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1. Introduction
Games have played a key role in AI history, engaging top minds and serving as important
benchmarks. They can model a wide range of real-world situations, have well-defined
objectives, and the performance of agents can be directly compared with that of humans.
Also, games are fun to play and even more fun to do research on.

In this thesis, we will consider only two-player zero-sum games.

1.1 History of AI In Games
From the 1950s to the present, there have been significant developments in algorithms
resulting in multiple milestones. Until recently, this development was largely separate for
perfect and imperfect information games. In this section, we will first look at the historical
development of perfect information games, then at imperfect information games, and finally
at algorithms that unify approaches from both areas. Given the extent of the research in this
area, the mentioned milestones are by no means exhaustive; we will only look at a few of
the most prominent and illustrative results.

1.2 Perfect Information Games

1.2.1 Turing chess
One of the earliest examples was Turochamp , a chess program developed by Alan Turing
and David Champernowne in 1948 [Copeland, 2004]. Though it was not executed on a real
computer due to its complexity for contemporary machines, it was run manually step by
step by Turing himself, showing it could handle a full game against a human. While this
was a first attempt, it already had important concepts that would repeatedly appear in later
algorithms - namely, search and heuristic evaluation function.

1.2.2 Samuel’s Checkers
The next important milestone was Samuel’s checkers program [Samuel, 1959]. It improved
both the search and the value function. For the search, it used minimax search with alpha-
beta pruning — an algorithm that is still used today in top chess engines [The Stockfish
Development Team, 2021]. Even more important and interesting are the improvements in
the heuristic value function. Instead of hard coding, the function was trained using self-play
and machine learning. This was one of the first big successes of machine learning. The final
version of the program achieved a strong amateur level in checkers - much better than the
author himself.

1.2.3 TD-Gammon
The concept of using machine learning with self-play to learn value was then taken one
step further by TD-Gammon, a Backgammon player program developed by Gerald Tesauro
[Tesauro, 1995]. It used neural networks to approximate the value function and a TD-update
rule borrowed from reinforcement learning, combined again with search. It was one of the
first programs approaching the level of top human players in a large game.
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1.2.4 Deep Blue
In 1997, almost 50 years after Samuel’s checkers program, Deep Blue became the first
computer program to defeat a reigning world champion after winning a match against Garry
Kasparov [Campbell et al., 2002]. This came after a close defeat in the previous year. The
program used alpha-beta search in combination with a sophisticated value function. While
the value function was largely hand-crafted, it was tuned using a large database of human
games. The program was also accelerated using special chess chips.

1.2.5 AlphaGo
Even after mastering chess, the game of Go remained a long-standing challenge for computer
players. Two sources of difficulty hindered classical search approaches. The first was the
large branching factor of Go - this made delving deeper into the search tree exponentially
harder. The other significant problem was the absence of a known strong value function.
AlphaGo solved both these problems with the help of machine learning using deep networks
[Silver et al., 2016].

The search was based on Monte Carlo Tree Search (MCTS) [Kocsis and Szepesvári,
2006], previously used successfully for Go, but the space of searched actions was greatly
reduced thanks to the use of a policy network that suggested the most promising actions to
investigate. The evaluation of positions was composed of a combination of two different
approaches. Firstly, there was a value function implemented by a convolutional neural
network that took a representation of the board and returned a corresponding value. The
other evaluation approach used a fast policy network to quickly unroll the game - simulating
the actions of both players until the eventual end of the game. This end value was then
returned as a final estimate. A linear combination of both these approaches was then used to
provide a single value estimate for MCTS.

To train the agent, a large dataset of human Go games was first used for supervised
training of the policy and value functions. These functions were then improved using
self-play training.

AlphaGo was able to defeat Lee Sedol, one of the world’s best Go players.

1.2.6 AlphaGo Zero
AlphaGo Zero was a successor of AlphaGo [Silver et al., 2017b]. It demonstrated that
even such a complex game as Go could be trained in a zero-knowledge fashion - that
means without human data, using only self-play, the rules of the game, and minimal prior
knowledge. Not only was it able to surpass the performance of the original AlphaGo, but it
did so using a simpler and more general algorithm.

In contrast to AlphaGo, value estimation came only from the value network, and both
policy and value estimation were trained directly from self-play.

1.2.7 AlphaZero
Most high-performance computer programs were designed to play just a single game. For
example, Deep Blue would not be able to play Go or checkers. However, the general
architecture of AlphaGo Zero allowed one to simply take the same algorithm without any
big modifications and train it to play two more games. The resulting agent — AlphaZero
— achieved state-of-the-art performance on chess, Go and shogi, all of this using the same
network architecture and almost identical hyper-parameters [Silver et al., 2017a].
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1.2.8 Summary
Most successful algorithms for perfect information games share a few common traits. The
first is the use of search methods, either minimax or MCTS, which allows for real-time
reasoning about complex situations as they occur during gameplay. The second is the
utilization of a heuristic value function at the leaves of the search tree. More general
approaches that use less expert knowledge also share the use of self-play — a technique
from reinforcement learning where an AI agent repeatedly plays games against itself, using
the outcomes of these games as learning input. As a result, both the value and the policy can
be learned without human input.

1.3 Imperfect Information
There is a small but crucial difference between perfect information games such as chess and
Go, and imperfect information games such as poker or rock-paper-scissors. In chess, all
necessary information is known by both players. In contrast, poker players don’t know what
cards their opponents hold. This allows chess players to simply choose the single best action
to play an optimal maximin strategy. It’s easy to see that this cannot be done in games like
rock-paper-scissors or poker. Instead, the player has to act strategically and mix actions to
carefully conceal information. Moreover, in contrast to perfect information games, where
one can just examine possible future actions, in imperfect information games, the optimal
policy also depends on the past actions of the players and their opponent. Because of this,
classical approaches solve the whole game at once using some optimization technique.

Let’s now consider some examples of these games, alongside the classical techniques
used.

1.3.1 Matrix Games
Matrix games, also known as normal form games, represent the simplest form of imperfect
information games. They depict a situation where all players make decisions simultaneously.
In the case of two-player, zero-sum games, such a game can be described by a single payoff
matrix. The possible actions for Player 1 are to choose a row from the matrix, while Player
2 must choose a column. The value of the corresponding matrix element is then equal to
the utility of Player 1 at the end of the game. Since we are considering zero-sum games,
this value also corresponds to the negative utility of Player 2. A simple example of such a
game is rock-paper-scissors. Note that actions can be stochastic — each player can choose a
probability distribution over their actions.

In 1928, Von Neumann developed the minimax theorem, which has become a founda-
tional principle of game theory, demonstrating what the optimal solution of matrix games
looks like [Neumann, 1928]. In 1951, Dantzig showed the equivalence of zero-sum games
and linear programs [Dantzig, 1951]. This allows for efficient solutions of large normal
form games, using any available LP solver.

1.3.2 Sequential Decision Making
Extensive form Games

In many real-world situations, players do not act simultaneously but instead take sequences
of actions. This is the case for the majority of board games, including Checkers, Chess, Go,
and Poker. The extensive form game formalism represents all possible action sequences
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using a game tree. The leaves of the tree correspond to terminal states where the game’s
terminal utility is defined. Nodes in the tree represent decision points for the players and the
edges represent players’ actions. If the game involves imperfect information, as in Poker, a
player must apply the same strategy in all states that he cannot distinguish between. These
states form an information set. If there’s a stochastic element in the game, such as dealing
cards in Poker, an additional player called a ”chance player” is introduced to model this
stochasticity. This player acts according to a known fixed probability distribution.

Counterfactual Regret Minimization

Recently, most of the successful solving techniques for large extensive form games have been
using some version of Counterfactual Regret Minimization (CFR) [Zinkevich et al., 2007].
It is an iterative algorithm that operates directly on information sets, thus requiring several
orders of magnitude less memory. In each iteration, both players update their strategies, and
the average of these strategies provably converges to a Nash equilibrium. The algorithm can
be stopped at any time.

1.3.3 Computer Poker
Poker is the canonical game of imperfect information where players cannot see their oppo-
nent’s cards.Strong play involves bluffing and insights into potential opponent strategies,
qualities that have traditionally not been considered computer-like. In their groundbreaking
work ”Theory of Games and Economic Behavior,” von Neumann and Morgenstern dedicated
an entire section (over 30 pages) to poker [Morgenstern and Von Neumann, 1953].

Over the years, there has been a substantial body of research in imperfect information
games, with poker game variants being the only domain used for evaluating the algorithms.

1.3.4 Annual Computer Poker Competition
The Annual Computer Poker Competition [Bard et al., 2013] was started in 2006 as an effort
to develop a system to evaluate poker agents that were being developed by the University of
Alberta and Carnegie Mellon University. It has been held annually since 2006 until 2018,
open to all competitors, in conjunction with top-tier artificial intelligence conferences: AAAI
and IJCAI. Multiple university teams and individuals participated each year, submitting
dozens of poker agents.

1.3.5 Game Abstraction
Classical solution approaches for imperfect information games require reasoning about the
entire game tree at once and producing a complete strategy prior to play. Since a lot of
poker variants, like Heads-Up No Limit Texas Hold’em, are too large to be solved directly,
the common technique is to solve a smaller, abstracted game that is similar to the original
game. To play the original game, one must first translate actions from the original game
to the abstracted game, then choose an action based on the abstracted game’s policy, and
finally translate this action back to the original game. This entire process is called game
abstraction.

The majority of the top Annual Computer Poker Competition entries used game abstrac-
tion along with counterfactual regret minimization.
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1.3.6 Success of Classical Techniques
The combination of the counterfactual regret minimization and abstraction resulted in
important milestones for imperfect information games.

Polaris

In 2007 and 2008, the Computer Poker Research Group at the University of Alberta orga-
nized the Man-vs-Machine Poker Championships, using the game of Heads-Up Limit Texas
Hold’em [Bowling et al., 2009]. In 2007, a poker agent named Polaris competed against
human professional players but lost narrowly. In 2008, the improved versions of Polaris
narrowly won. This was the first time that a poker-playing AI defeated human professionals.

Cepheus

In January of 2015, the poker agent Cepheus reached another milestone by essentially
solving the entire game of Heads-Up Limit Texas Hold’em [Bowling et al., 2015]. While
other large games, such as checkers or Connect Four, had been solved previously, this was
the first time that any large imperfect information game played professionally by humans
was solved.

1.3.7 Limitations of Classical Techniques
While abstraction techniques were very successful in Limit Heads-Up Texas Hold’em poker,
their success in No-Limit Texas Hold’em poker, a more complex but also more popular
version of poker, was modest. In 2015, the abstraction-based computer program Claudico
lost to a team of professional poker players in a No-Limit Texas Hold’em poker match by a
margin of 91 mbb/g, which is considered a ’huge margin of victory’ [Moravčı́k et al., 2017].
Furthermore, the local best-response technique showed that abstraction-based programs from
the Annual Computer Poker Competition have massive flaws, and moreover, these flaws are
relatively easy to find. All evaluated abstraction-based programs lost by at least 3,000 mbb/g
against the local best response, which is four times more than if they had simply folded each
game [Lisý and Bowling, 2017b]. To illustrate the naivety of the abstraction-based approach
for use in large extensive games, one can imagine its application to chess. It would require
constructing an abstracted version of chess small enough to solve directly and then mapping
states and actions between this abstraction and the original game [Schmid, 2021].

1.3.8 Search Based Techniques
In perfect information, the combination of decision-time search with a heuristic value
function leads to strong performance. Some popular perfect information search methods,
like Monte Carlo tree search can be also used in imperfect information settings [Whitehouse,
2014]. Unfortunately they fail to produce optimal policies even in very small games.
Until recently, it had been even thought that sound search is impossible in imperfect
information games[Frank et al., 1998, Lisý et al., 2015]. Fortunately, a significant milestone
in computational game theory has been reached recently — a sound search in imperfect
information games.
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DeepStack

DeepStack was the first algorithm to introduce the combination of sound decision-time
search and heuristic value function for imperfect information games [Moravčı́k et al., 2017].
This was made possible by a technique called continual-resolving. It is analogous to the
search in perfect information games, but with a few important modifications that make
it theoretically sound. The lookahead tree contains not only states in which the player is
acting, but also all the states that are sharing the same publicly known information. This
allows for coordination of the policy between states that either player cannot distinguish.
In poker, this means that the search always takes into consideration all possible private
cards a player and his opponent could hold. To reason within this complex search tree, the
value function also has to be more intricate. In contrast to perfect information games, it
outputs a vector of values for each player. The root of the lookahead tree is also significantly
modified—it forms a gadget game. This gadget ensures that if the policy is optimal in the
lookahead tree, it is also optimal in the whole game. The search algorithm must be able
to compute a precise stochastic policy, therefore DeepStack uses a version of CFR instead
of simple minimax. DeepStack’s value function was implemented by a neural network
and trained using a large number of examples generated from random poker situations.
Continual resolving allowed DeepStack to ditch the abstraction and reason about situations
independently as they arise during play, which led to a significant improvement over prior
methods. In December of 2016, DeepStack became the first program to beat professional
human players in no-limit Texas hold’em poker. In contrast to previous abstraction-based
agents, DeepStack is unexploitable by the local best response.

Libratus

Subsequent to DeepStack, the computer program Libratus defeated a team of four profes-
sional heads-up poker specialists in a HUNL competition held in January 2017 [Brown and
Sandholm, 2018]. Libratus could be described as a hybrid approach. Near the end of the
game, it used a ’nested endgame solving’ technique similar to the continuous re-solving
used by DeepStack. Since it did not utilize a value function, it couldn’t execute the search in
the early stages of the game and instead used classical abstraction techniques. The use of
abstraction resulted in weaknesses in the strategy. To address this, the abstract strategy was
augmented with the help of human analysis during match breaks.

Both DeepStack and Libratus demonstrated that real-time decision-making is crucial to
achieving high-level performance.

Player of Games

Even after the introduction of decision time search, the worlds of perfect and imperfect
games remained separate. Imperfect information agents were usually designed to handle
just a single specific game. The Player of Games (PoG) bridges this gap [Schmid et al.,
2021]. It was the first algorithm to achieve strong empirical performance in large perfect
information games — chess and Go, as well as in imperfect information games — poker
and Scotland Yard. This marked an important step toward creating general algorithms for
arbitrary environments. The algorithm combines ideas from DeepStack and AlphaZero
in a theoretically sound fashion. Continual-resolving introduced by DeepStack is used to
ensure that the policy is consistent during online play. Growing-tree counterfactual regret
minimization (GT-CFR) builds a lookahead tree non-uniformly, expanding the tree toward
the most relevant states similarly to the MCTS used by AlphaZero. Sound self-play is used
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to train the policy and value network. Both networks are specified in a ”zero-like” fashion
with minimal domain-specific knowledge

Limitations of Sound Search

The main limitation of the sound search used by DeepStack and Player of Games is the
need to enumerate all possible information states contained in a public state, which can be
prohibitively expensive for some games.

This could be an interesting area for future research; one possible solution is to use
sampling of the information states.

1.4 Author’s Contribution
The remaining sections of this Ph.D. thesis delve into my contributions to the field of
algorithmic game theory. These contributions can be broadly categorized into two main
areas: theoretical advancements and novel algorithms.

1.4.1 Theoretical Advancements
Revisiting CFR+ and Alternating Updates

Many successful imperfect information game agents, such as Polaris, Libratus, DeepStack,
and Player of Games, leverage a variant of the Counterfactual Regret Minimization (CFR)
algorithm. A recent and widely adopted version of CFR is CFR+ due to its superior empirical
performance across various problem domains, making it one of the key factors contributing
to the success of Cepheus [Burch, 2017]. Although CFR+ was initially introduced with
a theoretical upper bound on solution error, subsequent research revealed an error in one
of the proof steps [Farina et al., 2019]. We provide updated proofs to recover the original
bound [Burch et al., 2019].

Bounding the Support Size in Extensive Form Games with Imperfect Information

Optimal play in imperfect information games often necessitates the use of stochastic policies.
This stands in contrast to perfect information games, where a simple deterministic optimal
strategy always exists. Naturally, one may wonder about the impact on the number of
optimal actions as the level of uncertainty increases.

We have established a linear relationship between the level of uncertainty and the support
size, which refers to the number of actions with non-zero probability [Schmid et al., 2014].

Sound Algorithms in Imperfect Information Games

The concept of Nash equilibrium is traditionally defined for a fixed offline set of strategies.
However, extending this concept to online settings, where the entire strategy is not computed
in advance, is not a straightforward task. Naively attempting to do so may result in the
disappearance of certain guarantees for two-player zero-sum games. To tackle this issue, we
introduced the concept of a consistency hierarchy, which enables the analysis of algorithms
that perform online search, such as those employed in DeepStack or Player of Games [Šustr
et al., 2020].
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1.4.2 Novel Algorithms
Variance Reduction in Monte Carlo Counterfactual Regret Minimization for Extensive
Form Games Using Baselines

Monte Carlo Counterfactual Regret Minimization (MCCFR) [Lanctot et al., 2009] is a
family of game-solving algorithms designed for imperfect information games. In contrast to
the vanilla CFR implementation, MCCFR doesn’t require traversing the entire game tree
in each iteration. Instead, it samples a limited number of trajectories, similar to algorithms
used in reinforcement learning. While MCCFR still offers good probabilistic convergence
guarantees, the introduction of sampling introduces variance in value estimates, which can
considerably slow down the convergence speed [Burch, 2017].

In the realm of reinforcement learning, this variance issue has traditionally been ad-
dressed using baselines in policy-based methods. In VR-MCCFR (Variance-Reduced
MCCFR) [Schmid et al., 2019], we employed similar ideas to obtain unbiased value esti-
mates and reduce variance. In the ideal scenario of perfect estimates, the variance can be
reduced to zero. In experimental evaluations, VR-MCCFR achieved an order of magnitude
speedup and decreased empirical variance by three orders of magnitude.

Refining Subgames in Large Imperfect Information Games

Traditionally, state-of-the-art game algorithms have employed an abstraction approach,
where they solve a smaller, abstracted version of the game and then map the strategy from
this reduced game back to the original game at decision time. However, to enable online
improvement of strategies, particularly in situations close to the game end where the problem
is more tractable, we introduced the concept of safe refinement of sub-games [Moravčı́k
et al., 2016]. The ideas from this work have since been utilized by Libratus, DeepStack, and
Player of Games.

AIVAT: A New Variance Reduction Technique for Agent Evaluation in Imperfect
Information Games

Evaluation of agents in imperfect information games is inherently noisy, especially when
compared to perfect information games. Traditionally, evaluating agents in computer poker
competitions required millions of matches to obtain statistically significant results. While
this approach worked for simple, abstraction-based agents that don’t require complex compu-
tation at run-time, it becomes computationally expensive when agents employ decision-time
search. Furthermore, comparing agent performance to human players exacerbates the prob-
lem. To address these challenges, we developed AIVAT, a provably unbiased method that
significantly reduces variance during evaluation [Burch et al., 2018].

Deepstack: Expert-level artificial intelligence in heads-up no-limit poker

DeepStack was the first algorithm to use a theoretically sound combination of limited
search depth and machine learning for imperfect information games [Moravčı́k et al., 2017].
This approach reduced the gap between approaches for perfect and imperfect information.
Significantly, it was also the first AI system to outperform professional poker players in
No-Limit Texas Hold’em, representing a major accomplishment in the field of AI.
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Player of Games

The Player of Games represents the culmination of our efforts to unify the domains of perfect
and imperfect information games [Schmid et al., 2021]. It synthesizes techniques employed
in both DeepStack and AlphaZero, demonstrating strong empirical performance in both
types of games. This achievement is a significant step towards developing truly general
algorithms for arbitrary environments. The approach gradually builds a search tree, similar
to Monte Carlo Tree Search, and learns from self-play with minimal prior information,
similar to AlphaZero. At the same time, it incorporates sound game theoretic reasoning,
akin to DeepStack. We have proved that the Player of Games is theoretically sound, and
have evaluated its performance in two perfect information games — chess and Go - and two
imperfect information games — Heads-Up No-Limit Texas Hold’em Poker and Scotland
Yard.
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2. Revisiting CFR+ and Alternating
Updates
CFR+ was introduced [Tammelin, 2014] as an algorithm for approximately solving imperfect
information games, and was subsequently used to essentially solve the game of heads-up
limit Texas Hold’em poker [Bowling et al., 2015]. Another paper associated with the poker
result gives a correctness proof for CFR+, showing that approximation error approaches
zero [Tammelin et al., 2015].

CFR+ is a variant of the CFR algorithm [Zinkevich et al., 2007], with much better
empirical performance than CFR. One of the CFR+ changes is switching from simultaneous
updates to alternately updating a single player at a time. A crucial step in proving the cor-
rectness of both CFR and CFR+ is linking regret, a hindsight measurement of performance,
to exploitability, a measurement of the solution quality.

Later work pointed out a problem with the CFR+ proof [Farina et al., 2019], noting
that the CFR+ proof makes reference to a folk theorem making the necessary link between
regret and exploitability, but fails to satisfy the theorem’s requirements due to the use of
alternating updates in CFR+. Farina[Farina et al., 2019] give an example of a sequence of
updates which lead to zero regret for both players, but high exploitability.

We state a version of the folk theorem that links alternating update regret and exploitabil-
ity, with an additional term in the exploitability bound relating to strategy improvement. By
proving that CFR and CFR+ generate improved strategies, we can give a new correctness
proof for CFR+, recovering the original bound on approximation error.

With a corrected proof, we once again have a theoretical guarantee of correctness to fall
back on, and can safely use CFR+ with alternating updates, in search of its strong empirical
performance without worrying that it might be worse than CFR.

The alternating update analogue of the folk theorem also provides some theoretical
motivation for the empirically observed benefit of using alternating updates. Exploitability
is now bounded by the regret minus the average improvement in expected values. While
we proved that the improvement is guaranteed to be non-negative for CFR and CFR+, we
would generally expect non-zero improvement on average, with a corresponding reduction
in the bound on exploitability.
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3. Bounding the Support Size in
Extensive Form Games with Imperfect
Information
Arguably the most important solution concept in non-cooperative games is the notion of
Nash equilibrium, where no player improves by deviating from this strategy profile. Support
is defined as the set of actions played with non-zero probability and there are many crucial
implications related to it.

Once the support is known, it is easy to compute the equilibrium in polynomial time
even for general-sum games. Performance of some algorithms, namely the double-oracle
algorithm for extensive form games, is tightly bound to the size of the support [Bošanský
et al., 2013]. Other work shows that minimizing the support in abstracted games can lead to
better strategies in the original game [Ganzfried et al., 2012]. Finally, it is advantageous to
prefer strategies having a small support. Such strategies are both easier to store and play.

Extensive form games model a wide class of games with a varying levels of uncertainty.
In the case of perfect information, there is an optimal strategy using only one action in any
information set. In contrast, in some extensive games with imperfect information, the player
can be forced to use all the possible actions to play optimally.

In this chapter, we focus on the relation between the level of uncertainty and the support
size. We present an upper bound for the support size based on the uncertainty level.

Some games, such as Bayesian extensive games with observable actions or card games
(such as no-limit Texas hold’em poker) have most of the information about the current state
observable by all players, and therefore a low level of uncertainty. In these games, our bound
guarantees the existence of Nash equilibrium having the support size considerably smaller
than the number of all possible actions.

Instead of explicitly defining a level of uncertainty, we use the concept of the public
tree. This concept provides a nice interpretation of uncertainty and public actions. Using the
public tree, we present a new technique called the equilibrium preserving transformation,
which transforms some equilibrium strategy profile into another. We provide an upper bound
on the number of public actions used in the transformed Nash equilibrium.

Our approach also applies to games with non-observable actions, where it simply limits
the number of public actions.

Applying our result to specific games, we present a new bound for the support size in
these games.

For example, in no-limit Texas hold’em poker, there can be any finite number of actions
available in some information sets. Our result implies the existence of an optimal strategy
for which the number of actions used in every information set depends only on the number
of players and the number of card combinations players can be dealt.

In Bayesian extensive games with observable actions, the bound equals to the number of
different player types the chance can reveal.

Moreover, our proof is constructive. Given an extensive form game and an optimal
strategy, the equilibrium preserving transformation finds another optimal strategy satisfying
our bound in polynomial time.
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4. Sound Algorithms in Imperfect
Information Games
From the very dawn of computer game research, search was a fundamental component
of many algorithms. Turing’s chess algorithm from 1950 was able to think two moves
ahead [Copeland, 2004], and Shannon’s work on chess from 1950 includes an extensive
section on how an evaluation function can be used within search [Shannon, 1950]. Samuel’s
checkers algorithm from 1959 already combines search and learning of a value function,
approximated through a self-play method and bootstrapping [Samuel, 1959]. The combi-
nation of search and learning has been a crucial component in the remarkable milestones
where computers outperformed their human counterparts in challenging games: DeepBlue in
Chess [Campbell et al., 2002], AlphaGo in Go [Silver et al., 2016], DeepStack and Libratus
in Poker [Moravčı́k et al., 2017, Brown and Sandholm, 2018].

Online methods for approximating Nash equilibria in sequential imperfect information
games appeared only in the last few years [Lisý et al., 2015, Brown and Sandholm, 2017,
Moravčı́k et al., 2017, Brown and Sandholm, 2018, 2019, Brown et al., 2020]. We thus
investigate what it takes for an online algorithm to be sound in imperfect information settings.
While it has been known that search with imperfect information is more challenging than
with perfect information [Frank and Basin, 1998, Lisý et al., 2015], the problem is more
complex than previously thought. Online algorithms “live” in a fundamentally different
setting, and they need to be evaluated appropriately.

Previously, a common approach to evaluate online algorithms was to compute a corre-
sponding offline strategy by “querying” the online algorithm at each state (“tabularization”
of the strategy) [Lisý et al., 2015, Šustr et al., 2019]. One would then report the exploitability
of the resulting offline strategy. We show that this is not generally possible and that naive
tabularization can also lead to incorrect conclusions about the online algorithm’s worst-case
performance. As a consequence we show that some algorithms previously considered to be
sound are not.

We first give a simple example of how an online algorithm can lose to an adversary
in a repeated game setting. Previously, such an algorithm would be considered optimal
based on a naive tabularization. We build on top of this example to introduce a framework
for properly evaluating an online algorithm’s performance. Within this framework, we
introduce the definition of a sound and ϵ-sound algorithm. Like the exploitability of a
strategy in the offline setting, the soundness of an algorithm is a measure of its performance
against a worst-case adversary. Importantly, this notion collapses to the previous notion of
exploitability when the algorithm follows a fixed strategy profile.

We then introduce a consistency framework, a hierarchy that formally states in what sense
an online algorithm plays “consistently” with an ϵ-equilibrium. The hierarchy allows stating
multiple bounds on the algorithm’s soundness, based on the ϵ-equilibrium and consistency
type. The stronger the consistency is in our hierarchy, the stronger are the bounds. This
further illustrates the discrepancy of search in perfect and imperfect information settings, as
these bounds sometimes differ for perfect and imperfect information games.

The definitions of soundness and the consistency hierarchy finally provide appropriate
tools to analyze online algorithms in imperfect information games. We thus inspect some of
the previous online algorithms in a new light, bringing new insights into their worst-case
performance guarantees. Namely, we focus on the Online Outcome Sampling (OOS) [Lisý
et al., 2015] algorithm. Consider the following statement from the OOS publication: “We
show that OOS is consistent, i.e., it is guaranteed to converge to an equilibrium strategy as
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search time increases. To the best of our knowledge, this is not the case for any existing
online game playing algorithm. . . ’ The problem is that OOS provides only the weakest of the
introduced consistencies — local consistency. As the local consistency gives no guarantee
for imperfect information games (in contrast to perfect information games), OOS (and
potentially other locally consistent algorithms) can be highly exploited by an adversary. The
experimental section then confirms this issue for OOS in two small imperfect information
games.
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5. Variance Reduction in Monte Carlo
Counterfactual Regret Minimization
(VR-MCCFR) for Extensive Form Games
using Baselines
Policy gradient algorithms have shown remarkable success in single-agent reinforcement
learning (RL) [Mnih et al., 2016, Schulman et al., 2017]. While there has been evidence
of empirical success in multiagent problems [Foerster et al., 2017, Bansal et al., 2018], the
assumptions made by RL methods generally do not hold in multiagent partially-observable
environments. Hence, they are not guaranteed to find an optimal policy, even with tabular
representations in two-player zero-sum (competitive) games [Littman, 1994]. As a result,
policy iteration algorithms based on computational game theory and regret minimization
have been the preferred formalism in this setting. Counterfactual regret minimization [Zinke-
vich et al., 2007] has been a core component of this progress in Poker AI, leading to solving
Heads-Up Limit Texas Hold’em [Bowling et al., 2015] and defeating professional poker
players in No-Limit [Moravčı́k et al., 2017, Brown and Sandholm, 2018].

The two fields of RL and computational game theory have largely grown independently.
However, there has been recent work that relates approaches within these two communities.
Fictitious self-play uses RL to compute approximate best responses and supervised learning
to combine responses [Heinrich et al., 2015]. This idea is extended to a unified training
framework that can produce more general policies by regularizing over generated response
oracles [Lanctot et al., 2017]. RL-style regressors were first used to compress regrets in game
theorietic algorithms [Waugh et al., 2015]. DeepStack introduced deep neural networks
as generalized value-function approximators for online planning in imperfect information
games [Moravčı́k et al., 2017]. These value functions operate on a belief-space over all
possible states consistent with the players’ observations.

This chapter similarly unites concepts from both fields, proposing an unbiased variance
reduction technique for Monte Carlo counterfactual regret minimization using an analog
of state-action baselines from actor-critic RL methods. While policy gradient methods
typically involve Monte Carlo estimates, the analog in imperfect information settings is
Monte Carlo Counterfactual Regret Minimization (MCCFR) [Lanctot et al., 2009]. Policy
gradient estimates based on a single sample of an episode suffer significantly from variance.
A common technique to decrease the variance is a state or state-action dependent baseline
value that is subtracted from the observed return. These methods can drastically improve
the convergence speed. However, no such methods are known for MCCFR.

MCCFR is a sample based algorithm in imperfect information settings, which approxi-
mates counterfactual regret minimization (CFR) by estimating regret quantities necessary
for updating the policy. While MCCFR can offer faster short-term convergence than orig-
inal CFR in large games, it suffers from high variance which leads to slower long-term
convergence.

CFR+ provides significantly faster empirical performance and made solving Heads-Up
Limit Texas Hold’em possible [Bowling et al., 2015]. Unfortunately, CFR+ has so far did
not outperform CFR in Monte Carlo settings [Burch, 2017].

In this work, we reformulate the value estimates using a control variate and a state-action
baseline. The new formulation includes any approximation of the counterfactual values,
which allows for a range of different ways to insert domain-specific knowledge (if available)
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but also to design values that are learned online.
Our experiments show two orders of magnitude improvement over MCCFR. For the

common testbed imperfect information game – Leduc Poker – Variance Reduction MCCFR
(VR-MCCFR) with a state-action baseline needs 250 times fewer iterations than MCCFR to
reach the same solution quality. In contrast to RL algorithms in perfect information settings,
where state-action baselines bring little to no improvement over state baselines [Tucker
et al., 2018], state-action baselines lead to significant improvement over state baselines
in multiagent partially-observable settings. We suspect this is due to variance from the
environment and different dynamics of the policies during the computation.
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6. Refining Subgames in Large Imperfect
Information Games
Extensive form games are a powerful model capturing a wide class of real-world problems.
The games can be either perfect information (Chess) or imperfect information (poker).
Applications of imperfect information games range from security problems [Pita et al.,
2009] to card games [Bowling et al., 2015]

The largest imperfect information game to be (essentially) solved today is the limit
version of two-player Texas Hold’em poker [Bowling et al., 2015], with approximately 1017

nodes [Johanson, 2013]. Unfortunately, many games remain that are much too large to
be solved with current techniques. For example, the more popular “No-Limit” variant of
two-player Texas Hold’em poker has approximately 10165 nodes [Johanson, 2013].

The leading approach to solving imperfect information games of this magnitude is to
create a simplified abstraction of the game, compute an ϵ-equilibrium in the abstract game,
and finally use the strategy from the abstracted game to play the original, unabstracted game
[Billings et al., 2003a] [Sandholm, 2010] [Johanson et al., 2013] [Gibson, 2014]. The amount
of simplification needed to produce the abstracted game is determined by the maximum size
of the game tree that we are able to learn with the computing resources available. While
abstraction pathologies mean that larger abstractions are not guaranteed to produce better
strategies [Waugh et al., 2009], empirical results have shown that finer-grained abstractions
are generally better [Johanson et al., 2013]

An appealing compromise is to pre-calculate the largest possible abstraction we can
handle for the entire game and then improve this in real-time with refinements. The original
strategy is used to play the early parts of the game (the trunk) and once the remaining portion
of the game tree (the subgame) becomes tractable, we can refine the strategy for the subgame
in real-time using even finer-grained abstraction. Figure 6.1 illustrates the approach.

Figure 6.1: Subgame refinement framework. (i) the strategy for the game is pre-computed
using coarse-grained abstraction (ii) during the play, once we reach a node defining a
sufficiently small subgame, we refine the strategy for that subgame (iii) this together with the
original strategy for the trunk creates a combined strategy. The point is to produce improved
combined strategy

Note that not only can we enlarge the size of the abstraction in the subgame, we can also
reduce the “off the tree problem”. When an opponent takes an action that is not found in the
abstraction, it needs to be mapped onto a (similar) one in the abstraction. This mapping can
destroy relevant game information. To reduce this effect, we can construct the subgame so
that it starts in the exact state of the game so far [Ganzfried and Sandholm, 2015].

Subgame refinement has been successfully used in perfect information games to improve
the strategies [Müller and Gasser, 1996] [Müller, 2002]. Unfortunately, the nature of
imperfect information games means that it is difficult to isolate subgames. Current attempts
to apply subgame refinement to imperfect information games have lead to marginal gains
or potentially result in a more exploitable final solution. The reason for this is that if we
change our strategy in the subgame then this gives our opponent the opportunity to exploit
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our combined strategy by altering their behavior in the trunk of the game. See [Burch et al.,
2014] or [Ganzfried and Sandholm, 2015] for details and several nice examples of this flaw.

The first approach, “endgame solving”, does not guarantee a decrease in exploitability,
and can instead produce a strategy that is drastically more exploitable. [Ganzfried and
Sandholm, 2015]. The second approach, re-solving, was originally designed for subgame
strategy re-solving. In other words, it aims to reproduce the original strategy from a compact
representation. The resulting strategy is guaranteed to be no more exploitable than the
original one. Although this technique can be used to refine the subgame strategy, there is no
explicit construction that forces the refined strategy to be any better than the original, even
if much stronger strategies exist. [Burch et al., 2014]

In this chapter, we present a new technique, max-margin subgame refinement, that is
tailor-made to reduce exploitability in imperfect information games. We introduce the notion
of subgame margin, a simple value with appealing properties, which motivates subgame
refinements that result in large positive margins.

We regard the problem of safe subgame refinement as a linear optimization problem.
This perspective demonstrates the drawbacks and connections between the two previous
approaches, and ultimately introduce linear optimization to maximize the subgame margin.
Subsequently, we describe an imperfect information game construction that can be used to
find such a strategy (rather than solving the resulting linear optimization problem). This
allows us to solve larger subgames using recently introduced techniques, namely the CFR+
[Tammelin et al., 2015] and domain-specific speedup tricks [Johanson et al., 2012].

Finally, we experimentally evaluate all the approaches - endgame solving, re-solving
and max-margin subgame refinement. For the first time, we evaluate these techniques on
the safe-refinement task as part of a large-scale game by using one of the top participating
agents in AAAI-14 Computer Poker Competition as the baseline strategy to be refined in
subgames.
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7. AIVAT: A New Variance Reduction
Technique for Agent Evaluation in
Imperfect Information Games

7.1 Introduction
Evaluating an agent’s performance in stochastic settings can be hard. Non-zero variance in
outcomes means the game must be played multiple times to compute a confidence interval
that likely contains the true expected value. Regardless of whether the variance arises from
player actions or from chance events, we might need to observe many samples before we get
a narrow enough interval to draw desirable conclusions. In many situations, it is simply not
feasible (e.g., when the evaluation involves human participation) to simply observe more
samples, so we must turn to statistical techniques that use additional information to help
narrow the confidence interval.

This agent evaluation problem is commonly encountered in games, where the goal is to
estimate the expected performance difference between players. For example, consider poker
games. Poker is not only a long-standing challenge problem for AI [von Neumann, 1928,
Koller and Pfeffer, 1997, Billings et al., 2002] with annual competitions [Zinkevich and
Littman, 2006, Bard et al., 2013], but also a very popular game played by an estimated 150
million players worldwide [Economist, 2007]. Heads-up no-limit Texas hold’em (HUNL) is
a particular variant of the game that has received considerable attention in the AI community
in recent years, including a “Brains vs. AI” event pitting Claudico [cmu, 2015], a top HUNL
computer program, against professional poker players. That match involved 80,000 hands of
poker, played over seven days, involving four poker players, playing dozens of hours each.
Despite Claudico losing by over 9 big blinds per 100 hands (a margin that is considered
huge by poker professionals) [Wood, 2015], the result is only on the edge of statistical
significance, making it hard to draw a conclusion from this large investment of human time.

Previous techniques for variance reduction to achieve stronger statistical conclusions
in this setting have used two broad classes of statistical techniques. Techniques like MI-
VAT [White and Bowling, 2009] use the method of control variates with heuristic value
estimates to reduce the variance caused by chance events. The technique of importance
sampling over imaginary observations [Bowling et al., 2008] takes a different approach,
using knowledge of a player strategy to evaluate multiple states given a single observation.
Imaginary observations can be used to reduce the variance caused by privately observed
chance events, as well as the player’s randomly chosen choice of whether to make any
actions which would immediately end the game.

Techniques from the two classes can be combined, but are not specifically designed
to work together for the greatest reduction in variance, and none of the techniques deal
with the variance caused by non-terminal action selection. Because good play in imperfect
information games generally requires randomised action selection, ignoring action variance
is an important shortcoming. We introduce the action-informed value assessment tool
(AIVAT), an unbiased low-variance estimator for imperfect information games which extends
the use of control variates to player actions, and makes explicit use of imaginary observations
to exploit knowledge of the game structure and player strategies.

AIVAT uses heuristic value functions, knowledge of game structure, and knowledge
about player strategies to both add a control variate term for chance and player decisions,
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and to average over multiple possible outcomes given a single observation. We prove AIVAT
is unbiased, and demonstrate that with (almost) perfect value functions we see (almost)
complete elimination of variance. Even with imprecise value functions, we show variance
reduction in a real-world game that significantly exceeds existing techniques. AIVAT’s three
times reduction in standard deviation allows us to achieve the same statistical significance
with ten times less data. A factor of ten is substantial: for problems with limited data, like
human play against bots, ten times as many games could be the distinction between practical
and impractical.
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8. DeepStack: Expert-level artificial
intelligence in heads-up no-limit poker

8.1 Introduction
Games have long served as benchmarks and marked milestones of progress in artificial
intelligence (AI). In the last two decades, computer programs have reached a performance
that exceeds expert human players in many games, e.g., backgammon [Tesauro, 1995],
checkers [Schaeffer et al., 1996], chess [Campbell et al., 2002], Jeopardy! [Ferrucci, 2012],
Atari video games [Mnih et al., 2015], and go [Silver et al., 2016]. These successes all
involve games with information symmetry, where all players have identical information
about the current state of the game. This property of perfect information is also at the heart
of the algorithms that enabled these successes, e.g., local search during play [Samuel, 1959,
Kocsis and Szepesvári, 2006].

The founder of modern game theory and computing pioneer, von Neumann, envisioned
reasoning in games without perfect information. “Real life is not like that. Real life consists
of bluffing, of little tactics of deception, of asking yourself what is the other man going to
think I mean to do. And that is what games are about in my theory.” [Bronowski, 1973] One
game that fascinated von Neumann was poker, where players are dealt private cards and
take turns making bets or bluffing on holding the strongest hand, calling opponents’ bets, or
folding and giving up on the hand and the bets already added to the pot. Poker is a game
of imperfect information, where players’ private cards give them asymmetric information
about the state of game.

Heads-up no-limit Texas hold’em (HUNL) is a two-player version of poker in which
two cards are initially dealt face-down to each player, and additional cards are dealt face-up
in three subsequent rounds. No limit is placed on the size of the bets although there is an
overall limit to the total amount wagered in each game. AI techniques have previously
shown success in the simpler game of heads-up limit Texas hold’em, where all bets are of
a fixed size resulting in just under 1014 decision points [Bowling et al., 2009, 2015]. By
comparison, computers have exceeded expert human performance in go [Silver et al., 2016],
a perfect information game with approximately 10170 decision points [Allis, 1994]. The
imperfect information game HUNL is comparable in size to go, with the number of decision
points exceeding 10160 [Johanson, 2013].

Imperfect information games require more complex reasoning than similarly sized
perfect information games. The correct decision at a particular moment depends upon the
probability distribution over private information that the opponent holds, which is revealed
through their past actions. However, how our opponent’s actions reveal that information
depends upon their knowledge of our private information and how our actions reveal it.
This kind of recursive reasoning is why one cannot easily reason about game situations in
isolation, which is at the heart of heuristic search methods for perfect information games.
Competitive AI approaches in imperfect information games typically reason about the entire
game and produce a complete strategy prior to play [Zinkevich et al., 2007, Gilpin et al.,
2007]. Counterfactual regret minimization (CFR) [Zinkevich et al., 2007, Burch et al., 2014,
Bowling et al., 2015] is one such technique that uses self-play to do recursive reasoning
through adapting its strategy against itself over successive iterations. If the game is too
large to be solved directly, the common response is to solve a smaller, abstracted game. To
play the original game, one translates situations and actions from the original game to the
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abstract game.
Although this approach makes it feasible for programs to reason in a game like HUNL, it

does so by squeezing HUNL’s 10160 situations down to the order of 1014 abstract situations.
Likely as a result of this loss of information, such programs are behind expert human play.
In 2015, the computer program Claudico lost to a team of professional poker players by
a margin of 91 mbb/g, which is a “huge margin of victory” [Wood, 2015]. Furthermore,
it has been recently shown that abstraction-based programs from the Annual Computer
Poker Competition have massive flaws [Lisý and Bowling, 2017a]. Four such programs
(including top programs from the 2016 competition) were evaluated using a local best-
response technique that produces an approximate lower-bound on how much a strategy can
lose. All four abstraction-based programs are beatable by over 3,000 mbb/g, which is four
times as large as simply folding each game.

DeepStack takes a fundamentally different approach. It continues to use the recursive
reasoning of CFR to handle information asymmetry. However, it does not compute and
store a complete strategy prior to play and so has no need for explicit abstraction. Instead
it considers each particular situation as it arises during play, but not in isolation. It avoids
reasoning about the entire remainder of the game by substituting the computation beyond
a certain depth with a fast approximate estimate. This estimate can be thought of as
DeepStack’s intuition: a gut feeling of the value of holding any possible private cards in
any possible poker situation. Finally, DeepStack’s intuition, much like human intuition,
needs to be trained. We train it with deep learning using examples generated from random
poker situations. We show that DeepStack is theoretically sound and produces strategies
substantially more difficult to exploit than abstraction-based techniques.

DeepStack defeated professional poker players at HUNL with statistical significance, a
game that is similarly sized to go, but with the added complexity of imperfect information.
It achieves this goal with little domain knowledge and no training from expert human games.
The implications go beyond being a milestone for artificial intelligence. DeepStack repre-
sents a paradigm shift in approximating solutions to large, sequential imperfect information
games. Abstraction and offline computation of complete strategies has been the dominant
approach for almost 20 years [Shi and Littman, 2001, Billings et al., 2003b, Sandholm,
2010]. DeepStack allows computation to be focused on specific situations that arise when
making decisions and the use of automatically trained value functions. These are two
of the core principles that have powered successes in perfect information games, albeit
conceptually simpler to implement in those settings. As a result, the gap between the largest
perfect and imperfect information games to have been mastered is mostly closed.

With many real world problems involving information asymmetry, DeepStack also has
implications for seeing powerful AI applied more in settings that do not fit the perfect
information assumption. The abstraction paradigm for handling imperfect information
has shown promise in applications like defending strategic resources [Lisý et al., 2016]
and robust decision making as needed for medical treatment recommendations [Chen and
Bowling, 2012]. DeepStack’s continual re-solving paradigm will hopefully open up many
more possibilities.
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9. Player of Games
In the 1950s, Arthur L. Samuel developed a Checkers-playing program that employed what
is now called minimax search (with alpha-beta pruning) and “rote learning” to improve its
evaluation function via self-play [Samuel, 1959]. This investigation inspired many others,
and ultimately Samuel co-founded the field of artificial intelligence [Russell and Norvig,
2003] and popularized the term “machine learning”. A few years ago, the world witnessed
a computer program defeat a long-standing professional at the game of Go [Silver et al.,
2016]. AlphaGo also combined learning and search. Many similar achievements happened
in between such as the race for super-human chess leading to DeepBlue [Hsu, 2006] and
TD-Gammon teaching itself to play master-level performance in Backgammon through
self-play [Tesauro, 1994], continuing the tradition of using games as canonical markers of
mainstream progress across the field.

Throughout the stream of successes, there is an important common element: the focus on
a single game. Indeed, DeepBlue could not play Go, and Samuel’s program could not play
chess. Likewise, AlphaGo could not play chess; however its successor AlphaZero [Silver
et al., 2018] could, and did. AlphaZero demonstrated that a single algorithm could master
three different perfect information games using a simplification of AlphaGo’s approach, and
with minimal human knowledge. Despite this success, AlphaZero could not play poker, and
the extension to imperfect information games was unclear.

Meanwhile, approaches taken to achieve super-human poker AI were significantly dif-
ferent. Strong poker play has relied on game-theoretic reasoning to ensure that private
information is concealed effectively. Initially, super-human poker agents were based pri-
marily on computing approximate Nash equilibria offline [Johanson, 2016]. Search was
then added and proved to be a crucial ingredient to achieve super-human success in no-limit
variants [Moravčı́k et al., 2017, Brown and Sandholm, 2018, 2019]. Training for other large
games have also been inspired by game-theoretic reasoning and search, such as Hanabi [Bard
et al., 2020, Lerer et al., 2020], The Resistance [Serrino et al., 2019], Bridge [Lockhart et al.,
2020], AlphaStar [Vinyals et al., 2019], and (no-press) Diplomacy [Anthony et al., 2020,
Gray et al., 2020, Bakhtin et al., 2021]. Here again, however, despite remarkable success:
each advance was still on a single game, with some clear uses of domain-specific knowledge
and structure to reach strong performance.

In this chapter, we introduce Player of Games (POG), a new algorithm that generalizes
the class of games in which strong performance can be achieved using self-play learning,
search, and game-theoretic reasoning. POG uses growing-tree counterfactual regret mini-
mization (GT-CFR): an anytime local search that builds subgames non-uniformly, expanding
the tree toward the most relevant future states while iteratively refining values and policies.
In addition, POG employs sound self-play: a learning procedure that trains value-and-policy
networks using both game outcomes and recursive sub-searches applied to situations that
arose in previous searches.

Player of Games is the first algorithm to achieve strong performance in challenge
domains with both perfect and imperfect information — an important step towards truly
general algorithms that can learn in arbitrary environments. Applications of traditional
search suffer well-known problems in imperfect information games [Russell and Norvig,
2003]. Evaluation has remained focused on single domains (e.g. poker) despite recent
progress toward sound search in imperfect information games [Moravčı́k et al., 2017, Brown
and Sandholm, 2017, Šustr et al., 2020]. Player of Games fills this gap, using a single
algorithm with minimal domain-specific knowledge. Its search is sound [Šustr et al., 2020]
across these fundamentally different game types: it is guaranteed to find an approximate
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Nash equilibrium by re-solving subgames to remain consistent during online play, and
yielding low exploitability in practice in small games where exploitability is computable.
POG demonstrates strong performance across four different games: two perfect information
(chess and Go) and two imperfect information (poker and Scotland Yard). Finally, unlike
poker, Scotland Yard has significantly longer search horizons and game lengths, requiring
long-term planning.
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10. Conclusion
Combination of the decision-time search with a heuristic value function allowed AI agents
to outperform the best human players in games such as Backgammon, Chess, Go, and
Arimaa [Tesauro, 1995, Campbell et al., 2002, Silver et al., 2016, Wu, 2015]. More recently,
universal agents that learned through self-play and can master multiple games using ”zero”
prior knowledge have emerged [Silver et al., 2017a, Schrittwieser et al., 2020].

On the other hand, traditional techniques used in imperfect information games worked
very differently. They created a small, abstract version of a game and solved this abstraction
in one go. This process was game-specific and had to be manually redone for each new
game. While this approach was successful when used in smaller games, it resulted in severe
weaknesses in play when applied to larger games, as shown by local best response [Lisý
and Bowling, 2017a].

Techniques discussed in this thesis help to bridge the gap between perfect and imperfect
information.

DeepStack introduced generalization of the search with the learned value function to
imperfect-information settings. This has led to the first AI victory over human professional
players in no-limit poker completing a long-standing AI challenge.

Similarly, the generalization of self-play combined with a growing search tree introduced
by the Player of Games resulted in a universal algorithm that can master both perfect and
imperfect information games starting from scratch.

10.1 Potential Applications
The concepts introduced in this thesis hold potential for new and exciting applications, as
many real-world problems lack perfect information.

Sound search from DeepStack is used by GTO Wizard [GTO Wizzard Development
Team, 2023], software leveraged by top professional poker players to analyze and improve
their play.

A lot of previous work on AI for large imperfect information games was focused on
poker. One specificity of poker is that all actions of a player can be observed by their
opponents. The game of Scotland Yard tackled by Player of Games is more general and it
resembles patrolling games used for real world problems like airport security [Pita et al.,
2009] and wildlife protection [Fang et al., 2015].

10.2 Future Work
The main limitation of the sound search used by DeepStack and Player of Games is the
need to enumerate all possible information states contained in a public state. This prohibits
straightforward use of these algorithms in games with large belief spaces such as full
Stratego. This could be an interesting area of future research; potential solutions could
involve Monte Carlo subsampling of information sets or learned implicit representations of
belief states.

A significant recent milestone in perfect information games was MuZero [Schrittwieser
et al., 2020]. It is not only able to learn to play a game without prior knowledge, it is also
capable of learning the rules of the game itself just from interaction with the environment.
Extending this capability to imperfect information games would produce even more general
agents capable of mastering environments with unknown dynamics.
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