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Abstract: Speed-robust scheduling is a two-stage scheduling problem with a
makespan objective. We are given processing times of n jobs, number of ma-
chines m and number of bags b. We have to group the jobs into bags that are to
be scheduled on machines of currently unknown speed. The goal is to minimize
the worst-case ratio of our makespan and makespan of an adversary who does not
have to create bags and assigns jobs directly to machines. So far, the problem
has been mostly studied for b = m.

We generalize previously known results for infinitesimal jobs (called sand) and
prove that the best achievable competitive ratio is mb

mb−(m−1)b . We present an
algorithm for the case of identical jobs (called bricks) with competitive ratio at
most 1.6 in the case b = m, improving the best previously known value of 1.8.

We introduce a new category called p-pebbles, those are jobs with processing time
at most p times the average load of a machine. Pebbles are half way between sand
and the general case (called rocks). We present an algorithm for pebbles that has
better robustness factor than the best known algorithm for rocks for small values
of p (for p less than 2− e

e−1 in the case b = m).
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Abstrakt: Rychlostně robustńı rozvrhováńı je dvoufázový rozvrhovaćı problém.
Na vstupu je dána doba běhu pro každý z n úkol̊u, počet stroj̊u m a počet baĺıčk̊u
b. Naš́ım úkolem je rozdělit úkoly do baĺıčk̊u, které budou následně zpracovány
na stroj́ıch, které maj́ı v tomto okamžiku neznámé rychlosti. Naš́ım ćılem je
minimalizovat poměr délky našeho rozvrhu a délky optimáńıho rozvrhu, který
by vznil umisťováńım úkol̊u rovnou na stroje. Nejpodrobněji studovaný př́ıpad
doposud byl b = m.

V této práci zobecňujeme známé výsledky pro infinitizemálně malé úkoly (tento
př́ıpad se nazývá ṕısek) a dokážeme, že nejlepš́ı kompetitivńı poměr, kterého
je možné dosáhnout, je mb

mb−(m−1)b . Dále formulujeme algoritmus řeš́ıćı př́ıpad
s identickými úkoly (nazývaný cihly) za podmı́nky b = m s kompetitivńım
poměrem 1.6, což zlepšuje nejlepš́ı doposud známou hodnotu 1.8.

Zavedeme nový speciálńı př́ıpad, který budeme nazývat p-oblázky. V tomto
př́ıpadě jsou doby běhu jednotlivých úkol̊u nejvýše p-násobky pr̊uměrné zátěže
stroje. Oblázky jsou vlastnostmi i obt́ıžnost́ı na p̊ul cesty mezi ṕıskem a obecným
př́ıpadem (nazývaným kameny). Poṕı̌seme algoritmus pro oblázky, který je pro
malé hodnoty p lepš́ı než nejlepš́ı známý algoritmus pro kameny (pro p menš́ı než
2− e

e−1 v př́ıpadě b = m).

Kĺıčová slova: rozvrhováńı, aproximačńı algoritmy, délka rozvrhu, uniformńı
rychlosti
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1. Introduction
Scheduling is a well known class of optimization problems. We are given a set
of jobs, sometimes called tasks or problems, and they are to be scheduled on
several machines, also called processors or workers. The goal is to optimize some
objective function. Objective functions may vary, but we usually want to finish as
many jobs as possible in as little time as possible. Common objective is makespan
minimization, where we want to minimize the moment of completion of the last
finished job. The exact formulation of objective functions, of course, depends on
the problem we are solving. Most scheduling problems are motivated by real-
world situations, often by assigning tasks to some computational cluster.

The jobs and machines might have different properties and there can be rela-
tions/dependencies between them. For example, processing time of a job might
depend or a machine; or some jobs might have other jobs as prerequisites. Many
specific settings have been thoroughly studied and there are many known re-
sults. One of the main branches of scheduling are online scheduling problems,
which usually involve solving common scheduling problems with some kind of
uncertainty.

We will study a problem called speed-robust scheduling. Vaguely speaking,
speed-robust scheduling is a two stage problem, where we have to group jobs into
bags, which are going to be scheduled on machines of unknown speed. The speeds
are then revealed, and bags are scheduled to machines with makespan objective.
Our makespan is then compared to the makespan of the adversary, who can assign
the jobs to machines arbitrarily and does not have to create bags. Our goal is
to minimize the worst-case ratio of our makespan and of the makespan of the
adversary. A precise definition of speed-robust scheduling, as well as an overview
of known results, will be given later in this introduction. Previous work was
mostly focused on the case when number of bags equals number of machines. We
generalize some of known results for larger number of machines and sometimes
prove a stronger statements.

We will first give a brief overview of more common scheduling problems related
to speed-robust scheduling.

1.1 Scheduling jobs on parallel machines
Let us briefly introduce a well-known problem of scheduling jobs on parallel ma-
chines with a makespan objective.

1.1.1 Identical machines
We are given n jobs and m identical machines. The jobs are to be processed
by the machines. Every job ought to be processed by one of the machines; the
machines can run in parallel and every machine can be working on at most job
at a given time. The jobs have processing times p1, . . . , pn, i.e. job i takes pi

units of time to process. Our goal is to assign the jobs to machines in a way that
minimizes the time it takes to finish all jobs.
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More formally, given two integers n, m, and non-negative reals p1, . . . , pn,
our task is to produce a mapping M : {1, . . . , n} → {1, . . . , m} representing the
assignment of jobs to machines. We define load of machine i as

Li =
∑︂

j∈M−1(i)
pj.

The completion time of such machine, denoted by Ci, is then equal to the load

Ci = Li.

The makespan of an assignment is

Cmax = max
1≤i≤m

Ci.

The objective is to minimize the makespan Cmax.
It is well known that the problem of scheduling jobs on parallel identical

machines is NP-complete. There exists a polynomial time approximation scheme
and the existence of a fully polynomial approximation scheme would imply P =
NP [1].

1.1.2 Machines with different speeds
One natural generalization of the problem is to allow machines with different
speeds. This problem is sometimes called scheduling on uniform machines. We
are in addition given non-negative reals s1, . . . , sm representing the speeds of the
machines. We allow speeds to be zero but require existence of at least one machine
with positive speed. The speeds work in an intuitive way. If a machine has zero
speed, no jobs may be scheduled on it. Machines with higher speeds finish jobs
faster. Machine i with a non-zero speed and load Li has a completion time

Ci = Li

si

.

Completion time of machines with zero speed (and thus no assigned jobs) is
defined to be equal to 0. This problem can be approximated efficiently as well,
i.e. there exists a polynomial time approximation scheme [2].

1.2 Scheduling with incomplete information
There are many ways to introduce some form of uncertainty into scheduling.

One common way to do so is to consider online scheduling where the jobs
arrive one by one. The algorithm has to schedule each job on some machine
immediately after it arrives and without knowledge of what jobs will follow. We
will describe preemptive variant of this problem in more detail.

1.2.1 Preemptive online scheduling
In this model, all machines are identical and the jobs arrive one by one. After
the arrival of any job, we must assign it on one or more machines and time slots.
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The sum of lengths of those time slots must be equal to the processing time of
the job, and all the slots must be disjoint. The objective is to minimize the time
at which all jobs are finished.

The optimal competitive ratio for preemptive online scheduling is

mm

mm − (m− 1)m

and the optimal solution uses a geometric sequence with ratio m−1
m

[3]. We will
see a connection between preemptive online scheduling and special case of speed-
robust scheduling in Chapter 2.

1.3 Speed-robust scheduling
Speed-robust scheduling is a two-stage problem that was introduced by Eberle
et al. [4, 5]. Let us introduce speed-robust scheduling on a situation that could
occur in the real world.

Suppose that you have n computational tasks that you want to solve. You
have a computational cluster available, however you do not know the parameters
of the cluster. You only know that there will be (at most) m machines available
on the cluster. At the moment, you do not know anything about the performance
of the machines—some of the machines might be faster than others. You can,
however, submit at most b different tasks to the cluster. Hence you will have to
group your n tasks into at most b groups. One such group will then have to be
executed on one machine. The cluster will then schedule the groups optimally
(with respect to the speeds of the machines) on the machines and minimize the
makespan. Some groupings might of course better than others—for example, it
is probably not a good idea to put all your tasks into one group. The goal of
speed-robust scheduling is to find best possible grouping.

Let us summarize the two stages with an example.

1. In the first stage, the speeds of the machines are unknown. Jobs must be
grouped into b ≥ m bags (some of which might be empty). We can see an
example of this stage in Figure 1.1.

n = 3

s1 = ?

p1 = 2

p2 = 3

p3 = 2

s2 = ?

m = 2

p1 = 2

p3 = 2

p2 = 3

b = 2

Figure 1.1: An example of the first stage. Two bags of sizes 3
and 4 were created. Note that the speeds of the machines are
unknown at this point.
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2. In the second stage, speeds of all the machines are revealed. Each bag
is assigned to one of the machines, multiple bags can be assigned to one
machine. You can see an example of this stage in Figure 1.2.

s1 = 2 s2 = 5

p1 = 2

p3 = 2

p2 = 3

s1 = 2 s2 = 5

p1 = 2

p3 = 2

p2 = 3

Adversary Algorithm

Makespan = max(1, 1) = 1 Makespan = max(0, 7
5
) = 7

5

Figure 1.2: An example of the second stage. It is optimal to
assign both bags to the second machine to achieve a makespan
equal to 7

5 . Note that we are allowed to leave the first ma-
chine without any assigned bag. The adversary could achieve
makespan equal to 1.

The second stage is just scheduling on parallel machines with different speeds,
but instead of assigning jobs, we are assigning bags. We assume that the second
stage is solved optimally, and our goal is to solve the first stage. To evaluate the
performance of our algorithms, we consider the worst-case ratio of the algorithm’s
makespan and the makespan of the adversary. The adversary does not create
bags and assigns jobs directly to machines of known speeds. In other words, the
adversary is solving an offline scheduling on machines with different speeds.

The formulation of speed-robust scheduling used by Eberle et al. is slightly
different [5]. In their paper, they use the following alternative formulation: The
adversary also creates bags, but the adversary already knows the speeds of all
machines at the time of bag creation (in the first stage). It is easy to see that
our formulation is equivalent for b ≥ m.

In parts of this text, we only consider the special case b = m. There are very
few previously known results for general b, with the notable exception of Theorem
5.1.

1.3.1 Formal definition and notation
Formally, in the first stage, we receive three positive integers n, m, b such that
b ≥ m and n non-negative real numbers p1, . . . , pn. We will denote P = ∑︁n

i=1 pi.
The output of our algorithm is a mapping B : {1, . . . , n} → {1, . . . , b}, where
B(j) = i represents the fact that the job j was assigned to the bag i.

Let us call the sum of the processing times of all the jobs assigned to bag i
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the size of bag i. Formally, the size of the bag i is

ai =
∑︂

j:B(j)=i

pj.

The exact mapping B is not important for the second stage since the makespan
depends only on the bag sizes. See FirstStageTemplate, it is a template of a
first-stage algorithm.

Algorithm FirstStageTemplate
Input: Number of jobs n

Number of machines m
Number of bags b
Processing times of the jobs p1, . . . , pn

Output: Grouping of jobs into bags - mapping B : {1, . . . , n} → {1, . . . , b}.

In the second stage, the speeds s1, s2, . . . , sm are revealed and at least one of
them is non-zero. Let C1, . . . , Cm denote completion times of machines in the
optimal solution of the second stage and let Cmax be the makespan.

Let C∗1 , . . . , C∗m denote completion times of machines in the solution of the
adversary and let C∗max be the makespan.

We are interested in the ratio
Cmax

C∗max
.

Note that it depends on the speeds s1, . . . , sm which are unknown in the first
stage.

We will call an algorithm ρ-robust if

Cmax

C∗max
≤ ρ

holds for all possible inputs and for all possible choices of machine speeds. An
algorithm is ρ-robust if it always performs at most ρ times worse than the ad-
versary. The robustness factor of an algorithm is defined as an infimum over all
such ρ.

Note that the case n ≤ b is somewhat trivial because we can achieve robustness
factor 1 by placing every job into a separate bag.

1.3.2 Terminology
We will call the special cases of the problem sand, bricks, rocks and pebbles. Sand,
bricks, and pebbles were introduced by Eberle et al. [5]. These words represent
the types of jobs we will be dealing with.

• Rocks can be any shape or size and represent jobs of arbitrary processing
time. This is the most general setting.

• Bricks are all the same and represent jobs with the same processing times.
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• Sand grains are very small and represent infinitesimally short processing
times.

• Pebbles represent jobs that are relatively small compared to the average
load of all machines. See Chapter 3 for formal definition.

Formally, we will need to use a slightly different formulation of the first stage
for sand, see Chapter 2 for details.

1.3.3 Variants
A special case of speed-robust scheduling has been studied by Steiner and Zhong
[6]. They considered a variant of the problem where si ∈ {0, 1} for 1 ≤ i ≤ m. In
other words, they assumed that there are m machines, but some of them might
fail and not be able to process any jobs. They presented a 5

3 -robust algorithm for
rocks and proved that there is no algorithm with a robustness factor lower than
4
3 .

1.4 Assumptions
In the rest of this text, we will make the following assumptions, unless explicitly
stated differently.

• Processing times, machine speeds and bag sizes are sorted in a descending
order.

• The makespan of the adversary is 1. Multiplying all the speeds by a positive
real constant clearly does not change the ratio of the makespans of our
algorithm and the adversary. Formally, for every instance of the problem,
there exists another instance where C∗max = 1 and the ratio of makespans
of our algorithm and the adversary is the same.

• The sum of the processing times of all jobs equals to the sum of the speeds
of all the machines, i.e.

m∑︂
i=1

pi =
m∑︂

i=1
si.

In other words, the adversary is fully utilizing all the machines, and the
completion time of all the machines with non-zero speed is equal to 1. We
can make this assumption because we are investigating the worst case and
all the other cases are “easier”. If there is some machine i with si > 0 and
C∗i < 1, we can consider

s′i = C∗i si,

which does not change the makespan of the adversary (which is equal to 1
by the first assumption), and this change can only increase our makespan.
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1.5 Results
Eberle et al. [5] have shown that the best achievable robustness factor for sand
in the case of b = m is

ρ(m) = mm

mm − (m− 1)m
.

We generalize this result for b ≥ m and prove that the best achievable robustness
factor for b bags and m machines is

ρ(m, b) = mb

mb − (m− 1)b

in Chapter 2. See Theorem 2.2.
We introduce a new special case in Chapter 3. We consider instances of the

problem called p-pebbles, where

pi ≤ p · P

m

holds for all jobs i. This guarantees that there are no big jobs and allows us to
show the existence of an (ρ(b, m) + p)-robust algorithm. For small p, this gives
better bound than the currently strongest known result for rocks.

Eberle et al. [5] presented an algorithm for bricks in case b = m with a
robustness factor of at most (︃

1 + m

n

)︃
ρ(m)

for any m and n. They have also presented an 1.8-robust algorithm for any n
and m; again in the case b = m. We strengthen both results in Chapter 4 and
generalise the first one for b ≥ m. We use results for pebbles and present an
algorithm with robustness factor at most

ρ(m, b) + m

n

for any n, b ≥ m (Theorem 4.1). For the special case of b = m, we give an
1.6-robust algorithm for any n and m (Theorem 4.6). We use mathematical
arguments for large m and n and computer search for small instances.

The strongest known result for rocks is the existence of an algorithm with
robustness factor at most 1 + m−1

b
[5]. See Chapter 5 and Theorem 5.1.

1.6 General ideas of the proofs
Many of the proofs of robustness will have one thing in common: Although we
are allowed to solve the second stage optimally, we do not. The reason for that
is quite simple, the optimal solution of the second stage can be complicated,
and thus it is difficult to bound its makespan. We will instead provide a simple
(usually greedy) algorithm for the second stage which will be much easier to work
with. See SecondStageTemplate for a template of a second-stage algorithm.

In particular, GreedyAssignment will be very useful. It is additionally pa-
rameterized by ρ, which represents the robustness factor that we want to achieve.
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Algorithm SecondStageTemplate
Input: Bag sizes a1 ≥ · · · ≥ ab

Machine speeds s1 ≥ · · · ≥ sm

Output: The mapping of bags to machines M : {1, . . . , b} → {1, . . . , m}.

At the beginning, every machine is assigned a capacity equal to its speed multi-
plied by ρ. The algorithm then goes through all the bags from large to small and
assigns them on the machine with the most capacity remaining. The assignment
of a job of size a decreases the capacity of the selected machine by a.

Algorithm GreedyAssignment
Input: Bag sizes a1 ≥ · · · ≥ ab

Machine speeds s1, . . . , sm

Desired robustness factor ρ

for j ← 1 to m do
cj ← ρsj ▷ Initialize the capacities of all machines

end for
M ← empty mapping
for i← 1 to b do

j ← index of machine with the largest capacity left
M [i]← j ▷ Assign bag i to machine j
cj ← cj − ai ▷ Decrease the remaining capacity of the selected machine

end for
return M

If the capacities remain non-negative at the end of execution of GreedyAs-
signment, the makespan of the created assignment must clearly be at most ρ
since machine j has been assigned jobs of total processing times at most ρsj. Let
us formulate a simple theorem which will be very useful throughout the whole
text.

Theorem 1.1. Suppose that bag sizes a1, . . . , ab satisfy inequalities

ai ≤
ρP −∑︁i−1

j=1 aj

m
.

Then GreedyAssignment produces an assignment with makespan at most ρ.

Proof. Recall that we assume ∑︁m
i=1 si = P . We only need to show that there is a

machine with capacity at least ai when assigning the ith bag. This will guarantee
that the capacities stay non-negative until the end. The initial total capacity
was ρP and was already decreased by ∑︁i−1

j=1 aj at the time of assigning bag ai. It
follows that the average remaining capacity is equal to

ρP −∑︁i−1
j=1 aj

m
.
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and thus there exists a machine with at least

ρP −∑︁i−1
j=1 aj

m

capacity remaining.

Corollary 1.2. If a first-stage algorithm always produces bag sizes satisfying
inequalities

ai ≤
ρP −∑︁i−1

j=1 aj

m
,

it is ρ-robust.

Proof. This is a direct consequence of Theorem 1.1. We are assuming that
makespan of the adversary is 1. According to Theorem 1.1 there exists an as-
signment with makespan at most ρ for every output of the algorithm, hence it is
ρ-robust.
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2. Sand
In this chapter, we consider a special case of the problem. We assume that n is
very large and all the jobs are of the same size and very small. You can think
of it as of infinite number of jobs and infinitesimal jobs. More formally, we are
given just m, b and P as an input of the first stage. The result of the first stage
are b non-negative reals a1, . . . , ab whose sum equals P .

Intuition behind this case is quite simple. We are given a pile of sand (of
volume P ) and, in the first stage, we create several smaller piles and put them
into bags. The sand is continuous and we can split it into parts of arbitrary sizes.

The formulation of the second stage remains the same.

a2

a1

Figure 2.1: Sand can be distributed arbitrarily.

Definition 2.1. Let ρ : R× R→ R be defined as

ρ(m, b) = mb

mb − (m− 1)b
.

In addition, let ρ(m) = ρ(m, m).

Eberle et al. solved the case b = m and showed that the best achievable
robustness factor is ρ(m) [5]. We generalize this result for b ≥ m and significantly
simplify the proof of the upper bound.

Theorem 2.2 (Sand). The best achievable robustness factor for infinitesimal
jobs, m machines and b bags is ρ(m, b).

Before proving this result, let us make some observations about ρ(m, b). One
may wonder what happens when we are allowed to use much more bags than
there are machines. It is easy to show that the optimal robustness factor goes to
1 as b goes to infinity.

Observation 2.3. For every m ∈ N it holds that

lim
b→∞

ρ(b, m) = 1.

Proof. By simple manipulation of the expression

lim
b→∞

ρ(b, m) = lim
b→∞

mb

mb − (m− 1)b
= lim

b→∞
1

1−
(︂

m−1
m

)︂b = 1.
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Another natural question is what happens if b is some constant multiple of
m. Does the optimal robustness factor also go to 1 as m and b go to infinity if,
say, b = 2m? The answer is no, the optimal robustness factor converges to eα

eα−1
for b = αm.

Observation 2.4. For every α ∈ R+ and m ∈ N it holds that

ρ(αm, m) <
eα

eα − 1 .

Furthermore, for every α ∈ R+ it holds that

lim
m→∞ ρ(αm, m) = eα

eα − 1 .

Proof. Let us manipulate the expression

ρ(αm, m) = mαm

mαm − (m− 1)αm
= 1

1−
(︂
1− 1

m

)︂αm .

Since 1 + x ≤ ex holds for x ∈ R, we can bound

ρ(αm, m) ≤ 1
1− e−α

= eα

eα − 1 .

Similarly

lim
m→∞ ρ(αm, m) = lim

m→∞
1

1−
(︂
1− 1

m

)︂αm = 1
1− e−α

= eα

eα − 1 .

One notable corollary of Observation 2.4 is that

ρ(m) <
e

e− 1 ≈ 1.58

holds for all m ∈ N.
We will now prove several lemmata that will be useful in the proof of Theo-

rem 2.2. Let us denote U = mb, L = mb − (m− 1)b and ti = mb−i(m− 1)i−1 for
i ∈ {1, . . . , b}. Observe that Theorem 2.2 says ρ(b, m) = U

L
.

Lemma 2.5. It holds that
k∑︂

i=1
ti = U − (m− 1)tk.

Proof. We will proceed by induction. The lemma holds for k = 1 since U = mt1
and thus t1 = U − (m− 1)t1. Now suppose it holds for k. We can derive

k+1∑︂
i=1

ti = U−(m−1)tk+tk+1 = U−mb−k(m−1)k+mb−k−1(m−1)k = U−(m−1)tk+1.

which completes the induction step.
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Note that plugging k = b into Lemma 2.5 gives us that the sum of ti is L.
To get some intuition behind the algorithm for sand, it might be useful to

consider the case m = 2. Suppose that P = L = 2b − 1 and let us choose bag
sizes ai = ti = 2b−i. Since everything is a power of two in this case, it is easier to
think about. It should be easy to see that we can achieve the robustness ratio of
1 + 1

2b−1 . The adversary can choose any speeds s1, s2 such that s1 + s2 = 2b − 1.
The capacities of the machines (as in GreedyAssignment) will then satisfy
c1 + c2 = 2b and thus ⌊c1⌋+ ⌊c2⌋ ≥ 2b − 1. We can simply express ⌊c1⌋ in binary
and assign the corresponding bags on the first machine.

2.1 Upper bound
We use a different approach than Eberle et al. for the proof of the upper bound.
We choose the same bag sizes but use different arguments to show that such an
algorithm is ρ(b, m)-robust. We will make use of Theorem 1.1. We will use Sand
to choose the bag sizes. Note that the sum of bag sizes produced by Sand is P .

Algorithm Sand
Input: Number of bags b

Number of machines m
Total amount of sand P

L← mb − (m− 1)b

for i← 1 to b do
ai ← ti

P
L

end for
return a1, a2, . . . , ab

Lemma 2.6 (Sand upper bound). Sand is ρ(b, m)-robust.

a2a1 a3 a4

8

4

2
1

U = 16

L = 15

Figure 2.2: An example of bag sizes chosen for m = 2 and b = 4. If there are
only two machines, the bag sizes are powers of two.

Proof. We will assume P = L since it does not change the ratio of our makespan
and the makespan of the adversary. Under this assumption, Sand produces bag
sizes ai = ti.

13



It is sufficient to show that the bag sizes produced by Sand satisfy the con-
dition of Corollary 1.2. Let us prove the ith inequality.

ρ(b, m)P −
i−1∑︂
j=1

aj = U

L
L−

i−1∑︂
j=1

tj = U −
i∑︂

j=1
tj + ti

According to Lemma 2.5, we can simplify

U −
i∑︂

j=1
tj + ti = U − (U − (m− 1)ti) + ti = mti = mai.

This allows us to use Corollary 1.2 and there exists an assignment with makespan
at most ρ(b, m).

Notice that the condition of Corollary 1.2 was tight, i.e. there was an equality.

2.2 Lower bound
The following proof is a slightly modified and generalized version of the proof by
Eberle et al. [5]. The main difference is that we do not require the number of
bags and machines to be the same.

Lemma 2.7 (Sand lower bound). No deterministic algorithm may have a robust-
ness factor smaller than ρ(b, m).

Proof. Let us without loss of generality assume P = U (be aware that we assumed
P = L in the proof of the upper bound). Let us denote the chosen bag sizes by
a1 ≥ · · · ≥ ab. We will restrict the adversary to b different speed configurations
indexed by k, where

Sk = {s1 = U − (m− 1)tk, s2 = tk, s3 = tk, . . . , sm = tk}.

Note that the sum of machine speeds is equal to U in every configuration and
hence the makespan of the adversary is indeed 1 as we always assume. In every
speed configuration, there are m− 1 slow machines and one fast machine, since

s1 = U − (m− 1)tk =
k∑︂

i=1
ti ≥ tk.

Let kmax be the largest index such that akmax ≥ U
L

tkmax . This index must exist
since

b∑︂
i=1

ai = U = U

L
L = U

L

b∑︂
i=1

ti.

Now let the adversary choose the speed configuration Skmax . We will distinguish
two cases depending on the bag assignment in the second stage.

• At least one of the bags a1, . . . , akmax was assigned to a slow machine. The
makespan of this machine is at least

ai

tkmax

≥ akmax

tkmax

≥ U

L
.
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• All of the bags a1, . . . , akmax were assigned to the fast machine. Total size
of the bags assigned to the fast machine is at least

U −
kmax∑︂
i=1

ai = U −
b∑︂

i=kmax+1
ai.

By definition of kmax it holds that ai < U
L

ti for i > kmax and we can bound

b∑︂
i=kmax+1

ai ≥ U − U

L

b∑︂
i=kmax+1

ti.

Since ∑︁b
i=1 ti = L, we can rearrange the right-hand side

U − U

L

b∑︂
i=kmax+1

ti = U − U

L

⎛⎝L−
kmax∑︂
i=1

ti

⎞⎠ = U

L

kmax∑︂
i=1

ti.

By Lemma 2.5 it holds that

U

L

kmax∑︂
i=1

ti = U

L
(U − (m− 1)tkmax) = U

L
s1

and the makespan would be at least U
L

.

The makespan was at least U
L

in both cases, hence the algorithm cannot be
better than U

L
-robust.

s1 s2 s1 s2 s1 s2 s1 s2

15

1

14

12

2

4

8 8

Figure 2.3: An example of speed configurations considered by the adversary
for m = 2 and b = 4.

We can now finally prove Theorem 2.2.

Proof of Theorem 2.2. Lemma 2.6 and Lemma 2.7 together prove Theorem 2.2.
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3. Pebbles
It seems to be difficult to use the ideas from sand in the general case of rocks.
Since rocks can have arbitrary sizes, it is not really possible to make the bag
sizes similar to the ones that would be created by Sand. For this reason, we
considered another special case which we call pebbles. Pebbles are in between
sand and rocks in terms of properties and difficulty. Unlike sand and bricks,
pebbles don’t assume that all the jobs are the same. They, however, forbid the
existence of large jobs, which is allowed in rocks.

Definition 3.1. We will call an instance of the speed-robust scheduling p-pebbles
if the processing times satisfy

pi ≤ p ·
∑︁n

j=1 pj

m
= p · P

m
.

Figure 3.1: Pebbles are relatively small compared to average load of a ma-
chine.

This definition might seem a bit unnatural at the first glance, but there is
a very intuitive formulation. The expression P

m
represents the average load of a

machine. The definition of pebbles says that the processing times are relatively
small compared to the average load of all machines. We will also assume without
loss of generality the sum of processing times is m. This will transform the
condition from the definition into

pi ≤ p,

which is easy to work with.
We will use similar ideas as in the optimal algorithm for sand. Recall the

condition of Corollary 1.2

ai ≤
ρP −∑︁i−1

j=1 aj

m
.

As we have already noticed in Chapter 2, the optimal bag sizes for sand not only
satisfy the above inequality, they actually have equality there. The bag sizes for
sand are given by the recurrence

ai =
ρ(m, b)P −∑︁i−1

j=1 aj

m
.
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When we in addition assume P = m, as in the case of pebbles, we get

ai = ρ(m, b)− 1
m

i−1∑︂
j=1

aj. (3.1)

Let a1, . . . , ab denote values given by the recurrence 3.1 for the rest of this chapter.
Remember that the sum of a1, . . . , ab equals P . Let us denote the bag sizes we
will be choosing for pebbles d1, . . . , db. We will again want to use Corollary 1.2.
In other words, we will want the bag sizes to satisfy

di ≤ ρ− 1
m

i−1∑︂
j=1

dj, (3.2)

where ρ is the desired robustness factor.
Consider the following algorithm. Place as many pebbles as you can into the

first bag while it satisfies the inequality (3.2). Then do the same thing for the
second bag... and so on until the last bag (or until we run out of jobs). See
Pebbles for pseudocode.

Algorithm Pebbles
Input: Processing times p1 ≥ · · · ≥ pm

Number of machines m
Number of bags b
Desired robustness factor ρ

B ← empty mapping
for i← 1 to b do

di ← 0 ▷ di will represent size of the ith bag
end for
k ← 1 ▷ k represents index of currently considered bag
for i← 1 to n do

while k ≤ b and dk + pi > ρ− 1
m

∑︁k−1
j=1 dj do

k ← k + 1
end while
if k > b then

break
end if
B[i]← k
dk ← dk + pi

end for
return B

Lemma 3.2. The Pebbles puts every job in some bag for ρ = ρ(m, b) + p.

Proof. Suppose that the algorithm does not use all the jobs. The bag sizes created
by the algorithm must satisfy

di + p > ρ− 1
m

i−1∑︂
j=1

dj.

17



If some bag did not satisfy this inequality, adding one more job would not violate
the inequality (3.2) and the algorithm would have done so. Plugging in the
expression for ρ gives us

di > ρ(m, b)− 1
m

i−1∑︂
j=1

dj. (3.3)

We will show
k∑︂

i=1
di ≥

k∑︂
i=1

ai,

for all k ∈ {0, . . . , b}. We will prove this claim by induction. The case k = 0 is
trivial since the summations are empty and both sides are equal to 0. Let us now
prove the induction step using the equation (3.1) and the inequality (3.3).

dk − ak ≥
(︄

ρ(m, b)− 1
m

k−1∑︂
i=1

di

)︄
−
(︄

ρ(m, b)− 1
m

k−1∑︂
i=1

ai

)︄

= − 1
m

(︄
k−1∑︂
i=1

di −
k−1∑︂
i=1

ai

)︄

We can now easily finish the induction step. We simplify
k∑︂

i=1
di −

k∑︂
j=1

ai =
(︄

k−1∑︂
i=1

di −
k−1∑︂
i=1

ai

)︄
+ (dk − ak)

≥
⎛⎝k−1∑︂

j=1
dj −

k−1∑︂
j=1

aj

⎞⎠− 1
m

(︄
k−1∑︂
i=1

di −
k−1∑︂
i=1

ai

)︄

= m− 1
m

⎛⎝k−1∑︂
j=1

dj −
k−1∑︂
j=1

aj

⎞⎠ ,

which is non-negative by the induction hypothesis and thus
k∑︂

i=1
di ≥

k∑︂
i=1

ai.

Setting k = b gives us
b∑︂

i=1
di ≥

b∑︂
i=1

ai = m,

which is a contradiction with the fact that we did not use all jobs.

Theorem 3.3. There exists an algorithm for p-pebbles with robustness factor at
most ρ(m, b) + p.

Proof. Pebbles places all jobs into bags by Lemma 3.2 and has robustness factor
at most ρ(m, b) + p because the created bag sizes satisfy the inequality (3.2).

It is interesting to take a look at the case b = m. Theorem 3.3 and Observation
2.4 say that there exists an algorithm with robustness factor at most

e

e− 1 + p ≈ 1.58 + p.
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The best know result for rocks gives robustness factor 2− 1
m

(Theorem 5.1). This
gets arbitrarily close to 2 for large m. Hence we have obtained a stronger result
for

p < 2− e

e− 1 ≈ 0.42.
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4. Bricks
In this chapter, we are not given a pile of sand or pebbles but a bunch of bricks
instead. The bricks are perfectly regular and all of them are the same size. More
formally, we assume pi = 1, that is, all processing times are set to 1.

n = 27

a2 = 12

a1 = 15

Figure 4.1: All the jobs have processing time 1.

Eberle et al. have shown that there exists an algorithm with robustness factor
at most 1.8 for b = m [5]. We improve this bound and present an algorithm with
robustness factor 1.6. This is much closer to the lower bound of e

e−1 ≈ 1.582
obtained from sand.

Eberle et al. have also proven that there exists an algorithm with a robustness
factor of at most (1 + m

n
)ρ(m) for any n and m, again under the constraint of

b = m [5]. We also strengthen this result and prove the existence of an algorithm
with a robustness factor at most ρ(m) + m

n
. We generalize this result for b ≥ m

and give an algorithm with a robustness factor at most ρ(m, b) + m
n

.

4.1 Bricks are just large pebbles
We can apply the already proven result for pebbles.

Theorem 4.1. There exists an algorithm with robustness factor at most ρ(b, m)+
m
n

solving the problem for n bricks, m machines and b bags.

Proof. We will use Theorem 3.3. The average load of a machine is n
m

and all jobs
have size 1. Therefore, bricks are just m

n
-pebbles and Pebbles is (ρ(b, m) + m

n
)-

robust for bricks.

4.2 Using integrality
Let us proceed to description of the algorithm with robustness factor equal to
1.6. We will solve just the special case of b = m, i.e., the number of bags equals
the number of machines. In the previous section, we did not use the fact that the
machine loads selected by the adversary must be integers.

Since we assume that the makespan achieved by the adversary is 1 and the
adversary fully utilizes all the machines, the speeds of all machines have to be
integers. Otherwise, if the speeds were not integers, we could just round them
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down to the nearest integer—this would not change the makespan of the adversary
and could only increase our makespan. This assumption implies

m∑︂
i=1

si = n.

Let us denote the ratio n
m

by λ, such notaion will be convenient later in this
chapter.

Definition 4.2. We will denote

λ = n

m
.

We could try to use the same greedy algorithm as before. However, if we use
GreedyAssignment for second stage, it is quite difficult to make use of the
integral speeds in the algorithm analysis. For this reason, we will use a more
discrete approach. Instead of assigning a real capacity to every machine, we will
give each machine a certain number of coins initially equal to its speed. We will
then pay some integral number of coins every time we assign a bag to a machine.
Cost of a bag is the number of coins we have to pay to assign it to some machine.
The cost of a bag will depend on its size and the robustness factor ρ that we want
to achieve.

Definition 4.3. The cost of a bag of size a is

cost(a, ρ) =
⌈︄

a

ρ

⌉︄
,

where ρ is the robustness factor we want to achieve. We will often write just
cost(a) since ρ is always fixed in given context.

s1 = 2 s2 = 5 s1 = 2 s2 = 5

a1 = 3

Figure 4.2: Every machine has assigned coins. For example with ρ = 1.6, the
second machine could pay 2 coins for a bag of size 3.

We can now formulate a modified greedy algorithm for the second stage; see
IntegralAssignment. It is very similar to GreedyAssignment, the only
difference is that it uses coins instead of capacities.

The number of coins that any machine has during the entire execution of
IntegralAssignment remains integral. This will be useful since we will be
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Algorithm IntegralAssignment
Input: Bag sizes a1 ≥ · · · ≥ ab

Machine speeds s1, . . . , sm

Desired robustness factor ρ

for j ← 1 to m do
cj ← sj ▷ Machine j gets sj coins at the beginning.

end for
M ← empty mapping
for i← 1 to b do

j ← index of the machine with most coins left
M [i] = j ▷ Assign bag i to machine j
cj ← cj − cost(ai) ▷ Machine j pays for the job i

end for

able to use the pigeon-hole principle when arguing the existence of a machine
with a sufficient number of coins remaining. In particular, if machine j has cj

coins and
m∑︂

j=1
cj > m(cost(ai)− 1),

then there is at least one machine with cost(ai) or more coins left.
Let us demonstrate this on an example. Let n = 13, m = 10 and ρ = 1.6.

There are 13 coins distributed between 10 machines, which means that there is
at least one machine with at least 2 coins (with speed at least 2). This means
that we can assign a bag of size 3 and cost ⌈ 3

1.6⌉ = 2 on one of the machines.
Note that we needed the integrality of the speeds, otherwise there would only
be guaranteed a machine with speed 1.3. There are 11 remaining coins and we
can place another bag of size 3 using the same argument. It is important that all
machines have integral number of coins remaining and we can use the pigeon-hole
principle again. Now there are only 9 coins remaining and we can only choose a
bag of size 1. See Figure 4.3 for an illustration of this situation or Figure 4.6 for
more complex example.

m 2m

Figure 4.3: Graphical representation of the first three chosen bags for n = 13,
m = 10. The dots represent coins and the boxes represent chosen bags. The
number of coins inside a box represent the cost of the bag. Vertical lines
emphasize the multiples of m, which determine the bag costs.

In general, the cost of the first bag chosen will be ⌈λ⌉. The cost will then
decrease by 1 every time the number of coins crosses a multiple of m. Figure 4.4
shows this in a graphical way.

We can observe that if the numbers of coins remain non-negative during the
execution of the Algorithm IntegralAssignment, the makespan will be at
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(⌈λ⌉ − 1)m ⌈λ⌉m

⌈λ⌉⌈λ⌉ − 1

Figure 4.4: Graphical representation of the first chosen bag of size ⌈λ⌉.

most ρ. This is true since the sum of bag sizes assigned to a machine i never
exceeds ρsi. IntegralAssignment is actually in some sense stricter than Algo-
rithm GreedyAssignment because there is a ceiling function in the definition
of cost.

4.3 Choosing the bag sizes
We will now try to choose the bag sizes greedily in a way that guarantees that
all machines end up with non-negative number of coins after the execution of
the IntegralAssignment. In every step, we will choose the largest possible
bag size that is guaranteed to be possible to assign without getting to negative
numbers. The exact way of choosing the bag sizes is described by Bricks.

Algorithm Bricks
Input: Number of bricks n

Number of machines m
Desired robustness factor ρ

c← n ▷ The initial number of coins is n
for i← 1 to b do

k ← ⌈ c
m
⌉ ▷ max integer such that c > m(k − 1)

ai ← ⌊k · ρ⌋ ▷ max integer such that cost(ai) = k
c← c− k

end for
return a1, a2, . . . , ab

Note that the costs of the bags chosen by Bricks do not depend on ρ. The
sizes of the bags, however, do depend on ρ. See Figure 4.5 and 4.6 for an example
execution of Bricks.

If Bricks produces bags of total size at least n, it was successful. If the total
sum of bag sizes exceeds n, we can just decrease the sizes of some bags to make
the sum equal to n. We can for example make some of the last bags empty and
then decrease size of the last non-empty bag.

Definition 4.4. We say that Bricks succeeds if it produces bags of total size at
least n, otherwise we say that the algorithm fails.

Lemma 4.5. Suppose the first-stage algorithm Bricks succeeds. Then Inte-
gralAssignment in the second stage produces an assignment with makespan at
most ρ.
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remaining coins c ai for ρ = 1.6 ai for ρ < 1.6
45 8 < 8
40 8 < 8
35 6 ≤ 6
31 6 ≤ 6
27 4 ≤ 4
24 4 ≤ 4
21 4 ≤ 4
18 3 ≤ 3
16 3 ≤ 3

46 ≤ 44

Figure 4.5: Table describing the execution of Bricks for n = 45 and m = 9.
This table shows that the algorithm fails for ρ < 1.6 but succeeds for ρ = 1.6.

886644433

m 2m 3m 4m

Figure 4.6: Graphical representation of the execution of Bricks for n = 45,
m = 9 and ρ = 1.6. The numbers above bags represent their size. The sum of
bag sizes is actually 46 > n = 45, to solve this, we could for example replace
one bag of size 3 with a bag of size 2.

Proof. Imagine that Bricks and IntegralAssignment are running in parallel.
Bricks chooses the size of one bag and IntegralAssignment assigns it to a
machine. During the execution it holds that c from Bricks equals the sum of cj

from IntegralAssignment. We can verify that the cost of the chosen bag of
size ai is indeed k. It holds that

ai = ⌊k · ρ⌋ ≤ k · ρ

and thus
cost(ai) =

⌈︄
ai

ρ

⌉︄
≤
⌈︄

k · ρ
ρ

⌉︄
= ⌈k⌉ = k

Similarly it holds that
ai = ⌊k · ρ⌋ > k · ρ− 1

and thus
cost(ai) =

⌈︄
ai

ρ

⌉︄
≥
⌈︄

k · ρ− 1
ρ

⌉︄
=
⌈︄
k − 1

ρ

⌉︄
,

which is at least k for ρ > 1.
Now we can argue that some of cj was at least k and thus it remained non-

negative. We want to prove that the cost k chosen in the ith step of the Bricks
satisfies

c > m(k − 1).
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Since
k =

⌈︃
c

m

⌉︃
<

c

m
+ 1,

it holds that
m(k − 1) < m

(︃
c

m
+ 1− 1

)︃
= m · c

m
= c.

Theorem 4.6. There exists 1.6-robust algorithm for the case of bricks for any
m and n.

We have already shown that Pebbles is 1.6-robust for λ ≥ 60 since

e

e− 1 + 1
60 < 1.6.

Thus showing that Bricks always succeeds for ρ = 1.6 and λ ≤ 60 will prove
Theorem 4.6. Note that Bricks sometimes fails for ρ < 1.6. The counterexample
for any ρ < 1.6 is n = 45 and m = 9, as shown in Figure 4.5. This is the smallest
counterexample in terms of n. For all smaller n it is sufficient to set ρ = 1.5.

There are only finitely many cases remaining for a fixed m. We will prove
Theorem 4.6 separately for small m and large m separately. We simply try all
the cases for small m and use a more involved argument for larger m.

Lemma 4.7. Bricks always succeeds for ρ = 1.6, λ ≤ 60 and m ≤ 144.

Proof. Just try all the cases; see Appendix A.

Lemma 4.8. Bricks always succeeds for ρ = 1.6, λ ≤ 60 and m > 144.

We will prove Lemma 4.8 in the next section. Let us now give the proof of
Theorem 4.6.

Proof of Theorem 4.6. Lemma 4.7 and Lemma 4.8 together show that Bricks
always succeeds for λ ≤ 60 and thus it is 1.6-robust for λ ≤ 60. There exists
1.6-robust algorithm for λ > 60 according to Theorem 4.1 since

ρ(m, m) + m

n
= ρ(m, m) + 1

λ
<

e

e− 1 + 1
60 < 1.6.

4.4 Fractional solutions
To prove Lemma 4.8, we will need to bound the total size of bags produced by
Bricks. To do so, we will consider fractional solutions. In such a solution, we
can use fractions of bags (such as 4

5 of a bag of size 8 as in the Figure 4.7). This
does not have a clear combinatorial meaning, but it is quite easy to calculate total
bag size of one such fractional solution and then show that the solution produced
by Bricks is not much worse.
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Algorithm GreedyFractional
Input: Number of bricks n

Number of machines m

Output: Fractional solution F

r ← m ▷ r is the (real) number of bags remaining
c← n ▷ c does not have to remain integral this time
F [k]← 0 for k ∈ N
while r > 0 and c > 0 do

k ← ⌈ c
m
⌉ ▷ k is the chosen bag cost

x← min
(︂
r, c−m(k−1)

k

)︂
▷ x is chosen amount of bags of cost k

r ← r − x
c← c− x · k
F [k]← x

end while
return F

Definition 4.9. A fractional solution is a mapping F : N→ R+
0 satisfying

∞∑︂
k=1

F (k) = b.

Value F (k) denotes how many bags of cost k the solution uses.

GreedyFractional produces one particular fractional solution. Note that
GreedyFractional is well defined even for non-integral m and n (this might
be useful for some intuition later). GreedyFractional is, in some sense, very
similar to the solution produced by Bricks, it only differs in rounding. Let us for-
mulate Bricks in the language of fractional solutions to highlight the similarity,
see IntegralFractional. We can observe that Bricks and IntegralFrac-
tional are, in some sense, equivalent.

Observation 4.10. Bricks and IntegralFractional use each bag cost the
same number of times.

Proof. Let us look at the execution of both algorithms. One step of Integral-
Fractional corresponds to several steps of Bricks. Bricks chooses the bags
one by one, and it may choose the same bag cost in several consecutive iterations.
IntegralFractional instead in each step calculates how many bags of given
cost would Bricks use. The key observation is that the expression⌈︄

c−m(k − 1)
k

⌉︄

calculates how many bags of cost k we must use to have at most m(k − 1) coins
remaining. In other words, it calculates how many bags of cost k Bricks uses
before it starts using bags of cost k − 1 (unless it runs out of bags). Hence both
Bricks and IntegralFractional use the same number of bags of cost k.
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Algorithm IntegralFractional
Input: Number of bricks n

Number of machines m

Output: Fractional solution I

r ← m ▷ r is the (integral) number of bags remaining
c← n ▷ c is integral this time
I[k]← 0 for k ∈ N
while r > 0 and c > 0 do

k ← ⌈ c
m
⌉

x← min
(︂
r, ⌈ c−m(k−1)

k
⌉
)︂

▷ This is the only difference
r ← r − x
c← c− x · k
I[k]← x

end while
return I

Let us now define size of a fractional solution, it simply says how many (frac-
tional) bricks are contained in this solution. Remember that a bag of cost k has
size ⌊k · ρ⌋.
Definition 4.11. Size of fractional solution F for robustness factor ρ is defined
as

size(F, ρ) =
∞∑︂

k=1
F (k) · ⌊k · ρ⌋.

We will sometimes use only size(F ) if ρ is clear from the context.
Let us now make some observations about the result of GreedyFractional.

They will help us to understand the algorithm and will be useful later.
Definition 4.12. Let F be a fractional solution, then let kmin and kmax denote
the smallest and largest integers such that F (kmin) > 0 and F (kmax) > 0.
Observation 4.13. Let F be a result of running GreedyFractional with
input n and m. Then for every k such that kmin < k < kmax it holds that

F (k) = m

k
.

Proof. Observe that in every step of the algorithm, except the last one, it holds
that

x = c−m(k − 1)
k

and thus
c− x · k = m(k − 1).

Hence c is equal to a multiple of m except in the first step. In all the steps except
the first and last it holds that

x = mk −m(k − 1)
k

= m

k
.
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Observation 4.14. Let α ∈ R+. Suppose GreedyFractional produces solu-
tion F with n and m as an input and solution F ′ with inputs αn and αm. Then
it holds that

F ′(k) = αF (k)
for all k. It follows that

size(F ′, ρ) = α · size(F, ρ).

Proof. This is very easy to see if you go through the execution of GreedyFrac-
tional step by step. Formally, we could show it by induction on the iteration of
the while loop. Suppose that we multiply both m and n by α. Then the following
claims hold in every iteration of the loop:

• r is multiplied by α,

• c is multiplied by α,

• k stays the same,

• x is multiplied by α.

All of this holds in the first iteration and the induction step is trivial.

Our goal is to prove
size(I, 1.6) ≥ n,

where I is solution produced by IntegralFractional, for m > 144 and λ ≤ 60.
This is equivalent to Lemma 4.8.

8

4/5× 8

64443

19/20× 3

m 2m 3m 4m

6

1/4× 6

Figure 4.7: Fractional solution for n = 45, m = 9 and ρ = 1.6 produced by
GreedyFractional. Notice that we always use only one bag size (cost)
between consecutive multiples of m. Compare this to Figure 4.6 where bag
of size 8 “oversteps” the 4m line.

We shall prove two claims regarding sizes of fractional solutions produced by
GreedyFractional and IntegralFractional. The first claim says that
the result of GreedyFractional is big and the second says that the result of
IntegralFractional is not much smaller.

Claim 4.15. Let F be a fractional solution produced by GreedyFractional.

• For λ ≤ 4 it holds that
size(F, 1.6) ≥ n.
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• For 4 ≤ λ ≤ 60 it holds that

size(F, 1.6) ≥ n + 1
12m.

Claim 4.16. Let F be a fractional solution produced by GreedyFractional
and let I be fractional solution produced by IntegralFractional.

• For λ ≤ 4 it holds that

size(I, 1.6) ≥ size(F, 1.6).

• For 4 ≤ λ ≤ 60 it holds that

size(I, 1.6) ≥ size(F, 1.6)− 12.

These two claims together allow us to prove Lemma 4.8.

Proof of Lemma 4.8. Claim 4.15 and Claim 4.16 together prove

size(I, 1.6) ≥ n

for λ ≤ 4 and

size(I, 1.6) ≥ n + 1
12m− 12 ≥ n + 144

12 − 12 = n

for 4 ≤ λ ≤ 60.

It remains to prove Claim 4.15 and Claim 4.16.

Proof of Claim 4.15. Consider the expression

size(F, 1.6)− n

m

and let us call it relative brick surplus. Notice that by Observation 4.14, the
relative brick surplus is uniquely determined by λ, i.e., multiplying both n and
m by a real positive constant does not change it.

This means that the relative brick surplus is a function of λ. Furthermore, it is
piecewise linear. If we slowly increase λ (you can imagine m fixed and increasing
n), F (k) remains constant for all k except kmin and kmax by Observation 4.13.
The slope only changes when kmin or kmax changes. This only happens when λ
is an integer or when we stop using some type of bag when λ is large enough.
For example, we stop using bags of cost 1 when λ surpasses 11

3 , see Figure 4.8.
This means that we only need to evaluate the relative surplus of bricks in finitely
many points. See Appendix B for details.
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1
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43

1
2 × 3

Figure 4.8: Example of solution produced by GreedyFractional for n =
11, m = 3 and ρ = 1.6. Size of this solution is 11.5 and relative brick surplus
is 1

6 . The solution does not use any bags of cost 1. However, if λ were smaller
(you can imagine n = 11 − ε), the solution would use bags of size 1. If we
now slowly increase n, the number of used bags of size 6 will linearly increase
while the number of used bags of size 3 will linearly decrease.

Proof of Claim 4.16. We will present an algorithm which transforms the frac-
tional solution F into the solution F ′ such that

size(I) ≥ size(F ′) ≥ size(F )− 12.

The transformation process is quite simple: go through the bag costs, denoted
by k, from kmax = ⌈λ⌉ to kmin. If F uses non-integral amount of bags of cost k,
round it up. Decrease the number of bags of cost k − 1 so that the total cost of
all bags remains the same. Increase the number of bags of cost 1 such that the
total number of bags stays equal to b.

Let us analyze one step of the process. Let G denote the current fractional
solution and let H denote the result of one transformation step. Let k be the
current cost. We set

H(k) = ⌈G(k)⌉.
We want the sum of costs of bags of sizes k− 1 and k to remain the same, hence
we want

H(k) · k + H(k − 1) · (k − 1) = G(k) · k + G(k − 1) · (k − 1)

to hold. Thus we set

H(k − 1) = G(k − 1) + (G(k)−H(k)) · k

k − 1 .

The total number of bags has decreased by

(G(k)−H(k)) + (G(k − 1)−H(k − 1)) = 1
k − 1(H(k)−G(k)).

Thus we set
H(1) = G(1) + 1

k − 1(H(k)−G(k)).

Remember that the size of a bag of cost k is ⌊k · ρ⌋. It follows that

size(H)− size(G) = (H(k)−G(k)) · ⌊kρ⌋
+ (H(k − 1)−G(k − 1)) · ⌊(k − 1)ρ⌋
+ (H(1)−G(1)) · ⌊ρ⌋

= (H(k)−G(k)) ·
(︄
⌊kρ⌋ − k

k − 1⌊(k − 1)ρ⌋+ 1
k − 1⌊ρ⌋

)︄
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Let us denote

f(k) =
(︄
⌊kρ⌋ − k

k − 1⌊(k − 1)ρ⌋+ 1
k − 1⌊ρ⌋

)︄
.

If f(k) > 0, the size could only increase. If f(k) = 0, the size remains the same.
If f(k) < 0, the size might have decreased—those are important (“bad”) cases.
We can bound

0 ≤ H(k)−G(k) = ⌈G(k)⌉ −G(k) < 1,

hence
size(H)− size(G) ≥ min (0, f(k)) .

Now we just need to sum this difference from ⌈λ⌉ to 2 to bound size(F ′)−size(F ).

size(F ′)− size(F ) ≥
⌈λ⌉∑︂
k=2

min(0, f(k))

It only remains to plug in ρ = 1.6 and make the calculation for ⌈λ⌉ = 4 and
⌈λ⌉ = 60. We give a list of values of f(k) for k from 2 to 60 in Appendix C.
Plugging in ⌈λ⌉ = 4 gives us

size(F ′)− size(F ) ≥ 0

and plugging in ⌈λ⌉ = 60 gives us

size(F ′)− size(F ) > −12.

Solutions I and F ′ are almost identical, they may differ only in the smallest
bags—solution F ′ might have some bags of size 1 instead of some larger bags in
solution I. This implies

size(I) ≥ size(F ′) ≥ size(F )− 12.

See Figure 4.9 for an illustration of the proof of Claim 4.16.
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Figure 4.9: Graphical representation of F , F ′ and I. In the first step of the
transformation from F to F ′, 9

5 is rounded up to 2 and the number of used
bags of cost 5 (and size 8) increases by 1

5 . In order to keep the total cost the
same, number of bags of cost 4 (and size 6) decreases by 1

4 . The total amount
of bags decreased by 1

4 − 1
5 = 1

20 , hence we add 1
20 of a bag of cost 1 (and size

1). This is actually the only step in which something happens since number
of used bags of cost 4 and 3 is already integral. Solution F ′ is almost identical
to the solution I, but has 1

20 of bag of cost 1 instead of 1
20 of bag of cost 2.
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5. Rocks

Figure 5.1: Rocks have arbitrary sizes.

In this section, we present a slightly modified version of proof by Eberle et
al. [5]. We will use Longest processing time first algorithm. It takes the jobs in
order of decreasing processing time and assigns them to the smallest bag. See
Rocks for pseudocode.

Algorithm Rocks
Input: Processing times p1 ≥ · · · ≥ pm

Number of bags b

B ← empty mapping
for i← 1 to n do

j ← index of the bag with smallest size
B[i]← j

end for
return B

Theorem 5.1. Rocks has a robustness factor 1 + m−1
b

for b ≥ m.

Proof. We will use a modified version of GreedyAssignment for the second
stage. We will partially copy the adversary and then use a greedy algorithm.
Note that we cannot copy the adversary completely since they might have created
bags different from ours. We assign bags in order from the largest to the smallest.
The algorithm starts with a copycat phase and switches to a greedy phase once it
encounters a bag with at least two jobs. In the copycat phase, it simply assigns
the bag to the machine on which the adversary placed the only job in the bag.
In the greedy phase, it tries to place the bag on a machine with enough capacity
left. See Copycat for pseudocode.

The bags assigned in the copycat phase were certainly fine at the time of their
assignment since we have placed them on the same machines as the adversary and
nothing else there. We need to show that all the capacities remain non-negative
in the greedy phase. If there are no bags with at least two jobs, we are done. Now,
let amax be the size of the largest bag containing at least two jobs. Furthermore,
let amin denote the size of the smallest bag; by definition amin = ab.
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Lemma 5.2. It holds that amax ≤ 2amin.

Proof. Consider the time when we added the last job to the bag of size amax,
let us denote processing time of this job plast. Clearly plast ≤ 1

2amax since amax
contains at least two jobs and plast is the smallest. Because we are using Rocks
for job assignment, it must hold

amax − plast ≤ amin

and Lemma 5.2 follows.

Suppose we have already placed k < b bags and we are in the greedy phase.
We will show that there is a machine with sufficient capacity left for the bag ak+1.
We will make use of the Lemma 5.2 and the trivial inequality ak+1 ≤ amax.

The b− k bags which are not yet assigned have a total size of at least

Premaining ≥ (b− k − 1)amin + ak+1 ≥
1
2(b− k + 1)ak+1.

The total size of the already assigned bags is at least

Passigned ≥ kak+1.

Since the total initial capacity was ∑︁m
i=1 si = ∑︁n

i=1 pi = ρ(Premaining + Passigned),
the total remaining capacity is at least

C ≥ ρPremaining + (ρ− 1)Passigned = (ρ− 1)(Premaining + Passigned) + Premaining ≥

≥ 1
2(ρ− 1)(b + k + 1)ak+1 + 1

2(b− k + 1)ak+1 =

= 1
2

(︄
(m− 1)(b + k + 1)

b
+ b− k + 1

)︄
ak+1.

The expression
(m− 1)(b + k + 1)

b
+ b− k + 1

is decreasing in k since k has linear coefficient

m− 1
b
− 1 < 0.

Thus we only need to check the maximum value of k. Let k = b− 1, we get

C ≥ 1
2

(︄
(m− 1) · 2b

b
+ 2

)︄
ak+1 = mak+1.

Thus it follows that there is a machine with capacity at least ak+1 which completes
the proof.
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Algorithm Copycat
Input: Bag sizes a1 ≥ · · · ≥ ab

Machine speeds s1, . . . , sm

Desired robustness factor ρ
Assignment used by the adversary

for j ← 1 to m do
cj ← ρsj

end for
M ← empty mapping
copycat phase ← True
for i← 1 to b do

if copycat phase and bag i contains exactly one job then
k ← index of the job in the bag i.
j ← the machine on which was the job k assigned by the adversary.

else
copycat phase ← False
j ← index of a machine largest capacity left

end if
M [i]← j
cj ← cj − ai

end for
return M
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Conclusions
We have studied the problem of speed-robust scheduling and we have strenghtened
and generalized some of the known results.

We have shown that the best achievable robustness factor for sand in the case
of m machines and b bags is

ρ(m, b) = mb

mb − (m− 1)b
.

We have used a combination of known technieques and new ideas to prove this.
We have introduced a new category called p-pebbles. We have applied the

results about sand to pebbles and we have presented an algorithm with robustness
factor at most

ρ(m, b) + p.

This gives a better result than the best known algorithm for rocks for small values
of p.

From the result about pebbles follows existance of an algorithm for bricks
with robustness ratio at most

ρ(m, b) + m

n
,

which improves the previously known result

ρ(m, b) ·
(︃

1 + m

n

)︃
and generalizes it for b ≥ m. We have significantly improved the best known
algorithm for bricks for the case b = m achieving robustness factor of 1.6. The
question of optimal robustness factor for bricks remains open. However, we have
reduced the range of possible values of the best achievable robustness factor for
b = m to only [︃

e

e− 1 , 1.6
]︃

.

The general case of rocks remains open. The strongest currently known result
is the existance of an algorithm with robustness factor at most

1 + m− 1
b

.
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A. Small cases for bricks
We provide a proof of Lemma 4.7 here. We prove it by trying all possible combina-
tions of m and n such that m ≤ 144 and n

m
≤ 60. We provide an implementation

in Python 3.11. We represent numbers as fractions to avoid issues with numeri-
cal precision. We implement Algorithm IntegralFractional, since it is faster
than Algorithm Bricks. The code should take at most a few minutes to run on
modern hardware.

from fractions import Fraction
from math import ceil, floor

def integral_fractional(
n: int,
m: int,

) -> dict[int, Fraction]:
"""
n: number of jobs
m: number of machines

returns: Solution in format {bag_cost: number_of_bags}
"""
c = n
r = m
I = {}
while r > 0 and c > 0:

k = ceil(Fraction(c, m))
x = min(r, ceil(Fraction(c - m * (k - 1), k)))
c -= x * k
r -= x
I[k] = x

return I

rho = Fraction(8, 5)
for m in range(1, 145):

for n in range(1, 60 * m + 1):
I = integral_fractional(n, m)
solution_size = sum(

floor(bag_cost * rho) * bag_count
for bag_cost, bag_count in I.items()

)
if solution_size < n:

raise Exception(
f"Failed for: {n=} {m=} {rho=} \n Solution: {I}"

)
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B. Brick Surplus
We will again make use of a computer to handle more difficult calculations. We
evaluate the relative brick surplus at all integer values of λ from 1 to 60. In
addition, we evaluate for every value of λ when we stop using bags of some cost,
i.e. kmin increases. The first case of this happening is λ = 11

3 when we stop using
bags of cost 1. We also calculate the relative brick surplus for those non-integral
values of λ.

Checking only those values is sufficient, since the brick surplus is linear be-
tween the calculated points. See Figure B.3 for values of relative brick surplus
at integer values of λ and Figure B.4 for values at non-integer values of λ. See
Figures B.1 and B.2 to get a better idea of how the relative brick suplus behaves
for small and large values of λ. Note that the relative brick surplus sometimes
decreases.

The values of λ for which kmin increases were calculated in the following way:
Execute GreedyFractional for all integer values of λ ≤ 60. Let us denote one
of such solutions F . Take a look at F (kmin), if we now slowly increase λ, F (kmin)
will linearily decrease. We can calculate at which point it reaches 0; if it happens
before λ crosses another integer, we found a point where kmin changes.

Claim 4.15 follows, since the relative brick surplus is always non-negative and
is at least 1

12 for λ ≥ 4. It is equal to 1
12 for values of λ between 4 and 6.
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Figure B.1: Plot of relative brick surplus for small λ.
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Figure B.2: Plot of relative brick surplus for large λ.

λ surplus λ surplus λ surplus
1 0.000 21 0.321 41 0.561
2 0.000 22 0.366 42 0.576
3 0.000 23 0.377 43 0.576
4 0.083 24 0.377 44 0.599
5 0.083 25 0.417 45 0.615
6 0.083 26 0.405 46 0.615
7 0.133 27 0.405 47 0.636
8 0.133 28 0.405 48 0.638
9 0.244 29 0.406 49 0.658
10 0.253 30 0.440 50 0.690
11 0.253 31 0.457 51 0.690
12 0.297 32 0.457 52 0.709
13 0.220 33 0.457 53 0.710
14 0.220 34 0.472 54 0.710
15 0.252 35 0.500 55 0.728
16 0.252 36 0.528 56 0.732
17 0.310 37 0.539 57 0.749
18 0.276 38 0.539 58 0.765
19 0.276 39 0.561 59 0.765
20 0.321 40 0.561 60 0.782

Figure B.3: Table of approximate values of the relative brick surplus for
integer values of λ.
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bag cost λ surplus
1 3.667 0.167
2 6.350 0.133
3 9.044 0.253
4 11.761 0.317
5 14.477 0.252
6 17.188 0.321
7 19.902 0.321
8 22.622 0.393
9 25.338 0.430
10 28.052 0.406
11 30.772 0.465
12 33.490 0.472
13 36.206 0.539
14 38.923 0.563
15 41.642 0.576
16 44.360 0.615
17 47.076 0.638
18 49.795 0.690
19 52.514 0.719
20 55.231 0.732
21 57.948 0.766
22 60.668 0.793

Figure B.4: Table of approximate values of the relative brick surplus at the
points when we stop using bags of given cost.
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C. Values of f

Let us evaluate

f(k) =
(︄
⌊kρ⌋ − k

k − 1⌊(k − 1)ρ⌋+ 1
k − 1⌊ρ⌋

)︄

for ρ = 1.6 and k ∈ {2, 3, . . . , 60}. See Figure C.1 for both exact and approximate
values of f(k). You might notice that the signs of f(k) are periodic (with the
exception of first few values) with a period of 5.

k f(k) ≈ f(k) k f(k) ≈ f(k) k f(k) ≈ f(k)

21 −11
20 –0.55 41 −23

40 –0.57
2 2 2.00 22 10

21 0.48 42 18
41 0.44

3 0 0.00 23 − 6
11 –0.55 43 −4

7 –0.57
4 1 1.00 24 11

23 0.48 44 19
43 0.44

5 3
4 0.75 25 11

24 0.46 45 19
44 0.43

6 −2
5 -0.40 26 −14

25 –0.56 46 −26
45 –0.58

7 2
3 0.67 27 6

13 0.46 47 10
23 0.43

8 −3
7 -0.43 28 −5

9 –0.56 48 −27
47 –0.57

9 5
8 0.62 29 13

28 0.46 49 7
16 0.44

10 5
9 0.56 30 13

29 0.45 50 3
7 0.43

11 −1
2 -0.50 31 −17

30 –0.57 51 −29
50 –0.58

12 6
11 0.55 32 14

31 0.45 52 22
51 0.43

13 −1
2 -0.50 33 − 9

16 –0.56 53 −15
26 –0.58

14 7
13 0.54 34 5

11 0.45 54 23
53 0.43

15 1
2 0.50 35 15

34 0.44 55 23
54 0.43

16 − 8
15 -0.53 36 −4

7 –0.57 56 −32
55 –0.58

17 1
2 0.50 37 4

9 0.44 57 3
7 0.43

18 − 9
17 -0.53 38 −21

37 –0.57 58 −11
19 –0.58

19 1
2 0.50 39 17

38 0.45 59 25
58 0.43

20 9
19 0.47 40 17

39 0.44 60 25
59 0.42

Figure C.1: Table with exact and approximate values of f(k) for ρ = 1.6 and
k ∈ {2, 3, . . . , 60}.
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