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CHAPTER 1

Objectives

The presented work contributes to computer modelling of plasma. Various
techniques have been applied to solve several selected problems of plasma
physics. The work is divided into two parts according to areas of plasma
physics that are investigated. Both parts start with a basic theoretical back-
ground that is essential for understanding the problems and provides an
introduction to studied problems on a general level (chapters 2 and 8). An
introduction to the presented work and the scope of the work follow with a
short description of the main points which the work is focused on (chapters
3 and 9). Some common aspects of both parts can be found in used numeri-
cal techniques and algorithms. A brief review of elementary methods and
their mathematical description is given in the first part and the implemented
algorithms are then described in detail in individual sections.

The objective of the first part was to create a tool to simulate the plasma-
solid interaction in conditions typically observed in a low-temperature glow
discharge plasma. Two different methods of computational physics are used
and compared (chapters 4–6).

The second part gathers computational studies of plasma behaviour in the
fusion research. The work focuses specifically on the edge plasma transport in
tokamaks. Several subjects of interest have been investigated and they follow
each other according to the level of their complexity. First, plasma parame-
ters in a tokamak are studied from the global point of view by means of a code
coupling the main plasma and the edge region and using a simple description
of the edge plasma behaviour (chapter 10). Further, a one-dimensional fluid
model of the edge plasma has been developed and its description and appli-
cation to time-dependent problems follow in chapter 11. The work presented
in chapter 11 represents the key point of the thesis. Chapter 12 provides an
introduction to two-dimensional edge modelling. Main points for a possible
continuation are summarized in the last chapter.
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CHAPTER 2

Theoretical background

2.1 Probe theory

One of the fundamental techniques for measuring the properties of a plasma
is the probe diagnostics. The current collected by the probe, biased at a
given voltage, provides information about the conditions in the plasma [1].

When a solid or a biased electrode is immersed into a plasma, a local
disturbance develops and the Debye sheath is formed in the vicinity of the
electrode. The condition of quasi-neutrality is not valid near the surface, the
ion and electron densities can differ and large electric field can be sustained
[1, 2].

Let us assume a one-dimensional example. The effect of introducing a
potential ϕ0 at x = 0 is given by a solution of Poisson’s equation

ϕ = ϕ0exp

(

− x

λD

)

. (2.1)

We assumed that electrons are in thermal equilibrium and satisfy the Boltz-
mann relation ne = n0exp(eϕ/kTe) and ions are infinitely massive so that
the ion density ni = n0 is constant. The decay length λD is called the Debye
length, n0 is the undisturbed plasma density and x is the distance from the
position where the potential is imposed. The externally imposed potential
is shielded within a distance of the order of λD and outside the sheath re-
gion, the plasma remains quasineutral ne ≃ ni [1]. The Debye length is here
defined as

λD =

√

ǫ0kTe

n0e2
. (2.2)

The I-V characteristic measured by the probe (the current flowing to the
surface as a function of the voltage) allows to determine the physical pro-
perties of the plasma – the density, the electric potential, the electron tem-
perature (in case of the Maxwell energy distribution) or the electron energy
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distribution function in general case. The analysis and theoretical aspects
are described in [1] where basic relations between the measured parameters
and the properties of the plasma are derived.

The probe diagnostics has the advantage of providing local measurements.
Experimentally, the electrostatic probes are simple devices, the theory of
probes, however, is complicated and certain assumptions and simplifications
are required. There is only a limited range of conditions under which the
derived theoretical formulas are justified and do not lead to faulty interpre-
tations. The theory becomes further complicated when a magnetic field or
negative ions are present. The exact way in which the plasma parameters
are related to the probe characteristic depends on the probe shape. The
fundamental Langmuir theory involves the planar, cylindrical and spherical
geometry and the configuration of a single or double probe. In a hot, dense
and magnetized plasma as found in the fusion research, more complicated
configurations or different types of probes can be used.

2.2 Experimental setup of glow discharge

Figure 2.1: A circuit for probe measurements in the glow discharge.

The classical and fundamental device where the probe measurements can
be easily performed is illustrated in Fig. 2.1. The scheme of a discharge
involves two metal electrodes connected to a DC power supply enclosed in
a glass tube of the radius R ∼ 1 cm. The tube can be evacuated and filled
with various gases at different pressures [3].

Typical conditions in a glow discharge are low currents (I ∼ 10−6 −
10−1 A), low or medium pressures (p ≈ 100 − 1000 Pa) and high voltages
(U ∼ 100 − 1000 V). The glow discharge plasma is very weakly ionized and
the temperature of the electrons and ions is widely separated (Te ∼ 104 K,
Ti ≈ 300 K).

To perform the probe analysis of the glow discharge, a probe is inserted
into the positive column of the discharge. The classical Langmuir probe is a
metal conductor of the planar, cylindrical or spherical shape and its inactive
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part is coated by an insulator. The characteristic size is about 0.1–1 mm or
even smaller. The probe potential is imposed by a DC power supply and it
is determined with respect to a reference electrode, typically the anode (Fig.
2.1).

2.3 Computational approach

Plasma processes in the vicinity of an electrode inserted into a plasma can be
simulated numerically. The investigation of the plasma-solid interaction plays
an important role in the field of the probe diagnostics or plasma technologies
and the computer modelling might effectively enrich the theoretical studies
and experimental observations.

In any macroscopic physical system containing many individual parti-
cles, there are basically three levels of the mathematical description: the
exact microscopic description, the kinetic theory, and the macroscopic or
fluid description. The computational treatment of a plasma system can be
build up on the basis of these three fundamental approaches.

The microscopic approach leads to computationally intensive simulations.
An accurate description of the behaviour of the system, based on an analysis
of the trajectories of all constituent particles might be virtually impossi-
ble for some problems. On the other hand, the macroscopic information
might be insufficient for some applications. Therefore these two descriptions
are sometimes combined together into the hybrid modelling approach [4, 5].
Other applications combine the kinetic description with the fluid approach
and treat some components of the system as a fluid and others kinetically.
Another description, appropriate for a high-temperature plasma in strong
magnetic fields, averages the kinetic equations over the fast circular motion
of the gyroradius. The gyrokinetic modelling has been extensively used in
tokamak simulations.

2.3.1 Microscopic description

The behaviour of a system can be described on the microscopic level when
the dynamics of the system is based on a description of the motion of all
individual particles. Because the system generally consist of a large number
of the particles, it is impossible to find the properties of such complex system
analytically.

The microscopic approach is the principle of the Molecular dynamics
(MD), a computational technique in which the equations of motion of the
particles are solved numerically [6]. The algorithm comprises several stages.
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Interactions between the particles are described by a force field. Since a
precise calculation of the force field (the potential) as a sum of the forces
from all the constituent particles would be intolerably time-demanding, vari-
ous effective algorithms (e.g. the particle-in-cell (PIC), the particle-particle-
particle-mesh (P3M), the Ewald summation or the fast multipole method
(FMM)) are being implemented. The motion of the particles in a force field
F is governed by Newton’s laws

dr

dt
= v, (2.3)

dv

dt
=

F

m
. (2.4)

The ordinary differential equations (2.3) and (2.4) are solved numerically by
propagating the solution in time with given initial conditions. The algorithm
used to update the positions and velocities of the particles can be typically
based e.g. on the second-order Leap-frog or Verlet integrator [7].

In a low-temperature and weakly ionized plasma, such as the glow dis-
charge plasma, collisions of charged species with neutrals are significant and
have to be taken into account. Apparently, the whole system of the plasma
and neutrals would be insoluble purely within the MD approach and in this
case, only the charged plasma species are evolved by the MD simulation,
while the collisions with the neutrals are treated separately. The neutrals
constitute a background in which the plasma particles are scattered. The
most natural method to describe the plasma-neutral collisions is a stochastic
treatment based on the Monte Carlo (MC) technique [8], using the cross-
sections of individual reactions or the mean free path characterizing the rate
of the collisions.

The MD simulations are costly in computer time, especially in two or
three dimensions. The setup of the MD simulation – namely the time step,
the number of particles and the grid spacing should account for the available
computational power. The most time-consuming task is the evaluation of
the force field from the positions of the particles and parallel algorithms that
allow to distribute the computation among more CPUs are highly appreci-
ated.

2.3.2 Kinetic description

The accurate description of a plasma system, based on an analysis of the
trajectories of particles, is theoretically too complex and the models may be in
practise computationally insoluble for some problems. Then the probability
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concepts can be applied and the plasma behaviour can be solved by statistical
methods of physical kinetics.

The main statistical characteristic of the system in the kinetic approach
is the distribution function f = f(r,v, t), the probability density to find
a particle at time t at position r with velocity v. By averaging out the
microscopic information in the exact theory, one obtains statistical equations
describing the evolution of the distribution function. The essential equation
of the kinetic theory is the Boltzmann equation (BE)

∂f

∂t
+ v · ∇f +

F

m
· ∇vf =

(

∂f

∂t

)

c

(2.5)

which can be derived from Liouville’s theorem. In practise, the Vlasov equa-
tion – a formulation in the absence of collisions and assuming that the force
is exclusively electromagnetic or the Fokker-Planck equation – a formulation
when the Coulomb collisions are present, are commonly used.

The kinetic equation can not be solved analytically in general. It is a non-
linear integro-differential equation that contains the collision integral and it
can be solved analytically only in special cases. The numerical solution of
the Boltzmann equation represents a real challenge for numerical methods.
The difficulties of the numerical solution are caused by the non-linearity, the
complexity due to the dimensionality (large number of independent variables)
and the evaluation of the integral that defines the collision operator.

A variety of techniques for integrating the differential equation have been
applied to solve the equations computationally, commonly with the Monte
Carlo method for evaluating the collision integral [9]. The kinetic treatment
is not further considered in the thesis.

2.3.3 Fluid description

Averaging the kinetic theory even further by deriving velocity moments of
the Boltzmann equation, a set of partial differential equations (PDEs) can be
established, describing the evolution of macroscopic plasma quantities such
as the density, the mean velocity or the pressure, without any knowledge of
the individual particle motion. The numerical solution of the fluid model
will be introduced in section 2.4 devoted to methods of computational fluid
dynamics (CFD).
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Theoretical definition

Zero moment of the Boltzmann equation (
∫ +∞

−∞
(BE) d3v) is the continuity

equation for the particle density

∂n

∂t
+ ∇ · (nu) =

Qρ

m
. (2.6)

The source term on the right-hand side of the equation (2.6) corresponds to
the collision term of the Boltzmann equation and describes a mass production
and annihilation due to the ionization and recombination or eventually due
to other processes. Similarly, the momentum transport equation

∂(mnu)

∂t
+ ∇(mnuu) + ∇P − nq(E + u× B) = uQρ + Qp (2.7)

can be obtained as the first moment of the Boltzmann equation
(m
∫ +∞

−∞
v (BE) d3v). Here we substituted the Lorentz force F = q (E+v×B).

The second moment (1
2
m
∫ +∞

−∞
v2 (BE) d3v) determines the energy transport

∂

∂t

(

1

γ − 1
p +

1

2
mnu2

)

+ ∇ ·
(

1

γ − 1
pu + uP +

1

2
mnu2u + q

)

−nqE · u =
1

2
u2Qρ + u · Qp + QE .

(2.8)

Pij = p δij defines the scalar pressure p and γ in (2.8) is the ratio of specific
heats, i.e. γ = 5

3
if a gas has three degrees of freedom for motion. The mean

parameters (the density n, velocity u, pressure tensor P and heat flux q) are
defined as

n =

∫ +∞

−∞

f d3v, (2.9)

u =
1

n

∫ +∞

−∞

vf d3v, (2.10)

P = m

∫ +∞

−∞

(v − u)(v − u)f d3v, (2.11)

q =
1

2
m

∫ +∞

−∞

(v − u)(v − u)2f d3v (2.12)
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and the following formulas define the transport of the mass, momentum and
energy due to collisions

Qρ = m

∫ +∞

−∞

(∂f/∂t)c d3v, (2.13)

Qp = m

∫ +∞

−∞

(v − u) (∂f/∂t)c d3v, (2.14)

QE =
1

2
m

∫ +∞

−∞

(v − u)2 (∂f/∂t)c d3v. (2.15)

Classical fluid formulation

We could continue to derive the moments of the Boltzmann equation for high-
order terms, the equation chain must be, however, truncated somewhere. In
many practical problems this is made in the first order by substituting the
energy equation by an equation of the state, e.g. p = nkT , or in the second
order by using a closure approximation for the heat flux q, e.g. the algebraic
expression qe = −5

2
kDene∇Te, known as Fourier’s approximation [10]. The

equations (2.6)–(2.8) constitute a typical set of the fluid equations which
are used in many simulations. To complete the system of the equations and
establish the self-consistent description of a plasma, we must describe the
electromagnetic behaviour of the plasma. The system is therefore closed
by Maxwell’s equations. The precise derivation of the fluid equations is
explained in [11] in more detail.

Various specific applications of the fluid theory requires different forms of
models. Generally, we can use one set of the fluid equations for each plasma
species. This constitutes the two-fluid model if we consider a simple two-
component (ion and electron) plasma. Another alternative when plasma is
considered as a single fluid in the center of mass frame constitutes the most
widely known plasma theory – magnetohydrodynamics [2].

Sources and sinks of the mass, momentum and energy due to collisions are
generally very complicated functions of the velocity and they are commonly
simplified in the following manner. The mass balance collision term in the
equation (2.6) gives the rates of creation and loss of species. The productivity
of the reactions is defined by the reaction rate coefficients kr corresponding
to a collision of type r. Assuming an electron collision with a neutral, the
source term for the formation of species k can be evaluated as

Qρ
k = mk

∑

r

lrkkr(Te)nenn (2.16)
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where lrk is the number of particles of species k created or lost per the collision
type r [12]. The reaction rate coefficient is defined as kr = 〈vσr〉 where σr

is the cross-section of the collision r. A useful approximation of the collision
term in the momentum transport equation (2.7) and the energy equation
(2.8) is Krook’s approximation

Q
p
k = −

∑

l

mkml

mk + ml

nk (uk − ul) νkl, (2.17)

QE
k = −

∑

l

3

2
k nk

2mkml

(mk + ml)2
(Tk − Tl) νkl (2.18)

where νkl is the mean collision frequency [13].
The fluid equations are usually simplified further. In some cases, viscous

effects characterized by the anisotropic part of the pressure can be neglected
and the pressure tensor P is reduced to the scalar pressure p. The electron
energy equation is often simplified by neglecting the kinetic energy contribu-
tion compared to the thermal one. Another standard modelling approach
used commonly in many simulations is the drift-diffusion approximation
[10, 14–18]. The full momentum equation (2.7) is replaced by an algebraic ex-
pression for the particle flux and the number of partial differential equations
in the model is reduced. The transport of species due to the density gradient
and the transport of charged species under the influence of an electric field

∂n

∂t
+ ∇ · Γ =

Qρ

m
, (2.19)

Γ = ±µnE −∇(Dn) (2.20)

is described by the mobility µ and the diffusion coefficient D. The expression
(2.20) is equivalent to the equation of motion (2.7) after neglecting the un-
steady and inertial contribution (the first and second term). Conditions
under which the drift-diffusion approximation is fulfilled are mentioned in
[10–12]. In these publications, one can find also useful closure approxima-
tions or the issue of the treatment of collision processes.

2.4 Computational fluid dynamics

The fluid model introduced in the previous section is a set of non-linear par-
tial differential equations and can be solved by methods of computational
fluid dynamics. The most fundamental consideration in CFD is how to treat
a continuous fluid in a discretized fashion on a computer. The spatial do-
main is discretized into small cells to form a grid and a suitable algorithm

12



is then applied to solve the equations. Commonly, the algorithms convert
the problem of PDE solution to solving a system of algebraic equations (Fig.
2.2), however, they differ in a way how the differential equations are dis-
cretized and how the individual differentiated terms in PDEs are replaced
by algebraic expressions connecting nodal values on the grid. Generally,
we can distinguish between the finite difference method (FDM), finite ele-
ment method (FEM) and finite volume method (FVM). Time derivatives in
time-dependent equations are discretized almost exclusively using the finite
difference approach.

GOVERNING
PARTIAL

DIFF. EQS.
DISCRETIZATION

SYSTEM OF
ALGEBRAIC
EQUATIONS

EQUATION
SOLVER

APPROXIMATE
SOLUTION

Figure 2.2: An overview of the computational solution.

2.4.1 Finite difference method

The method of finite differences is widely used in CFD [19–21]. The finite
difference representation of derivatives is based on Taylor’s series expan-
sions. The discretization process introduces an error dependent on the order
of terms in the Taylor’s series which are truncated. The derivation of ele-
mentary finite difference schemes of the first-order or second-order accuracy
is described in [22].

To represent the derivatives by the differences, a number of choices is
available, especially when the dependent variable appearing in the governing
equation is a function of both coordinates and time. In that case, the finite
difference approach can be divided into implicit and explicit techniques. The
explicit techniques are relatively simple to set up and program, but there are
stability constraints given by Von Neumann method [22] which can result in
long computer running times. On the other hand, the implicit methods are
stable even for larger values of the time step, however, a system of algebraic
equations must be solved at each time step and thus the implicit techniques
are more complicated to implement.

Publications devoted to the fluid modelling in plasma physics mention a
variety of methods based on the finite difference schemes, namely the explicit
Lax-Wendroff and MacCormack’s methods, the implicit Crank-Nicholson
scheme, all described in [22] in more detail. At last, let us mention the drift-
diffusion approximation (section 2.3.3) representing a PDE of convection-
diffusion type. The standard explicit treatment requires too small grid
spacing and therefore special discretization schemes have been developed.
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The most widely used is the Scharfetter-Gummel implicit scheme [23], origi-
nally developed in the frame of semiconductor device simulations.

2.4.2 Finite element method

The finite element formulation is introduced in [22, 24]. A computational
domain is divided into non-overlapping elements. The elements have either
a triangular or a quadrilateral form, they can be curved and cover the whole
domain. The grid formed by the elements need not be structured, in opposite
to the FDM.

The basic philosophy of the FEM is that an approximate solution u of
the discrete problem is assumed a priori to have a prescribed form and to
belong to a function space

u =

N
∑

j=1

ujφj(x, y, z). (2.21)

The basis (shape) functions φj are chosen almost exclusively from low-order
piecewise polynomials and it is computationally advantageous to assume a
function non-zero in the smallest possible number of elements associated with
the function (Fig. 2.3).

Figure 2.3: One-dimensional linear approximating functions. Reprinted from [24].

The FEM does not look for a solution of a partial differential equation
itself, but looks for a solution of the integral form of the PDE obtained from
a weighted residual formulation [22, 24]. The unknown coefficients uj are
determined by requiring that the integral of the weighted residual R of the
PDE over the computational domain Ω is zero

∫

Ω

Wj(x, y, z) R dx dy dz = 0 j = 1, 2, ..., N. (2.22)
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Different choices for the weight function Wj give rise to different methods in
the class of methods of weighted residuals. In the FEM, the weight functions
are chosen from the same family as the basis functions Wj = φj, which is
the most popular choice. The equation (2.22) results in a system of algebraic
equations for the coefficients uj or a system of ordinary differential equations
in case of time-dependent problems. The finite element approach is applied
in [25] for example.

2.4.3 Finite volume method

The fundamental idea of the finite volume method is to discretize the integral
form of equations instead of the differential form and it can be thought as a
special case of the so-called subdomain method [24]. A computational domain
is subdivided into a set of cells that cover the whole domain (Fig. 2.4). The
volumes on which the integral forms of conservation laws are applied need
not coincide with the cells of the grid and they can even be overlapping.
Different choices of volumes determine different formulations of the FVM.

nodes

a b c

cell-centered volume cell-vertex volume
(non-overlapping)

cell-vertex volume
(overlapping)

cell-vertex volume
(on triangular cells)

Figure 2.4: A typical choice of the volumes in the FVM. Reprinted from [22].

A PDE is integrated over the control volume and then an approximate
evaluation of the integral form is obtained by the discretization. As a brief
example, let us consider the cell-vertex formulation (Fig. 2.5) applied to a
PDE of the form

∂u

∂t
+

∂f

∂x
+

∂g

∂y
= 0. (2.23)

Integrating the equation (2.23) over the control volume ABCD (Fig. 2.5)
and applying Green’s theorem yields the integral form

d

dt

∫

u dV +

∫

ABCD

(f dy − g dx) = 0 (2.24)
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that can be discretized to obtain an approximate equation for each nodal
point (j,k)

SABCD

duj,k

dt
+

DA
∑

AB

(f ∆y − g ∆x) = 0. (2.25)

The discretization scheme again represents a system of algebraic equations.
An introduction to the finite volume technique is given in [22]. The method
has been applied e.g. in [26].

Figure 2.5: A two-dimensional finite volume. Reprinted from [24].

2.4.4 Comparison

Both finite difference techniques and methods based on the weighted residual
formulation are widely used in simulations. The advantage of the FDM is its
relatively simple implementation, especially in case of problems which do not
require to transform coordinates. By contrast, a practical use of the FEM
and FVM in simulations is usually connected with commercial solvers such
as FLUENT [27–29] or COMSOL Multiphysics [30].

The principle and comparisons of these three techniques are demonstrated
in [22, 24] on various applications and specific examples. The most important
advantage of the FEM and FVM is a possibility to use an unstructured grid.
Due to the unstructured form, very complex geometries can be handled with
ease [22]. This geometric flexibility is not shared by the FDM. In addition,
the FVM provides a simple way of the discretization without the need to
introduce generalized coordinates even when the global grid is irregular [24].
The use of the FVM is also supported by situations where the conservation
laws can not be represented by PDEs, but only the integral forms are gua-
ranteed (discontinuities, etc). However, the main problem of the FVM are
difficulties in the definition of derivatives which can not be based on Taylor’s
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expansions. The FVM becomes more complicated if it is applied to a PDE
containing the second derivatives, therefore the FVM is best suitable for flow
problems in primitive variables where the viscous terms are absent or are not
very important [22].

The accuracy of particular methods is analyzed again in [22, 24]. As a
rough guide, the use of linear approximating functions in the FEM gene-
rates solutions of about the same accuracy as the second-order FDM and the
accuracy of the FEM with quadratic approximating functions is comparable
with the third-order FDM [24]. The accuracy of the finite volume techniques
is determined by the formulation type and can depend on irregularity of
the grid. Generally, finite volume approaches are first-order or second-order
accurate in space [22].

The fluid models developed in the frame of the thesis are based on the
finite difference approach and the numerical solution and the implementation
of the technique will be described in individual sections.
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CHAPTER 3

Introduction

The sheath formation during the interaction of a plasma with a solid surface
is a fundamental phenomenon of plasma science. The understanding of pro-
cesses in the boundary layer between the plasma and immersed substrates is
very important in probe diagnostics and in plasma based and plasma chemi-
cal technologies. In recent years, the behaviour of the sheath and presheath
region has been a topic of many investigations [31–36]. The sheath structure
and the sheath formation have been analyzed by many authors experimen-
tally and theoretically and regarding the complexity of the studied problems,
the computational approach is now being widely used. Moreover, the theore-
tical description loses its validity in some conditions (e.g. a collisional plasma
at high pressures) and in that case, the computational approach proved to
be the best solution.

Chapters 4–5 present a computational analysis of the plasma-solid inte-
raction in the DC glow discharge in a low-temperature argon plasma. Plasma
processes can be simulated using various computational approaches (see sec-
tion 2.3). Differences between common computational techniques are con-
nected particularly with times of the computation, the accuracy and the
applicability scope. The fluid modelling is used for various kinds of prob-
lems in plasma physics. Since the fluid codes are based on solving a set
of partial differential equations for macroscopic plasma quantities such as
the density or average velocity, they describe the macroscopic evolution of
plasma phenomena and no direct evidence about the individual particles can
be obtained. The particle techniques, where the trajectories of individual
particles are being traced, provide microscopic information about processes
in the plasma and give more detailed insight into the plasma behaviour, but
crucial demands are time requirements, especially in more dimensions.

In the scope of this thesis two groups of techniques of computational
physics were applied to solve the same problem. A particle code (chapter
4) and a fluid model (chapter 5) were used to study the sheath structure
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and the interaction of an argon plasma with a probe for conditions of the
DC glow discharge, also in the presence of an external magnetic field. Some
modern plasma-based technologies employ magnetic fields and therefore the
movement of charged particles in these fields is of scientific interest. The
magnetic field significantly influences the sheath region, its size and shape.
In addition to effects of the magnetic field, the influence of the pressure and
the size of a solid surface immersed in the plasma on the sheath structure
is analyzed. Chapter 6 compares results of the fluid model and the particle
simulation, discusses discrepancies, reviews the applicability of both tech-
niques and compares their time requirements.

The effort was focused on the physical aspects of plasma processes during
the plasma-solid interaction and realistic assumptions about physical pro-
cesses taking place in the sheath and presheath region. Besides these ques-
tions, the interest was focused on problems of computational physics such
as the efficiency of computer codes. The attentions was given to the perfor-
mance of the individual algorithms in two dimensions and a comparison of
both computational methods was concerned.
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CHAPTER 4

Two-dimensional

particle-in-cell simulation

4.1 Basic features

Figure 4.1: The two-dimensional computational domain L × L and a cylindrical
probe with the radius Rp.

A two-dimensional particle model has been developed to simulate a prob-
lem of the interaction of a plasma and a probe embedded into the plasma.
The probe is immersed into the positive column of a DC glow discharge and
a small region surrounding the probe is described by the model.

A low-temperature two-component argon plasma is considered in the
model presented in the thesis, however, the implementation of the model
enable to simulate also a multi-component chemically active plasma. Some
results for an electronegative plasma composed of electrons, positive argon
ions and negative oxygen ions showing the influence of the plasma composi-
tion on the sheath structure have been published in [37].

20



The algorithm combines the deterministic MD simulation of the trajecto-
ries of charged plasma species (electrons and argon ions) and the stochastic
MC treatment of the scattering of these particles from a neutral background.
In the presented results, only elastic collisions were taken into account for
the purpose of a comparison with the fluid code introduced in chapter 5,
regarding that results with non-elastic atomic processes such as the ioniza-
tion, recombination and excitation have been published already elsewhere
[38] and the non-elastic collisions were neglected without loss of generality of
the model.

The model describes the interaction of the plasma with a cylindrical probe
of the infinite length. This approximation allows to reduce the dimensionality
of the problem and use a two-dimensional spatial computational domain.
The domain is discretized to form a grid. The Cartesian coordinate system
is applied. The plasma motion is simulated in a square computational region
(x,y) with the probe in the centre in the z direction perpendicular to the
computational plane (Fig. 4.1).

4.2 Computational method

The charged particles are initially randomly distributed in the computational
domain and a random velocity corresponding to the Maxwell velocity distri-
bution is assigned to each particle. Although the model is two-dimensional
in the spatial space, all three Cartesian components of the velocity are cal-
culated, which is referred to as the 2D3V model. A sink of particles appears
as the particles cross the boundary of the domain or as they leave the region
of the simulation at the plasma-probe interface. At the external boundaries,
an undisturbed plasma with the Maxwell energy distribution function both
for the electrons and ions is assumed. The density of the undisturbed plasma
n0 is a parameter of the model. A source of the particles from the undis-
turbed plasma is simulated as the Maxwellian flux of the particles to the
domain and the particles are generated with positions at the boundary. It
is also possible to implement the source simply as a flux of particles from
a region surrounding the computational domain in which the particles are
also simulated by the MD. The velocity of these particles is Maxwellian and
the particles are uniformly distributed in the region with the density n0. In
principle, however, an arbitrary velocity distribution of the particles could
be used in a particle code.

Collisions of charged species with neutral atoms are treated stochastically.
A frequency of the collision events is determined either by the mean free path
or the mean collision frequency which are parameters of the model and they
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are prescribed to a constant value.
The dynamics of particles is driven by the electromagnetic force. An

external electric field is not considered and the potential is calculated from
the Coulomb interaction. An external magnetic field can be included into
the simulation, but for the simplicity, only a magnetic field in the x direction
parallel with the computational plane is involved so that the model can still
be two-dimensional.

4.2.1 Molecular dynamics simulation

The temporal evolution of the system of charged plasma species is calcu-
lated by the MD technique. Initial conditions are prescribed and the time-
dependent plasma behaviour is described by Newton’s equations. The equa-
tions are integrated to advance the positions and velocities of the individual
particles. Macroscopic parameters of the system converge to a steady-state
solution describing e.g. the spatial or energy distribution of the particles in
the computational region or the potential drop in the sheath which develops
during the interaction of the plasma with the probe.

The numerical solution of Newton’s laws of motion (section 2.3.1) is based
on the Leap-frog algorithm

v
k+1/2
i = v

k−1/2
i +

Fk
i

mi

∆t, (4.1)

rk+1
i = rk

i + v
k+1/2
i ∆t. (4.2)

The equations are integrated for each particle (index i). The solution is
updated iteratively to the new time level tk = t0 + k∆t using the Leap-frog
integrator and starting with initial conditions for the positions r0

i at time t0

and for the velocities v
−1/2

i at time t0 − 1
2
∆t.

The force F describes the electrostatic interactions of the particles. The
magnetic field is not included in the force F. The influence of an external
magnetic field can be simulated by the MD, however, a special treatment
is required, because the Leap-frog integrator (4.1)–(4.2) can be applied only
if the force is not a function of the velocity. The algorithm (4.1)–(4.2) can
be modified to describe the motion of particles in a magnetic field when the
influence of the electrostatic interaction and the magnetic field is separated
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in the following way

v∗
i = v

k−1/2
i +

1

2

Fk
i

mi
∆t, (4.3)

v∗∗
i = R(B) · v∗

i , (4.4)

v
k+1/2
i = v∗∗

i +
1

2

Fk
i

mi
∆t, (4.5)

rk+1
i = rk

i + v
k+1/2
i ∆t. (4.6)

The equations (4.3)–(4.6) constitute the algorithm ”half acceleration, rota-
tion, half acceleration” and its formulation can be found in [7]. The influence
of the magnetic field is introduced as a rotation of the velocity vector around
the axis coinciding with the magnetic field direction (the operator R). The
angular velocity of the rotation corresponds to the cyclotron frequency ωc.

The plasma is composed of electrons and positive argon ions. Due to
significantly different masses, the dynamics of these species is governed by
significantly distinct time scales. A correct solution of time-dependent prob-
lems would require to update the heavier ions using the smaller time step
corresponding to the characteristic time scale of the lighter electrons. Such
treatment would be computationally too intensive for conditions assumed
in the presented model, therefore the dynamics of the electrons and ions is
separated using a different time step ∆t for each plasma species. This tech-
nique is justified when it is applied to solve a steady-state problem. The
time-dependent evolution of the system is unphysical when different time
steps are used for different species, while the final stationary state to which
the system converges should not be affected.

4.2.2 Particle-in-cell method

The electrostatic interaction between charged particles is calculated by the
particle-in-cell method. The PIC method is widely used for its straightfor-
ward implementation, particularly in plasma physics.

The computational region is discretized to form a mesh. The charge of
the particles is interpolated to the mesh points using a bilinear scheme (the
cloud-in-cell algorithm [6]).

The electric potential ϕ is calculated on the mesh points from the charge
density ρ as a solution of Poisson’s equation

△ϕ = − ρ

ǫ0

(4.7)

and is fixed by Dirichlet boundary conditions. The potential is set to ϕ = 0 at
the interface with the undisturbed plasma. The internal boundary represents
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an interface with a metal probe with a voltage Up and the boundary condition
imposed on the electric potential is ϕ = Up.

The electric field E = −∇ϕ is interpolated from the mesh points back to
the particle locations (xi,yi) and the electric force Fi = qiE(xi, yi) required
to integrate the equations of motion is obtained.

4.2.3 Algorithm for solving Poisson’s equation

Poisson’s equation (4.7) is discretized on the grid using the traditional five-
point stencil (Fig. 4.2). The grid is equidistant in both directions ∆x =
∆y = h. The equation

ϕi+1,j + ϕi−1,j − 4ϕi,j + ϕi,j+1 + ϕi,j−1 = −ρi,j

ǫ0

h2 (4.8)

for each nodal point (i,j) is formulated. A cylindrical probe requires to
modify the equation (4.8) in the vicinity of the probe to involve the real
probe shape. Distances between the grid points and the boundary defined by
the cylindrical probe surface must be calculated and the discretized Poisson’s
equation has a general form

ϕi+1,j
c + d

b
+ ϕi−1,j

c + d

a
+ ϕi,j+1

a + b

d
+ ϕi,j−1

a + b

c

−ϕi,j

(

a + b

c
+

a + b

d
+

c + d

a
+

c + d

b

)

=
e

ǫ0

(ne − ni)
(a + b)(c + d)

2

(4.9)

with appropriate distances a, b, c and d (Fig. 4.2). The difference scheme
applied at each grid point (i,j) constitutes a system of linear equations. Two
solvers of the linear system have been implemented. The system can be
solved either iteratively or using the UMFPACK library [39–42].

Figure 4.2: The five-point stencil.

The iterative solver is based on the successive over-relaxation (SOR)
method, a fast modification of the Gauss-Seidel method. The solution is
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updated to the new time level (k + 1) in the following iterative procedure

ϕ∗
i,j =

abcd

ab + cd

[

ϕk
i+1,j

b(a + b)
+

ϕk
i−1,j

a(a + b)
+

ϕk
i,j+1

d(c + d)
+

ϕk
i,j−1

c(c + d)
+

ρ

2ǫ0

]

, (4.10)

ϕk+1
i,j = ωϕ∗

i,j + (1 − ω)ϕk
i,j. (4.11)

In the SOR algorithm, a parameter ω is used to speed up the convergence,
which happens if the value of ω is correctly chosen. The technique and proper
values of the parameter ω are specified in [43].

Although the SOR is not the strongest iterative technique, it was chosen
for its simple implementation. For the sake of the efficiency, however, it is
advisable to use the direct solver implemented in the UMFPACK library.
The solution of systems of linear equations in UMFPACK is based on an LU
decomposition solver.

4.2.4 Non self-consistent technique

The solution of Poisson’s equation self-consistently with the spatial distribu-
tion or particles is the most time-consuming part of the model, particularly
in two or three dimensions. The method can be much more effective if the
potential is prescribed before the calculation. It can be specified analytically
or computed by a different technique, e.g. the fluid modelling. Analytic
formulas are given in [1] and the non self-consistent treatment of the force
field is used e.g. in [44]. The presented self-consistent PIC code can be easily
modified into the non self-consistent form and some results have been already
published in [45].

4.3 Basic results

Input parameters of the PIC simulation are summarized in Tab. 4.1. We
consider a cylindrical probe of the infinite length with the radius Rp and
its axis perpendicular to the two-dimensional computational domain L ×
L. The values of the undisturbed plasma density and the mean collision
frequency corresponding to a given pressure were derived from experimental
data obtained during measurements performed in the positive column of the
DC glow discharge in an argon plasma.

The computational grid is uniform in both dimensions. The following
results were obtained using a grid with the resolution 200 × 200 grid points
and the time steps of the numerical iterations were ∆te = 1 × 10−11 s and
∆ti = 1 × 10−8 s. The total number of particles in the simulation is varying
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Figure 4.3: The normalized plasma density ne/n0 and ni/n0 (a, b, c), the electric
potential ϕ [V] (d, e, f), the velocity distribution of the electrons and ions N(ve)
and N(vi) in the whole region (g, h) and the electron velocity distribution N(ve)
at the probe surface (i). Rp = 5 × 10−4 m, p = 1000 Pa, Bx = 0 T.

parameter description

L = 0.01 m the size of the computational domain
Rp = 5.0 × 10−4 m the probe radius
Up = 10 V the probe voltage
Te = 23210 K the temperature of electrons
Ti = 300 K the temperature of argon ions
p = 1000 Pa the pressure
νe = 7.8 × 109 s−1 the collision frequency of electrons
νi = 3.9 × 107 s−1 the collision frequency of argon ions
n0 = 2.7 × 1015 m−3 the density of the undisturbed plasma

Table 4.1: Parameters of the model.
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Figure 4.4: The normalized electron density ne/n0 (a), the normalized ion density
ni/n0 (b) and the electric potential ϕ [V] (c). Rp = 5 × 10−4 m, p = 1000 Pa,
Bx = 0.1 T.

as the particles leave or enter the domain. The simulations were started with
6 × 106 charged particles.

The results of the simulation with the parameters specified in Tab. 4.1
are shown in Fig. 4.3. The distribution of the plasma density and elec-
tric potential in the computational domain is symmetric around the probe
axis. The radial dependence of the plasma density in the presheath region is
logarithmic, which is predicted also by a simple theoretical model – the ana-
lytic solution of the diffusion equation (see section 6.1), and which is also in
agreement with experimental investigations. In the vicinity of the probe, the
sheath region develops with a significant potential drop. The quasi-neutrality
condition is not fulfilled, the electrons are attracted towards the positively
biased probe and the electron density is higher than the density of the ions
ne > ni (Fig. 4.3 c). Let us remark that Fig. 4.3 is a result of a two-
dimensional calculation. The values in each grid position (i,j) are plotted
in Fig. 4.3 c. It causes the vertical spread of the plasma density becoming
significant at the end due to imposing the boundary condition on a square
computational domain. The distance r ranges from the probe surface r = 0.5
mm to the end of the computational domain r = 5 mm.

The plasma distribution in the sheath and presheath region and the ve-
locity distributions of the electrons and ions are influenced by collision pro-
cesses. Only elastic scattering of charged particles from neutrals was taken
into account here. Fig. 4.3 g and h show the velocity distribution of the elec-
trons and ions in the simulated region. The electron distribution coincides
well with the Maxwell velocity distribution function, while the ions are not
precisely Maxwellian as a result of collisions. There are various ways how
collisions can be implemented in a particle code. Possible treatments of the
collision processes and their influence on the energy distribution function are
discussed in [46] where an improved approach for the ions is described. Here
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the treatment of the collisions in not the main subject of interest.
Besides the atomic processes, the sheath structure and formation is

affected by the magnetic field. The simulation in Fig. 4.4 was carried out
assuming a constant external magnetic field in the direction of the x axis
B = (Bx, 0, 0). The effect of the magnetic field is clearly illustrated. The
shape of the sheath region is elongated in the x direction parallel with the
magnetic field, and the perturbed region has an elliptic form in two dimen-
sions. More results will be presented and discussed in chapter 6.

28



CHAPTER 5

Two-dimensional fluid model

The physical aspects of any fluid flow are governed by three fundamental prin-
ciples – the mass, momentum and energy conservation. In plasma physics,
some of the authors [16, 48] simplify the momentum equation and use the
drift-diffusion approximation (section 2.3.3) for modelling of the plasma-solid
interaction. Compared to this standard approach, the model presented here
aims to solve the full momentum equation. The model has been also imple-
mented in COMSOL Multiphysics [49] where a model using the drift-diffusion
equation has been successfully solved before [38]. However, the convergency
for the full model in COMSOL Multiphysics was not maintained and no
stable solution has been obtained.

5.1 Fluid description and governing equations

The mathematical description of a plasma flow in the fluid modelling is based
on a model governed by partial differential equations describing macroscopic
plasma parameters such as the density n and the average velocity u. The
governing PDEs can be derived taking velocity moments of the Boltzmann
equation (section 2.3.3). A practical use of the fluid approach for a plasma is
not based on the general form of the equations as they can be derived from the
Boltzmann equation and various approximations are commonly considered.
In this computational study, we use the following system of the conservation
laws describing a transport of the mass and momentum for each plasma
species (electrons k=e and ions k=i)

∂nk

∂t
+ ∇ · (nkuk) = 0, (5.1)

mknk

∂uk

∂t
+ mknk(uk · ∇)uk = qknk(E + uk ×B) −∇pk − mknkνkuk. (5.2)
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The quantities in the equations (5.1) and (5.2) have their usual meaning – the
density n, the average velocity u, the pressure p, the mean collision frequency
ν, the mass m, the charge q, the electric and magnetic fields E and B. The
continuity and momentum equations (5.1) and (5.2) are supplemented with
Poisson’s equation for the electric potential ϕ

△ϕ =
e

ǫ0

(ne − ni). (5.3)

We assume a constant temperature of the electrons and ions, the scalar
pressure pk = nkkTk and a constant collision frequency νk. Viscous effects
are neglected and we do not solve for the energy balance. The source terms
are simplified due to the assumption of elastic collisions, non-elastic collisions
such as the excitation and ionization are neglected. A fluid model with more
precise treatment of the collisions considering the non-elastic scattering and
including the energy equation is presented in [38], however, on the other
hand, the model described in [38] has other constraints. Compared to other
papers where the momentum equation is simplified, this model works with
the full momentum equation. It is usual, under certain assumptions being
fulfilled, to cancel the inertial and convective term of the equation (5.2). The
simplified momentum equation is of an algebraic form and describes a flux
composed of the drift and the diffusion, see the equation (2.20). In such a
case, Scharfetter-Gummel scheme [23, 50] is commonly proposed to solve the
continuity equation which is a PDE of the convection-diffusion type.

5.2 Computational method

The system of equations (5.1)–(5.3) is solved using the finite difference
approach. The equations are discretized on a regular rectangular grid (i,j)
with a uniform grid spacing in both dimensions.

5.2.1 Poisson solver

The electric potential ϕ is calculated on the grid points as a solution of
Poisson’s equation (5.3). The equation (5.3) is discretized on the grid with
the five-point stencil using central differences for spatial derivatives, similarly
as in chapter 4. The resulting system of linear equations can be solved by
the UMFPACK library or by the SOR method.
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5.2.2 Transport equations

The fluid equations (5.1) and (5.2) can be written in a general form

∂f

∂t
+

∂

∂x
(fvx) +

∂

∂y
(fvy) = S (5.4)

for the quantity f = (n, ux, uy) and with the advective velocity v = (vx, vy)
and a source S. The same form of the continuity and momentum equation
allows us to apply the same method of solution and the equations (5.1) and
(5.2) can be discretized in a similar way. The numerical algorithm is based on
the flux-corrected transport (FCT) scheme and the solution is being updated
to converge to a steady state with a time step ∆t.

The numerical implementation of the FCT technique involves three steps
– an advection, a diffusion and an anti-diffusion. To update the solution,
any traditional high-order numerical scheme can be used. The two-step Lax-
Wendroff discretization [51] is implemented here. Basically, it uses Lax-
Friedrichs steps to construct solution values at intermediate points and there
are various ways how the method can be formulated in two dimensions. Let
us assume a source-free advection equation for a function f

∂f

∂t
+

∂F

∂x
+

∂G

∂y
= 0 (5.5)

solved on an equidistant Cartesian grid with a uniform grid spacing ∆x =
∆y = h. The algorithm assumes that the flow variable f is transported to
the next time level using the following difference form

fk+1
i,j = fk

i,j −
∆t

h

(

F
k+1/2

i+1/2,j − F
k+1/2

i−1/2,j

)

− ∆t

h

(

G
k+1/2

i,j+1/2
− G

k+1/2

i,j−1/2

)

(5.6)

where the fluxes F = F (f) and G = G(f) are obtained at the intermediate
time level (k+ 1

2
) according to a formula involving the Lax-Friedrichs scheme

f
k+1/2

i+1/2,j =
1

4

(

fk
i,j + fk

i+1,j + fk
i+1/2,j−1/2 + fk

i+1/2,j+1/2

)

− ∆t

2h

(

F k
i+1,j − F k

i,j

)

− ∆t

2h

(

Gk
i+1/2,j+1/2 − Gk

i+1/2,j−1/2

)

(5.7)

and in a similar manner for the remaining intermediate points. In the equa-
tions (5.6) and (5.7), F k

i,j expresses F (fk
i,j) and so on. The diffusive flux D is

then computed using a diffusivity coefficient η

Dk
i+1/2,j = η

(

fk
i+1,j − fk

i,j

)

(5.8)
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and analogically at the remaining points and the solution is advanced

fk+1
i,j = fk+1

i,j + Dk
i+1/2,j − Dk

i−1/2,j + Dk
i,j+1/2 − Dk

i,j−1/2. (5.9)

The final step to update the solution to the next time level is to anti-diffuse
the solution using a flux limiter

fk+1
i,j = fk+1

i,j − Lk+1
i+1/2,j + Lk+1

i−1/2,j − Lk+1
i,j+1/2

+ Lk+1
i,j−1/2

. (5.10)

The flux limiter L is calculated using the formula

Lk+1
i+1/2,j = Si+1/2,j max {0, min {c1, c2, c3}} (5.11)

where c1, c2 and c3 are defined as

c1 = Si+1/2,j

(

fk+1
i,j − fk+1

i−1,j

)

, (5.12)

c2 = Si+1/2,j

(

fk+1
i+2,j − fk+1

i+1,j

)

, (5.13)

c3 = |Ak+1
i+1/2,j | (5.14)

and
Ak+1

i+1/2,j = η
(

fk+1
i+1,j − fk+1

i,j

)

(5.15)

is the anti-diffusive flux computed using the updated solution fk+1
i,j from the

equation (5.6). The factor Si+1/2,j is 1 or −1 according to the following
condition

Si+1/2,j =

{

+1 Ak+1
i+1/2,j ≥ 0

−1 Ak+1
i+1/2,j < 0

. (5.16)

The diffusivity coefficient η in the equations (5.8) and (5.15) is calculated
automatically in the code with a primary purpose to smooth oscillations
that can occur in the numerical solution and its magnitude depends on the
advective velocity, time step and grid spacing

η =
ǫ

(1 + 2ǫ)2
, (5.17)

ǫ = max

(

vi,j
∆t

h

)

. (5.18)

The FCT method is a high-order monotone and conservative scheme and
it is second-order accurate in general. The whole procedure enables to smooth
oscillations arising in the numerical solution and to resolve steep gradients.
The implementation follows the algorithm presented in [52] and a detailed
description of the FCT and its important properties are pointed out in [53,
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54]. As an extension of the mathematical summary given above, appropriate
boundary conditions were applied again, thus the difference schemes were
properly modified at the probe boundary to involve the boundary conditions
correctly with respect to the curved probe surface. The technique was further
advanced to handle the source term S of the equation (5.4), but the basic
algorithm still follows the described form. To evolve the solution of a system
of the form (5.4) numerically, it is usually possible to treat the influence of
the source term separately from the influence of the convective terms. The
source term was treated implicitly here.

5.2.3 Boundary conditions

The two-dimensional model of the plasma-probe interaction assumes a square
computational domain (x,y) and a cylindrical probe of the infinite length
in the z direction with a positive voltage Up (Fig. 4.1). The boundary
conditions for this problem imposed on the density, velocity and electric
potential are summarized in Tab. 5.1. Similar boundary conditions were
used in [21]. The problem is fixed by Dirichlet boundary conditions for
the electric potential, assuming a biased electrode with the voltage Up and
an undisturbed quasineutral plasma on the exterior of the computational
domain. A Dirichlet boundary condition is also used for the plasma density
at the outer boundary by setting the density to an experimental value of
the undisturbed plasma density. All the other conditions are kept open, i.e.
we extrapolate the values from nearest grid points inside the computational
region to the boundary.

exterior interior

(undisturbed plasma) (solid surface)
ne Dirichlet (ne = n0) open (extrapolation from

the interior of the domain)
ni Dirichlet (ni = n0) Dirichlet (ni = 0)
ue open open
ui open open
ϕ Dirichlet (ϕ = 0) Dirichlet (ϕ = Up)

Table 5.1: Boundary conditions.
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5.3 Basic results

Parameters of the fluid model are specified in Tab. 5.2 and they are identical
with the parameters of the particle simulation in section 4.3.

parameter description

L = 0.01 m the size of the computational domain
Rp = 5.0 × 10−4 m the probe radius
Up = 10 V the probe voltage
Te = 23210 K the temperature of electrons
Ti = 300 K the temperature of argon ions
p = 1000 Pa the pressure
νe = 7.8 × 109 s−1 the collision frequency of electrons
νi = 3.9 × 107 s−1 the collision frequency of argon ions
n0 = 2.7 × 1015 m−3 the density of the undisturbed plasma

Table 5.2: Parameters of the model.

The computational grid used in the fluid code is uniform and the time
stepping is automatic and it is governed by the Courant-Friedrichs-Lewy
(CFL) stability criterion [22]. For the simulation without an external mag-
netic field (Fig. 5.1) and the parameters specified in Tab. 5.2, the values
∆te = 2 × 10−11 s and ∆ti = 8.5 × 10−9 s satisfy the stability conditions
in the steady state, comparably the same values as in the PIC code for the
simulation in Fig. 4.3. The simulation in Fig. 5.1 was carried out with the
resolution 800 × 800 grid points and only elastic collisions were considered.
Fig. 5.1 shows the distribution of the electrons and ions in the computational
domain, the electric potential and the mean velocity of the charged particles
for a case without the magnetic field.

The effect of an external magnetic field is illustrated in Fig. 5.2 and
described further in the following chapter where also a comparison of the
fluid and particle approach is discussed. Note that the results in Fig. 5.2
were produced with a different strength of the magnetic field than the results
of the PIC simulation in Fig. 4.4, provided that for strong magnetic fields,
stability problems occurred.
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Figure 5.1: The normalized plasma density ne/n0 and ni/n0 (a, b, c), the electric
potential ϕ [V] (d, e, f), the x component of the average electron velocity ux

e [106

m/s] (g, h), the magnitude of the average electron velocity ue [106 m/s] (i), the
x component of the average ion velocity ux

i [103 m/s] (j, k) and the magnitude of
the average ion velocity ui [103 m/s] (l). Rp = 5× 10−4 m, p = 1000 Pa,Bx = 0T.
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Figure 5.2: The normalized ion density ni/n0 (a), the average velocity of the
electrons ue [106 m/s] (b) and the average velocity of the ions ui [103 m/s] (c).
Rp = 5 × 10−4 m, p = 1000 Pa, Bx = 0.001 T.
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CHAPTER 6

Results

The sheath formation in the vicinity of a solid surface and the structure
of the sheath is influenced by various physical processes, the composition
of the plasma or the geometry of the immersed solid substrate. Chapter
6 summarizes effects of collisions, an external magnetic field, the pressure
and the probe size on the sheath size and shape and on the distribution
of charged particles in the sheath and presheath region. Some results have
been already published in [37, 55]. The results calculated by the fluid and
particle approach slightly differ, however, both techniques give the same
results in qualitative sense concerning the influence of various parameters.
A comparison of both approaches follows in section 6.5.

6.1 Influence of collisions

Properties of the sheath are influenced by collision processes. The collisions
of charged particles with neutral atoms influence the thickness of the sheath
and the spatial and velocity distribution of the charged particles in the sheath
and presheath region. The effect can be deduced from Fig. 6.1 which com-
pares results of three simulations. The first simulation involves only elastic
scattering, the second simulation was calculated with non-elastic collisions
(such as the excitation and ionization) using energy dependent cross-sections
and the results of the third simulation were obtained for a collisionless case.
In all cases, the same mean collision frequencies were used. The treatment
of the non-elastic atomic processes was based on data presented in [56].

Radial profiles of the plasma density are compared with an analytic solu-
tion of the diffusion equation for these specific cases. The diffusion equation
is written in cylindrical coordinates

∂2n

∂r2
+

1

r

∂n

∂r
= 0 (6.1)
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Figure 6.1: The radial dependence of the normalized plasma density n/n0 (up)
and the electric potential ϕ [V] (down) for a simulation with elastic scattering
(left), a simulation with non-elastic collisions (middle) and a collisionless case
(right). Rp = 5 × 10−4 m, p = 1000 Pa, Bx = 0 T. Results of the PIC simulation.

and the coefficients a and b of the solution

n = alnr + b (6.2)

are obtained applying boundary conditions n = 0 at the probe surface and
n = n0 at the outer boundary. The most realistic case with the non-elastic
collisions is close to match the analytic solution. For the elastic scattering,
which is realized as a random change of the velocity direction of a particle, the
plasma density is lower than the analytic solution and the point of the charge
separation is shifted below the analytic curve. It is important, however, that
the result of the fluid model (Fig. 5.1 c) where only the elastic collisions are
considered is close to the PIC result in Fig. 6.1 on the left.

6.2 Influence of pressure

Fig. 6.2 shows results of the fluid model at different pressures. At higher
pressures, the plasma density is higher, collisions of electrons and ions with
neutrals are more frequent and the width of the sheath region is smaller. The
effect of the pressure on the sheath width corresponds quantitatively to the
expression (2.2) in chapter 2. The values of the undisturbed plasma density
n0 and the mean collision frequencies νe and νi were derived experimentally
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and they are following: n0 = 1.9 × 1015 m−3, νe = 3.9 × 109 s−1 and ν i =
2.0 × 107 s−1 for p = 500 Pa, n0 = 2.7 × 1015 m−3, νe = 7.8 × 109 s−1 and
ν i = 3.9× 107 s−1 for p = 1000Paandn0 = 3.9× 1015 m−3, νe = 1.6× 1010 s−1

and ν i = 7.8 × 107 s−1 for p = 2000 Pa.
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Figure 6.2: The radial dependence of the normalized plasma density n/n0 (up)
and the electric potential ϕ [V] (down) for p = 500 Pa (left), p = 1000 Pa (middle)
and p = 2000 Pa (right). Rp = 5 × 10−4 m, Bx = 0 T. Results of the fluid model.

6.3 Influence of magnetic field

It was already shown in the previous chapters that an external magnetic field
influences the sheath shape and elongation. If the magnetic field is parallel
with the x axis, the perturbed region is extended in the x direction. The
elongation obviously depends on the strength of the magnetic field (Fig. 6.3).

For a collisionless case, even weak magnetic fields show a strong effect.
In a weakly ionized low-temperature plasma, collisions of charged particles
with neutrals become important and suppress the influence of the magnetic
field. The combined effect of the magnetic field and the pressure (Fig. 6.4)
shows that the influence of the magnetic field is not so significant at higher
pressures as the plasma is denser and the charged particles collide with the
neutrals more often. It should be stated that for a collisionless plasma in the
presence of a magnetic field, it is characteristic to observe perturbations of
the sheath and presheath region relatively far from the solid surface. In case
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Figure 6.3: The distribution of the ion density ni/n0 (up) and the electric potential
ϕ [V] (down) for Bx = 0.01 T (left), Bx = 0.1 T (middle) and Bx = 1 T (right).
Rp = 5 × 10−4 m, p = 1000 Pa. Results of the PIC simulation.
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Figure 6.4: The distribution of the ion density ni/n0 (up) and the electric potential
ϕ [V] (down) for p = 100 Pa (left), p = 1000 Pa (middle) and p = 2000 Pa (right).
Rp = 5 × 10−4 m, Bx = 0.1 T. Results of the PIC simulation.

of such strong extension of the sheath shape by the magnetic field, the ratio
of the width of the perturbed region in the direction of the magnetic field
lines and in the perpendicular direction can be even one order of magnitude.

40



6.4 Influence of geometry

Besides physical processes in the plasma, the sheath width and the potential
drop correspond to the geometry of the embedded probe, its size and shape.
Only the cylindrical geometry is involved here. Fig. 6.5 shows radial profiles
of the plasma density and the potential distributions and their dependence
on the probe radius. With increasing radius, the electron density on the
probe surface decreases and the sheath region becomes larger. The third
case in Fig. 6.5 is a result for the planar geometry and it was calculated by
a one-dimensional fluid model as a limit case with Rp → ∞.
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Figure 6.5: The radial dependence of the normalized plasma density n/n0 (up)
and the electric potential ϕ [V] (down) for Rp = 1×10−4 m (left), Rp = 5×10−4 m
(middle) and a planar probe (right). p = 1000 Pa, Bx = 0 T. Results of the fluid
model. A comment – to compare results for different probe radii, the distance r
ranges here from the probe surface where r = 0 to the end of the computational
region where r = 5 mm. The size of the domain in the two-dimensional model is
then L = 2Rp + 10 mm.

In a real plasma, the density saturates to the undisturbed plasma density
n0 at a certain distance from the solid surface. The model is an approximation
where the undisturbed plasma conditions are fixed by boundary conditions at
the outer boundary of the computational region. The size of the region L then
determines the radial profile of the plasma density. Fig. 6.6 indicates that
as the sheath becomes smaller for a larger computational region, the plasma
density distribution matches the analytic solution better. It could be deduced
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that the disagreement of the solution with the analytic one comes mainly
from the sheath, while in the presheath, the solution would coincide with the
analytic curve. An explanation might be following. In the sheath region, the
probe repels the ions and accelerates the electrons. The velocity distribution
of the particles in the sheath is not Maxwellian due to the presence of a
strong potential drop. Also collisions influence the velocity distribution and
the assumption of a constant temperature and energy-independent collision
frequencies is not valid. The energy distribution function surely affects the
spatial distribution of the particles in the sheath and the radial profile of
the plasma density. In [57], a fluid model is presented, in which the mean
collision frequency is not constant, the energy dependence is evaluated and
the result matches the analytic solution precisely. Further, the mean collision
frequencies were obtained from measurements in a real plasma where also
non-elastic collisions are present. Therefore it is possible that the rates of
the elastic collisions are overestimated and the frequency should be actually
lower than the frequency in the plasma where the non-elastic events are not
neglected.
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Figure 6.6: The radial dependence of the normalized plasma density n/n0 for
L = 0.01 m (left), L = 0.05 m (middle) and L = 0.1 m (right). Rp = 5 × 10−4 m,
p = 1000 Pa, Bx = 0 T. Results of the fluid model.

6.5 Discussion and comparison

The results of the fluid model (Fig. 5.1 and 5.2) have the same character as
the results of the particle simulation (Fig. 4.3 and 4.4), especially the radial
profiles of the density in the presheath coincide for the fluid model (Fig. 5.1
c) and for the particle model with elastic collisions (Fig. 4.3 c), while results
of the PIC code with non-elastic collisions or for a collisionless case (Fig. 6.1)
show a higher discrepancy compared to the fluid approach.

The influence of the magnetic field and other parameters on the sheath
structure is qualitatively the same for both techniques, however, we have
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not achieved exact agreement in the quantitative sense. The sheath region
is slightly larger in the PIC result (Fig. 4.3 c) and the electron density at
the probe surface in the fluid result (Fig. 5.1 c) is higher than in Fig. 4.3
c. In the fluid approach, the boundary conditions characterize the steady-
state solution and the particle flux at the probe surface is determined by
conditions imposed on the plasma density and velocity. Some authors use
Dirichlet boundary conditions ne = 0 and ni = 0 on the solid surface [30] and
a different approach (Γe ·n = −neµeE + 1

4
vth
e ne) is used e.g. in [58, 59]. Here

the boundary conditions listed in Tab. 5.1 were applied, similarly as in [21].
Using these conditions, we have obtained smaller velocity of the electrons at
the probe surface than in the particle simulation (compare Fig. 4.3 i and
Fig. 5.1 i) and thus higher electron density.

For a given probe, there are two main parameters of the model controlling
the thickness of the sheath and its extension in a magnetic field. Obviously,
the first one is the strength of the magnetic field (Fig. 6.3) and the se-
cond parameter is the pressure or collision processes in general (Fig. 6.4 and
6.1). The treatment of collisions between charged particles and a neutral
background is always inconsistent in the fluid description and in the parti-
cle model even for the same value of the collision frequency. The particle
approach is based on the microscopic description and the scattering of the
particles is simulated using the mean free path or the mean collision fre-
quency. In the fluid code, we solve a set of partial differential equations with
the collision frequency as a coefficient.

Concerning the question of the collision processes, the fluid description
can be advanced and the atomic processes and collisions can be treated in
a way similar to the particle code using the hybrid approach. A hybrid
model, which is partly based on the fluid approach and partly on the particle
technique, was introduced in [4] and used also in [60]. The fluid code in [60] is
coupled with a non self-consistent particle code that simulates the trajectories
of particles microscopically. The particle simulation does not solve for the
electric potential and uses the electric potential calculated by the fluid code.
Since the Poisson solver in the PIC method is the most intensive part of
the particle simulation, the hybrid approach is more effective than a self-
consistent particle technique. The particle part of the calculation combines
a Molecular dynamics simulation of the trajectories of charged particles and
the stochastic Monte Carlo treatment of the scattering of these particles
from a neutral background. The Monte Carlo algorithm computes values
of the reaction rate coefficients which are sent back to the fluid code. This
procedure makes it possible to converge the collision processes in each time
step when we run the scheme iteratively. Such method allows an inclusion
of the collisions in the fluid description that is consistent with the particle
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approach. Applying this technique, the effect of collisions on the sheath
structure should be in agreement with the self-consistent particle simulation
and the discrepancy between the fluid and the particle approach might be
further decreased. The described method is nevertheless beyond the scope
of this thesis and it was a subject of interest in [60]. Here we focus on
other aspects – the implementation of the fluid model, the solution of the
full momentum equation, the choice of boundary conditions, the inclusion of
the magnetic field into the models, etc.

In the presence of a magnetic field, the size and the extension of the sheath
and presheath region can strongly depend on properties of the plasma and
processes in the boundary layer. Fig. 6.4 demonstrates the effect of the
pressure which determines the density and the rate of scattering events. It
is characteristic that the perturbation caused by the magnetic field affects
the concentrations of charged particles more significantly than the electric
potential. It should be remarked that the fluid model presented here uses
the assumption of the undisturbed plasma as the boundary condition on the
exterior of the domain and prescribes the boundary value of the density to
the undisturbed value n0. In certain conditions, the sheath and presheath
region in the presence of a magnetic field can be significantly extended along
the magnetic field (see e.g. Fig. 6.4 on the left) compared to the perturbation
perpendicular to the magnetic field (typical for a collisionless plasma where
the elongation along the magnetic field lines can be even ten times larger
than in the perpendicular direction). In such a case, the perturbed zone
could extend enough to be far outside the computational domain and the
assumption of the undisturbed plasma at the exterior boundary would not be
valid anymore. Then the boundary condition imposed on the density should
be correctly selected or the size and the form of the considered simulated
region should be modified, e.g. using a rectangular region instead of the
square one that would correspond to physical conditions and describe better
the geometry of the problem.

The efficiency of the codes depends on considered physical aspects such as
the magnetic field strength or the pressure. In addition, the influence of the
physical conditions on the code performance can be of a different character
in the two approaches. Specifically, in the particle simulation, one time step
takes longer at higher pressures as the pressure determines the rate with
which individual particles have to be collided, i.e. determines the number of
scattering events in each time step. In the fluid code, the collision frequency
represents a coefficient in PDEs and does not effect on the duration of one
iteration. Further, the pressure influences the number of the time steps
required to reach a steady state and calculations at higher pressures are
computationally more intensive. The magnetic field seems to have no effect
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on the number of time steps needed to converge to a steady state in the
particle simulation, while the time of the fluid computation becomes longer
when a magnetic field is involved, since the time steps governed by the CFL
conditions are smaller. A basic comparison of the code performance was
done for a PIC and a fluid simulation without the magnetic field. One time
step of the particle code (written in C++) for 6× 106 charged particles on a
grid with the resolution 200 × 200 and the parameters specified in Tab. 4.1
takes 3.6 s using the Intel compiler and running on an Intel Core 2 Quad
2.83 GHz CPU. It requires about 1× 105 iterations to converge to a steady-
state solution. One iteration of the fluid code (written in Fortran) running
with the same parameters and the grid resolution 200 × 200 takes 0.07 s on
the same machine. The sufficient number of time steps to reach a steady-
state solution is 5× 104. The most time-demanding part of the computation
is the Poisson solver. The UMFPACK library was used in both cases to
solve for the potential distribution. Even if the PIC code can be eventually
further parallelized, it is much more intensive computation than the fluid
code. In addition, for higher pressures, the time steps ∆te = 1× 10−11 s and
∆ti = 1× 10−8 s, that were chosen in order to obtain results reasonably fast,
might be too large and smaller time steps would be appropriate. In that case,
the difference in the efficiency of the particle and fluid code would become
substantial. At last, it should be mentioned that the results of the particle
code, namely the plasma density and the electric potential, were obtained as
an average over 5 × 104 iterations to reduce the noise and produce results
comparable with the fluid approach.

In general, the fluid approach assuming the equilibrium distribution func-
tion is an approximate calculation giving correct results of a qualitative cha-
racter. It is advisable to use the fluid approach for problems when obtaining
effective and fast results is a priority rather than the accuracy of the calcu-
lation. Due to the principle of the fluid description, the fluid model has a
limited predicative capability. It is not possible to obtain information about
individual particles, e.g. the angular or energy distribution of the particles
impinging on the probe surface. Such information might be useful or im-
portant in some plasma-based technologies. In that case, the particle or the
hybrid technique must be used. The essential disadvantage of the particle
codes are time demands. On the other hand, the solution is more accurate,
there is no assumption limiting the distribution function and the model can
be more easily modified to solve complicated experimental conditions, in par-
ticular, conditions at the boundary (the drift motion of charged particles in
electric and magnetic fields), more complicated collision processes, physical
and chemical processes on the electrode surfaces (the secondary emission, the
charging of solid layers, etc) or dynamic processes in the sheath region. The
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fluid approach is an optimal way to solve problems if physics, the geome-
try and investigated conditions are less complex and if the efficiency is an
important point. The particle method is preferable if a solution of the high
accuracy is required and if the solved problem is too complex to be described
by the fluid approach. The hybrid technique, in which some aspects are
treated microscopically and some aspects macroscopically, could be applied
as a compromise between the accuracy and the performance.
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CHAPTER 7

Conclusions

The size and the shape of the sheath region surrounding a solid substrate
embedded into a plasma depend on plasma properties and processes taking
place in the sheath during the plasma-solid interaction. In particular, the
magnetic field strength or collision processes strongly influence the sheath
structure. Even in case of relatively weak magnetic field, the effect can be
clearly seen. Various effects were analyzed by means of two computational
techniques – the particle and fluid modelling and these two approaches were
compared and discussed.

The presented models were simplified by neglecting non-elastic collisions
and assuming a constant temperature and a constant mean frequency of
plasma-neutral collisions. These aspects could influence the results quan-
titatively, but the qualitative effect and the tendency of the results under
the influence of various conditions would remain the same. At least, it
would be appropriate to use an energy-dependent cross-section of the elastic
collisions (as it is shown in [57]), however, here a simplified model has been
set in order to compare two different techniques on a basic level, while the
issue of collisions is analyzed e.g. in [46] and [57]. In principle, the mo-
dels could be extended to include non-elastic collisions and energy-dependent
cross-sections. In case of the fluid approach, it would be rather straightfor-
ward to upgrade the model described here and improve the treatment of
collision processes or eventually include also the energy balance, because the
numerical implementation would remain the same.

After a modification (with different input parameters, e.g. a different
temperature, different type of particles with appropriate collision processes,
etc), the analysis could be used for similar problems in different types of
plasma. Limiting assumptions used here are the undisturbed plasma with
the Maxwell velocity distribution at the outer boundary and neglecting an
external electric field. The latter assumption is justified for the investigated
problem in the DC glow discharge.
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The electrostatic interaction between particles is calculated by the PIC
method. This method is obviously more efficient (the time complexity
O(N logN)) than the basic direct summation of the forces from all constituent
particles (O(N2)) and the algorithm is easier to implement than advanced
techniques such as the Ewald summation or FMM (O(N)). A drawback of
the PIC technique, which uses the interpolation on a grid, is that interactions
of particles within a cell of the grid are neglected. Short-distance interac-
tions are resolved for instance in hierarchical algorithms (e.g. Barnes-Hut
algorithm), see [47] for more details.

The efficiency of both implemented techniques in two dimensions was
compared. The PIC code could be eventually further optimized and the
code performance could be increased. The considered studied problem was
described by two-dimensional models. It would require, however, a three-
dimensional modelling to describe more complicated geometry of immersed
substrates or to involve an arbitrary magnetic field. Both codes could be
extended into three dimensions in a straightforward manner, but in case of
the particle code, a three-dimensional calculation would be computationally
too intensive and would demand the parallelization or stronger algorithms
for calculating the force field. Some aspects of the models could be also
combined together into a hybrid approach or the particle simulation could
use a prescribed electric potential calculated by the fluid model. In three
dimensions, anyway, also memory requirements might be critical and a three-
dimensional simulation, particularly its spatial resolution, might be limited
by memory capabilities.
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CHAPTER 8

Theoretical background

8.1 Tokamak configuration

The essence of plasma confinement in a tokamak device consists in intro-
ducing a magnetic field which limits the transport of charged particles in
the direction perpendicular to the magnetic field and hence enormously slow
down plasma losses on the walls of the machine.

A scrape-off layer (SOL) is formed at the boundary by embedding a solid
surface (a limiter or divertor) into the device (Fig. 8.1). The solid material in
a contact with plasma constitutes a sink since charged particles tend to stick
to solid surfaces. The charged particles are transported to the solid surface
in the quickest loss direction resulting in a rapid parallel transport along the
magnetic field lines to the limiter or divertor plates. The plasma is scraped-
off in a thin SOL which limits the radial extent of the plasma. One benefit
of the thin SOL is that the contact of the plasma with the outer walls can
be avoided, although the price paid is that the plasma surface interaction
is highly localized at the targets which can therefore suffer from a severe
erosion, melting or evaporation [61, 62].

Particles in the SOL follow a helical trajectory along the magnetic field
lines to the targets. The typical parallel distance (the connection length) for
a toroidal limiter or a poloidal divertor (Fig. 8.1) can be approximated as

Lc ≈ πRtqs (8.1)

and it is defined to be such that the distance between two points of the
contact with the solid surface is 2Lc. The geometric role of the safety factor

qs ≈
RpBt

RtBp

(8.2)

is its relation to the helicity of magnetic field lines, but the principal signifi-
cance lies in a stability condition imposed on the safety factor and hence on
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Figure 8.1: A scheme of the limiter and divertor configuration in the poloidal
cross-section. A thin scrape-off layer is formed in the region of open field lines
where the plasma is in a direct contact with a solid surface.

the configuration of the tokamak [2, 63]. The equation (8.2) is an approxi-
mation for a large aspect ratio Rt/Rp and circular cross-section tokamak. Rt

and Rp is the toroidal and poloidal radius, Bt and Bp is the toroidal and
poloidal magnetic field (Fig. 8.2).

Figure 8.2: The geometric configuration of a tokamak – the poloidal radius Rp,
the toroidal radius Rt, the magnetic field B and the total plasma current Ip.

8.2 Plasma-solid interaction

8.2.1 Sheath properties

Basic properties of a plasma and their establishment are dependent on the
way the plasma interacts with a solid surface. The Debye sheath develops
spontaneously at the interface, forming a region of a net charge with a sub-
stantial potential drop. In a simple picture of the sheath formation, the
electrons, due to their lighter mass, spontaneously charge the solid surface
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negatively creating an electric field that retards the electron outflow and ac-
celerates the ions and equilibrates to the ambipolar transport along the SOL
where the plasma remains quasineutral. In the edge physics, the plasma
parameters such as the plasma density and temperature are strongly influ-
enced by the presence of the sheath. The sheath properties are the boundary
conditions for the edge plasma.

The theory of the electrostatic sheath employs the Bohm criterion for the
plasma velocity at the sheath-presheath interface

ui ≥ cs. (8.3)

The relation (8.3) gives the ion velocity at the sheath entrance corresponding
to the sound speed

cs =

√

k(Te + Ti)

mi

(8.4)

characterized by the electron and ion temperatures Te and Ti and the ion mass
mi. The Bohm criterion normally holds with the equality, but there are some
situations where the ions enter the sheath with the supersonic speed.

The Bohm criterion specifies the particle outflux from the plasma to the
surface

Γi = ni

√

k(Te + Ti)

mi

, (8.5)

relates the flux to the plasma parameters (the density ni and the tempe-
ratures Te and Ti) and quantifies the particle sink caused to the plasma by
its contact with the solid surface. Note that the outflux is independent of
a potential drop in the sheath. Similarly, the energy balance of the sheath
can be found, relating the electron and ion heat flux Qe and Qi at the sheath
entrance to plasma conditions. The sheath heat transmission coefficients δe

and δi are defined as

Qe = δekTeΓe, (8.6)

Qi = δikTiΓi (8.7)

and quantify the energy sink at the solid surface. The heat transmission fac-
tors can be deduced from a simple theoretical approach, a detailed treatment
is described in [62].

The sheath theory for a solid surface at an oblique angle to the magnetic
field involves the Chodura sheath [62]. The usual electrostatic Debye sheath
where ne < ni is followed by a quasineutral magnetic presheath (the Chodura
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sheath). The key result of Chodura’s analysis is the relation for the velocity
of the ions along the magnetic field at the magnetic presheath entrance

ui‖ ≥ cs (8.8)

known as the Chodura criterion (or the Chodura-Riemann condition).

8.2.2 Plasma-surface processes

When plasma species reach a solid surface, they undergo series of collisions
with atoms of the solid. The particles can be scattered back to the plasma
or trapped in the solid or the atoms from the surface of the solid can be
released as a result of the impact by particles [63].

The ions which are incident at the solid surface may be neutralized and
backscattered to return to the plasma. The neutral atoms arriving from the
solid surface are excited and ionized by collisions with the electrons and act
in a process called the recycling. The efficiency of the recycling process is
described by the ratio of the flux returning to the plasma to the incident
flux, referred to as the recycling coefficient R.

The sputtering is a process giving rise to impurities that are released
from the solid surface as a result of impinging ions or atoms. The sputtering
can occur due to physical or chemical reactions and it leads to an erosion of
the solid surfaces. The impurities can be neutral atoms or they are ionized.
They enrich significantly the edge physics through atomic processes and a
radiation and they can have both harmful and beneficial consequences [62].
In the core, they induce a fuel dilution and cooling of the main plasma.
This points at an important advantage of the divertor configuration – the
targets where the intense plasma surface interactions occur are away from
the confined plasma. It was the original motivation for introducing divertors,
however, other advantages are described below. The properties of the solid
surface and how the impurities act in interactions with the plasma depend on
the atomic number Z and therefore the choice of a material is of a scientific
importance. A desirable effect of the presence of impurities in the SOL is
a volumetric power loss, greatly preferable to the intensive and localized
power deposition by a particle impact on the small area of the solid. Besides
intrinsic impurities produced by the sputtering at the limiter or divertor
target (as carbon), we have impurities that are injected to the machine (e.g.
neon). The strength of the sputtering is characterized by the sputtering yield
Y defined as the ratio of the number of eroded particles and the number of
incoming projectiles.
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8.3 Plasma transport

The nature of the plasma transport in tokamaks is very complex. Particles
and energy flow from the core to the SOL by cross-field transport (Fig. 8.3)
and theoretical and computational studies of the main plasma transport have
been established with some success. An important issue is the plasma be-
haviour in the SOL playing an important role in questions of the confinement
and stability. Charged particles in the SOL follow the magnetic field lines to
the targets acting as a sink for the plasma, which results in a parallel pressure
gradient along the SOL forcing the motion of the charged particles towards
the solid surface. It implicates a rapid parallel motion (Fig. 8.3), typically
of the order of the sound speed u‖ ≈ 105 ms−1. The cross-field transport
(u⊥ ≪ u‖) is found to be anomalous and it is generally accepted to be due
to a plasma turbulence.

Figure 8.3: The SOL is straightened out in the direction of the magnetic field.
The arrows indicate an energy and particles flow from the main plasma to the
SOL.

Edge plasma models commonly follow an assumption of the classical
plasma transport in the parallel direction and the fluid approach is widely
used as the theoretical and computational description with certain constraints
stated in sections 8.5 and 12.3. The radial transport is much larger than cal-
culated from the classical theory and turbulence codes aim to describe its
character on the basis of a turbulent motion, however, fluid edge models
usually involve the convection-diffusion approximation

Γ⊥ = nvadv − D⊥
∂n

∂r
(8.9)

for the particle flux Γ⊥ with an advective velocity vadv and a coefficient of the
diffusion D⊥. The cross-field transport coefficients are obtained empirically.

The plasma impinging on the targets recombines on the surface and par-
ticles are subsequently released as neutrals. The neutral atoms are emitted
into the plasma where they can be reionized, usually by an electron impact.
Neutrals recycling from limiters tend to be ionized in the main plasma (Fig.
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8.1), while in a divertor configuration, the ionization can primarily occur
close to the targets below the X point. The transport of the neutrals is
closely related to operational conditions of a machine.

8.4 Operational regimes

Operational conditions and the configuration of a tokamak device play an
important role in physics of the edge. They affect the transport of neu-
trals along the SOL, the character of the plasma transport in the edge and
plasma parameters (the density and temperature). Specific properties of the
SOL (the distribution of particles, temperature gradients, the ionization of
neutrals) indicate characteristic operational regimes. A basic insight can
be gained from an analysis of the parallel transport. More information is
provided in [61, 62, 64].

8.4.1 Simple SOL

If the parallel heat conductivity is small and the heat convection plays a large
role in carrying the power along the SOL to the targets, the plasma tends
to be isothermal with a constant temperature along the SOL. The SOL is
in the sheath-limited regime. This regime is conceptually simple, however,
not the most desirable one since it results in higher plasma temperatures
at the target that can cause a strong sputtering, an erosion and a plasma
contamination. The simple SOL is most typically encountered for geometric
configurations involving limiters.

8.4.2 Complex SOL

Conditions when the parallel heat conduction becomes important and most
of the exhaust power is carried by the conductive transport create the com-
plex SOL with parallel temperature gradients that tend to arise when the
conduction is high. The parallel temperature drop between the upstream
location and the targets can be significant. Such conditions are more easily
achieved using divertors.

8.4.3 Ionization of neutrals

The driving mechanism responsible for the establishment of particular condi-
tions in the edge effecting on the character of the parallel transport, profiles of
the plasma parameters and their gradients arises from a neutral production,
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transport and propagation across the SOL. The mechanism is principally
governed by the configuration of a device and operational conditions (the
average main plasma density and temperature and the total particle and
power flow from the main plasma to the SOL).

In a simple SOL case, the ionization mean free path λion is sufficiently high
for neutrals to penetrate to the confined region and the ionization takes place
primarily in the main plasma (Fig. 8.4). The neutrals recycling from limiters
appear instantly in the confined region due to the direct contact of the limiter
and the main plasma. The produced ions are dispersed rapidly along the field
lines resulting in significant flows and a parallel heat convection along the
SOL and introducing a source of particles which are distributed more or less
uniformly in the parallel direction all along the length of the SOL. The main
source of the electrons and ions in the SOL is a cross-field transport from
the core and the sheath is the only important element in the edge influencing
the transport of particles and energy from the confined region to the targets.
The edge is in the sheath-limited (or the low-recycling) regime.

In the complex SOL, the ionization occurs in the SOL near the targets
(Fig. 8.4) and it is an important source for particles. The ionization mean
free path is small compared to the characteristic spatial scale of the system
(λion ≪ L), a parallel heat conduction carry most of the exhaust power and
the SOL is in the conduction-limited (or the high-recycling) regime.

Figure 8.4: The SOL is straightened out in the parallel direction. The coloured
areas indicate regions of the ionization for the simple SOL (left) and the complex
SOL (right).

8.4.4 Detachment

The complex SOL is harder to understand and analyze, nevertheless it brings
essential advantages. Let us summarize them briefly. A divertor configura-
tion tends to the conduction-limited regime more naturally and its geometric
advantage was described above. The ionization occurs mainly in the SOL,
the role of the heat convection is reduced giving the temperature drop as-
sociated with the conduction. The temperature gradients in the SOL allow
cool plasma in a contact with the solid surface, thus reducing its erosion.

57



Another important practical reason to operate a tokamak employing the
complex SOL is a volume power loss taking place in the SOL in the high-
recycling regime, while the high-recycling process is another consequence of
a low target temperature (note that as the target temperature drops, the
particle flux to the target increases). The volume power losses can occur
due to a radiation of hydrogen or impurities or the charge-exchange and
they are desirable because the power is deposited in a diffuse way instead
of a deposition on the target to a small plasma-wetted area by a particle
impact. Further, the recycling neutrals can cause a neutral frictional drag
obstructing the plasma outflow and reducing the particle power deposition
on the targets. A further benefit arises if the target temperature drops below
a few eV. A volume recombination becomes strong, replaces the sink action
of the solid target and contributes to the radiated power. Such regime can
be achieved by decreasing the target density and temperature to low levels
by an impurity injection and a radiative cooling or by raising the average
density of the main plasma (see chapter 10).

For a detached regime, it is characteristic that the volume power loss
processes remove most of the power that enters the SOL. For the lowest
temperatures, the neutral frictional drag on the plasma flow and the volume
recombination become important resulting in an essential feature of the de-
tached divertor state with significantly reduced both the power and particle
flux to the targets detaching the plasma from the targets. Experimentally,
the divertor detachment is usually approached by ramping up the density
at otherwise fixed discharge parameters. It is manifested as a drop of the
particle flux (or the ion saturation current) onto the plate, an increase of the
Dα signal, an increase of the neutral pressure in the divertor and a drop of
the plasma density and plasma pressure at the plate. The divertor tempera-
tures are found to be in a few eV range and the upstream separatrix densities
typically show a moderate increase [62, 65, 66].

8.5 Edge plasma modelling

An initial modelling approach does not employ a combined system of the
main plasma and the SOL in the self-consistent way, but takes as given
the total particle and power flow from the main plasma into the SOL. The
sources of energy and particles relate the SOL plasma parameters with the
main plasma, specifically, with the average plasma density and temperature
in the core. A self-consistent core-edge treatment is also possible, a simple
model is introduced in chapter 10 with basic physics involved and using a
zero-dimensional model of the core region and a one-dimensional model of
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the SOL. In this chapter, only models of the SOL follow.
The fluid modelling is the most common one in the SOL analysis. The

justification of the fluid approach is a high level of collisionality. The SOL
is collisional if the mean free path of electron-electron and ion-ion collisions
is small compared to the macroscopic length scale λ ≪ L [62]. If the degree
of collisionality is low, a kinetic treatment is required or a special approach
based on kinetic corrections has to be introduced (see more in section 11.2.3).

8.5.1 Two-point model

A basic insight into the edge properties can be obtained from analytic models.
The simplest model of a divertor SOL refers to two points along the SOL – the
upstream location u (the half-way between the targets) and the target loca-
tion t, and relates the plasma parameters at these positions. The two-point
model neglects viscous effects, ignores a parallel source of the momentum
(mainly the ion-neutral friction) and assumes equipartition Te = Ti = T
together with the ambipolarity and the quasi-neutrality ne = ni = n. The
momentum balance equation then restricts to the condition of a constant
total pressure along the SOL

p + nmiu
2 = constant (8.10)

where p = 2nkT is the plasma pressure. With boundary conditions for the
plasma velocity uu = 0 and ut =

√

2kTt/mi (see section 8.2), we get the
relation

2ntTt = nuTu. (8.11)

The parallel heat conductivity can be calculated using the classical Spitzer
expression [61, 67]

q‖ = −κ
∂

∂x
(kT ) = −κ0T

5

2

∂T

∂x
(8.12)

with the heat conduction coefficient κ. If all the exhaust power enters the
SOL at the upstream point x = Lc and it is carried entirely by the conduction
q‖ to the target x = 0, we can integrate the equation (8.12) from 0 to Lc to
get the relation

T
7

2

u = T
7

2

t +
7q‖Lc

2κ0

. (8.13)

Using the boundary conditions for the heat flux at the target from section
8.2, we obtain the expression for the parallel heat flux

q‖ = δkTtntcst (8.14)
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with the sheath heat transmission coefficient δ and the target sound speed
cst. The equations (8.11), (8.13) and (8.14) constitute the two-point model.
Three unknowns Tt, Tu and nt are specified by the control parameters nu

and q‖ related to the principal parameters – the input power and the main
plasma density. In general, we can relate the density and temperature at
the target to any point in the parallel direction x sufficiently far from the
target, while the target values are the boundary conditions. The form of the
model is useful since we can take the target values from measurements and
calculate the upstream values using accessible experimental data. A simplest
approximation ignores radial variations of the plasma parameters across the
SOL. A more refined approach, the onion-skin method, uses a concept of
individual flux tubes and apply the equations (8.11), (8.13) and (8.14) to
each flux tube across the SOL.

8.5.2 One-dimensional fluid model

In the one-dimensional fluid description, the SOL is straightened out along
the magnetic field and the model describes parallel profiles of the plasma
parameters between the solid surfaces. The transport in the parallel direc-
tion is solved, while the cross-field transport is included in source terms of
fluid equations. The standard fluid formulation follows Braginskii [68] and in
a stationary state, the continuity, momentum and energy equations for the
plasma density n, the parallel velocity u and the electron and ion tempera-
tures Te and Ti take form

d

dx
(nu) = Sn, (8.15)

d

dx

(

minu2 + pi + πi

)

= enE + R + miS
u, (8.16)

d

dx

[(

5

2
nkTi +

1

2
minu2

)

u + πiu + qi

]

= (enE − R)u − Q + SE
i , (8.17)

d

dx

(

5

2
nkTeu + qe

)

= (R − enE)u + Q + SE
e (8.18)

assuming the ambipolarity ue = ui = u and no net current ne = ni = n.
R are the thermal losses and the friction force due to collisions between the
electrons and ions, Q is the energy exchange term between the electrons and
ions, pi is the ion static pressure, πi is the parallel viscous stress, qe and qi

are the parallel thermal heat fluxes, E is the electric field and Sn, Su and
SE are net sources of the mass, momentum and energy.
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8.5.3 Two-dimensional fluid model

The two-dimensional edge modelling commonly assumes a toroidal symme-
try and the two spatial directions are the radial and poloidal projection of
the motion along the magnetic field. Multifluid two-dimensional models in-
volve complex physics of the plasma transport, the impurity transport and
the transport of neutrals including the Monte Carlo treatment of the neu-
trals, kinetic effects, involving the sheath theory and describing atomic and
molecular processes, boundary processes, etc. An introduction to the two-
dimensional edge codes is given in chapter 12.
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CHAPTER 9

Introduction

9.0.4 Present status

Numerical simulations and modelling of the tokamak plasma are an impor-
tant part of the fusion research. A variety of numerical codes exists based
on different numerical techniques and different approaches of the theoreti-
cal description. The complexity of tokamak physics involving processes on
profoundly different temporal scales (∼ 100 GHz – 1000 s) and with broad
spatial range (∼ 10 µm – 10 m) makes impossible to develop an integrated
model of the tokamak plasma and one simulation never covers the whole
temporal and spatial range (Fig. 9.1).

Figure 9.1: Temporal and spatial scales in the tokamak physics. Reprinted from
[69].

A number of codes have been developed to describe separately different
regions in a tokamak device (the core, the edge, the divertor, the walls) and
a number of codes have been constructed to solve particular aspects of the
tokamak physics (the edge physics, the transport in the core, the turbulent
transport, the equilibrium, the heating, etc). A summary of areas where the
modelling is applied is listed in Fig. 9.2. Let us mention some of the codes
and the simulation areas: the core transport – ASTRA, CRONOS, JETTO,
RITM, TRANSP [70–73], the edge multifluid codes – SOLPS-B2/EIRENE,
EDGE2D/NIMBUS, UEDGE, TECXY [66, 74–76], the edge kinetic codes –
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BIT1 [77, 78], the impurity tranport – ERO, SANCO [79, 80], the equilib-
rium reconstruction – EFIT, EQUINOX, CEDRES, CLISTE [81], the high-
resolution equilibrium – CAXE, CHEASE, HELENA [81], the linear MHD
stability – KINX, MISHKA, CASTOR, ILSA, ELITE, IDBALL [81], the
turbulence and microinstability – GENE, GEM, GKW, ORB5, ELMFIRE,
GYSELA, CUTIE, ESEL, KINEZERO, GS2 [82], the heating, current drive
and past particle physics – NBI deposition codes, antenna codes, wave codes,
Fokker-Planck codes, fast particle instability codes [83–86], the non-linear
MHD and disruptions – M3D, NIMROD [87–89]. The numerical treatment
is always a question of the specific application and employs e.g. the fluid
method, the kinetic approach or the gyrokinetic technique.

Figure 9.2: Simulation areas in the tokamak plasma research. Reprinted from
[69].

Several numerical codes exist for each part of the tokamak physics, how-
ever, in experiments, these different parts clearly influence each other sug-
gesting that there is a need to include and couple all the possible phenomena
also in numerical simulations. This is a concern of European activity. The
aim of the integrated tokamak modelling (ITM) project [90] is to combine
and integrate existing numerical tools to interact each other and to provide
a suite of codes necessary for analyzing the tokamak physics with a spe-
cial interest in the future ITER scenario [91]. An example of the integrated
approach can be the COCONUT code [92] combining the Monte Carlo code
for neutrals (NIMBUS, EIRENE), the two-dimensional SOL code EDGE2D,
the core transport code JETTO and using SANCO for impurities. Another
example is the American FACETS project [93] for coupled core-edge trans-
port simulations using UEDGE.
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9.0.5 Outline of presented work

In chapter 10, a numerical investigation of plasma parameters in a divertor
configuration of the COMPASS tokamak is presented. The plasma para-
meters in the device are analyzed in the frame of a self-consistent description
of the central plasma and the edge region and a possibility of achieving
high recycling and detached regimes in the boundary layer of the COMPASS
tokamak is discussed.

Chapters 11 and 12 are devoted to the edge plasma modelling. A one-
dimensional fluid code has been developed to solve the plasma and neutral
transport in the SOL (chapter 11). Concerning the complexity, it repre-
sents a halfway between the simple analytic model described in section 8.5.1
and the complex two-dimensional edge codes that are available in the fusion
community (chapter 12).

The model introduced in sections 11.1–11.3 provides a basic insight into
the edge physics and into more sophisticated two-dimensional tools. The
attention is given to the transport of plasma species and neutrals along the
magnetic field, results for different operational regimes are presented and the
influence of operational conditions on the transport properties is explained
(section 11.4). The code has been validated (section 11.5) and a benchmark
with the B2 code is in progress. The code was further modified to solve
also time-dependent problems and it is being prepared for coupling with the
ESEL code [94] to provide a better description of the parallel transport in
ESEL and improve match of ESEL simulation results with measured data.

An introduction to the two-dimensional edge codes follows in chapter 12
which has a character of a synopsis only. It gives a summary of the available
codes, it briefly describes the background of physics and the computational
techniques and it provides a number of references. A future aim is to apply
such code to the COMPASS tokamak.

The work presented in Part II was a subject of an international collabo-
ration within the fusion community in Europe. Details are specified at the
end of Part II (chapter 13).
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CHAPTER 10

Numerical investigation of

plasma parameters in

COMPASS tokamak

10.1 COMPASS device

The COMPASS tokamak has been transferred from UKAEA to IPP Prague
in 2007 [95]. The new device has replaced the CASTOR tokamak and its
reinstallation has been planned in several steps. First, new power supplies
consisting of two flywheel generators were developed and basic facilities for
diagnostics were installed. The first discharge was achieved on 9th December
2008 and on 19th February 2009, the COMPASS officially started to operate.
The tokamak has been put in a routine operation in the Ohmic regime with
the toroidal magnetic field around 1 T. In the next step, an installation of the
NBI system (2 x 300 kW) will be done together with a redeployment of the
existing LH system (400 kW) and the toroidal magnetic field will be increased
up to 2.1 T. The COMPASS tokamak has an ITER-like plasma shape and
with the NBI heating system, it will be able to access plasma parameters
relevant in many aspects to ITER. Further, it allows to investigate regimes
with large normalized Larmor radius ρ∗ (the Larmor radius normalized by the
minor radius ρ∗ = ρ/Rp) and collisionality ν∗ (the ratio of the characteristic
length scale and the mean free path of collisions ν∗ = L/λ).

In order to analyze plasma parameters in the COMPASS device under
different operating scenarios, a modelling activity has been undertaken. The
plasma performance in the COMPASS tokamak has been analyzed in the
frame of the self-consistent treatment of the core and edge plasma. The
numerical tool was provided by R. Zagórski (Institute of Plasma Physics and
Laser Microfusion, EURATOM Association, Warsaw, Poland) and the model
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was previously applied to the FTU tokamak [96].
The issue of global simulations is to assess a range of plasma parameters

we can expect in the device as well as to determine plasma conditions when
high recycling or detached regimes (section 8.4) would develop in the divertor
of the COMPASS tokamak.

10.2 Numerical model

The global self-consistent description of the core and edge plasma behaviour
is based on a zero-dimensional model of the plasma transport in the centre
and a one-dimensional model of plasma dynamics in the scrape-off layer. A
detailed description of the model and physics it involves is given in [97].

10.2.1 Core region

Plasma parameters in the core (the plasma temperature Te = Ti = T , the
ion density ni and the plasma current jθ) are assumed to have radial profiles
in the form of generalized parabolas

T (r) = T0

[

1 −
(

r

Rp

)2
]αT

+ Ts, (10.1)

ni(r) = ni0

[

1 −
(

r

Rp

)2
]αn

+ nis, (10.2)

jθ(r) = jθ0

[

1 −
(

r

Rp

)2
]αj

(10.3)

with exponents αT = 2.0, αn = 1.5 and αj = 1.5αT consistent with old
COMPASS experimental profiles [95]. Rp is the plasma radius, T0, ni0 and
jθ0 are values in the centre and Ts and nis are values at the separatrix. The
profile of impurities is prescribed as

nz =

(

ne

nes

)αz

nzs (10.4)

with αz = 0.5 corresponding to a flat profile of the effective charge Zeff . The
effective charge of the plasma is defined as

Zeff =

∑

j

njZ
2
j

∑

j

njZj
(10.5)
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where the summation is over ionic species (also impurities) and the densities
satisfy the quasi-neutrality ne =

∑

j njZj. The plasma parameters at the
separatrix (index s) which result from the SOL model described below are
required as input data to this part of the model. The plasma temperature in
the centre is calculated from the energy balance equation

3〈neT 〉
τE

= Paux + POH − fradPlin = Pcore (10.6)

where Pcore is the total power in the core composed of the auxiliary heating
power Paux, the ohmic power POH and the line radiation power Plin. These
parameters are determined according to expressions given in [98] and the
energy confinement time τE corresponds to ITER98(y2)-ELMy H mode sca-
ling law [99]. The coefficient frad is the ratio between the power radiated
in the core and the total radiated power. The power flowing to the SOL is
defined as Pinp = Paux + POH − Plin.

10.2.2 Boundary region

The simulation of the plasma behaviour in the SOL is based on the standard
two-point model (section 8.5.1). The energy balance in the SOL defines the
equation for the temperature at the target plate (index p)

Pplate(Tp) = Pinp(Tp) − P SOL
rad (Tp) (10.7)

where P SOL
rad is the line radiation in the SOL and the power flowing to the

SOL Pinp is calculated in the core part of the model. The plasma density
at the plate and the plasma temperature and density at the separatrix are
evaluated according to expressions corresponding to the two-point model
relating values at the separatrix to values at the plate

nesTs ≈ 2nepTp, (10.8)

nip =
Γinp

csSeff(1 − R)
, (10.9)

Ts ≈ Tp

(

1 − 7QinpL
2
c

2κ0T
7/2
s VSOL

)−1

(10.10)

using the particle flux to the SOL Γinp, the effective area of the divertor plates
Seff , the recycling coefficient R, the sound speed cs, the energy flux to the SOL
Qinp, the connection length Lc, the heat conduction coefficient κ0 and the
SOL volume VSOL. An impurity model includes both sputtered and additional
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impurities and it is described in [97] in more detail. Radiation losses in the
core and the SOL regions are calculated assuming corona equilibrium [100].

Physics of the model has been implemented into a numerical code in which
an iterative scheme is used in order to achieve a steady-state solution and
the numerical method solves for the plasma characteristics in the SOL and
in the core region with the last close flux surface (LCFS) being an interface.
A similar model was successfully applied to a poloidal limiter configuration
of the FTU tokamak and it was verified by a comparison with an experiment
[96].

10.3 Results

The self-consistent core-edge model has been applied to assess the plasma
performance in the reinstalled COMPASS tokamak. Basic parameters of the
device used in the simulations are as follows: the toroidal radius Rt = 0.56 m,
the poloidal radius Rp = 0.21 m, the elongation κ = 1.8, the auxiliary
heating power Paux = 0.7 MW (which takes into account the NBI and LH
heating). We assume that the anomalous radial diffusion is of the order of
Bohm diffusion (D⊥ = 1

3
DBohm) and we take R = 0.975 as the recycling

coefficient in the SOL, the same value as reported in [97]. In the model,
carbon is a sputtered impurity and we take into account both the physical
and the chemical sputtering. In some simulations, neon is considered as an
additional (injected) impurity.

We have investigated operational regimes with the toroidal magnetic field
Bt = 1.2 T (corresponding to a standard COMPASS configuration) as well as
the higher magnetic field Bt = 2 T which is predicted as a future upgrade of
the COMPASS device [95]. For every magnetic field Bt, two plasma currents
Ip are considered (Tab. 10.1).

case 1 case 2 case 3 case 4

Bt[T] 1.2 1.2 2.0 2.0
Ip[kA] 100 200 200 350
nG[1020m−3] 0.72 1.44 1.44 2.53

Table 10.1: Investigated operational regimes.

First, we analyze global plasma parameters in COMPASS by changing
the average plasma density 〈ne〉 in the device in the range 0.1nG ≤ 〈ne〉 ≤
0.85nG where nG is the Greenwald density (a measure of the density limit
for tokamaks nG = Ip/πR2

p with the plasma current expressed in MA and
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Figure 10.1: The power to the target plate Pdiv, the total energy losses Ploss, the
energy confinement time τE, the average plasma temperature Tcore, the plasma
density at the LCFS nes, the plasma density at the plate nep, the plasma tempera-
ture at the LCFS Tes, the plasma temperature at the plate Tep and the normalized
parameter βn as functions of the normalized volume average density 〈ne〉/nG for
different configurations specified in Tab. 10.1. The scaling B).

the density in 1020 m−3). Since the scaling for the edge plasma density nes

for the COMPASS tokamak is not available, three different expressions were
considered: A) nes = 1

2
〈ne〉, B) nes = 1

3
〈ne〉, C) nes = 1

4
〈ne〉.

Results of the simulations for all four cases (Tab. 10.1) and for the
medium scaling of the edge density B) are shown in Fig. 10.1. It can be
seen that with increasing plasma density, the confinement time increases
(according to the energy scaling law) and the plasma temperature in the
core decreases, however, the normalized beta βn (βn = βRpBt/Ip with the
plasma current expressed in MA) increases and for the highest densities we
approach the ballooning limit βn ∼ 0.25 (the maximum beta attainable due
to the ballooning instability that can develop when the plasma pressure ex-
ceeds a critical value). Since the Ohmic heating is small, changes to the
heating power are weak and the same refers to the power transmitted to the
divertor plates. It should be noted that plasma radiation losses are relatively
small even for the highest plasma densities. In fact, the edge plasma pa-

69



   
0.2

0.4

0.6

0.8

1

P
di

v [M
W

]

0 0.5 1
0

0.2

0.4

0.6

P
lo

ss
 [M

W
]

〈 n
e
 〉 / n

G

   
0

20

40

60

80

T
ep

 [e
V

]

0 0.5 1
0

0.01

0.02

n zs
 [1

020
 m

−
3 ]

〈 n
e
 〉 / n

G

case 1
case 2
case 3
case 4

Figure 10.2: The power to the target plate Pdiv, the total energy losses Ploss, the
plasma temperature at the plate Tep and the sputtered impurity density at LCFS
nzs as functions of the normalized volume average density 〈ne〉/nG for different
configurations. The scaling A).

rameters correspond to the simple SOL picture (see section 8.4) with weak
temperature and density gradients. For the highest edge densities, the plate
temperature is well above the 5 eV level at which we can expect a develop-
ment of detached regimes in the divertor. The plasma contamination is low
and Zeff is below 1.8 even for the lowest densities.

Very similar picture is obtained for the case C) with lower edge plasma
densities. In the case of high edge densities (the scaling A)), a new regime
could develop in the SOL if the plasma density was large enough (the cases
2 and 4, note that nG is proportional to the plasma current), as it can be
seen in Fig. 10.2. If the plasma density exceeds some threshold value, then
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Figure 10.3: The total energy losses Ploss and the plasma temperature at the plate
Tep as functions of the normalized volume average density 〈ne〉/nG for different
configurations. The scaling B).
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the temperature at the plate drops below 5 eV, a high density plasma is
formed in the divertor and energy losses due to the impurity radiation are
significant. We note that the core parameters are almost not affected by the
transition to the detached mode. It should be remarked that such desirable
strongly radiating regime develops only at high plasma densities. In a real
device, it could be very difficult to operate with so large separatrix density
nes. However, it appears that the access threshold to the detached regime
could be lowered by introducing additional impurities. This is illustrated in
Fig. 10.3 where we show results corresponding again to the scaling B) (see
Fig. 10.1), but with an addition of the injected impurities (neon).

It comes out from the simulations that the achievement of the detached
regime depends strongly on three parameters – the average plasma density
〈ne〉, the separatrix plasma density nes and the impurity concentration nz. In
order to analyze the transition to the detached regime in more detailed way,
we have separated combined effects of these parameters. First, we made a
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Figure 10.4: The total energy losses Ploss and the plasma temperature at the plate
Tep versus the normalized plasma density at the LCFS nes/〈ne〉 for two different
volume average densities 〈ne〉 and neon concentrations.

scan changing the separatrix plasma density nes at a constant average plasma
density 〈ne〉. We consider cases without an injected impurity and with some
concentration of neon. Results for Bt = 2 T and Ip = 350 kA (the case
4) are shown in Fig. 10.4. It can be seen that for the lower plasma density
(〈ne〉 = 0.2nG), it is impossible to achieve the detached regime independently
of the edge plasma density as well as the impurity concentration, however,
the transition appears for the higher density (〈ne〉 = 0.7nG) for relatively
large range of the edge plasma densities. In order to investigate the effect
of additional impurities, we show the results of simulations for the same
case (the case 4, 〈ne〉 = 0.7nG), but for different concentrations of neon (Fig.
10.5). Two branches of solution corresponding to an attached and a detached
plasma are clearly seen in Fig. 10.5. It is interesting to point out that in the
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detached regime, the plasma parameters are almost independent on the edge
density and the impurity concentration. The threshold density is reduced
when the concentration of neon increases. It should be mentioned that in
the detached regime, there is a significant production of carbon due to the
chemical sputtering, while for the attached regimes, the physical sputtering
is responsible for the carbon release.
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Figure 10.5: The total energy losses Ploss, the plasma temperature at the plate
Tep and the average effective charge Zeff versus the normalized plasma density at
the LCFS nes/〈ne〉 for different concentrations of additional impurities.

10.4 Summary

Plasma parameters in the divertor of the COMPASS tokamak have been
investigated by means of a global model which couples the central region of
the main plasma and the scrape-off layer in a self-consistent way. Simulations
have been done for different operating scenarios of the COMPASS device
in order to estimate conditions for developing high recycling and detached
regimes. It has been found that the operational space of the tokamak is
relatively broad in terms of available plasma densities, plasma currents and
magnetic fields. At a high plasma density, operations with high βn values are
possible, but with a relatively low core plasma temperature. It appears that
detached conditions in the divertor can be created only if the plasma density
is high enough and/or if an additional (injected) impurity is present.
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CHAPTER 11

One-dimensional model of edge

plasma transport

11.1 Basic features

To study fundamental transport processes in the scrape-off layer of a diver-
tor tokamak, a one-dimensional fluid code has been developed. The com-
putational region is schematically shown in Fig. 11.1. We consider a one-
dimensional computational domain parallel with magnetic field lines with
divertor plates at the boundaries and the magnetic field does not explicitly
appear in the model.

Figure 11.1: A scheme of the divertor configuration in the poloidal cross-section
(left) and a one-dimensional computational domain (right). The SOL is straight-
ened out in the parallel direction along the magnetic field with the divertor targets
at the boundaries.
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A transport of particles is simulated by the fluid approach taking into
account three types of species – electrons, main ions and neutrals. In a real
device, impurity atoms or impurity ions in various charge states are present,
being either sputtered on the solid surface or injected into the machine. These
species broaden the range of atomic and molecular processes and they may
influence stability and transport properties. On one hand, they can dilute
and contaminate the plasma and effect negatively on the plasma confinement,
on the other hand, they can positively influence the transition to a high-
recycling or a detached regime (chapters 8 and 10). The impurities are not
present in the model, nevertheless, even with a simple model including the
main plasma species and neutrals, it is possible to analyze basic transport
phenomena and get an essential insight into the SOL physics. In principle,
to extend the model and add other species would be rather straightforward
concerning both the numerics and the adaptation of the solvers. Also the
physical aspects and the description by fluid equations would not change
significantly and the range of collision processes would broaden with regard
to the knowledge of atomic data.

Collision processes, which are a source or a sink of particles and energy,
play an important role in the edge region. The model involves the ionization
of neutrals, the charge exchange, the excitation and the recombination.

Simulated conditions are illustrated in Fig. 11.1. The model is solved
along the SOL between two targets. The mass and energy balance of plasma
species is determined by collision processes and a particle and energy input
from the core region. Neutrals are produced either by the recombination
or during a recycling process at the divertor targets, while the ionization
constitutes a sink action. There is no source of the neutrals from the main
plasma or a cross-field sink.

The development of the model was supported by discussions with
R. Zagórski.

11.2 Mathematical description

11.2.1 Fluid equations

The model of plasma species is based on Braginski-like equations [68]. The
same system was used in [101]. The fluid description involves the continuity
equation for ions, the momentum equation for ions and the energy equation
both for ions and electrons. The electron density and velocity follow an
assumption of the charge neutrality ne = ni and the ambipolar transport
(the absence of an electric current). The initial set of the fluid equations

74



solved for the ions and electrons is constituted by the mass, momentum and
energy balance

∂ni

∂t
+

∂

∂x
(niui) = Sn

i , (11.1)
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∂t
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eniuiE + uiRi + Qi + SE
i

(11.4)

and solves for parallel profiles of plasma parameters – the ion density ni, the
parallel ion velocity ui, the electron temperature Te and the ion temperature
Ti. Sn

i , Su
i , SE

e and SE
i are sources of the mass, momentum and energy

of electrons or ions, pi is the ion pressure and qe and qi are the thermal
heat fluxes. Re and Ri (Re = −Ri) are the thermal and friction forces, E
is the parallel electric field and Qe and Qi (Qe = −Qi) is the heating due
to electron-ion collisions. The equations (11.2) and (11.4) allow for viscous
effects described by the ion viscosity ηi. According to a standard description,
the kinetic terms of the electron energy balance are negligible and they are
not included.

A final system of the equations solved in the code follows from the equa-
tions (11.1)–(11.4) by applying further modifications. We use the generalized
Ohm’s law for the calculation of the parallel electric field (the momentum
equation neglecting inertia)

eneE = −∂pe

∂x
+ Re. (11.5)

Together with already mentioned assumption of the ambipolarity ue = ui it
is possible and desirable to modify the equations so that the electric field
E and the friction terms Re and Ri will not appear explicitly in the solved
system. The equations can be further modified and schematically rewritten
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to the following form
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which is more convenient and easier to solve. The equations are non-linear
and the coefficients a, b, c, d, v and sources SEXP and SIMP are functions of
the density, velocity and temperature. SEXP and SIMP denotes that a part
of the sources is treated explicitly (EXP), while a part is handled implicitly
(IMP) and it will be further discussed in section 11.3.

11.2.2 Source terms

The source terms of the equations (11.1)–(11.4) describe changes of the mass,
momentum and energy of the plasma species due to atomic processes – the
ionization, charge exchange, recombination and excitation. In addition, they
also comprise external terms describing the amount of energy and mass flows
from the core region to the edge. The sources are defined as follows:

Sn
i = n0ni〈σv〉ION − n2

i 〈σv〉REC + Sn
EXT, (11.10)

Su
i = n0niu0〈σv〉ION + n0ni(u0 − ui)〈σv〉CX + n2

i (u0 − ui)〈σv〉REC, (11.11)

SE
e = −n0ni〈σv〉IONkIH − n0nikQH + SE

EXT, (11.12)
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+ n2
i 〈σv〉REC
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kTi +
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2
m0u

2
i

)

+ SE
EXT.

Sn
EXT and SE

EXT are external cross-field sources of particles and energy, IH

is the ionization potential (IH = 13.6 eV for hydrogen ions), QH is the
cooling rate due to the excitation and the terms 〈σv〉ION, 〈σv〉CX and 〈σv〉REC
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describe rates of the ionization, charge exchange and recombination, respec-
tively. The reaction rate coefficients are, in general, functions of the electron
temperature and density. Atomic data implemented in the code were pro-
vided by R. Zagórski and the dependence of the reaction rate coefficients on
the electron temperature is plotted in Fig. 11.2.
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Figure 11.2: The reaction rate coefficients 〈σv〉 for the ionization, charge ex-
change, recombination and excitation as functions of the electron temperature Te.

11.2.3 Transport properties

The classical transport is assumed and all transport coefficients used in the
model follow expressions given in [67]. The formulas for the ion viscosity
ηi, the thermal gradient heat fluxes qe and qi and the ion heating Qi are as
follows:

qe = −κe

∂

∂x
(kTe) , (11.14)

qi = −κi

∂

∂x
(kTi) , (11.15)

Qi =
3me

mi

nik

τe

(Te − Ti) , (11.16)

ηi = 0.96nikTiτi (11.17)
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with the thermal conductivities κe and κi and the collision times τe and τi

κe = 3.2
nekTeτe

me

, (11.18)

κi = 3.9
nikTiτi

mi

, (11.19)

τe =
3
√

me(kTe)
3/2

4
√

2πneλe4
= 3.44 × 1011 T

3/2
e

neλ
sec, (11.20)

τi =
3
√

mi(kTi)
3/2

4
√

πniλe4
= 2.09 × 1013 T

3/2

i

niλ

√

mi

mp

sec (11.21)

where mp is the proton mass. The coulomb logarithm λ is a function of
the density and temperature. The dependence can be found in [67] or [62],
however, for the sake of simplicity, we take the value λ = 17 without loss
of generality, although expressions from [67] and [62] are also implemented
in the code. The model works with the SI units except for the temperature
expressed in electronvolts and the Boltzmann constant k = 1.6×10−19 J/eV.

Following a standard approach of the fluid modelling, kinetic corrections
in the form of flux limiters were included. The classical value of the thermal
heat flux qCL both for electrons and ions is modified as

q =

(

1

qlim

+
1

qCL

)−1

(11.22)

using the maximum acceptable flux qlim = αnvthkT and thus limiting the
heat conductivity as the classical heat conductivity would diverge for large
temperatures. The modified expression for the heat conductivity can be
easily derived from the equation (11.22) as

κ =

(

1 +
κCL

∣

∣

∂T
∂x

∣

∣

αnvthT

)−1

κCL. (11.23)

Similarly, a modified expression can be derived for the ion viscosity using the
limit βnkTi. As a result of kinetic studies, values of the heat flux limiters are
observed in the range 0.03 ≤ α ≤ 0.6 with the average value 〈α〉 ≈ 0.15±0.05
and 〈β〉 ≈ 0.5±0.1 for the viscosity. The limiters are functions of the parallel
coordinate x as well as they change in a time-dependent case (the turbulent
transport, ELMs, etc) and their precise estimation requires a kinetic analysis.
Therefore in the work presented in this chapter, the flux limiters are not used
and the transport coefficients follow the classical Braginskii expressions. One
exception has been made in case of the ion viscosity which was artificially
lowered as it will be mentioned later.
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11.2.4 Model of neutrals

The model of neutral atoms is governed by the fluid description. A different
possible approach is described in chapter 12. The fluid model comprises the
continuity and momentum transfer equation

∂n0

∂t
+

∂

∂x
(n0u0) = Sn

0 , (11.24)

∂

∂t
(m0n0u0) +

∂

∂x

(

m0n0u
2
0

)

= −∂p0

∂x
+ m0S

u
0 (11.25)

for the density of the neutrals n0 and their parallel velocity u0. The set of
equations is complete with an assumption about the energy of the neutrals
that are considered to have the temperature locally equal to the ion tempe-
rature T0 = Ti. In plasma conditions in the edge region, it is expected that
the neutrals are close to a local thermal equilibrium with the ions due to the
dominant charge exchange process [102]. The source and sink terms Sn

0 and
Su

0 define changes of the density and momentum of the neutrals caused by
collisions with the plasma species. Finally, p0 is the pressure of the neutrals
and m0 is their mass. The sources are defined as

Sn
0 = −n0ni〈σv〉ION + n2

i 〈σv〉REC, (11.26)

Su
0 = −n0niu0〈σv〉ION − n0ni(u0 − ui)〈σv〉CX − n2

i (u0 − ui)〈σv〉REC.
(11.27)

There is no external source or sink for neutrals, the core plasma is fully
ionized and besides collision events, the neutral atoms are generated only at
the divertor targets during the recycling. The recycling appears in the model
through a boundary condition imposed on the neutral density (see section
11.3.3).

11.3 Computational method

The equations in the model are strongly coupled and nonlinear. In order to
solve the system, an algorithm based on the finite difference approach (section
2.4) has been implemented. The equations are linearized and discretized on
a non-uniform staggered grid using traditional numerical schemes.

Some terms are treated implicitly to maintain the stability. The time step
is calculated automatically and its value is limited to satisfy the Courant-
Friedrichs-Lewy stability condition and varies during a run of the code
according to dynamics of the system. The condition applied to the time
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step limits the time interval with respect to the plasma velocity ui and the
grid spacing ∆x. We use a rough estimate

∆tlimit ≈
∆x

ui

. (11.28)

To resolve steep gradients of the functions that may develop close to the
boundaries, a non-uniform exponential grid is used with higher resolution
in regions near the targets. In addition, the variables are discretized on a
staggered grid to prevent oscillations that might occur in a non-staggered
case. Different variables are placed on different grids which are shifted half
a grid point.

11.3.1 Technique of discretization

The equations are solved one by one in a semi-implicit way with the forward
time-stepping until the system converges to a steady-state solution. Different
algorithms are applied to discretize the equations in the spatial coordinate.
The discretization technique for converting the spatial derivatives to algebraic
expressions is of the second-order accuracy. The second-order upwind scheme
(the donor cell scheme) is used to transform the convective terms of the
equations (11.6)–(11.9), even though e.g. the FCT algorithm (see section
5.2.2) could be used too. Let us assume an advection equation for a function
f and an advective velocity v of the form

∂

∂t
(af) = b

∂

∂x
(vf) (11.29)

and a grid with a uniform spacing ∆x. The discretization using the upwind
scheme for the spatial derivative and the forward time-stepping (index k)
results in the following difference equation for a nodal point i of the grid

ak+1fk+1 − akfk

∆t
= bk

F k
i+ 1

2

− F k
i− 1

2

∆x
(11.30)

where

Fi+ 1

2

=

{

fivi+ 1

2

vi+ 1

2

> 0

fi+1vi+ 1

2

vi+ 1

2

< 0
, (11.31)

Fi− 1

2

=

{

fi−1vi− 1

2

vi− 1

2

> 0

fivi− 1

2

vi− 1

2

< 0
. (11.32)
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The diffusive terms of the equations (11.7)–(11.9) are discretized using the
standard Crank-Nicholson scheme [22]. Let us assume a diffusion equation
of the form

∂

∂t
(af) = c

∂

∂x

(

d
∂f

∂x

)

. (11.33)

With the Crank-Nicholson technique, we can replace the partial differential
equation (11.33) by corresponding finite difference expressions

ak+1fk+1 − akfk

∆t
= λck+1

i

F k+1

i+ 1

2

− F k+1

i− 1

2

∆x
+ (1 − λ)ck

i

F k
i+ 1

2

− F k
i− 1

2

∆x
(11.34)

where

F ≡ d
∂f

∂x
(11.35)

and

Fi+ 1

2

= di+ 1

2

fi+1 − fi

∆x
, (11.36)

Fi− 1

2

= di− 1

2

fi − fi−1

∆x
. (11.37)

The parameter λ ranges from 0 (the explicit case) to 1 (the fully implicit
case). Here the semi-implicit approach with λ = 1

2
is applied.

To avoid the numerical instability, the implicit approach is also used for a
part of the source terms which can be written in the form S = −fSIMP with
SIMP > 0, see the equations (11.6)–(11.9). It means that SIMP is expressed
in the updated (k + 1) time level in the discretized equations.

11.3.2 Algorithm for solving system of linear equations

Once the equations are discretized, a system of algebraic equations must be
solved. While solving the momentum equation (11.7) leads to a system of
linear equations with a simple tridiagonal matrix, the temperature equations
must be handled more carefully. The implicit treatment of the source terms
in the equations (11.8) and (11.9) couple both equations together so that
they must be solved as a one system in each time step.

The linear system with the three-diagonal matrix is solved by the Pro-
gonka method that is similar to the well-known Thomas algorithm. For a
tridiagonal system of unknown functions f of the form

Aifi−1 + Bifi + Cifi+1 = Ri (11.38)
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with coefficients Ai, Bi, Ci and the right-hand side terms Ri, the Progonka
prescribes the recursive formula

fi = αi+1fi+1 + βi+1 (11.39)

with coefficients

αi+1 = − Ci

Aiαi + Bi
, (11.40)

βi+1 =
Ri − Aiβi

Aiαi + Bi
. (11.41)

The algorithm is based on two cycles. At first, the coefficients αi+1 and
βi+1 are computed at each point i from the expressions (11.40) and (11.41)
starting at the left boundary with a boundary condition and going to the
right boundary point. In the second cycle, the unknowns fi are computed at
each point i according to the recurrent formula (11.39). The procedure starts
at the right boundary, where the solution is given by a boundary condition,
and runs back to the left boundary point.

To solve the system of linear equations given by the difference form of
the temperature equations (11.8) and (11.9), the Matrix Progonka (a matrix
formulation of the Progonka method) was applied. The algorithm and the
recursive formulation is the same as described above, but the coefficients
Ai, Bi, Ci, αi+1 and βi+1 are 2 × 2 matrices and the unknowns fi and the
right-hand side terms Ri are vectors. The system

Aifi−1 + Bifi + Cifi+1 = Ri (11.42)

is solved using analogical recursive formulas in the matrix representation

fi = αi+1fi+1 + βi+1, (11.43)

αi+1 = − (Aiαi + Bi)
−1

Ci, (11.44)

βi+1 = (Aiαi + Bi)
−1 (Ri − Aiβi) . (11.45)

11.3.3 Boundary conditions

The description of the fluid model is closed by boundary conditions required
for the equations (11.1)–(11.4) and (11.24)–(11.25). The boundary condi-
tions imposed on the ion density ni, the ion velocity ui, the ion and electron
temperatures Ti and Te, the neutral density n0 and the neutral velocity u0

are summarized in Tab. 11.1. The standard sheath boundary conditions
were applied for the plasma species (section 8.2). The boundary value of the
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function boundary condition

ni open
ui Dirichlet
Ti Newton
Te Newton
n0 Dirichlet
u0 Dirichlet

Table 11.1: Boundary conditions of the model.

density ni is an extrapolated value calculated from values at neighbouring
points inside the computational domain. The boundary value of the velocity
ui is equal to the sound speed

cs =

√

k(Te + Ti)

mi

(11.46)

which agrees with the Bohm criterion (section 8.2). The boundary conditions
for the temperatures Ti and Te are nonlinear and should be treated carefully.
A general Newton form can be derived after linearization from the assumed
sheath boundary conditions from section 8.2 specifying the boundary value
of the total heat fluxes Qi and Qe

Qi = δikTiniui, (11.47)

Qe = δekTeneue. (11.48)

The constant values δi = 3.5 and δe = 5.0 are assumed for the energy trans-
mission coefficients, the same values were used e.g. in [103].

The neutral model uses boundary conditions determined by the recycling
process (section 8.2). The plasma is neutralized on the solid surface and
resulting neutrals are soon ionized again in the divertor so that the plasma
species and the neutrals act in a repetitive process (the recycling). The
neutral influx Γ0 from the divertor targets to the plasma is specified by the
recycling coefficient R. It follows the expression

Γ0 = −RΓi. (11.49)

The boundary value of the neutral velocity is assumed to be equal to the
thermal speed

vth
0 =

√

kT0

m0

. (11.50)
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11.4 Results

11.4.1 Input parameters

Main input parameters of the model are the size of the computational region
L (the parallel length, see Fig. 11.1) and the sources of particles and energy
from the main plasma Sn

EXT and SE
EXT, see equations (11.10)–(11.13). For a

basic analysis or testing purposes, some ad hoc values of these parameters
can be chosen, nevertheless, in a real situation, the parallel length L is a
function of the geometry of the device and its operational regime. Further,
it is convenient to work with total sources Qn [s−1] and QE [W] (the total
particle and power flow rates from the main plasma into the SOL) instead of
the differential sources Sn

EXT [m−3s−1] and SE
EXT [kgm−1s−3]

SE
EXT =

QE

VSOL

, (11.51)

Sn
EXT =

Qn

VSOL

. (11.52)

The volume of the SOL VSOL = 4π2RtRpλSOL is estimated using the appro-
ximative formula

λSOL =

√

D⊥L

u‖

(11.53)

for the radial width of the SOL λSOL [62]. For a JET configuration, we can
consider typical values of the cross-field particle diffusion coefficient D⊥ ≈
0.5 m2s−1 and the parallel velocity u‖ ≈ 105 ms−1. Rt and Rp is the major
and minor radius (Fig. 8.2).

The following expressions are taken into account to link the model to a
real device. The distance along the magnetic field line between the target
plates

L ≈ 2 (πqsRt + LX) (11.54)

is estimated using the safety factor qs. LX is the distance from the target
plate to the X point approximated as LX ≈ 0.25πqsRt. The value of the
safety factor depends on geometric properties of the machine – the major
and minor radius Rt and Rp and on operational conditions – specifically on
the toroidal magnetic field Bt and the total plasma current Ip. The equation
(8.2) in section 8.1 together with Ampere’s law Bp ≈ µ0Ip/2πRp [62] implies
the approximative estimate for the safety factor

qs ≈
R2

p

Rt

2πBt

µ0Ip

. (11.55)
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The expressions for L and qs can be easily modified in the code. Additional
input data are the sheath heat transmission factors δi = 3.5 and δe = 5.0.
The recycling coefficient R = 0.975 has been taken by analogy with the
previous chapter. The energy source SE

EXT is assumed to be equal for electrons
and ions as default, however, two different values are allowed as well. The
sources of the mass and energy Sn

EXT and SE
EXT can either be constants,

i.e. uniformly distributed along the SOL, or a dependence on the parallel
coordinate x can be prescribed. Note that the equations (11.51) and (11.52)
give constant values of the source for uniformly distributed sources, while in
general, Qn =

∫

SOL

Sn
EXT dV and QE =

∫

SOL

SE
EXT dV .

11.4.2 Basic plasma model

A hydrogen plasma composed of electrons and protons is considered. The
geometry of the model corresponds to the JET tokamak with the toroidal
radius Rt = 2.96 m and the poloidal radius Rp = 1 m and we assume
the safety factor qs = 3. The integral sources of the mass and energy are
Qn = 5 × 1022 s−1 and QE = 5 × 106 W and a uniform distribution of these
fluxes along the SOL is assumed.

Fig. 11.3 shows profiles of the plasma density, velocity and tempera-
ture in the SOL in the direction parallel to the magnetic field. The solution
corresponds to a simple SOL picture (section 8.4) that is characterized by
flat temperature profiles and a parabolic-like profile of the density. The tem-
perature goes to relatively high values, while the density is low. In such a
case, the plasma pressure at the stagnation point (the upstream position)
is roughly twice the value of the pressure at the boundary. It is in agree-
ment with a simplified source-free form of the momentum equation assuming
a flat temperature profile and neglecting viscous effects. The simple SOL
conditions are typically observed in tokamaks employing limiters and corre-
spond to the low-recycling (or the sheath-limited) regime (section 8.4). The
transport is dominated by the convection, there is no ionization in the SOL
and no zones of strong recycling develop close to the targets. The sheath re-
gion is the only sink for particles and heat, no radiative or charge-exchange
cooling is present. The energy exchange between the electrons and ions due
to collisions is rather small, thermal equipartition is weak and the electrons
and ions are thermally de-coupled from each other. From a numerical point
of view, the absence of strong gradients allow to use an equidistant grid.

It should be noted that in a real case, the ion viscosity is smaller than the
value calculated from the classical expression (11.17). Therefore the viscosity
has been artificially decreased 100 times compared to the value determined
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Figure 11.3: Profiles of the ion density ni, the ion velocity ui, the electron tem-
perature Te, the ion temperature Ti and the total plasma pressure p = pe+pi along
the magnetic field line. A model without neutrals and a result corresponding to
the simple SOL.

by the formula (11.17) for all calculations presented in this chapter, unless
stated otherwise.

11.4.3 Influence of neutrals

The effect of plasma-neutral collisions, mainly the ionization, on the plasma
transport in the SOL and the character of parallel profiles of the plasma
parameters is significant (section 8.4). The solution in Fig. 11.4 was obtained
with the same input parameters as in the previous case (Rt = 2.96 m, Rp =
1 m, qs = 3, Qn = 5 × 1022 s−1 and QE = 5 × 106 W) and the code was
solving both the model of plasma species and the model of neutrals. The
recycling coefficient was R = 0.975.

The solution in Fig. 11.4 can be typically observed in divertor devices
and it corresponds to a complex SOL picture (section 8.4). The ionization
length is much smaller than the spatial scale of the system (λion ≪ L) and
the neutrals are concentrated in a region close to the targets where they
are almost immediately ionized. The transport is dominated by the con-
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Figure 11.4: Profiles of the ion density ni, the ion velocity ui, the electron tem-
perature Te, the ion temperature Ti, the neutral density n0 and the neutral velocity
u0 along the magnetic field line. A model with neutrals and a result corresponding
to the complex SOL.

duction and recycling zones develop near the targets. The recycling process
plays an important role and the machine works in the high-recycling (or
the conduction-limited) regime. The ionization in the SOL is an important
source of particles. A radiation occurs in the SOL in the divertor and to-
gether with the charge exchange cools the plasma. Another feature of the
conduction-limited regime is a strong thermal coupling of the electrons and
ions. The complex SOL solution is characterized by low target temperatures
and high target densities. The temperature profile is not flat any more and
steep gradients of the plasma parameters occur at the targets. A non-uniform
grid (exponential here) is now necessarily required to obtain a stable solution.

The efficiency of the code depends on considered physical conditions –
the input power and the particle source, initial conditions and obviously
on numerical aspects – the grid refinement and non-uniformity. The code
performance differs for the basic plasma model excluding the neutral atoms
and atomic processes and for the full model including the neutral model
and calculating rates of the plasma-neutral collisions. One time step of the
simulation presented in Fig. 11.3 written in Fortran takes 0.4 ms on a grid
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with 100 nodal points using the Intel compiler and running on an Intel Core2
Duo 2.4 GHz CPU (a plain code without graphics and output). The time
step was roughly ∆t = 0.4×10−6 s and about 1×104 iterations were required
to converge to a steady-state solution. One time step of the calculation in
Fig. 11.4 takes 0.6 ms. The exponential grid was needed. The time step
was approximately ∆t = 0.2 × 10−7 s and the relaxation required 5 × 105

iterations. A similar efficiency was achieved also with a second version of the
code written in C++.

11.4.4 Dependence on operational conditions
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Figure 11.5: Profiles of the ion density ni, the ion velocity ui, the electron tem-
perature Te, the ion temperature Ti, the neutral density n0 and the neutral velocity
u0 along the magnetic field line for QE = 10 MW and Qn = 5 × 1022 s−1 (red) or
Qn = 5 × 1023 s−1 (black).

Operational conditions control the SOL regime of a device and the SOL
can be found in a low-recycling state or in a high-recycling regime, eventually
a detachment (section 8.4). In chapter 10, the operational conditions were
controlled by the toroidal magnetic field Bt and the total plasma current
Ip and it was stated that high values of the magnetic field and the plasma
current are desirable concerning the question of achieving a detached regime.
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Figure 11.6: Profiles of the ion density ni, the ion velocity ui, the electron tem-
perature Te, the ion temperature Ti, the neutral density n0 and the neutral velocity
u0 along the magnetic field line for Qn = 1 × 1022 s−1 and QE = 1 MW (red) or
QE = 0.1 MW (black).

Besides these factors, the main plasma density and the total input power
are important. The following simulations show the effect of the power and
plasma input from the core region QE and Qn on transport properties of the
SOL. In Fig. 11.5 and 11.6, solutions for two different values of Qn and QE

are plotted and illustrate what happens when we increase or decrease either
the particle or the energy source.

In general, we move more to a high-recycling or closer to a detached
regime increasing the particle flux and decreasing the energy flux. The
plasma density at the targets increases, while the temperature decreases and
temperature gradients arise in the divertor. Note that the density and tem-
perature behave inversely, the particle flux to the targets increases as the
target temperature drops and the relation niu < nit for the target and up-
stream values indexed as t and u corresponds to Tiu > Tit, see the equation
(8.11). Neutrals recycling at the targets are localized close to the boundaries.
The ionization mean free path decreases and the recycling becomes stronger.
The SOL radiation is higher as the electron temperature Te decreases (at a
lower Te, more excitations occur before the ionization and the amount of the
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radiative power loss increases). The conduction-limited regimes can be ini-
tiated by increasing the particle source Qn, thus they can be experimentally
achieved at high average densities in the core. See more in [62] about the
operational regimes.

Parameters of the model were again: the toroidal radius Rt = 2.96 m,
the poloidal radius Rp = 1 m, the safety factor qs = 3 and the recycling
coefficient R = 0.975. It should be remarked that the model does not work
at temperatures lower than 1 eV. The limit originates from the set of atomic
data which provides valid data for Te > 1 eV only.

11.5 Validation and benchmark

11.5.1 Symmetry verification
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Figure 11.7: The ion density ni and the ion temperature Ti, the symmetry of the
density and temperature and the time evolution of the average value of the density
and temperature symmetry. A model without neutrals.

The model has been carefully tested and validated. At first, the symmetry
of the solvers has been tested, i.e. it was checked that a symmetric solution
is obtained for a symmetric problem. A purpose of this test was to estimate
the level of asymmetry regarding troubles with the symmetry that have been
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Figure 11.8: The ion density ni and the ion temperature Ti, the symmetry of the
density and temperature and the time evolution of the average value of the density
and temperature symmetry. A model with neutrals.

encountered in the one-dimensional version of B2. The solution in Fig. 11.7
and Tab. 11.2 was obtained for a symmetric input and it shows an asymmetry
in the order of the machine precision. This asymmetry can be explained by
the semi-implicit approach and the algorithms used to solve the system of
linear equations. For an explicit technique, the exact symmetry could be
achieved in case an exactly symmetric grid is used. Fig. 11.7 shows the level
of symmetry of the ion density and temperature in a steady-state solution
and the time evolution of a parameter controlling the symmetry to check
there is no growing tendency in time.

plasma parameter left boundary right boundary

the ion density ni [1019 m−3] 0.4446984473202611 0.4446984473202609
the ion temperature Ti [eV] 0.1975983112447529 0.1975983112447533

Table 11.2: The boundary values of the ion density and temperature.

The code was run on an equidistant grid with 100 grid points assuming
constant and uniform sources of particles and energy (Qn = 5 × 1022 s−1
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and QE = 5 × 106 W). The grid was exactly symmetric. The parameter of
the symmetry plotted in Fig. 11.7 is calculated as a normalized subtract of
corresponding values of the variable f on the left and the right side

si(f) =
fi − fN−i+1

fi
(11.56)

where i = 1, ..., N is the index of the spatial discretization.
The symmetry has been tested also for a full model with neutrals using

an exponential grid (Fig. 11.8) and also for a time-dependent case, conclu-
ding that again, a symmetric solution has been obtained in the order of the
computer precision.

11.5.2 Test of conservation

Another essential check of the code is if the mass and energy are conserved in
the solved system. Specifically, the input particle and energy sources should
balance the outflow at the target plates. The particle and energy balance of
the plasma model (a model without neutrals) has been verified for the grid
resolutions 100, 200, 400 and 800 nodal points (Fig. 11.9 black squares) and
a mesh-independent value (Fig. 11.9 red circle) was estimated by Richardson
extrapolation.
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Figure 11.9: Particle and energy balance of the model.

Richardson extrapolation is a method for obtaining a higher-order esti-
mate of the continuum value of a quantity f (the value at zero grid spacing)
from series of lower-order discrete values. For a p-th order method and a grid
ratio r, Richardson extrapolation gives the mesh-independent value at zero
grid spacing ∆x using the two finest grids

f∆x=0 ≈ f1 +
f1 − f2

rp − 1
. (11.57)
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Traditionally, Richardson extrapolation is being used with the grid refine-
ment ratios r = 2. The order of the grid convergence p can be obtained from
three solutions using a constant grid refinement ratio r as

p =
ln
(

f3−f2

f2−f1

)

ln(r)
. (11.58)

Fig. 11.9 shows the particle and energy balance for various grid resolu-
tions. The value plotted is the ratio of the flux coming into the SOL from the
main plasma (which corresponds to Qn = 5×1022 s−1 and QE = 5×106 W in
this case) and the flux leaving the SOL at the targets. The normalized grid
spacing in Fig. 11.9 means a spacing normalized by the spacing of the finest
grid. The equation (11.57) gives the mesh-independent value 1.0009371 for
the particle balance and 1.0001752 for the energy conservation.

11.5.3 Benchmark with B2

A simple case has been set to compare results of the code with results from
another fluid model, the one-dimensional version of B2 [66]. The model
described in Tab. 11.3 was considered with identical parameters in both
codes.

plasma a hydrogen plasma
neutral model no neutrals
transport classical
grid an equidistant grid, L = 15 m
sources uniform and constant sources

Sn = 3 × 1023 m−3s−1, SE = 1 × 107 kg m−1s−3

Table 11.3: Parameters of the model.

Since the full model is rather complex, the benchmark has been started
step by step, first for a simplified case when the temperature is fixed to the
constant value 60 eV and only the continuity and momentum equations are
solved. The boundary conditions were tested in this case taking into account
different grid refinements. Using Richardson extrapolation to estimate a
mesh-independent value of the density at the boundary, we have obtained
good agreement in the boundary conditions. The tested code gives the value
2.100448 × 1019 m−3 and B2 gives 2.09863 × 1019 m−3. It was found that
perfect agreement of solutions (Fig. 11.10) can be obtained if flux limiters are
switched off in B2 and if the grid resolution is fine enough. Fig. 11.11 shows
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Figure 11.10: A comparison of the plasma density and velocity from the one-
dimensional tested code and from B2 for 400 grid points.

solutions for three different grid refinements. The ion viscosity was fixed to
the constant value ηi = 0.01 kg m−1s−1, because the codes do not use exactly
the same expressions for transport coefficients and at higher temperatures,
the viscous effects could visibly influence the solution. The next step is to
compare solutions of the full system of equations including the electron and
ion energy balance.
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Figure 11.11: The density profiles for three different grid refinements (100, 200
and 400 grid nodes).

11.6 Application to time-dependent problems

The model has been initially developed to solve steady state problems, how-
ever, it is possible to apply it also to time-dependent problems if the time
step is small enough to resolve the dynamics of the studied phenomenon. It
further extends the area where the code can be applied and makes the code
usable for various kinds of transient studies. One possible application is to
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study parallel flows of plasma particles and energy and response on targets
of a tokamak if intermittent structures known as plasma blobs develop in the
edge, representing transient cross-field flows of the mass and energy.

The anomalous radial transport in the edge in not well-understood yet,
but it is accepted to be caused by a plasma turbulence. Experimental inves-
tigations and modelling of rapid turbulent flows and intermittent structures
in the tokamak edge region contribute to better understanding of these phe-
nomena and a number of codes has been developed to study the turbulent
transport (see chapter 9).

Figure 11.12: A sketch of the simulation domain in ESEL.

The ESEL code [104] simulates electrostatic interchange turbulence in
two-dimensional geometry in poloidal cross-section at the outboard midplane
of a tokamak (Fig. 11.12). The computational region involves the SOL and
the wall region where magnetic field lines are open and cross divertor targets.
In these regions, the transport of particles and energy along the magnetic
field to the targets is simplified in the form of an analytic model valid for
steady-state and simple SOL conditions [105]. The description of the paral-
lel transport is considered as the main weakness of the ESEL model. The
analytic model assumes that the energy transport is due to the heat conduc-
tion and at low collisionalities, when the power is not carried only by the
heat conduction and convective transport may become important, a kinetic
correction known as the heat flux limiter is introduced (see section 11.2.3).
The assumption of the sheath-limited regime makes further constrains and
physics can change under complex SOL conditions when we can observe a
strong recycling of neutrals at the targets. In addition, an important point
is the influence of dynamics on parallel losses which can be significant and
a comparison with experimental observations shows that more precise treat-
ment of parallel flows in ESEL is desirable. The following work aims to
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prepare the one-dimensional fluid code for future coupling with ESEL, to re-
place the simple analytic description of the parallel transport and calculate
parallel losses of particles and energy dynamically and consistently with the
radial transport of ESEL.

11.6.1 Comparison with analytic model for steady state
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Figure 11.13: The parallel particle density and energy loss times τn and τE as
functions of the electron collisionality ν∗

e . A comparison of the fluid and analytic
models.

The transport along the magnetic field lines to the divertor targets can
be characterized by parallel particle density and energy loss times τn and τE

∂ne

∂t
∼ ne

τn
, (11.59)

∂

∂t

(

3

2
nekTe

)

∼
3
2
nekTe

τE

. (11.60)

The ESEL model calculates the parallel loss times for particles and energy
from values of the density and temperature at the outer midplane and as-
sumes a steady state. Parallel losses and transport are described as subsonic
advection

τn ≈ L‖

Mcs

(11.61)

with the sound speed cs and Mach number M (M ≈ 0.5 derived from the
two-point model) and the Spitzer-Härm diffusion

τE ≈
3
2
L2
‖ne

κlim
e

(11.62)
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with modified heat conductivity κlim
e using heat flux limits to satisfy all SOL

collisionality regimes. The length scale of parallel density and temperature
variations L‖ (in general distinct for the density and temperature) is assumed
equal to the connection length Lc.

The fluid model was compared with the simple analytic model as a first
approach to estimate a possible impact on the parallel damping for various
collisionality regimes. Several scans were made over values of the cross-field
sources Sn

EXT and SE
EXT and steady-state solutions were used to calculate

corresponding parallel loss times. Uniform cross-field sources were considered
along the SOL and the equations

∂

∂x
(niui) ≈

ni

τn
, (11.63)

∂

∂x

(

5

2
uenekTe − κek

∂Te

∂x

)

≈
3
2
nekTe

τE
(11.64)

evaluated at the midplane (the upstream location in the model) were used as
the definition for the parallel particle density and energy loss times, a more
general form from which the equations (11.61) and (11.62) can be easily
derived under the simple SOL picture. The condition of quasi-neutrality
ne = ni is assumed in the whole section. Note that the equations (11.63) and
(11.64) do not take into account collision terms as their contribution to the
parallel transport is negligible at the midplane.

One scan was selected to be discussed here. The results presented in
Fig. 11.13 show the dependence of the parallel loss times on the electron
collisionality

ν∗
e =

Lc

vth
e τe

, (11.65)

an important parameter characterizing the operational regime of a toka-
mak defined as the ratio of the connection length Lc and the electron self-
collisionality length. We have obtained fair agreement for the parallel energy
loss time τE in the investigated collisionality range and it seems that the
analytic model based on the assumption of the heat diffusion is a good ap-
proximation in a steady state. The power to the targets is carried mostly by
the conduction (compare the yellow and red points in Fig. 11.13), only at
very weak collisionalities (green circle), the convection also plays a role. A
remarkable difference appears in the comparison of the parallel density loss
times τn in the whole collisionality range and the analytic model seems to
be too rough estimate. We observe a departure from the analytic solutions
especially at low densities and high temperatures, which could possibly ex-
plain why the model has not been successfully applied to a JET low-collision
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Figure 11.14: Profiles of the ion density ni, the ion velocity ui, the electron
temperature Te, the ion temperature Ti, the neutral density n0 and the neutral
velocity u0 along the magnetic field line. A transition from the simple SOL (a)
(the first run with the SOL in the sheath-limited regime) to the complex SOL (b)
(the second run with the recycling at the targets).
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Ohmic plasma [105]. The discrepancy is, however, remarkable even for a
collisional SOL, that has been extensively studied with ESEL and reported
e.g. in [106]. In Fig. 11.13, one run corresponding to very low collisiona-
lity coincides precisely with the analytic model (green circle). If we look at
steady-state parallel profiles of the plasma parameters for this first run (Fig.
11.14 a) and the second run (Fig. 11.14 b), we can notice a transition from a
recycling regime with typical higher plasma density at the targets and physics
influenced by the ionization in the SOL to a simple SOL regime with charac-
teristic flat profile of the temperature and parabolic profile of the density (see
section 8.4). This simple SOL run is also in agreement with the two-point
model (section 8.5.1) where the upstream plasma pressure is twice the value

0 2 4

x 10
20

0

1

2

3

4
x 10

20

n
u
 T

u

2 
n t T

t

 

 
fluid model
two−point model

Figure 11.15: The pressure at the upstream location u and at the target t.
A comparison with the two-point model.

of the pressure at the target (Fig. 11.15), which corresponds to constant
total pressure along the SOL. For higher collisionalities, we do not match
the two-point model assumptions as the SOL plasma is in a high-recycling
or detached state with a parallel source of momentum due to plasma-neutral
collisions.

ESEL has been applied to JET and TCV plasma discharges so far [105].
It has been found that for a low-collision L-mode plasma of a JET experi-
ment, the parallel damping of the density is too weak to match experimental
data and the parallel transport requires improvements. The simple analytic
description of the steady-state parallel transport, at least for the particle
losses, is not adequate as it was indicated by the comparison with the fluid
approach. In the sheath-limited regime, we typically observe parabolic pro-
files of the density in the parallel direction. This assumption was used to
derive the approximate expression for the parallel density loss time, however,
in conduction-limited or detached regimes (e.g. the investigated regime of
TCV that will be discussed in the following sections), strong gradients of the
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density and temperature develop at the boundaries, affecting the length scale
of density variations. Consistently with the assumption L‖ = Lc, uniform
cross-field sources were considered in the fluid model. In real experiments,
radial flows are predominantly concentrated around the outboard midplane
(due to poloidal asymmetries) and the parallel profiles of the sources should
be better described by a gaussian function localized at the midplane. This
would influence also the parallel profiles of the plasma parameters, the length
scales of parallel variations of the density and temperature and the strength
of parallel losses. Specifically, using a simple approach, one might expect
that τn is proportional to L‖/cs and τE scales as τE ∼ L2

‖ne/κe. The fluid
model could eventually provide a precalculated table of steady-state parallel
loss times for ESEL in the collisionality range typically observed in tokamaks,
however, we expect that the behaviour changes in a time-dependent case. In
the following sections, the geometry and assumptions of the fluid model copy
better realistic observations and the parallel transport is investigated under
transient conditions of the turbulent radial transport.

11.6.2 Transient studies

Data from ESEL

To test the applicability of the one-dimensional fluid code to time-dependent
problems and its stability for realistic fluctuations of the density and tempe-
rature, data from ESEL has been prepared from the most reported run 116, a
simulation of interchange turbulence in the TCV tokamak [104]. Several as-
sumptions were taken into account about the connection length (Lc = 15 m)
and profiles of the sources Sn

EXT and SE
EXT according to typical conditions

found in discharges of the TCV device. The parallel profiles of the cross-field
sources are not uniform as in the previous section, but gaussian profiles are
prescribed, which is more realistic and appropriate assumption because of
poloidal asymmetries observed in tokamaks. Experiments show that radial
flows of particles and energy are observed around the midplane with the
poloidal angle approximately ±30o [107].

Results of ESEL provide realistic fluctuations of the density and tempe-
rature and corresponding cross-field sources Sn

EXT and SE
EXT in time at each

point of the ESEL domain. The following input data has been obtained for
the parallel transport code (Fig. 11.16), calculated from the ESEL output at
the selected radial position ρ = 0.20 (ρ is the normalized radial coordinate,
see Fig. 11.12). The average plasma density and electron temperature at
this position are 〈ni〉 = 1.5 × 1019 m−3 and 〈Te〉 = 12.8 eV. The cross-field
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Figure 11.16: Time series from the ESEL run 116 used as input for the parallel
transport code – the plasma density ne, the electron temperature Te, the total
parallel particle and energy losses Sn

‖ and SE
‖ and corresponding cross-field terms

Sn
EXT and SE

EXT.

sources Sn
EXT and SE

EXT were evaluated from the equations

∂ne

∂t
+ Sn

EXT + Sn
‖ = 0, (11.66)

∂

∂t

(

3

2
nekTe

)

+ SE
EXT + SE

‖ = 0 (11.67)

and the parallel damping terms were calculated from ESEL parallel loss times
as

Sn
‖ =

ne

τn
, (11.68)

SE
‖ =

3

2
nekTe

(

1

τn
+

1

τT

)

, (11.69)

ST
‖ =

Te

τT
. (11.70)

Note that ESEL works with the temperature equation and the parallel elec-
tron cooling time τT , while the fluid code requires cross-field sources in terms
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of the density and energy. The obtained values Sn
EXT and SE

EXT are radial
sources at the outer midplane, the interface of the two codes, which is mo-
delled as the central upstream location in the parallel direction. Gaussian
profiles of the sources are assumed along the magnetic field (Fig. 11.17) with
the gaussian width in conformity with observations. The same power input
SE

EXT is considered for electrons and ions.
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Figure 11.17: Profiles of the ion density ni, the ion velocity ui, the electron and
ion temperature Te and Ti, the neutral density n0 and the sources of the mass and
energy Sn

EXT and SE
EXT along the magnetic field line. A steady-state solution.

Sources averaged over the whole investigated time interval were used for
obtaining a steady-state solution (Fig. 11.17) and the profiles of the plasma
parameters in the steady state were used as the initial condition that is
required at the beginning of the calculation. The steady-state profiles were
found in a range of realistic values. The upstream density (ni = 6.8 ×
1018 m−3) is lower than the average density calculated by ESEL and the
electron temperature (Te = 19.2 eV) is higher. The ion temperature in the
centre is approximately 1.5 times higher than the temperature of electrons for
the same amount of energy SE

EXT going to the electron and ion component.
Note that an assumption about the distribution of the sources along the SOL
is needed and their parallel profile is an optional parameter. The density
and also the temperature would be higher if we extended the gaussian width.
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It should be also remarked that the average value of the sources used to
obtain the steady-state solution is almost exclusively determined by parallel
damping terms approximated by simple analytic formulas. In the run 116,
even a cruder model of parallel losses was used assuming constant parallel
loss times τn and τT across the SOL with values related to the density and
temperature at the separatrix. Fig. 11.18 shows individual contributions of
all calculated terms to the total parallel losses Sn

‖ and ST
‖ . In a steady state,

these should balance exactly the corresponding cross-field terms Sn
EXT and

ST
EXT. We can see that collision terms are negligible at the midplane, particles

are convected, while the conduction dominates in the heat transport.
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Figure 11.18: The total parallel particle and temperature losses Sn
‖ and ST

‖ and
contributions of all individual terms in a steady state.

After reaching the steady state, the precalculated time-dependent sources
simulating turbulent plasma flows (Fig. 11.16) were applied giving rise to
fluctuations of the plasma parameters along the SOL. Passing intermittent
blob structures represent input sources of particles and energy into the flux
tube and we observe their damping as the particles and power are transported
to the targets. The intensity of upstream density variations was found in
fair agreement with ESEL data (Fig. 11.19), however, there is one visible
difference. If the cross-field flux Sn

EXT decreases significantly, the density falls
down as well, consequently rising the temperature. Drops of the density are
stronger than in ESEL (which is consistent with observed stronger parallel
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losses in the fluid code) and during the strongest negative peaks, the density
tends to go below zero and the temperature increases to unphysical levels
(Fig. 11.20). To avoid negative values, certain limits had to be imposed on
the density and temperature. Note that we do not aim and expect agreement
with ESEL data, but we would like to estimate differences in the parallel
transport in both approaches. It is important to realize that the average
values of the density and temperature in the transient state differ from the
initial steady-state values, while the average values of the sources Sn

EXT and
SE

EXT were used to reach the steady state.
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Figure 11.19: The total parallel density losses Sn
‖ and the plasma density ni at

the midplane calculated in the fluid code and a comparison of the density with
ESEL values.
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Figure 11.20: Fluctuations of the plasma density ni and electron temperature Te

at the midplane.

The resulting parallel damping terms (Fig. 11.19) are stronger, i.e. the
parallel loss times are shorter compared to the model which has been imple-
mented in ESEL (Fig. 11.16) and the plasma density reaches lower values
as a consequence of stronger particle losses. The problematic drops of the
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density and temperature below zero are caused by the inconsistency of the
parallel transport and they are, hopefully, not expected to be observed in the
coupled system of the two codes.

Step function

One transient event based on data selected from the ESEL series (Fig. 11.21)
has been studied. For the sake of simplicity, the inflow of particles and energy
to the flux tube from a passing blob is simulated as a step function in time
with the duration and intensity corresponding to realistic conditions provided
by the ESEL output. The initial condition is again a steady state calculated
as in the previous case (Fig. 11.17).
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Figure 11.21: One peak in time series from ESEL (green circle) has been replaced
by a step-function and analyzed.

The transient burst appears at 0.03 ms with the duration 1 µs. The
upstream density and temperature at the midplane immediately jump up as
the sources are highly localized at the midplane and a response at the targets
is observed later (Fig. 11.22). A detailed view in Fig. 11.23 shows parallel
density and energy losses and contributions of the conduction and convection
to the power transport.

In Fig. 11.24, we can see parallel profiles of the plasma density, velocity
and electron temperature at three selected moments: 0.025 ms (the steady
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Figure 11.22: Temporal profiles of the plasma density ni and temperature Te and
Ti at the midplane and target and corresponding parallel density and temperature
losses Sn

‖ and ST
‖ .
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Figure 11.23: The total parallel density and energy losses Sn
‖ and SE

‖ and the
conduction and convection contribution to the energy transport.

state), 0.031 ms (the maximum density and temperature) and 0.075 ms. The
radial influx of particles and energy around the midplane raises rapidly the
density and temperature in the centre. We observe that the temperature
tends to flatten out faster than the density (see the red curve) as the power
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is quickly transported to the targets by the heat diffusion. The first obser-
vable increase of the density at the target (see Fig. 11.22) which appears
before the incoming particles reach the boundary (the main peak) is a con-
sequence of the compression under the pressure gradient due to changes of
the temperature or the ionization which becomes stronger at higher tem-
peratures. The particles and energy propagate to the targets (see the green
curve and the two density peaks) and we can notice that the plasma velocity
increases compared to the steady-state value. A slow relaxation back to the
steady-state solution follows.
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Figure 11.24: Parallel profiles of the plasma density ni, the plasma velocity ui

and the electron temperature Te at three selected moments.

We are in particular interested in temporal scales of this process which
characterize the dynamics of the parallel transport. The temporal scale of the
propagation of the particles and power along the SOL can be characterized
by time intervals between the moments when we observe the maximum values
at the midplane and at the target. The time when the particles reach the
targets with respect to the moment when the plasma blob appears at the
midplane (modelled as a sudden increase of cross-field sources fueling the flux
tube with particles and energy) is ∆tn = 0.14 ms and for the temperature
∆tT = 0.11 ms. The value normalized by the characteristic parallel loss time
defined as τn0

= Lc/cs and evaluated at the midplane in the steady state is
∆tn/τn0

= 0.64. According to this estimate, it might seem that the blob is
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propagating with a velocity higher than the ion sound speed. However, in
Fig. 11.25, where the sound speed is calculated in the actual blob location,
we observe a subsonic transport and a slowing down close to the target due
to the plasma-neutral friction.
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Figure 11.25: The parallel velocity of the blob uB and the normalized value uB/cs

at each passed parallel position x calculated as the plasma velocity ui at tmax when
the density at x reaches the maximum. The sound speed cs is calculated at the
position x at tmax.

The strength of the parallel losses of particles and energy can be described
by parallel loss times defined by the equations (11.68) and (11.70). The
parallel particle density loss time τn and the electron cooling time τT are
plotted in Fig. 11.26 as functions of time and their values are compared
with the analytic model defined by the equations (11.61) and (11.62) and
the constant values which were used in the ESEL run 116.

Further, Fig. 11.26 shows the total parallel density and temperature
losses Sn

‖ and ST
‖ as functions of the density and temperature and we can see

that the assumption of constant parallel loss times in ESEL (meaning that Sn
‖

scales linearly with the density and ST
‖ is proportional to the temperature) is a

crude approximation. Note that Sn
‖ in Fig. 11.26 goes anti-clockwise in time,

while ST
‖ goes clockwise, which can be deduced from Fig. 11.27. ST

‖ reaches
the maximum before the maximum temperature as the heat is instantly being
transported to the target by the diffusion. From Fig. 11.27 and also the
illustrations above (Fig. 11.24, 11.23 and 11.18), an important statement
follows. Due to the fact that the energy is relatively fast conducted to the
targets, the assumption L‖ = Lc in the analytic model is more relevant for
the temperature than for the convective particle transport. This observation
may explain why good agreement between the simulation and experiment
for the JET plasma in [105] has been achieved for the temperature radial
profiles, while the length scale of density variations should be shorter to
observe a match with experiment also for the density.
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The right part of Fig. 11.26 shows the strength of density and tempera-
ture fluctuations in terms of times defined as

τdyn
n =

n
∂n
∂t

, (11.71)

τdyn
T =

Te

∂Te

∂t

(11.72)

and we would expect a relation between τn and τdyn
n or τT and τdyn

T .
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Figure 11.26: The parallel particle density loss time τn, the electron cooling
time τT , the total parallel losses Sn

‖ and ST
‖ as functions of the density ni and

temperature Te and temporal scales of the density and temperature perturbations
τdyn
n and τdyn

T .

The parallel transport has been analyzed for a simple case when cross-
field sources of particles and energy were represented by a step-function. A
real blob would be realized as a rapid increase of the sources followed by a
sink of particles and energy as the blob passes across the flux tube. Anyway,
the analysis given here provides a useful insight into the parallel dynamics.
In spite of the complexity, we can conclude that the analytic model under-
estimates the parallel losses in the analyzed transient case. We have now
introduced two additional parameters having effect on the strength of paral-
lel damping compared to the steady-state analysis in section 11.6.1. These
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Figure 11.27: A detailed view to temporal evolution of the plasma density ni, the
electron temperature Te and the total parallel losses Sn

‖ and ST
‖ shortly after the

burst appears.

parameters are the spatial distribution of the cross-field sources Sn
EXT and

SE
EXT (the gaussian width) and the strength of temporal density and tempe-

rature variations expressed by τdyn
n and τdyn

T . We observe that the discrepancy
between values calculated by the fluid model and loss times estimated by the
analytic expressions under simplifying assumptions grows after the sudden
burst appears with respect to the steady-state values. In context of the ana-
lysis presented here, the large turbulent transport seems to be a dominant
source of plasma in the flux tube and the plasma is fueled by passing intermit-
tent structures around the midplane. Processes at the targets (the recycling
and the ionization as a source for plasma) become less relevant than in the
steady-state analysis. Therefore the form of the cross-field sources is im-
portant and the spatial scales of parallel density and temperature variations
and the parallel damping are dependent on their distribution in the parallel
direction and the intensity of their fluctuations (causing perturbations of the
density and temperature). In general, the parallel damping is stronger for a
source localized in a narrow region close to the midplane, while for a source
that extends to the targets, we observe slower parallel losses. It is difficult,
however, to estimate how the parallel profiles of the sources change radially
across the SOL and we would expect their broadening with increasing radial
coordinate as the plasma tends to form filaments that extend along the SOL.
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11.6.3 Final coupling

It was stated in [105] that a mismatch of the radial density profile in a JET
Ohmic plasma calculated by ESEL with the measured one has been observed
and an advanced approach for the description of the parallel transport based
on coupling ESEL with a parallel transport fluid model would be appreciated.
The presented work indicates that such approach could increase the steepness
of the radial density profile. One can easily deduce, how radial profiles of
the density and temperature would be affected by stronger parallel damping.
Shorter parallel loss times result in shorter e-folding lengths (the radial decay
length), thus reducing broadening of the radial profiles.

It is believed that parallel transport investigations can provide useful
information about the parallel dynamics and losses to the targets in transient
conditions and that an improvement of the parallel transport model in ESEL
and especially the time-dependent coupling of the two codes can reduce the
discrepancy between ESEL simulation results and experiment.

The joint model will be a quasi three-dimensional simulation. In each
nodal point of the ESEL grid (see Fig. 11.12), we need to calculate total
parallel losses of particles and energy, i.e. the parallel transport code will
be applied on a number of flux tubes which are coupled together by the
cross-field transport calculated within ESEL.

Such simulation is going to be computationally intensive. Both codes
use comparable time steps ∆t ≈ 1 × 10−8 s and typical temporal scale of
intermittent structures is roughly 1×10−5 s. If the real time of one iteration
of the parallel transport code is 0.6 ms (see section 11.4.3), then for 1 × 105

grid points, we get 60 s in total per one ESEL iteration, while ESEL itself
is only 0.1 s. The ESEL simulation is typically run for 1-2 million time
units and we need at least few hundred thousands iterations (∼ 10 blob
realizations) to obtain reasonable statistics and valuable results. Even if the
parallel transport is proposed not to be updated in every iteration of ESEL
(at least as a first approximation) or to be calculated on a coarser grid, the
code parallelization and distribution of computational power among CPUs
is necessary anyway.

The most straightforward way to couple both codes is to exchange infor-
mation about total cross-field sources (the input for the parallel transport
code) and total parallel losses (required by ESEL). One could object that we
can not guarantee to have the same densities and temperatures in both codes
and the total parallel losses calculated by the parallel transport code could
be related to different values of the density and temperature than ESEL
uses. Therefore, the parallel transport model has been modified and the
new version uses the density and electron temperature at the midplane as
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input parameters instead of the cross-field sources. In this approach, how-
ever, corresponding radial sources must be calculated in each time step and
their adjustment requires a couple of additional iterations. Therefore the
exact implementation of the quasi three-dimensional model is still subject of
discussions.
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CHAPTER 12

Introduction to

two-dimensional edge modelling

12.1 Plasma edge and numerical tools

The edge region plays an important role in questions of the confinement of
plasma in tokamaks and substantial part of the fusion research is focused on
the study of phenomena in the scrape-off layer such as turbulent structures,
instabilities, detached regimes or plasma-solid interactions. Experimental
investigations and diagnostics are supported by the computational approach.
The edge physics is very complex and involve a variety of processes and
phenomena. The modelling effort concerns a study of individual processes
or individual regions (see chapter 9) or simulates the entire SOL and global
transport.

The following summary focuses on two-dimensional multifluid codes for
a steady-state analysis of the SOL and chapter 12 provides an overview of
numerical tools such as B2, EDGE2D etc, which were previously mentioned
in section 9.0.4. The models gather aspects of the numerical mathematics and
physics with contributions from many areas combining the fluid theory, the
kinetic theory, the atomic and molecular physics, the theory of plasma-solid
interaction (Fig. 12.1). Charged main plasma species as well as charged
impurities are described within the fluid approach. The models treat all
ionic species in different charge states as separate fluids. Interactions of the
charged species with a neutral background are also taken into account using
various techniques of the inclusion of collisions (see section 12.4). The codes
should be equivalent in physics that is involved and they describe the edge
plasma transport on a computational domain restricted to two dimensions in
poloidal cross-section. They have been applied on different machines in the
past and now there is an effort to utilize these tools.
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Figure 12.1: The complexity of the tokamak edge physics. Research areas related
to the multifluid edge modelling. Reprinted from [66].

12.2 Grid and geometry

The two-dimensional transport models assume a perfect toroidal symmetry
and work on a computational domain in the poloidal cross-section. The fluid
motion of the plasma along the magnetic field is projected to the poloidal
plane and described using the toroidal coordinates ϕ (toroidal), θ (poloidal)
and r (radial). The computational coordinate system x, y and z coincides
with the magnetic coordinates (an example in Fig. 12.2) to which a system of
equations governing the transport of plasma species is transformed. This is
done using the metric coefficients dx = hθdθ, dy = hrdr, dz = 2πRt. In case
of a limiter machine, the grid is simpler since circular magnetic flux surfaces
are commonly assumed and thus the radial and poloidal coordinates r and θ
match the magnetic coordinate system. In addition, there is no X point that
would complicate the numerical implementation.

The orthogonal grid (an example in Fig. 12.3) is a result of a process
known as the magnetic reconstruction. The equilibrium reconstruction is
performed by a special software (e.g. EFIT [109]) as a preprocessing pro-
cedure. The magnetic configuration is scanned on the basis of data from
detectors and their positions and the Grad-Shafranov equation [63] is solved
to obtain a map of magnetic flux surfaces. The equilibrium solver is followed
by orthogonalization techniques [110, 111] to construct the full grid.
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Figure 12.2: The magnetic topology and coordinates – x varies along flux surfaces,
y varies perpendicular to the flux surfaces and z is the toroidal direction. Reprinted
from [108].

Figure 12.3: The physical (left) and computational (right) plane. Reprinted from
[108].

12.3 Fluid model and mathematical descrip-

tion

Charged species are treated as a fluid. The mathematical description of the
transport parallel to the magnetic field is based on fluid equations commonly
following the set introduced by Braginskii [68] and the transport is supposed
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to be classical or neoclassical. The continuity and momentum equations
are solved for ions, the plasma is quasineutral and the ambipolar flow is
assumed along the magnetic field. The heat transport is governed by the
energy balance with separate equations for the ions and electrons, similarly
as in section 11.2.1. The equations are projected to the poloidal plane and
written in the curvilinear coordinate system. Impurity ions are treated as
a separate fluid, while usually only one ion temperature is assumed for all
ionic species.

In regions where steep gradients are present (e.g. the private region below
the X point) and the condition for justification of the fluid description λ ≪
L (see section 8.5) imposed on the mean free path of collisions λ and the
characteristic length scale of variations of the plasma parameters L is not
fulfilled, the fluid approximation loses the validity and kinetic corrections
should be introduced. The parallel heat transport is flux limited [112, 113]
using a flux-limiting factor for the parallel thermal conductivity (see section
11.2.3). Formally, the parallel thermal heat flux is modified as

1

q‖
=

1

qlim

+
1

qCL

(12.1)

where qCL is the original classical value and

qlim = αnvthkT. (12.2)

A proper value of the flux limiters is an issue that has to be investigated by
the kinetic approach.

The transport perpendicular to the magnetic field is large compared to
classical or neoclassical predictions. The mechanism of this anomalous trans-
port might be explained on the basis of turbulent plasma behaviour, however,
in the considered and mentioned fluid models, it is represented in the form

Γ⊥ = nu⊥ = nvadv − D⊥
∂n

∂r
(12.3)

where vadv is an advective velocity and D⊥ is a diffusion coefficient. The
transport processes that can not be accurately modelled in the fluid approxi-
mation are described by anomalous diffusion with an empirical coefficient
D⊥.

12.4 Model of neutrals

Neutral atoms are treated separately from the fluid plasma model. Vari-
ous techniques can be used. Monte Carlo models such as EIRENE [114] or
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NIMBUS [115] are three-dimensional simulations of a linear transport of test
particles (neutrals) in a background medium (plasma). The packages are
coupled to databases for atomic and molecular data.

An alternative approach is the fluid description, specifically the neutral
diffusion approximation [102]. The neutral-plasma volumetric sources are
written in a simple manner for two reactions – the electron impact ionization
and the charge exchange. The continuity equation for the neutral density n0

∂n0

∂t
+ ∇ · Γ0 = −Sn

0 (12.4)

is solved with the ionization as the source Sn
0 . The second moment of the

neutral transport equation gives an expression for the neutral flux in the
form of the diffusion approximation

Γ0 = −D0∇n0 (12.5)

with the neutral diffusion coefficient D0 [116, 117]. The approximation
assumes that neutrals are in one energy group and locally at the same energy
as the average ion temperature. Processes on the solid surface (the recycling
and sputtering) appear in the model in boundary conditions.

An analytic approximation is another possibility. The spatial distribu-
tion of neutrals is described by a simple analytic expression, again with the
plasma-solid processes given at the boundaries. This model is used e.g. in
[75, 118].

The analytic approach is simple to implement and quick to solve, but it
is not generally intended for the time-dependent resolution of physics. The
Monte Carlo technique is the most precise treatment, however, the codes are
very costly in computer time. The implementation is more complicated, it is
difficult to couple a finite differenced plasma solution to a statistical neutral
solution on the same computational grid and to assure convergence [117].

12.5 Boundary conditions

To close the fluid description of the plasma transport, boundary conditions
are required at the interface of the plasma with the targets, the wall and
the central plasma, evaluating the plasma density, velocity and temperature
at boundaries of the computational region. At the core boundary, the total
power and particle input fluxes QE and Qn are specified to fix the density
and temperature or the density is fixed by a Dirichlet boundary condition
[66, 119]. At the wall, decay lengths λn and λT (the characteristic decay
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lengths of the density and temperature in the radial direction) are used as a
standard choice (see [66, 119])

1

ni

∂ni

∂y
=

1

λn

, (12.6)

1

Te,i

∂Te,i

∂y
=

1

λT
, (12.7)

∂ui

∂y
= 0. (12.8)

The plasma-solid interface at the targets incorporates the sheath boundary
conditions (see section 8.2) for the total heat flux

Qe‖ = δekTenecs, (12.9)

Qi‖ = δikTinics (12.10)

using the heat transmission coefficients δe and δi. The parallel flow velocity is
assumed to be equal to the local sound speed (the Bohm-Chodura condition)

ui‖ = cs. (12.11)

12.6 Drifts and currents

An impact of electric fields and drifts is important for the transport of plasma
and impurities between the divertor legs and effects associated with drifts
and currents should be included in the transport codes. The poloidal and
radial drift flows and electric currents, which are produced by the electric and
diamagnetic drifts, play a crucial role for the plasma redistribution and cause
asymmetries in the plasma parameters between the inner and outer divertor
regions with respect to the direction of the magnetic field. Basic results
can be understood by dividing the drifts into three categories – diamagnetic,
E × B and ∇B.

The dominant effect near the divertor plates comes from the E×B drifts.
The poloidal E × B drifts are driven by the radial electric field that arises
as a result of radial temperature gradients, while the radial E × B drifts
are driven by the poloidal electric field occurring as a consequence of parallel
temperature gradients, usually strongest in the vicinity of the X point [62, 65].
Since the E × B drift is the same for the electrons and ions, it generates
no current. A self-consistent calculation of the electric field in the two-
dimensional edge codes is complicated, the inclusion and implementation is
reported e.g. in [120–123].
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The presence of pressure gradients results in diamagnetic drift motions.
The diamagnetic fluxes are almost divergence free with no effect on plasma
boundary conditions. The drift velocity is charge dependent, the diamagnetic
drifts produce currents that form closed circuits inside the plasma and do not
reach the target surface. The divergence free components do not contribute
to the transport [124].

The toroidal magnetic field scales as the inverse major radius Bt ∼ 1/Rt

giving rise to a ∇B drift motion. In the poloidal plane, the velocity due
to the ∇B drift is downward for the normal field direction. The ∇B drift
is weaker than the E × B drift and causes an increase in the magnitude
of the radial electric field inside the separatrix. Its influence on transport
simulations is documented e.g. in [121].

The inclusion of the drift fluxes into the transport codes has been of much
recent interest. During the past decades, the drift effects were taken into
account and implemented in the codes, nevertheless, results obtained with the
drifts and a detailed description of their influence on the profiles or on plasma
conditions near the targets are still scarce. Despite their importance, the
drift effects are difficult to implement in most of the simulation codes, they
strongly effect on the code structure, complicate the boundary conditions and
in general cause serious numerical difficulties. To avoid numerical problems,
a special treatment is required. Several ways of the implementation and the
numerical treatment are described in [75, 123, 125] in more detail.

12.7 Numerics and overview

The edge codes use various approaches for the numerical discretization of the
fluid equations. The finite volume method is used in B2 [66] or in [117], while
EDGE2D [74, 126] and TECXY [127] use the finite difference technique and
the finite element method has been also applied [120, 128, 129]. The main
advantage of the finite element modelling is the discretization on an unstruc-
tured triangular mesh (an example in Fig. 12.4) instead of conventionally
structured quadrilateral mesh which is used for example in B2 or EDGE2D.
The finite element method benefits from the geometric adaptability of the
unstructured mesh representing the geometry and boundaries in a realistic
way and allowing a local refinement in regions where it is needed (i.e. in
the vicinity of the X point where strong gradients may occur). In case of
the structured grid, increasing the resolution at the X point implies smaller
cells also in regions where a finer resolution may not be needed. On the
other hand, the methods using the structured grid are well established and
the grid is relatively simple and naturally able to represent strong transport

119



anisotropies in a magnetized plasma, while the latter makes certain con-
strains for the finite element modelling [128]. A tutorial to the technique of
the FDM, FVM and FEM is given e.g. in [22].

Figure 12.4: A structured quadrilateral grid (left) used in the finite difference
or finite volume methods and an unstructured triangular grid (right) used in the
finite element method. Reprinted from [128].

The two-dimensional edge transport models are robust packages. The
modelling activity has been started in 80’s and it continues with further
developments, benchmarks and integration. The computer modelling of the
edge plasma is an important part of the fusion research, it is used to interpret
measurements or to guide the design of machines, while accounting for a
comprehensive set of physical effects. Computational investigations study
the drift effects [75, 121, 125], the impurity transport and influence, the
processes at a solid surface, the detachment [65] or the instabilities such as
MARFEs [119].

The fluid codes are either coupled with a Monte Carlo model for the
transport of neutrals (NIMBUS, EIRENE) or they treat neutrals in a simpler
manner using the analytical model [118] or the neutral diffusion approxima-
tion [102, 120]. Some of the fluid and Monte Carlo codes were originally
developed to function as a pair – B2/EIRENE, EDGE2D/NIMBUS. The
coupled system of EIRENE and EDGE2D is now also available and results
of B2 and EDGE2D are being compared in the frame of a benchmark activity
[130]. An application of one of the edge transport codes to the COMPASS
configuration is planned at IPP Prague.
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CHAPTER 13

Conclusions

The work presented in sections 11.5 and 11.6 is an activity supported by an
international collaboration. The introducing of the dynamic parallel trans-
port model into the ESEL code is a project that has been launched at
EURATOM/UKAEA Association in the frame of a cooperation with the
Task Force E (W. Fundamenski, V. Naulin). The project is one of the sub-
jects of the annual meeting EFDA-JET TF-E Modelling month and the ITM-
IMP4 activity and the subject of a collaboration of EURATOM/IPP.CR
Association (J. Seidl, J. Horáček) and EURATOM/Risø Association (A. H.
Nielsen). The B2 simulations were performed by F. Subba (Politecnico di
Torino, Italy) and supported by D. Coster (IPP Garching, Germany).

The one-dimensional fluid code which has been developed in the frame
of the thesis describes the transport of a plasma along the SOL. The model
involves only basic physics compared to two-dimensional fluid packages such
as B2 or EDGE2D, however, it is a flexible and fast tool that can be used for
various applications. The study of the dynamic parallel transport is a part
of a long-term project and the coupling of the code with ESEL is envisaged.
The benchmark of the code with B2 will continue for more general form of
the model and the code might be also compared with a kinetic simulation (D.
Tskhakaya, EURATOM Association ÖAW, University of Innsbruck, Austria)
and a Vlasov code (S. Devaux, IPP Garching). The plasma transport in the
presented code is based on the classical Braginskii expressions and the trans-
port coefficients have been modified using flux limiters. The code can help to
test effects of kinetic corrections in the fluid approach and an application of
the code to data calculated by the BIT1 code (D. Tskhakaya) is scheduled.

Chapter 12 is an introduction to two-dimensional SOL transport models.
Next step, which is now in progress, is to adapt such tool for the COMPASS
tokamak.
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[97] R. Zagórski et al., Phys. Scr. 56, 399 (1997).
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