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Peled, Russ Woodroofe, Éric Colin de Verdière, and Niloufar Fuladi.

I would also like to express my gratitude to Eran Nevo for hosting me at
Hebrew University; Russ Woodroofe for hosting me twice at the University of
Primorska; Uli Wanger for hosting me at IST Austria; Éric Colin de Verdière
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Title: Algebraic Tools in Combinatorial Geometry and Topology

Author: Denys Bulavka

Department: Departement of Applied Mathematics

Supervisor: doc. RNDr. Martin Tancer, Ph.D, Departement of Applied Mathe-
matics

Abstract: In this thesis we study combinatorial problems through the lenses of
the exterior algebra. This algebra is a natural object to model set systems as
well as simplicial complexes. Moreover, it is possible to translate the classical
operations from the combinatorial setting to the setting of exterior algebra. For
example, set intersection and the classical boundary map from topology. Often
this point of view makes it possible to translate the combinatorial problem to a
problem regarding the dimension of certain vector space. The latter one might
turn up to be easier since we can study the dimension of a vector space with
linear maps. We follow such approach in this thesis.

In the first part we study the weak saturation problem introduced by Bollobás in
the 60’s. This problem consists in, given a host graph F and a pattern graph H,
to determine the minimum number of infected edges of F one has to start with in
order for the infection to spread, according to the pattern H, to the whole host
graph F . We study this problem when the host and the pattern are complete
uniform multipartite hypergraphs.

Next, we work on a generalization of a theorem by Helly regarding intersecting
patterns of convex sets. Concretely, given a finite family of convex sets in Rd

partitioned into d + 1 colors classes such that a fraction α of the colorful (d +
1)-tuples intersect, what is the size of the largest monochromatic intersecting
subfamily that we can guaranty? We answer this question.

In the third part we study the notion of volume-rigidity for simplicial complexes.
This is a generalization of (generic) rigidity for graphs to higher dimensional
objects. We relate volume-rigidity with exterior algebraic shifting and show that
compact surfaces of small genus without boundary are volume-rigid.

In the last part we study a generalization of a classical theorem by Erdős, Ko
and Rado on the maximal size of a pairwise-intersecting family. Concretely we
are interested in charaterizing the family achieving the maximal size when it is
restricted to a simplicial complex.

Keywords: Helly theorem Erdős-Ko-Rado rigidity simplicial complex algebraic
shifting exterior algebra weak saturation
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1. Introduction
In combinatorics one is usually interested in counting, or enumerating, objects
that satisfy certain properties. For example, what is the number of trees on n
vertices? What is the largest size of a pairwise-intersecting family of k-subsets
from a ground set with n elements? One of the possible ways to answer these
and similar questions is with the aid of linear algebra. In this setting counting
the desired quantity translates into computing the dimension of a certain vector
space. It often turns out that the later one is easier to compute since one can
study the dimension of a vector space through linear maps which capture the
properties satisfied by the objects of interest.

In this thesis we will mainly work with the exterior algebra of a vector space
since, among other properties, it is a natural framework to model the set inter-
section property as well as the classical boundary map from topology. Moreover,
one can associate elements of a set family with basis elements in this algebra in a
very simple way. This process associates a combinatorial object with an algebraic
object. We will be also interested in the opposite direction, that is from a vector
space we obtain a combinatorial object which is in some sense, to be made precise
later, the simplest object satisfying the desired properties. This last part refers
to a compression operation, so called algebraic shifting, introduced by Kalai [50]
and it turns out that one can read structural and geometric information from the
compressed object.

Results of the thesis. Bollobás [15] introduced the problem of weak satu-
ration on graphs. Given a pattern graph H and a host graph F , the objective is
to determine the minimum number of infected edges that one has to start with in
order to propagate the infection according to H to all the edges of F . In Chap-
ter 3 we solve this problem for the case when the pattern and the host graphs are
complete uniform multipartite hypergraphs.

The celebrated theorem of Helly [38] states that every finite family of convex
sets in Rd with every (d + 1)-tuple of its elements having non-empty intersec-
tion satisfies the condition that all of its members have non-empty intersection.
Kalai [46] and Eckhoff [26] showed independently the optimal size of an inter-
secting subfamily if one has only that a certain fraction of the (d + 1)-tuples is
intersecting. In Chapter 4 we extend this result for the case of colorful families
of convex sets.

Asimow and Roth [5, 6] introduced the notion of graph rigidity. Lee [57,
67] showed that the membership of a certain edge in the symmetric algebraic
shift of the corresponding graph is equivalent with the graph being (generically)
rigid. In Chapter 5 we establish an analogous link between volume-rigidity and
the membership of a face in the exterior algebraic shifting of the corresponding
simplicial complex. Moreover, we show that any triangulation of a small genus
surface is volume-rigidity.

What is the largest cardinality of a family of pairwise-intersecting sets? The
celebrated theorem of Erdős, Ko and Rado [28] states that the family achieving
the maximal size is given by subsets all containing a fixed element. In Chapter 6
we show that the statement is still true when the pairwise-intersecting family is
restricted to a sequentially Cohen-Macaulay near-cone. This family of simplicial
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complexes is quite large, for example it contains the simplicial complex which
faces are given by the independence sets of a chordal graph that contains an
isolated vertex.

Bibliographic remarks. The results of this thesis have been published
or are being considered for publication. The relation of the chapters with the
published work is as follows. In Chapter 2 we establish the necessary preliminaries
about simplicial complexes and exterior algebra. This chapter is based on the
respective section from the articles [19, 22]. Chapter 3 is based on a joint work
with Mykhaylo Tyomkyn and Martin Tancer [22]. Chapter 4 is based on a joint
work with Afshin Goodarzi and Martin Tancer [19]. Chapter 5 is based on a joint
work with Eran Nevo and Yuval Peled [20]. Chapter 6 is based on a joint work
with Russ Woodroofe and some of the results appeared in [21]. The presentation
of this last chapter is different from the already published work and it contains
unpublished results which will be part of the full version.
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2. Preliminaries

2.1 Simplicial complex
A (finite abstract) simplicial complex is a set system K on a finite set of vertices
N such that whenever A ∈ K and B ⊆ A, then B ∈ K. The elements of N
represent vertices and we will typically denote them by letters such as v or w.
The elements of K are faces (a.k.a., simplices) of K. The dimension of a face
A ∈ K is defined as dimA = |A| − 1; this corresponds to representing A as
an (|A| − 1)-dimensional simplex. The dimension of K, denoted dimK, is the
maximum of the dimensions of faces in K. A face of dimension k is a k-face in
short. Vertices of K are usually identified with 0-faces, that is, v ∈ N is identified
with {v} ∈ K. (Though the definition of simplicial complex allows that {v} ̸∈ K
for v ∈ N , in our applications we will always have {v} ∈ K for v ∈ N .) The
k-skeleton of K, denoted by K(k), is the simplicial complex formed by the set
of faces from K whose dimension is at most k. The f -vector of K is defined by
f(K) = (f−1(K), f0(K), . . . , fd(K)) where fk(K) is the number of k-faces in K
with the convention that f−1(K) = 1 if K is not the empty complex.

Example 1. Let K be the simplicial complex depicted in Figure 2.1, that is

K = {
∅,
{a}, {b}, {c}, {d}, {e}, {f} 0-faces, a.k.a., vertices,
{a, b}, {a, d}, {b, c}, {b, d}, {c, d}, {c, e} 1-faces, a.k.a., edges,
{a, b, d} 2-faces
}.

Since the simplicial complex is determined by its maximal faces, called facets,
we will say that the simplicial complex is generated by its set of facets. In this
example, K is generated by {{f}, {b, c}, {c, d}, {c, e}, {a, b, d}}. Its f -vector is
f(K) = (1, 6, 6, 1).

a

b

c

d

e

f

Figure 2.1: Example of a simplicial complex.
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2.2 Exterior algebra
Let N be a set of size n, ordered with a total order < and let V = RN be an
n-dimensional real vector space with a basis (ev)v∈N . The exterior algebra of
V , denoted by ⋀︁V , is a 2n-dimensional vector space with basis (eS)S⊆N and an
associative bilinear product operation, denoted by ∧, that satisfies

(i) e∅ is the neutral element, i.e., e∅ ∧ eS = eS = eS ∧ e∅;

(ii) eS = es1 ∧ · · · ∧ esk
for S = {s1 < · · · < sk} ⊆ N ;

(iii) ev ∧ ew = −ew ∧ ev for all v, w ∈ N .

For 0 ≤ k ≤ n we denote by ⋀︁k V the subspace of ⋀︁V with basis (eS)S∈(N
k ).

Denote by ⟨·, ·⟩ the standard inner product (dot product) on V as well as on ⋀︁V
with respect to the basis (ev)v∈N and (eS)S⊆N respectively; that is, for every pair
of sets S, T ⊆ N , the inner product ⟨eS, eT ⟩ is 1 if S = T and 0 otherwise.

If (fv)v∈N is another basis of V , then (fS)S⊆N is a new basis of ⋀︁V , where fS

stands for fs1 ∧ · · · ∧ fsk
for S = {s1 < · · · < sk} ⊆ N . Similarly, (fS)S∈(N

k ) is a
basis of ⋀︁k V for k ∈ {0, . . . , n}. The formulas (i), (ii) and (iii) remain valid for
the basis (fv)v∈N due to the definition of fS and bilinearity of ∧.

In particular, ⋀︁V and ⋀︁k V do not depend on the initial choice of the basis.
Using (ii) and (iii) iteratively, for S, T ⊆ N we get

fS ∧ fT =
⎧⎨⎩sgn(S, T )fS∪T if S ∩ T = ∅

0 if S ∩ T ̸= ∅,
(2.1)

where sgn(S, T ) is the sign of the permutation of S ∪ T obtained by first placing
the elements of S (in our total order <) and then the elements of T . Equivalently,
sgn(S, T ) = (−1)α(S,T ) where α(S, T ) = |{(s, t) ∈ S × T : t < s}| is the number
of transpositions.

Let A = (avw)v,w∈N be the transition matrix from (ev)v∈N to (fv)v∈N , meaning
that fv = ∑︁

w∈N avwew. Then, for S ⊆ N of size k, fS can be expressed as

fS =
∑︂

T ∈(N
k )

det(AS|T )eT , (2.2)

where AS|T is the submatrix of A formed by rows in S and columns in T , i.e.,
AS|T = (avw)v∈S,w∈T .

As noted in [46], it follows from the Cauchy-Binet formula that if the basis
(fv)v∈N is orthonormal then (fS)S⊆N is orthonormal as well. For completeness,
we provide a short explanation. Let S, L ⊆ N be a pair of subsets. If |S| ̸= |L|,
then fS and fL belong to two orthogonal subspaces of ⋀︁V , namely ⋀︁|S| V and⋀︁|L| V , and so ⟨fS, fL⟩ = 0. On the other hand, if |S| = |L| =: k, then by writing
fS and fL in the standard basis (eT )T ⊆N we have that

⟨fS, fL⟩ =
∑︂

T ∈(N
k )

det(AS|T ) det(At
L|T ) = det(AS|NA

t
L|N),

where Bt stands for the transpose matrix of B (and expressions like At
L|T stand for

(AL|T )t), and the last equality holds by the Cauchy-Binet formula (see e.g. Section
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1.2.4 of [37]). Notice that for any u ∈ S and w ∈ L we have (AS|NA
t
L|N)u,w =

⟨fu, fw⟩, and since (fv)v∈N is orthonormal this is 1 if u = w and 0 otherwise.
Therefore, if S = L, the product AS|NA

t
L|N is the identity matrix and conse-

quently the determinant will be 1. On the other hand, if S ̸= L, the product
AS|NA

t
L|N will have a zero column, and so the determinant will be 0. The above

claim follows.
We say that the change of basis from (ev)v∈N to (fv)v∈N is generic if

det(AS|T ) ̸= 0 for every S, T ⊆ N of the same size; that is, every square subma-
trix of A has full rank. It is known (see e.g. [46, Section 2]) that (fv)v∈N can
be chosen to be both generic and orthonormal. For a basis (fv)v∈N generic with
respect to (ev)v∈N and a pair of sets S, T ∈

(︂
N
k

)︂
we have

⟨fS, eT ⟩ (2.2)= ⟨
∑︂

T ′∈(N
k )

det(AS|T ′)eT ′ , eT ⟩ =
∑︂

T ′∈(N
k )

det(AS|T ′)⟨eT ′ , eT ⟩ = detAS|T ̸= 0.

(2.3)
The following lemma is implicitly contained in [46].

Lemma 2. If the columns of an m × n matrix A are linearly independent, then
the columns of Ck(A) are linearly independent as well.

Proof. If columns of A are linearly independent, then n ≤ m. Consider an
arbitrary square submatrix B of rank n. Considering B as a transition matrix
from (ei)i∈N to (fi)i∈N , we get that Ck(B) is a transition matrix from (eS)S∈(N

k )
to (fS)S∈(N

k ), thus Ck(B) has full rank. However, Ck(B) is also a submatrix of
Ck(A) with all

(︂
n
k

)︂
columns.

2.2.1 Left interior product
In this subsection we recall the left interior product g⌞f of g and f . We refer to
Section 2.2.6 of [72] for a more extensive coverage of the topic.

Lemma 3. For any f, g ∈ ⋀︁
V there exists a unique element g⌞f ∈ ⋀︁

V that
satisfies

⟨h, g⌞f⟩ = ⟨h ∧ g, f⟩ for all h ∈
⋀︂
V. (2.4)

Furthermore, assuming f ∈ ⋀︁s V and g ∈ ⋀︁t V , if t > s then g⌞f = 0, while if
t ≤ s then g⌞f ∈ ⋀︁s−t V .

Proof. For f, g ∈ ⋀︁
V we set

g⌞f :=
∑︂

S⊆N

⟨eS ∧ g, f⟩eS.

To verify that this satisfies (2.4) let h ∈ ⋀︁
V be arbitrary. By bilinearity of ⟨·, ·⟩

and ∧, and orthonormality of (eS)S⊆N we have

⟨h, g⌞f⟩ = ⟨h,
∑︂

S⊆N

⟨eS ∧ g, f⟩eS⟩ =
∑︂

S⊆N

⟨eS ∧ g, f⟩⟨h, eS⟩

=
⟨︂ ∑︂

S⊆N

⟨h, eS⟩(eS ∧ g), f
⟩︂

=
⟨︂(︂ ∑︂

S⊆N

⟨h, eS⟩eS

)︂
∧ g, f

⟩︂
= ⟨h ∧ g, f⟩.
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To show uniqueness, suppose that z is an element in ⋀︁
V that satisfies (2.4).

Then for each T ⊆ N we have

⟨eT , z⟩
(2.4)= ⟨eT ∧ g, f⟩ (2.4)= ⟨eT , g⌞f⟩.

Therefore z and g⌞f are identical, as their inner products with all basis elements
coincide.

Now assume that f ∈ ⋀︁s V and g ∈ ⋀︁t V , and let S ⊆ N be arbitrary. By (2.4)
we have

⟨eS, g⌞f⟩ = ⟨eS ∧ g, f⟩.

Observe that eS ∧ g ∈ ⋀︁|S|+t while f ∈ ⋀︁s V and these spaces are orthogonal
unless |S| + t = s. Hence, g⌞f = 0 for t > s and g⌞f ∈ ⋀︁s−t V otherwise.

It is straightforward to check from the definition that the left interior product is
bilinear:

• (f + g)⌞h = (f⌞h) + (g⌞h),

• f⌞(g + h) = (f⌞g) + (f⌞h),

and satisfies
h⌞(g⌞f) = (h ∧ g)⌞f. (2.5)

Lemma 4. Let (fv)v∈N be an orthonormal basis of V . Then, for any S, T ⊆ N
we have

fT⌞fS =
⎧⎨⎩sgn(S \ T, T )fS\T if T ⊆ S,

0 otherwise.

Proof. Put s := |S| and t := |T |. If t > s then by Lemma 3 we have fT⌞fS = 0
and the conclusion follows. So we may assume that s ≥ t, and by the same lemma
it follows that fT⌞fS ∈ ⋀︁s−t V . Since the basis (fv)v∈N is orthonormal, so is the
basis (fL)L∈( N

s−t) of ⋀︁s−t V . Expressing fT⌞fS in this basis and using (2.4), we
obtain

fT⌞fS =
∑︂

L∈( N
s−t)

⟨fL, fT⌞fS⟩fL =
∑︂

L∈( N
s−t)

⟨fL ∧ fT , fS⟩fL.

Due to (2.1) and orthonormality of (fv)v∈N we have ⟨fL ∧ fT , fS⟩ = 0 unless
T ⊆ S and L = S \ T . Therefore, using (2.1) again we get

fT⌞fS =
⎧⎨⎩⟨fS\T ∧ fT , fS⟩fS\T = sgn(S \ T, T )fS\T if T ⊆ S,

0 if T ̸⊆ S.

Lemma 5. Let (fv)v∈N be a generic orthonormal basis of V with respect to
(ev)v∈N . For a pair of sets T,R ⊆ N of sizes t and r, respectively, such that
r ≥ t we have

fT⌞eR =
∑︂

S∈(N\T
r−t )

λSfS,

where all the coefficients λS are non-zero.
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Proof. By Lemma 3 we have that fT⌞eR ∈ ⋀︁r−t V . Since (fS)S∈( N
r−t) is an or-

thonormal basis of ⋀︁r−t V , we can write

fT⌞eR =
∑︂

S∈( N
r−t)

⟨fS, fT⌞eR⟩fS.

Applying (2.4) and (2.1) gives

⟨fS, fT⌞eR⟩ = ⟨fS ∧ fT , eR⟩ =
⎧⎨⎩±⟨fS∪T , eR⟩ if S ∩ T = ∅, , i.e., if S ∈

(︂
N\T
r−t

)︂
,

0 otherwise.

Setting λS = ⟨fS ∧ fT , eR⟩ for S ∈
(︂

N\T
r−t

)︂
, we thus obtain

fT⌞eR =
∑︂

S∈(N\T
r−t )

λSfS,

as claimed. In addition, since we assumed that (fv)v∈N is generic with respect to
(ev)v∈N , we have λS = ±⟨fS∪T , eR⟩ ≠ 0 by (2.3) for all S ∈

(︂
N\T
r−t

)︂
.
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3. Weak saturation
Let F and H be q-uniform hypergraphs (q-graphs for short); we identify hyper-
graphs with their edge sets. We say that a subgraph G ⊆ F is weakly H-saturated
in F if the edges of F \ G can be ordered as e1, . . . , ek such that for all i ∈ [k]
the hypergraph G ∪ {e1, . . . , ei} contains an isomorphic copy of H which in turn
contains the edge ei. We call such e1, . . . , ek an H-saturating sequence of G in F .
The weak saturation number of H in F , wsat(F,H) is the minimum number of
edges in a weakly H-saturated subgraph of F . When F is complete of order n,
we simply write wsat(n,H).

Weak saturation was introduced by Bollobás [15] in 1968 and is related to
(strong) graph saturation: G is H-saturated in F if adding any edge of F \ G
would create a new copy ofH. However, a number of properties of weak saturation
make it a more natural object of study. Firstly, it follows from the definition that
any graph G achieving wsat(F,H) has to be H-free (we could otherwise remove
an edge from a copy of H in G resulting in a smaller example), while for strong
saturation H-freeness may or may not be imposed, resulting in two competing
notions (see [64] for a discussion). Secondly, a short subadditivity argument
originally due to Alon [2] shows that for every 2-uniform H, limn→∞ wsat(n,H)/n
exists. Whether the same holds for strong saturation is a longstanding conjecture
of Tuza [83]. And thirdly, weak saturation lends itself to be studied via algebraic
methods, thus offering insight into algebraic and matroid structures underlying
graphs and hypergraphs.

The most natural case when F and H are cliques was the first to be studied.
Let Kq

r denote the complete q-graph of order r. Confirming a conjecture of
Bollobás, Frankl [34], and Kalai [47, 48] independently proved that wsat(n,Kq

r ) =(︂
n
q

)︂
−
(︂

n−r+q
q

)︂
. Another proof has been given by Alon [2] and in hindsight this

conjecture could be also derived from an earlier paper of Lovász [60]. While the
upper bound is a construction that is easy to guess (a common feature in weak
saturation problems), all of the above lower bound proofs rely on algebraic or
geometric methods, and no purely combinatorial proof is known to this date.

In the subsequent years weak saturation has been studied extensively [2, 85,
27, 69, 84, 64, 70, 73, 18, 74, 30, 8, 9, 63]. Despite this, our understanding
of weak saturation numbers is still rather limited. For instance we do not know
whether for q ≥ 3 we have a similar limiting behavior as in the graph case, in that
limn→∞ wsat(n,H)/nq−1 always exists; this has been conjectured by Tuza [85].

In this chapter we address the case when H = Kq
r1,...,rd

is a complete d-partite
q-graph for arbitrary d ≥ q > 1. That is, V (H) is a disjoint union of sets
R1, . . . , Rd with |Ri| = ri and

E(H) =
{︄
e ∈

(︄
V (H)
q

)︄
: |e ∩Ri| ≤ 1 for all i ∈ [d]

}︄
,

in particular, for q = 2 we recover the usual complete multipartite graphs. This is
perhaps the next most natural class of hypergraphs to consider after the cliques.

For the host graph F , besides the clique it is natural to consider a larger com-
plete d-partite q-graph Kq

n1,...,nd
. In the latter case we have a choice between the

undirected and directed versions of the problem. The former follows the definition
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of weak saturation given at the beginning, while in the latter we additionally im-
pose that the new copies of H in F created in every step “point the same way”,
i.e. have ri vertices in the i-th partition class for all i ∈ [d] (see below for a formal
definition).

All three above versions have been studied in the past. For q = 2, Kalai [48] de-
termined wsat(n,Kr,r) for large enough n. Kronenberg, Martins and Morrison [54]
recently extended it to wsat(n,Kr,r−1) and asymptotically to all wsat(n,Ks,t). No
other values wsat(n,Kq

r1,...,rd
) are known except for r1 = · · · = rd = 1 when H is

a clique and a handful of closely related cases, e.g., when all ri but one are 1 [70].
When both H and F are complete d-partite, for d = q Alon [2] solved the problem
in the directed setting. Moshkovitz and Shapira [64], building on Alon’s work,
settled the undirected case, determining wsat(Kd

n1,...,nd
, Kd

r1,...,rd
). There has been

no progress for d > q.
In our main contribution in this chapter we settle completely the directed

case for all q and d. To state the problem formally, let r = (r1, . . . , rd) and n =
(n1, . . . , nd) be integer vectors such that 1 ≤ ri ≤ ni. Suppose N = N1 ⊔ · · · ⊔Nd

where |Ni| = ni and ⊔ denotes a disjoint union. Let Kq
n be the complete d-partite

q-graph on N whose partition classes are the Ni, and let Kq
r be an unspecified

complete d-partite q-graph on the same partition classes, with ri vertices in each
Ni. Given a subgraph G of Kq

n, a sequence of edges e1, . . . , ek in Kq
n is a (directed)

Kq
r -saturating sequence of G in Kq

n if: (i) Kq
n \ G = {e1, . . . , ek}; (ii) for every

j ∈ [k] there exists Hj ⊆ G ∪ {e1, . . . , ej} isomorphic to Kq
r such that ej ∈ Hj

and |V (Hj) ∩ Ni| = ri for all i ∈ [d]. The q-graph G is said to be (directed)
weakly Kq

r -saturated in Kq
n if it admits a Kq

r -saturating sequence in the latter.
The (directed) weak saturation number of Kq

r in Kq
n, in notation w(Kq

n, K
q
r ), is

the minimal number of edges in a weakly Kq
r -saturated subgraph of Kq

n.

Theorem 6. For all d ≥ q ≥ 2, n and r we have

w(Kq
n, K

q
r ) =

∑︂
I∈([d]

q )

∏︂
i∈I

ni −
∑︂

I∈( [d]
≤q)

∏︂
i∈I

(ni − ri).

In the above formula
(︂

[d]
≤q

)︂
stands for the set of all subsets of [d] of size at most

q, and we use the convention that ∏︁i∈∅(ni − ri) = 1.
As mentioned, the d = q case of Theorem 6 was proved by Alon [2]. Hence our

result generalizes Alon’s theorem to arbitrary d ≥ q. When H is balanced, that
is when r1 = · · · = rd, there is no difference between the directed and undirected
partite settings. Writing Kq(r; d) for Kq

r,...,r (d times), Theorem 6 thus determines
the weak saturation number of Kq(r; d) in complete d-partite q-graphs.

Corollary 7. For all d ≥ q ≥ 2 and n1, . . . , nd ≥ r ≥ 1 we have

wsat(Kq
n1,...,nd

, Kq(r; d)) =
∑︂

I∈([d]
q )

∏︂
i∈I

ni −
∑︂

I∈( [d]
≤q)

∏︂
i∈I

(ni − r).

Our proof of Theorem 6 combines exterior algebra techniques in the spirit
of [48] with a new ingredient: the use of the colorful exterior algebra inspired by
the recent work of Bulavka, Goodarzi and Tancer on the colorful fractional Helly
theorem [19].
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Kronenberg, Martins and Morrison ([54], Section 5) remarked that while the
values wsat(n,Kt,t) and wsat(Kℓ,m, Kt,t) for ℓ + m = n, which were determined
in separate works, are of the same order of magnitude, it is not obvious if there
is any direct connection. In our second contribution in this chapter we establish
such a connection using a tensoring trick. As we have mentioned earlier, 2-
graphs H satisfy wsat(n,H) = cHn + o(n), and Alon’s proof of this fact [2]
can be straightforwardly adjusted to show that wsat(Kn,n, H) = c′

H · 2n + o(n)
when H is bipartite. We show that in fact cH = c′

H . A minor adjustment to
our proof gives that, for any rational 0 < α < 1, the quantities wsat(n,H) and
wsat(Kαn,(1−α)n, H), when αn ∈ Z, are of the same order of magnitude. Setting
H = Kt,t answers the above question of [54].

For q ≥ 3 while we do not have (yet) the same knowledge of limiting con-
stants, a similar method determines asymptotically the weak saturation number
of complete d-partite d-graphs in the clique, generalizing Theorem 4 of [54].

Theorem 8. For every bipartite 2-uniform graph H we have

lim
n→∞

wsat(n,H)
n

= lim
n→∞

wsat(Kn,n, H)
2n . (3.1)

Furthermore, for any d ≥ 2 and 1 ≤ r1 ≤ · · · ≤ rd we have

wsat(n,Kd
r1,...,rd

) = r1 − 1
(d− 1)!n

d−1 +O(nd−2). (3.2)

The rest of the chapter is organized as follows. In Section 3.1 we give a
construction for the upper bound in Theorem 6. In Section 3.2 we provide the
necessary background for this chapter. In Section 3.3 we provide the proof for
the lower bound in Theorem 6. In Section 3.4 we discuss weak saturation in the
clique and prove Theorem 8.

3.1 The upper bound
In this section we prove the upper bound in Theorem 6 by exhibiting a weakly
Kq

r -saturated q-graph G. Fix a subset R ⊆ N such that |R ∩ Ni| = ri for every
i ∈ [d] and set

Σ :=
{︃
S ∈

(︄
N \R
≤ q

)︄
: |S ∩Ni| ≤ 1 for each i ∈ [d]

}︃
.

We define G via its complement in Kq
n as follows. For every S ∈ Σ choose an edge

λ(S) ∈ Kq
n[R ∪ S] satisfying S ⊆ λ(S). Note that the assignment λ is injective,

as λ(S)∩ (N \R) = S. Recall that we associate hypergraphs with their edge sets.
Define

G := Kq
n \

⋃︂
S∈Σ

λ(S),

so that
|E(G)| =

∑︂
I∈([d]

q )

∏︂
i∈I

ni −
∑︂

I∈( [d]
≤q)

∏︂
i∈I

(ni − ri).

11



Notice that the choices of λ(S) are not unique, but as the next lemma shows,
each of them yields a weakly Kq

r -saturated q-graph. Such non-uniqueness is a
common occurrence in weak saturation: for instance, every n-vertex tree is an
extremal example for weak triangle saturation in Kn.

Lemma 9. The q-graph G defined above is weakly Kq
r -saturated. Therefore,

w(Kq
n, K

q
r ) ≤ |E(G)| =

∑︂
I∈([d]

q )

∏︂
i∈I

ni −
∑︂

I∈( [d]
≤q)

∏︂
i∈I

(ni − ri).

Proof. For each 0 ≤ k ≤ q let

Gk := G ∪ {T ∈ Kq
n : |T \R| ≤ k},

and put G−1 := G. We claim that adding any new edge L ∈ Kq
n with |L \R| = k

to Gk−1 creates a new copy of Kq
r containing L. This gives rise to a Kq

r -saturating
sequence between Gk−1 and Gk and, by extension, between G = G−1 and Gq =
Kq

n.
First, notice that G0 is obtained from G−1 by adding the sole missing edge

λ(∅). Doing so creates a new copy of Kq
r , namely Kq

n[R]. For an arbitrary k,
suppose that L is a missing edge in Gk−1 such that S := L \ R is of size k.
Observe that every T ∈ Kq[R ∪ S] is an edge in Gk−1 unless T = L . Indeed,
if |T \ R| < k then this holds by definition of Gk−1. While otherwise we have
T \R = S. Hence, by the definition of G, we have L = λ(S), so that either T = L
or T ∈ G ⊆ Gk−1. Therefore, adding L to Gk−1 creates a new copy of Kq

n[R ∪ S]
containing L and a fortiori also a new copy of Kq

r containing L, as desired.

3.2 Colorful exterior algebra.
In this section we introduce the linear algebra tools needed for the proof of the
lower bound in Theorem 6.

Before we start explaining the algebraic background, we will try to sketch why
algebraic tools can be useful in this context. This sketch should be understood
loosely—we do not provide any guarantees for the claims in this sketch. In partic-
ular, many important technical details are skipped in the sketch. Understanding
this sketch is not required in the following text, thus it can be skipped.

Consider first the somewhat trivial case of providing the lower bound on
wsat(n,K3), the weak saturation number of the complete graph K3 in Kn. Con-
sider a subgraph G of Kn and a saturating sequence e1, . . . ek of edges in E(Kn) \
E(G). Let Gi := G ∪ {e1, . . . , ei}. Because the sequence is saturating, we know
that Gi contains a copy of K3 containing ei. This means that the dimension
of the cycle space of Gi is strictly larger than the dimension of the cycle space
of Gi−1. Because the final dimension of the cycle space of Kn equals

(︂
n−1

2

)︂
, we

may perform at most
(︂

n−1
2

)︂
such steps. In other words k ≤

(︂
n−1

2

)︂
and thus

|E(G)| ≥
(︂

n
2

)︂
−
(︂

n−1
2

)︂
as required.

In the language of algebraic topology (which we however do not use in the
proofs, no topological background is required), the property that the dimension
of the cycle space increases can be phrased so that a new copy of K3 in each
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step belongs to the kernel of the standard boundary operator. For more com-
plicated (hyper)graphs than K3 it is actually useful to use several independent
boundary operators in order to generalize the aforementioned approach. Using
such independent operators can be actually efficiently phrased in terms of exte-
rior algebra (without mentioning algebraic topology). They correspond to the left
interior product, which we discussed in subsection 2.2.1, subject to some suitable
independence (genericity) condition.1

Let V = RN , in Section 2.2 we have introduced the exterior algebra ⋀︁V . As
we are interested in multipartite hypergraphs it is natural to assume in addition
that the setN is partitioned as a disjoint unionN = N1⊔N2⊔· · ·⊔Nd; consistently
with the beginning of this chapter ni := |Ni|. Here each Ni is ordered by a total
order <i. We extend these orders to the whole N as follows, for x ∈ Ni and
y ∈ Nj, we say that

x < y if i < j or if i = j and x <i y.

Given the standard basis (ev)v∈N of V we say that a basis (fv)v∈N is colorful
with respect to this partition if (fv)v∈Ni

generates the same subspace of V = RN

as (ev)v∈Ni
for every i ∈ [d]; we denote this subspace Vi. Put differently, the

transition matrix A from (ev)v∈N to (fv)v∈N is a block-diagonal matrix with blocks
Ni ×Ni for i ∈ [d]. We also say that (fv)v∈N is colorful generic (with respect to
this partition) if the basis change from (ev)v∈Ni

to (fv)v∈Ni
is generic for every

i ∈ [d]. Remember that (ev)v∈Ni
to (fv)v∈Ni

is generic if ⟨fS, eT ⟩ ≠ 0 for every
S, T ⊆ Ni with |S| = |T |. It is possible to choose a basis which is simultaneously
colorful generic with respect to a given partition and orthonormal by choosing
each change of basis from (ev)v∈Ni

to (fv)v∈Ni
generic and orthonormal.

By ⋀︁Vi we denote the subalgebra of ⋀︁V generated by eS for S ⊆ Ni and by⋀︁k Vi the subspace of ⋀︁Vi with basis (eS)S∈(Ni
k ); that is, ⋀︁k Vi = ⋀︁k V ∩ ⋀︁Vi.

The following formula expresses a colorful product as a linear combination of
colorful elements. Let s1, . . . , sd be integers with 0 ≤ si ≤ |Ni|. Suppose that for
each i ∈ [d] we are given

hi =
∑︂

Si∈(Ni
si

)
λSi

fSi

for λSi
∈ R (so that hi ∈ ⋀︁si V ). Then by bilinearity of ∧ and (2.1) we get

h1 ∧ · · · ∧ hd =
∑︂

(S1,...,Sd)∈
(N1

s1 )×···×(Nd
sd

)

⎛⎝∏︂
i∈[d]

λSi

⎞⎠ fS1 ∧ · · · ∧ fSd
(3.3)

=
∑︂

(S1,...,Sd)∈
(N1

s1 )×···×(Nd
sd

)

±

⎛⎝∏︂
i∈[d]

λSi

⎞⎠ fS1∪···∪Sd
. (3.4)

1Perhaps the closest relation between the boundary operators and the left interior product
can be seen in Lemma 5 interpreting eR as a simplex with set of vertices R, and fT ⌞ as
an operator removing t times the top-dimensional simplices, yielding a linear combination of
simplices fS with r − t vertices. (However, for this relation, it would be even better to express
the right hand side using eS so that all possible eS would appear.) Adding a colorful aspect (in
our case) then makes it easier to work with multipartite (hyper)graphs rather than complete
ones.
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We claim that the left interior product behaves nicely with respect to a colorful
partition. To see this, we first need an auxiliary lemma about signs.

Lemma 10. Let U and T be disjoint subsets of N and for all i ∈ [d] let Ui :=
U ∩Ni, Ti := T ∩Ni, ui := |Ui| and ti := |Ti|. Then

sgn(U, T ) = (−1)c sgn(U1, T1) · · · sgn(Ud, Td),

where c depends only on u1, . . . , ud and t1, . . . , td.

Proof. The value sgn(U, T ) is −1 to the number of transpositions in the permu-
tation π of U ∪ T where we first place the elements of U (in our given order on
N) and then the elements of T (in the same order). Considering that for i < j,
Ui precedes Uj and Ti precedes Tj, the order of the blocks U1, . . . , Ud, T1, . . . , Td

in π is
(U1, . . . , Ud, T1, . . . , Td).

After c transpositions where c depends only on u1, . . . , ud, t1, . . . , td, we get a
permutation π′ with the following order of blocks

(U1, T1, U2, T2, . . . , Ud, Td).

By the above, the sign of π′ equals (−1)c sgn(U, T ). On the other hand, as Ti

precedes Uj for i < j in our order on N , the sign of π′ is also equal the prod-
uct sgn(U1, T1) · · · sgn(Ud, Td). Equating these two expressions gives the desired
identity.

In the following proposition, the fi are not necessarily coming from a colorful
generic basis. However, we intend to apply it in this setting. With a slight abuse
of notation, we use ⋀︁ both for the exterior algebra as well as for the wedge product
of multiple elements. (This can be easily distinguished from the context.)

Proposition 11. Suppose that s1, . . . , sd and t1, . . . , td are nonnegative integers
with ti ≤ si ≤ ni for every i ∈ [d]. Suppose further that fi ∈ ⋀︁ti Vi and hi ∈ ⋀︁si Vi

for all i ∈ [d]. Then (︄
d⋀︂

i=1
fi

)︄
⌞

(︄
d⋀︂

i=1
hi

)︄
= ±

d⋀︂
i=1

(fi⌞hi).

Proof. We will show that(︄
d⋀︂

i=1
fi

)︄
⌞

(︄
d⋀︂

i=1
hi

)︄
= (−1)c

d⋀︂
i=1

(fi⌞hi) (3.5)

where c comes from Lemma 10; in particular, it depends only on t1, . . . , td and
s1, . . . , sd.

By bilinearity of ⌞ and ∧ it is sufficient to prove (3.5) in the case when the
fi and the hi are basis elements of ⋀︁ti Vi and ⋀︁si Vi respectively. So, assume for
each i ∈ [d] that fi = eTi

and hi = eSi
where Ti ∈

(︂
Ni

ti

)︂
and Si ∈

(︂
Ni

si

)︂
, and let

T := T1 ∪ · · · ∪ Td and S := S1 ∪ · · · ∪ Sd. Then ⋀︁d
i=1 fi = eT and ⋀︁d

i=1 hi = eS by
the definition of the exterior product ∧. If Ti ̸⊆ Si for some i ∈ [d], then T ̸⊆ S
and both sides of (3.5) vanish by Lemma 4. Therefore, it remains to check the
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case that Ti ⊆ Si for every i ∈ [d]. Here by Lemma 10 (with U = S \ T ) and
Lemma 4 we get

eT⌞eS = sgn(S \ T, T )eS\T

= (−1)c sgn(S1 \ T1, T1) · · · sgn(Sd \ Td, Td)eS1\T1 ∧ · · · ∧ eSd\Td

= (−1)c(eT1⌞eS1) ∧ · · · ∧ (eTd
⌞eSd

),

as required.

3.3 The lower bound
In this section we prove the lower bound in Theorem 6. Our proof follows a
strategy similar to [8] and [48]. Viewing the edges of Kq

n as elements of the
exterior algebra of RN , we will define a linear mapping closely related to the weak
saturation process and lower-bound w(Kq

n, K
q
r ) by the rank of the corresponding

matrix.
As outlined in Section 2.2, let V be an n-dimensional real vector space with a

basis (ev)v∈N , equipped with a standard inner product ⟨·, ·⟩ with respect to this
basis, that is, (ev)v∈N is orthonormal. Using the exterior product notation of
Section 2.2, define

spanKq
n := span{eT : T ∈ E(Kq

n)} ⊆
⋀︂q

V.

For an element m ∈ ⋀︁k V the support of m is the set

supp(m) =
{︄
S ∈

(︄
N

k

)︄
: ⟨eS,m⟩ ≠ 0

}︄
.

The following lemma, which converts the problem at hand into a constructive
question in linear algebra, is analogous to Lemma 3 in [8].2

Lemma 12. Let Y be a real vector space and Γ : spanKq
n → Y a linear map

such that for every subset R ⊆ N with |R∩Ni| = ri for all i ∈ [d] there exists an
element m ∈ ker Γ with supp(m) = E(Kq

n[R]). Then

w(Kq
n, K

q
r ) ≥ rank Γ.

Proof. Suppose the q-graph G0 is weakly Kq
r -saturated in Kq

n and |E(G0)| =
w(Kq

n, K
q
r ). Denote by {L1, . . . , Lk} a corresponding saturating sequence and by

Hi a new copy of Kq
r that appears in Gi = G0∪{L1, . . . , Li} with Li ∈ E(Hi). Let

Yi = span{Γ(eT ) : T ∈ E(Gi)}, and note that Yk = Γ(spanKq
n). By assumption,

for each i = 1, . . . , k there exist non-zero coefficients {cT : T ∈ E(Hi)} such that∑︁
T ∈E(Hi) cT Γ(eT ) = 0. Therefore,

Γ(eLi
) = − 1

cLi

∑︂
T ∈E(Hi)\Li

cT Γ(eT ) ∈ Yi−1.

2Put equivalently in the language of [8], we map each edge of Kq
n to vector in a certain vector

space W̃ , so that for each copy of Kq
r in Kq

n the underlying vectors are linearly dependent with
all coefficients involved being non-zero. This implies w(Kq

n, Kq
r ) ≥ dim W̃ .
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We conclude that Yi = Yi−1. By repeating this procedure we obtain

w(Kq
n, K

q
r ) = |E(G0)| ≥ dim Y0 = dim Yk = rank Γ.

Our goal now is to define a linear map Γ as in Lemma 12. For this purpose
let us fix an orthonormal colorful generic basis (fv)v∈N of V with respect to the
partition of N , as described in Section 3.2. Next, for each i ∈ [d] choose a set
Ji ⊆ Ni with |Ji| = ri − 1 and a vertex wi ∈ Ni \ Ji. Put J := ⋃︁

i∈[d] Ji and
W := {wi : i ∈ [d]}. Finally, set s := d− q and

g :=
∑︂

T ∈(W
s )
fT . (3.6)

We can now state the following auxiliary lemma.

Lemma 13. Let z be an integer with d ≥ z ≥ s and let Z ∈
(︂

N
z

)︂
. Then

(i) g⌞fZ = 0 if |Z ∩W | < s.

(ii) If z = s, then ⟨g, fZ⟩ =
⎧⎨⎩±1 if Z ⊆ W,

0 if Z ̸⊆ W.

Proof. By (3.6), bilinearity of ⌞, and Lemma 4 we get

g⌞fZ =
∑︂

W ′∈(W
s )
fW ′⌞fZ =

∑︂
W ′∈(W ∩Z

s )
±fZ\W ′ . (3.7)

The last expression is 0 if |Z ∩W | < s; this shows (i).
Now, assume that z = s. Then

⟨g, fZ⟩ = ⟨f∅ ∧ g, fZ⟩ = ⟨f∅, g⌞fZ⟩ (3.7)=
∑︂

W ′∈(W ∩Z
s )

±⟨f∅, fZ\W ′⟩. (3.8)

If Z ̸⊆ W , then |Z ∩W | < z = s, so g⌞fZ = 0 from (i), and thus (3.8) evaluates
to 0. On the other hand, if Z ⊆ W , then

(︂
W ∩Z

s

)︂
= {Z}. It follows that

⟨g, fZ⟩ (3.8)= ±⟨f∅, f∅⟩ = ±1,

yielding (ii).

We define the subspace

U := span{g⌞fT : T ∈ E(Kd
n[N \ J ]), |T ∩W | ≥ s}, (3.9)

and observe first that U ⊆ spanKq
n. Indeed, for each T in (3.9) and W ′ ∈

(︂
W
s

)︂
, we

have by Lemma 4 that fW ′⌞fT = 0 if W ′ ̸⊆ T and fW ′⌞fT = ±fT \W ′ if W ′ ⊆ T .
In the latter case note that T \W ′ ∈ E(Kq

n), and the claim follows by bilinearity
of ⌞.

Let Y be the orthogonal complement of U in spanKq
n and let Γ: spanKq

n →
spanKq

n be the orthogonal projection on Y . Our main technical lemma states
that Γ satisfies the assumptions of Lemma 12.

16



Lemma 14. Suppose that R ⊆ N satisfies |R ∩Ni| = ri for every i ∈ [d]. Then,
there exists m ∈ ker Γ such that supp(m) = E(Kq

n[R]).

Deferring the proof of Lemma 14, let us first compute rank Γ and conclude the
proof of Theorem 6 assuming Lemma 14.

Notice that the sets T ∈ Kd
n[N \ J ] with |T ∩ W | ≥ s are in bijective cor-

respondence with the sets T \ W ∈ Kp
n[N \ (J ∪ W )] with p ≤ q. Using this

bijection,

dimU
(3.9)
≤ |{T ∈ Kd

n[N \ J ] : |T ∩W | ≥ s}| =
∑︂

I⊆[d]
|I|≤q

∏︂
i∈I

(ni − ri).

Consequently,

rank Γ = dim(spanKq
n) − dimU ≥

∑︂
I∈([d]

q )

∏︂
i∈I

ni −
∑︂

I⊆[d]
|I|≤q

∏︂
i∈I

(ni − ri). (3.10)

Proof of Theorem 6. On the one hand, by Lemma 14 the map Γ satisfies the
assumptions of Lemma 12. Therefore,

w(Kq
n, K

q
r ) ≥ rank Γ

(3.10)
≥

∑︂
I∈([d]

q )

∏︂
i∈I

ni −
∑︂

I⊆[d]
|I|≤q

∏︂
i∈I

(ni − ri).

On the other hand, Lemma 9 gives the same upper bound.

Proof of Lemma 14. We claim that

m = (g ∧ fJ)⌞eR

is the desired element.3 Let Ri := R ∩Ni for each i ∈ [d].
First, we verify that m ∈ ker Γ = U . By Proposition 11 we have

fJ⌞eR = ±(fJ1⌞eR1) ∧ · · · ∧ (fJd
⌞eRd

).

By Lemma 5 we can write each of these terms as

fJi
⌞eRi

=
∑︂

v∈Ni\Ji

λvfv with all λv ̸= 0. (3.11)

Combining this with (3.3) gives

fJ⌞eR =
∑︂

Z∈E(Kd
n[N\J ])

±(
∏︂
v∈Z

λv)fZ . (3.12)

3Let us briefly sketch the topological idea hidden behind this choice: As it can be easily de-
duced from the computations below, m can be also expressed as ±g⌞

(︁
(fJ1⌞eR1)∧· · ·∧(fJd

⌞eRd
)
)︁
.

In the terminology of simplicial complexes interpreting loosely (i) eRi as a full simplex on the
vertex set Ri, (ii) ∧ as a join of simplicial complexes and (iii) ⌞ as an operator taking the
skeleton of appropriate dimension, we gradually get the following: fJi

⌞eRi
corresponds to the

0-skeleton of the simplex on Ri, that is, the vertices of Ri. Then (fJ1⌞eR1) ∧ · · · ∧ (fJd
⌞eRd

)
corresponds to the join of the sets Ri, that is, the complete d-partite complex on R1, . . . , Rd.
Finally, applying g⌞ to this element takes the skeleton again reducing the dimension so that
the corresponding hypergraph is the required Kq

n[R].
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Therefore, we get

m = (g ∧ fJ)⌞eR
(2.5)= g⌞(fJ⌞eR) (3.12)=

∑︂
Z∈E(Kd

n[N\J ])
(
∏︂
v∈Z

λv)g⌞fZ

=
∑︂

Z∈E(Kd
n[N\J ])

|Z∩W |≥s

(
∏︂
v∈Z

λv)g⌞fZ ,

where the last equality follows by Lemma 13(i) with z = d. Thus m ∈ U as
wanted.

Next, we show that supp(m) = E(Kq
n[R]). As we just have shown, m ∈ U ⊆

spanKq
n, i.e. supp(m) ⊆ E(Kq

n). Now, for T ∈ E(Kq
n) we have

⟨eT ,m⟩ (2.4)= ⟨eT ∧(g∧fJ), eR⟩ = ±⟨(g∧fJ)∧eT , eR⟩ (2.4)= ±⟨g∧fJ , eT⌞eR⟩. (3.13)

If T /∈ E(Kq
n[R]), then T ⊈ R and by Lemma 4 we have eT⌞eR = 0, and

consequently ⟨eT ,m⟩ = 0. Hence, T /∈ supp(m).
Now assume that T ∈ E(Kq

n[R]), i.e., T ⊆ R. By (3.13) and Lemma 4 we
have

⟨eT ,m⟩= ± ⟨g ∧ fJ , eR\T ⟩ (2.4)= ±⟨g, fJ⌞eR\T ⟩. (3.14)
Let P := {i ∈ [d] : T ∩ Ni ̸= ∅} and P ′ := [d] \ P . Using this notation we can
write

eR\T = ±
(︄⋀︂

i∈P

eRi\τi

)︄
∧

⎛⎝ ⋀︂
i∈P ′

eRi

⎞⎠ ,
where for each i ∈ P the set τi = T ∩ Ni contains a single vertex. Applying
Proposition 11, we deduce

fJ⌞eR\T = ±
(︄⋀︂

i∈P

fJi
⌞eRi\τi

)︄
∧

⎛⎝ ⋀︂
i∈P ′

fJi
⌞eRi

⎞⎠ . (3.15)

Since |Ji| = ri − 1 = |Ri \ τi|, by Lemma 3 for every i ∈ P we have fJi
⌞eRi\τi

∈⋀︁0 V . Thus

fJi
⌞eRi\τi

= ⟨e∅, fJi
⌞eRi\τi

⟩e∅ = ⟨e∅ ∧ fJi
, eRi\τi

⟩e∅ = ⟨fJi
, eRi\τi

⟩e∅,

and notice that ⟨fJi
, eRi\τi

⟩ ≠ 0 because (fv)v∈Ni
is generic with respect to

(ev)v∈Ni
. Plugging it into (3.15) yields

fJ⌞eR\T = ±
(︄⋀︂

i∈P

⟨fJi
, eRi\τi

⟩e∅

)︄
∧

⎛⎝ ⋀︂
i∈P ′

fJi
⌞eRi

⎞⎠ (3.16)

= ±
(︄∏︂

i∈P

⟨fJi
, eRi\τi

⟩
)︄ ⋀︂

i∈P ′
fJi

⌞eRi
. (3.17)

Turning to P ′, denote N ′ := ⋃︁
i∈P ′ Ni \ Ji. We have

⋀︂
i∈P ′

fJi
⌞eRi

(3.11)=
⋀︂

i∈P ′

⎛⎝ ∑︂
v∈Ni\Ji

λvfv

⎞⎠ (3.3)=
∑︂

Z∈E(Ks
n[N ′])

±
(︄∏︂

v∈Z

λv

)︄
fZ . (3.18)
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Therefore,
⟨g,

⋀︂
i∈P ′

fJi
⌞eRi

⟩ =
∑︂

Z∈E(Ks
n[N ′])

±(
∏︂
v∈Z

λv)⟨g, fZ⟩ = ±
∏︂

v∈W ∩N ′
λv, (3.19)

where the second equality is due to Lemma 13(ii), using that there is exactly one
Z ∈ E(Ks

n[N ′]) with Z ⊆ W , namely Z = W ∩N ′. Putting it all together,

⟨eT ,m⟩ (3.14)= ±⟨g, fJ⌞eR\T ⟩ (3.16)= ±(
∏︂
i∈P

⟨fJi
, eRi\τi

⟩)⟨g,
⋀︂

i∈P ′
fJi

⌞eRi
⟩

(3.19)= ±(
∏︂
i∈P

⟨fJi
, eRi\τi

⟩)
∏︂

v∈W ∩N ′
λv ̸= 0,

and consequently T ∈ supp(m).

3.4 Weak saturation in the clique
In this section we prove Theorem 8. Let H be a q-graph where q ≥ 2 without
isolated vertices. We recall the notion of a link hypergraph of a vertex v ∈ V (H):
it is the (q − 1)-graph (possibly with isolated vertices) defined via

LH(v) := {e \ {v} : e ∈ E(H), v ∈ e}.
The co-degree of a set W of q − 1 vertices in H is

dH(W ) := |{e ∈ E(H) : W ⊂ e}|.
Define the minimum positive co-degree of H, in notation δ∗(H), as

δ∗(H) := min
{︂
dH(W ) : W ∈

(︄
V (H)
q − 1

)︄
, dH(W ) > 0

}︂
.

Notice that δ∗(H) ≤ δ∗(LH(v)) for all v ∈ V (H), and equality holds for some v.
Lemma 15. wsat(n,H) ≤ (δ∗(H) − 1)

(︂
n

q−1

)︂
+OH(nq−2).

Proof. We apply induction on q. For q = 2 this is a well-known fact ([31],
Theorem 4). Suppose now that q ≥ 3 and the statement holds for all smaller
values. Let H be a q-graph and let W = {v1, . . . , vq−1} be a set satisfying
dH(W ) = δ∗(H). Let H1 = LH(v1) be the link hypergraph of v1, and observe
that δ∗(H1) = δ∗(H). A weakly H-saturated q-graph on [n] is obtained as follows.
Take a minimum weakly H1-saturated (q − 1)-graph on [n− 1] and insert n into
each edge; take a union of the resulting q-graph with a minimum weakly H-
saturated q-graph on [n− 1]. We therefore obtain

wsat(n,H) ≤ wsat(n− 1, H) + wsat(n− 1, H1).
Iterating and applying the induction hypothesis,

wsat(n,H) ≤ wsat(|V (H)|, H) +
n−1∑︂

m=|V (H)|
wsat(m,H1)

≤ (δ∗(H1) − 1)
n−1∑︂

m=q−2

(︄
m

q − 2

)︄
+OH(nq−2)

= (δ∗(H) − 1)
(︄

n

q − 1

)︄
+OH(nq−2).

19



The tensor product of two q-graphs G and J , G × J is defined having the
vertex set V (G) × V (J) and the edge set

E(G× J) =
{︂
{(v1, w1), . . . (vq, wq)} : {v1, . . . , vq} ∈ E(G), {w1, . . . , wq} ∈ E(J)

}︂
.

(Note that every pair of edges in the original graphs produces q! edges in the
product.)

Lemma 16. Let H = Kd
r1,...,rd

, and let F d
n be the copy of Kd(n; d) between the

vertex sets [n] × {1}, . . . , [n] × {d}. Then there exists a d-graph Ed(n,H) ⊆
F d

n \ (Kd
[n] ×Kd

[d]) of size OH(nd−2) such that

G(n,H) := (Kd
[n] ×Kd

[d]) ⊔ Ed(n,H)

is weakly H-saturated in F d
n .

Proof. It suffices to prove the above statement when r1 = · · · = rd =: r, i.e.
when H = Kd(r; d), as every edge creating a new copy of Kd(max{r1, . . . , rd}; d)
creates in particular a new copy of Kd

r1,...,rd
.

We apply induction on d and n. For d = 2 and any n ≥ |V (H)| the graph
K[n] × K[2] misses only a matching from F 2

n , making it already H-saturated in
F 2

n , as can be easily checked. Moreover, for every fixed H we can assume the
statement to hold for all n less than some large C(H).

For the induction step, fix (n, d) and suppose that the statement holds for all
(n′, d′) with d′ < d and all (n′′, d) with n′′ < n. It suffices to show that OH(nd−3)
edges can be added to G(n− 1, H) to satisfy the assertion; these edges will be as
follows.

For each i ∈ [d] let the (d − 1)-graph E ′
i be an isomorphic copy of Ed−1(n −

1, Kd−1(r; d − 1)) between the sets [n − 1] × {j} for j ∈ [d] \ {i}, such that
(Kd−1

[n−1] ×Kd−1
[d]\{i}) ⊔E ′

i is weakly Kd−1(r; d− 1)-saturated in the complete (d− 1)-
partite (d− 1)-graph between the sets [n− 1] × {j} for j ∈ [d] \ {i}. Let

Ei := {e ⊔ {(n, i)} : e ∈ E ′
i}.

By the induction hypothesis |Ei| = |E ′
i| = OH(nd−3).

Similarly, for each {i1, i2} ∈
(︂

[d]
2

)︂
apply Corollary 7 to obtain a (d− 2)-graph

E ′
i1,i2 of size OH(nd−3) which is weakly Kd−2(r; d − 2)-saturated in the copy of

Kd−2(n − 1; d − 2) between the sets [n − 1] × {j} for j ∈ [d] \ {i1, i2} (for d = 3
take any r−1 vertices in [n−1]× [d]\{i1, i2}). As above, insert (n, i1) and (n, i2)
into each edge of E ′

i1,i2 ; let the resulting edge set be called Ei1,i2 .
Finally, take all edges of F d

n containing at least three vertices with n as their
first coordinate, and let E0 be this edge set; clearly |E0| = OH(nd−3) as well. Put

G(n,H) := G(n− 1, H) ∪
⋃︂

i∈[d]
Ei ∪

⋃︂
{i1,i2}∈([d]

2 )
Ei1,i2 ∪ E0,

and
Ed(n,H) := G(n,H) \ (Kd

[n] ×Kd
[d]).

By the induction hypothesis and the bounds on the |Ei|, the |Ei1,i2| and |E0|,
we have |Ed(n,H)| = OH(nd−2). To see that G(n,H) is weakly H-saturated, first
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note that by induction hypothesis G(n − 1, H) is weakly H-saturated in F d
n−1,

hence the d-graph G(n − 1, H) ∪ (Kd
[n] × Kd

[d]) ⊆ G(n,H) is weakly H-saturated
in J0 := F d

n−1 ∪ (Kd
[n] ×Kd

[d]). Furthermore, let

K1 := {e ∈ F d
n : |e ∩ ({n} × [d])| = 1},

and
K2 := {e ∈ F d

n : |e ∩ ({n} × [d])| = 2}.

Let J1 := J0 ∪K1 and J2 := J1 ∪K2. By construction, J0 ∪⋃︁i∈[d] Ei is weakly H-
saturated in J1, J1 ∪⋃︁{i1,i2}∈([d]

2 )Ei1,i2 is weakly H-saturated in J2 and J2 ∪E0 =
F d

n . Thus, G(n,H) is weakly H-saturated in F d
n as desired. This proves the

induction step, and the statement of the lemma follows.

Proof of Theorem 8. For the first statement, suppose that G ⊆ Kn,n is weakly
H-saturated in Kn,n. Placing two |V (H)|-cliques on the parts of G is easily seen
to produce a weakly H-saturated graph in K2n. Therefore,

wsat(2n,H) ≤ wsat(Kn,n, H) + |V (H)|2. (3.20)

Conversely, suppose that G = G0 is weakly H-saturated in K[n] via a saturating
sequence e1 = {i1, j1}, . . . , ek = {ik, jk}. For 1 ≤ ℓ ≤ k let Gℓ = G0 ∪ {e1, . . . eℓ},
and let Hℓ be a copy of H in Gℓ containing eℓ.

Let Gbip = G×K[2], i.e., V (Gbip) = [n] × {1, 2} and

E(Gbip) = {{(i, 1), (j, 2)} : {i, j} ∈ E(G)}.

We claim that Gbip is weakly H-saturated in Kbip
[n] = K[n] × K[2] via the H-

saturating sequence f1, f
′
1, . . . , fk, f

′
k, where, for each ℓ ∈ [k], fℓ = {(iℓ, 1), (jℓ, 2)}

and f ′
ℓ = {(iℓ, 2), (jℓ, 1)}, and that Gbip

ℓ−1 ∪{fℓ, f
′
ℓ} = Gbip

ℓ for all ℓ ∈ [k] (where Gbip
ℓ

is defined analogously, i.e., Gbip
ℓ = Gℓ ×K[2]). Indeed, let (A,B) be a bipartition

of V (Hℓ) with iℓ ∈ A and jℓ ∈ B, and consider the analogous graph Hb
ℓ between

A×{1} and B×{2}, i.e., for every (i, j) ∈ A×B we have {(i, 1), (j, 2)} ∈ E(Hb
ℓ )

if and only if {i, j} ∈ E(Hℓ). Note that fℓ ∈ E(Hb
ℓ ) is the only edge of Hb

ℓ

not already present in Gbip
ℓ−1, therefore we can add it to the latter creating a new

copy of H, namely Hb
ℓ . Symmetrically, taking a graph H ′b

ℓ between A× {2} and
B × {1} allows to add f ′

ℓ. Since Gℓ = Gℓ−1 ∪ eℓ, we have Gbip
ℓ−1 ∪ {fℓ, f

′
ℓ} = Gbip

ℓ .
Finally, note that Gbip ∪ {f1, . . . , f

′
k} = Gbip

k = Kbip
[n] .

Note that Kbip
[n] is isomorphic to Kn,n minus a perfect matching, and it is a

straightforward check that this graph is H-saturated in Kn,n (we can assume that
|V (H)| ≤ n). We have thus shown

wsat(Kn,n, H) ≤ 2 wsat(n,H). (3.21)

Combining (3.20) and (3.21) gives

wsat(2n,H)
2n − o(1) ≤ wsat(Kn,n, H)

2n ≤ wsat(n,H)
n

,

and taking the limit, (3.1) follows readily.
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For the second statement, denote H = Kd
r1,...,rd

where 1 ≤ r1 ≤ · · · ≤ rd.
Observe that the upper bound in (3.2) holds by Lemma 15, as δ∗(H) = r1.
To prove the lower bound, suppose G is weakly H-saturated in Kd

[n], and that
|E(G)| = wsat(n,H) . Let Gmult = G×Kd

[d], that is, V (Gmult) = [n] × [d] and

E(Gmult) = {{(i1, 1), . . . , (id, d)} : {i1, . . . , id} ∈ E(G)}.

Essentially the same argument as for Gbip before shows that Gmult is weakly
H-saturated in Kd

[n] ×Kd
[d]. By Lemma 16 adding further OH(nd−2) edges creates

a weakly H-saturated d-graph in Kd(n; d). Hence,

wsat(Kd(n; d), H) ≤ |E(Gmult)| +O(nd−2) = d! wsat(n,H) +O(nd−2). (3.22)

On the other hand, Moshkovitz and Shapira [64] proved that wsat(Kd(n; d), H) =
d(r1 − 1)nd−1 + O(nd−2). Combining this with (3.22) yields the lower bound
in (3.2).
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4. Colorful Fractional Helly
Theorem
The target of this chapter is to provide optimal bounds for the colorful fractional
Helly theorem first stated by Bárány, Fodor, Montejano, Oliveros, and Pór [11],
and then improved by Kim [53]. In order to explain the colorful fractional Helly
theorem, let us briefly survey the preceding results.

The starting point, as usual in this context, is the Helly theorem:

Theorem 17 (Helly’s theorem [38]). Let F be a finite family of at least d + 1
convex sets in Rd. Assume that every subfamily of F with exactly d+ 1 members
has a nonempty intersection. Then all sets in F have a nonempty intersection.

Helly’s theorem admits numerous extensions and two of them, important in
our context, are the fractional Helly theorem and the colorful Helly theorem. The
fractional Helly theorem of Katchalski and Liu covers the case when only some
fraction of the d+ 1 tuples in F has a nonempty intersection.

Theorem 18 (The fractional Helly theorem [52]). For every α ∈ (0, 1] and
every non-negative integer d, there is β = β(α, d) ∈ (0, 1] with the following
property. Let F be a finite family of n ≥ d + 1 convex sets in Rd such that at
least α

(︂
n

d+1

)︂
of the subfamilies of F with exactly d+ 1 members have a nonempty

intersection. Then there is a subfamily of F with at least βn members with a
nonempty intersection.

An interesting aspect of the fractional Helly theorem is not only to show the
existence of β(α, d) but also to provide the largest value of β(α, d) with which the
theorem is valid. This has been resolved independently by Eckhoff [26] and by
Kalai [46] showing that the fractional Helly theorem holds with β(α, d) = 1−(1−
α)1/(d+1); yet another simplified proof of this fact has been subsequently given by
Alon and Kalai [3]. It is well known that this bound is sharp by considering a
family F consisting of ≈ (1 − (1 − α)1/(d+1))n copies of Rd and ≈ (1 − α)1/(d+1)n
hyperplanes in general position; see, e.g., the introduction of [46].

The colorful Helly theorem of Lovász covers the case where the sets are colored
by d+ 1 colors and only the ‘colorful’ (d+ 1)-tuples of sets in F are considered.
Given families F1, . . . ,Fd+1 of sets in Rd a family of sets {F1, . . . , Fd+1} is a
colorful (d+ 1)-tuple if Fi ∈ Fi for i ∈ [d+ 1], where [n] := {1, . . . , n} for a non-
negative integer n ≥ 1. (The reader may think of F from preceding theorems
decomposed into color classes F1, . . . ,Fd+1.)

Theorem 19 (The colorful Helly theorem [59, 10]). Let F1, . . . ,Fd+1 be finite
nonempty families of convex sets in Rd. Let us assume that every colorful (d+1)-
tuple has a nonempty intersection. Then one of the families F1, . . . ,Fd+1 has a
nonempty intersection.

Both the colorful Helly theorem and the fractional Helly theorem with optimal
bounds imply the Helly theorem. The colorful one by setting F1 = · · · = Fd+1 =
F and the fractional one by setting α = 1 giving β(1, d) = 1.

The preceding two theorems can be merged into the following colorful frac-
tional Helly theorem:
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Theorem 20 (The colorful fractional Helly theorem [11]). For every α ∈ (0, 1]
and every non-negative integer d, there is βcol = βcol(α, d) ∈ (0, 1] with the follow-
ing property. Let F1, . . . ,Fd+1 be finite nonempty families of convex sets in Rd of
sizes n1, . . . , nd+1 respectively. If at least αn1 · · ·nd+1 of the colorful (d+1)-tuples
have a nonempty intersection, then there is i ∈ [d + 1] such that Fi contains a
subfamily of size at least βcolni with a nonempty intersection.

Bárány et al. proved the colorful fractional Helly theorem with the value
βcol(α, d) = α

d+1 and they used it as a lemma [11, Lemma 3] in a proof of a colorful
variant of a (p, q)-theorem. Despite this, the optimal bound for βcol seems to be
of independent interest. In particular, the bound on βcol has been subsequently
improved by Kim [53] who showed that the colorful fractional Helly theorem is
true with βcol(α, d) = max{ α

d+1 , 1− (d+1)(1−α)1/(d+1)}. On the other hand, the
value of βcol(α, d) cannot go beyond 1−(1−α)1/(d+1) because essentially the same
example as for the standard fractional Helly theorem applies in this setting as
well—it is sufficient to set n1 = n2 = · · · = nd+1 and take ≈ (1 − (1 −α)1/(d+1))ni

copies of Rd and ≈ (1 − α)1/(d+1)ni hyperplanes in general position in each color
class.1 (Kim [53] provides a slightly different upper bound example showing the
same bound.)

Coming back to the lower bound on βcol(α, d), Kim explicitly conjectured that
1− (1−α)1/(d+1) is also a lower bound, thereby an optimal bound for the colorful
fractional Helly theorem. He also provides a more refined conjecture, that we
discuss slightly later on (see Conjecture 24), which implies this lower bound. We
prove the refined conjecture, and therefore the optimal bounds for the colorful
fractional Helly theorem.

Theorem 21 (The optimal colorful fractional Helly theorem). Let F1, . . . ,Fd+1
be finite nonempty families of convex sets in Rd of sizes n1, . . . , nd+1 respectively.
If at least αn1 · · ·nd+1 of the colorful (d+1)-tuples have a nonempty intersection,
for α ∈ (0, 1], then there is i ∈ [d + 1] such that Fi contains a subfamily of size
at least (1 − (1 − α)1/(d+1))ni with a nonempty intersection.

In the proof we follow the exterior algebra approach which has been used by
Kalai [46] in order to provide optimal bounds for the standard fractional Helly
theorem. We have to upgrade Kalai’s proof to the colorful setting. This requires
guessing the right generalization of several steps in Kalai’s proof (in particular
guessing the statement of Theorem 26 below). However, we honestly admit that
after making these ‘guesses’ we follow Kalai’s proof quite straightforwardly.

Let us also compare one aspect of our proof with the previous proof of the
weaker bound by Kim [53]: Kim’s proof uses the colorful Helly theorem as a
blackbox while our proof includes the proof of the colorful Helly theorem.

Last but not least, the exterior algebra approach actually allows to generalize
Theorem 21 in several different directions. The extension to so called d-collapsible
complexes is essentially mandatory for the well working proof while the other
generalizations that we will present just follow from the method. We will discuss
this in detail in forthcoming sections.

1At the end of Section 4.3 we discuss this example in full detail in more general context.
However, in this special case, it is perhaps much easier to check directly that βcol cannot be
improved due to this example.
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4.1 d-representable and d-collapsible complexes
The nerve and d-representable complexes. The important information in
Theorems 17, 18, 19, 20, and 21 is which subfamilies have a nonempty intersection.
This information can be efficiently stored in a simplicial complex called the nerve.

Given a family of sets F , the nerve of F , is the simplicial complex whose
vertex set is F and whose faces are subfamilies with a nonempty intersection. A
simplicial complex is d-representable if it is the nerve of a finite family of convex
sets in Rd.

As a preparation for the d-collapsible setting, we now restate Theorem 21 in
terms of d-representable complexes. For this we need two more notions. Given a
simplicial complex K and a subset U of the vertex set N , the induced subcomplex
K[U ] is defined as K[U ] := {A ∈ K : A ⊆ U}. Now, let us assume that the vertex
set N is split into d + 1 pairwise disjoint subsets N = N1 ⊔ · · · ⊔ Nd+1 (we can
think of this partition as coloring each vertex of N with one of the d+ 1 possible
colors). Then a colorful d-face is a d-face A, such that |A ∩ Ni| = 1 for every
i ∈ [d+ 1].

Theorem 22 (Theorem 21 reformulated). Let K be a d-representable simplicial
complex with the set of vertices N = N1 ⊔ · · · ⊔ Nd+1 divided into d + 1 disjoint
subsets. Let ni := |Ni| for i ∈ [d + 1] and assume that K contains at least
αn1 · · ·nd+1 colorful d-faces for some α ∈ (0, 1]. Then there is i ∈ [d + 1] such
that dimK[Ni] ≥ (1 − (1 − α)1/(d+1))ni − 1.

Theorem 22 is indeed just a reformulation of Theorem 21: Considering F
as disjoint union2 F = F1 ⊔ · · · ⊔ Fd+1, then K corresponds to the nerve of F ,
colorful d-faces correspond to colorful (d+ 1)-tuples with nonempty intersection
and the dimension of K[Ni] corresponds to the size of largest subfamily of Fi with
nonempty intersection minus 1. (The shift by minus 1 between size of a face and
dimension of a face is a bit unpleasant; however, we want to follow the standard
terminology.)

d-collapsible complexes. In [87] Wegner introduced an important class of sim-
plicial complexes, called d-collapsible complexes. They include all d-representable
complexes, which is the main result of [87], while they admit quite simple com-
binatorial description which is useful for induction.

Given a simplicial complex K, we say that a simplicial complex K ′ arises from
K by an elementary d-collapse, if there are faces L,M ∈ K with the following
properties: (i) dimL ≤ d − 1; (ii) M is the unique inclusion-wise maximal face
which contains L; and (iii) K ′ = K \ {A ∈ K : L ⊆ A}. A simplicial complex K
is d-collapsible if there is a sequence of simplicial complexes K0, . . . , Kℓ such that
K = K0; Ki arises from Ki−1 by an elementary d-collapse for i ∈ [ℓ]; and Kℓ is
the empty complex.

We will prove the following generalization of Theorem 22 (equivalently of
Theorem 21).

2If there are any repetitions of sets in F , which we generally allow for families of sets, then
each repetition creates a new vertex in the nerve.
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Theorem 23 (The optimal colorful fractional Helly theorem for d-collapsible
complexes). Let K be a d-collapsible simplicial complex with the set of vertices
N = N1⊔· · ·⊔Nd+1 divided into d+1 disjoint subsets. Let ni := |Ni| for i ∈ [d+1]
and assume that K contains at least αn1 · · ·nd+1 colorful d-faces for some α ∈
(0, 1]. Then there is i ∈ [d+ 1] such that dimK[Ni] ≥ (1 − (1 − α)1/(d+1))ni − 1.

4.1.1 Kim’s refined conjecture and further generalization
As a tool for a possible proof of Theorem 21, Kim [53, Conjecture 4.2] suggested
the following conjecture. (The notation ki in Kim’s statement of the conjecture
is our ri + 1.)

Conjecture 24 ([53]). Let ni be positive and ri non-negative integers for i ∈
[d + 1] with ni ≥ ri + 1. Let F1, . . . ,Fd+1 be families of convex sets in Rd such
that |Fi| = ni and there is no subfamily of Fi of size ri + 1 with non-empty
intersection for every i ∈ [d+ 1]. Then the number of colorful (d+ 1)-tuples with
nonempty intersection is at most

n1 · · ·nd+1 − (n1 − r1) · · · (nd+1 − rd+1).

We explicitly prove this conjecture in a slightly more general setting for d-
collapsible complexes. (Note that the condition ‘no subfamily of size ri + 1’
translates as ‘no ri-face’, that is, ‘the dimension is at most ri − 1’.)

Proposition 25. Let ni be positive and ri non-negative integers for i ∈ [d + 1]
with ni ≥ ri + 1. Let K be a d-collapsible simplicial complex with the set of
vertices N = N1 ⊔ · · · ⊔ Nd+1 divided into d + 1 disjoint subsets. Assume that
|Ni| = ni and that dimK[Ni] ≤ ri − 1 for every i ∈ [d+ 1]. Then K contains at
most

n1 · · ·nd+1 − (n1 − r1) · · · (nd+1 − rd+1).
colorful d-faces.

Our main technical result. Now, let us present our main technical tool for
a proof of Proposition 25 and consequently for a proof of Theorem 23 as well.

We denote by N the set of positive integers whereas N0 is the set of non-
negative integers. Let us consider c ∈ N and vectors k = (k1, . . . , kc), r =
(r1, . . . , rc) ∈ Nc

0 and n = (n1, . . . , nc) ∈ Nc such that k, r ≤ n. (Here the
notation a ≤ b means that a is less or equal to b in every coordinate.) We will
also use the notation k := k1 + · · · + kc, n := n1 + · · · + nc, and r := r1 + · · · + rc.
Let N be a set with n elements partitioned as N = N1 ⊔ · · · ⊔Nc where |Ni| = ni

for i ∈ [c]. By
(︂

N
k

)︂
we denote the set of all subsets A of N such that |A∩Ni| = ki

for every i ∈ [c]. Note that
(︂

N
k

)︂
⊆
(︂

N
k

)︂
where

(︂
N
k

)︂
denotes the set of all subsets

of N of size k.
Let K be a simplicial complex with the vertex set N as above. We say

that a face A of K is k-colorful if A ∈
(︂

N
k

)︂
, that is, |A ∩ Ni| = ki for every

i ∈ [c]. The earlier notion of colorful face corresponds to setting c = d + 1 and
k = 1 := (1, . . . , 1) ∈ Nc. By fk = fk(K) we denote the k-colorful f -vector of
K, that is, the number of k-colorful faces in K.
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Let us further assume that we are given sets Ri ⊆ Ni with |Ri| = ri for every
i ∈ [c]. Let R = R1 ⊔ · · · ⊔Rc and R̄ := N \R. Then, we define the set system

Pk(n, d, r) =
{︄
S ∈

(︄
N

k

)︄
: |S ∩ R̄| ≤ d

}︄
.

We remark that Pk(n, d, r) is not a simplicial complex, as it contains only sets
in
(︂

N
k

)︂
. However, this set system is useful for estimating the number of k-colorful

faces in a d-collapsible complex. By pk(n, d, r) we denote the size of Pk(n, d, r),
that is, pk(n, d, r) := |Pk(n, d, r)|.

Theorem 26. For integers c, d ≥ 1, let K be a d-collapsible simplicial complex
with vertex partition N = N1 ⊔· · ·⊔Nc and let n = (n1, . . . , nc) ∈ Nc be the vector
with ni = |Ni|. For r = (r1, . . . , rc) ∈ Nc such that dimK[Ni] ≤ ri − 1 for i ∈ [c]
and k ∈ Nc

0 such that k ≤ n it follows that

fk(K) ≤ pk(n, d, r).

Theorem 26 is proved in Section 4.2. Here we show the implications Theo-
rem 26 ⇒ Proposition 25 and Proposition 25 ⇒ Theorem 23. In addition, we
advertise that Theorem 26 yields further generalizations of Theorem 23. We
explain this last part in Section 4.3.

Proof of Proposition 25 modulo Theorem 26. We use Theorem 26 with c = d+ 1
and k = 1. Then it is sufficient to compute p1(n, d, r). On the one hand, the
size of

(︂
N
1

)︂
is n1 . . . nd+1. On the other hand, A belongs to

(︂
N
1

)︂
\P1(n, d, r) if and

only if |A ∩ (Ni \ Ri)| = 1 for every i ∈ [d + 1]. Then, the number of such A is
(n1 − r1) · · · (nd+1 − rd+1). Combining these observations we obtain the required
formula

p1(n, d, r) = n1 . . . nd+1 − (n1 − r1) · · · (nd+1 − rd+1).

Proof of Theorem 23 modulo Proposition 25. By contradiction, let us assume
that for every i ∈ [d + 1] we get dimK[Ni] < (1 − (1 − α)1/(d+1))ni − 1. Let
us set ri := dimK[Ni] + 1 < (1 − (1 − α)1/(d+1))ni. Then Proposition 25 gives
that the number of colorful d-faces is at most

d+1∏︂
i=1

ni −
d+1∏︂
i=1

(ni − ri) <
d+1∏︂
i=1

ni − (1 − (1 − (1 − α)1/(d+1)))d+1
d+1∏︂
i=1

ni = α
d+1∏︂
i=1

ni

which is a contradiction due to the strict inequality on the first line.

4.2 Colorful exterior algebra
Now we extend the tools introduced in Section 2.2 to the colorful setting. Set
V = RN . From now on, let us assume that N is an n-element set decomposed
into c-color classes, N = N1 ⊔ · · · ⊔ Nc. (The total order on N in this case
starts with elements of N1, then continues with elements of N2, etc.) Let A
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be an N × N transition matrix from (ej)j∈N to (gj)j∈N
3. We pick A so that it

is a block-diagonal matrix with blocks corresponding to individual Ni. That is,
ANi|Nj

is a zero matrix whenever i ̸= j. On the other hand, as shown by Kalai [46,
Section 2], it is possible to pick each ANi|Ni

so that (gj)j∈Ni
is an orthonormal

basis of the subspace of V generated by (ej)j∈Ni
and each square submatrix of

ANi|Ni
has full rank. Therefore, from now on, we assume that we picked A and

the vectors gj this way. (Such a block matrix, for c = 2, is previously mentioned
in [66].)

Similarly as in the beginning of the chapter, let us set n = (n1, . . . , nc) so that
ni = |Ni| for i ∈ [c]; for simplicity, let us assume that each Ni is nonempty—that
is, n is a c-tuple of positive integers. Let us also consider another c-tuple k =
(k1, . . . , kc) of non-negative integers such that k ≤ n and we set k := k1 + · · ·+kc.
Then by ⋀︁k V we mean the subspace of ⋀︁V generated by (eS)S∈(N

k); recall that(︂
N
k

)︂
is the set of all subsets A of N such that |A ∩Ni| = ki and that

(︂
N
k

)︂
⊆
(︂

N
k

)︂
.

Thus we also get that ⋀︁k V is a subspace of ⋀︁k V . In addition, due to our
choice of (gj)j∈N we get that gS ∈ ⋀︁k V if S ∈

(︂
N
k

)︂
. In addition detAS|T = 0 if

T ∈
(︂

N
k

)︂
\
(︂

N
k

)︂
because AS|T is in this case a block matrix such that some of the

blocks is not a square. Thus the formula (2.2) simplifies to

gS =
∑︂

T ∈(N
k)

detAS|T eT . (4.1)

Proof of Theorem 26. For k ∈ Nc such that k ≤ d we have that Pk(n, d, r) =
(︂

N
k

)︂
,

thus the theorem follows trivially. On the other hand, if k > r, then ki > ri for
some i and consequently fk(K) = 0 due to our assumption dimK[Ni] ≤ ri − 1;
therefore the theorem again follows trivially. From now on we assume d + 1 ≤
k ≤ r. (We also use the notation for the sets R, R̄ and Ri with |Ri| = ri as in
the definition of Pk(n, d, r).)

Let us define the following subspaces of ⋀︁k V

Ak :=
{︄
m ∈

k⋀︂
V :

(︄
∀T ∈

(︄
R

k − d

)︄)︄
gT⌞m = 0

}︄
,

and
Wk := span

{︄
eS ∈

k⋀︂
V : S ∈

(︄
N

k

)︄
and S ∈ K

}︄
,

from the definition it follows that the colorful f -vector and the dimension of Wk
coincide, i.e. fk = dim(Wk).

We claim that
dim(Ak) ≥

⃓⃓⃓⃓
⃓
(︄
N

k

)︄⃓⃓⃓⃓
⃓− pk(n, d, r).

Indeed, if S ∈
(︂

N
k

)︂
such that S /∈ Pk(n, d, r), then |S∩R̄| > d. As S ⊆ R⊔R̄ = N

and |S| = k we have that |S ∩ R| < k − d. If T ∈
(︂

R
k−d

)︂
we have that S ⊉ T ;

therefore gT⌞gS = 0. From this it follows that gS ∈ Ak and finally the claim
because gS ∈ ⋀︁k V .

3Although in Section 2.2 we have chosen to use f ’s to denote a new basis, in this chapter
we will use g’s to avoid possible confusion with the f -vector.
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The core of the proof is to show Ak ∩ Wk = {0}. Once we have this, we get
fk(K) = dim(Wk) ≤ dim⋀︁k V − dimAk ≤ pk(n, d, r) which proves the theorem.

For contradiction, let m ∈ Ak∩Wk be a non-zero element. Because m ∈ Wk, it
can be written as m = ∑︁

αSeS where the sum is over all S ∈
(︂

N
k

)︂
such that S ∈ K.

Let K0, . . . , Kℓ be a sequence of simplicial complexes showing d-collapsibility of K
as in the definition of d-collapsible complex. In addition, due to [46, Lemma 3.2],
it is possible to assume that Ki arises from Ki−1 by so called special elementary
d-collapse which is either a removal of a maximal face of dimension at most d− 1
or the minimal face (the face L in the definition) has dimension exactly d−1. Now
let us consider the first step from Ki−1 to Ki such that a face U ∈

(︂
N
k

)︂
with non-

zero αU is eliminated. Denote by L and M the faces determining the collapse as
in the definition. We have L ⊆ U ⊆ M , |M | ≥ |U | = k > d and therefore |L| = d

(equivalently, dimL = d − 1), because the collapse is special. For T ∈
(︂

R
k−d

)︂
let

t = (t1, . . . , tc) ∈ Nc be such that ti = |T ∩ Ni|. Then gT = ∑︁
P ∈(N

t ) det(AT |P )eP

via (4.1). We also need to simplify the expression ⟨eL, gT⌞eS⟩ for S ∈
(︂

N
k

)︂
. We

obtain
⟨eL, gT⌞eS⟩ = ⟨eL ∧ gT , eS⟩ =

∑︂
P ∈(N

t )
det(AT |P )⟨eL ∧ eP , eS⟩ (4.2)

If S ⊉ L then ⟨eL ∧ eP , eS⟩ = 0 for all P , and therefore ⟨eL, gT⌞eS⟩ = 0.
If S ⊇ L then ⟨eL ∧ eP , eS⟩ = 0 unless P = S \ L and therefore ⟨eL, gT⌞eS⟩ =
⟨eL ∧ eS\L, eS⟩ det(AT |S\L).

Since m ∈ Ak, for arbitrary T ∈
(︂

R
k−d

)︂
we get

0 = ⟨eL, gT⌞m⟩ =
∑︂

S∈(N
k):S∈K

αS⟨eL, gT⌞eS⟩ =
∑︂

S∈(N
k):S∈Ki−1

αS⟨eL, gT⌞eS⟩

=
∑︂

S∈(N
k):S⊇L

αS⟨eL, gT⌞eS⟩ =
∑︂

S∈(N
k):M⊇S⊇L

αS⟨eL ∧ eS\L, eS⟩ det(AT |S\L)

where the third equality follows from the fact that αS = 0 for S ∈ K \Ki−1 due to
our choice of Ki−1 and the last two equalities follow from our earlier simplification
of ⟨eL, gT⌞eS⟩. (We also use that the expressions S ⊇ L and M ⊇ S ⊇ L are
equivalent as M is the unique maximal face containing L.)

We also have U ∈
(︂

N
k

)︂
with M ⊇ U ⊇ L for which αU ̸= 0 as well as

⟨eL ∧ eU\L, eU⟩ is nonzero (the latter one equals ±1). Therefore the expression
above is a linear dependence of the columns of Ck−d(AR|M\L). However, we will
also show that the columns of Ck−d(AR|M\L) are linearly independent, thereby
getting a contradiction. Via Lemma 2, it is sufficient to check that the columns of
AR|M\L are linearly independent. Because A is a block-matrix with blocks ANi|Ni

,
we get that AR|M\L is a block matrix with blocks ARi|(M\L)∩Ni

. Thus it is sufficient
to check that the columns are independent in each block. But this follows from our
assumptions of how we picked A in each block, using that |Ri| = ri ≥ |(M\L)∩Ni|
as |M ∩Ni| ≤ ri due to our assumption dimK[Vi] ≤ ri − 1.

4.3 k-colorful fractional Helly theorem
Theorem 26 allows to generalize Theorem 23 in two more directions.
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The first generalization of Theorem 23 is already touched in the beginning
of the chapter. We can deduce an analogy of Theorem 23 for k-colorful faces
(instead of just colorful d-faces) where k = (k1, . . . , kc) ∈ Nc

0 is some vector with
c ≥ 1. For example, if d = 2, k = (2, 1, 1) and we understand the partition of
N = N1 ⊔N2 ⊔N3 as coloring the vertices of K red, green, or blue. Then we seek
for number of faces that contain two red vertices, one green vertex and one blue
vertex.

For the second generalization, let us first observe that in the conclusion of
Theorem 23 there is the same coefficient 1 − (1 − α)1/(d+1) independently of i.
However, in the notation of Theorem 23, we may also seek for i such that
dimK[Ni] ≥ βini + 1 where β = (β1, . . . , βc) ∈ (0, 1]c is some fixed vector.
Then for given β, we want to find the lowest α ∈ (0, 1] with which we reach
the conclusion analogous as in Theorem 23. This is a natural analogy of various
Ramsey type statements: for example, if the edges of a complete graph G with
at least 9 vertices are colored blue or red, then the graph contains either a blue
copy of the complete graph on 3 vertices or a red copy of the complete graph on
4 vertices.

For the purpose of stating the generalization, let us set

Lk(d) := {ℓ = (ℓ1, · · · ℓc) ∈ Nc
0 : ℓ1 + · · · + ℓc ≤ d and ℓi ≤ ki for i ∈ [c]} (4.3)

and
αk(d,β) :=

∑︂
ℓ=(ℓ1,...,ℓc)∈Lk(d)

c∏︂
i=1

(︄
ki

ℓi

)︄
(1 − βi)ℓi(βi)ki−ℓi . (4.4)

Theorem 27. Let c, d ≥ 1 and k = (k1, . . . , kc) ∈ Nc
0 be such that k := k1 +

· · · + kc ≥ d + 1. Let K be a d-collapsible simplicial complex with the set of
vertices N = N1 ⊔ · · · ⊔ Nc divided into c disjoint subsets. Let ni := |Ni| for
i ∈ [c] and assume that K contains at least αk(d,β)

⃓⃓⃓(︂
N
k

)︂⃓⃓⃓
k-colorful faces for some

β = (β1, . . . , βc) ∈ (0, 1]c. Then there is i ∈ [c] such that dimK[Ni] ≥ βini − 1.

The formula (4.4) for αk(d,β) in Theorem 27 is, unfortunately, a bit compli-
cated. However, this is the optimal value for α in the theorem. We first prove
Theorem 27 and then we will provide an example showing that for every d, k
and β as in the theorem, the value for α cannot be improved. The remark below
is a probabilistic interpretation of (4.4). (This, for example, easily reveals that
αk(d,β) ∈ (0, 1] for given parameters and will help us with checking monotonicity
in β.)

Remark 28. Consider a random experiment where we gradually for each i pick ki

numbers xi
1, . . . , x

i
ki

in the interval [0, 1] independently at random (with uniform
distribution). Let ℓi be the number of xi

j which are greater than βi and let us
consider the event Ak(d,β) expressing that ℓ1 + · · · + ℓc ≤ d. Then αk(d,β) is
the probability P[Ak(d,β)].

Indeed, the probability that the number of xi
j which are greater than βi is

exactly ℓi is given by the expression beyond the sum in (4.4). Therefore, we need
to sum this over all options giving ℓ1 + · · · + ℓc ≤ d and ℓi ≤ ki.

In the proof of Theorem 27 we will need the following slightly modified propo-
sition. We relax ‘at least’ to ‘more than’ while we aim at strict inequality in the
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conclusion—this innocent change will be a significant advantage in the proof.
On the other hand, after this change we can drop the assumption k ≥ d + 1.
But this is only a cosmetic change, because the proposition below is vacuous if
αk(d,β) = 1 which in particular happens if k < d+ 1.

Proposition 29. Let c, d ≥ 1 and k = (k1, . . . , kc) ∈ Nc
0. Let K be a d-collapsible

simplicial complex with the set of vertices N = N1 ⊔ · · · ⊔ Nc divided into c
disjoint subsets. Let ni := |Ni| for i ∈ [c] and assume that K contains more than
αk(d,β)

⃓⃓⃓(︂
N
k

)︂⃓⃓⃓
k-colorful faces for some β = (β1, . . . , βc) ∈ (0, 1]c. Then there is

i ∈ [c] such that dimK[Ni] > βini − 1.

First we show how Theorem 27 follows from Proposition 29 by a limit transi-
tion. Then we prove Proposition 29.

Proof of Theorem 27 modulo Proposition 29. Let us consider ε > 0 such that β−
ε ∈ (0, 1]c for ε = (ε, . . . , ε) ∈ (0, 1]c.

First, we need to check αk(d,β) > αk(d,β−ε). For this we will use Remark 28
and we also use k ≥ d + 1. It is easy to check Ak(d,β) ⊇ Ak(d,β − ε) which
gives αk(d,β) ≥ αk(d,β −ε). In order to show the strict inequality, it remains to
show that Ak(d,β)\Ak(d,β −ε) has positive probability. Consider the output of
the experiment when each xj

i ∈ (βi − ε, βi). This output has positive probability
εk. In addition, this output belongs to Ak(d,β) whereas it does not belong to
Ak(d,β − ε) (because k ≥ d+ 1) as required.

This means, that we can apply Proposition 29 with αk(d,β − ε) as we know
that K has at least αk(d,β)

⃓⃓⃓(︂
N
k

)︂⃓⃓⃓
k-colorful faces by assumptions of Theorem 27

which is more than αk(d,β − ε)
⃓⃓⃓(︂

N
k

)︂⃓⃓⃓
. We obtain dimK[Ni] > (βi − ε)ni − 1. By

letting ε to tend to 0, we obtain the required dimK[Ni] ≥ βini − 1.

Boosting the complex. In the proof of Proposition 29, we will need the follow-
ing procedure for boosting the complex. For a given complex K with vertex set
N = N1⊔· · ·⊔Nc partitioned as usual, and a non-negative integer m we define the
complex K⟨m⟩ as a complex with the vertex set N× [m] = N1 × [m]⊔· · ·⊔Nc × [m]
whose maximal faces are of the form S × [m], where S is a maximal face of K.
We will also use the notation δk(K) := fk(K)/|

(︂
N
k

)︂
| for the density of k-colorful

faces of K.

Lemma 30. Let K be a simplicial complex with vertex partition N = N1⊔· · ·⊔Nc

and k = (k1, . . . , kc) ∈ Nc
0, then

(i) δk(K⟨m⟩) ≥ δk(K); and

(ii) if K is d-collapsible, then K⟨m⟩ is d-collapsible as well.

Proof. Let us start with the proof of (i). If δk(K) = 0 there is nothing to prove.
Thus we may assume that δk(K) > 0 (equivalently fk(K) > 0) and consequently
we have that |Ni| ≥ ki. Let us interpret δk(K) as the probability that a random
k-tuple of vertices in N is a simplex of K, and we interpret δk(K⟨m⟩) analogously.
Let π : N × [m] → N be the projection to the first coordinate. Now, let U be a
k-tuple of vertices in N × [m] taken uniformly at random. Considering the set
π(U) ⊆ N , it need not be a k-tuple (this happens exactly when two points in
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U have the same image under π) but it can be extended to a k-tuple W using
that |Ni| ≥ ki for every i. Let W be an extension of π(U) to a k-tuple, taken
uniformly at random among all possible choices. Because of the choices we made,
W is in fact a k-tuple of vertices in N taken uniformly at random. (Note that the
choices done in each Ni or Ni × [m] are independent of each other.) Altogether,
using P for probability, we get

δk(K⟨m⟩) = P[U ∈ K⟨m⟩] = P[π(U) ∈ K] ≥ P[W ∈ K] = δk(K).

This shows (i).
For (ii), we follow the idea of splitting a vertex from [4, Proposition 14(i)]

which proves a similar statement for d-Leray complexes. For a complex K and a
vertex v ∈ K let Kv→v1,v2 be a complex obtained from K by splitting the vertex v
into two newly introduced vertices v1 and v2. That is, if V is the set of vertices of
K, then the set of vertices of Kv→v1,v2 is (V ∪ {v1, v2}) \ {v} assuming v1, v2 ̸∈ V .
The maximal simplices of Kv→v1,v2 are obtained from maximal simplices S of
K by replacing v with v1 and v2, if S contains v (otherwise S is kept as it is).
Our aim is to show that if K is d-collapsible, then Kv→v1,v2 is d-collapsible as
well. This will prove (ii) because K⟨m⟩ can be obtained from K by repeatedly
splitting some vertex. For the proof, we extend the notation Kv→v1,v2 by setting
Kv→v1,v2 = K if v does not belong to K.

Let K0 = K,K1, . . . , Kℓ = ∅ be a sequence such that Ki arises from Ki−1
by an elementary d-collapse. Our task is to show that Kv→v1,v2

i−1 d-collapses to
Kv→v1,v2

i for i ∈ [ℓ]. This will show the claim as Kv→v1,v2
ℓ = ∅. For simplicity of

the notation, we will treat only the elementary d-collapse from K to K1 as other
steps are analogous. We will assume v ∈ K, as there is nothing to do if v ̸∈ K.

Let L and M be the faces from the elementary d-collapse. That is, dimL ≤
d − 1; M is the unique maximal face in K which contains L and K1 is obtained
from K by removing all faces that contain L, including L. We will distinguish
three cases according to whether v ∈ L or v ∈ M .

If v ̸∈ M (which implies v ̸∈ L), then M is the unique maximal face containing
L in Kv→v1,v2 and the elementary d-collapse removing L and all its superfaces
yields Kv→v1,v2

1 .
If v ∈ M while v ̸∈ L, then (M ∪ {v1, v2}) \ {v} is the unique maximal face

containing L in Kv→v1,v2 and the elementary d-collapse removing L and all its
superfaces yields Kv→v1,v2

1 .
Finally, if v ∈ M and v ∈ L, then we need to perform the d-collapse from

Kv→v1,v2 to Kv→v1,v2
1 by two elementary steps; see Figure 4.1. First we realize

that (M ∪ {v1, v2}) \ {v} is the unique maximal face containing (L ∪ {v1}) \ {v}
in Kv→v1,v2 . Because dim(L∪{v1})\{v} = dimL, we can perform an elementary
d-collapse removing (L ∪ {v1}) \ {v} and all its superfaces obtaining a complex
K ′. In K ′ we have that (M ∪ {v2}) \ {v} is the unique maximal face containing
(L ∪ {v2}) \ {v}. After removing (L ∪ {v2}) \ {v} and all its superfaces, we get
desired Kv→v1,v2

1 (note that in this case Kv→v1,v2
1 is indeed obtained from Kv→v1,v2

by removing (L ∪ {v1}) \ {v}, (L ∪ {v2}) \ {v} and all their superfaces).
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Kv→v1,v2 K′ Kv→v1,v2
1

Figure 4.1: Collapses from Kv→v1,v2 to Kv→v1,v2
1 if v ∈ L.

Density of Pk(n, d, r). Now, we will provide a formula for the density of
Pk(n, d, r). In the following computations we also set

δk(n, d, r) = pk(n, d, r)/
⃓⃓⃓(︄N

k

)︄⃓⃓⃓
using the notation from the definition of Pk(n, d, r). We get

pk(n, d, r) =
⃓⃓⃓⃓
⃓
{︄
S ∈

(︄
N

k

)︄
: |S ∩ R̄| ≤ d

}︄⃓⃓⃓⃓
⃓

=
∑︂

ℓ=(ℓ1,...,ℓc)∈Lk(d)

⃓⃓⃓⃓
⃓
{︄
S ∈

(︄
N

k

)︄
: |Si ∩ R̄i| = li

}︄⃓⃓⃓⃓
⃓

=
∑︂

ℓ=(ℓ1,...,ℓc)∈Lk(d)

c∏︂
i=1

(︄
ni − ri

li

)︄(︄
ri

ki − li

)︄
.

Then, using (x)m := x · (x− 1) · · · (x− (m− 1)), the density is given by

δk(n, d, r) = pk(n, d, r)∏︁c
i=1

(︂
ni

ki

)︂ =

∑︁
ℓ=(ℓ1,...,ℓc)∈Lk(d)

c∏︁
i=1

(︂
ki

ℓi

)︂
(ni − ri)ℓi

(ri)ki−ℓi∏︁c
i=1(ni)ki

. (4.5)

Proof of Proposition 29. For contradiction, let us assume that for every i ∈ [c]
we have that dim(K[Vi]) ≤ βini −1. Let us set ri := dim(K[Vi])+1 ≤ βini. Note
that the conclusion of Theorem 26 can be restated as δk(K) ≤ δk(n, d, r).

33



Now we get

δk(K) ≤ lim inf
m→∞

δk(K⟨m⟩) by Lemma 30(i)

≤ lim inf
m→∞

δk(mn, d,mr) by Theorem 26 using Lemma 30(ii)

≤ lim inf
m→∞

δk(mn, d, ⌊mniβi⌋), ri ≤ βini and pk(n, d, r) is monotone in r

= lim inf
m→∞

∑︁
ℓ=(ℓ1,...,ℓc)∈Lk(d)

c∏︁
i=1

(︂
ki

ℓi

)︂
(mni − ⌊mniβi⌋)ℓi

(⌊mniβi⌋)ki−ℓi∏︁c
i=1(mni)ki

by (4.5)

=
∑︂

ℓ=(ℓ1,...,ℓc)∈Lk(d)

c∏︂
i=1

(︄
ki

ℓi

)︄
(1 − βi)ℓi(βi)ki−ℓi

= αk(d,β)

which is a contradiction with the assumptions.

Remark 31. It would be much more natural to try to avoid boosting the complex
and show directly δk(K) ≤ δk(n, d, r) ≤ αk(d,β) in the proof of Proposition 29.
The former inequality follows from Theorem 26. However, the latter inequality
turned out to be somewhat problematic for us when we attempted to show it directly
from the definition of αk(d,β) and from (4.5). Thus, in our computations, we
take an advantage of the fact that the computations in the limit are easier.

Tightness of Theorem 27. We conclude this section by showing that the
bound given in Theorem 27 is tight.

Let us fix c, d ∈ N, k = (k1, . . . , kc) ∈ Nc
0 with k := k1 + · · · + kc ≥ d + 1

and β = (β1, . . . , βc) ∈ (0, 1]c as in the statement of Theorem 27. Let 0 ≤ α′ <

αk(d,β). We will find a complex K which contains at least α′|
(︂

N
k

)︂
| k-colorful

faces while dimK[Ni] < βini − 1 for every i ∈ [c] (using the notation from the
statement of Theorem 27).

Similarly as in the proof of Theorem 27 let us consider ε > 0 such that β−ε ∈
(0, 1]c for ε = (ε, . . . , ε) ∈ (0, 1]c. In addition, because αk(d,β) is continuous in
β due to its definition (4.4), we may pick ε such that α′ < αk(d,β − ε). For
simplicity of notation, let β′ = (β′

1, . . . , β
′
c) := β − ε.

Now we pick a positive integer m and set n = (m, . . . ,m) ∈ Nc, that is, n1 =
· · · = nc = m and n = cm in our standard notation. We also set r = (r1, . . . , rc)
so that ri := ⌊β′

im⌋.4 We assume that m is large enough so that ri ≥ ki for each
i ∈ [c]. We define families Ni of convex sets in Rd so that each Ni contains ri

copies of Rd and m − ri hyperplanes in general position. We also assume that
the collection of all hyperplanes in N1, . . . , Nc is in general position. We set K to
be the nerve of the family N = N1 ⊔ · · · ⊔Nc. In particular K is d-representable
(therefore d-collapsible as well).

First, we check that dimK[Ni] < βim− 1 provided that m is large enough. A
subfamily of Ni with nonempty intersection contains at most d hyperplanes from
Ni. Therefore dimK[Ni] < ri + d = ⌊β′

im⌋ + d < βim− 1 for m large enough.
4This choice of n will yield a counterexample where each color class has equal size. It would

be also possible to vary the sizes.
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Next we check that K contains at least α′|
(︂

N
k

)︂
| k-colorful faces provided that

m is large enough. Partitioning Ni so that Ri is the subfamily of the copies of
Rd and R̄i is the subfamily of hyperplanes, we get

fk(K) = pk(n, d, r)

from the definition of pk(n, d, r). Therefore (4.5) gives

δk(K) =

∑︁
ℓ=(ℓ1,...,ℓc)∈Lk(d)

c∏︁
i=1

(︂
ki

ℓi

)︂
(m− ⌊β′

im⌋)ℓi
(⌊β′

im⌋)ki−ℓi∏︁c
i=1(m)ki

.

Passing to the limit (considering the dependency of K on m), we get

lim
m→∞

δk(K) =
∑︂

ℓ=(ℓ1,...,ℓc)∈Lk(d)

c∏︂
i=1

(︄
ki

ℓi

)︄
(1 − β′

i)ℓi(β′
i)ki−ℓi = αk(d,β′).

Therefore, for m large enough K contains at least α′|
(︂

N
k

)︂
| k-colorful as α′ <

αk(d,β′).

4.4 A topological version?
A simplicial complex K is d-Leray if the ith reduced homology group H̃ i(L) (over
Q) vanishes for every induced subcomplex L ≤ K and every i ≥ d. As we already
know, every d-representable complex is d-collapsible, and in addition every d-
collapsible complex is d-Leray [87]. Helly-type theorems usually extend to d-Leray
complexes and such extensions are interesting because they allow topological
versions of Helly-type when collections of convex sets are replaced with good
covers. We refer to several concrete examples [39, 51, 4] or to the survey [82].

We believe that it is possible to extend Theorem 23 to d-Leray complexes:
As we mentioned in the beginning of the chapter we conjecture that it should

be possible to extend Theorem 23 to d-Leray complexes and probably Theorem 26
as well. Here we state the conjectured generalization of Theorem 23.
Conjecture 32 (The optimal colorful fractional Helly theorem for d-Leray com-
plexes). Let K be a d-Leray simplicial complex with the set of vertices N =
N1 ⊔· · ·⊔Nd+1 divided into d+1 disjoint subsets. Let ni := |Ni| for i ∈ [d+1] and
assume that K contains at least αn1 · · ·nd+1 colorful d-faces for some α ∈ (0, 1].
Then there is i ∈ [d+ 1] such that dimK[Ni] ≥ (1 − (1 − α)1/(d+1))ni − 1.

In fact, our original approach how to prove Theorem 23 was to prove directly
Conjecture 32. Indications that this could be possible are that both the opti-
mal fractional Helly theorem [4, 50] and the colorful Helly theorem [51] hold for
d-Leray complexes. In addition, there is a powerful tool, algebraic shifting, de-
veloped by Kalai [50], which turned out to be very useful in attacking similar
problems.

In the remainder of this section we briefly survey a possible approach towards
Conjecture 32 but also the difficulty that we encountered. Because we do not
really prove any new result in this section, our description is only sketchy.

Our starting point is the proof of the optimal fractional Helly theorem for
d-Leray complexes. The key ingredient is the following theorem of Kalai [4,
Theorem 13].
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Theorem 33. Let K be a d-Leray complex and f0(K) = n. Then fd(K) >(︂
n

d+1

)︂
−
(︂

n−r
d+1

)︂
implies fd+r(K) > 0 (where f(K) denotes the f -vector of K).

As far as we can judge, the only proof of Theorem 33 in the literature follows
from the first and the third sentence in the following remark in [50]:

“It is not hard to see (although it has been overlooked for a long time) that
the class of d-Leray complexes (for some d) with complete (d − 1)-dimensional
skeletons is precisely the Alexander dual of the class of Cohen-Macaulay com-
plexes. This observation implies that the fact that shifting preserves the Leray
property easily follows from the fact that shifting preserves the Cohen-Macaulay
property. Moreover, it shows that the characterization of face numbers of d-Leray
complexes follows from the corresponding characterization for Cohen-Macaulay
complexes.”

For completeness we add that the characterization of face numbers of Cohen-
Macaulay complexes has been done by Stanley [76]. Given a simplicial complex K
on vertex set N its Alexander dual is a simplicial complex defined as K∗ := {T ⊆
N : N \ T ̸∈ K}. We skip the definition of Cohen-Macaulay complex because we
will only use it implicitly but we refer, for example, to [50, §4] for more details.

A simplicial complex K on vertex set [n] is called shifted if for all integers i
and j with 1 ≤ i < j ≤ n and all faces A of K such that j ∈ A and i /∈ A, the set
(A \ {j}) ∪ {i} is a face of K. Exterior algebraic shifting is a function that asso-
ciates to a simplicial complex K a shifted complex ∆(K) , while preserving many
interesting invariants of K. Below we list some properties of exterior algebraic
shifting that we will use. A simplicial complex is pure if all its inclusion-maximal
faces have the same dimension.

Theorem 34. (i) [50, Theorem 2.1] Exterior algebraic shifting preserves the
f -vector.

(ii) [50, Theorem 4.1] If K is Cohen-Macaulay, then ∆(K) is Cohen-Macaulay,
in particular, pure.

(iii) [50, 3.5.6] The following equality holds ∆(K∗) = ∆(K)∗.

The next lemma is a possible replacement of the third sentence in Kalai’s
remark how to prove Theorem 33. We prove it as motivation for the tools we
would need in the colorful scenario.

Lemma 35. Let K be a d-Leray complex on [n] with complete (d − 1)-skeleton
and let D = dim(K) + 1. Then Ke ⊆ ∆D−d−1 ∗ ∆(d−1)

n−D+d−1.

Proof. By the first sentence of Kalai’s remark, the Alexander dual K∗ of K is a
Cohen-Macaulay complex. By the definition of Alexander dual, it has dimension
n − d − 2 and contains complete (n − D − 2)-skeleton. Hence, properties (i)
and (ii) of Theorem 34 imply that the exterior algebraic shifting (K∗)e of K∗

is a pure shifted complex of dimension n − d − 2 with complete (n − D − 2)-
skeleton. If we take any subset A of size n − D − 1 in (K∗)e, then A is a face
and by purity there must be a face of size n− d− 1 that contains A. Now, since
(K∗)e is shifted we have that {1, 2, . . . , D − d} ∪ A ∈ (K∗)e. This implies that
∆D−d−1∗∆(n−D−2)

n−D+d−1 ⊆ (K∗)e = (Ke)∗, by Theorem 34(iii). Taking Alexander dual
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from both sides proves the first part of the statement. (Using that (L∗)∗ = L;
L1 ⊆ L2 ⇒ L∗

2 ⊆ L∗
1; and (∆D−d−1 ∗ ∆(n−D−2)

n−D+d−1)∗ = ∆D−d−1 ∗ ∆(d−1)
n−D+d−1.)

For completeness, Theorem 33 quickly follows from Lemma 35. Indeed, if K
is d-Leray such that fd+r(K) = 0, then D := dimK + 1 ≤ d+ r. In addition, we
can assume without loss of generality that K contains complete (d− 1)-skeleton.
Consequently, Lemma 35 gives fd(K) = fd(Ke) ≤ fd(∆D−d−1 ∗ ∆(d−1)

n−D+d−1) =(︂
n

d+1

)︂
−
(︂

n−D+d
d+1

)︂
≤
(︂

n
d+1

)︂
−
(︂

n−r
d+1

)︂
.

Now, in order to attack Conjecture 32, we would like to do something similar in
colorful setting. In particular, we need to preserve the colorful f -vector. Babson
and Novik [7] give a definition of colorful algebraic shifting which preserves the
colorful f -vector. Nevertheless, the conjecture does not follow immediately from
their result as the Alexander dual of a d-Leray complex is not in general balanced.

We show next why a shifting operator preserving d-Leray and colorful f -vector
is enough. For it let us introduce the following definition. Let N = N1⊔· · ·⊔Nd+1
with each Ni having a total order <i. A simplicial complex K with vertex set N
is color-shifted if for every F ∈ K, i ∈ [d + 1] and v ∈ F ∩ Ni, if w <i v then
(F \ {v}) ∪ {w} ∈ K.

Proposition 36. Let K be a color-shifted d-Leray simplicial complex with vertex
partition N = N1 ⊔ · · · ⊔ Nd+1 divided into d + 1 disjoint sets. Let ni = |Ni| for
i ∈ [d + 1] and assume that K contains at least αn1 · · ·nd+1 for some α ∈ (0, 1].
Then there is i ∈ [d+ 1] such that dimK[Ni] ≥ (1 − (1 − α)1/d+1)ni − 1.

Proof. As observed previously it is enough to show if r1, . . . , rd+1 are positive in-
tegers such that dimK[Ni] ≤ ri−1 then f1(K) ≤ n1 · · ·nd+1−(n1−r1) · · · (nd+1−
rd+1). Let Ri denote the first ri vertices in Ni for each i ∈ [d + 1]. Then it is
enough to verify that every colorful d-face intersects at least one of the Ri’s. Let
us assume that this is not the case and let T = (t1, . . . , td+1) be such a face, with
ti ∈ Ni \ Ri for every i ∈ [d + 1]. Let Ti denote the first ti element in Ni, in
particular ti = |Ti| > |Ri| = ri. Since K is color-shifted and T ∈ K we have
that T1 × · · · × Td+1 ⊆ K. Then K[⋃︁i∈[d+1] Ti] is d-Leray and contains every
colorful d-face. By the colorful Helly theorem of Kalai and Meshulam [51] we can
conclude that there exists i ∈ [d + 1] such that Ti ∈ K. This is a contradiction
since ri − 1 ≥ dimK[Ni] ≥ dimK[Ti] = ti − 1 > ri − 1.

We close this chapter with the following question.

Problem 37. Is there a shifting operation preserving the d-Leray property as well
as the colorful f -vector such that the resulting complex is color-shifted?
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5. Volume rigidity
Let K be an n-vertex (d − 1)-dimensional simplicial complex and p : N(K) →
Rd−1 be a generic mapping of its vertices, in the sense that its (d−1)n coordinates
are algebraically independent over Q. This chapter deals with the infinitesimal
version of the following problem: is there a non-trivial continuous motion of the
vertices starting at p that preserves the volumes of all the (d − 1)-simplices in
K? By “non-trivial” we mean that, for some (d − 1)-simplex on N(K) that is
not in K, its volume would change along the motion. It is easy to show that the
continuous and infinitesimal versions coincide for generic embeddings, as is the
case for graph rigidity [5].

Volume Rigidity. The signed volume of a (d− 1)-face S = {v1, . . . , vd} ∈ K
with respect to p is given by the determinant of the d× d matrix

Mp,S =
(︄

p(v1) . . . p(vd)
1 . . . 1

)︄
.

Observe that, for every 1 ≤ i ≤ d − 1, 1 ≤ j ≤ d, the derivative of the signed
volume detMp,S with respect to the i-th coordinate of p(vj) is given by the
cofactor Ci,j(Mp,S) — that is, the determinant of the submatrix obtained by
removing the i-th row and j-th column multiplied by (−1)i+j.

The volume-rigidity matrix V(K,p) of the pair (K,p) is a (d− 1)n×fd−1(K)
matrix, where the columns are indexed by the (d−1)-faces of K, and every vertex
is associated with a block of (d − 1) rows. The column vector vS corresponding
to a (d− 1)-face S = {v1, . . . , vd} ∈ K is defined by

(vS)vi,j = Ci,j(Mp,S) , i ∈ [d], j ∈ [d− 1],

and 0 elsewhere. Here (vS)vi,j denotes the j-th coordinate of vS in the block of
vi. In words, V is the Jacobian of the function p ↦→ (detMp,S)S∈K , viewing p as
a (d− 1)n-dimensional vector.

This matrix was introduced in [61, Appendix A] along with the description of
a trivial (d2−d−1)-subspace of the left kernel of V(K,p), arising from the volume-
preserving transformations of Rd−1. Concretely, the trivial subspace consists of
all (d− 1)n-dimensional vectors z obtained by choosing a (d− 1) × (d− 1) matrix
A whose trace is zero and a vector u ∈ Rd−1, and letting zv = A · p(v) + u for
every vertex v. The following definition suggests itself.

Definition 38. An n-vertex (d − 1)-dimensional simplicial complex K is called
volume-rigid if

rank(V(K,p)) = (d− 1)n− (d2 − d− 1),
for a generic p : N(K) → Rd−1.

Exterior shifting. Algebraic shifting was introduced by Kalai (see e.g. [49]
and the survey [50]) and has been studied extensively in algebraic combinatorics.
Here we present a variant of exterior shifting. The standard basis (ei)i∈[n] of Rn

induces the basis (eS)S⊆[n] of its exterior algebra ⋀︁Rn. Consider a generic basis
(f1, . . . , fn) of Rn, where without loss of generality we assume that f1 = 1 ∈ Rn,
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namely, the other n2 − n coordinates in this basis are algebraically independent
over Q. Consider the exterior face ring ⋀︁

K = ⋀︁Rn / (eS : S /∈ K), and let q
denote the natural quotient map. Given a partial order < on the power set of
[n], define

∆<(K) = {S ⊆ [n] : q(fS) /∈ spanR{q(fT ) : T < S, |T | = |S|}}. (5.1)

Of special importance in our case is the partial order <p defined by

S = {s1 < ... < sm} ≤p T = {t1 < ... < tm′}

if m = m′ and si ≤ ti, ∀i ∈ [m]. Corollary 44 asserts that ∆p(K) := ∆<p(K) is
a shifted simplicial complex independent of the generic choice of f . (Note that
∆p(K) may have more faces than K.)

5.0.1 Main results.
Our main result is a characterization of volume rigidity in the setting of Kalai’s
exterior shifting.

Theorem 39. Fix d ≥ 3. An n-vertex (d− 1)-dimensional simplicial complex K
is volume-rigid if and only if {1, 3, 4, ..., d, n} ∈ ∆p(K).

In the 2-dimensional case we are able to derive the volume rigidity of trian-
gulations of the following surfaces.

Corollary 40. Every triangulation of the 2-sphere, the torus, the projective plane
or the Klein bottle is volume rigid. In addition, every triangulation of the 2-sphere
and the torus minus a single triangle is also volume-rigid. In particular, every
simplicial disc with a 3-vertex boundary is minimally volume-rigid.

In the case of the 2-sphere we give a complete mathematical proof. For the
other surfaces , we reduce — via edge contractions á la Whiteley [88] — to
irreducible triangulations, whose volume-rigidity we verify numerically.

Hypergraph sparsity was introduced by Streinu and Theran [78], generalizing
results on graph sparsity, prominently by White and Whiteley [89] who studied it
from a matroid perspective. We say that a (d− 1)-complex is (d− 1, d2 − d− 1)-
sparse (resp. tight) if every subset A of its vertices of cardinality at least d spans
at most (d− 1)|A| − (d2 −d− 1) simplices of dimensions d− 1 (resp. and equality
holds when A equals the entire vertex set).

Clearly, a vertex subset A spanning more (d − 1)-simplices induces a non
trivial linear dependence between the columns of V(K,p), and it is natural to
ask whether this characterizes all the linear dependencies in the volume rigidity
matrix. Using Theorem 39, we show that the answer is negative, hence a Laman-
type condition for volume-rigidity does not hold true 1.

Corollary 41. For every d ≥ 3, there exists a (d − 1, d2 − d − 1)-tight (d − 1)-
complex that is not volume-rigid.

1Corollary 41 shows that Prop.1 in the preprint [77] from 2007 is a misstatement.
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5.0.2 Relation to previous works.
The maximal independent sets of columns of V(

(︂
[n]
d

)︂
,p), for all generic embed-

dings p, form the bases of the same matroid. For d = 2 they correspond to
spanning trees, namely the bases in the graphic matroid on

(︂
[n]
2

)︂
. Kalai [48]

introduced for every integer k ≥ 1 the k-hyperconnectivity matroid on
(︂

[n]
2

)︂
2,

where k = 1 corresponds to the graphic matroid, and identified its bases in terms
of exterior shifting (w.r.t. the lexicographic order): G is a basis if and only if
the edges of ∆lex(G) form the initial segment that ends with {k, n}, w.r.t. the
lex-order.

Here, in Theorem 39, rather then increasing the dimension of the embedding
space and staying with graphs, we increase also the dimension of the pure com-
plex, by the same number, and characterize the bases of the resulted d-volume-
rigidity matroid in terms of exterior shifting w.r.t. the partial order <p.

The fact that (d−1, d2 −d−1)-sparse complexes form the independent sets of
a matroid on

(︂
[n]
d

)︂
was asserted in [58, 89]. Additional matroidal and algorithmic

properties of sparsity matorids were studied by Streinu and Theran in [78, 79]. By
Corollary 41, the (d− 1, d2 −d− 1)-sparsity matroid strictly contains the (d− 1)-
volume-rigidity matroid for all d ≥ 3. It would be interesting to find further
combinatorial conditions that once imposed on the bases of the sparsity-matroid
would give the bases of the volume-rigidity matroid.

The remainder of the chapter is organized as follows. In Section 5.1 we es-
tablish the connection between volume rigidity and exterior shifting, and prove
Theorem 39. Afterwards, in Section 5.2 we investigate the effect of local moves
on volume rigidity and prove Corollary 40. In the following Section 5.3 we prove
Corollary 41, and we conclude in Section 5.4 with some related open problems.

5.1 Volume rigidity and ∆p(·)
This section is devoted to studying the basic properties of the shifted complex
∆p(K), and to establishing the connection between ∆p(K) and K’s volume rigid-
ity.

5.1.1 Basic properties of ∆p(·)
We start by briefly exploring some useful properties of the complex ∆p(K) that
appears in Theorem 39. Given a partially ordered set (poset) (P,<) and an
element x ∈ P we denote by P<,x the prefix {y ∈ P : y ≤ x}.

Claim 42. Let (P,<) be a poset and x ∈ P , then there exists a linear extension
<l of < such that P<l,x = P<,x.

Proof. View the sets A = P<,x and B = P \ P<,x as posets with the partial
order induced by <. Extend each of these posets linearly, and concatenate the
extensions such that the elements in A are smaller than those in B.

2The k-hyperconnectivity matroid is derived from an embedding of the vertex set into Rk.
Studying higher hyperconnectivity translates to increasing the dimension of the embedding
space.
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We will mainly work with the partial order <p on the power set of [n] and
denote the set of its linear extensions by L. We usually denote an element in L
by <l and the corresponding shifted complex by ∆l(K) := ∆<l(K).

Claim 43. ∆p(K) = ⋃︁
<l∈L ∆l(K).

Proof. On the one hand, if S ∈ ∆l(K) for some <l∈ L then q(fS) is not spanned
by Bl,S := {q(fT ) : T <l S}, which contains the vector set Bp,S. Therefore, by
the definition of ∆< in (5.1), we find that ∆p(K) ⊇ ∆l(K). On the other hand,
for every S ∈ ∆p(K), there exists by the previous claim a linear extension <l∈ L
satisfying Bp,S = Bl,S hence S ∈ ∆l(K).

Corollary 44. For every simplicial complex K there holds that ∆p(K) is a shifted
simplicial complex independent of the choice of the generic basis f . In addition,
∆p(K) = K if K is shifted. □

That ∆p(K) is downwards closed follows exactly as in the proof for ∆lex(K).
The rest of Corollary 44 follows immediately from the above decomposition of
∆p(K) and the fact that the basic properties of algebraic shifting in [49] –
being shifted, and independence the the generic f chosen– hold in every linear
extensions of <p, as remarked in [49, p.58].

5.1.2 Volume rigidity and ∆p(·)
We are now ready to prove Theorem 39. We denote S0 = {1, 3, ..., d, n} and
observe that the prefix B := {T ≤p S0 : |T | = d} consists of the subsets [d] and
[d] \ {i} ∪ {v} for 2 ≤ i ≤ d and d+ 1 ≤ v ≤ n. We define a linear transformation
ψ : ⨁︁d

i=2
⋀︁1 Rn → ⋀︁d Rn given by

ψ(m2, . . . ,md) =
d∑︂

i=2
f[d]\{i} ∧mi.

Lemma 45. The image of ψ is spanned by {fT : T ∈ B}, and its kernel is
(d2 − d− 1)-dimensional.

Proof. The fact that fT ∈ im(ψ) for every T ∈ B can be shown directly. Indeed,
ψ(0, ..., 0, fd) = f[d] and by taking mi = fv, mi′ = 0 ∀i′ ̸= i we have that
ψ(0, ..., fv, ..., 0) = f[d]\{i}∪{v} for 2 ≤ i ≤ d and d + 1 ≤ v ≤ n. To show that
these 1 + (n− d)(d− 1) linearly independent vectors span the image of ψ, we will
construct d2−d−1 linearly independent vectors in kerψ which actually completes
the proof by the rank-nullity theorem since (1 + (n− d)(d− 1)) + (d2 − d− 1) =
n(d− 1).

First, for every 2 ≤ i ≤ d and j ∈ [d] \ {i} consider the vector defined by
setting mi = fj and mi′ = 0 for every i′ ̸= i. Then,

ψ(m2, ...,md) = f[d]\{i} ∧ fj = 0

since j ∈ [d] \ {i}. This amounts to (d− 1)2 vectors in kerψ, and the remaining
d − 2 are given by vectors of the form mi = aifi, 2 ≤ i ≤ d, where the scalars
a2, ..., ad satisfy ∑︁d

i=2(−1)iai = 0. Indeed,

ψ(m2, ...,md) =
d∑︂

i=2
aif[d]\{i} ∧ fi =

d∑︂
i=2

ai(−1)d−if[d] = 0 .
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The linear independence of these d2 −d−1 vectors follows directly from the linear
independence of f1, ..., fd.

Proof of Theorem 39. Identify the vertices of K with the set [n]. W.l.o.g. assume
that fd−1(K) ≥ (d − 1)n − (d2 − d − 1), as otherwise K is not volume-rigid
and {1, 3, 4, ..., d, n} /∈ ∆p(K). In addition, suppose that the generic embedding
p : N(K) → Rd−1 is obtained from the vectors f2, ..., fd in the generic basis of
Rn by taking (fi)v = p(v)i−1 for every 2 ≤ i ≤ d and v ∈ [n].

Consider the (i, v)-unit vector ei,v = (m2, ...,md) in the domain of ψ, for
2 ≤ i ≤ d and v ∈ [n], defined by mi = ev and mi′ = 0, ∀i′ ̸= i. Then,

ψ(ei,v) = f[d]\{i} ∧ ev

= (−1)d−if1 ∧ · · · ∧ fi−1 ∧ ev ∧ fi+1 ∧ · · · ∧ fd

= (−1)d−i+d−1f2 ∧ · · · ∧ fi−1 ∧ ev ∧ fi+1 ∧ · · · ∧ fd ∧ f1.

Let S = {v1, ..., vd} ⊂ [n]. Clearly, for the inner product on ⋀︁Rn with orthonor-
mal basis {eS : S ⊂ [n]}, we have ⟨eS, ψ(ei,v)⟩ = 0 if v /∈ S. Otherwise, by the
identification of p with f2, ..., fd above and f1 = 1, if v = vj then ⟨eS, ψ(ei,v)⟩ is
equal to (−1)i−1 times the determinant of the matrix that is obtained from Mp,S

by replacing its (i − 1)-th row with the j-th d-dimensional all-ones row vector.
Consequently,

⟨eS, ψ(ei,v)⟩ = (−1)i−1Ci−1,j(Mp,S).
Thus, by letting q : ⋀︁Rn −→ ⋀︁

K be the natural quotient map, and by choosing
the basis {eS : S ∈ K} for ⋀︁K, we find that the fd−1(K) × (d − 1)n matrix
representation of q ◦ ψ is equal — up to multiplying some of its columns by −1
and reordering them — to the transpose of the volume-rigidity matrix V(K,p).
Therefore, K is volume-rigid if and only if dim ker(q ◦ ψ) = d2 − d − 1. In other
words, K is not volume-rigid if and only if there exists a non-zero f ∈ im(ψ)
such that q(f) = 0. By the characterization of ψ’s image in Lemma 45, f can be
written as a non-trivial linear combination f = ∑︁

T ∈B λTfT .
To conclude the proof we claim that q(f) = 0 for some f ∈ span{fT : T ∈ B}

if and only if S0 /∈ ∆p(K). Indeed, on one direction, q(∑︁T ∈B λTfT ) = 0 implies
that for some T ∈ B, q(fT ) is a linear combination of its predecessors in <p. By
(5.1), T /∈ ∆p(K) and since ∆p(K) is shifted then S0 /∈ ∆p(K). On the other
hand, by manipulating the linear combination which asserts that S0 /∈ ∆p(K),
we obtain a non-zero vector f = ∑︁

T ∈B λTfT satisfying q(f) = 0.

5.2 Volume rigidity, local moves and homology
We turn to study the effect of local combinatorial moves on volume rigidity. We
start by proving a volume-rigidity analog of Whiteley’s vertex splitting [88], by
which he showed that every triangulation of the 2-sphere has a 3-rigid 1-skeleton.

Lemma 46 (Edge contraction). Let K be a pure (d− 1)-dimensional simplicial
complex, e = {u,w} ∈ K such that at least (d− 1) facets in K contain e. Let K ′

to be the simplicial complex obtained from K by contracting the edge e, i.e. by
identifying the vertex u with w, and removing duplicates. If K ′ is volume rigid
then so is K.

42



Proof. Without loss of generality assume that u < w are the first among the n
vertices of K, as the vertex labels do not effect volume-rigidity. We will construct
an auxiliary (d− 1)n× fd−1(K) matrix A such that

rankV(K,p) ≥ rank(A) = (d− 1)n− (d2 − d− 1).

First, we replace the position of the vertex w, i.e. p(w), by the position of the
vertex u, i.e. p(u). Formally we define a new (non-generic) placement of vertices
p′ that coincides with p on all vertices except w on which we set it to equal to
p(u). Clearly, since p is generic, there holds rankV(K,p) ≥ rankV(K,p′). To
obtain A, we add the rows in V(K,p′) corresponding to the vertex u to the rows
corresponding to the vertex w, an operation that does not change the rank.

We first claim that the submatrix of A which corresponds to the columns of
the facets L containing e = {u,w} is supported on the rows corresponding to u.
Indeed, if e ⊆ S = {v1, . . . , vd} ∈ L then for vj ∈ S such that vj ̸= {u,w} we have
that each entry Avj ,i;S = Ci,j(Mp′,S) = 0 because Mp′,S has two identical columns
as p′(u) = p′(w). On the other hand, because we added the rows corresponding
to vertex u to the rows corresponding to vertex w, we have that

Aw,i;S = Ci,1(Mp′,S) + Ci,2(Mp′,S) = 0.

This follows from our assumption that u and w are the first two vertices hence
their cofactors in Mp′,S have opposite signs, and they in fact cancel-out since and
p′(u) = p′(w).

Second, we claim that the submatrix Au,L of A corresponding to the d−1 rows
of u and the columns of L has a full rank of d − 1. We derive this claim by the
assumption that |L| ≥ d− 1 and the fact that (p′(v) : v ̸= u) is generic. Indeed,
consider a vector x ∈ Rd−1 in the left kernel of Au,L. A brief calculation yields
that the orthogonality of x and the column in Au,L corresponding to the facet
S = {u,w, v2, ..., vd} is equivalent to x being in the span of p′(vi) − p′(w), i =
2, ..., d. By the assumption that p is generic, such |L| ≥ d − 1 constraints are
only satisfied by x = 0 hence

rank(Au,L) = d− 1. (5.2)

Third, consider the complement submatrix A′ := A{u}c,Lc whose rows corre-
spond to all the vertices except u, and columns to all the facets that are not in L.
We observe that A′ contains as a submatrix the generic volume rigidity matrix
V(K ′,p) — where p is viewed here as a generic embedding ofN(K ′) = N(K)\{u}
into Rd−1. Indeed, every facet S of K ′ arises from a facet Ŝ of K.

• If u /∈ Ŝ then S = Ŝ and the columns in V(K ′,p) and A′ corresponding to
S are clearly equal.

• Otherwise, if u ∈ Ŝ then S = Ŝ ∪ {w} \ {u}, and by the construction of A
— in which p′(u) = p′(w) and the rows of u are added to the rows of w —
we have that the column in A′ created from Ŝ is equal to the column of S
in V(K ′,p).

Note that A′ may contain some duplicate columns — in case there are two facets
that differ only in the vertices of e — but, regardless, our observation that A′

contains V(K ′,p) as a submatrix implies that

rank(A′) = (n− 1)(d− 1) − (d2 − d− 1). (5.3)
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In conclusion, A takes the form

A =
(︄ L Lc

u Au,L ∗
{u}c 0 A′

)︄
,

and by combining (5.2) and (5.3) we find that

rank(V(K,p) ≥ rank(A) = rank(Au,L) + rank(A′) = n(d− 1) − (d2 − d− 1) ,

as claimed.

The next two lemmas are direct analogs of basic results in graph rigidity [6]
asserting that gluing preserves volume-rigidity. We include their proofs for com-
pleteness.

Lemma 47. Let K be (d− 1)-volume-rigid, v /∈ N(K) and S ⊆ N(K) such that
|S| ≥ d, then K ∪ (v ∗

(︂
S

d−1

)︂
) is (d− 1)-volume-rigid.

Proof. The vertex v is in at least d− 1 facets of L = K ∪ (v ∗
(︂

S
d−1

)︂
). The volume

rigidity matrix of L is of the form

(︄ K S ∗ v
V V(K,p) ∗
v 0 N

)︄
,

where the matrix N has d − 1 rows and at least d − 1 columns. Because of
general position N has full rank, i.e. rank(N) = d − 1. Because K is (d − 1)-
volume-rigid we have that rank(V(K,p)) = n(d − 1) − d(d − 1) + 1. Then,
rank(V(L,p)) = rank(V(K,p)) + rank(N) = (n+ 1)(d− 1) − d(d− 1) + 1 and
consequently L is (d− 1)-volume-rigid.

Lemma 48 (Union of volume-rigid complexes). Let K and L be (d− 1)-volume-
rigid complexes such that |N(K)∩V (L)| ≥ d. Then K∪L is (d−1)-volume-rigid.

Proof. Because K and L are (d−1)-volume-rigid we can assume that each of them
has a complete (d− 1)-skeleton on its respective vertex set. Then K ∪L contains
the vertex spanning subcomplex Q obtained from K by adding one vertex v at
a time, adding the facets

(︂
S

d−1

)︂
∗ v at step v, where S = N(L) ∩ N(K). This

subcomplex is (d − 1)-volume-rigid at each step by application of the previous
lemma. In particular, Q is (d− 1)-volume-rigid, hence so is K ∪ L.

5.2.1 Volume rigidity of surfaces
Barnette and Edelson [13, 14] proved that every compact surface without bound-
ary admits only finitely many irreducible triangulations, namely, triangulations
where every edge contraction would result in a simplicial complex not homeo-
morphic to the given surface. Thus, by Lemma 46, in order to conclude that for
a given surface S every simplicial complex that triangulates it is volume-rigid, it
is enough to verify if for the irreducible triangulations of S. Those are known for

44



the surfaces indicated in Corollary 40: one for the 2-sphere (namely the boundary
of a tetrahedron), two for the projective plane [12], 21 for the torus [55] and 29 for
the Klein bottle [56, 80]. Clearly the boundary of the tetrahedron is volume-rigid,
and we verified by computer that the irreducible triangulations K of the other
surfaces mentioned above are volume-rigid – for this it was enough to find some
embedding pK : N(K) −→ R2 such that rank(V(K,pK) = 2|N(K)| − 5.

Remark 49. The fact that every triangulation K of the 2-sphere is volume-rigid
follows also from combining the 3-hyperconnectivity of its graph with the Cohen-
Macaulay property. Indeed, the first property says that {3, |N(K)|} ∈ ∆lex(K),
and as K is Cohen-Macaluay then ∆lex(K) is pure and hence {1, 3, |N(K)|} ∈
∆lex(K) as ∆lex(K) is shifted, which implies, by Claim 43, that {1, 3, |N(K)|} ∈
∆p(K), and we are done by Theorem 39.

To prove the second part of Corollary 40 we are left to show that remov-
ing one triangle from a triangulated 2-sphere or torus preserves volume-rigidity,
done next. A pure simplicial complex is a minimal cycle (over some coefficients
commutative ring F) if there exists an F-linear combination of its facets whose
boundary vanishes, and no proper nonempty subset of its facets has this prop-
erty. For example, every triangulation of a compact connected surface (resp. and
orientable) is a minimal cycle over Z2 (resp. Z).

Lemma 50. If K is a (d − 1)-dimensional volume rigid minimal cycle over Z,
then K \ S is volume rigid for every S ∈ K.

We first give short proof for the special case d = 3 and conclude the proof of
Corollary 40. Afterwards, we give a more technical proof for the general case.

Proof of Lemma 50 (d = 3). As K is a minimal cycle over Z, its 2-dimensional
homology with R-coefficients is one dimensional, and for each facet S of K, for
K\S this homology vanishes. By the translation of homology in terms of algebraic
shifting, ∆lex(K) ∋ {2, 3, 4} /∈ ∆lex(K \S), and as shifting preserves containment
we conclude

∆lex(K \ S) = ∆lex(K) \ {{2, 3, 4}}.

Note that in this dimension3 T <p {1, 3, n} iff T <lex {1, 3, n}, and thus:
{1, 3, n} ∈ ∆p(K) (by Theorem 39), hence {1, 3, n} ∈ ∆lex(K), and by the dis-
played equality above also {1, 3, n} ∈ ∆lex(K \S), so finally {1, 3, n} ∈ ∆p(K \S),
equivalently, K \ S is volume-rigid.

Proof of Corollary 40. This is immediate from Lemma 46, Lemma 50 for the case
d = 3, and the discussion in the beginning of §5.2.1.

We conclude this section with a more direct proof of Lemma 50 for all d ≥ 3.

Proof of Lemma 50. For two subsets S and T = S \ {v} of [n] that differ by one
element, denote sign(T, S) := (−1)j if v is the j-th element in S. We prove the
following stronger statement. Let z ∈ Zfd−1(K) be a (d− 1)-dimensional chain in

3For d > 3, {T : T <p {1, 3, 4, . . . , d, n}} is smaller than {T : T <lex {1, 3, 4, . . . , d, n}}.
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K, and ∂z ∈ Zfd−2(K) be its boundary, i.e. (∂z)T = ∑︁
T ⊂S sign(T, S) · zS. Then,

for every vertex v and every i ∈ [d− 1]

(V(K,p) · z)v,i = (−1)d+i
∑︂
F

sign(F, F ∪ {v}) · detNp,F,i · (∂z)F ∪{v} , (5.4)

where (i) the summation is over the (d−3)-faces F of K that belong to the link of
v and, (ii) the (d−2)× (d−2) matrix Np,F,i is obtained from the (d−1)× (d−2)
matrix (p(v) : v ∈ F ) by removing its i-th row. In particular, if z is a generator
of the (d− 1)-homology of a minimal cycle K, then z is also a non-trivial linear
dependence between the columns of V(K,p). Therefore, removing a (d− 1)-face
from K does not change the rank of the volume rigidity matrix, hence if K is
volume rigid then so is K \ {S}. To derive (5.4), note that

(V(K,p) · z)v,i =
∑︂

v∈S∈K

zS · Ci,jMp,S

=
∑︂
S

zS · (−1)i+j
∑︂

j′∈[d]\{j}
(−1)d−1+j′−1j′>j detNp,S\{vj ,v′

j},i (5.5)

Indeed, suppose that S = {v1, ..., vd} and v = vj and expand the (i, j)-th minor
of Mp,S by the last row (of ones). Denote T := S \ {vj′} and F := T \ {vj}, and
we easily observe that sign(F, T ) = (−1)j−1j′<j . Therefore, by changing the order
of summation in (5.5) we find that

(V(K,p) · z)v,i = (−1)d+i
∑︂
F

sign(F, T ) detNp,F,i

∑︂
T ⊂S

sign(T, S) · zS,

as claimed.

5.3 Volume rigidity and sparsity
Proof of Corollary 41. Let d ≥ 3 and K be the (d − 1)-dimensional simplicial
complex obtained from the graph K3,3 by iterating the cone operation d − 2
times. Then K is (d− 1, d2 − d− 1)-sparse. (Indeed, K3,3 is (2, 3)-sparse, and if
a pure (k − 1)-dimensional simplicial complex is (k − 1, k2 − k − 1)-sparse then
its cone is (k, (k+ 1)2 − (k+ 1) − 1)-sparse.) Thus, by completing it to a basis in
the (d − 1, d2 − d − 1)-sparsity matroid, we find a basis K ′ containing K, so K ′

is (d− 1, d2 − d− 1)-tight.
In order to show that K ′ is not volume-rigid, by Theorem 39 it is enough to

show that
{1, 2, . . . , d− 2, d+ 1, d+ 2} ∈ ∆p(K ′),

as {1, 2, . . . , d− 2, d+ 1, d+ 2} ≰p {1, 3, 4, . . . , d, n} and using tightness.
The displayed equation above follows from basic properties of this shifting

operator, proved in the same way as for exterior shifting w.r.t. the lex-order:
• If K is a subcomplex of K ′ then ∆p(K) ⊆ ∆p(K ′).

• Cone and ∆p commute, namely, if K = v ∗ L for a simplicial complex L
then ∆p(K) = 1 ∗ (∆p(L) + 1).

Here for a family F of subsets of [m], F + 1 := {B + 1 : B ∈ F}, and B + 1 :=
{i + 1 : i ∈ B} (so ∅ + 1 = ∅). To conclude the proof it is left to note that
{3, 4} ∈ ∆lex(K3,3) and hence, by Claim 43, also {3, 4} ∈ ∆p(K3,3).
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5.4 Concluding remarks
We end up with some related open problems. An obvious one is to extend Corol-
lary 40 to include all surface triangulations.

Conjecture 51. Every triangulation of a compact connected surface without
boundary, minus a single triangle, is volume-rigid.

The problem we face in applying Fogelsanger’s decomposition [32] (see also [23,
Sec.3.3]) to volume rigidity of surfaces is that the pieces in the decomposition
include triangle faces not existing in the original triangulation, and thus the
gluing lemmas we could prove, e.g. Lemma 48, are not strong enough to settle
Conjecture 51.

It is known that for every triangulation K of the 2-sphere on n vertices, minus
a single triangle, its exterior shifting ∆lex(K) = ∆p(K) consists exactly of the
triangle 13n and all the triangles that are smaller than it in the lex-order, and
their subsets. This is a sufficient condition for volume rigidity by Theorem 39.
The following conjecture deals with a higher-dimensional counterpart of this fact.

Conjecture 52. For every d ≥ 3, every triangulation K of the (d − 1)-sphere
minus a single (d− 1)-simplex is volume rigid.

It is also natural to ask whether the stronger property of {1, 3, 4, . . . , d, n} ∈
∆lex(K) holds true. This is known, and tight, for stacked spheres [65] (also [67,
Example 2.1.8]). Let us remark that the conclusion {1, 3, 4, . . . , d, n} ∈ ∆s(K)
for Kalai’s symmetric shifting operator ∆s(·) is equivalent to the hard-Lefschetz
isomorphism from degree 1 to degree d − 1 in a generic Artinian reduction of
the Stanley-Reisner ring of K over the field of reals; the later isomorphism was
proved recently by Adiprasito [1].

Back to general complexes,

Problem 53. For every dimension, find a combinatorial characterization of the
corresponding volume-rigidity matroid.

The combinatorial characterization problem is important for the d-rigidity
matroid (and is open for d ≥ 3). The d-rigidity of a graph G on n vertices is
equivalent to {d, n} ∈ ∆s(G). In view of this fact, we ask:

Problem 54. Define a version of symmetric shifting ∆sp(·) and find a matroid
on

(︂
[n]
d

)︂
such that its bases K are exactly those satisfying ∆sp(K) = {T : T ≤p

{1, 3, 4, . . . , d, n}}.

An additional direction to explore is the volume rigidity of a (d − 1) dimen-
sional simplicial complex K in Rd′ for d′ ≥ d − 1. That is, let p : N(K) → Rd′

be generic, and ask whether there is a non-trivial motion of the vertices that pre-
serves all the volumes of K’s (d−1)-dimensional simplices in Rd′ . The case d = 2
corresponds to the standard framework rigidity in Rd′ , and the case d′ = d− 1 is
the volume rigidity notion we study in this chapter. Several natural questions on
the remaining cases 2 < d ≤ d′ arise: what are the trivial motions in this setting?
Is there a characterization of (d− 1)-volume rigidity in Rd′ in terms of algebraic
shifting?
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6. Erdős-Ko-Rado for Simplicial
Complexes
A set system F is said to be pairwise-intersecting if for every pair of its members
F, F ′ ∈ F we have that F ∩F ′ ̸= ∅. What is the largest cardinality of a family of
pairwise-intersecting sets? A now-classic result of Erdős, Ko, and Rado answers
this question if the sets all have the same number of elements, and are otherwise
unrestricted.

Theorem 55 (Erdős, Ko, and Rado [28]). Let k ≤ n/2. If F is a family of
pairwise-intersecting subsets of [n], each with k elements, then |F| ≤

(︂
n−1
k−1

)︂
.

If |F| achieves the upper bound and k < n/2, then F consists of all the k-
element subsets containing some fixed element.

That is, under the above hypotheses a family of maximal size of pairwise-
intersecting objects is given by a family with a common intersection, i.e., ⋂︁F =⋂︁

F ∈F F ̸= ∅. Moreover, under slightly stronger hypotheses, these are the only
such families. Hilton and Milner [40] later gave an improved upper bound on the
size of pairwise-intersecting families that do not all contain a common element.

Theorem 56 (Hilton and Milner [40]). Let F ⊆
(︂

[n]
k

)︂
be a pairwise-intersecting

family such that ⋂︁F = ∅. Then,

|F| ≤
(︄
n− 1
k − 1

)︄
−
(︄
n− (k + 1)

k − 1

)︄
+ 1.

Hilton and Milner introduced the following generalization of pairwise-
intersecting families. Two set systems F and G are said to be cross-intersecting
if for every F ∈ F and G ∈ G we have that F ∩G ̸= ∅. In the same article Hilton
and Milner provided the following upper bound for cross-intersecting families of
sets all of which members are of the same size.

Theorem 57. Let k ≤ n/2 and F ,G ⊆
(︂

[n]
k

)︂
be a pair of non-empty cross-

intersecting families. Then,

|F| + |G| ≤
(︄
n

k

)︄
−
(︄
n− k

k

)︄
+ 1.

There is a large number of generalizations of the above theorems. We focus on
one in particular. Holroyd and Johnson asked at the 1997 British Combinatorial
Conference [45] about whether an analogue of the Erdős-Ko-Rado property holds
for independent sets in cyclic and similar graphs. Talbot showed the answer to
be “yes” in a strong sense.

Theorem 58 (Talbot [81]). Let n, k, r be positive integers such that k ≤ n/(r+1).
Let G be the undirected graph with vertex set Zn and edges consisting of those x, y
such that either x− y mod (n) or y − x mod (n) is in {1, . . . , r}.

If F is a family of pairwise-intersecting independent sets of G, each with k
elements, then |F| is at most the size of the family B of all independent sets with
k elements containing 0. If |F| achieves the upper bound and n ̸= 2k + 2, then
F is B up to relabeling the vertices.
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Holroyd and Talbot asked whether similar results hold for independent sets in
other graphs G. Since the independent sets of a graph form a simplicial complex,
Borg extended this question to arbitrary simplicial complexes. Before stating the
conjecture, let us restate Theorems 55, 56 and 57 in the language of simplicial
complexes. For this purpose, we will first recall some basic definitions for simpli-
cial complexes. Let K be a simplicial complex and v a vertex in K, the link of
v in K is the simplicial complex lk(v,K) = {F ∈ K : v /∈ F, F ∪ {v} ∈ K}. For
example, let ∆n−1 = {F ⊆ [n]} denote the (n− 1)-simplex, then

lk(1,∆n−1) = {F ⊆ [n] : 1 /∈ F, F ∪ 1 ⊆ [n]}.

This last set system is in bijection with ∆n−2. Consequently,

fk−2(lk(1,∆n−1)) = fk−2(∆n−2) =
(︄
n− 1
k − 1

)︄
.

Where for a simplicial complex K, fk(K) denotes the number of k-faces of K.
Now we can restate Theorem 55.

Theorem 59 (Restatement of Theorem 55). Let k ≤ n/2. If F ⊆ K = ∆n−1 is
a family of pairwise-intersecting (k−1)-faces, then |F| ≤ fk−2(lk(1, K)) =

(︂
n−1
k−1

)︂
.

If |F| achieves the upper bound and k < n/2, then F consists of all the (k−1)-
faces containing some fixed vertex. That is, F = {F ∪ {v} : F ∈ lk(v,K), |F | =
k − 1} for some v ∈ N .

Now we need to recall the notion of an induced simplicial complex. Let K be
a simplicial complex with vertex set N and let S ⊆ N . The induced simplicial
complex of K on S is K[S] = {F ∈ K : F ⊆ S}. Finally, we can restate
Theorems 56 and 57.

Theorem 60 (Restatement of Theorem 56). Let F ⊆ K = ∆n−1 be a pairwise-
intersecting family of (k − 1)-faces such that ⋂︁F = ∅. Then,

|F| ≤ fk−2(lk(1, K)) − fk−2(lk(1, K[[n] \ [k + 1]])) + 1.

Theorem 61 (Restatement of Theorem 57). Let F ,G ⊆ K = ∆n−1 be a pair of
non-empty cross-intersecting families of (k − 1)-faces with k ≤ n/2. Then,

|F| + |G| ≤ fk−1(K) − fk−1(K[[n] \ [k]]) + 1.

It is natural to ask if one can replace in the above reformulations the under-
lying (n − 1)-simplex K by any arbitrary simplicial complex. There are coun-
terexamples for k around the size of the minimal facet cardinality, but not for
somewhat smaller k. We recall that a facet is an inclusion-wise maximal face.
The following conjecture states this requirement precisely.

Conjecture 62 (Holroyd and Talbot [42], extended by Borg to arbitrary sim-
plicial complexes [16]). Let K be a simplicial complex whose smallest facet has d
vertices, and let k ≤ d/2. If F is a family of pairwise-intersecting faces of K, each
with k elements, then there is some vertex v of K so that |F| ≤ fk−2(lk(v,K)). If
k < d/2 and |F| achieves the upper bound, then F consists of the faces containing
some vertex v.

49



If a simplicial complex K satisfies the upper bound of Conjecture 62 at a
specified value of k, then we say that K is k-EKR. If every pairwise-intersecting
family of maximum size has a common intersection, then we say that K is strictly
k-EKR. Since originally this conjecture was posed for the independence complex
of a graph, i.e., the simplicial complex whose faces are the independence sets of
a graph, we extend these definitions to graphs as follows. We abuse terminology
to say that a graph is (strictly) k-EKR if its independence complex has the same
property. For a graph G, we will denote its independence complex by Ind(G).

There has been considerable work on Conjecture 62. Hurlbert and Kamat
showed [43] that any chordal graph with an isolated vertex satisfies the upper
bound of Conjecture 62. Holroyd, Spencer and Talbot showed [41] that the fol-
lowing families of graphs satisfy the above upper bound: the disjoint union of
n ≥ k complete graphs, each of order at least 2; the r-th power of a path on n
vertices; the disjoint union of n ≥ 2k complete graphs, cycles and paths. Hol-
royd and Talbot showed [42] that the independence complex of a disjoint union
of cliques and disjoint union of a pair of complete multipartite graphs satisfy
the above upper bound as well. Borg showed [16] that the conjecture is true
for shifted simplicial complexes. Moreover, he showed that if the minimal facet
cardinality of a simplicial complex K is at least (k−1)

(︂
3k−3

2

)︂
+k, then K satisfies

k-EKR and strict k-EKR. See also [68] for EKR type property on facets of flag
complexes. Woodroofe showed more generally [91] that any sequentially Cohen-
Macaulay near-cone satisfies the upper bound of Conjecture 62. Regarding this
last result we want to remark that the class of sequentially Cohen-Macaulay sim-
plicial complexes is a broad class that includes the independence complexes of
chordal graphs and many others [24, 62, 90]. In particular the independence com-
plex of a chordal graph with an isolated vertex is a sequentially Cohen-Macaulay
near-cone. These notions will be defined in subsections 6.2.2 and 6.2.3. Neither
Hurlbert and Kamat nor Woodroofe addressed the strict k-EKR property for this
type of simplicial complexes.

The main purpose of the current chapter is to fill in this gap. We show:

Theorem 63. Let 2 ≤ k < d/2. If the simplicial complex K is a sequentially
Cohen-Macaulay near-cone with minimal facet cardinality d, then K is strictly
k-EKR. That is, the pairwise-intersecting families of maximum size consist of all
(k − 1)-faces containing an apex vertex.

Under stronger hypothesis on the underlying simplicial complex, so called
t-fold near-cone, we are able to generalize Theorem 56 and Theorem 57. For
example, the independence complex of a chordal graph with t isolated vertices
{w1, . . . , wt} is a sequentially Cohen-Macaulay t-fold near-cone w.r.t.
(w1, . . . , wt).

Theorem 64. Let 2 ≤ k < d/2. Let K be a sequentially Cohen-Macaulay (k+1)-
fold near-cone w.r.t. W = (w1, . . . , wk+1) and with minimal facet cardinality d.
Let F ⊆ K be a pairwise-intersecting family of (k − 1)-faces with ⋂︁F = ∅, then

|F| ≤ fk−2(lk(w1, K)) − fk−2(lk(w1, K)[N \W ]) + 1.

Theorem 65. Let k ≤ d/2. Let K be a sequentially Cohen-Macaulay k-fold
near-cone w.r.t. W and with minimal facet cardinality d. Let F ,G ⊆ K be a pair
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of non-empty cross-intersecting families of (k − 1)-faces, then

|F| + |G| ≤ fk−1(K) − fk−1(K[N \W ]) + 1.

In fact, we are able to show a stronger version of these theorems using an
algebraic notion to lower bound the minimal facet cardinality, so called depth of
a simplicial complex. This notion will be defined in subsection 6.2.3.

Theorem 66. Let k ≥ 2. If K is a near-cone with apex vertex w and k <
depth(K)+1

2 , then K is strictly k-EKR. That is, the pairwise-intersecting families
of maximum size consist of all (k − 1)-faces containing an apex vertex.

Theorem 67. Let K be a (k + 1)-fold near-cone w.r.t. W = (w1, . . . , wk+1) and
2 ≤ k ≤ depth(K)+1

2 . Let F ⊆ K be a pairwise-intersecting family of (k − 1)-faces
such that ⋂︁F = ∅. Then,

|F| ≤ fk−2(lk(w1, K)) − fk−2(lk(w1, K)[N \W ]) + 1.

Theorem 68. Let K be a k-fold near-cone w.r.t. W and k ≤ depth(K)+1
2 . Let

F ,G ⊆ K be a pair of non-empty cross-intersecting families of (k−1)-faces, then

|F| + |G| ≤ fk−1(K) − fk−1(K[N \W ]) + 1.

The novelty of our techniques is to combine algebraic and combinatorial shift-
ing operations. We also make use of some of the ideas behind recent proofs of
the Hilton-Milner theorem [36, 44].

This chapter is organized as follows. In Sections 6.1 we review graph classes
which independence complex falls into the class of sequentially Cohen-Macaulay
complexes, in particular proving Conjecture 62 for such graph classes. In Sec-
tion 6.2 we recall the necessary background for the current chapter. In Section 6.3
we give the proofs of Theorems 64 and 67. In Section 6.4 we present the proofs of
Theorems 63 and 66. In Section 6.5 we present the proofs of Theorems 65 and 68.

Notation. Throughout this chapter we will be using N to denote the vertex
set of a simplicial complex when an order on the vertices is not required. On
the other hand, when a total order on the vertices is needed we will use [n] =
{1, . . . , n}. We will usually use letters such as v, w to refer to vertices coming
from N and i, j for those coming from [n].

6.1 Applications
In this section we recall some families of simplicial complexes that belong to the
class of sequentially Cohen-Macaulay simplicial complexes. By applying our main
results of this chapter we are able to derive the strict k-EKR property in the cases
for which only the k-EKR property was previously known. In particular, proving
completely the conjecture for such families. Under additional hypothesis we are
able to derive a Hilton-Milner type result as well as an upper bound on the size
of cross-intersecting families for such families of simplicial complexes.

Let us first recall the definition of a join for simplicial complexes. Given a pair
of simplicial complexes L and K, their join, denoted by L ∗ K, is the simplicial
complex given by {F ⊔ T : F ∈ L, T ∈ K} where ⊔ denotes the disjoint union.
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We would like to emphasize that even though the vertices of K and L might not
be disjoint, we make them disjoint when considering their join. For example, by
taking N(K) × {1} and N(L) × {2} to be the new vertex sets for the simplicial
complexes K and L. Here we have denoted the vertex set of a simplicial complex
K by N(K). If L is only a single vertex, then the join {v} ∗ K is called a cone
with apex vertex v and we will usually denote it by v∗K. Through this subsection
we will use the fact that a cone is a near-cone, in spite of the fact that we have
not introduced near-cones yet. Similarly, we will use the fact that ∆t−1 ∗ K is a
t-fold near-cone and postpone the definition until subsection 6.2.2. Let us recall
that ∆t−1 stands for the (t− 1)-simplex.

Let us now recall several families of simplicial complexes that belong to the
class of sequentially Cohen-Macaulay simplicial complexes. One might argue that
the graph class of trees is the simplest class of graph. One definition of a tree
is that of a graph with every subgraph having a leaf. Faridi [29] generalized
this to simplicial complexes, so called simplicial trees, and showed that these are
sequentially Cohen-Macaulay. Further generalization were obtained to clutters
with the free vertex property [86]. Yet another example of a sequentially Cohen-
Macaulay simplicial complex is the simplicial complex given by the independent
sets of a matroid. In fact, this last one satisfies an even stronger property, so
called vertex decomposability [71].

Several classes of graphs whose independence complex is sequentially Cohen-
Macaulay have been found. For example: chordal graphs [33]; graphs with no
induced cycles of length other than 3 or 5 [90]; bipartite graphs satisfying the
following recursive condition: there exist a degree 1 vertex v with its unique
neighbor w such that G \ N [v] and G \ N [w] satisfy the same condition [86].
Here we have denotes by N [v] the closed neighborhood of v in G, i.e., N [v] =
{v} ∪ {w ∈ N : vw ∈ G}.

We notice that for two graphs G1 and G2 it follows from the definition that
Ind(G1 ⊔ G2) = Ind(G1) ∗ Ind(G2). In particular, Ind({w} ⊔ G) = w ∗ Ind(G)
and this is a near-cone. In other words, if G has an isolated vertex we have
that Ind(G) is a near-cone. We notice that adding an isolated vertex to any of
the above graph classes will create a graph whose independence complex is a
sequentially Cohen-Macaulay near-cone.

Hurlbert and Kamat [43] showed that chordal graphs with an isolated vertex
satisfy the k-EKR property. We can now conclude, using Theorem 63, that
chordal graphs with an isolated vertex completely satisfy Conjecture 62.

Corollary 69. Let G be a chordal graph with an isolated vertex. Let d denote the
minimal facet cardinality of Ind(G). Then, for k < d/2 we have that G satisfies
strict k-EKR.

Proof. Since G is a chordal graph with an isolated vertex, by the previous dis-
cussion, we have that Ind(G) is a sequentially Cohen-Macaulay near-cone. The
conclusion follows now by applying Theorem 63 to Ind(G).

Next we derive a Hilton-Milner type result and an upper bound on the size
of cross-intersecting families for chordal graphs with several isolated vertices.
Before presenting the corollary let us compute the independence complex of a
graph with several isolated vertices. Let W = {w1, . . . , wt} denote t isolated
vertices. Then, by the previous discussion, Ind(W ⊔ G) = Ind(W ) ∗ Ind(G) =
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∆t−1 ∗ Ind(G) is a t-fold near-cone w.r.t. (w1, . . . , wt). In other words, if G
has t isolated vertices W = {w1, . . . , wt} we have that Ind(G) is a t-fold near-
cone w.r.t. (w1, . . . , wt). Moreover, if G is a chordal graph with t isolated vertices
{w1, . . . , wt} then Ind(G) is a sequentially Cohen-Macaulay t-fold near-cone w.r.t.
(w1, . . . , wt). The following results follow from combining this observation with
Theorem 64 and Theorem 65, respectively.

Corollary 70. Let G be a chordal graph with vertex set N having k + 1 isolated
vertices denoted by W = {w1, . . . , wk+1}. Set K = Ind(G) and denote by d its
minimal facet cardinality. Then, for k ≤ 2d and any pairwise-intersecting family
F ⊆ K of (k − 1)-faces such that ⋂︁F = ∅, we have that

|F| ≤ fk−2(lk(w1, K)) − fk−2(lk(w1, K)[N \W ]) + 1.

Proof. By the above discussion we have that K = Ind(G) is a sequentially Cohen-
Macaulay (k+1)-fold near-cone w.r.t. (w1, . . . , wk+1). The conclusion now follows
by applying Theorem 64 to K.

Corollary 71. Let G be a chordal graph with vertex set N having k isolated
vertices denoted by W = {w1, . . . , wk}. Set K = Ind(G) and denote by d its
minimal facet cardinality. Then, for k ≤ 2d and any pair of non-empty cross-
intersecting families F ,G ⊆ K of (k − 1)-faces, we have that

|F| + |G| ≤ fk−1(K) − fk−1(K[N \W ]) + 1.

Proof. By the above discussion we have that K = Ind(G) is a sequentially Cohen-
Macaulay k-fold near-cone w.r.t. (w1, . . . , wk). The conclusion now follows by
applying Theorem 65 to K.

Holroyd, Spencer and Talbot showed [41, Theorem 8] that a disjoint union
of n ≥ 2k graphs given by paths, cliques and cycles including an isolated vertex
satisfies k-EKR.

Theorem 72. [41, Theorem 8] Let 2k ≤ n. If G = ⨆︁n
i=1 Gi is a disjoint union

of non-empty graphs with each Gi being a path, a clique or a cycle and at least
one of the Gi being an isolated vertex, then G satisfies k-EKR.

Woodroofe generalized this result by showing that a disjoint union of n ≥ 2k
graphs containing an isolated vertex satisfies k-EKR [91, Proposition 4.3].

Theorem 73. [91, Proposition 4.3] Let 2k ≤ n. If G = ⨆︁n
i=1 Gi is a disjoint

union of non-empty graphs such that G has an isolated vertex, then G satisfies
k-EKR.

We follow Woodroofe’s strategy to show that the strict k-EKR also holds for
this type of graphs. For it, first we need to recall how depth behaves w.r.t. disjoint
union, see subsection 6.2.3 for the definition of depth of a simplicial complex.

Lemma 74. [91, Lemma 2.12] Let K1 and K2 be simplicial complexes. Then
depth(K1 ∗K2) = depth(K1) + depth(K2) + 1.

Combining this lemma with Theorem 66 we can deduce the following corollary.
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Corollary 75. Let 2k < n. If G = ⨆︁n
i=1 Gi is a disjoint union of non-empty

graphs and G has an isolated vertex, then G satisfies strict k-EKR.

Proof. On the one hand, since G has an isolated vertex, then by the previous
discussion Ind(G) is a near-cone. On the other hand, by Lemma 74 we have that

depth(Ind(G)) = depth(Ind(G1 ⊔ · · · ⊔Gn))
= depth(Ind(G1) ∗ · · · ∗ Ind(Gn)) ≥ n− 1.

That is, Ind(G) is a near-cone with depth(Ind(G)) + 1 ≥ n > 2k. The conclusion
now follows by applying Theorem 66 to Ind(G).

We can deduce a Hilton-Milner type upper bound as well as an upper bound
on the size of cross-intersecting families for independence complexes of union of
graphs. The following corollaries follow from combining Lemma 74 with Theo-
rems 67 and 68, respectively.

Corollary 76. Let 2k ≤ n and G = ⨆︁n
i=1 Gi be a disjoint union of non-empty

graphs with vertex set N such that G contains k + 1 isolated vertices given by
W = {w1, . . . , wk+1}. Let F ⊆ Ind(G) be a pairwise-intersecting family of (k−1)-
faces such that ⋂︁F = ∅, then

|F| ≤ fk−2(lk(w, Ind(G))) − fk−2(lk(w, Ind(G))[N \W ]) + 1,

where w is any of the elements in W .

Proof. On the one hand, since G has k + 1 isolated vertices given by W =
{w1, . . . , wk+1}, by the above discussion, we can conclude that Ind(G) is a (k+1)-
fold near-cone w.r.t. (w1, . . . , wk+1). On the other hand, by Lemma 74 we have
that

depth(Ind(G)) = depth(Ind(G1 ⊔ · · · ⊔Gn))
= depth(Ind(G1) ∗ · · · ∗ Ind(Gn)) ≥ n− 1.

That is, Ind(G) is a (k + 1)-fold near-cone with depth(Ind(G)) + 1 ≥ n ≥ 2k.
The conclusion now follows by applying Theorem 67 to Ind(G).

Corollary 77. Let 2k ≤ n and G = ⨆︁n
i=1 Gi be a disjoint union of non-empty

graphs with vertex set N such that G contains k isolated vertices given by W =
{w1, . . . , wk}. Let F ,G ⊆ Ind(G) a pair of non-empty cross-intersecting families
of (k − 1)-faces, then

|F| + |G| ≤ fk−1(Ind(G)) − fk−1(Ind(G)[N \W ]) + 1.

Proof. On the one hand, since G has k isolated vertices given by W =
{w1, . . . , wk}, by the above discussion, we can conclude that Ind(G) is a k-fold
near-cone w.r.t. (w1, . . . , wk). On the other hand, by Lemma 74 we have that

depth(Ind(G)) = depth(Ind(G1 ⊔ · · · ⊔Gn))
= depth(Ind(G1) ∗ · · · ∗ Ind(Gn)) ≥ n− 1.

That is, Ind(G) is a k-fold near-cone with depth(Ind(G)) + 1 ≥ n ≥ 2k. The
conclusion now follows by applying Theorem 68 to Ind(G).
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6.2 Preliminaries

6.2.1 Combinatorial shifting
Let 2N denote the set of all subsets of N . Given a set system F ⊆ 2N , and
F ∈ F . Let v, w ∈ N , the combinatorial shift shiftw,v is defined by

shiftw,v(F,F) =

⎧⎪⎪⎨⎪⎪⎩
(F \ {v}) ∪ {w} if v ∈ F,w /∈ F and

(F \ {v}) ∪ {w} /∈ F ,
F otherwise.

shiftw,v(F) = {shiftw,v(F,F) : F ∈ F}.

Combinatorial shifting has been a successful technique to prove upper bounds
on the size of cross-intersecting and pairwise-intersecting set systems. We will be
using the following properties [35].

Theorem 78. Let F , G ⊆ 2N and v, w ∈ N .

1. | shiftw,v(F)| = |F|.

2. If G ⊆ F , then shiftw,v(G) ⊆ shiftw,v(F).

3. If F and G are cross-intersecting, then shiftw,v(F) and shiftw,v(G) are cross-
intersecting. In particular, if F is pairwise-intersecting, then shiftw,v(F) is
pairwise-intersecting.

We will be interested in applying repeatedly combinatorial shifting to a set
system until we obtain a set system that is invariant under further aplication.
First, let us recall that such a sequence of applications exists. For it, let us
assume that the vertex set N is equipped with a total order, i.e., N = [n]. A
set system F ⊆ 2[n] is said to be shifted if for every F ∈ F and i, j ∈ [n] such
that i < j, j ∈ F and i /∈ F we have that (F \ {j}) ∪ {i} ∈ F . The property of
being shifted can be stated in terms of a partial order <p defined as follows. Let
S = {s1 < · · · < sk}, T = {t1 < · · · tk} ∈

(︂
[n]
k

)︂
, then S ≤p T if si ≤ ti for every

i = 1, . . . , k. Then, F is shifted if and only if for every F ∈ F and G ≤p F we
have that G ∈ F . Moreover, we have the following characterization in terms of
combinatorial shifting [35].

Theorem 79. Let F ⊆ 2[n]. Then, F is shifted if and only if shifti,j(F) = F for
every i, j ∈ [n] with i < j.

By iterating the combinatorial shifting operation, shifti,j with 1 ≤ i < j ≤ n,
we will eventually obtain a set system that is shifted [35, Proposition 2.2].

Theorem 80. [35, Proposition 2.2] Let F ⊆ 2N and apply shifti,j to F for
1 ≤ i < j ≤ n exactly once in an order such that shifti,j is applied before shifti′,j′

if j′ < j. The resulting set system is shifted.

In general we will not have available the entire range of parameters, i.e., 1 ≤
i < j ≤ n, to perform combinatorial shifts in order to arrive to a shifted family. In
the following we show how we shift a set system in a limited range of parameters
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in order to obtain another set system invariant under further applications of
combinatorial shift in the same range of parameters. Despite this restriction,
the same argument as in [35, Proposition 2.2] works in this setting as well. For
completeness we present the proof.

Lemma 81. Let F ⊆ 2N and let W = {w1, . . . , wt} ⊆ N . Apply shiftwi,v to F
for i ∈ [t] and v ∈ N \ {w1, . . . , wi} exactly once in an order such that shiftwi,v is
applied before shiftwi′ ,wj′ for every i ∈ [t] and v ∈ N \W and shiftwi,wj

is applied
before shiftwi′ ,wj′ if j′ < j.

Proof. We proceed by induction on |N \ W |. If N = W then the order is the
same as the one in the statement of Theorem 80 and the conclusion follows by
this theorem. Let v ∈ N \W . First, we apply shiftwi,v to F once for every i ∈ [t]
and denote the resulting set system by H. Then

H(v) = {F \ {v} : F ∈ H, v ∈ F} ⊆ H(wi)

for every i ∈ [t] and this inclusion is preserved during later shifts. Set H(v̄) =
{F ∈ H : v /∈ F}. We can apply the inductive hypothesis to H(v) and H(v̄) since
|(N \ {v}) \W | < |N \W | from which the conclusion follows.

The same argument yields the following variation of the previous lemma. It
will be instrumental to prove Theorems 64 and 67. We state it now for future
reference.

Lemma 82. Let F ⊆ 2N , let W = {w1, . . . , wt} ⊆ N and fix some ws ∈ W .
Apply shiftwi,v to F for i ∈ [t] \ {1, s} and v ∈ N \ {w1, . . . , wi, ws} exactly once
in an order such that shiftwi,v is applied before shiftwi′ ,wj′ for every i ∈ [t] \ {1, s}
and v ∈ N \W and shiftwi,wj

is applied before shiftwi′ ,wj′ if j′ < j.

Let K be a simplicial complex on vertex set N and let u be a vertex of K. We
will denote by del(w,K) the simplicial complex K = [N \ {w}] = {T ∈ K : w /∈
T}. Let us now describe the behavior of combinatorial shifting when applied to
del(u,K) and lk(u,K).

Lemma 83. Let K be a simplicial complex and u, v and w be different vertices
of K. Then,

shiftw,v(del(u,K)) = del(u, shiftw,v(K)) and
shiftw,v(lk(u,K)) = lk(u, shiftw,v(K)).

Proof. Let us start by showing that the first equality holds. Let F ∈ del(u,K),
we want to verify that shiftw,v(F, del(u,K)) ∈ del(u, shiftw,v(K)).

If shiftw,v(F, del(u,K)) = F , then by definition v /∈ F , w ∈ F or (F \ {v}) ∪
{w} ∈ del(u,K). Since del(u,K) ⊆ K, in each of the three cases we can conclude
that shiftw,v(F,K) = F . Because u /∈ F we have that F ∈ del(u, shiftw,v(K)).

If shiftw,v(F, del(u,K)) = (F \ {v}) ∪ {w}, then (F \ {v}) ∪ {w} /∈ del(u,K)
and, since it does not contain u, it is also not in K. Then, shiftw,v(F,K) =
(F \ {v}) ∪ {w} ∈ del(u, shiftw,v(K)) as wanted.

Now, let F ∈ K with shiftw,v(F,K) ∈ del(u, shiftw,v(K)). We will ver-
ify that shiftw,v(F,K) ∈ shiftw,v(del(u,K)) by showing that shiftw,v(F,K) =
shiftw,v(F, del(u,K)). If shiftw,v(F,K) = F then v /∈ F , w ∈ F or (F \ {v}) ∪
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{w} ∈ K. If (F \ {v}) ∪ {w} ∈ K then, since it does not contain the ver-
tex u, it is also in del(u,K). Consequently in all three cases it follows that
shiftw,v(F, del(u,K)) = F .

If shiftw,v(F,K) = (F \ {v}) ∪ {w} then (F \ {v}) ∪ {w} /∈ K and con-
sequently not in del(u,K). Then, shiftw,v(F, del(u,K)) = (F \ {v}) ∪ {w} ∈
shiftw,v(del(u,K)) as wanted.

Let us show next that the second equality holds. Let F ∈ lk(u,K), we want to
verify that shiftw,v(F, lk(u,K)) ∈ lk(u, shiftw,v(K)). If shiftw,v(F, lk(u,K)) = F
then v /∈ F , w ∈ F or (F \ {v}) ∪ {w} ∈ lk(u,K). If (F \ {v}) ∪ {w} ∈ lk(u,K)
then (F \ {v}) ∪ {w, u} ∈ K. Consequently in all three cases we have that
shiftw,v(F ∪ {u}, K) = F ∪ {u}. That is, F ∈ lk(u, shiftw,v(K)).

If shiftw,v(F, lk(u,K)) = (F \ {v}) ∪ {w} then (F \ {v}) ∪ {w} /∈ lk(u,K) and
consequently (F \ {v}) ∪ {w, u} /∈ K. Then, shiftw,v(F ∪ {u}, K) = (F \ {v}) ∪
{w, u} ∈ shiftw,v(K) and consequently (F \ {v}) ∪ {w} ∈ lk(u, shiftw,v(K)) as
wanted.

Now, let F ∈ lk(u, shiftw,v(K)) then F ∪ {u} ∈ shiftw,v(K). Let F ′ ∈ lk(u,K)
such that shiftw,v(F ′ ∪ {u}, K) = F ∪ {u}. If F = F ′ then v /∈ F ′, w ∈ F ′ or
(F ′ \ {v}) ∪ {w, u} ∈ K. If (F ′ \ {v}) ∪ {w, u} ∈ K then (F ′ \ {v}) ∪ {w} ∈
lk(u,K). Then, in all three cases we have that shiftw,v(F ′, lk(u,K)) = F ′ = F ∈
shiftw,v(lk(u,K)) as wanted.

If F = (F ′ \ {v}) ∪ {w} then (F ′ \ {v}) ∪ {w, u} /∈ K and consequently
(F ′ \{v})∪{w} /∈ lk(u,K). Therefore, shiftw,v(F ′, lk(u,K)) = (F ′ \{v})∪{w} =
F ∈ shiftw,v(lk(u,K)) as wanted.

6.2.2 t-fold near-cone
A simplicial complex K is a near-cone with apex vertex w if for every face F ∈ K
we have that (F \ {v}) ∪ {w} ∈ K for every v ∈ F . We notice that K is a
near-cone with apex vertex w if and only if shiftw,v(K) = K for every v ∈ N .
That is, when we apply combinatorial shift shiftw,v to the set system K, this one
does not change.

Let K be a simplicial complex with vertex set N and W = (w1, . . . , wt) a
sequence of different vertices of K, we say that K is a t-fold near-cone w.r.t W if
K is a near-cone with apex vertex w1 and, del(w1, K) and lk(w1, K) are (t− 1)-
fold near-cones w.r.t. (w2, . . . , wt). The following lemma provides an alternative
characterization of t-fold near-cones.

Lemma 84. Let K be a simplicial complex and W = (w1, . . . , wt) ⊆ N a sequence
of different vertices. Then, K is a t-fold near-cone w.r.t. W if and only if
shiftwi,v(K) = K for every wi ∈ W and v ∈ N \ {w1, . . . , wi}.

Proof. On the one hand, let wi ∈ W and v ∈ N \ {w1, . . . , wi}. We want to show
that shiftwi,v(K) = K. For it, let F ∈ K and assume that v ∈ F , otherwise the
combinatorial shift does not affect F . We want to verify that (F \{v})∪{wi} ∈ K.
We will show that F ′ = F \ {wj ∈ W ∩ F : j < i} is in a subcomplex K ′

of lk({wj ∈ W ∩ F : j < i}, K) that is a near-cone with apex vertex wi. We
build K ′ as follows. First, we initialize K0 = K, then for j = 1, . . . , i − 1 we
set Kj = del(wj, Kj−1) if wj /∈ F ∩ W and Kj = lk(wj, Kj−1) otherwise. By
hypothesis it follows that for every j = 0, . . . , i− 1 the simplicial complex Kj is a
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Figure 6.1: Example of a 3-near-cone that it is not a 3-fold near-cone.

near-cone with apex vertex wj+1 and F \ {wt ∈ W ∩ F : t < j} ∈ Kj. In the end
we have that F ′ ∈ Ki−1 = K ′. Then, since K ′ is a near-cone with apex vertex wi

we have that

(F ′ \ {v}) ∪ {wi} ∈ K ′ ⊆ lk({wt ∈ W ∩ F : t < i}, K).

Then, (F \ {v}) ∪ {wi} ∈ K.
On the other hand, since shiftw1,v(K) = K for every v ∈ N \{w1} we have that

K is a near-cone with apex vertex w1. Now, we want to verify that del(w1, K)
and lk(w1, K) are near-cones with apex vertex w2. To see this we will show that
shiftw2,v(del(w1, K)) = del(w1, K) and shiftw2,v(lk(w1, K)) = lk(w1, K) for every
v ∈ N \ {w1, w2}. By Lemma 83 we have that

shiftw2,v(del(w1, K)) = del(w1, shiftw2,v(K)) = del(w1, K),

and
shiftw2,v(lk(w1, K)) = lk(w1, shiftw2,v(K)) = lk(w1, K),

where in both cases the last equality follows from the assumption shiftw2,v(K) =
K for every v ∈ N \ {w1, w2}. Then, del(w1, K) and lk(w1, K) are near-cones
with apex vertex w2. By repeating the argument with del(w1, K) and lk(w1, K)
in place of K we can conclude that K is a t-fold near-cone w.r.t. W .

Example 85. Let G be a graph with t isolated vertices {w1, . . . , wt}, then Ind(G)
is a t-fold near-cone w.r.t. W = (w1, . . . , wt). In fact, in this case the order of
W is not important.

The following notion is closely related to t-fold near-cones. A simplicial com-
plex K is a t-near-cone w.r.t. W = (w1, . . . , wt) if there exists a sequence of
simplicial complexes

K = K(0) ⊇ K(1) ⊇ · · · ⊇ K(t)

such that for every 1 ≤ j ≤ t, K(j) = {T ∈ K(j − 1) : wj /∈ T} and K(j − 1) is
a near-cone with apex vertex wj.

Lemma 86. If K is a t-fold near-cone w.r.t. W = (w1, . . . , wt), then it is a
t-near-cone w.r.t. W .

Proof. Let K(0) = K and for j = 1, . . . , t set K(j) = del(wj, K(j − 1)). By
induction K(j − 1) is a near-cone with apex vertex wj.
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Remark 87. In general a t-near-cone is not a t-fold near-cone. Consider the
simplicial complex K with facets {1, 2, 4}, {1, 3}, {2, 3} depicted in Figure 6.1.
It is a 3-near-cone w.r.t. (1, 2, 3) since K is a near-cone with apex 1. The
simplicial complex K(1) has facets {2, 3} and {2, 4} and it is a near-cone with
apex vertex 2, see Figure 6.1. The complex K(2) has facets {3} and {4} and it
is a near-cone with apex vertex 3. Finally, K(3) has a unique facet {4}. But
{1, 2, 3} ∈ shift3,4(K) while {1, 2, 3} /∈ K. By Lemma 84 we can conclude that K
is not a 3-fold near-cone w.r.t. (1, 2, 3) since shift3,4(K) ̸= K.

6.2.3 Depth and the sequentially Cohen-Macaulay prop-
erty

Let F denote a field. The i-th Betti number βi(K,F) = dimFHi(K,F) is the
dimension of the i-th homology group. Since we are considering coefficients over
a field, this last one is in fact a vector space. One can read-off the Betti number
from the near-cone combinatorially as follows.

Theorem 88. [50, Lemma 3.1] Let K be a near-cone with apex vertex w, then

βk−1(K) = |{S ∈ K : |S| = k, S ∪ {w} /∈ K}|.

A simplicial complex K is called Cohen-Macaulay over F if for every face
F ∈ K we have that H̃ i(lk(F,K),F) = 0 for i < dim(lk(F,K)). That is, the
reduced homology of every link vanishes on every dimension except possibly the
top one. The pure k-skeleton of K is the simplicial complex generated by the
k-faces of K. A simplicial complex is said to be sequentially Cohen-Macaulay
over F if for every k, the pure k-skeleton of K is Cohen-Macaulay over F. From
now on we will assume that the field has characteristic 0 and drop it from the
notation.

We need to be able to control the behavior of the minimal facet cardinality
of a simplicial complex because it plays a key role in Conjecture 62. For this
purpose we will use the following definition of depth of a simplicial complex K

depth(K) = max{d : K(d) is Cohen-Macaulay}.

We can restate this definition in a more convenient way as follows. The simplicial
complex K(d) is Cohen-Macaulay if and only if H̃ i(lk(F,K(d)),F) = 0 for every
F ∈ K(d) and i < dim lk(F,K(d)). Then, for i < dim lk(F,K(d)) we have that

H̃ i(lk(F,K(d)),F) = H̃ i(lk(F,K(d))(i+1),F) = H̃ i(lk(F,K)(i+1),F)
= H̃ i(lk(F,K),F),

where we have used that the k-th homology group only depends on the (k+1)-th
skeleton, i.e., H̃k(K(k+1),F) = H̃k(K,F), and that lk(F,K(d))(i) = lk(F,K)(i) for
i ≤ dim lk(F,K(d)). Since dim lk(F,K(d)) ≤ d−|F | we can conclude the following
characterization

depth(K) = max{d : H̃ i(lk(F,K),F) = 0 for every F ∈ K and i < d− |F |}.
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Next, we observe that depth(K) + 1 is at most the minimal facet cardinal-
ity. To see this let F be a facet of K, then lk(F,K) = {∅} and consequently
H̃−1(lk(F,K)) = H̃−1({∅}) = F. That is, depth(K) + 1 ≤ |F | for any facet of K,
in particular depth(K)+1 is a lower bound on the minimal facet cardinality. The
depth of a simplicial complex is one less than the depth of its Stanley-Reisner
ring [75].

6.2.4 Exterior algebraic shifting
Algebraic shifting was introduced by Kalai (see e.g. [49] and the survey [50])
and has been studied extensively in algebraic combinatorics. Here we review the
definition of exterior algebraic shifting as well as some of its properties. Let us
denote by (ei)i∈[n] the standard basis of V = R[n] and consider (fi)i∈[n] a generic
change of basis given by fi = ∑︁

j∈[n] aijej with the coefficients (aij)i,j∈[n] being
algebraically independent. Consider the exterior face ring⋀︂

K =
⋀︂
V / (eT : T /∈ K),

and let q denote the natural quotient map q : ⋀︁V → ⋀︁
K. The exterior algebraic

shift of K, denoted by ∆(K), is defined as

∆(K) = {T ⊆ [n] : q(fT ) /∈ spanR{q(fS) : S <lex T, |S| = |T |}},

where <lex denotes the lexicographical order defined as S <lex T if |S| < |T | or
|S| = |T | and min((S ∪ T ) \ (S ∩ T )) ∈ S. Here we merely state the properties
we will be using.

Theorem 89. Let K be a simplicial complex.

1. [50, Theorem 2.1.1] Exterior algebraic shifting preserves the f -vector, i.e.,
fk(K) = fk(∆(K)).

2. [50, Theorem 2.1.2] The simplicial complex ∆(K) is shifted.

3. [50, Theorem 2.1.4] If K is shifted, then ∆(K) = K.

4. [50, Theorem 2.2.7] If K ⊆ L, then ∆(K) ⊆ ∆(L).

5. [50, Theorem 3.2] Exterior algebraic shifting preserves the Betti numbers,
i.e., βk(K) = βk(∆(K)) for every k ≥ 0.

6. [50, Theorem 4.1] If K is Cohen-Macaulay then ∆(K) is Cohen-Macaulay.

7. [50, Theorem 6.2] If F ⊆
(︂

[n]
a

)︂
and G ⊆

(︂
[n]
b

)︂
are cross-intersecting, then

∆(F) and ∆(G) are cross-intersecting. In particular, if F is pairwise-
intersecting, then ∆(F) is pairwise-intersecting.

We would like to point out that in contrast to combinatorial shifting, exterior
algebraic shifting produces a shifted complex in one step rather than after a
sequence of applications.
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Figure 6.2: Exterior algebraic shifting of a tree and a cycle.

Example 90. Let G be a tree on n vertices, then ∆(G) is a connected, acyclic and
shifted graph. We claim that the only edges are {1, j} ∈ ∆(G) for j = 2, . . . , n.
On the one hand, these edges must be there: since ∆(G) is connected for every j
there is an edge {i, j} ∈ ∆(G), then {1, j} ∈ ∆(G) since the complex is shifted.
Since algebraic shifting preserves the number of edges, these are the only ones
because |E(G)| = n− 1. See the left side of Figure 6.2.

Now, let G be a cycle on n vertices, then ∆(G) contains a star on the vertex
1 and the edge {2, 3}. Since it is connected, it contains the star. On the other
hand, since algebraic shifting preserves the first Betti number then {2, 3} is in
the exterior algebraic shift. By counting the number of edges these must be all of
them. See the right side of Figure 6.2.

The following corollary generalizes the above observation regarding the alge-
braic shift of a cycle. It follows from Theorems 88 and 89.

Corollary 91. Let K be a simplicial complex with βk−1(K) > 0. Then,(︄
[k + 1]
k

)︄
⊆ ∆(K).

Proof. Let S ∈ ∆(K) be a k-face with 1 /∈ S. Such a face exists since

|{T ∈ ∆(K) : |T | = k, {1} ∪ S /∈ ∆(K)}| = βr−1(∆(K)) = βr−1(K) > 0.

Because {2, . . . , k + 1} ≤p S and ∆(K) is shifted we have that {2, . . . , k + 1} ∈
∆(K). Using that [k + 1] \ {i} <p {2, . . . , k + 1} for all i = 2, . . . k + 1 and that
∆(K) is shifted we can conclude that

(︂
[k+1]

k

)︂
⊆ ∆(K).

Before proceeding let us mention the importance of the preceding corollary.
We will use it to guarantee that the algebraic shifting of a pairwise-intersecting
family F satisfies the empty intersection condition, i.e., ⋂︁∆(F) = ∅. Con-
cretely, if βk−1(⟨F⟩) > 0, then

(︂
[k+1]

k

)︂
⊆ ∆(F). Here we have used the no-

tation ⟨F⟩ to denote the simplicial complex generated by F . In particular,⋂︁∆(F) ⊆ ⋂︁(︂[k+1]
k

)︂
= ∅. We will use this in several steps when proving The-

orem 63 and Theorem 64.
Next we recall how the structure of a t-near-cone behaves w.r.t. algebraic

shifting. For it, first let us set a bit of notation. Let j ∈ [n]. For a subset T ⊆ [n]
we denote by T +j the set {t+j : t ∈ T}. For a simplicial complex K with vertex
set [n] we denote by K + j the simplicial complex {T + j : T ∈ K}.
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Theorem 92. [66, Corollary 5.6] Let K be a t-near-cone w.r.t.
W = (w1, . . . , wt). Then

∆(K) = B ∪
t⨆︂

j=1
{{j} ⊔ T : T ∈ (∆(lk(wj, K(j − 1))) + j)},

where ⨆︁ denotes disjoint union and B = {F ∈ ∆(K) : F ∩ [t] = ∅}.

In Example 90 we saw that the degree of a vertex can increase after performing
algebraic shifting. The next corollary tells us that if we have a near-cone, the
number of faces containing the apex vertex is preserved under algebraic shifting.
This is of crucial importance when proving Theorem 63 since we want to transfer
the upper bound from the shifted simplicial complex back to the original one.

Corollary 93. Let K be a near-cone with apex vertex w, then

fk(lk(w,K)) = fk(∆(lk(w,K))) = fk(lk(1,∆(K))).

Proof. Since a near-cone with apex vertex w is a 1-near-cone w.r.t. W = (w), by
applying Theorem 92 we obtain

∆(K) = B ⊔ {{1} ⊔ T : T ∈ (∆(lk(w,K)) + 1)}

with B = {F ∈ ∆(K) : 1 /∈ F}. Then lk(1,∆(K)) = ∆(lk(w,K)) + 1 and the
desired equality of f -vectors follows.

For Theorems 64 and 65 we need to relate the number of faces of K disjoint
from W with those of ∆(K) disjoint from [t]. This is the purpose of the following
proposition.

Proposition 94. Let K be a t-near-cone w.r.t. W = (w1, . . . , wt). Then

fk(K[N \W ]) = fk(∆(K)[[n] \ [t]]).

Proof. It is enough to verify the equality for the complement; that is, to verify
that

fk(K) − fk(K[N \W ]) = |{T ∈ K : |T | = k + 1, T ∩W ̸= ∅}|

coincides with

fk(∆(K)) − fk(∆(K)[[n] \ [t]]) = |{T ∈ ∆(K) : |T | = k + 1, T ∩ [t] ̸= ∅}|

because fk(K) = fk(∆(K)). Let T ∈ K be such that T ∩W = {wi1 , . . . wik
} with

i1 < · · · < ik, then T ∈ K(i1 − 1) \ (⋃︁j>i1 K(j − 1)). To count such faces only
once, we order them by the lowest member of W they contain, that is

|{T ∈ K : |T | = k + 1, T ∩W ̸= ∅}| =
t∑︂

j=1
|{T ∈ K : |T | = k + 1,

min{j : wj ∈ T ∩W} = j}|

=
t∑︂

j=1
fk−1(lk(wj, K(j − 1))).
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Similarly, and using Theorem 92, we have that

|{T ∈ ∆(K) : |T | = k + 1, T ∩ [t] ̸= ∅}| =
t∑︂

j=1
|{T ∈ ∆(K) : |T | = k + 1,

minT ∩ [t] = j}|

=
t∑︂

j=1
fk−1(∆(lk(wj, K(j − 1))))

=
t∑︂

j=1
fk−1(lk(wj, K(j − 1))),

where the last equality follows from Theorem 89.1.

Now we will exhibit the interplay between depth and the minimal facet car-
dinality after performing algebraic shifting.

Theorem 95 ([25]). The minimum facet dimension of ∆(K) is at least d if and
only if K(d) is Cohen-Macaulay.

On the one hand, this theorem implies that depth(K) + 1 coincides with the
minimal facet cardinality of ∆(K). On the other hand, we have seen at the end
of subsection 6.2.3 that depth(K) + 1 is at most the minimal facet cardinality of
K. Summarizing, we have that

minimal facet size of ∆(K) = depth(K) + 1 ≤ minimal facet size of K.

If K is sequentially Cohen-Macaulay with minimal facet cardinality d, then its
pure (d−1)-skeletonK ′ is Cohen-Macaulay. By applying algebraic shifting to such
skeleton we obtain a Cohen-Macaulay (d− 1)-dimensional subcomplex ∆(K ′) ⊆
∆(K). We notice that for every k ≤ (d− 1) we have that

fk(∆(K ′)) = fk(K ′) = fk(K) = fk(∆(K))

and consequently the shifted subcomplex ∆(K ′) contains every face of ∆(K) with
dimension at most (d − 1). We can conclude that the minimal facet cardinality
of ∆(K) is d = depth(K) + 1 since ∆(K ′) is pure of dimension (d− 1).

6.3 Hilton-Milner type upper bound
In this section we prove Theorems 64 and 67. For it we adapt the injective
proof from [36, 44] to the simplicial complex setting. The first step for this is to
show that we can always assume that the pairwise-intersecting family F with the
empty intersectiong property, i.e., ⋂︁F = ∅, is shifted. This is the content of the
following lemma.

Lemma 96. Let K be a (k + 1)-fold near-cone w.r.t. W = (w1, . . . , wk+1) and
2 ≤ k ≤ depth(K)+1

2 . Let F ⊆ K be a pairwise-intersecting family of (k − 1)-faces
such that ⋂︁F = ∅ and |F| is maximal. Then, there exists a pairwise-intersecting
shifted family of (k − 1)-faces F ′ ⊆ ∆(K) with ⋂︁F ′ = ∅ and |F ′| = |F|.
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Proof. First, because K is a (k + 1)-fold near-cone w.r.t. W , by Lemma 84, we
have that shiftwi,v(K) = K for every wi ∈ W and v ∈ N \ {w1, . . . , wi}. In this
proof we apply combinatorial shift to F as well as to K in order to preserve the
inclusion. Since we only apply combinatorial shift that does not modify K we
avoid mentioning at each step that the result of shifting F is contained in K

Now, we iteratively apply shiftw1,v to F for v ∈ N \ {w1} according to
Lemma 811 while the resulting family satisfies the empty intersection condition
in the statement, otherwise we stop. Let us denote the resulting family by H.
We proceed by case analysis.

Case 1: shiftw1,v(H) = H for all v ∈ N . Since H satisfies the empty
intersection condition, there exists F ∈ H such that w1 /∈ F and for every v ∈ F
we have that (F \ {v}) ∪ {w1} ∈ H. That is,

(︂
F ∪{w1}

k

)︂
⊆ H and consequently

βk−1(⟨H⟩) > 0, where by ⟨H⟩ we denote the simplicial complex with facets given
by H. Then by Corollary 91 we have that

(︂
[k+1]

k

)︂
⊆ ∆(H) and we can conclude

that F ′ = ∆(H) ⊆ ∆(K) is the desired family.
Case 2: there exists ws ∈ W such that ⋂︁ shiftw1,ws(H) ̸= ∅. Then

F ∩ {w1, ws} ≠ ∅ for all F ∈ H. By maximality of |H| we have that

T = {T ∪ {w1, ws} : T ∈ lk({w1, ws}, K), |T | = k − 2} ⊆ H.

Since ⋂︁H = ∅ there exist F1, Fs ∈ H such that w1 ∈ F1, ws /∈ F1 and ws ∈
Fs, ws /∈ Fs

Next, we iteratively apply shiftwj ,v, with wj ∈ W \ {w1, ws} and v ∈ N \
{w1, . . . , wj, ws} to H until obtaining a stable family as shown in Lemma 82.
Denote the resulting family by G. Because F1, Fs ∈ H, there are G1, Gs ∈ G
such that w1 ∈ G1, ws /∈ G1 and ws ∈ Gs, w1 /∈ Gs. Since shiftw,v(G) = G for
w and v in the above range, we have that W \ w1, W \ ws ∈ G. Moreover,
we also have that shiftw,v(T ) = T , for the same range of parameters as above
since shiftw,v(K) = K. Consequently

(︂
W
k

)︂
⊆ G. The conclusion follows as in the

previous case.
Case 3: there exist v ∈ N \W and ws ∈ W such that ⋂︁ shiftw1,v(H) ̸= ∅

and ⋂︁ shiftws,v(H) = ∅. Let G = shiftws,v(H). We claim that every F ∈ G
intersects {w1, ws}. If F ∈ H, then either ws ∈ F , v /∈ F , or (F \{v})∪{ws} ∈ H.
In the last two cases it follows that w1 ∈ F since ⋂︁ shiftw1,v(H) ̸= ∅. If F /∈ H
then ws ∈ F . We proceed as in the previous case with G in place of H.

Case 4: there exists v ∈ N \ W such that ⋂︁ shiftw,v(H) ̸= ∅ for all
w ∈ W . On the one hand, since ⋂︁H = ∅ there exists F ∈ H such that v /∈ F .
Because F ∩{w, v} ≠ ∅ for all w ∈ W we can conclude that w ∈ F for all w ∈ W .
This is a contradiction with the size of F .

The next step is to build an injection from the shifted pairwise-intersecting
family to a proper subcomplex of the link of the apex vertex. For it we first recall
the injection used in the unrestricted case, that is if the underlying simplicial
complex is the simplex. We will need the following technical lemma.
Lemma 97. [36, 44] Let F ⊆

(︂
[n]
k

)︂
be a pairwise-intersecting shifted family.

For every F ∈ F there exists l ≥ 1 such that |F ∩ [2l − 1]| ≥ l. Moreover, the
maximum such l = l(F ) satisfies |F ∩ [2l(F )]| = l(F ).

1We apply the lemma with W = {w1}. Here W denotes the vertex set in the statement of
Lemma 81.

64



Let 2k ≤ n and F ⊆
(︂

[n]
k

)︂
be a shifted pairwise-intersecting family with⋂︁F = ∅. The following function was previously defined by Frankl [36], see

also [44].

α : F →
{︄
F ∈

(︄
[n]
k

)︄
: 1 ∈ F, F ∩ [2, k + 1] ̸= ∅

}︄
∪ {[2, k + 1]}

F ↦→

⎧⎨⎩F if 1 ∈ F or [2, k + 1] ⊆ F,

(F ∪ [2l(F )]) \ (F ∩ [2l(F )]) otherwise.

In the same article it was shown that α is well defined and the following
properties hold.

Lemma 98. For F ∈ F such that α(F ) ̸= F we have that:

• 1 ∈ α(F ).

• α(F ) /∈ F .

• α(F ) ∩ [2, k + 1] ̸= ∅.

• α is injective.

• |α(F )| = |F |.

Next, we show that α still works in the simplicial complex setting. Before
stating the lemma, let us recall the notion of the star of a vertex. Let K be a
simplicial complex and v be a vertex in K, then the star of v in K is the set
st(v,K) = {F ∈ K : v ∈ F}.

Lemma 99. Let k ≤ d/2 and K be a shifted simplicial complex with vertex set
[n] and minimal facet cardinality d. Let F ⊆ K be shifted pairwise-intersecting
family of (k − 1)-faces with ⋂︁F = ∅. Then, for every F ∈ F we have that

α(F ) ∈ (st(1, K) \ st(1, K[[n] \ [2, k + 1]])) ∪ {[2, k + 1]}.

Proof. It is enough to verify that α(F ) ∈ K. First, we notice that d/2 ≥ k ≥
|F ∩ [2l(F )]| = l(F ). In particular,

|F ∪ [2l(F )]| = |F | + |[2l(F )]| − |F ∩ [2l(F )]| = k + l(F ) ≤ 2k ≤ d.

Since K has minimal facet cardinality d there exist a face T with k + l(F ) ≤
d vertices containing F . Let T \ F = {t1 < · · · < tl(F )} and [2l(F )] \ F =
{s1 < · · · < sl(F )}. Then, si ≤ ti for every i ∈ [l(F )]. Since K is shifted,
it is not affected when applying shiftsi,ti

to it. On the other hand, if we apply
iteratively shiftsi,ti

to T exactly once for each i ∈ [l(F )], we will obtain F∪[2l(F )].
From this we can conclude that the later one is in K. Since F ⊆ F ∪ [2l(F )],
(F ∪ [2l(F )]) \ (F ∩ [2l(F )]) ⊆ F ∪ [2l(F )] and [2, k + 1] ∈ K we conclude that
α(F ) ∈ K.

Combining Lemma 98 and Lemma 99 we obtain the following corollary.
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Corollary 100. Let 2 ≤ k ≤ d/2 and K be a shifted simplicial complex with
vertex set [n] and minimal facet cardinality d. Let F ⊆ K be a shifted pairwise-
intersecting family of (k − 1)-faces with ⋂︁F = ∅. Then,

α : F → (st(1, K) \ st(1, K[[n] \ [2, k + 1]])) ∪ {[2, k + 1]}

is a well defined injection. In particular,

|F| ≤ fk−2(lk(1, K)) − fk−2(lk(1, K[[n] \ [k + 1]])) + 1.

Proof of Theorem 67. On the one hand, since lk(w1, K) is an k-fold near-cone
w.r.t. (w2, . . . , wk+1) we have by Corollary 93 and Proposition 94 that

fk−2(lk(1,∆(K))[[n] \ [k + 1]]) =fk−2(∆(lk(w1, K))[[n] \ [k + 1]])
= fk−2(lk(w1, K)[N \W ]).

On the other hand, since the minimal facet cardinality of ∆(K) is depth(K) + 1,
by Lemma 96 there exists F ′ ⊆ ∆(K) shifted pairwise-intersecting family such
that |F ′| = |F| and ⋂︁F ′ = ∅. Then

|F| = |F ′| ≤ fk−2(lk(1,∆(K))) − fk−2(lk(1,∆(K))[[n] \ [k + 1]]) + 1
= fk−2(lk(w1, K)) − fk−2(lk(w1, K)[N \W ]) + 1,

where we combined Corollary 93 and Corollary 100.

As a consequence we obtain a proof for Theorem 64.

Proof of Theorem 64. Since K is a sequentially Cohen-Macaulay simplicial com-
plex with minimal facet cardinality d, it follows from the discussion at the end
of subsection 6.2.3 that depth(K) + 1 = d. Since k ≤ d/2 = depth(K)+1

2 , we can
conclude the proof by applying Theorem 67.

6.4 Strict Erdős-Ko-Rado
In this section we prove Theorems 63 and 66. We do this by reducing the general
case to the case where the underlying simplicial complex is shifted. The following
corollary for shifted simplicial complexes follows from Corollary 100.

Corollary 101. Let 2 ≤ k < d/2 and K be a shifted simplicial complex with
vertex set [n] and minimal facet cardinality d. Let F ⊆ K be a shifted pairwise-
intersecting family of (k − 1)-faces with ⋂︁F = ∅. Then, |F| < fk−2(lk(1, K)).

The following proof carries on the reduction mentioned above. When this
is not possible we restrict the analysis to a facet. Once we have restricted the
situation to a facet, we will exhibit a set that is in the star of an apex vertex but
not in the pairwise-intersecting family. This will show that the star of the apex
vertex is stricly larger.
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Proof of Theorem 66. Let F ⊆ K be the pairwise-intersecting family of maximal
size satisfying the empty intersection condition, i.e., ⋂︁F = ∅. We iteratively
apply shiftw,v to F for v ∈ N \ {w} as shown in Lemma 812 while the result-
ing family satisfies the empty intersection condition, otherwise we interrupt the
process and output the previous family. Let H be the resulting family from this
process. Since K is a near-cone with apex vertex w we have that shiftw,v(K) = K
for every v ∈ N , see subsection 6.2.2, and consequently H ⊆ K. We proceed by
case analysis.

Case 1: shiftw,v(H) = H for all v ∈ N \ {w}. Since ⋂︁H = ∅, there exists
F ∈ H such that w /∈ F . Because shiftw,v(H) = H for every v ∈ N \ {w} we have
that (F \{v})∪{w} ∈ H for every v ∈ F . That is

(︂
F ∪{w}

k

)︂
⊆ H, and consequently

βk−1(⟨H⟩) > 0. By Corollary 91 we can conclude that
(︂

[k+1]
k

)︂
⊆ ∆(H) ⊆ ∆(K).

This implies that ∆(H) is a shifted pairwise-intersecting family that satisfies the
empty intersection condition and it is contained in a shifted simplicial complex
∆(K) with minimal facet cardinality depth(K) + 1, see subsection 6.2.3. Since
k < depth(K)+1

2 , by Corollary 101 and Corollary 93 we have that

|F| = |H| = |∆(H)| < fk−2(lk(1,∆(K))) = fk−2(lk(w,K)).

Case 2: there exist v ∈ N \ {w} and F ∈
(︂

N\{w,v}
k−1

)︂
such that⋂︁ shiftw,v(H) ̸= ∅ and F ∪ {w}, F ∪ {v} ∈ H. On the one hand, since⋂︁ shiftw,v(H) ̸= ∅ we have that T ∩ {w, v} ≠ ∅ for every T ∈ H. On the other

hand, because |H| is maximal we have that

{T ∪ {w, v} : T ∈ lk({w, v}, K), |T | = k − 2} ⊆ H.

Then
(︂

F ∪{w,v}
k

)︂
⊆ H because F ∪ {v} is contained in a facet of size strictly lager

than k and consequently we can exchange any of the remaining vertices in this
facet for w. Since K is a near-cone with apex vertex w, after this exchange we
still have a face. The conclusion follows as in the previous case.

Case 3: there exist v ∈ N \ {w} such that ⋂︁ shiftw,v(H) ̸= ∅ and for
every F ∈

(︂
N\{v,w}

k−1

)︂
if F ∪ {v} ∈ H then F ∪ {w} /∈ H. In this case, we define

the function
ϕ : H → {T ∈ lk(w,K) : |T | = k − 1}

F ↦→

⎧⎨⎩F \ {w} if w ∈ F,

F \ {v} if w /∈ F.

The map ϕ is injective since if F = F1 \{v} = F2 \{w} for some F1, F2 ∈ H, then
F contradicts the assumption of this case. We claim that ϕ is not surjective. The
theorem will follow from this since |H| = | imϕ| < fk−2(lk(w,K)). Let us assume
that ϕ is surjective. We split the analysis into two subcases.

Subcase a: there exist T ∈ K and Fv, Fw ∈ H such that w ∈ Fw, v /∈
Fw, v ∈ Fv, w /∈ Fv and Fv, Fw ⊆ T . Without loss of generality we can assume
that T is a facet and let d = |T |. Then

HT (wv̄) = {F \ {w} ⊆ T : F ∈ H, w ∈ F, v /∈ F}
2We apply the lemma with W = {w}. Here W denotes the vertex set in the statement of

Lemma 81.
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and HT (w̄v) are a pair of non-empty cross-intersecting families of (k− 2)-faces in
T \ {w, v} and |T \ {w, v}| = d − 2 ≥ depth(K) − 1. Since k < depth(K)+1

2 , then
(k − 1) < depth(K)−1

2 ≤ d−2
2 and consequently by Theorem 57 we have that

|HT (wv̄)| + |HT (w̄v)| ≤
(︄
d− 2
k − 1

)︄
−
(︄

(d− 2) − (k − 1)
k − 1

)︄
+ 1

=
(︄
d− 2
k − 1

)︄
−
(︄
d− k − 1
k − 1

)︄
+ 1 <

(︄
d− 2
k − 1

)︄
,

where the last inequality follows since (d − 2) > 2(k − 1) and consequently(︂
(d−2)−(k−1)

k−1

)︂
> 1. On the other hand, the total number of (k − 2)-faces in

T \ {w, v} is
(︂

d−2
k−1

)︂
. Then, there exists some F ∈

(︂
T \{w,v}

k−1

)︂
\ (HT (vw̄) ∪ HT (wv̄))

and consequently F /∈ imϕ. This is a contradiction with ϕ being surjective.
Subcase b: for every T ∈ K containing v and w either HT (wv̄) ̸= ∅

or HT (w̄v) ̸= ∅, but not both simultaneously. Since ⋂︁H = ∅ there exist
Fw, Fv ∈ H such that w ∈ Fw, v /∈ Fw and v ∈ Fv, w /∈ Fv. Since k < depth(K)+1

2 ,
there exist a facet T containing Fv and w and set d = |T |. Since Fv ⊆ T then
HT (wv̄) = ∅ and consequently Fw ⊈ T . Since

|(T \ {w, v}) \ (Fw \ {w})| ≥ (d− 2) − (k− 1) = d−k− 1 ≥ depth(K) −k > k− 1

there exists G ⊆ (T \ {w, v}) \ Fw with |G| = k − 1. On the one hand, since
ϕ is surjective, then G ∈ imϕ. On the other hand, since HT (wv̄) = ∅, then
G ∪ {v} ∈ H. But (G ∪ {v}) ∩ Fw = ∅ which contradicts H being pairwise-
intersecting.

As a corollary we obtain Theorem 63.

Proof of Theorem 63. Since K is a sequentially Cohen-Macaulay simplicial com-
plex with minimal facet cardinality d, it follows from the discussion at the end
of subsection 6.2.3 that depth(K) + 1 = d. Since k < d/2 = depth(K)+1

2 , we can
conclude the proof by applying Theorem 66.

6.5 Cross-intersecting families
In this section we extend Theorem 57 to simplicial complexes. First we show
that Theorem 65 holds for shifted simplicial complexes. In particular we give a
different proof from the one by Borg [17].

Proposition 102. Let k ≤ d/2. Let K be a shifted simplicial complex with vertex
set [n] and minimal facet cardinality d. Let F ,G ⊆ K be a pair of non-empty
cross-intersecting families of (k − 1)-faces, then

|F| + |G| ≤ fk−1(K) − fk−1(K[[n] \ [k]]) + 1.

Proof. By Theorem 89 we have that ∆(F), ∆(G) ⊆ ∆(K) = K are a pair of
non-empty shifted cross-intersecting families. We proceed by induction on n and
k using that the claim holds if the underlying simplicial complex is the simplex.
Set F(n) = {F \ {n} : F ∈ ∆(F), n ∈ F} and F(n̄) = {F ∈ ∆(F) : n /∈ F}.
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We define analogously G(n) and G(n̄). First we claim that F(n) and G(n) are
cross-intersecting families of (k−2)-faces contained in lk(n,K). If not, then there
exist F ∈ ∆(F) and G ∈ ∆(G) such that F ∩G = {n}. Since 2k ≤ d there exist
a facet T ∈ K strictly containing F . Since |F ∪ G| < 2k ≤ d, then there exist
i ∈ T \ (F ∪G). Because ∆(F) is shifted we have that (F \ {n}) ∪ {i} ∈ ∆(F).
But, the face (F \ {n}) ∪ {i} is disjoint from G, which contradicts the cross-
intersecting assumption. Then F(n) and G(n) are cross-intersecting families of
(k − 2)-faces in lk(n,K). By induction we can conclude that

|F(n)| + |G(n)| ≤ fk−2(lk(n,K)) − fk−2(lk(n,K)[[n− 1] \ [k − 1]]) + 1.

Since F(n̄) and G(n̄) are cross-intersecting families of (k − 1)-faces in del(n,K)
we can conclude by induction that

|F(n̄)| + |G(n̄)| ≤ fk−1(del(n,K)) − fk−1(del(n,K)[[n− 1] \ [k]]) + 1.

The conclusion will follow from the fact that fk−2(lk(n,K)) + fk−1(del(n,K)) =
fk−1(K) and the following inequality

fk−1(K[[n]\[k]]) ≤ fk−2(lk(n,K)[[n−1]\[k−1]])+fk−1(del(n,K)[[n−1]\[k]])−1.

To verify this last inequality consider a (k − 1)-face F ∈ K[[n] \ [k]], if n ∈ F ,
then

F \ {n} ∈ lk(n,K)[[n− 1] \ [k]] ⊆ lk(n,K)[[n− 1] \ [k − 1]]. (6.1)
If n /∈ F , then F ∈ del(n,K)[[n− 1] \ [k]]. Moreover, the right hand side of (6.1)
also contains the (k−2)-face [k, 2k−2] ∈ lk(n,K)[[n−1]\ [k−1]]. This is because
[k, 2k − 2] ⊆ [d− 1] ∪ {n} ∈ K since K is shifted with minimal facet cardinality
d. Substracting this face gives us the desired inequality.

Proof of Theorem 68. By Theorem 89 we know that ∆(F) and ∆(G) are a pair
of non-empty cross-intersecting families of (k − 1)-faces in ∆(K). This last one
is a shifted simplicial complex with minimal facet cardinality depth(K) + 1. By
Proposition 102 we have that

|F| + |G| = |∆(F)| + |∆(G)|
≤ fk−1(∆(K)) − fk−1(∆(K)[[n] \ [r]]) + 1
= fk−1(K) − fk−1(K[N \W ]) + 1,

where the last equality follows from Proposition 94.

As an application we obtain a proof of Theorem 65.

Proof of Theorem 65. Since K is a sequentially Cohen-Macaulay simplicial com-
plex with minimal facet cardinality d, it follows from the discussion at the end
of subsection 6.2.3 that depth(K) + 1 = d. Since k ≤ d/2 = depth(K)+1

2 , we can
conclude the proof by applying Theorem 68.
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[91] R. Woodroofe. Erdős-Ko-Rado theorems for simplicial complexes. J. Com-
bin. Theory Ser. A, 118(4):1218–1227, 2011.

75



List of publications
• [19] D. Bulavka, A. Goodarzi, and M. Tancer. Optimal bounds for

the colorful fractional Helly theorem. In K. Buchin and É. Colin de
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