tiple edges, loops and/or semi-edges) when considering polynomial-time algorithms,
while we restrict the inputs to simple graphs when we aim at NP-hardness res-
ults. In some cases we are able to prove results also from the fixed-parameter
tractability standpoint. In those cases we consider both the source and the target
graphs to be a part of the input, and the parameter is typically the maximum
size of a component of the target one.

As the first step, we provide the following lemma. Note that though we are mostly
interested in the time complexity of deciding G −→ H for a fixed graph H and
input graph G, this lemma assumes both the source and the target graphs to be
part of the input. The size of the input is measured by the number of edges.
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Lemma 7.4. Let φ(A, B) be the best running time of an algorithm deciding
if A −→ B for connected graphs A and B, and let φ(n, B) be the worst case of
φ(A, B) over all connected graphs of size n. Then for given input graphs G and H
with components of connectivity G1, G2, . . . , Gp, and H1, H2, . . . , Hq, respectively,
the covering pattern Cov(G, H) can be constructed in time

O(pq · qmax
j=1

φ(n, Hj)) = O(n2 · qmax
j=1

φ(n, Hj)),

where n is the input size, i.e., the sum of the numbers of edges in G and H.

Corollary 7.5. Constructing the covering pattern of input graphs G and H is in
the complexity class XP when parameterized by the maximum size of a component
of the target graph H, provided the Hj-Cover problem is polynomial-time solvable
for every component Hj of H.

Proof. Suppose the size of every component of H is bounded by M . Let PM

be the class of all connected graphs B of size at most M such that B-Cover
is decidable in polynomial time. By the assumption, every component Hj of H
belongs to PM . The class PM is finite (its size depends on M), and so there are
well defined positive integers KM , tM such that φ(n, B) ≤ KM · ntM for every
B ∈ PM . Hence φ(n, Hj) ≤ KM · ntM for every j = 1, 2, . . . , q, and Cov(G, H)
can be constructed in time O(n2 · ntM ) by the preceding lemma.

Corollary 7.6. The covering pattern of input graphs G and H can be constructed
in polynomial time provided all components of H have bounded size and the Hj-
Cover problem is solvable in polynomial time for every component Hj of H.

In the following subsections, we discuss and compare the computational com-
plexity of deciding the existence of locally bijective homomorphisms, surjective
covers, and equitable covers. The corresponding decision problems are denoted
by LBHom, SurjectiveCover, and EquitableCover. If the target graph is
fixed to be H, we write H-LBHom (and analogously for the other variants).

7.4.1 Locally bijective homomorphisms
Though the notion of locally bijective homomorphisms is seemingly the most
straightforward generalization of the fact that in a graph covering projection
to a connected graph “the closed neighbourhood of every vertex of the source
graph is mapped bijectively to the closed neighbourhood of its image”. We show
in this subsection that it does not behave as we would like to see it from the
computational complexity perspective. Proposition 7.10 shows that there are
infinitely many graphs H with only two components each such that H-LBHom
is polynomial-time solvable, while Hi-LBHom is NP-complete for one component
Hi of H. The polynomial part of the desired properties is, however, fulfilled, even
in some cases when both graphs are part of the input:
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Theorem 7.7. If Hi-Cover is polynomial-time solvable for every component Hi

of H, then

i) the H-LBHom problem is polynomial-time solvable,

ii) the LBHom problem is in XP when parameterized by the maximum size of
a component of the target graph H,

iii) the LBHom problem is solvable in polynomial time, provided the compon-
ents of H have bounded size.

Proof. i) If H is fixed, it has by itself bounded size, and thus the covering pattern
Cov(G, H) can be constructed in polynomial time by Corollary 7.6. As noted in
Observation 7.3, G −→lb H if and only if degCov(G,H)gi ≥ 1 for all i = 1, 2, . . . , p,
which certainly can be checked in polynomial time, once Cov(G, H) has been
constructed.

ii) Deciding if G allows a locally bijective homomorphism into H is not harder
than constructing the covering pattern Cov(G, H), and this task is in XP when
parameterized by the maximum size of a component of the target graph H, as
shown in Corollary 7.5.

iii) Follows straightforwardly from ii).

However, it is not true that H-LBHom is NP-complete whenever Hj-Cover is
NP-complete for some component Hj of H. Infinitely many examples can be con-
structed by means of the following proposition. These examples provide another
argument for our opinion that the notion of locally bijective homomorphism is
not the right generalization of graph covering to disconnected graphs.

Proposition 7.8. Let H1 −→ H2 for components H1, H2 of H = H1 + H2,
and suppose that H2-Cover is polynomial-time solvable. Then H-LBHom is
polynomial-time solvable regardless the complexity of H1-Cover.

Proof. Under the assumption H1 −→ H2, any input graph G allows a locally
bijective homomorphism to H if and only if each of its components covers H2.
On one hand, if each component of G allows a locally bijective homomorphism to
H2, the union of these mappings is a locally bijective homomorphism of G into
H. On the other hand, if G allows a locally bijective homomorphism into H, each
component of G covers H1 or H2. However, every component that covers H1 also
covers H2.

There are many examples of pairs of connected graphs H1, H2 such that H1
covers H2, H1-Cover is NP-complete and H2-Cover is solvable in polynomial
time. In a certain sense it is more interesting that a similar phenomenon as in
Proposition 7.8 may occur even when H1 and H2 are incomparable by covering.
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H

Figure 7.2: The graph H = H1 + H2, where H1 = F (3, 0) and H2 = F (1, 1).

Example. For graphs H1 = F (3, 0) and H2 = F (1, 1), neither H1 covers H2 nor H2
covers H1, yet for their disjoint union H = H1 + H2, H-LBHom is polynomial-
time solvable for simple input graphs, while H1-Cover is NP-complete for simple
input graphs. (The graph H is depicted in Figure 7.2.)

Proof. A connected simple graph covers F (3, 0) if and only if it is cubic and is
3-edge-colourable, in which case it also covers F (1, 1) (edges of any two colours
form a disjoint union of cycles, which itself covers the loop of F (1, 1)). Hence a
simple graph allows a locally bijective homomorphism to F (3, 0)+F (1, 1) if and
only if each of its components covers F (1, 1), which can be decided in polynomial
time (a connected graph covers F (1, 1) if and only if it is cubic and contains a
perfect matching).

This example is a concrete instance of a more general pattern. Graph covering is
a transitive relation among connected graphs. Thus when A −→ B for graphs A
and B, every graph G that covers A also covers B. Surprisingly, the conclusion
may hold true also in cases when A does not cover B, if we consider only simple
graphs G. To describe this phenomenon, we introduce the following definition,
which will prove useful in several reductions later on.

Definition 7.9. Given connected graphs A, B, we say that A is stronger than B,
and write A ▷ B, if every simple graph that covers A also covers B.

The smallest nontrivial example of such a pair of graphs are two one-vertex
graphs: F (2, 0) with a pair of semi-edges and F (0, 1), one vertex with a loop.
While F (0, 1) is covered by any cycle, only cycles of even length cover F (2, 0).
So F (2, 0) ▷ F (0, 1).

Observe that whenever A is simple, then (A ▷ B) if and only if (A −→ B).1

In the following proposition, the operator + represents the operation of disjoint
union of two graphs.

1One might also notice that ▷ defines a quasi-order on connected graphs. Many pairs of
graphs are left incomparable with respect to this relation, even those covering a common target
graph. On the other hand, the equivalence classes of pair-wise comparable graphs may be
nontrivial, and the graphs within one class might have different numbers of vertices. For
example, W (0, 0, 2, 0, 0) and F (2, 0) form an equivalence class of ▷, as for both of these graphs,
the class of simple graphs covering them is exactly the class of even cycles.

126



7.4 Complexity results

Proposition 7.10. Let H = H1 + H2 for connected graphs H1 and H2 such that
H1 ▷ H2. Then H-LBHom for simple input graphs is polynomially reducible to
H2-LBHom for simple input graphs. In particular, if H2-LBHom is polynomial-
time decidable, then so is H-LBHom as well.

Proof. Every component of the input graph, which is assumed to be simple,
allows a locally bijective homomorphism into H if and only if it covers H2, by
the assumption H1 ▷ H2. Hence for a simple graph G, we have G −→lb H if and
only if G −→lb H2.

7.4.2 Surjective covers
The notion of surjective covers is favoured by topologists since it captures the fact
that every vertex (point) of the target graph (space) is covered. The advantage of
this notion for us is that it behaves nicely from the point of view of computational
complexity. This is captured by the following theorem.

Theorem 7.11. If Hi-Cover is polynomial-time solvable for every component
Hi of H, then

(i) the H-SurjectiveCover problem is polynomial-time solvable,

(ii) the SurjectiveCover problem is in XP when parameterized by the max-
imum size of a component of the target graph H, and

(iii) the SurjectiveCover problem is solvable in polynomial time if the com-
ponents of H have bounded size.

Proof.

(i) If H is fixed, the covering pattern Cov(G, H) can be constructed in polyno-
mial time by Corollary 7.6. As noted in Observation 7.3, G −→sur H if and
only if degCov(G,H)gi ≥ 1 for all i = 1, 2, . . . , p and Cov(G, H) has a match-
ing of size q, which can be checked in polynomial time, once Cov(G, H) has
been constructed (e.g., by network flow algorithms).

(ii) Again we construct the covering pattern Cov(G, H), which task is in XP
when parameterized by the maximum size of a component of the target
graph H, as shown in Corollary 7.5. Checking the degrees of Cov(G, H) as
well as checking if Cov(G, H) has a matching of size q can be done in time
polynomial in p + q and hence also in the size of the input.

(iii) Follows straightforwardly from (ii).

For surjective covers, the NP-hardness of the problem of deciding if there is a
covering of one component of H propagates to NP-hardness of deciding if there is
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a surjective covering of entire H, even when our attention is restricted to simple
input graphs.

Theorem 7.12. The H-SurjectiveCover problem is NP-complete for simple
input graphs if Hi-Cover is NP-complete for simple input graphs for at least one
component Hi of H.

Proof. Without loss of generality suppose that H1-Cover is NP-complete for
simple input graphs. Let G1 be a simple graph for which G1 −→ H1 is to be
tested. We show that there exists a polynomial-time reduction from H1-Cover
to H-SurjectiveCover. For every j = 2, . . . , q, fix a simple connected graph
Gj that covers Hj such that Gj −→ H1 if and only if Hj ▷ H1 (in other words,
Gj is a witness which does not cover H1 when Hj is not stronger than H1). Note
that the size of each Gj, j = 2, . . . , q, is a constant which does not depend on the
size of the input graph G1. Note also, that since H is a fixed graph, we do not
check algorithmically whether Hj ▷ H1 when picking Gj. We are only proving the
existence of a reduction, and for this we may assume the relation Hj ▷ H1 to be
given by a table.

Let G be the disjoint union of Gj, j = 1, . . . , q. We claim that G −→sur H if
and only if G1 −→ H1. The “if” part is clear. We map Gj onto Hj for every
j = 1, 2, . . . , q by the covering projections that are assumed to exist. Their union
is a surjective covering projection of G to H.

For the “only if” direction, suppose that f : V (G) −→ V (H) is a surjective cov-
ering projection. Since f must be globally surjective and G and H have the same
number of components, namely q, different components of G are mapped onto
different components of H by f . Define ˜︁f ∈ Sym(q) by setting ˜︁f(i) = j if and
only if f maps Gi onto Hj. Then ˜︁f is a permutation of {1, 2, . . . , q}. Consider the
cycle containing 1. Let it be (i1 = 1, i2, i3, . . . , it), which means that Gij

−→ Hij+1

for j = 1, 2, . . . , t − 1, and Git −→ Hi1 . By reverse induction on j, from j = t
down to j = 2, we prove that Hj ▷ H1. Indeed, for j = t, Git −→ H1 means
that Hit is stronger than H1, since we would have set Git as a witness that does
not cover H1 if it were not. For the inductive step, assume that Hij+1 ▷ H1 and
consider Gij

. Now Gij
covers Hij+1 since ˜︁f(ij) = ij+1. Because Gij

is a simple
graph and Hij+1 is stronger than H1, this implies that Gij

−→ H1. But then Hij

must itself be stronger than H1, otherwise we would have set Gij
as a witness

that does not cover H1. We conclude that Hi2 ▷ H1, and hence G1 −→ H1 follows
from the fact that the simple graph G1 covers Hi2 .

7.4.3 Equitable covers
As already announced, we wish to argue that equitable covers are the right gen-
eralisation of covers to disconnected graphs. Not only that they capture the
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crucial properties of covers, but they also behave nicely from the point of view of
computational complexity.

Theorem 7.13. The H-EquitableCover problem is polynomial-time solvable
if Hi-Cover is polynomial-time solvable for every component Hi of H.

Proof. First construct the covering pattern Cov(G, H). Since H is a fixed graph,
this can be done in time polynomial in the size of the input, i.e., G, as it follows
from Corollary 7.6.

Using dynamic programming, fill in a table M(s, k1, k2, . . . , kq), s = 0, 1, . . . , p,
kj = 0, 1, . . . , k = |V (G)|

|V (H)| for j = 1, 2, . . . , q, with values true and false. Its meaning
is that M(s, k1, k2, . . . , kq) = true if and only if G1 ∪ G2 ∪ . . . ∪ Gs allows a locally
bijective homomorphism f to H such that for every j and every u ∈ V (Hj),
|f−1(u)| = kj. The table is initialized by setting

M(0, k1, . . . , kq) =
{︄

true, if k1 = k2 = . . . = kq = 0
false, otherwise.

In the inductive step assume that all values for some s are filled in correctly,
and move on to s + 1. For every edge gs+1hj of Cov(G, H) and every q-tuple
k1, k2, . . . , kq such that M(s, k1, k2, . . . , kq) = true, set M(s + 1, k1, k2, . . . , kj +
rs+1,j, . . . , kq) = true, provided kj + rs+1,j ≤ k. Clearly, the loop invariant is ful-
filled, and hence G is a k-fold (equitable) cover of H if and only if M(p, k, k, . . . , k)
is set to true.

The table M has (p+1)·(k+1)q = O(nq+1) entries and the inductive step changes
O((k + 1)q · q values. So processing the table can be concluded in O((k + 1)q(1 +
pq) = O(nq+1) steps.

We are currently unaware of how to avoid q in the exponent if both G and H are
part of the input. We provide a simpler result.

Proposition 7.14. The EquitableCover problem is in XP when parameter-
ized by the number q of components of H plus the maximum size of a component
of the target graph H, provided Hi-Cover is polynomial-time solvable for every
component Hi of H.

Proof. The algorithm as described in Theorem 7.13 is in XP when parameterized
by the number q of components of H (needed for processing the table M) plus
the maximum size of a component of H (needed for computing the covering
pattern).

Problem 7.15. Is the EquitableCover problem in XP when parameterized by
the maximum size of a component of the target graph H, provided each Hi-Cover
is polynomial-time solvable for every component Hi of H?
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The NP-hardness theorem holds true as well:

Theorem 7.16. The H-EquitableCover problem is NP-complete for simple
input graphs if Hi-Cover is NP-complete for simple input graphs for at least one
component Hi of H.

Proof. We proceed in a similar way as in the proof of Theorem 7.12. Suppose
without loss of generality that H1-Cover is NP-complete. We show that there
exists a polynomial-time reduction from H1-Cover to H-EquitableCover.
For every j = 2, . . . , q, fix a simple connected graph Gj that covers Hj such that
Gj −→ H1 if and only if Hj ▷ H1 (in other words, Gj is the witness which does
not cover H1 when Hj is not stronger than H1). For every j = 2, . . . , q, we have
integers kj = |V (Gj)|

|V (Hj)| which are constants independent of G1.

Now suppose we are given a simple graph G1 whose covering of H1 is to be tested.
Compute k = |V (G1)|

|V (H1)| , which can be done in time polynomial in the size of G1.
This k should be an integer, since otherwise we conclude right away that G1 does
not cover H1. Set K to be the least common multiple of k, k2, . . . , kq. Define G
to be the disjoint union of K

k
copies of G1 with K

kj
copies of Gj for all j = 2, . . . , q.

(Note that the number of connected components of G is p = K
k

+ ∑︁q
j=2

K
kj

.) We
claim that G1 covers H1 if and only if G equitably covers H, and in that case G
is a K-fold cover of H.

The “only if” part is clear. We map each copy of Gj onto Hj for every j =
1, 2, . . . , q by the covering projections that are assumed to exist. Their union is
a surjective covering projection of G to H. To show that this is an equitable
covering projection, we do just a little bit of counting. Since Gj is a kj-fold cover
of Hj (here and in the sequel, we write k1 = k) and we have K

kj
copies of Gj in

G, the preimage of each vertex of H in this mapping has size K.

For the “if” part, assume that f : G −→ H is a K-fold covering projection. Every
connected component of G must map onto one connected component of H, but it
may happen that different copies of the same Gj map onto different components
of H. Still, we can again find a sequence of indices i1 = 1, i2, . . . , it such that for
every j = 1, 2, . . . , t − 1, some copy of Gij

is mapped to Hij+1 by f , and some
copy of Git is mapped onto H1. If some copy of G1 is mapped onto H1, then
t = 1 and G1 covers H1. Suppose this is not the case. Let S ⊆ {1, 2, . . . , q} and
a set S of components of G be inclusion-wise minimal such that:

a) all copies of G1 are in S,

b) if a component from S is mapped onto Hj by f , then j ∈ S, and

c) if j ∈ S, then all copies of Gj are in S.

The sets S and S are uniquely defined by application of the rules a), b), and
c). It follows that if 1 ∈ S, then a sequence i1 = 1, i2, . . . , it exists. If 1 ̸∈ S,
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then f restricted to S is a surjective cover of the disjoint union of Hj, j ∈ S.
But it cannot be a K-fold cover, because the union of the components in S
has K

k
|V (G1)| + ∑︁

j∈S
K
kj

|V (Gj)| = K · |V (H1)| + K
∑︁

j∈S |V (Hj)| vertices, while⋃︁
j∈S Hj has ∑︁

j∈S |V (Hj)| vertices. This concludes the proof.

7.5 Covering coloured two-vertex graphs
In this section we introduce the last generalization and consider coverings of
graphs which come with links and vertices equipped with additional informa-
tion, which we simply refer to as a colour. The requirement is that the covering
projection respects the colours, both on the vertices and on the links. This gener-
alization is not purposeless as it may seem. It is shown in Kratochvíl et al. [123]
that to fully characterize the complexity of H-Cover for simple graphs H, it
is necessary and suffices to understand the complexity of H-Cover for coloured
mixed multigraphs of valency greater than 2. The requirement on the minimum
degree of H gives hope that the characterization can be more easily described.
We will first describe the concept of covers of coloured graphs with semi-edges
in detail in Subsection 7.5.1, where we also give our final argument in favour of
equitable covers. Then we extend the characterization of the computational com-
plexity of covering coloured 2-vertex graphs without semi-edges presented in [123]
to general graphs in Subsection 7.5.2.

7.5.1 Covers of coloured graphs
Definition 7.17. We say that a graph G is coloured, if it is equipped with a
function c : D ∪ V → N.

A coloured graph covers a coloured graph H if G covers H via a mapping f and
this mapping respects the colours, i.e., cG = cH ◦ f on D and every u ∈ VG

satisfies cG(u) = cH(f(u)).

Note that one may assume without loss of generality that all vertices are of the
same colour, since we can add the colour of a vertex as a shade to the colours of
its darts. However, for the reductions described below, it is convenient to keep
the intermediate step of colouring vertices as well.

The final argument that equitable covers are the most proper generalization to
disconnected graphs is given by the following observation. (Note that colour-
induced subgraphs of a connected graph may be disconnected.)

Observation 7.18. Let a coloured graph H be connected and let f : G −→ H be
a colour preserving mapping that respects the links (i.e., for every link e ∈ ΛG,
there is a link e′ ∈ ΛH such that f(e) = e′). Then f is a covering projection if
and only if f : Gi,j −→ Hi,j is an equitable covering projection for every two (not
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7 Complexity of covering disconnected multigraphs

necessarily distinct) colours i, j, where Gi,j, Hi,j denote the subgraphs of G and
H induced by the links e such that c(e) = {i, j}.

Kratochvíl et al. [123] proved that the existence of a covering between two (simple)
graphs can be reduced to the existence of a covering between two coloured graphs
of minimum degree three. Their concept of coloured directed multigraph is equi-
valent to our concept of coloured graphs (without semi-edges), namely:

• The vertex colour encoding the collection of trees (without semi-edges)
stemming from a vertex is encoded as the vertex colour in the exactly same
way.

• The link colour encoding a subgraph isomorphic to coloured induced path
between two vertices of degree at least three is encoded as the pair of colours
of the edge or a loop that is used for the replacement of the path.

• When the path colouring is symmetric, we use the same colour twice for
the darts of the replaced arc which could be viewed as an undirected edge
of the construction of [123].

• On the other hand, when the colouring is not symmetric and the replaced
arc hence needed to be directed in [123], we use a pair of distinct colours
on the two darts, which naturally represents the direction.

When semi-edges are allowed we must take into account one more possibility.
The colour used on the two darts representing a symmetric coloured path of
even number of vertices may be used also to represent a half-way path with the
identical colour pattern ended by a semi-edge. A formal description follows:

By a pattern P we mean a finite sequence of positive integers (p1, . . . , pk). A pat-
tern is symmetric if pi = pk+1−i, and the reverse pattern is P = (pk, . . . , p1).

The pattern of a closed path d1, . . . , d2k in a coloured graph G is the sequence
of colours c(u0), c(d1), c(d2), c(u1), c(d3), c(d4), c(u2), . . . , c(d2k), c(uk), where ∀i ∈
{1, . . . , k} the vertex ui contains the dart d2i, and in addition u0 contains the dart
d1. Analogously we define patterns of open and half-way paths — the sequence
of dart colours is augmented by the vertex colours.

Now, a half-way path of pattern P that starts in a vertex of degree 3 and ends
by a semi-edge will be replaced by a single dart whose colour is identical to those
used for the two darts used for the replacement of closed paths whose pattern is
the concatenation PP , see Figure 7.3.

7.5.2 Two-vertex graphs
We say that a coloured graph G is regular if all its vertices have the same colour
and for every i ∈ N all vertices are incident with the same number of darts
of colour i. Kratochvíl et al. [123] completely characterized the computational
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7.5 Covering coloured two-vertex graphs

Figure 7.3: Reduction of a graph to a coloured graph of minimum degree 3.
Distinct colours represent distinct integers.

complexity of the H-Cover problem on coloured graphs on at most two vertices
without semi-edges. Their result implies the following:

Proposition 7.19. Let H be a connected coloured graph on at most two vertices
without semi-edges. The H-Cover problem is polynomially solvable if:

1. the graph H contains only one vertex, or

2. H is not regular, or

3. (a) for every colour i ∈ N, the Hi-EquitableCover problem is solvable
in polynomial time, where Hi is the coloured subgraph of H induced by
the links coloured by i, and

(b) for every pair of colours i, j ∈ N, the Hi,j-EquitableCover problem
is solvable in polynomial time, where Hi,j is the coloured subgraph of
H induced by the links l ∈ Λ such that c(l) = {i, j}.

Otherwise, the H-Cover problem is NP-complete.

Informally, the NP-completeness persists if and only if H has two vertices which
have the same degree in every colour, and the NP-completeness appears on a
monochromatic subgraph (either undirected or directed). Such a subgraph must
contain both vertices and be connected. We extend this characterization to in-
clude semi-edges as well:

Theorem 7.20. Let H be a coloured graph on at most two vertices. The H-Eq-
uitableCover problem is polynomially solvable if:

1. The graph H contains only one vertex and for every i, Hi-Cover is solvable
in polynomial time, where Hi is the subgraph of H induced by the loops and
semi-edges coloured by i, or

2. H is not regular and for every i and each vertex u ∈ VH , the Hu
i -Cover
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7 Complexity of covering disconnected multigraphs

problem is solvable in polynomial time, where Hu
i is the coloured subgraph

of H induced by the loops and semi-edges incident with u coloured by i, or

3. H is regular graph on two vertices and

(a) for every colour i ∈ N, the Hi-EquitableCover problem is solvable
in polynomial time, where Hi is the coloured subgraph of H induced by
the links coloured by i, and

(b) for every pair of colours i, j ∈ N, the Hi,j-EquitableCover problem
is solvable in polynomial time, where Hi,j is the subgraph of H induced
by the links l ∈ Λ such that c(l) = {i, j}.

Otherwise, the H-EquitableCover problem is NP-complete.

Observe that the cases when every colour induces in H a subgraph without semi-
edges are covered by Proposition 7.19.

Proof. We discuss first the polynomial cases:

1. We accept if and only if all Hi-Cover problems accept the input, which is
the restriction of G to links coloured by i.

In such admissible case, the overall covering projection f : G → H is the
union of all partial covering projections Gi → Hi. Since the derived vertex
map V (Gi) → V (Hi) = {u} is uniquely given as the target graph has only
one vertex, these partial maps fit together neatly to a bijection between any
w ∈ V (G) and f(w) ∈ V (H).

2. We proceed analogously to the previous case. The only difference is that H
has two vertices v and w, which could be distinguished:

(a) by their vertex colour, and/or

(b) by the number of incident darts of some colour i.

We perform the same separation on the vertices of G into sets Vv and Vw.
Namely, Vv contains those vertices of G that have the same colour as v and
the same number of incident darts of every colour as v and analogously for
Vw. In particular we reject the input if Vv ∪ Vw ̸= V (G).

We obtain a vertex mapping VG → VH by mapping entire Vv to v and Vw

to w.

The edges between v and w can be covered only by edges between Vv and
Vw.

When v and w are connected by a multiedge of of colour i and multiplicity
k then a covering may exists if and only if edges of colour i between Vv and
Vw induce a k-regular subgraph. This necessary condition is also sufficient
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7.5 Covering coloured two-vertex graphs

as every k-regular bipartite graph can be split into k perfect matchings and
these yield the dart mapping of a cover.

If we did not reject the input earlier, we solve the Hv
i -Cover and Hw

i -
Cover problems, where the input for Hv

i -Cover is induced by all links
coloured by i that have its single end or both ends in Vv; analogously for
Hw

i -Cover.

In an admissible case, the overall covering projection f : G → H is the union
of covering projections Gi → Hv

i and Gi → Hw
i together with the mapping

of edges connecting Vv and Vw and therefore also a feasible solution for
Hi-LBHom problem.

Observe that in the case when H is connected we may accept G also for
H-Cover, H-SurjectiveCover and H-EquitableCover too.

For disconnected H, we shall also test whether Vv and Vw are non-empty
to accept G for H-SurjectiveCover. Analogously, |Vv| = |Vw| is needed
for H-EquitableCover.

3. Let V (H) = {v, w}. For every dart d ∈ D(G), we introduce a Boolean
variable xd. Based on the structure of G and H we compose a formula φ in
CNF with clauses of size two which will allow a satisfying assignment if and
only if G covers H. In such a satisfying assignment xd is truly evaluated if
for some covering f : G → H the dart d maps within v and xd is negative
if f(d) ∈ w.

Clearly, all variables corresponding to darts of a vertex must be assigned
the same value, which can be guaranteed by a collection of 2-SAT clauses.

The constitution of φ relies on the characterization of polynomially solvable
cases of the H-Cover problem for symmetric graphs with two vertices
given by Kratochvíl et al. [123] and Chapter 6. For the sake of coherence,
we provide here a brief summary of this approach:

• When Hi is disconnected then for every link (d, e) ∈ Λ(Gi) we add two
2-SAT clauses to express xd = xe.

Moreover, when Hi contains a semi-edge, we test every component of
Gi whether it allows a 1-factor that contains all semi-edges (or in other
words whether the subgraph of Gi restricted to the vertices without
semi-edges has a perfect matching). Since this is a necessary condition
for the existence of a covering, in a negative case we falsify φ, e.g. by
inserting the clause (x ∧ ¬x) for some variable x.

The satisfying truth assignment of φ viewed as a vertex map V (Gi) →
{v, w} can be converted to a covering projection f : D(Gi) → D(Hi)
in two steps. First we separate those components of Gi whose vertices
shall be mapped onto v from those that are mapped on w and treat
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7 Complexity of covering disconnected multigraphs

each component C of Gi separately and independently of the other
ones. Then, if Hi contains a semi-edge, we map the 1-factor of C
on the appropriate semi-edges of Hi. What remains is a 2k-regular
subgraph of C that covers k loops by Petersen’s theorem [123].

• When Hi is a multiedge of multiplicity k, then for every edge (d, e) ∈
E(Gi), we add two 2-SAT clauses to express xd ̸= xe.

The existence of a satisfying truth assignment of φ implies that Gi is
k-regular bipartite and therefore can be factorized into a collection of
disjoint perfect matchings by Hall’s theorem. We map edges of each
such matching to the same edge of Hi while using distinct edges of Hi

for distinct matchings [123].

• When Hi is a 2-regular graph consisting of a single edge and two semi-
edges, then each Gi covering Hi needs to be 2-regular, where each
component of Gi is either a cycle of 4k vertices or an open path on an
even number of vertices.

For every subgraph of Gi isomorphic to a half-open path on five darts
(such path consist of two edges and a single semi-edge) we add two
2-SAT clauses to express xd ̸= xe, where d and e are the two outer
darts of such path. Moreover, when a dart d belongs to a semi-edge
in d, we add two 2-SAT clauses to express xd ̸= xe for the dart where
e is the other end of the half-open path on three darts starting in d in
Gi.

The last condition guarantees that semi-edges of Gi are mapped onto
semi-edges of Hi, while the previous guarantees that every vertex with
two neighbours in Gi has one neighbour mapped on the same target
in Hi and the other neighbour onto the distinct vertex of Hi.

• When Hi,j is disconnected we express xd = xe for every link (d, e) ∈
Λ(Gi,j) as above. Now we follow the same approach as for disconnected
Hi above. Note only that semi-edges may not appear in Gi,j.

In order to factorize each component C of Gi,j into k 2-factors where
each maps onto a distinct loop incident with the target vertex, we
temporarily split each vertex of C into two vertices of degree k: one
incident with darts of block Bi and the other with Bj. Such an auxili-
ary graph is bipartite and could be factorized into k 1-factors. Edges of
each 1-factor of the auxiliary graph correspond to the desired 2-factor
of C [123].

• Finally, when Hi,j is connected we express xd ̸= xe for every link
(d, e) ∈ Λ(Gi,j) and proceed analogously as above. However, this case
is simpler in the sense that each component of C is bipartite. We
perform the auxiliary vertex splitting described in the previous case to
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7.5 Covering coloured two-vertex graphs

obtain two collections of k 1-factors which in C are mapped onto the
two multiedges of multiplicity k obtained by splitting of Hi,j [123].

For a disconnected H, our Theorem 7.13 guarantees that once we are able
to decide the existence of a covering projection for both components of H by
Case 1 above, we may resolve the H-EquitableCover problem as well.

Now we proceed to the NP-complete cases.

1. Let Hi be the subgraph of H for which the Hi-Cover is NP-complete. By
H ′ we denote the complement of Hi in H. Let Gi be the graph for which
the covering to Hi is questioned. We create a graph G from Gi and |V (Gi)|
copies of H ′ so that distinct vertices of Gi are merged with the vertex u
of distinct copies of H ′ and every vertex of Gi participates in one of these
joints.

When Gi covers Hi, then it is easy to extend the covering to each copy of
H ′ by the identity mapping on H ′. On the other hand the restriction of a
covering G → H to the subgraph Gi is a covering to Hi.

When we aim for a simple instance for the H-Cover problem, we use any
simple graph H ′′ that allows a k-fold cover of H ′. Then we involve k copies
of Gi instead of the single one and perform merges so that the k vertices
mapped onto u in H ′′ are merged with the k copies of the same vertex in
distinct copies of Gi.

2. This case follows by the same argument as the previous one, however, we
use Hu

i instead of Hi.

3. For this case, we need the concept of a (“categorical”) graph product: For
a coloured graph G, the product G × 2 has as the dart set the Cartesian
product D(G) × {1, 2}. To simplify our expressions we use d1 for (d, 1) and
u1 for u × {1} when the use of indices cannot be misinterpreted in another
way. The two darts d1, d2 have the same colour as d. Every vertex u ∈ V (G)
yields two vertices u1 and u2 of the same colour as u. Every semi-edge s ∈ S
yields two semi-edges s1 and s2, while every loop or edge {d, d′} ∈ L ∪ O
yields two links {d1, d′

2} and {d′
1, d2}.

Note that when we use the natural projection, i.e. map both d1, d2 onto d
for every d ∈ D, we get a covering G × 2 → G.

(a) As above, let Hi be any subgraph of H for which Hi-EquitableCo-
ver is NP-complete, H ′ be the complement of Hi in H and Gi be the
graph for which the covering to Hi is questioned.

• For connected Hi we take two copies of Gi, one copy of Gi ×2 and
|V (Gi)| copies of H ′ ×2. If u is a vertex of Gi, let u′ and u′′ be the
two vertices corresponding to u in the two copies of Gi, while u′′′

1
and u′′′

2 match u in Gi × 2. Analogously let vertices v1, v2, w1, w2
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u′ = v1

u′′ = v2

u′′′
1 = w1

u′′′
2 = w2

v

w

H ′ × 2 H ′ × 2 H ′ × 2 ...

Gi

Gi

Gi × 2

H

Figure 7.4: Construction of G in Theorem 7.20.

match v and w of H ′ in H ′ × 2. We form G by choosing for each
u ∈ V (Gi) a unique copy of H ′ × 2 and merging the pairs (u′, v1),
(u′′, v2), (u′′′

1 , w1) and (u′′′
2 , w2), where v1, v2, w1, w2 are taken from

the chosen copy of H ′ × 2, see Figure 7.4

Observe that besides the natural projection, the graph H ′ × 2
allows also its “swap”, {v1, v2} → w, {w1, w2} → v as a covering
projection.

Analogously, if Gi covers Hi then Gi × 2 covers Hi also via a
projection and its swap. Thus any covering Gi → Hi can be
extended to a covering of G → H from the union of the two copies
of this covering on the two copies of Gi and its swap on Gi × 2.

As above, the restriction of a covering G → H to Gi yields a
map Gi → Hi. As Hi is connected, this is a k-fold covering for
some k. (Disconnected Hi would yield only a locally bijective
homomorphism Gi −→lb Hi.)

Analogously, to get a simple instance we may involve a simple
cover of H ′ × 2 to connect an appropriate number of copies of Gi

and Gi × 2.

• For disconnected Hi we first recall that the Hi-EquitableCover
is polynomially solvable if each component of Hi is incident with
at most one semi-edge or the degree of Hi is two.

Let H+
i be the component of Hi with the maximum number of

semi-edges, i.e. at least two, and H−
i its complement in Hi.
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We reduce the NP-complete problem H+
i -Cover (Note that H−

i -
Cover could be polynomially solvable.)

Let us have a given instance Gi of H+
i -Cover. Without loss of

generality we may assume that Gi is connected as otherwise we
treat each component separately. Since H+

i contains semi-edges,
Gi must have an even number of vertices as otherwise it is a clear
no instance. We use Gi together with |V (Gi)| copies of H−

i and
1
2 |V (Gi)| copies of H ′ × 2. We partition vertices of this copy of Gi

into pairs arbitrarily and each such pair we match with v1, v2 of
a copy of H ′ × 2, while w1, w2 we match with distinct vertices of
the copies of H−

i . This concludes the construction of G.

Observe that a copy of H−
i may cover H+

i if and only if they are
isomorphic. Hence we may assume that every copy of H−

i maps
in an equitable covering G → H on the subgraph H−

i . Then the
copy of Gi maps onto H+

i .

For simple instances, we shall involve graph that allows a covering
to H−

i but not to H+
i . For example, the simplest case when H+

i

consists of just of three semi-edges, we would have to involve a
snark — a cubic graph that is not 3-edge colourable.

(b) When Hi,j-EquitableCover is NP-complete for some subgraph Hi,j

then we perform the same construction of G from two copies of the
instance Gi,j, a copy of Gi,j × 2 and |V (Gi)| copies of H ′ × 2 that
are merged together in the same way as in the previous case. The
arguments are then identical.

We covered all the possible cases and thus the proof concludes.

7.6 Conclusion
The main goal of this chapter was to point out that the generalization of the
notion of graph covers of connected graphs to disconnected ones is not obvious.
We have presented three variants, depending on whether the projection should
or need not be globally surjective and if all vertices should be covered the same
number of times. We argue that the most restrictive variant, which we call
equitable covers, is the most appropriate one, namely from the point of view of
covers of coloured graphs.

We have compared the computational complexity aspects of these variants. We
show that two of them, surjective and equitable covers, possess the naturally
desired property that H-Cover is polynomially solvable if covering each com-
ponent of H is polynomially solvable and NP-complete if covering at least one
component of H is NP-complete. However, we identified some open questions
from the view of fixed-parameter tractability.
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7 Complexity of covering disconnected multigraphs

In the last section, we reviewed the extension of graph covers to covers of col-
oured graphs, recalling that non-coverable patterns can encode colours in simple
graphs and discussing this issue in detail for the case when semi-edges are al-
lowed. With this new feature, we conclude the complete characterization of the
computational complexity of covering two-vertex coloured graphs, initiated (and
proved for graphs without semi-edges) 24 years ago in [123].
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This chapter is based on:

• [28] Jan Bok, Jiří Fiala, Nikola Jedličková, Jan Kratochvíl, and Paweł
Rzążewski: List covering of regular multigraphs. In Combinatorial Al-
gorithms - 33rd International Workshop, IWOCA 2022, volume 13270
of Lecture Notes in Computer Science, pages 228–242, 2022. https:
//doi.org/10.1007/978-3-031-06678-8_17

It has been known that for every fixed simple regular graph H of valency greater
than 2, deciding if an input graph covers H is NP-complete. In recent years,
topological graph theory has developed into heavily relying on multiple edges,
loops, and semi-edges, but only partial results on the complexity of covering
multigraphs with semi-edges are known so far. In this chapter we consider the
list version of the problem, called List-H-Cover, where the vertices and edges
of the input graph come with lists of admissible targets. Our main result reads
that the List-H-Cover problem is NP-complete for every regular multigraph
H of valency greater than 2 which contains at least one semi-simple vertex (i.e.,
a vertex which is incident with no loops, with no multiple edges and with at
most one semi-edge). Using this result we show the NP-complete/polynomial
time dichotomy for the computational complexity of List-H-Cover of cubic
multigraphs.

The complexity study of H-Cover for graphs H that allow semi-edges has been
initiated in 2021 in [27, 29] (Chapters 6 and 7, respectively). We continue this
line of research. In particular, our far-reaching goal is to prove the following
conjecture.
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8 List covering of regular multigraphs

Conjecture 8.1 (Strong Dichotomy Conjecture). For every H, the H-Cover
problem is either polynomial-time solvable for general graphs, or NP-complete for
simple graphs.

We believe that the Strong Dichotomy Conjecture holds true also for List-H-
Cover.

8.1 Summary of our results
The goal of this chapter is to push further the understanding of the complexity
of H-Cover for regular graphs. Recall that the problem is known to be NP-
complete for every fixed k-regular simple graph H of valency k ≥ 3 [125]. Though
it was known already from [123] that in order to fully understand the complex-
ity of covering general simple graphs, it is necessary (and sufficient) to prove a
complete characterization for coloured mixed multigraphs, the result of [125] was
formulated and proved only for simple graphs. In this chapter we revisit the
method developed in [125] and we conclude that though it does not seem to work
for multigraphs in general, it is possible to modify it and — under certain as-
sumptions — prove hardness for the list variant of the problem, List-H-Cover,
where the vertices and edges of the instance graph are given lists of admissible
targets. Our main result is the following theorem.

Theorem 8.2. Let k ≥ 3 and let H be a k-regular graph. If H contains a semi-
simple vertex, then List-H-Cover is NP-complete for simple input graphs.

The second goal of this chapter is to show how Theorem 8.2 could be used to prove
the Strong Dichotomy Conjecture for cubic graphs. (Recall that for the closely
related locally injective homomorphism problem, introducing lists was helpful in
obtaining the full complexity dichotomy [82].) We fully characterize the compu-
tational complexity of List-H-Cover for all cubic graphs in Theorem 8.12.

8.2 Additional definitions
We dedicate this section to a couple of definitions not provided by the introduct-
ory chapter.

The problem. In the List-H-Cover problem, the input graph G is given
with lists L = {Lu, Le : u ∈ V (G), e ∈ E(G)}, such that Lu ⊆ V (H) for every
u ∈ V (G) and Le ⊆ E(H) for every e ∈ E(G). A covering projection f : G −→ H
respects the lists of L if f(u) ∈ Lu for every u ∈ V (G) and f(e) ∈ Le for every
e ∈ E(G).

Simplicity. It will be useful to distinguish various levels of simplicity. We say
that:
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• a vertex is semi-simple if it belongs to no loops, no multiple edges and at
most one semi-edge,

• a graph is semi-simple if each of its vertices is semi-simple,

• a vertex is simple if it is semi-simple and is incident with no semi-edges,

• a graph is simple if each of its vertices is simple,

• a graph is bipartite if it has no loops, no semi-edges and no odd cycles.

Partial covering. The mapping f : V (G) ∪ E(G) −→ V (H) ∪ E(H) is a
partial covering projection when the preimages are not required to be spanning
subgraphs, but all other properties are fulfilled. In other words, the vertex- and
edge-mappings are both surjective and the incidences are retained, the preimage
of a ordinary edge connecting vertices say u and v is a matching consisting of
edges each connecting a vertex from f−1(u) to a vertex from f−1(v), the preimage
of a semi-edge incident with vertex say u is a disjoint union of semi-edges and
ordinary edges all incident only with vertices from f−1(u), and the preimage of
a loop incident with a vertex say u is a disjoint union of cycles (including loops)
and paths whose all edges are incident only with vertices from f−1(u).

Incident edges. Given a graph G and a vertex u ∈ V (G), the set of edges of
G incident with u will be denoted by EG(u).

8.3 Proof of Theorem 8.2
In the first two subsections we will prove the theorem for the case when H is
bipartite (and hence does not contain loops) and has no semi-edges. By the
celebrated König-Hall theorem, such a graph is k-edge-colourable.

8.3.1 Multicovers
The following operation will be an important tool used in our hardness proof.

Definition 8.3 (Coloured product).

1. Let M1, M2, . . . , Mm be m perfect matchings, possibly on different vertex
sets. Their product is the graph

m∏︂
i=1

Mi = (
m∏︂

i=1
V (Mi), {uv : uivi ∈ Mi for each i = 1, 2, . . . , m})

where it is assumed that the notation of the vertices of the product is such
that u = (u1, u2, . . . , um) with ui ∈ V (Mi) for all i = 1, 2, . . . , m. Then∏︁m

i=1 Mi is a perfect matching as well.
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2. Let G1, G2, . . . , Gm be k-regular k-edge-colourable graphs without loops or
semi-edges. For each i = 1, . . . , m, let ϕi : E(Gi) −→ {1, 2, . . . , k} be a
proper edge-colouring of Gi. The coloured product of Gi’s is the graph∏︁m

i=1 Gi with vertex set being ∏︁m
i=1 V (Gi) and edge set being the union of

E(∏︁m
i=1 M j

i ), j = 1, 2, . . . , k, where for each i and j, M j
i = ϕ−1

i (j) is the
perfect matching in Gi formed by edges coloured by colour j in the colouring
ϕi. If we define ϕ : E(∏︁m

i=1 Gi) −→ {1, 2, . . . , k} by setting ϕ(e) = j if
and only if e ∈ E(∏︁m

i=1 M j
i ), we see that ϕ is a proper k-edge-colouring of∏︁m

i=1 Gi.

3. Let G1, G2, . . . , Gm and ϕi : E(Gi) −→ {1, 2, . . . , k} be as in 2) above.
For each i = 1, 2, . . . , m, define the projection πi from the coloured product∏︁m

i=1 Gi to its i-th coordinate by setting πi(u) = ui and πi(e) = ei for such
an edge ei ∈ E(Gi) that satisfies ϕi(ei) = ϕ(e) and whose end-vertices are
ui and vi, provided the end-vertices of e are u and v.

An example of coloured product is in Figure 8.1. The next lemma follows imme-
diately from Definition 8.3.

Lemma 8.4. Let G1, G2, . . . , Gm be k-regular graphs without loops or semi-edges,
and let for each i = 1, . . . , m, ϕi : E(Gi) −→ {1, 2, . . . , k} be a proper edge-
colouring of Gi. Then each projection πi, i = 1, 2, . . . , m, is a covering projection
from ∏︁m

i=1 Gi onto Gi.

Now let us show the main construction used to build the gadgets for our hardness
reduction.

Proposition 8.5. Let H be a connected k-regular k-edge-colourable graph with
no loops or semi-edges. Let x, y be two adjacent vertices of H. Then there exists
a connected simple k-regular k-edge-colourable graph G and u ∈ V (G), such that

(a) for any bijection from EG(u) onto EH(x), there exists a covering projection
from G to H which extends this bijection and maps u to x, and

(b) for any bijection from EG(u) onto EH(y) there exists a covering projection
from G to H which extends this bijection and maps u to y.

Proof. In a way similar to the proof in [125] we first construct a coloured product
of many many copies of H that covers H in many ways, in particular, that satisfies
(a) and (b). To do so, we take k! copies of H with edge colourings obtained by
all permutations of colours, and in their coloured product consider the vertex a
whose all projections are x. The edges incident with a are projected onto EH(x)
in all possible ways from this coloured product. Then we take the same product
and consider its vertex b = (y, y, . . . , y). The edges incident with b are projected
in all possible ways onto EH(y). Finally, in the product of these two graphs, the
vertex (a, b) plays the role of u. The difference to the approach in [125] is that it is
not sufficient to require that all bijections of the vertex neighbourhoods of u and
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Figure 8.1: An example of the coloured product is on the left. Projections of
vertex u and its neighbourhood are visualized on the right; u, r, s, t map in this
order onto a, b, c, c in the vertical projection, and onto a, c, c, b in the horizontal
one.
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Figure 8.2: An illustration to the construction of Gu.

x (y, respectively) can be extended to covering projections, but we must aim at
extending bijections of the sets of incident edges. The product that we construct
may still contain multiple edges. If this is the case, we further take the product
with a simple graph, say Kk,k. This product is already a simple graph and still
possesses all the requested covering projections. It may still be disconnected,
though, and we denote by G the component that contains the vitally important
vertex u in such a case.

The main building block of our reduction is the graph Gu obtained from G by
splitting vertex u into k pendant vertices of degree 1 (see Figure 8.2). For each
edge e of G incident with u, we formally keep this edge with the same name in Gu,
denote its pendant vertex of degree 1 by ue and denote by we the other endpoint
of e. (Thus, with this slight abuse of notation, EG(u) = ⋃︁

e∈EG(u) EGu(ue).) Then
we have the following proposition.
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8 List covering of regular multigraphs

Proposition 8.6. The graph Gu constructed from the multicover G of H as above
satisfies the following:

(a) for every bijection σx : EG(u) → EH(x), there exists a partial covering pro-
jection of Gu onto H that extends σx and maps each ue, e ∈ EG(u) to x;

(b) for every bijection σy : EG(u) → EH(y), there exists a partial covering pro-
jection of Gu onto H that extends σy

(c) in every partial covering projection from Gu onto H, the pendant vertices
ue, e ∈ EG(u) are mapped onto the same vertex of H;

(d) in every partial covering projection from Gu onto H, the pendant edges are
mapped onto different edges (incident with the image of the pendant vertices).

Proof. Items (a) and (b) follow directly from Proposition 8.5. To prove (c) and
(d), we first show that in any partial covering projection f from Gu onto H, the
pendant edges are mapped onto edges of all colours.

Denote by E∗ the pendant edges of Gu, and set V ∗ = V (G) \ {u} = V (Gu) \⋃︁
e∈EG(u){ue}. Observe first that since H has a perfect matching, the number of

its vertices is even, and since G covers H, so is the number of vertices of G. Hence
|V ∗| ≡ 1 mod 2.

Suppose f : Gu −→ H is a partial covering projection. Fix a proper k-colouring
ϕ of the edges of H and define a k-colouring ˜︁ϕ of the edges of Gu by setting˜︁ϕ(e) = ϕ(f(e)). Since f is a partial covering projection, ˜︁ϕ is a proper edge-
colouring of Gu. If some colour is missing on all of the edges from E∗, edges of
this colour would form a perfect matching in Gu[V ∗] and |V ∗| would be even, a
contradiction. Hence every colour appears on exactly one edge of E∗.

For every a ∈ V (H), denote by ha the number of vertices of V ∗ that are mapped
onto a by f . Consider an edge e′ connecting vertices a and b of H. If e′ = f(e) for
some edge e ∈ E∗, we have f(ue) = a and f(we) = b, or vice versa. Every vertex
in f−1(a) ∩ V ∗ is adjacent to exactly one vertex in f−1(b) ∩ V ∗ via an edge of
colour ϕ(e′), whilst every vertex of f−1(b)∩V ∗ except for we is adjacent to exactly
one vertex in f−1(a) ∩ V ∗ via an edge of the same colour. Hence hb = ha + 1.
Orient the edge e′ from a to b in such a case. If, on the other hand, the edge e′

is not the image of any edge from E∗, the edges of colour ϕ(e′) form a matching
between the vertices of f−1(a) ∩ V ∗ and the vertices of f−1(b) ∩ V ∗, and ha = hb.
Leave the edge e′ undirected in such a case.

After processing all edges of H in this way, we have constructed a mixed graph−→
H which has exactly one edge of each colour directed. From the meaning of the
orientations and non-orientations of edges of −→

H for the values of ha, a ∈ V (H),
it follows that the vertex set of H falls into levels, say Lr, Lr+1, . . . , Ls such that
undirected edges live inside the levels, while directed edges connect vertices of
consecutive levels and are directed from Li to Li+1 for suitable i. Every two
consecutive levels are connected by at least one directed edge in this way. Since
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8.3 Proof of Theorem 8.2

H is connected, every vertex a ∈ Li will satisfy ha = i (the indices r and s are
chosen so that r is the smallest value of ha and s is the largest one). Directed
edges connecting two consecutive levels form a cut in H, and since edges of each
colour form a perfect matching, the parities of the numbers of edges of each colour
in this cut are the same. Since the cut contains at least one edge, but at most
one edge of each colour (exactly one edge of each colour is directed), it follows
that the cut contains all k directed edges and that H has only two levels, i.e.,
s = r + 1. Thus H has |Lr| vertices a with ha = r and |Lr+1| = |V (H)| − |Lr|
vertices a with ha = r + 1. It follows that

|V ∗| = r|Lr| + (r + 1)(|V (H)| − |Lr|) = (r + 1)|V (H)| − |Lr|.

We know that G covers H, and so |V (G)| = ℓ|V (H)| for some ℓ. Thus |V ∗| =
ℓ|V (H)| − 1. Thus we obtain

(r + 1)|V (H)| − |Lr| = ℓ|V (H)| − 1,

which implies
(r + 1 − ℓ)|V (H)| = |Lr| − 1,

and since 1 ≤ |Lr| ≤ |V (H)| − 1, the only possible way for |Lr| − 1 to be divisible
by |V (H)| is |Lr| = 1. But this implies that all directed edges of −→

H start in the
same vertex, say z, and from the construction of −→

H it follows that f(ue) = z for
all e ∈ E∗. This proves (c).

Now (d) follows from the two observations above. The k pendant edges of E∗

have mutually distinct colours in ˜︁ϕ, and thus they must be mapped to distinct
edges of EH(z) by f .

8.3.2 Reduction from hypergraph colouring
The reduction is exactly the same as in [125], but the proof for the case when
multiple edges are allowed needs some extra analysis. Hence we need to describe
here the reduction in full detail. We reduce from k-edge-colourability of (k − 1)-
uniform k-regular hypergraphs. In the wording of the incidence graph of the
hypergraph, suppose we are given a simple bi-regular bipartite graph K = (A ∪
B, E) such that all vertices in A (which represent the edges of the hypergraph)
have degree k − 1 and all vertices in B (which represent the vertices of the
hypergraph) have degree k. The question is, if the vertices of A can be coloured
by k colours so that the neighbourhood of each vertex from B is rainbow coloured
(i.e., each vertex from B sees all k colours on its neighbours, each colour exactly
once). This problem is NP-complete for every fixed k ≥ 3 [125].

Given such a graph K, we build an input graph GK by local replacements. Recall
that we are working with a k-edge-colourable k-regular graph H with a simple
vertex x, and with respect to this vertex (and one of its neighbours y) we are
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Figure 8.3: An illustration to the construction of GK for k = 4.

guaranteed the existence of a graph Gu which satisfies the properties stated in
Proposition 8.6. This Gu will be a key building block in our construction.

First, every vertex v ∈ B will be replaced by a copy of the so-called vertex gadget,
which is a disjoint union of a copy Gv

u of Gu and a single vertex Bv. For every
neighbour a ∈ A of v, one of the pendant vertices of Gv

u will be denoted by uva,
and its neighbour within Gv

u will be denoted by wva.

The hyperedge gadgets used to replace the vertices of A are more complicated.
This gadget consists of 2(k − 1) copies of Gu linked together in the following way.
Let a ∈ A. We take 2(k − 1) vertices ℓa

i , ra
i , i = 1, 2, . . . , k − 1, and for every

neighbour v of a, we take two copies Gva
L and Gva

R of Gu. The pendant vertices
of Gva

L will be unified with Bv and ℓa
1, ℓa

2, . . . , ℓa
k−1, while the pendant vertices of

Gva
R will be unified with wva and ra

1 , ra
2 , . . . , ra

k−1. The neighbour of Bv in Gva
L will

be denoted by zva. Lastly, the matching ℓa
i ra

i , i = 1, 2, . . . , k − 1 is added. This
completes the construction of GK . See Figure 8.3 for an illustrative example.

The resulting graph GK is k-regular. To make it an instance of the List-H-
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8.3 Proof of Theorem 8.2

Cover problem, we prescribe that the vertices Bv, v ∈ B and ℓa
i , a ∈ A, i =

1, 2, . . . , k − 1 are all mapped onto x (this means, that for these vertices, their
lists of admissible target vertices are one-element and all the same, while for the
remaining vertices, their lists are full, as well as for all the edges).

The fact that x is simple implies the following observation: For every partial
covering projection from Gu to H which maps all the pendant vertices onto x,
their neighbours in Gu are mapped onto distinct vertices of H (this immediately
follows from property (d) of Proposition 8.6). Similarly, if any vertex of GK is
mapped onto x by a covering projection, then its neighbours are mapped onto
distinct vertices of H (the neighbourhood NH(x) of x in H). We will exploit
these observations in the following argumentation.

Suppose f : GK −→ H is a covering projection such that all vertices Bv, v ∈ B
and ℓa

i , a ∈ A, i = 1, 2, . . . , k − 1 are mapped onto x. Consider an a ∈ A, and let
f(ra

1) = y, whence y ∈ V (H) is a neighbour of x in H. Property (c) applied to
any Gva

R , for v being a neighbour of a in K, implies that f(ra
i ) = f(wva) = y for

all i = 2, . . . , k−1. Since each ℓa
i has a neighbour ra

i mapped onto y, none of their
neighbours in Gva

L is mapped onto y. Property (d) then implies that f(zva) = y.
Define a colouring ϕ of A by colours NH(x) as ϕ(a) = f(ra

1). Consider a vertex
v ∈ B. The neighbours of Bv in GK are zva, a ∈ NK(v). Since f(Bv) = x and x is
simple, the vertices zva, a ∈ NK(v) are mapped onto different neighbours of x by
f , and hence the colours ϕ(a), a ∈ NK(v) are all distinct. Thus ϕ is a k-colouring
of A of the required property.

Suppose for the opposite direction that A allows a k-colouring ϕ such that each
vertex v ∈ B sees all k colours on its neighbours, and identify the colours with
the names of the neighbours of x in H. Furthermore, set f in the following way:

f(Bv) = ℓa
i = x for all v ∈ B, a ∈ A, i = 1, 2, . . . , k − 1 (as required by the lists),

f(uva) = x for all v ∈ B and a ∈ NK(v), and
f(ra

i ) = f(wva) = f(zva) = ϕ(a) for all a ∈ A and v ∈ NK(a).

Finally, define f on the edges incident to ℓa
i (ra

i , respectively) so that for every i,
these edges are mapped onto different edges incident to x (to ϕ(a), respectively),
and, on the other hand, for every v ∈ NK(a), the pendant edges of Gva

L (of Gva
R ,

respectively) are mapped onto distinct edges incident to x (to ϕ(a), respectively).

The properties (a) and (b) of Proposition 8.6 imply that this mapping can be
extended to partial covering projections within each copy of Gu used in the con-
struction of GK . To see that they altogether provide a covering projection from
GK to H, note that for each v ∈ B, the edges incident with the vertex Bv are
mapped onto different edges because their other endpoints are ϕ(a), a ∈ NK(v),
and hence all different by the assumption on the colouring ϕ, and also each copy
Gv

u has its pendant edges mapped onto different edges incident to x, since the
pendant vertices uva, a ∈ NK(v) are all mapped onto x and their neighbours wva
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8 List covering of regular multigraphs

in Gv
u are mapped onto distinct vertices ϕ(a), a ∈ NK(v). This concludes the

proof of the case of bipartite H.

8.3.3 The non-bipartite case
Suppose the graph H is not k-edge-colourable (this includes the case when H
contains loops and/or semi-edges). Consider H ′ = H × K2. This H ′ may still
contain multiple edges (the product of a multiple ordinary edge with K2 is again
a multiple edge, but also the product of a loop with K2 is a double ordinary edge,
and the product of a multiple semi-edge with K2 results in a multiple ordinary
edge as well), but it is bipartite (and thus has neither semi-edges nor loops) and
therefore is k-edge-colourable. In the product with K2, every semi-simple vertex
of H results in two simple vertices of H ′. Hence, by the result of the preceding
subsection, List-H ′-Cover is NP-complete.

It is proved in [83] that for simple graphs, G covers H × K2 if and only if G is
bipartite and covers H. This proof readily extends to graphs that allow loops,
semi-edges and multiple edges. The proof for the list version of the problem may
get more complicated in general. However, the list version that we have proven
NP-complete in the preceding subsection is very special: the lists of all edges are
full, and so are the lists of all the vertices except for those which are prescribed
to be mapped onto the same simple vertex, say x′. If we take such an instance
of List-H ′-Cover, this x′ is a copy of a semi-simple vertex x ∈ V (H), and
all vertices of the input graph G that are prescribed to be mapped onto x′ are
from the same class of its bipartition. We just prescribe them to be mapped
onto x as an instance of List-H-Cover. It is easy to see that this mapping
can be extended to a covering projection to H if and only if G allows a covering
projection to H ′ in which all these prescribed vertices are mapped onto x′. This
concludes the proof of Theorem 8.2.

8.4 Sausages and rings
In this section we consider two special classes of cubic graphs. These graphs play
a special role in the classification in Theorem 8.12. The k-ring (where k ≥ 2) is
the cubic graph obtained from the cycle of length 2k by doubling every second
edge. We call a k-sausage every cubic graph that is obtained from a path on
k vertices by doubling every other edge and adding loops or semi-edges to the
end-vertices of the path to make the graph 3-regular. Note that while for every k,
the k-ring is defined uniquely, there are several types of k-sausages, as depicted
in Figure 8.4.

Proposition 8.7. For every k ≥ 2, let Sk be a k-sausage. Then Sk × K2 is
isomorphic to the k-ring.
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8.4 Sausages and rings

Figure 8.4: The two non-isomorphic 3-sausages (left), the four non-isomorphic
4-sausages (middle), and the 3-ring (right).

Figure 8.5: The product of a 4-sausage with K2 is isomorphic to the 4-ring.

Proof. The product H × K2 is a bipartite graph with no loops or semi-edges, in
which every ordinary edge in H gives rise to a pair of ordinary edges of the same
multiplicity, a loop, or a pair of semi-edges incident to the same vertex of H gives
rise to a double ordinary edge, and a single semi-edge in H gives rise to a simple
ordinary edge in H × K2. Thus Sk × K2 has a cyclic structure and the number
of double edges is equal to the number of vertices of Sk, see Figure 8.5.

In the following three theorems we show that List-k-ring-Cover problem is
NP-complete for simple graphs on the input for every k ≥ 3. (In other words,
for all rings, except for 2-ring, for which the problem is already proven to be
NP-complete even without lists by Theorem 8.2.)

Theorem 8.8. The k-ring-Cover problem is NP-complete for simple input
graphs for every k = 2α(2β + 3) such that α and β are non-negative integers.

Proof. We reduce from C(2β+3)-Hom for β being a non-negative integer which is
known to be NP-complete by the dichotomy theorem of Hell and Nešetřil [102].
We call k-ring occasionally H. Furthermore, the vertices of H, i.e. k-ring, will
have its vertices consecutively denoted by 1, 1′, . . . , k, k′ with precisely edges jj′

being double for j ∈ {1, . . . , k}.

The reader is advised to consult Figure 8.6 to better understand the gadgets and
the reduction.
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8 List covering of regular multigraphs

Let us describe the vertex gadget. Suppose we have a vertex v of degree deg(v).
Then let us take two disjoint copies of Cl where l = 2k × deg(v). Let us denote
them CV

1 and CV
2 and their vertices v1,1, . . . , v1,l. The construction of the gadget

proceeds in the following way:

• Add edges v1,2i−1v2,2i for every i ∈ {1, . . . , l/2}.

• Add edges v2,2i−1v1,2i for every i ∈ {1, . . . , l/2}.

• Delete edge v2,2kj−1v2,2kj for every j ∈ {1, . . . , deg(v)} and to each of the
endpoints of the deleted edge, add a pendant vertex.

We call these pendant vertices leafs of the vertex gadget and we speak about
pairs of leafs when we refer to the two pendant vertices created after the deletion
of the same edge. Further, since the gadget is bipartite, we can say that leafs
are either black or white depending on the part of the bipartition they belong to.
Observe that every pair of leafs in the above sense has one black and one white
vertex.

Before we describe the edge gadget, let us introduce enforcing gadget which is
simply the same as the vertex gadget for vertex of degree 1, i.e. it is created as
was described in the preceding with l = 2k.

In the following, we number the vertices of every cycle consecutively starting with
1. We can thus speak about e.g. the i-th even vertex. Also, we automatically
take the indices of cycles modulo 2k.

For the actual edge gadget, take k disjoint copies of cycles C2k. Let us denote
these cycles CE

1 , . . . , CE
k . We now insert enforcing gadgets in between the cycles

as follows. For all j being odd and j < k and for all even vertices of CE
j , we

identify one of the leafs of the enforcing gadget with the i-th even vertex of CE
j ,

and we identify the other leaf of the enforcing gadget with the i-th even vertex
of CE

j+1.

The similar connection is done in case of j even and j < k, except that the i-th
odd vertex of CE

j is connected by a copy of enforcing gadget to the i-th odd vertex
of CE

j+1.

Now, except for CE
1 and CE

k , all vertices are of degree 3. For every vertex of
degree 2 in CE

1 except for the first and the (1 + 2α+1)-th vertex, let us say the
i-th one, we place the enforcing gadget between the i-th vertex of CE

1 and the
(i + k)-th vertex of CE

k again by identifying each of the leafs with one of the
mentioned vertices. This completes the construction of the edge gadget. The
only vertices of degree 2 are now the first and the (1 + 2α+1)-th vertex in CE

1 and
the (1 + k)-th and the (1 + 2α+1 + k)-th vertex in CE

k .

Let us have an instance G of C(2β+3)-Hom. We shall construct a new graph
G′. For each vertex in G, we take a copy of the vertex gadget of corresponding
size and insert it into G′. For each edge uv in G, we obtain a new copy of the
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edge gadget. We connect it with the vertex gadget corresponding to u as follows.
We take one of the so-far unused pair of leafs coming from the vertex gadget
corresponding to u and identify the black leaf of the pair with the first vertex in
CE

1 of the edge gadget and the white leaf of the pair with the (1 + k)-th vertex
of CE

k . For the vertex gadget of v, we again take one of the so-far unused pair of
leafs coming from the vertex gadget of v and identify the black leaf of the pair
with the (1 + 2α+1)-th vertex in CE

1 of the edge gadget and the white leaf of the
pair with the (1 + 2α+1 + k)-th vertex of CE

k .

We shall now describe possible images of vertex and edge gadget under a covering
projection to k-ring.

We claim that under every covering projection to H, all black leafs of a given
vertex gadget will be mapped to the same vertex of k-ring and white vertices to
its prime version (or vice versa). The crucial observation is that v1,1, v2,2, v2,1, v1,2
form a 4-cycle in vertex gadget. By a simple analysis then, v1,1 and v2,1 must
be mapped to some ℓ of H and v1,2 and v2,2 to ℓ′ (or vice versa, but let us
further assume the first possibility). Furthermore this enforces the images of
vertices v1,3, v2,4, v2,3, v1,4 as well (and they form again a 4-cycle). A repeated use
of this propagation ensures that images of v2,2k−1v2,2k are (ℓ − 1) and (ℓ − 1)′,
respectively (and possibly modulo 2k, which will be assumed from now on). By
the construction, the pendant vertices have then images (ℓ − 1)′ and (ℓ − 1).
The argument then can be repeated further and further, until we arrive on the
conclusion that all black leafs have inevitably the same image (ℓ − 1)′ and the
white leafs (ℓ − 1).

Specially, for the enforcing gadget, we get that its leafs must be mapped to the
different endpoints of a specific double edge in k-ring. In other words, whenever
we have a vertex which is being identified with one of the leafs of the enforcing
gadget, then given its image i under a covering projection to the k-ring, the other
vertex identified with the other leaf of the enforcing gadget has to be mapped to
i′ in k-ring or vice versa.

We claim that under every covering projection, edge gadget will be mapped to
k-ring in the following way. Without loss of generality, the first vertex of CE

1 ,
let us call it a, will be mapped to 1. Clearly, as the edge gadget is connected
here to a vertex gadget through a, one of the neighbours of a in the edge gadget
has to be mapped to 1′ and the other to k′, or vice versa. In both cases these
neighbours are connected through enforcing gadget to CE

2 and thus this enforces
not only the images of vertices at distance 2 from a on CE

1 but also the images of
the vertices at distance two from a on CE

2 . Proceeding inductively, we arrive on
the conclusion that the vertices of CE

1 are either consecutively 1, 1′, 2, 2′, . . . , k, k′

or in the counter-clockwise fashion 1, k′, k, . . . , 1′. Let us, again without loss of
generality, describe what follows in the first situation. The other one is in fact just
a mirrored situation and the argumentation is thus almost the same. In the first
situation, the images of CE

2 are shifted clockwise by one, so the images of vertices
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of CE
2 are consecutively k′, 1, 1′, . . . , k. This propagates the shifting further to

CE
3 and inductively up to CE

k , also thank to the enforcing gadgets between the
layers.

Up to now, everything was enforced, all vertices of the edge gadget are mapped.
However, it remains to check two things.

1. Whether all the vertices identified with leafs of vertex gadgets are mapped
in the right way.

2. Whether the edges between CE
1 and CE

k and their endpoints do have the
right images.

Regarding (1), we assumed a is mapped to 1. Thus the other, white leaf from
the pair containing a has to be mapped to 1′. This is indeed all right considering
the shifting of images between the cycles. The same can be argued for the pair
of leafs corresponding to the second vertex gadget attached. The argumentation
here is based on the fact that the black leaf of the other vertex gadget is identified
with vertex at distance 2α+1 on CE

1 .

Case (2) depends on analogous argument, again based on shifting of the images
of CE

1 versus the images of CE
k .

Finally, let us observe that G′ is again bipartite and thus it remains valid to speak
about black and white leafs of vertex gadgets (or about vertices corresponding to
such leafs). Furthermore, we can say that G′ has black and white vertices.

Suppose that G′ covers the H. Clearly, as was described and without loss of
generality, all vertices corresponding originally to the black leafs of all vertex
gadgets in G must be mapped to the black vertices of H and white leafs to the
white vertices of H. We can further assume without loss of generality that black
vertices of vertex gadgets map to vertices 1+(j−1)(2α+1) where j ∈ {1, . . . , 2β−3}
of H.

Edge gadgets enforce that whenever there is an edge in G, then the images of the
respective black leafs of vertex gadgets connected to it are exactly at distance
2α+1 from each other. This implies that there is a homomorphism of G to C(2β+3)
and we can say that the image of v is the j-th vertex of C(2β+3) if black leafs of
vertex gadget of v map to 1 + (j − 1)(2α+1).

For the other direction, suppose there exists a homomorphism of G to C(2β+3).
If a vertex v of G is mapped to the j-th vertex of C(2β+3), we map the vertices
corresponding to the black leafs of the vertex gadget of v to the vertex 1 + (j −
1)(2α+1) of H. We already know that this ensures that there is only one possible
mapping of vertices of the vertex gadget of v to H. The same can be done and
said for all the other vertex gadgets of G′. From the analysis of possible mappings
edge gadgets, we know than we can complete the mapping now so that the result
is a covering projection of G′ to H.
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H
edge gadget

vertex gadget

enforcing gadget

Figure 8.6: An example of the construction for H being 5-ring.

We showed that there is a homomorphism of G to C(2β+3) if and only if G′ covers
H. This completes the reduction and thus the proof of the theorem.

Theorem 8.9. The List-k-ring-Cover problem is NP-complete for simple in-
put graphs for every k = 2α such that α ≥ 3 is an integer.

Proof. By a seminal result of Feder et al. [64], List-H ′-Hom is NP-complete
if H ′ is a bi-arc graph (Definition 2.1). By Corollary 3.1. therein, it follows
that all cycles of size at least five are bi-arc graphs. Thus, we shall reduce from
List-Ck-Hom.

The construction of (G′, L′) for a given (G, L) being an instance of List-Ck-
Hom is almost the same as in Theorem 8.8. We shall only describe differences
here. Suppose that Ck has its vertices named consecutively 1, 2, . . . , k. Again
as before, the k-ring will have its vertices denoted consecutively by 1, 1′, . . . , k, k′

with precisely edges jj′ being double for j ∈ {1, . . . , k}.

• Suppose we have a vertex v in G. Then for every ℓ ∈ L(v), we add ℓ to the
lists of all black leafs of its vertex gadget and ℓ′ to all lists of all white leafs.
All of the other vertices in G′ will have full lists, i.e. all vertices of k-ring.
Also the edges will have full lists.

• Vertex gadgets will be connected to the respective edge gadget in a slightly
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8 List covering of regular multigraphs

different way. For an edge uv of G, we shall identify the black leaf of a pair
of a vertex gadget for u with first vertex of CE

1 and the white leaf of the
same pair with the (1 + k)-th vertex of CE

k of the edge gadget for uv. We
shall identify the black leaf of a pair of a vertex gadget for v with third
vertex of CE

1 and the white leaf of the same pair with the (3 + k)-th vertex
of CE

k of the edge gadget for uv.

Clearly, under any possible list covering projection, all black leafs of a given vertex
gadget choose simultaneously one vertex ℓ from their lists and subsequently ℓ′ for
all its white leafs (or vice versa).

Now the same analysis can be done as in Theorem 8.8 to show that there exists
a list homomorphism of (G, L) to Ck if and only if there exists a list covering
projection of (G′, L′) to k-ring. This completes the proof.

Theorem 8.10. The 4-Ring-Cover problem is NP-complete for simple input
graphs.

Proof. The case of 4-rings needs a special ad hoc construction. However, the
ideas are very similar to the previous ones. In order to not repeat ourselves, we
shall describe a sketch of the reduction with the help of Figure 8.7 (referred to as
figure in the rest of the proof). This time, we shall reduce from the problem of
4-Colouring.

Suppose we have a graph G as an instance of 4-Colouring. We will construct
G′ as an instance of 4-Ring-Cover in the following way. First, we shall insert
into G′ vertex gadgets, the same ones as in the previous reductions on rings as
one can see in the figure.

We introduce two new gadgets that will form our edge gadgets here: 1-gadget
and 0-1-gadget. We shall also use the enforcing gadget we introduced in The-
orem 8.8. The figure shows examples of explicit constructions of such gadgets.
For simplicity, let us denote the vertices outside the respective boxes of gadgets
(which are technically in the gadgets) as terminal vertices or terminals.

Let us now discuss the effect of the newly introduced gadgets on its terminal
vertices.

• 1-gadget: If the left terminal vertices have i and i′ as images, the right
terminal vertices will have i + 1 and (i + 1)′ as its images (where numbers
are taken modulo 4).

• 0-1 gadget: This gadget has a similar effect. If the left terminals have i and
i′, the right terminals will have either i and i′, or i + 1 and (i + 1)′ as its
images.

We omit the case analysis showing that these gadgets and their terminals indeed
admit only the aforementioned images. Observe that enforcing gadgets are vital
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H

enforcing gadget

1-gadget

0-1-gadget

edge gadget for edge uv together with vertex gadgets for u and v

vertex u vertex v

new vertex of degree 2 new vertex of degree 2

vertex gadget for a vertex of degree 2

Figure 8.7: An example of the construction for H being 4-ring.
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8 List covering of regular multigraphs

here and they also significantly simplify that analysis.

Put all together into the edge gadget (depicted in the lower part of the figure),
the effect is the following:

1. Vertex gadget on the left has, without loss of generality, 1 and 1’ on its
terminal vertices.

2. Next, 1-gadget assures that its other terminal vertices will get 2 and 2’.

3. The next gadget is a vertex gadget. It copies the value 2 and 2’.

4. Now 0-1 gadget ensures that the other terminal vertices are either 2 and 2’,
or 3 and 3’.

5. This is repeated once again, resulting in terminal vertices of the final vertex
gadget for the vertex v not having 1 and 1’ as images.

It is important to note that the edge gadget is symmetric in the sense that we
could in the beginning set the image of the vertex gadget for v and the rest would
propagate in the similar manner, so that the terminal vertices of u do not have
the same “colour”.

The whole construction is again bipartite and the colours of G are encoded as the
pairs i, i′ of vertices of 4-ring, where i ∈ {1, 2, 3, 4}. From the construction of the
vertex gadget, we may assume that the white terminal vertices of vertex gadgets
have the non-primed vertices of 4-ring as its images.

From the preceding discussion, it is clear that if G′ covers 4-ring, then G is 4-
colourable.

On the other hand, suppose that G is 4-colourable. Then set the terminal vertices
of vertex gadgets of G′ according to the colouring. We already know from the
previous reductions that vertex gadget can be labelled so that the definition of
covering projection is not violated. Also, it is now clear that the vertices of “edge
gadgets” of G′ can be independently on each other labelled so that the G′ in the
end covers 4-ring. This completes the sketch of the reduction.

The following observation shows that hardness for k-rings implies the hardness
for k-sausages.

Corollary 8.11. For every k ≥ 2 and every k-sausage Sk, k-ring-Cover ∝
Sk-Cover and List-k-ring-Cover ∝ List-Sk-Cover.

Proof. A graph G covers H × K2 if and only if it is bipartite and covers H. Since
bipartiteness can be tested in polynomial time, testing if G covers the k-ring
polynomially reduces to testing if G covers Sk.

With the list version, one has to be a bit more explicit. Let Sk = (V, E), V (K2) =
{b, w} and let the k-ring be denoted by Rk, with V (Rk) = {(u, α) : u ∈ V, α ∈

158
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{b, w}}. After checking that the input graph G of the List-Rk-Cover problem
is bipartite, let V (G) = A ∪ B be the bipartition of G. In a feasible covering
projection, either the vertices of A are mapped onto the vertices of V × {w}
and the vertices of B onto V × {b}, or vice-versa. We try these two possibilities
separately. For trying the former one, reduce first the lists to L′

u = Lu ∩(V ×{w})
for u ∈ A and L′

u = Lu ∩ (V × {b}) for u ∈ B, and adjust the lists for edges
accordingly. Then regard G as an instance of List-Sk-Cover with the lists ˜︁Lu =
{x : (x, w) ∈ L′

u or (x, b) ∈ L′
u}, and lists for edges being adjusted accordingly. It

is not difficult to see that G allows a covering projection onto Rk that respects L′

if and only if it allows a covering projection onto Sk that respects ˜︁L. Check the
latter possibility in a similar way and conclude that G, L is an feasible instance
of List-Rk-Cover if and only if at least one of the G, ˜︁L instances is feasible for
the corresponding List-Sk-Cover problem.

8.5 Strong Dichotomy for cubic graphs
In this section we prove the Strong Dichotomy Conjecture for cubic graphs.

Theorem 8.12. Let H be a connected cubic graph. Then List-H-Cover is
polynomial-time solvable for general graphs when H has only one vertex and at
most one semi-edge, and it is NP-complete even for simple input graphs otherwise.

Proof. The proof is divided into several cases, depending on the structure of H.

Case 1: We have |V (H)| = 1. We distinguish two subcases.

Case 1A - The graph H has one semi-edge and one loop. The preimage of the
semi-edge should be a disjoint union of the semi-edges of the input graph G and
of a perfect matching on the vertices not incident to a semi-edge. Then the
remaining edges of G form a spanning collection of cycles (including loops) which
form the preimage of the loop. The existence of a spanning subgraph of G that
is a preimage of the semi-edge can be tested in polynomial time.

If lists are present as part of the input, the situation gets a little more tricky. We
start with a preprocessing phase. We check the below conditions:

(a) G has a vertex or an edge with an empty list.

(b) G has a vertex incident to two or more semi-edges,

(c) G has a semi-edge whose list does not contain the semi-edge of H,

(d) G has a vertex incident to a semi-edge and an edge, whose list does not
contain the loop of H,

(e) G has a vertex incident to two ordinary edges, whose lists do not contain
the loop of H,
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Figure 8.8: The non-bipartite 2-vertex graphs.

(f) G has a loop whose list does not contain the loop of H.

It is clear that if any of the above conditions is satisfied, then (G, L) is a no-
instance. Thus we reject and quit.

Now we shall construct an auxiliary graph G′. We start our construction with G
and perform the following steps.

1. If some vertex v is incident to a semi-edge, then delete v with all its edges.

2. If some edge e does not have the semi-edge of H in its list, remove e from
the graph.

3. If some edge e does not have the loop of H in the list, leave e, but remove
all edges incident to e.

Let G′ be the graph after the exhaustive application of steps 1, 2, and 3. It is
straightforward to verify that steps 1 and 2 ensure that the union of a perfect
matching in G′ and the semi-edges removed in step 1. can be a preimage of the
semi-edge of H. Furthermore, by step 3 we ensure that if some edge has to be
mapped to the semi-edge, then it will be so.

We can verify in polynomial time if G′ has a perfect matching. If not, we reject
and quit. So let M be a perfect matching in G′, and let M ′ be the union of M
and the set of semi-edges removed in step 1. Observe that the graph G − M is 2-
regular, in other words a disjoint union of cycles (including loops). Furthermore,
every edge of G − M has the loop of H in its list, this is guaranteed by step 3
and the preprocessing phase. Thus in this case we report a yes-instance.

Case 1B: The graph H has three semi-edges. In this case already H-Cover is
NP-complete, as it is equivalent to 3-edge-colourability of cubic graphs.

Case 2: We have |V (H)| = 2. If H has neither loops nor semi-edges, then H is
a bipartite graph formed by a triple edge between two vertices. Only bipartite
graphs can cover a bipartite one. Hence a covering projection corresponds to a
3-edge-colouring of the input graph. Thus H-Cover is polynomial-time solvable
(every cubic bipartite graph is 3-edge-colourable), but List-H-Cover is NP-
complete, because List 3-colouring is NP-complete for line graphs of cubic
bipartite graphs [74]. If H has a loop or a semi-edge, then it is one of the four
graphs in Figure 8.8, and for each of these, already the H-Cover problem is
NP-complete by the results in Chapter 6.
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Case 3: |V (H)| ≥ 3. Here we split into several subcases.

• Case 3A: The graph H is acyclic. If we shave all semi-edges off from H,
we get a tree with at least three vertices. At least one of them has degree
greater than 1, and such vertex is semi-simple in H. Thus List-H-Cover
is NP-complete by Theorem 8.2, as we remarked earlier.

• Case 3B: The graph H has a cycle of length greater than 2 which does not
span all of its vertices. Then H has a vertex outside of this cycle, and thus
H has a semi-simple vertex and List-H-Cover is NP-complete.

• Case 3C: The graph H has a cycle of length greater than 2 with a diag-
onal. Then again H has a semi-simple vertex and List-H-Cover is NP-
complete.

• Case 3D: The graph H has a cycle of length greater than 2, but none of
the previous cases apply. Then H is the k-ring for some k ≥ 2. If k = 2,
2-ring-Cover is NP-complete by Proposition 6.13. If k ̸= 2α for some
α ≥ 2, k-ring-Cover is NP-complete by Theorem 8.8. In the case of
k = 2α with α ≥ 3, the List-k-ring-Cover problem is NP-complete by
Theorem 8.9. The case of k = 4 is handled by Theorem 8.10.

• Case 3E - H has a cycle, but all cycles are of length one or two. If, in
addition, H has no semi-simple vertex, then H is a k-sausage for some
k ≥ 2. The NP-completeness of List-H-Cover follows from Case 3D via
Proposition 8.11.

8.6 Concluding remarks
We have studied the complexity of the List-H-Cover problem in the setting
of graphs with multiple edges, loops, and semi-edges for regular target graphs.
We have shown in Theorem 8.2 a general hardness result under the assump-
tion that the target graph contains at least one semi-simple vertex. It is worth-
while to note that in fact we have proved the NP-hardness for the more spe-
cific H-Precovering Extension problem, when all the lists are either one-
element, or full. Actually, we proved hardness for the even more specific Vertex
H-Precovering Extension version, when only vertices may come with pre-
scribed covering projections, but all edges have full lists.

On the contrary, the nature of the NP-hard cases that appear in the characteriza-
tion of the complexity of List-H-Cover of cubic graphs given by Theorem 8.12
is more varied. Some of them are NP-hard already for H-Cover, some of them
are NP-hard for H-Precovering Extension, but apart from the Vertex H-
Precovering Extension version in applications of Theorem 8.2, this time we
also utilize the Edge H-Precovering Extension version for the case of the
bipartite 2-vertex graph formed by a triple edge between two vertices. Finally,
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for the cases of sausages and rings of length power of two, nontrivial lists are
required to make our proof technique work.
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This chapter is based on:

• [32] Jan Bok, Nikola Jedličková, Barnaby Martin, Daniël Paulusma,
and Siani Smith: Acyclic, Star and Injective Colouring: A Complexity
Picture for H-Free Graphs. In 28th Annual European Symposium on
Algorithms, ESA 2020, volume 173 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 173:22:1–22:22, 2020.

• [31] Jan Bok, Nikola Jedličková, Barnaby Martin, Pascal Ochem, Dan-
iël Paulusma, and Siani Smith: Acyclic, Star and Injective Colouring:
A Complexity Picture for H-Free Graphs. Submitted, 2021. https:
//arxiv.org/abs/2008.09415

Note on the organisation of this chapter. The introductory section follows
the papers on which the chapter is based and discusses not only acyclic but also
star and injective colouring and the results we have obtained in [32] and then
in [31]. However, in Section 9.2, we shall focus further just on acyclic colouring
as this was the part of the papers on which the author of this thesis worked the
most.

9.1 Introduction
We study the complexity of three classical colouring problems. We do this by
focusing on hereditary graph classes, i.e., classes closed under vertex deletion,
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9 Acyclic colouring and its complexity for H-free graphs

or equivalently, classes characterized by a (possibly infinite) set F of forbidden
induced subgraphs. As evidenced by numerous complexity studies in the literat-
ure, even the case where |F| = 1 captures a rich family of graph classes suitably
interesting to develop general methodology. Hence, we usually first set F = {H}
and consider the class of H-free graphs, i.e., graphs that do not contain H as an
induced subgraph. We then investigate how the complexity of a problem restric-
ted to H-free graphs depends on the choice of H and try to obtain a complexity
dichotomy.

To give a well known and relevant example, the Colouring problem is to de-
cide, given a graph G and integer k ≥ 1, if G has a k-colouring, i.e., a map-
ping c : V (G) → {1, . . . , k} such that c(u) ̸= c(v) for every two adjacent ver-
tices u and v. Král’ et al. [120] proved that Colouring on H-free graphs is
polynomial-time solvable if H is an induced subgraph of P4 or P1 + P3 and
NP-complete otherwise. Here, Pn denotes the n-vertex path and G1 + G2 =
(V (G1) ∪ V (G2), E(G1) ∪ E(G2)) the disjoint union of two vertex-disjoint graphs
G1 and G2. If k is fixed (not part of the input), then we obtain the k-Colouring
problem. No complexity dichotomy is known for k-Colouring if k ≥ 3. In
particular, the complexities of 3-Colouring for Pt-free graphs for t ≥ 8 and
k-Colouring for sP3-free graphs for s ≥ 2 and k ≥ 4 are still open. Here,
we write sG for the disjoint union of s copies of G. We refer to the survey of
Golovach et al. [90] for further details and to [52, 118] for updated summaries.

For a colouring c of a graph G, a colour class consists of all vertices of G that
are mapped by c to a specific colour i. We consider the following special graph
colourings. A colouring of a graph G is acyclic if the union of any two colour
classes induces a forest. The (r + 1)-vertex star K1,r is the graph with vertices
u, v1, . . . , vr and edges uvi for every i ∈ {1, . . . , r}. An acyclic colouring is a star
colouring if the union of any two colour classes induces a star forest, that is, a
forest in which each connected component is a star. A star colouring is injective
(or an L(1, 1)-labelling or a distance-2 colouring) if the union of any two colour
classes induces an sP1 + tP2 for some integers s ≥ 0 and t ≥ 0. An alternative
definition is to say that all the neighbours of every vertex of G are uniquely
coloured. See an example in Figure 9.1 These definitions lead to the following
three decision problems:

Problem: Acyclic Colouring
Input: A graph G and an integer k ≥ 1.

Question: Does G have an acyclic k-colouring?

Problem: Star Colouring
Input: A graph G and an integer k ≥ 1.

Question: Does G have a star k-colouring?

Problem: Injective Colouring
Input: A graph G and an integer k ≥ 1.

Question: Does G have an injective k-colouring?
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Figure 9.1: The upper path is 3-coloured and the colouring satisfies the property
of being a star colouring but not an injective colouring. The 3-colouring of the
lower path is an injective colouring and hence also a star colouring.

If k is fixed, we write Acyclic k-Colouring, Star k-Colouring and In-
jective k-Colouring, respectively.

All three problems have been extensively studied. We note that in the literature
on the Injective Colouring problem it is often assumed that two adjacent
vertices may be coloured alike by an injective colouring (see, for example, [98,
106, 113]). However, here, we do not allow this; as reflected in their definitions
we only consider colourings that are proper. This enables us to compare the
results for the three different kinds of colourings with each other.

So far, systematic studies mainly focused on structural characterizations, exact
values, lower and upper bounds on the minimum number of colours in an acyclic
colouring or star colouring (i.e., the acyclic and star chromatic number); see,
e.g., [4, 34, 70, 71, 72, 115, 116, 163, 170, 172], to name just a few papers,
whereas injective colourings (and the injective chromatic number) were mainly
considered in the context of the distance constrained labelling framework (see
the survey [46] and Section 9.3 therein). The problems have also been studied
from a complexity perspective, but apart from a study on Acyclic Colouring
for graphs of bounded maximum degree [146], known results are scattered and
relatively sparse. We perform a systematic and comparative complexity study by
focusing on the following research question both for k part of the input and for
fixed k:

What are the computational complexities of Acyclic Colouring, Star Col-
ouring and Injective Colouring for H-free graphs?

9.1.1 Known results
Before discussing our results and techniques, we first briefly discuss some known
results.

Coleman and Cai [53] proved that for every k ≥ 3, Acyclic k-Colouring
is NP-complete for bipartite graphs. Afterwards, a number of hardness results
appeared for other hereditary graph classes. Alon and Zaks [5] showed that
Acyclic 3-Colouring is NP-complete for line graphs of maximum degree 4.
Kostochka [119] proved that Acyclic 3-Colouring is NP-complete for planar
graphs. This result was improved to planar bipartite graphs of maximum degree 4
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by Ochem [151]. Mondal et al. [146] proved that Acyclic 4-Colouring is NP-
complete for graphs of maximum degree 5 and for planar graphs of maximum
degree 7. Ochem [151] showed that Acyclic 4-Colouring is NP-complete for
planar bipartite graphs of maximum degree 8. We refer to the paper of Angelini
and Frati [6] for a further discussion on acyclic colourable planar graphs.

Albertson et al. [2] and Lei et al. [130] proved that Star 3-Colouring is NP-
complete for planar bipartite graphs and line graphs, respectively. Shalu and
Antony [158] showed that Star Colouring is NP-complete for co-bipartite
graphs. Bodlaender et al. [21], Sen and Huson [157] and Lloyd and Ramana-
than [135] proved that Injective Colouring is NP-complete for split graphs,
unit disk graphs and planar graphs, respectively. Mahdian [142] proved that for
every k ≥ 4, Injective k-Colouring is NP-complete for line graphs, whereas
Injective 4-Colouring is also known to be NP-complete for cubic graphs
(see [46]). Observe that Injective 3-Colouring is trivial for general graphs.

On the positive side, Lyons [139] proved that Acyclic Colouring and Star
Colouring are polynomial-time solvable for P4-free graphs; in particular, he
showed that every acyclic colouring of a P4-free graph is, in fact, a star colour-
ing. We note that Injective Colouring is trivial for P4-free graphs, as every
injective colouring must assign each vertex of a connected P4-free graph a unique
colour. Afterwards, the results of Lyons have been extended to P4-tidy graphs
and (q, q − 4)-graphs by Linhares-Sales et al. [133].

Cheng et al. [51] complemented the aforementioned result of Alon and Zaks [5]
by proving that Acyclic Colouring is polynomial-time solvable for claw-free
graphs of maximum degree at most 3. Calamoneri [46] observed that Injective
Colouring is polynomial-time solvable for comparability and co-comparability
graphs. Zhou et al. [171] proved that Injective Colouring is polynomial-
time solvable for graphs of bounded treewidth (which is best possible due to the
W[1]-hardness result of Fiala et al. [75]).

Finally, we refer to [36] for a complexity study of Acyclic Colouring, Star
Colouring and Injective Colouring, for graphs of bounded diameter.

9.1.2 Our complexity results and methodology
The girth of a graph G is the length of a shortest cycle of G (if G is a forest, then
its girth is ∞). To answer our research question we focus on two important graph
classes, namely the classes of graphs of high girth and line graphs of multigraphs,
which are interesting classes on their own. If a problem is NP-complete for both
classes, then it is NP-complete for H-free graphs whenever H has a cycle or a
claw. It then remains to analyze the case when H is a linear forest, i.e., a disjoint
union of paths; see [33, 42, 86, 120] for examples of this approach, which we
discuss in detail below.

The construction of graph families of high girth and large chromatic number is
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well studied in graph theory (see, e.g. [62]). To prove their complexity dichotomy
for Colouring on H-free graphs, Král’ et al. [120] first showed that for every
integer g ≥ 3, 3-Colouring is NP-complete for the class of graphs of girth at
least g. This approach can be readily extended to any integer k ≥ 3 [61, 137].
The basic idea is to replace edges in a graph by graphs of high girth and large
chromatic number, such that the resulting graph has sufficiently high girth and
is k-colourable if and only if the original graph is so (see also [91, 110]).

By a more intricate use of the above technique we are able to prove that for every
g ≥ 3 and every k ≥ 3, Acyclic k-Colouring is NP-complete for the class
of 2-degenerate bipartite graphs of girth at least g. This implies that Acyclic
k-Colouring is NP-complete for H-free graphs whenever H has a cycle. We
are also able to prove that for every g ≥ 3, Star 3-Colouring remains NP-
complete even for planar graphs of girth at least g and maximum degree 3. This
implies that Star 3-Colouring is NP-complete for H-free graphs whenever H
has a cycle. We prove the latter result for every k ≥ 4 by combining known
results, just as we use known results to prove that Injective k-Colouring
(k ≥ 4) is NP-complete for H-free graphs if H has a cycle.

A classical result of Holyer [109] is that 3-Colouring is NP-complete for line
graphs (and Leven and Galil [132] proved the same for k ≥ 4). As line graphs
are claw-free, Král’ et al. [120] used Holyer’s result to show that 3-Colouring is
NP-complete for H-free graphs whenever H has an induced claw. For Acyclic
k-Colouring, we can use Alon and Zaks’ result [5] for k = 3, which we extend
to work for k ≥ 4. For Star k-Colouring we extend the recent result of Lei
et al. [130] from k = 3 to k ≥ 3 (in both our results we consider line graphs of
multigraphs; these graphs are claw-free and hence suffice for our study on H-free
graphs). For Injective k-Colouring (k ≥ 4) we can use the aforementioned
result on line graphs of Mahdian [142].

The above hardness results leave us to consider the case where H is a linear forest.
In Section 9.2.1 we will use a result of Atminas et al. [11] to prove a general result
from which it follows that for fixed k, all three problems are polynomial-time
solvable for H-free graphs if H is a linear forest. Hence, we have full complexity
dichotomies for the three problems when k is fixed. However, these positive
results do not extend to the case where k is part of the input. That is, for each
of the three problems, we prove NP-completeness for graphs that are Pr-free for
some small value of r or have a small independence number, i.e., that are sP1-free
for some small integer s.

Our complexity results for H-free graphs are summarized in the following three
theorems; see Table 9.1 for a comparison. For two graphs F and G, we write
F ⊆i G or G ⊇i F to denote that F is an induced subgraph of G. The rest of
this chapter will be devoted to the proof of Theroem 9.1.
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polynomial time NP-complete
Colouring [120] H ⊆i P4 or P1 + P3 else
Acyclic Colouring H ⊆i P4 else except for

open cases H be-
ing linear forests
and H ̸⊇ 6P1

Star Colouring H ⊆i P4 else except for 1
open case: H =
2P2

Injective Colouring H ⊊i 2P1 + P4 else except for 1
open case: H =
2P1 + P4

k-Colouring (see [52, 90, 118]) depends on k infinitely many
open cases for all
k ≥ 3

Acyclic k-Colouring (k ≥ 3) H is a linear forest else
Star k-Colouring (k ≥ 3) H is a linear forest else
Injective k-Colouring (k ≥ 4) H is a linear forest else

Table 9.1: The state-of-the-art for the three problems in this chapter and the
original Colouring problem; both when k is fixed and part of the input.

Theorem 9.1. Let H be a graph. For the class of H-free graphs, it holds that:

(i) Acyclic Colouring is polynomial-time solvable if H ⊆i P4 and NP-
complete if H is not a linear forest or H ⊇i 6P1;

(ii) for every k ≥ 3, Acyclic k-Colouring is polynomial-time solvable if H
is a linear forest and NP-complete otherwise.

Theorem 9.2. [31] Let H be a graph. For the class of H-free graphs, it holds
that:

(i) Star Colouring is polynomial-time solvable if H ⊆i P4 and NP-complete
if H ̸⊆i P4 and H ̸= 2P2;

(ii) for every k ≥ 3, Star k-Colouring is polynomial-time solvable if H is a
linear forest and NP-complete otherwise.

Theorem 9.3. [31] Let H be a graph. For the class of H-free graphs, it holds
that:

(i) Injective Colouring is polynomial-time solvable if H ⊊i 2P1 + P4 and
NP-complete if H ̸⊆i 2P1 + P4;

(ii) for every k ≥ 4, Injective k-Colouring is polynomial-time solvable if
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H is a linear forest and NP-complete otherwise.

9.2 Acyclic colouring

9.2.1 A general polynomial result
A biclique or complete bipartite graph is a bipartite graph on vertex set S ∪ T ,
such that S and T are independent sets and there is an edge between every vertex
of S and every vertex of T ; if |S| = s and |T | = t, we denote this graph by Ks,t,
and if s = t, the biclique is balanced and of order s. We say that a colouring c
of a graph G satisfies the balanced biclique condition (BB-condition) if c uses at
least k + 1 colours to colour G, where k is the order of a largest biclique that is
contained in G as a (not necessarily induced) subgraph.

Let π be some colouring property; e.g., π could mean being acyclic, star or
injective. Then π can be expressed in MSO2 (monadic second-order logic with
edge sets) if for every k ≥ 1, the graph property of having a k-colouring with
property π can be expressed in MSO2 (where k is fixed). The general problem
Colouring(π) is to decide, on a graph G and integer k ≥ 1, if G has a k-
colouring with property π. If k is fixed, we write k-Colouring(π). We now
prove the following result.

Theorem 9.4. Let H be a linear forest, and let π be a colouring property that
can be expressed in MSO2, such that every colouring with property π satisfies the
BB-condition. Then, for every integer k ≥ 1, k-Colouring(π) is linear-time
solvable for H-free graphs.

Proof. Atminas, Lozin, and Razgon [11] proved that that for every pair of integers
ℓ and k, there exists a constant b(ℓ, k) such that every graph of treewidth at least
b(ℓ, k) contains an induced Pℓ or a (not necessarily induced) biclique Kk,k. Let G
be an H-free graph, and let ℓ be the smallest integer such that H ⊆i Pℓ; observe
that ℓ is a constant. Hence, we can use Bodlaender’s algorithm [20] to test in
linear time if G has treewidth at most b(ℓ, k) − 1.

First suppose that the treewidth of G is at most b(ℓ, k)−1. As π can be expressed
in MSO2, the result of Courcelle [56] allows us to test in linear time whether G
has a k-colouring with property π. Now suppose that the treewidth of G is at
least b(ℓ, k). As G is H-free, G is Pℓ-free. Then, by the result of Atminas, Lozin
and Razgon [11], we find that G contains Kk,k as a subgraph. As π satisfies the
BB-condition, G has no k-colouring with property π.

We now apply Theorem 9.4 to obtain the polynomial cases for fixed k in The-
orem 9.1.

171



9 Acyclic colouring and its complexity for H-free graphs

Corollary 9.5. Let H be a linear forest. For every k ≥ 1, Acyclic k-Colour-
ing (and Star k-Colouring and Injective k-Colouring) are polynomial-
time solvable for H-free graphs.

Proof. All three kinds of colourings use at least s colours to colour Ks,s (as the
vertices from one bipartition class of Ks,s must receive unique colours). Hence,
every acyclic and star and injective colouring of every graph satisfies the BB-
condition. Moreover, it is readily seen that the colouring properties of being
acyclic, star or injective can all be expressed in MSO2. Hence, we may apply
Theorem 9.4.

9.2.2 NP-hardness results and dichotomies
In this subsection, we prove Theorem 9.1. For a graph G and a colouring c, the
pair (G, c) has a bichromatic cycle C if C is a cycle of G with |c(V (C)| = 2, that
is, the vertices of C are coloured by two alternating colours (so C is even). The
notion of a bichromatic path is defined in a similar manner.

Lemma 9.6. For every k ≥ 3 and every g ≥ 3, Acyclic k-Colouring is
NP-complete for 2-degenerate bipartite graphs of girth at least g.

Proof. We reduce from Acyclic k-Colouring, which is known to be NP-
complete for bipartite graphs for every k ≥ 3 [53]. Recall that the arboricity
of a graph is the minimum number of forests needed to partition its edge set. By
counting the edges, a graph with arboricity at most t is (2t − 1)-degenerate and
thus 2t-colourable. We start by taking a graph F that has no 2k(k − 1)-colouring
and that is of girth at least g. By a seminal result of Erdős [62], such a graph
F exists (and its size is constant, as it only depends on g and k which are fixed
integers). Notice that F does not admit a vertex-partition into k subgraphs with
arboricity at most k − 1, since otherwise F would be 2k(k − 1)-colourable.

Now we consider the graph S obtained by subdividing every edge of F exactly
once. The graph S is 2-degenerate and bipartite with the old vertices from F
in one part and the new vertices of degree 2 in the other part. Moreover, S has
girth at least g, as F has girth at least g.

We claim that S has no acyclic k-colouring. For contradiction, assume that S has
an acyclic k-colouring. Assign the colour of every old vertex to the corresponding
vertex of F and assign the colour of every new vertex to the corresponding edge
of F . For every colour i, we consider the subgraph Fi of F induced by the vertices
coloured i. For every j ̸= i, the subgraph of S induced by the colours i and j is
a forest. This implies that the subgraph of Fi induces by the edges coloured j is
a forest. So the arboricity of Fi is at most k − 1, that is, the number of colours
distinct from i. By previous discussion, the chromatic number of Fi is at most
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2(k − 1), so that F is 2k(k − 1)-colourable. This contradiction shows that S has
no acyclic k-colouring.

We repeatedly remove new vertices from S until we obtain a graph S ′ that is
acyclically k-colourable. Note that S ′ has girth at least g and is 2-degenerate,
as S has girth at least g and is 2-degenerate. Let x2 be the last vertex that we
removed and let x1 and x3 be the neighbours of x2 in S. By construction, S ′ is
acyclically k-colourable and every acyclic k-colouring c of S ′ is such that:

• c(x1) = c(x3), since otherwise setting c(x2) ̸∈ {c(x1), c(x3)} would extend
c to an acyclic k-colouring of the larger graph, which is not possible by
construction. Without loss of generality, c(x1) = c(x3) = 1.

• For every colour i ̸= 1, S ′ contains a bichromatic path coloured 1 and i
between x1 and x3, since otherwise setting c(x2) = i would extend c to an
acyclic k-colouring of the larger graph again.

We are ready to describe the reduction. Let G be a bipartite instance of Acyclic
k-Colouring. We construct an equivalent instance G′ with girth at least g as
follows. For every vertex z of G, we fix an arbitrary order on the neighbours of
z. We replace z of G by d vertices z1, z2, . . . , zd, where d is the degree of z. Then
for 1 ≤ i ≤ d − 1, we take a copy of S ′ and we identify the vertex x1 of S ′ with
zi and the vertex x3 of S ′ with zi+1. Now for every edge uv of G, say v is the ith

neighbour of u and u is the jth neighbour of v, we add the edge uivj in G′. See
also Figure 9.2.

Given an acyclic k-colouring of G, we assign the colour of z to z1, . . . , zd and
extend the colouring to the copies of F ′, which gives an acyclic colouring of
G′. Given an acyclic k-colouring of G′, the copies of F ′ force the same colour
on z1, . . . , zd and we assign this common colour to z, which gives an acyclic k-
colouring of G.

Finally, notice that since G and S ′ are bipartite, G′ is bipartite. As S ′ is 2-
degenerate and has girth at least g, we find that G′ is 2-degenerate and has girth
at least g.

The line graph of a graph G has vertex set E(G) and an edge between two vertices
e and f if and only if e and f share an end-vertex of G. We now modify the
construction of [5] for line graphs from k = 3 to k ≥ 3.

Lemma 9.7. For every k ≥ 3, Acyclic k-Colouring is NP-complete for line
graphs of multigraphs.

Proof. For an integer k ≥ 1, a k-edge colouring of a graph G = (V, E) is a mapping
c : E → {1, . . . , k} such that c(e) ̸= c(f) whenever the edges e and f share an
end-vertex. A colour class consists of all edges of G that are mapped by c to a
specific colour i. For a fixed integer k ≥ 1, the Acyclic k-Edge Colouring
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u

v w

u1 u2 u3

v1 v2 v3

w1

w2

S′ S′
S′

S′

S′

u4

v4

S′
S′

Figure 9.2: An example of part of a graph G (top) and the corresponding part
in G′ (bottom) from Lemma 9.6. In the part of G′ corresponding to vertex u,
vertex u1 is identified with x1 of the left copy of S ′; vertex u2 with x3 of the left
copy of S ′ and x1 of the middle copy of S ′; vertex u3 with x3 of the middle copy
of S ′ and x1 of the right copy of S ′; and u4 with x3 of the right copy of S ′.

problem is to decide if a given graph has an acyclic k-edge colouring. Alon and
Zaks proved that Acyclic 3-Edge Colouring is NP-complete. We note that
a graph has an acyclic k-edge colouring if and only if its line graph has an acyclic
k-colouring. Hence, it remains to generalize the construction of Alon and Zaks [5]
from k = 3 to k ≥ 3. Our main tool is the gadget graph Fk, depicted in Figure 9.3,
about which we prove the following two claims.

(i) The edges of Fk can be coloured acyclically using k colours, with no bichro-
matic path between v1 and v14.

(ii) Every acyclic k-edge colouring of Fk using k colours assigns e1 and e2 the
same colour.

We first prove (ii). We assume, without loss of generality, that v1v2 is coloured
by 1, v2v4 by 2 and the edges between v2 and v3 by colours 3, . . . , k. The edge
v3v5 has to be coloured by 1, otherwise we have a bichromatic cycle on v2v3v5v4.
This necessarily implies that

• the edges between v4 and v5 are coloured by 3, . . . , k,

• the edge v5v7 is coloured by 2,

• the edge v4v6 is coloured by 1,

• the edges between v6 and v7 are coloured by 3, . . . , k, and
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v1 v2

v3 v5

v4 v6

v7 v8

v9

v10

v11

v12

v13 v14
e1 e2

(k − 2)

(k − 2)

(k − 2)
(k − 2)

(k − 2)

Figure 9.3: The gadget multigraph Fk. The labels on edges are multiplicities.

• the edge v7v8 is coloured by 1.

Now assume that the edge v8v9 is coloured by a ∈ {2, . . . , k} and the edges
between v8 and v10 by colours from the set A, where A = {2, . . . , k}\a. The edge
v10v11 is either coloured a or 1. However, if it is coloured 1, v9v11 is assigned a col-
our b ∈ A and necessarily we have either a bichromatic cycle on v8v9v11v13v12v10,
coloured by b and a, or a bichromatic cycle on v10v11v13v12, coloured by a and 1.
Thus v10v11 is coloured by a. To prevent a bichromatic cycle on v8v9v11v10, the
edge v9v11 is assigned colour 1. The rest of the colouring is now determined as
v10v12 has to be coloured by 1, the edges between v11 and v13 by A, v12v13 by a,
and v13v14 by 1. We then have a k-colouring with no bichromatic cycles of size
at least 3 in Fk for every possible choice of a. This proves that v1v2 and v13v14
are coloured alike under every acyclic k-edge colouring.

We prove (i) by choosing a different from 2. Then there is no bichromatic path
between v1 and v14.

We now reduce from k-Edge-Colouring to Acyclic k-Edge Colouring as
follows. Given an instance G of k-edge Colouring we construct an instance
G′ of Acyclic k-Edge Colouring by replacing each edge uv in G by a copy
of Fk where u is identified with v1 and v is identified with v14.

If G′ has an acyclic k-edge colouring c′ then we obtain a k-edge colouring c of G
by setting c(uv) = c′(e1) where e1 belongs to the gadget Fk corresponding to the
edge uv. If G has a k-edge colouring c then we obtain an acyclic k-edge colouring
c′ of G′ by setting c′(e1) = c(uv) where e1 belongs to the gadget corresponding to
the edge uv. The remainder of each gadget Fk can then be coloured as described
above.

We now focus on linear forests by proving that for 6P1-free graphs, Acyclic
Colouring is NP-complete. This will allow us to prove Theorem 9.1. We first
need to introduce some terminology and prove a lemma on Colouring. A k-
colouring of G can be seen as a partition of V (G) into k independent sets. Hence,
a (k-)colouring of G corresponds to a (k-)clique-covering of G, which is a partition
of V (G) = V (G) into k cliques. The clique covering number χ(G) of G is the
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smallest number of cliques in a clique-covering of G. Note that χ(G) = χ(G).

Lemma 9.8. Colouring is NP-complete for graphs with χ ≤ 3.

Proof. The List Colouring problem takes as input a graph G and a list assign-
ment L that assigns each vertex u ∈ V (G) a list L(u) ⊆ {1, 2, . . .}. The question is
whether G admits a colouring c with c(u) ∈ L(u) for every u ∈ V (G). Jansen [111]
proved that List Colouring is NP-complete for co-bipartite graphs. This is
the problem we reduce from.

Let G be a graph with a list assignment L and assume that V (G) can be split into
two (not necessarily disjoint) cliques K and K ′. We set A1 = K and A2 = K \K ′.
As both A1 and A2 are cliques, we have that χ(G) ≤ 2. We may assume without
loss of generality that the union of all the lists L(u) is {1, . . . , k} for some integer
k. We now extend G by adding a clique A3 of k new vertices v1, . . . , vk and
by adding an edge between a vertex xℓ and a vertex u ∈ V (G) if and only if
ℓ /∈ L(u). This yields a new graph G′ with χ(G′) ≤ 3. It is readily seen that G
has a colouring c with c(u) ∈ L(u) for every u ∈ V (G) if and only if G′ has a
k-colouring.

We now use Lemma 9.8 to prove the hardness result for 6P1-free graphs.

Lemma 9.9. Acyclic Colouring is NP-complete for 6P1-free graphs.

Proof. We reduce from Colouring. Let (G, k) be an instance of this problem.
By Lemma 9.8 we may assume that V (G) can be partitioned into three cliques
A1, A2, and A3. Let E∗ = {e1, . . . , eq} be the set of edges in G whose end-vertices
belong to different cliques of {A1, A2, A3}.

Let K = kq + k. We construct an instance G′ of Acyclic Colouring from
G such that G is k-colourable if and only if G′ has an acyclic K-colouring. Our
graph G′ contains 5 cliques: A1, A2, A3, and two cliques D and S on kq vertices.
Every vertex of D is adjacent to every vertex in A1, A2, and A3. The vertices of
S are called sj

i with 1 ≤ i ≤ k and 1 ≤ j ≤ q. Every vertex sj
i in S is adjacent to

the two endpoints of the original edge ej in E∗.

First suppose that G has a k-colouring. We colour A1, A2, and A3 in G′ according
to the k-colouring of G. We use kq other colours for the cliques D and S. Let us
show that this proper K-colouring of G′ is acyclic. The coloring is already acyclic
on G′ \ S since this induced subgraph of G is chordal. So a potential bichromatic
cycle of G′ must contain a vertex sj

i of S. However, sj
i has kq − 1 neighbours in

the clique S and two neighbours in distinct cliques among A1, A2, A3, that are
the endpoints of the original edge ej in E∗. By the properties of our colouring,
all the neighbours of sj

i have distinct colours. This shows that sj
i is not contained

in a bichromatic cycle.
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Now suppose that G′ has an acyclic K-colouring. Let d1, . . . , dkq be the colours
that appear on the vertices of D. Then at most k other colours c1, . . . , ck are used
to properly colour the cliques A1, A2, A3. For contradiction, suppose that there
exist two vertices x and y with the same colour, say c1, that are the endpoints of
an original edge in E∗, say e1. Notice that x and y are both adjacent to all the
vertices of D and to the k vertices s1

i . None of the k vertices s1
i can get colour

c1. Moreover, one of these k vertices, say s1
1, must get a colour not in c2, . . . , ck.

We assume without loss of generality that s1
1 is coloured d1. Then G′ contains a

bichromatic 4-cycle coloured with colours c1 and d1 consisting of the vertices x,
s1

1, y, and the vertex coloured d1 in D. This contradiction shows that the colours
c1, . . . , ck on A1, A2, and A3 give a k-colouring of G.

We combine the above results with a result of Lyons [139] to prove Theorem 9.1.

Theorem 9.1 (restated). Let H be a graph. For the class of H-free graphs, it
holds that:

(i) Acyclic Colouring is polynomial-time solvable if H ⊆i P4 and NP-
complete if H is not a linear forest or H ⊇i 6P1;

(ii) for every k ≥ 3, Acyclic k-Colouring is polynomial-time solvable if H
is a linear forest and NP-complete otherwise.

Proof. We first prove (ii). First suppose that H contains an induced cycle Cp.
Then we use Lemma 9.6. Now assume H has no cycle so H is a forest. If H has
a vertex of degree at least 3, then H has an induced K1,3. As every line graph of
a multigraph is K1,3-free, we can use Lemma 9.7. Otherwise H is a linear forest
and we use Corollary 9.5.

We now prove (i). Due to (ii), we may assume that H is a linear forest. If H ⊆i P4,
then we use the result of Lyons [139] that states that Acyclic Colouring is
polynomial-time solvable for P4-free graphs. On the other hand, if H ⊇i 6P1, we
use Lemma 9.9. This concludes the proof.

9.2.3 Randomised reduction for co-bipartite graphs
In our next result, k is part of the input. Recall that a graph is co-bipartite if it is
the complement of a bipartite graph. As bipartite graphs are C3-free, co-bipartite
graphs are 3P1-free. We use a result by Alon et al. [3]. However, the problem
from which we reduce is proven there to be NP-hard not under deterministic
but under randomised reduction. (This means that even in the case P is not
equal to NP, the problem can be polynomial. The polynomial algorithm for the
problem is ruled out if BPP is not equal to P.) To provide NP-hardness proof
under deterministic reduction is an open problem. Its resolution would reduce
the number of open cases for Acyclic Colouring to just one — 2P2.
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9 Acyclic colouring and its complexity for H-free graphs

Lemma 9.10. Acyclic Colouring is NP-hard (under randomised reduction)
for co-bipartite graphs.

Proof. Alon et al. [3, Theorem 3.5] proved that deciding if a balanced bipart-
ite graph on 2n vertices has a connected matching of size n is NP-hard under
randomised reduction. A matching is called connected if no two edges of the
matching induce 2K2 in the given graph. We shall reduce from this problem to
prove our theorem.

To this end, we claim that a balanced bipartite graph G with parts A and B
such that |A| = |B| = n has a connected matching of size n if and only if its
complement has an acyclic colouring with n colours.

Suppose that there is an acyclic colouring c of G with n colours. Clearly, such
colouring uses n colours on A and n colours on B. Vertices coloured with the
same colour do not have an edge between them in G and thus are connected by
an edge in G. Let us take the set of edges formed by each of the n colour classes.
By the property of colouring, this is a matching in G and it is of size n. To see
that it is also connected, suppose for a contradiction that there are two edges of
the matching, say a1b1 and a2b2, forming an induced 2K2 in G. Without loss of
generality, c(a1) = c(b1) = 1 and c(a2) = c(b2) = 2. Now the induced 2K2 in G
corresponds to a 4-cycle in G coloured with two colours, a contradiction with c
being an acyclic colouring.

In the opposite direction, let us have a connected matching of size n in G. Colour
the n vertices in A by 1, . . . , n. Let us colour the vertices of B with respect to
the connected matching so that each vertex of B gets the colour of the vertex
in A it is matched to. Indeed, this is a colouring of G by n colours. It remains
to prove that it is acyclic. Any cycle in G having more than five vertices has
by the definition of our colouring at least three colours. Therefore, a possible
bichromatic cycle in G must be of size 4. The only possibility for such 4-cycle
is that it is formed by two pairs of vertices, each one forming an edge of the
connected matching in G. However, this implies that these two matching edges
induce 2K2 in G, a contradiction with the connectedness of the original matching.
This finishes the proof our claim.

9.3 Conclusion and open problems
The complexity study led to an almost complete complexity classifications (The-
orem 9.1). We further identified a number of open questions for future research.

In Lemma 9.6 we prove that for every k ≥ 3 and every g ≥ 3, Acyclic k-
Colouring is NP-complete for graphs of girth at least g. It would be nice to
prove an analogous result for the injective colouring. We recall that Injective 3-
Colouring is polynomial-time solvable for general graphs. Moreover, for every
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k ≥ 4, Injective k-Colouring is NP-complete for bipartite graphs and thus
for graphs of girth at least 4. Hence, we pose the following open problem.

Problem 9.11. For every g ≥ 5, determine the complexity of Injective Col-
ouring and Injective k-Colouring (k ≥ 4) for graphs of girth at least g.

This problem has eluded us and remains open and is, we believe, challenging.
We have made progress for the corresponding high-girth problem for Star 3-
Colouring in [31]. However, we leave the high-girth problem for Star k-
Colouring open for k ≥ 4, as follows. We believe it represents an interesting
technical challenge. At the moment, we only know that for k ≥ 4, Star k-
Colouring is NP-complete for bipartite graphs [2] and thus for graphs of girth
at least 4.

Problem 9.12. For every g ≥ 5, determine the complexity of Star k-
Colouring (k ≥ 4) for graphs of girth at least g.

Naturally we also aim to settle the remaining open cases for our three problems
in Table 9.1. In particular, the cases left for the problem Acyclic Colouring.
Especially troublesome case is the case of H = 2P2 which is open for both acyclic
and star colouring.

Problem 9.13. Determine the complexity of Acyclic Colouring and Star
Colouring for 2P2-free graphs.

Recall that Injective Colouring and Colouring are NP-complete for 2P2-
free graphs. However, none of the hardness constructions for these problems
carry over to Acyclic Colouring and Star Colouring. In this context,
the next open problem from Lyons [138] for a subclass of 2P2-free graphs is also
interesting. A graph G = (V, E) is split if V = I ∪ K, where I is an independent
set, K is a clique and I ∩K = ∅. The class of split graphs coincides with the class
of (2P2, C4, C5)-free graphs [99] and thus Acyclic Colouring is equivalent to
Colouring for split graphs, and hence it is polynomial-time solvable.
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Chapter 10

General conclusion and related work

In this final chapter, we will not try again to summarise the work done in the
thesis but rather show further open problems we have not discussed and draw
attention to interesting recent developments regarding the work presented in this
thesis. Mainly, we shall focus on two things: (1) papers that cited our work and
(2) the follow-up papers co-authored by the author of this thesis which are not
included in this thesis.

Part I
For a better orientation, we shall shortly speak about the genesis of our results
and how the timeline went. Initially, paper [23] contained dichotomies on reflexive
and irreflexive signed trees. Immediately after that, work began to provide the
full dichotomy for signed trees. We succeeded in [24] (Chapter 3). The conclusion
section of [23] also suggested that a possible interesting case to classify could be
path- and cycle-separable graphs. This later transpired into the results of [22]
(Chapter 4).

The papers on trees and separable graphs attracted attention of Kim and Sig-
gers, who attempted to provide a dichotomy for the special case of reflexive signed
graphs: weakly balanced reflexive signed graphs. They conjectured a possible di-
chotomy (Conjecture 4.1) and proved a general result on weakly balanced reflexive
graphs saying that if there is a special min ordering of such graphs, it implies
the existence of the so-called semi-conservative weak near-unanimity polymorph-
ism for the switching graph. The existence of such a polymorphism implies a
polynomial-time algorithm by the dichotomy for CSPs.

Only very recently, we were able to prove the following result for weakly balanced
irreflexive graphs. (Recall that the result is stated for bipartite graphs only. Non-
bipartite irreflexive signed graphs are not relevant since the list homomorphism
problem for them is trivially NP-complete by [102]; the fact that we observed in
the beginning of Section 4.2.)

Theorem 10.1. [25] A weakly balanced bipartite signed graph ˆ︂H has a special
min ordering if and only if it has no chain and no invertible pair. If ˆ︂H has a
special min ordering, then the list homomorphism problem for ˆ︂H can be solved
in polynomial time. Otherwise, ˆ︂H has a chain or an invertible pair, and the list
homomorphism problem for ˆ︂H is NP-complete.
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Furthermore, for the reflexive case, there is a similar result in [25] (with the
polynomial part provided by the result above from [117]).

Theorem 10.2. [25, 117] A weakly balanced reflexive signed graph ˆ︂H has a special
min ordering if and only if it has no chain and no invertible pair. If ˆ︂H has a
special min ordering, then the list homomorphism problem for ˆ︂H can be solved
in polynomial time. Otherwise, ˆ︂H has a chain or an invertible pair, and the list
homomorphism problem for ˆ︂H is NP-complete.

Observe that this, in some sense, generalises the results we obtained in Chapter 4.
However, the added value of the chapter on separable graphs is that its results
provide a concrete and constructive combinatorial characterisation of polynomial
and NP-complete cases for path- and cycle-separable signed graphs. We also
construct explicit min orderings for the polynomial cases. Also, some of the
cycle-separable graphs are not necessarily weakly balanced. Therefore, this work
goes beyond the case of weak balancedness.

Of course, the far-reaching goal is still the general dichotomy. For now, the next
steps we are taking are (1) dichotomy for mixed weakly balanced signed graphs
and (2) more general classes of signed graphs with unicoloured edges forming
exactly a spanning subgraph, for example, tree-separable graphs.

Part II
Our recent work continues in the spirit of [124]. In [30], we present a com-
plete characterisation of the computational complexity of covering coloured mixed
(multi)graphs with semi-edges for the case that every equivalence class in the de-
gree partition of the target graph has at most two vertices. We prove that a
strong polynomial/NP-complete dichotomy holds: for each fixed target graph H
of that type, the H-Cover problem is either polynomial-time solvable for arbit-
rary inputs or NP-complete even for simple graphs on input.

Furthermore, Bulteau et al. [45] recently also revived the study of the complexity
of graph coverings and provided a thorough study of the problem of finding a
locally constrained graph homomorphism (either locally bijective, surjective, or
injective) from the point of view of parameterized complexity. To this end, they
introduced a unifying ILP (integer linear programming) model and applied it
also to Role Assignment. Seeing these ideas applied to (multi)graphs with
semi-edges could be interesting.

Part III
The main open problems left are summarised in Section 9.3.

The problem of complexity of acyclic (and star and injective) colouring for H-free
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Figure 10.1: The chair graph.

graphs gained already some attention since the publishing of [32] — namely in [15,
35, 37, 159]. Let us further focus on the follow-up progress on acyclic colouring.
In [37], Brause et al. show that Acyclic-3-Colouring is polynomial-time
solvable for chair-free graphs of bounded diameter. (The chair graph is depicted
in Figure 10.1.) On the other hand, in [35], Brause et al. show that for graph of
diameter at most d, Acyclic-3-Colouring is polynomial-time solvable if d ≤ 3
but NP-complete if d ≥ 8. Determining the situation of d being at most 4, 5, 6,
or 7 is thus another open problem in the area.
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