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Introduction
In many magnetic materials, it is common to see a magnetic ordering transition
upon cooling that results in a static arrangement of the localized ionic magnetic
moments (or spins), typically in a collinear fashion – parallel with their neighbours
in a ferromagnetic material, and anti-parallel in antiferromagnets. This ordering
transition typically occurs at a temperature commensurate with the energy scale
of the interactions between the magnetic ions.

Frustrated magnets, conversely, are materials where simple collinear arrange-
ments of spins cannot arise due to a competition between a large number of
possible arrangements, either owing to the geometrical constraints given by the
crystal lattice, or due to the presence of multiple competing types of magnetic
interactions, extending to further-neighbour exchange between the magnetic ions.
[1] As a result, the spins fluctuate between the possible ground states in a highly-
correlated manner and push the magnetic ordering to much lower temperatures
than the interaction strength.

The spin fluctuations can be classical (dominant for large spins), which are
driven by thermal energy, or quantum (S close to 1

2), which are characterized by
the quantum-mechanical zero-point motions owing to the Heisenberg uncertainty
principle. If these fluctuations persist down to the temperature of absolute zero,
preventing any ordering or freezing of the spins, this correlated but dynamic state
of matter is known as the quantum spin liquid (QSL). It was first proposed by
Anderson in 1973 [2] as the resonating valence bond (RVB) ground state of an
antiferromagnet. In 1987, Anderson used the RVB theory in an attempt to explain
the newly-discovered high-temperature superconductivity in La2CuO4 cuprates.
It is theorized that QSLs are hosts to many exotic phenomena, such as exotic
excitations with fractional quantum numbers and artificial gauge fields. [3] The
list of candidate QSL materials has grown steadily within the last 10 years, and
many candidates are focused on just a few geometrically frustrated lattice types
– particularly the pyrochlore and kagome lattices.

Pyrochlore structure materials – one of the the focuses of this project – typ-
ically have the formula A2B2X7, with A and B sites occupied by cations and X
sites occupied by anions. Both A and B sites make up separate interconnected
pyrochlore lattices, with each being a 3D network composed of cations residing
on the vertices of corner-sharing tetrahedra. Oxide compounds (where X = O)
make up most of the studied pyrochlore materials [4], and particularly in the
rare-earth pyrochlores the observed exotic properties range from spin liquids [5],
to spin ices [6, 7], to unconventional spin glasses [8]. However, due to the con-
tracted nature of the rare-earth 4f orbitals, the low orbital overlap causes weak
magnetic exchange interactions - requiring extremely low temperatures to probe
the exotic emergent phenomena.

The transition metal fluorides, conversely, tend to have strong magnetic inter-
actions mediated by super-exchange through fluoride ligands between the transi-
tion metal ions. Pyrochlore structure transition metal fluorides have been known
for a long time, with some of the earliest works dating back to the 1960s [9].
Recently there has been a revival of research into this family of materials, with a
particular focus on the AA′B2F7-type materials (A = Na+; A‘ = Ca2+, Sr2+; B =
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Mn2+, Fe2+, Co2+, Ni2+) [10, 11, 12, 13]. These materials show strong antiferro-
magnetic interactions evidenced by Curie-Weiss temperatures ranging from -73 K
(NaCaFe2F7) to -140 K (NaCaCo2F7), but no magnetic order is seen down to tem-
peratures as low as 4 K, where a spin-freezing transition is observed. Bifurcation
of the zero-field-cooled (ZFC) and field-cooled (FC) data is seen, confirming the
glassy nature of these materials. A study of the short range magnetic correlations
in the Jeff = 1/2 Co2+-based NaA′Co2F7 (A‘ = Sr, Ca) pyrochlores shows frozen
XY-like magnetism at low temperature, but with magnetic correlations persist-
ing up to 200 K [14]. A continuum of scattering with low energy pinch points
was found in a recent investigation of the inelastic neutron excitation spectra of
NaCaNi2F7, indicating a correlated spin-liquid character [15]. In our search for
new quantum spin-liquid materials, we utilized a calculated pyrochlore structure
tolerance factor [16] to predict a new stable family of compounds, NaCdB2F7 (B
= Zn, Mn, Fe, Co, Ni and Cu), aiming to expand the current knowledge about
frustrated pyrochlore fluorides.

The kagome lattice is known as one of the most geometrically frustrated sys-
tems due to its complex 2D network of vertex-sharing triangles. Recently, a
number of kagome-lattice copper fluoride A2Cu3M ‘F12 (A = Rb, Cs; M ‘ = Sn,
Zr, Hf, Ti) materials have been investigated, aiming to destabilize magnetic order
at low temperatures by means of the large quantum fluctuations of the low-spin
(S = 1/2) Cu2+ ion. [17, 18, 19] Unfortunately, a symmetry-lowering transition
as well as magnetic ordering was seen in these materials, leading to a quenching
of the frustration. Using a similar assumption, we proposed a synthesis of two
new kagome compounds, Rb2SnCo3F12 and Cs2ZrCo3F12 with the hope of push-
ing magnetic order down to very low temperatures with the low-spin Jeff = 1/2
Co2+ ion.

One can also isolate the 2D kagome planes from the 3D pyrochlore structure
by means of an ordered dilution of the pyrochlore lattice with non-magnetic ions.
This can be seen in the naturally occuring mineral Coulsellite, Na3CaMg3AlF14
[20], which shows an ordered dilution of the NaCaMg2F7 pyrochlore lattice with
Al3+ ions, producing a layered kagome structure that hosts the Mg2+ ions. How-
ever, there have not been any reports of this ordered dilution in any synthetic
fluorides. As a result, we decided to synthesize a new Co2+-based compound,
Na3CdCo3AlF14, as an ordered dilution of the NaCdCo2F7 pyrochlore fluoride.

Finding and investigating new model materials is an important task, as theo-
retical modelling and ground-state prediction of frustrated lattices is well known
to lead to conflicting predictions dependent on the methods used. The exact
properties of the S = 1/2 Heisenberg pyrochlore and kagome antiferromagnets
are still hotly debated [21, 22, 23, 24], with very few ideal model materials. Fur-
ther investigation of new pyrochlore and kagome fluorides (especially based on
the low-spin S = 1/2 Cu2+, Jeff = 1/2 Co2+ and S = 1 Ni2+ ions) may lead to ei-
ther confirmation of one of the predicted ground-states, or potentially additional
unexpected exotic properties.
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1. Theoretical background

1.1 Introduction to magnetism
Magnetism, an intriguing physical phenomenon stemming from one of the four
fundamental interactions - the electromagnetic force, has become a part of our
daily lives. Magnets can be found in refrigerator doors, cellphones, data stor-
age devices, high-speed trains (Maglevs) or magnetic resonance imagers (MRI).
Ever since its discovery, it has attracted people’s attention for more than a few
thousands of years.

Ancient civilisations discovered that lodestone, a naturally magnetised iron
ore with the chemical formula Fe2+Fe3+

2 O4 (also known as magnetite) attracted
small pieces of iron. [25] Ancient Greeks termed it as ”µαγνη̃τ ıζ λιθoζ” (magnētis
lithos, the Magnesian stone), giving rise to the name ”magnet”. [26]

This mysterious behaviour was quickly utilised in magnetic compasses (Han
Dynasty, China, 2nd century BC - 1st century AD), in which the needle made
of lodestone would align with the Earth’s magnetic field, hence point towards
its magnetic poles. This phenomenon was initially used for building houses and
growing crops, but it was in the 11th century AD when it was first used for
navigational purposes (Song Dynasty, China). For many years onwards, however,
the fundamental nature of magnetism would still be a mystery.

This would change in the 19th century, when H. C. Ørsted (1819) discovered
a reorientation of the compass needle near a wire with a passing current, hinting
a relationship between electricity and magnetism. This observation would later
be confirmed by experiments done by A.-M. Ampère, who noticed that the cir-
culation of the magnetic field around a closed loop is proportional to the electric
current passing through this loop (Ampère’s circuital law, 1820). Further theo-
retical description was performed by J-B. Biot and F. Savart (Biot-Savart law,
1820), C.F. Gauss (Gauss’s law, 1813) and M. Faraday (Faraday’s law of induc-
tion, 1831). The unification of the laws for electricity and magnetism was done
by J. C. Maxwell (Maxwell’s equations, 1865). A. Einstein showed in his work
on the special theory of relativity (1915) that Maxwell’s equations hold true in
all inertial reference frames. Finally, more fundamental theories would be devel-
oped in the 21st century where electromagnetism is involved, such as quantum
electrodynamics, the electroweak theory and the standard model.

In the following chapters, we are going to look at the microscopic origin of
magnetism and provide the theoretical minimum which is necessary to understand
in the field of condensed matter physics.
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1.2 Magnetic moment

1.2.1 The classical approach
The fundamental microscopic constituent of magnetism, the magnetic moment
µ, can be thought of in the sense of classical electromagnetism as an oriented
infinitesimal loop of current I enclosing an area dS = dSn [27]:

dµ = IdS (1.1)
and is oriented along the unit vector n normal to the loop. The orientation

of n is determined by the direction and charge of the current in the loop.
Given a finitely sized loop composed of infinitesimal current loops, the net

magnetic moment is given by the sum of individual current loops. Only the
current around the perimeter survives as the neighbouring current loops cancel
out, giving

µ =
∫︂
dµ = I

∫︂
dS = IS (1.2)

Interestingly, this object behaves as a magnetic dipole (in analogy to the
electric dipole - a pair of closely separated opposite charges), even though no
magnetic monopoles exist, in accordance with the Maxwell’s equation ∇ · B = 0.

Figure 1.1: Magnetic dipole moment

From a classical standpoint, the magnetic dipole moment inside an atom is
generated by the orbiting electrons of charge −e and mass me, which produce
current loops characterised by the angular momentum L = r × p, where r is the
position vector and p = mev is the momentum of the electron. There is a linear
relationship between the magnetic moment and the angular momentum:

µ = γL (1.3)
where γ is the gyromagnetic ratio of the electron.

Considering a hydrogen atom with one electron, we can estimate the size of
the atomic magnetic moments: the electron orbiting at the speed v in a circular
orbit of radius r (and area πr2) produces a current I = −e/T , where T is the
orbital period T = 2πr/v. Assuming Bohr’s quantization of angular momentum
L = nℏ, where n is the energy level, the electron’s angular momentum L = mevr
must be equal to ℏ in the ground state (n = 1). Combining these ideas, we get

7



µ = I πr2 = − eℏ
2me

= −µB (1.4)

where we define the Bohr magneton µB = eℏ/2me as a suitable unit of the
atomic magnetic moment (SI: µB = 9.274 × 10−24 Am2). We also deduce that

µ = −e
2me

L (1.5)

giving the gyromagnetic ratio of the electron γ = −e/2me. The magnetic
moment is therefore antiparallel to the angular momentum vector due to the
electron’s negative charge.

When a magnetic moment is inserted into an external magnetic field B, a
torque τ will tend to align the moment with the field [27]:

τ = µ × B (1.6)
Since the orbiting electron has a mass and therefore an angular momentum

L, instead of a simple alignment with the field, the moment will start precessing
around B with a characteristic frequency ωL = γB called the Larmor frequency.

The energy cost needed to rotate the moment away from the field to an angle
θ is equal to ∆E =

∫︁ θ
0 τdθ

′ =
∫︁ θ

0 µBsinθ′dθ′ = µB(1−cosθ). Ignoring the constant
term, we define the potential energy U of a magnetic dipole in a magnetic field:

U = −µ · B = −µBcosθ (1.7)
The potential energy of the magnetic dipole is minimal when the moment is

parallel to the field (θ = 0◦ or cosθ = 1) and maximal when antiparallel to the
field (θ = 180◦ or cosθ = −1).

Figure 1.2: Precession of the magnetic moment in an external field.
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1.2.2 The quantum-mechanical approach
In the previous section, we described the classical picture of the angular momen-
tum arising from the orbital motion of an electron around the nucleus, giving rise
to the magnetic moment.

In real atoms, however, the classical treatment is insufficient and quantum
mechanics has to be utilised. There are two distinct types of angular momentum:

(a) The orbital angular momentum L̂, which originates from the orbital
motion of the particle. It is a Hermitian vector operator L̂ = (L̂x, L̂y, L̂z)
defined in the position representation as [28]

L̂ = r̂ × p̂ = −iℏ(r̂ × ∇) (1.8)

where r̂ = (x̂, ŷ, ẑ) is the position operator and p̂ = −iℏ∇ is the momentum
operator. We also define the square of L̂ as L̂2 ≡ L̂

2
x + L̂

2
y + L̂

2
z.

(b) The spin angular momentum Ŝ, which arises from the particle’s char-
acteristic intrinsic property - the spin s. It is a Hermitian vector operator
Ŝ = (Ŝx, Ŝy, Ŝz) and is defined as

Ŝ = ℏ
2 σ̂ = ℏ

2(σ̂x, σ̂y, σ̂z) (1.9)

where σ̂ = (σ̂x, σ̂y, σ̂z) is a vector of Pauli matrices, which for a spin-1
2

particle (such as the electron) take the form

σ̂x =
(︄

0 1
1 0

)︄
, σ̂y =

(︄
0 −i
i 0

)︄
, σ̂z =

(︄
1 0
0 −1

)︄
(1.10)

We also define the square of Ŝ as Ŝ2 ≡ Ŝ
2
x + Ŝ

2
y + Ŝ

2
z.

The main difference compared to classical mechanics is that the quantum-
mechanical angular momenta are quantized - only certain discrete values are
allowed, as opposed to the classical continuum of possible states. The possible
values are expressed in terms of quantum numbers.

Quantum numbers, a set of conserved quantities for a particular dynamic
quantum system, correspond to the eigenvalues of operators that commute with
the Hamiltonian Ĥ of the system. This follows from the time dependence of the
expected operator value, which is (if the operator Â itself is time independent)
given by [27]

d

dt
⟨Â⟩ = 1

iℏ
⟨[Â, Ĥ ]⟩ (1.11)

implying that if [Â, Ĥ ] = 0, then the observable is a conserved quantity - a good
quantum number.

Solving Schrödinger’s equation on atoms lead to the theory of atomic orbitals,
describing the electronic states by means of four quantum numbers [26]:

1. The principal quantum number n defines the size and energy of the
electron’s orbit and takes the integral values n = 1, 2, 3, .... The orbits n
= 1, 2, 3... are usually termed as ”K, L, M,...” shells in the spectroscopic
notation.
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2. The orbital momentum (azimuthal) quantum number l character-
izes the electron’s angular momentum arising from its orbital motion. It
emerges from the eigenvalues of the L̂2 operator: L̂2|l,ml⟩ = l(l+1)ℏ2|l,ml⟩
(where |l,ml⟩ are the eigenfunctions of L̂2 and L̂z - spherical harmonics).
The value of l defines the subshells of the energy level n and can take inte-
gral values of 0, 1, 2, ..., n− 1. The size of the electron’s orbital momentum
in the l-subshell is then equal to L =

√︂
l(l + 1)ℏ. The l = 0, 1, 2, 3, 4, 5, ...

subshells are usually called ”s, p, d, f, g, h, ...” orbitals.

3. The magnetic quantum number ml tells us the size of the quantized
projection of orbital momentum along a specific direction, which is usually
the direction of an applied field (the z-axis by definition). It arises from the
eigenvalues of the L̂z operator: L̂z|l,ml⟩ = mlℏ|l,ml⟩ and can take integral
values, which for a given l lie in the range ml = −l,−l + 1, ..., l − 1, l,
measured in units of ℏ. This gives a total of 2l + 1 possible projections of
orbital momentum along the z axis for a specific l.

4. The spin quantum number ms describes the quantized projection of the
electron spin along a specific direction, which is usually the direction of an
applied field (the z-axis by definition). It originates from the eigenvalues
of the Ŝz operator (Ŝz = ℏ

2 σ̂z) and takes the values ms = ±1
2 , measured

in the units of ℏ. The spin components are then +ℏ/2 (spin-up) or -ℏ/2
(spin-down). For a particle with the spin s, the allowed projections are
ms = −s,−s + 1, ..., s − 1, s (a total 2s + 1 projections) and the size of
the spin angular momentum is S =

√︂
s(s+ 1)ℏ, specifically

√
3

2 ℏ for the
electron.

The orbital magnetic moment µ̂L associated with the orbital angular momen-
tum ℏL̂ is defined as

µ̂L = − e

2me

ℏL̂ = −µBL̂ (1.12)

with the magnitude

|µ̂L| = e

2me

√︂
l(l + 1)ℏ = µB

√︂
l(l + 1) (1.13)

and the projection along the z-axis:

µL,z = −mlµB (1.14)

The spin magnetic moment µ̂S associated with the electron’s spin angular
momentum ℏŜ is defined as

µ̂S = −gSµBŜ (1.15)

where gS = 2.0023 ≈ 2 is the electron’s g-factor. The magnitude of µ̂S:

|µ̂S| = gSµB

√︂
s(s+ 1) =

√
3

2 gSµB (1.16)

and the projection along the z-axis:

µS,z = −gSmSµB (1.17)
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1.3 Magnetization, magnetic susceptibility
We have shown that the atomic magnetic moment arises from two distinc sources
- the former coming from the electron’s orbital motion, the latter coming from
the electron’s spin contribution.

A real magnetic solid, however, consists of a great number of atoms carrying
magnetic moments. It is therefore convenient to define a new quantity - magne-
tization M , as the net magnetic moment m per unit volume V [29]:

M = m

V
(1.18)

The magnetic field inside a magnetic material can be expressed in terms of
vector fields B (the magnetic induction), H (the magnetic field strength) and
magnetisation M , related by the following relation [27]:

B = µ0(H + M) (1.19)
where µ0 = 4π×10−7 Hm−1 is the permeability of vacuum. The magnetic field

H is generated by electrical currents outside the magnetic material (a solenoid,
electromagnet or a permanent magnet), so it is often also called ”the exter-
nal/applied field”. In free space (where M = 0), B and H are almost identical,
differing only by a scaling factor µ0 and the units of measurement (B is measured
in Tesla, H in Am−1).

We can classify magnetic materials on the basis of their response to a magnetic
field. Materials with a linear relationship between the magnetisation and the field

M = χH (1.20)
are called linear materials. We have defined a new dimensionless quantity, the

magnetic susceptibility χ, as a measure of the type and strength of the material’s
reaction to the magnetic field. Substituting Equation (1.20) to (1.18), we get

B = µ0(1 + χ)H = µ0µrH (1.21)
where we define the relative magnetic permeability µr = 1 + χ of the material.

For non-linear materials, we define the differential susceptibility

χ = ∂M

∂H
(1.22)

which is usually a tensor in anisotropic magnetic materials (Mi = χijHj).
Due to the definition of M , the susceptibility χ defined in Equation (1.19)

refers to the magnetic moment induced by the field H per unit volume of the
material. There is also a possibility of expressing the induced moment per mole,
the molar magnetic susceptibility χm = χVm (in m3 mol−1), where Vm = Mm/ρ
is the molar volume - the molar mass Mm divided by the density ρ. The mass
susceptibility χg = χ/ρ (in m3 kg−1) can also be used. [27]

We are able to classify magnetic materials based on their bulk magnetic sus-
ceptibility into two major groups - diamagnetic materials (χ < 0. typically
χ ≈ −10−5) with a negative response to the external field, and paramagnetic
materials (χ > 0, typically χ ≈ 10−3 to 10−5) with induced moment parallel to
the field. [29] Their origin will be discussed in the following sections.
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1.4 Isolated magnetic moments
Let us now focus on the magnetic properties of isolated atoms (or ions), where we
take the approximation of neglecting the interactions between these atoms/ions
or with their close environment.

Consider an atom (ion) with Z electrons inside a magnetic field B. We can
write the Hamiltonian of this system [27] as a sum of the electrons’ kinetic energy,
potential energy and the magnetic potential energy of the spin magnetic moment
(U = −µ̂S · B, see (1.7) and (1.15)) coming from the total spin Ŝ = ∑︁Z

i=1
ℏ
2 σ̂i:

Ĥ =
Z∑︂

i=1

⎛⎜⎝
(︂
p̂i + eÂ(ri)

)︂2

2me

+ Vi

⎞⎟⎠+ gSµBŜ · B (1.23)

where Â(r) is the magnetic vector potential generating the field (B = ∇ × Â)
as well as altering the electron’s momentum, and Vi is the electrostatic potential
energy felt by the i-th electron at the position ri.

If B is uniform and constant, we can choose the symmetric gauge for the
vector potential Â(r) = 1

2B × r̂. Substituting in (1.21), expanding the squared
term and identifying the total angular momentum ℏL̂ = ∑︁Z

i=1 r̂i × p̂i, we get

Ĥ =
Z∑︂

i=1

(︄
p̂i

2

2me

+ Vi

)︄
⏞ ⏟⏟ ⏞+µB

(︂
L̂ + gSŜ

)︂
· B + e2

8me

Z∑︂
i=1

(B × ri)2

⏞ ⏟⏟ ⏞ (1.24)

= Ĥ 0 + ∆Ĥ

where Ĥ 0 is the unperturbed Hamiltonian (the kinetic energy from the moving
electrons plus the Coulombic energy from the nucleus and electron-electron in-
teractions) and ∆Ĥ is the perturbation causing the atomic magnetic properties.

Since ∆Ĥ is a small perturbation on the scale of atomic excitation energies
even for very high fields, we can utilize the second-order perturbation theory [30]:

∆En = ⟨n|∆Ĥ |n⟩ +
∑︂

n′ ̸=n

⃓⃓⃓
⟨n|∆Ĥ |n′⟩

⃓⃓⃓2
En − En′

(1.25)

which tells us the change in the energy level |n⟩ induced by the magnetic field.
Assuming B = (0, 0, B) oriented along the z-axis, then B ×ri = B(−yi, xi, 0)

and we get the fundamental equation for the calculation of atomic susceptibilities
(we are retaining the terms linear and quadratic in B):

∆En = µBB · ⟨n|L̂ + gSŜ|n⟩ +
∑︂

n′ ̸=n

⃓⃓⃓
⟨n|µBB · (L̂ + gSŜ)|n′⟩

⃓⃓⃓2
En − En′

(1.26)

+ e2

8me

B2⟨n|
Z∑︂

i=1
(x2

i + y2
i )|n⟩

As we will later see, the first two terms are responsible for a positive field-
induced magnetic moment – paramagnetism, while the third term causes a nega-
tive field-induced moment (antiparallel to B) – diamagnetism.
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Using the first law of thermodynamics dU = TdS − pdV + B · dM for the
magnetic system, we can express the Helmholtz free energy F = U −TS−B ·M
in the differential form as follows

dF = −SdT − pdV − M · dB (1.27)
Now we see that the magnetization induced by the external field B = µ0H

(and the magnetic susceptibility χ) is given by the thermodynamic relation

M = −
(︄
∂F

∂B

)︄
T,V

and χ =
(︄
∂M

∂H

)︄
= −µ0

(︄
∂2F

∂B2

)︄
T,V

(1.28)

1.4.1 Diamagnetism
Diamagnetism, a weak effect present in all materials, is characterised by a negative
magnetic moment induced by the external magnetic field, resulting in a negative
magnetic susceptibility χ < 0.

It is often explained in the classical sense by means of Lenz’s law, where
the external magnetic field acts on the current loops produced by the orbiting
electrons, inducing a back electromotive force opposing the external field. [27]

However, the origin of diamagnetism is purely quantum-mechanical. Let us
suppose the simplest case - a solid composed of atoms (ions) with fully occupied
electronic shells. In the ground state |0⟩, the total orbital and spin angular
momentum will be zero

L̂|0⟩ = Ŝ|0⟩ = 0 (1.29)
so only the third term in Equation (1.26) is non-zero and causes a shift in the

ground-state energy induced by the applied field. For a spherically symmetric
atom, ⟨x2

i ⟩ = ⟨y2
i ⟩ = ⟨z2

i ⟩ = 1
3⟨r2

i ⟩ (ri is the radius of the i-th electron’s orbit), so

∆E0 = e2B2

12me

Z∑︂
i=1

⟨0|r2
i |0⟩ (1.30)

Applying (1.28) on a solid with N atoms (ions) in a volume V at T = 0, the
so-called Larmor diamagnetic susceptibility will then be [30]

χ = −N

V
µ0

(︄
∂2∆E0

∂B2

)︄
= −N

V

e2µ0

6me

Z∑︂
i=1

⟨0|r2
i |0⟩ (1.31)

Diamagnetism is therefore dominant in noble gases (He, Ne, Ar, ...) and sim-
ple ionic salts (Na+Cl−, Na+F−, K+Br−, ...), where the ions possess a closed-shell
electronic structure. If we ignore the ion’s inner-shell electrons, Zeff outer-shell
electrons will have approximately the same radius, so ∑︁Zeff

i=1⟨0|r2
i |0⟩ ≈ Zeff⟨r2⟩.

Larmor susceptibility is thus proportional to the mean square ionic radius ⟨r2⟩.
As we increase the temperature above absolute zero, the excited states will

get progressively more populated, influencing the resultant diamagnetic suscep-
tibility. The effect is, however, very small and can be ignored.

For a solid containing atoms (ions) with partially filled electronic shells (L̂ ̸= 0
and/or Ŝ ̸= 0), the result is very different as all three terms in (1.26) contribute to
the field-induced energy change and influence the magnetic susceptibility (1.28).
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1.4.2 Paramagnetism
As mentioned before, paramagnetism is characterised by a positive induced mag-
netic moment upon the application of an external magnetic field, therefore show-
ing a positive magnetic susceptibility χ > 0.

As opposed to the previous section where we assumed atoms (ions) with fully
occupied electronic shells (thus carrying no magnetic moment), paramagnetism
arises from unpaired electrons which produce a non-zero magnetic moment.

In a solid, these moments point randomly in all directions as they are dy-
namically fluctuating from the thermal energy of phonons, and the net moment
averages to zero. As we apply the field, the moments start to partially line up with
the field, causing a non-zero net magnetization. However, if we increase the tem-
perature, the thermal vibration of atoms will tend to destabilize the spins aligned
with the field. The resultant magnetization thus depends on the ratio B/T - the
strength of the applied field versus the temperature of the paramagnetic solid.

Let us suppose a free (non-interacting) atom with all electronic shells filled
except for one, characterized by the orbital angular momentum l and with n
electrons occupying this shell. With regards to Pauli’s exclusion principle, there
is a total of 2(2l + 1) possible electronic states (2 possible directions of spin for
each of the 2l + 1 projections of Lz). If the electrons were non-interacting, the
groundstate would be

(︂
2(2l+1)

n

)︂
-times degenerate. However, this degeneracy is

lifted by the Coulombic interaction between the electrons, and also by the spin-
orbit interaction, which arises due to the interaction of the electron’s spin with
the magnetic field produced by the electron’s orbital motion.

In the approximation of weak spin-orbit coupling, the atomic (ionic) Hamil-
tonian commutes not only with the total electronic spin and orbital angular mo-
menta, S = ∑︁n

i=1 Si and L = ∑︁n
i=1 Li, but also with the total angular momentum

J = L + S (1.32)
This coupling of the total spin and orbital angular momentum is called the Russel-
Saunders coupling or the LS coupling. [30] We can therefore describe the elec-
tronic states by means of quantum numbers L, Lz, S, Sz, J and Jz, since they
are the eigenstates of operators L̂2, Lẑ, Ŝ2, Sẑ, Ĵ2 and Jẑ with their respective
eigenvalues L(L + 1), Lz, S(S + 1), Sz, J(J + 1) and Jz. The possible projec-
tions of Jz (for a given J) are −J,−J + 1, ..., J − 1, J , giving a total of 2J + 1
projections, measured in the units of ℏ.

If we treated L and S total angular momenta as independent (non-interacting),
they could combine into (2L+ 1)(2S+ 1) possible states (2L+ 1 possible L̂z pro-
jections for each of the 2S + 1 possible Sẑ projections). However, a weak LS
coupling occurs in the presence of a weak spin-orbit interaction (considered as a
small perturbation), where the LS states are split into a number of states with
differing J , also known as the fine structure. J can take values between |L− S|
and L + S in integral steps, each J having a total number of 2J + 1 projections
of Jz. This can be shown as

L+S∑︂
J=|L−S|

2J + 1 = (2L+ 1)(2S + 1) (1.33)
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There are two cases in which paramagnetism arises depending on J [30]:

(a) J = 0: The shell is one electron short of being half-filled (n = 2l). In
contrast to the fully occupied shell case (1.29), the total angular momenta
L and S are non-zero, so the second and third term in (1.26) prevail.
According to (1.28), the paramagnetic susceptibility is then [27]

χ = N

V

⎛⎜⎝2µ2
Bµ0

∑︂
n′ ̸=0

⃓⃓⃓
⟨0|Lẑ + gSSẑ)|n′⟩

⃓⃓⃓2
En − E0

− e2µ0

6me

Z∑︂
i=1

⟨0|r2
i |0⟩

⎞⎟⎠ (1.34)

The first term is positive and causes the Van Vleck paramagnetism. It arises
from the excited states n′ with J ̸= 0, which cause a field-induced change
of the ground-state energy. The second term is diamagnetic as discussed in
the previous section. Both terms are temperature independent and small.

(b) J ̸= 0: This covers all cases except for fully occupied shells and the case
above. The first term in (1.26) does not vanish and becomes dominant to
the extent that the remaining two terms can be neglected. In zero field, the
groundstate is (2J+1)-times degenerate and we can utilize Wigner-Eckart’s
theorem to evaluate the (2J + 1)-dimensional square matrix in the |JLSJz⟩
basis [30]

⟨JLSJz|L̂ + gSŜ|JLSJ ′
z⟩ = gJ⟨JLSJz|Ĵ |JLSJ ′

z⟩ (1.35)

where gJ is the Landé g-factor, which in the gS ≈ 2 approximation takes
the form

gJ = 1 + J(J + 1) − L(L+ 1) + S(S + 1)
2J(J + 1) (1.36)

The magnetic moment from the total angular momentum J is then given
by

µ̂J = −gJµBĴ , |µ̂J | = gJµB

√︂
J(J + 1) (1.37)

Since the zero-field ground state is degenerate, we cannot calculate the
susceptibility by setting the free energy equal to the ground-state energy
shift. Instead, we have to employ statistical mechanics. The external field
splits the degeneracy into 2J + 1 equidistant energy levels - this effect is
also known as the Zeeman splitting:

E = −µ̂J · B = gJµBJzB, Jz ∈ {−J,−J + 1, ..., J − 1, J} (1.38)

The free energy of the lowest-energy 2J + 1 multiplet (assuming it is the
only reasonably thermally populated multiplet) is given by [30]

F = −kBT lnZ, Z =
J∑︂

Jz=−J

exp
(︃

−gJµBJzB

kBT

)︃
(1.39)

where kB is the Boltzmann constant and Z is the partition function.
Finally, the magnetization of the paramagnetic solid is then calculated as

M = −N

V

∂F

∂B
= N

V
gJµBJBJ(x) (1.40)
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where BJ(x) is the Brillouin function defined as

BJ(x) = 2J + 1
2J coth

(︃2J + 1
2J x

)︃
− 1

2J coth
(︃ 1

2J x
)︃
, x = gJµBJzB

kBT
(1.41)

In the limit of low temperatures or high fields, BJ(x) x→∞−−−→ 1, resulting in
the saturation magnetization Ms as all moments align with the field:

Ms = N

V
gJµBJ or µs = gJµBJ (1.42)

In the limit of high temperatures or low fields, cothx ≈ 1
x

+ x
3 + O(x3)

for small x, giving BJ(x) ≈ J+1
3J
x + O(x3). This leads to the famous

temperature dependence of paramagnetic susceptibility, the Curie law:

χ = N

V

µ0(gJµB)2

3
J(J + 1)
kBT

= C

T
(1.43)

or in the molar form (NA = 6.022 × 1023 mol−1 is the Avogadro constant)

χmol = NA
µ0(gJµB)2

3
J(J + 1)
kBT

= Cmol

T
(1.44)

We see that the susceptibility is inversely proportional to the temperature.
The Curie constant Cmol is proportional to the square of the effective mag-
netic moment µeff :

Cmol = NAµ0µ
2
eff

3kB

, µeff = gJµB

√︂
J(J + 1) (1.45)

By performing a linear fit on 1/χmol vs. T , we are able to extract the effec-
tive magnetic moment per one mole of the magnetic ion in the solid. Using
Cmol = χmolT and rearranging (1.45) as µeff = (3kB/NAµ0µ

2
B)1/2

√︂
χmolT ,

we can plot the temperature dependence of the effective moment [27]

µeff(T ) = 797.8
√︂
χmol

SI T ≈ 800
√︂
χmol

SI T (SI) (1.46)

µeff(T ) = 2.827
√︂
χmol

cgs T ≈
√︂

8χmol
cgs T (cgs) (1.47)

where we evaluated the constant according to the units of measurement.
Here, µeff is measured in µB/f.u. (Bohr magnetons per formula unit) , χmol

SI

is measured in m3 mol−1 and χmol
cgs is measured in emu mol−1.

1.4.3 Hund’s rules
In the previous section, we talked about the LS coupling in the case of a weak spin-
orbit interacion. In that case, the total orbital and spin momenta L and S can
couple into a total angular momentum J , which can take the values J ∈ {|L− S|,
|L− S| + 1, ..., L + S − 1, L + S}. The size of L and S and their combination
into J , which minimize the energy of the atom (ion) and define its groundstate,
can be approximated by means of three Hund’s rules [30]:
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1. Hund’s first rule: The lowest-energy electronic configuration of a partially
filled shell corresponds to the maximal total spin S, or equivalently, the
largest magnitude of the projection Sz = ∑︁n

i=1 ms,i. This configuration re-
sults in the lowest Coulombic repulsion between electrons, pushing them
further apart and preventing two parallel spins in the same place, in con-
sistency with Pauli’s exclusion principle.

2. Hund’s second rule: To find the lowest-energy electronic configuration, one
has to maximize the total orbital momentum L in consistency with the first
Hund’s rule and the exclusion principle. This is equivalent to finding the
largest possible projection Lz = ∑︁n

i=1 ml,i. We can imagine this as electrons
orbiting in the same direction, helping them avoid each other, thus reduce
the Coulombic repulsion and minimize the energy.

3. Hund’s third rule: The value of J corresponding to the lowest-energy elec-
tronic configuration (in agreement with the first and second Hund’s rule) is
found as

(a) J = |L− S|, if the shell is less than half full (n < 2l + 1)
(b) J = L+ S, if the shell is more than half full (n > 2l + 1)
(c) J = S, if the shell is exactly half full, since L = 0 (n = 2l + 1).

This defines the lowest-lying J-multiplet, usually described by the spec-
troscopic term symbol 2S+1XJ , where the letter X = S, P,D, F,G,H, I, ...
corresponds to the total orbital angular momentum L = 0, 1, 2, 3, 4, 5, 6, ....

So far, we have only assumed free isolated atoms (ions) for which Curie’s
law and Hund’s rules were derived. However, experiments show that insulating
crystals containing rare-earth ions with partially-filled electronic f -shells obey
Curie’s law fairly well and the measured effective moment matches extremely well
with the predicted value from (1.45) (see Attachment A.1). The only discrepancy
is found in Sm and Eu, where the effective moment is affected by the thermal
population of the second-lowest J-multiplet, which lies very close in energy to the
ground state. The good agreement between the theoretical prediction and the
experiment comes from the contracted nature of 4f orbitals in rare-earth ions,
which interact very weakly with the crystal environment or other rare-earth ions
and can therefore be considered as isolated ions.

The situation is different for transition metal ions in insulating solids. Al-
though Curie’s law is obeyed for the iron group 3d metals, the effective moment
appears to better match the predicted value corresponding to J = S with zero
orbital moment L = 0 (see Attachment A.2). The orbital angular momentum is
said to be quenched due to the interaction of the far-extending 3d orbitals with
the electric field produced by the crystal environment around the magnetic ion.
The origin and consequences of the crystal electric field will be discussed in the
following section.
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1.5 Crystal electric field
The electrostatic field produced by negative ions surrounding a positively charged
magnetic ion inside the crystal is known as the crystal electric field (CEF). The
defining factor of the size and nature of the crystal field is the symmetry of the
local environment given by the crystallographic site of the magnetic ion.

The crystal field theory is used to model the splitting of degenerate electronic
levels, usually d and f orbitals. For rare earth ions with partially filled 4f shells,
the CEF splitting is not very significant, as the 4f orbitals are located deep inside
the ion, shielded by the filled 5s and 5p shells. On the contrary, the extended
nature of the d orbitals results in a much larger overlap with the orbitals of the
neighbouring ions - ligands.

The d orbitals are classified into two groups - the t2g orbitals (dxy, dxz, dyz),
the lobes of which point between the cartesian coordinate axes, and the eg orbitals
(dx2−y2 , dz2), the lobes of which point along these axes. The CEF splitting of the
t2g and eg levels depends on the symmetry of the magnetic ion’s local environment.

In the case of octahedral coordination, there will be a higher overlap of the
eg orbitals with the ligands’ p orbitals, resulting in a larger electrostatic energy
and consequently, t2g orbitals will be lower in energy. In the case of tetrahedral
symmetry, the overlap of t2g and p orbitals is higher, placing the triply-degenerate
t2g orbitals higher in energy than the doubly-degenerate eg orbitals. [27]

The order of the electron filling of 3d orbitals in transition metal ions depends
on the size of the crystal field energy in comparison with the Coulombic energy
arising from the repulsion of two electrons in the same orbital (the pairing energy).
In the weak-field case, the electrons first singly occupy each orbital before pairing
up. In the strong-field case, where the CEF energy is larger than the pairing
energy, the electrons first doubly occupy the lowest energy levels before occupying
the higher-energy orbitals.

The CEF affects the magnetic ground state of 3d metal ions, making it dif-
ferent from the one predicted by Hund’s rules using the J , L and S values.
Experiments show that the effective moment is closer to the value calculated for
L = 0 (J = S, gJ = 2) - this effect is called quenching of orbital moment:

µeff = 2
√︂
S(S + 1)µB (1.48)

The discrepancy arises from the fact that in 3d ions, the CEF interaction
is much stronger that the weak spin-orbit coupling, making Hund’s third rule
invalid. In the semiclassical picture, we can imagine the orbital quenching as
a precession of L in the crystal field, so the magnitude is unchanged but the
components average to zero.

The orbital moment is never exactly zero due to the spin-orbit interaction,
which mixes in L > 0 states and influences the g-factor value, possibly even
causing an anisotropic g-tensor. In the heavier-ion 4d and 5d transition metals,
the situation is much more complex due to the large spin-orbit interaction, which
is comparable to or greater than the CEF interaction.

In general, there are two important principles to follow [30]:

1. The Kramers theorem: An ion containing an odd number of electrons (hence
a half-integer total spin) always has a ground state at least doubly degen-
erate, even if crystal fields and spin-orbit interactions are present.
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2. The Jahn-Teller effect: If a magnetic ion sits in a crystallographic site of
such high symmetry that its ground state is not the Kramers minimum, the
crystal geometrically distorts to a more energetically favorable configuration
with a lower symmetry, breaking the ground-state degeneracy.

1.6 Magnetic interactions
Thus far, we were able to predict some basic magnetic properties of solids by
regarding the magnetic ions as non-interacting, or interacting only with their lo-
cal environment. As we start decreasing the temperature of the system (i.e. the
thermal energy E = kBT ), however, magnetic interactions between ions become
progressively more important and can no longer be neglected. These interac-
tions can cause a variety of magnetic ground states, whether it be a conventional
long-range ordered state or a ground state with short-range correlations. In this
section, we will review the most common types of magnetic interactions.

1.6.1 Dipolar interaction
The most basic interaction between two magnetic dipoles µ1 and µ2 separated
by r has the interaction energy equal to [27]

E = µ0

4πr3

[︃
µ1 · µ2 − 3

r2 (µ1 · r)(µ2 · r)
]︃

(1.49)

which depends on the mutual distance and orientation of the dipoles. To provide
a rough estimate of the size of this interaction, let us consider two equal magnetic
moments of size µ = 1 µB separated by r = 1 Å. Then, E = µ0µ

2/4πr3 ∼ 10−23 J,
or 1 K on the temperature scale. This interaction is therefore insufficient to cause
long range ordering, as some materials order at temperatures as high as 1000 K.
The interaction may, however, become important at milliKelvin temperatures.

1.6.2 Exchange interaction
Exchange interaction is a quantum-mechanical phenomenon occuring between
identical particles (fermions or bosons) based on the symmetry of the many-
particle wavefunction upon the exchange of particles (the exchange symmetry).

The origin of exchange can be illustrated on a simple model. Consider two
electrons (a and b) with spatial coordinates r1 and r2. The two-particle wave-
function can be expressed in terms of a product of the spatial single electron
states ψa and ψb and the spin wavefunction χ. The resultant wavefunction must
be antisymmetric, as we are dealing with fermions. This gives two options - a
product of a symmetric spatial state and an antisymmetric singlet (S = 0) spin
state χS, or a product of an antisymmetric spatial state and a symmetric triplet
(S = 1) spin state χT [27]:

ψS = 1√
2

(ψa(r1)ψb(r2) + ψa(r2)ψb(r1))χS (1.50)

ψT = 1√
2

(ψa(r1)ψb(r2) − ψa(r2)ψb(r1))χT (1.51)
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The energies of the singlet state and the triplet state are

ES =
∫︂
ψ∗

SĤ ψS dr1dr2 and ET =
∫︂
ψ∗

T Ĥ ψT dr1dr2 (1.52)

It can be shown that the effective spin-dependent Hamiltonian can be written as

Ĥ
spin = −2JŜ1 · Ŝ2 (1.53)

where J is the exchange integral defined as

J = ES − ET

2 =
∫︂
ψ∗

a(r1)ψ∗
b (r2)Ĥ ψa(r2)ψb(r1) dr1dr2 (1.54)

We see that if J > 0, then ES > ET and the triplet state (S = 1) is preferred. If
J < 0, then ES < ET and the singlet state (S = 0) is preferred.

To evaluate the dot product, we expand Ŝ2 = (Ŝ1+Ŝ2)2 and use the respective
eigenvalues S(S + 1) and s(s+ 1) = 3

4 for the s = 1
2 electrons:

Ŝ1 · Ŝ2 = 1
2(Ŝ2 − Ŝ1

2 − Ŝ2
2) =

⎧⎨⎩
1
4 for S = 1 (triplet)

−3
4 for S = 0 (singlet)

(1.55)

We can generalize this result to a many-body system. By modelling the
microscopic origin of magnetic interactions in the solid, we are able to predict the
solid’s magnetic properties. The most common models are [27]

• The Heisenberg model: This model is isotropic, as the localised spins (taken
as 3D vectors) are allowed to point in any direction in space. The Heisenberg
Hamiltonian is defined as

Ĥ = −
∑︂
i,j

JijŜi · Ŝj (1.56)

where Jij is the exchange integral between the i-th and j-th spin. Usually,
the sum is taken over the nearest neighbours, in that case Jij = J is constant
for nearest neighbors and zero otherwise.

• The Ising model: The spins are constrained to point only up or down along
a specific direction (the z-axis by definition). The Ising Hamiltonian is
defined as

Ĥ = −
∑︂
i,j

JijS
z
î S

z
ĵ (1.57)

where the sum is also usually calculated over the nearest-neighbour spins,
for which Jij = J , otherwise J = 0.

1.6.2.1 Direct exchange

One form of exchange interaction, the direct exchange, arises due to the direct
overlap of magnetic orbitals of neighbouring ions. Despite its simple character, it
is hardly seen as the dominant interaction in many materials. Materials contain-
ing rare earth ions posess contracted 4f orbitals, which are very well localised as
they lie close to the nucleus, hence the direct overlap of 4f orbitals of neighbour-
ing ions is very small. Although 3d orbitals in transition metals (e.g. Fe, Co,
Ni) extend much further, there is a conflict between the localised and itinerant
magnetism as conduction electrons come into play. As a result, some type of
indirect exchange is often present.
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1.6.2.2 Superexchange (indirect exchange)

An indirect exchange mechanism between two next-to-nearest neighbouring mag-
netic ions, which is mediated by a non-magnetic ion sitting between them is called
the superexchange. Unlike in the direct exchange, there is no direct overlap of
orbitals between the magnetic ions, however, a third non-magnetic ion serves as
a mediator of the electronic-wavefunction overlap, correlating the spin states on
the magnetic ions. This type of exchange interaction is typical for ionic solids
containing 3d-transition-metal cations (M = Mn2+, Fe2+, Co2+, ...) and the me-
diator anions such as oxygen and fluorine (X = O2−, F−). The interaction is
then realized via the M(3d) −X(2p) −M(3d) exchange pathway and is strongly
dependent on the distance of the ions and the M −X −M bond angle. Usually,
the exchange interaction is antiferromagnetic for a 180◦ bond and ferromagnetic
for a 90◦ bond.

1.6.2.3 Antisymmetric (Dzyaloshinsky-Moriya) exchange

An exchange interaction between the excited state of a magnetic ion, where the
excitation is induced by spin-orbit coupling, and the ground state of another
magnetic ion is known as the antisymmetric or Dzyaloshinsky-Moriya interaction.
It is described by a term contributing to the ordering Hamiltonian [27]

Ĥ
DM
ij = D · Ŝi × Ŝj (1.58)

where D is a vector dependent on the crystal symmetry, and vanishes if the
crystal field has an inversion symmetry with respect to the center between the
two magnetic ions. This type of interaction forces the spins Ŝi and Ŝj to be
perpendicular to one another, while the D vector want to be oriented perpen-
dicular to the plane formed by the spins in such a direction that minimizes the
energy. This leads to a canting of the spins (a tilting by a small angle), resulting
in a small perpendicular ferromagnetic component (a weak ferromagnetism) in
antiferromagnetic materials such as α-Fe2O3, MnCO3 or CoCO3.

1.6.2.4 RKKY interaction (indirect exchange)

Another type of indirect exchange is the RKKY (Ruderman–Kittel–Kasuya–
Yosida) interaction. It can only be realized in metals, as the mediators of this
exchange interaction are conduction electrons. A magnetic ion with a localized
magnetic moment induces a spin polarization on the conduction electrons, which
then transfer the polarization to a neighbouring localized magnetic moment at a
distance r. The exchange integral (assuming large r) is proportional to [27]

JRKKY (r) ∝ cos(2kF r)
r3 (1.59)

where kF is the Fermi sphere radius, assuming the free-electron model. The
interaction has an oscillatory character with a period of π/kF , hence changes
between antiferromagnetic (JRKKY (r) < 0) and ferromagnetic (JRKKY (r) > 0),
depending on the separation of localised moments r.
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1.7 Magnetic order
In this section, we will discuss the possible magnetic ground states that can arise
from the interactions discussed in Section 1.6. These ground states are usually
reached when the temperature of the magnetic solid is low enough, so that the
energy of magnetic interactions overcomes the energy of thermal fluctuations,
allowing for a creation of a magnetically ordered state.

1.7.1 Ferromagnetism
Ferromagnetism is one of the most important realizations of magnetic order, as it
is characterized by having a spontaneous magnetization even when the external
magnetic field is not present.

In the simplest case, the net magnetic moment arises from the collinear align-
ment of all spins along one direction. In most ferromagnets, however, small
regions with parallel spins (magnetic domains) are created to minimize the mag-
netostatic energy.

The Hamiltonian of a 3d-metal ferromagnet (L = 0, J = S) in a magnetic
field consists of the Heisenberg exchange term and the Zeeman energy term [27]

Ĥ = −
∑︂
i,j

JijŜi · Ŝj + gSµB

∑︂
j

Ŝj · B (1.60)

To solve this Hamiltonian, we can employ the Weiss molecular field theory by
defining an effective molecular field Bmf at the i-th site

gSµBBmf = −2
∑︂

j

JijSj (1.61)

which can be understood as a mean field produced by all spins surrounding the
i-th spin (the factor 2 comes from summing each pair twice). The Hamiltonian
reduces to

Ĥ = gSµB

∑︂
i

Ŝi · (B + Bmf) (1.62)

where we assume that each spin feels the same molecular field. Since the molecular
field is a measure of the magnetic ordering, we can assume that

Bmf = λM (1.63)

where λ is the Weiss molecular field constant (λ > 0 for a ferromagnet). We are
now able to treat the Hamiltonian as that of a paramagnet in a magnetic field
B + Bmf . Therefore, we can utilise the results from (1.40), (1.41) and (1.42) and
solve

M

Ms

= BJ(x), x = gJµBJ(B + λM)
kBT

(1.64)

where we still assume L = 0 (J = S). As a result, we get a non-zero magneti-
zation from an ordered state below the transition temperature called the Curie
temperature TC , defined as

TC = Cλ

µ0
= nλµ2

eff
3kB

, where λ = 2zJ̃
ng2

Jµ
2
B

(1.65)
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where the molecular field constant λ is related to the effective exchange interaction
J̃ with z nearest neighbours and C is the Curie constant from (1.43).

If we apply a small field in the paramagnetic state (above TC), we can use the
approximation of BJ(x) for x ≪ 1 and we get the Curie-Weiss law [31]

χ = C

T − θCW
(1.66)

where C is the Curie constant from (1.45) and θCW is the Curie-Weiss temper-
ature. In a ferromagnet, θCW > 0 and we expect θCW ≈ TC . The Curie-Weiss
temperature, measured in Kelvin (or equivalently E = kBθCW on the energy
scale), gives an approximate mean-field strength of the exchange interaction be-
tween the neighbouring spins (see (1.65)).

1.7.2 Antiferromagnetism
Antiferromagnetic order is known for the antiparallel alignment of neighbouring
spins, characterized by a negative exchange integral (Jij < 0) and a zero net
moment in the absence of an applied field. In the simplest case, this configuration
can arise from two ferromagnetic sublattices with moments of equal size and an
antiparallel orientation.

Just like with ferromagnets, we can employ the Weiss molecular theory, this
time for two ferromagnetically ordered sublattices with equal and opposite molec-
ular fieldsB+ = − |λ|M− andB− = − |λ|M+ (in antiferromagnets, λ is negative).
Since |M−| = |M+| ≡ M , the magnetization of each sublattice in zero field is

M

Ms

= BJ

(︄
gJµBJ |λ|M

kBT

)︄
(1.67)

which leads to similar results derived for a ferromagnet. Below the transition
temperature, the Néel temperature TN defined as

TN = C |λ|
µ0

= n |λ|µ2
eff

3kB

(1.68)

the antiferromagnetic ordering occurs. Above TN , the material is in the param-
agnetic state and in a small applied field, the Curie-Weiss law defined in (1.66)
is obeyed. For antiferromagnets, θCW < 0 and one would expect θCW ≈ −TN .
In real materials, however, θCW often largely differs from −TN as the assumption
that the molecular field on one lattice is induced purely by the other sublattice
is insufficient.

1.7.3 Ferrimagnetism
Ferrimagnets are magnetically ordered materials which, in a similar fashion as
antiferromagnets, consist of two interpenetrating magnetic sublattices. The mag-
netization of the sublattices is oriented antiparallel, however, their magnitude is
not equal. As a result, the magnetic moments do not cancel out and leave a net
magnetization.
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The sublattices will usually have a different temperature dependence of spon-
taneous magnetization. In the case of one sublattice dominating the net magne-
tization at high temperatures and the other at low temperatures, the moments
cancel out at a point called the compensation temperature. Below this temper-
ature, the net magnetization changes the sign. Ferrimagnets therefore do not
follow the simple Curie-Weiss law (1.66) and a modified formula has to be used.

Ferrimagnetism is usually found in ferrites, a family of compounds with the
chemical formula MO·Fe2O3 (M = Zn2+, Co2+, Fe2+, Ni2+, Cu2+ or Mn2+).
[27]. Most ferrimagnets are electrical insulators, which makes them important
for high-frequency applications (aerials, transformers), as the energy loss due to
the induced eddy currents is minimal compared to metallic ferromagnets.

1.7.4 Spin density waves, non-collinear structures
Thus far, we have mentioned the basic types of magnetic order based on the paral-
lel or antiparallel alignment of spins. However, magnetic structures can be made
much more complex due to competing exchange interactions (e.g. RKKY), geo-
metrical frustration or competition between exchange and single ion anisotropies.

Spin density wave is an amplitude-modulated ordered structure - it can be
thought of as a collinear alignment of spins, where the magnitude of spins changes
periodically with distance, following a sine-wave curve.

Non-collinear magnetic ground states are also possible. This includes conical,
cycloidal and spiral magnetic structures, depending on the geometrical shape
described by the spins. Although the direction of the spins changes periodically
with distance, their magnitude stays constant.

1.8 Frustrated magnetism
In the previous section, various types of conventionally ordered magnetic ground
states were shown. In these structures, the dominant exchange interaction (fer-
romagnetic or antiferromagnetic) is satisfied between all neighbouring spins, re-
sulting in a stable long-range-ordered magnetic ground state. Ín some materials,
however, it is impossible to satisfy only one type of exchange between all near-
est neighbours. This phenomenon is called magnetic frustration and can lead to
many exotic magnetic ground states such as spin glass, spin ice or spin liquid.

1.8.1 Magnetic frustration
Magnetic frustration arises from competing exchange interactions between local-
ized magnetic moments (spins), where all interactions cannot be simultaneously
satisfied. This results in a large degeneracy of the system ground state, since
many spin configurations similar in energy are possible, instead of a single well-
defined ground state. The spins then fluctuate between all possible ground states,
which prevents any conventional long-range ordering and results in many exotic
states of matter. [1]

Typically, magnetic frustration can be induced by the geometry of the crystal
lattice. As a simple example, let us consider Ising spins (pointing up or down
along a defined axis) with antiferromagnetic interactions (JAF < 0) between the
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Figure 1.3: A non-frustrated case of Ising spins on the square lattice (left) vs. a
frustrated triangular lattice with Ising spins (right).

nearest neighbours. On a 2D square lattice, we are able to find a configuration
which satisfies the antiferromagnetic alignment of neighbouring spins. This is not
the case in a 2D triangular lattice - if two spins sitting on the vertices of a tri-
angle are antiparallel, it is impossible to place the third spin antiparallel to both
neighbouring spins and minimize the system energy (see Figure 1.3). In both
possible alignments of the third spin, there will be a competition between ferro-
magnetic (JF > 0) and antiferromagnetic (JAF < 0) interactions with its nearest
neighbours, creating a six-fold degeneracy of one triangle. The lattice consists
of a large number of these triangles, resulting in a macroscopic multiplicity of
metastable states with thermal hysteresis effects.

This is a case of geometrical frustration, which usually arises in lattices con-
taining repeating triangular motifs. Besides the aforementioned triangular lattice,
the most important types of the so-called frustrated lattices are the kagomé lattice
(a 2D-layered network of vertex-sharing triangles) and the pyrochlore lattice (a
3D network of corner-sharing tetrahedra).

Figure 1.4: a) The triangular lattice. b) The kagome lattice. c) The pyrochlore
lattice. Taken from [1] and edited.
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1.8.2 Spin glass
The spin-glass phase is defined as a random, disordered magnetic system with
mixed interactions, and is characterized by a random but cooperative freezing of
spins at a temperature Tf (the freezing temperature). Below Tf , there is a highly
irreversible, metastable frozen state without any long-range magnetic order. [27]

One source of the spin-glass randomness is site disorder, which can be induced
by substituting a small amount of magnetic ions into the matrix of a non-magnetic
metal (e.g. the spin-glass alloy Cu1−xMnx, where x ≪ 1). The magnetic ions are
randomly distributed over the lattice, resulting in competing RKKY interactions,
the signs of which depend on the mutual (random) distance of spins. Another
possibility is bond disorder, where the interactions between the nearest neighbours
vary between +J and −J . This leads to frustration and a multidegenerate ground
state.

At high temperatures, the spins in a spin glass can be considered independend
as they are dominated by thermal fluctuations. Upon cooling, the spins slow down
and start building locally correlated units - spin clusters, which can interact with
each other through the remaining free spins. As we approach Tf , the interaction
of clusters becomes stronger and correlates their local environment. At Tf , the
system cooperatively freezes in one of the many possible ground states. Below
Tf , the system is in a metastable glassy state, which can be evidenced by the
splitting of zero-field-cooled (ZFC) and field-cooled (FC) magnetic susceptibility
below Tf .

We can probe the spin dynamics of the freezing process by means of AC
susceptibility χAC(ω) = χ′(ω) + iχ′′(ω), which shows a peak in the real part
χ′(ω) near Tf . The peak is frequency-dependent and shifts slightly with increas-
ing frequency of the alternating field. This shift can be parametrized via the
Vogel-Fulcher law, which has its origin in describing the temperature dependence
of viscosity of supercooled liquids near the glass transition, but is also used to
parametrize the spin-freezing process in spin-glass materials [32]:

ω = ω0 exp
(︄

− Ea

kB(Tf − T0)

)︄
(1.69)

where T0 is ”the ideal glass temperature“, Ea is the activation energy of the tran-
sition and ω0 is the intrinsic relaxation frequency.

1.8.3 Spin liquid
A fluid-like phase of matter induced by magnetic frustration, characterized by
long-range correlations of spins which strongly fluctuate down to a temperature
of absolute zero and prevent any long-range ordering, is called a spin liquid. [1]

Depending on the type of spin fluctuations, there exist classical spin liquids
driven by thermal fluctuations of spins, which are dominant for large spins (S ≫
1
2); and quantum spin liquids (QSL) driven by large quantum fluctuations down
to T = 0 K, typical for small spins (S comparable to 1

2), which produce zero-point
motions as a result of the Heisenberg uncertainty principle.

The theoretical possibility of QSLs was first proposed by Anderson in 1973 [2],
[33], who studied the ground state properties of a triangular S = 1

2 Heisenberg
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antiferromagnet. Due to the large number of possible ground states, the spins
fluctuate between these states in a correlated manner, so the spin-liquid mate-
rials are also called cooperative paramagnets. The high-temperature magnetic
susceptibility usually obeys the Curie-Weiss law (1.66), showing θCW < 0 for
dominant antiferromagnetic interactions. We also define a quantitative measure
of the frustration strength, the frustration index [1]

f = |θCW |
Tf

(1.70)

as a comparation of the mean-field interaction strength |θCW| with the temper-
ature where the system freezes, Tf . The values of f > 5 − 10 indicate a strong
suppression of magnetic order due to the frustration. In that case, the spin-liquid
phase can be found between Tf < T < |θCW|. For an ideal QSL, f → ∞ as the
spins remain liquid down to T = 0 K.
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2. Experimental methods

2.1 Sample preparation
In solid state physics, it is an absolute necessity to prepare high-quality, phase-
pure crystalline samples to be able to accurately study their physical properties.
There is a plethora of methods for the synthesis of inorganic solids (either in
polycrystalline or single-crystalline form), the use of which depends on the ther-
modynamical stability, chemical reactivity and other intrinsic properties of the
precursor materials. In this section, we will briefly introduce the techniques used
in the synthesis of fluoride-based pyrochlore and kagome compounds, suitable
with regards to the hygroscopic and highly-reactive nature of binary fluorides.
Whenever possible, single crystals were grown to measure the directional physi-
cal properties of these highly frustrated magnetic materials.

2.1.1 Polycrystalline synthesis
2.1.1.1 Solid-state reaction

A simple yet very effective way of preparing polycrystalline solids of desired com-
position and structure is the solid-state synthesis. It can be done by mixing
together powdered reactants, thoroughly grinding the powders to homogenize
the mix at the scale of individual particles (∼ 1 µm), preferably pressing the
mix into pellets to maximize particle contact and heating it in the furnace for an
extended period of time to allow for a slow diffusion of ions. [34]

The reaction begins by nucleation of small crystals with the desired stoichiom-
etry and structure in the place of contact of reactant grains. In order to guarantee
a stability of the nucleated crystals, there must be a balance between the negative
free energy of formation of the desired product and the positive surface energy
of the nuclei. This happens if the crystals are appreciably larger than a single
unit cell. Oriented nucleation on top of a reactant grain (the substrate) is made
easier if the substrate and the nucleus share a similar crystal structure. We refer
to this as epitaxy if the structural similarity is restricted to a planar interface,
and topotaxy if the similarity extends to three dimensions.

Following the nucleation, the reactant grains are no longer in direct contact
and a counter-diffusion of ions begins through the product interface. This solid-
state diffusion of ions is very slow and therefore needs heating for long periods
of time at elevated temperatures (but below the melting point of the reactants).
To further homogenize the product, multiple regrinds are essential to break up
the reactant/product interfaces and create new ones. One can also speed up
the reaction by adding a small amount of transporting agent to help bring the
reactant ions together.

In this work, all materials were synthesized from binary fluorides, which are
known to be hygroscopic and also extremely reactive at high temperatures. For
this reason, the binary fluorides were always weighed out, ground and in some
cases pelletized inside the glovebox with an inert argon atmosphere. The pow-
ders/pellets were then sealed in a platinum crucible with a tiny amount of XeF2,
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which acts as a fluorinating agent as it decomposes at high temperatures into Xe
and F2 gas.

2.1.2 Single crystal growth
2.1.2.1 Laser floating zone method

One of the techniques utilized in this work for growing single crystals of pyrochlore
fluorides is the laser floating zone method. It is a convenient, fast and crucible-
free method for producing high-quality crystals with low consumption of precursor
materials. This method also allows growing incongruently melting materials, in
contrast to other conventional techniques (Czochralski, Bridgman-Stockbarger or
Verneuil), and one can even obtain non-equilibrium phases. [35]

The laser furnace used for our growth (Crystal Systems Corp. FZ-LD-5-200W-
II-VPO-PC) consists of 5 symmetrically-placed laser diode units (max. output
power 5 × 200 W), which produce infra-red beams of radiation (λ = 900 - 1100
nm). The laser beams are symmetrically focused on a small zone of the sample
(laser spot size 4 × 8 mm2), creating a hot zone with a maximum temperature of
2600 ◦C. However, the achievable temperature strongly depends on the color of the
polycrystalline precursor, hence a material-dependent emmisivity parameter has
to be employed for the pyrometer to determine the approximate temperature. The
molten zone is then moved along the sample length by pulling the upper and lower
shaft in a controlled manner (0.1 - 100 mm/hr). Further homogenization of the
hot zone temperature profile is reached by rotating the shafts (up to 100 RPM).
The sample chamber is separated by a quartz tube, which is highly transparent
to IR radiation. The growth can take place in an evacuated (down to 10−5 mbar)
or pressurized (10 bar) environment in air, oxygen, argon (6N) or even a reducing
atmosphere of Ar + 5 % H2. The gas in the chamber can be held static throughout
the growth, but a dynamic flow (up to 2 l/min) is also possible.

Figure 2.1: Laser floating zone furnace (Crystal Systems Corp. FZ-LD-5-200W-
II-VPO-PC)
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2.1.2.2 Melt crystallization

Another crystal growth method employed in this work is melt crystallization.
[36] It is usually performed by placing a ground mix of powdered reactants into
a suitable inert crucible, possibly sealing the crucible in an inert atmosphere to
prevent any reaction with air and moisture, and heating the crucible inside a
furnace above the melting point of the precursor compounds for some period of
time to allow the melt to fully react. Crystallization can be achieved by allowing
the melt to cool in a slow, controlled manner using a well-defined temperature
profile programmed into the furnace.

Similarly to solid-state synthesis, a stoichiometric mix of binary fluorides is
first weighed out and ground in a glovebox with an argon atmosphere, preventing
any reaction with air moisture. The mix is then filled into a platinum crucible
and crimp-sealed inside this protective argon atmosphere. Platinum is a suitable
crucible material as it is inert with respect to highly-reactive molten fluorides
up to temperatures as high as 1000 ◦C. [37] The platinum crucible is then in-
serted into two bigger alumina crucibles with a small portion of calcium oxide
(CaO) inside, serving as a precaution against a possible leakage of fluorine or
HF gas. The crucibles are then inserted into a programmable resistance furnace
with ”Kanthal Super” (MoSi2) heating elements capable of temperatures up to
1850 ◦C. The furnace is situated inside a box with an extraction hood to further
minimize any possible leaks of toxic gases. A suitable temperature profile is then
programmed and run.

In all our growth attempts or solid-state reactions, the melting temperatures of
mixes of binary fluorides are unknown and had to be found by trial and error. We
were unable to precisely determine the melting temperatures using the Differential
Scanning Calorimetry (DSC) because of the extremely high reactivity of molten
fluorides at high temperatures, which attacked the standard alumina crucibles.
Suitable DSC platinum crucibles would be needed for a precise determination of
the melting temperatures, which unfortunately were not in our possession.

2.2 X-ray diffraction

2.2.1 Laue diffraction
Laue diffraction is a fundamental X-ray diffraction technique, extensively used
for orienting and mounting single crystals in a precisely known crystallographic
direction. The purpose lies in performing directionally-dependent physical prop-
erty measurements and/or polishing oriented surfaces. Using this method, it is
possible to examine reciprocal space maps of the crystal, also providing evidence
of twins, dislocations or defects by analyzing the diffraction pattern. [38]

The Laue diffractometer uses an X-ray source (e.g. a rotating anode tube) to
produce polychromatic X-ray radiation by emitting electrons from an electrically
heated cathode and accelerating them towards the anode by applying high voltage
(20 - 60 kV). Upon the impact, the electrons rapidly decelerate and convert their
kinetic energy to produce continuous X-rays (bremmstrahlung), but discrete X-
rays are also produced by the electronic transitions induced inside the anode
material (characteristic X-rays).
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The single crystal is mounted on a goniometer, using which it is possible to
change the crystal’s spatial orientation for reorientation between inspection of
the reciprocal space maps. The polychromatic X-ray beam passes through the
collimator and hits the stationary single crystal. If we assume elastic scattering
of the polychromatic beam on atomic chains along three different axes with pe-
riodicities a, b and c, the diffraction conditions can be summed up by the Laue
equations [39]:

a · (s − s0) = hλ (2.1)
b · (s − s0) = kλ (2.2)
c · (s − s0) = lλ (2.3)

which imply that the constructive interference of the scattered waves (with a
particular wavelength λ from the continuous spectrum) happens only if the phase
difference between the scattered and the incident wave (with unit vectors s and
s0) is equal to an integer multiple h, k, l of the wavelength.

Each of these equations defines a conical surface of possible diffractions, the
axis of which lies along the corresponding atomic chain. Since these conditions
have to be met simultaneously, the diffraction only happens at the intersection
of the three conical surfaces. Laue equations are met when the diffraction vector
q = (s−s0)/λ (a reciprocal space vector measured in m−1) is equal to a reciprocal
lattice vector Ghkl corresponding to a set of planes with Miller indices (hkl):

s − s0

λ
= Ghkl (2.4)

For all λ in the continuous spectrum, many (hkl) reflections fulfill the Laue con-
ditions and are registered on the detector as diffraction spots.

The Laue diffraction pattern is examined for showing the symmetry of the
crystal, which depends on the crystal’s orientation. If there is a high symmetry
direction of the crystal parallel to the incident beam, a matching symmetry is
seen in the diffraction pattern. For instance, if we direct the beam along the
(100), (110) or (111) direction in a crystal with cubic symmetry, a four-fold,
two-fold or three-fold rotational symmetry will be seen in the diffraction pattern,
respectively.

In our work, orienting of the crystals was carried out using a PhotoScience
Laue diffractometer.

2.2.2 Powder diffraction
Powder X-Ray Diffraction (PXRD) is an important analytical technique used
for the structural characterisation of powdered crystalline compounds from their
diffraction pattern. Using this method, we are able to perform a crystallographic
structural analysis, phase identification and unit cell calculations to determine or
refine the crystal structure and the lattice parameters of the studied single- or
multi-phase material. [38]

PXRD analysis requires a coherent beam of monochromatic X-rays, which
are generated by an appropriate X-ray tube. Discrete characteristic X-rays and
continuous bremmstrahlung are produced upon the interaction of electrons with
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the metallic anode, as described in the previous section. The full X-ray spec-
trum is further processed by a filter or a suitable monochromator to provide a
monochromatic beam. Common X-ray tube anodes are made of Cu (Kα = 1.54
Å), Cr (Kα = 2.29 Å), Fe (Kα = 1.94 Å), Co (Kα = 1.79 Å) or Mo (Kα = 0.71
Å). Although Kα1 (2p3/2 → 1s1/2), Kα2 (2p1/2 → 1s1/2) and Kβ1 (3p3/2 → 1s1/2)
are the highest-energy X-rays produced, only the Kα lines are generally used in
the XRD analysis. If a Cu anode is used, Cu Kβ is removed by a nickel-foil filter,
which has an absorption edge between the Kα and Kβ lines.

The sample is crushed into a fine powder, such that the crystallite size is
ideally less than 10 µm, and is placed in the sample holder. In the symmetric
Bragg-Brentano geometry, the monochromatic beam hits the sample at an an-
gle θ and only diffracts off of grains with lattice planes oriented parallel with
the surface. Since we have a fine powder consisting of many randomly oriented
crystallites and a fixed wavelength λ, the Bragg’s condition [39]

2dhkl sin θhkl = λ (2.5)

will be met by some interplanar distance dhkl (corresponding to the Miller indices
hkl) for a particular θhkl. The diffracted beam then reaches the detector at an
angle 2θ and is recorded in units of cps (counts per second).

The intensity of diffracted light is recorded as a function of the diffraction angle
2θ, producing a diffraction pattern with intensity peaks (also called reflections),
which correspond to the diffraction off the atomic planes (hkl). The X-ray tube
inside a ”ω− 2θ” (or θ - 2θ) automated XRD diffractometer is usually stationary
and illuminates the sample on the goniometer, which rotates at a constant angular
speed ω, while the detector moves at 2ω as a result of the system’s geometry.

The powder diffraction pattern contains a lot of important information about
the microstructure of the examined material, which can be extracted by a struc-
tural refinement. The positions of reflections 2θ give information about the sym-
metry of the crystal lattice (the lattice parameters, as well as information about
the symmetry due to systematic absences), and also information about the present
phases, each of which has a typical set of reflections corresponding to its crystal
structure. The integral intensity of the reflections gives information about the
electron density distribution within the unit cell, i.e. the atomic arrangement. It
is also proportional to the volume of diffracting crystallites and therefore gives
information about their preferential orientation and the abundance of present
phases. Thermal Debye-Waller factors are also introduced to account for the
decrease in integral intensity because of the atomic thermal motion. The width
of the peaks (FWHM, integral breadth) provides information about the size of
diffracting crystallites, as well as microscopic stress and defects (e.g. dislocations).

In this work, PXRD analysis was performed using a Bruker D8 Advance
diffractometer with Cu Kα radiation (λ = 1.5418 Å). The diffraction patterns
were analysed using the Rietveld refinement [40], which utilizes the least squares
method to minimize the difference between the experimental and model diffrac-
tion pattern, refining the structural parameters of the input crystal structures.
All refinements were performed in TOPAS Academic v6 software [41] (see At-
tachment A.3). Peak shapes were modelled using the Thompson-Cox-Hastings
(THCZ) pseudo-Voigt profile function convoluted with axial divergence asymme-
try. The background was fitted with a 6-coefficient polynomial function. Refined
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parameters include zero corrections, scaling factors, peak shape parameters, cell
parameters, atomic positional coordinates and isotropic thermal parameters Beq.

2.3 Magnetization

2.3.1 DC susceptibility
Temperature-dependent magnetization M(T ) measurements in a constant field
H (later converted to DC susceptibility as χ = M/H, see (1.19)), as well as field-
dependent magnetization curves M(H) at constant T , were performed on both
oriented crystals and polycrystalline samples using a SQUID (Superconducting
Quantum Interference Device) magnetometer inside a Quantum Design Magnetic
Property Measurement System (model MPMS-XL 7T). The sample magnetiza-
tion was extracted using the Reciprocating Sample Option (RSO) mode.

SQUID magnetometry is one of the most sensitive magnetometry techniques,
allowing to measure magnetic moments down to 10−8 emu (10−11 Am2) or less.
It relies on a special device called a Josephson junction [26] - a ring of super-
conducting metal with one (RF SQUID) or two (DC SQUID) weak links made
of a thin insulating barrier. Inside this link, a quantum interference of Cooper
pair wavefunctions occurs (electron pairs weakly coupled by the electron-phonon
interaction, responsible for the conventional BCS superconductivity). In the DC
SQUID, a DC current is applied and the sample is oscillated through the ring,
influencing the critical current and causing quasi-static flux variations. In the
RF (radio-frequency) SQUID, variation of magnetic flux inside the ring causes
a change of impedance, detuning a weakly coupled resonator circuit driven by a
RF current.

The RSO option measures the magnetic moment by rapidly oscillating the
sample through the SQUID pickup coils in a sinusoidal manner by using a servo
motor, as opposed to the DC extraction mode, which moves the sample through
the coils in discrete steps. The absolute sensitivity of the RSO mode is given as
1 × 10−8 emu in fields of 0 - 2.5 T. [42]

The temperature-dependent magnetization curves were measured in two
modes: the zero-field-cooled (ZFC) and field-cooled (FC) mode. In the ZFC
regime, the sample is first cooled down to the lowest measuring temperature
(well below its transition temperature) and only then, a desired field is applied
and the measurement is run on heating. After the ZFC measurement finishes,
the sample is cooled back down to the starting temperature, while the field is
still kept at the same value. The FC measurement is then performed on heat-
ing. Materials with history dependence, such as magnetically ordered states or
spin glasses, will show a splitting of the ZFC and FC curves below the transition
temperature (the ordering temperature TC or the freezing temperature Tf ).

2.3.2 AC susceptibility
Temperature, frequency and field dependent AC susceptibility measurements
were made using the ACMS II option in a Quantum Design Physical Property
Measurement System (PPMS).
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Figure 2.2: RSO measurement with a small amplitude. Taken from [42]

AC magnetometry is a useful technique to probe the spin dynamics of various
magnetic systems. As opposed to DC magnetometry, where a constant DC field
is applied to determine the equilibrium magnetic moment of the sample, a small
driving AC field is superimposed on the DC field, producing a time-dependent
magnetic moment. As a result, the changing magnetic moment induces a current
in the detection coils without the need of oscillating the sample. [43]

At very low AC frequencies, the sample follows the same M(H) curve as
measured in the DC measurement. Provided that the alternating field is small,
the induced AC moment can be expressed as

MAC =
(︄
dM

dH

)︄
HAC sin(ωt) (2.6)

where χ = dM/dH is the susceptibility (the slope of the M(H) curve), HAC is
the AC field amplitude and ω = 2πν is the driving frequency. AC susceptibility
is therefore sensitive to very small changes in M(H), as it is related to the slope
and not the absolute values.

At higher AC frequencies, dynamic effects in the sample start to manifest and
the magnetization starts lagging behind the driving field, not following the DC
magnetization curve. The resulting AC susceptibility χ(ω) can be thought of as
consisting of a real, in-phase component χ′(ω) and an imaginary, phase-shifted
component χ′′(ω) defined as

χ(ω) = χ′(ω) + iχ′′(ω) (2.7)
χ′ = χ cos ϕ, χ′′ = χ sin ϕ (2.8)

χ =
√︂
χ′2 + χ′′2, ϕ = arctan

(︄
χ′′

χ′

)︄
(2.9)

where ϕ is the phase shift with respect to the driving signal. The imaginary
component χ′′ signals the energy dissipation during the relaxation processes.

In spin-glass materials, we can determine the freezing temperature Tf from
the center of the cusp seen in the temperature dependence of the real part, χ′(T ).
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The position of the cusp is dependent on the AC-field frequency and can be
characterized by a relative shift of Tf per decade of frequency [32]

δTf = ∆Tf

Tf∆log10ν
(2.10)

the magnitude of which is characteristic for a certain class of materials (canonical
spin-glasses, cluster-glasses and superparamagnets).

Further characterization of spin glasses is done by the Vogel-Fulcher law (1.69)
by performing a linear fit of Tf vs. 1/ln(τ0ν) in the form

Tf = T0 − Ea

kB

1
ln(τ0ν) (2.11)

where τ0 = 2π/ω0 is the intrinsic relaxation time and ν = ω/2π is the drive field
frequency.

2.4 Specific heat
The thermodynamic properties of materials can be accessed through measuring
their heat capacity, defined as the amount of heat that needs to be supplied to
the material to change its temperature by 1 Kelvin. At constant volume V ,

CV =
(︄
δQ

dT

)︄
V

=
(︄
dU

dT

)︄
V

= T

(︄
dS

dT

)︄
V

(2.12)

where dU = δQ+dW is the change of the system’s internal energy (the 1st law of
thermodynamics) and δQ = TdS is an infinitesimal heat given to the system with
temperature T , causing a change in entropy dS (the 2nd law of thermodynam-
ics). The experimental value is, however, usually measured at constant pressure,
allowing for thermal expansion of the material (extra work dW = −pdV has to
be done), always resulting in Cp > CV . At low temperatures, the difference is
small and we can assume Cp ≈ CV . Specific heat is then defined as the heat
capacity per one mole (or unit mass) of the material.

By measuring the specific heat of solids, we are able to probe their lattice,
electronic and magnetic properties. Every component of the system (electrons,
phonons, magnons, crystal field excitations, phase transitions, etc.) contributes
to the total entropy of the system. From the additivity of entropy follows the
additivity of specific heat (see (2.12)):

Stot = Se + Sph + Smag + Setc → Ctot = Ce + Cph + Cmag + Cetc (2.13)

In this work, we restrict ourselves to insulating magnetic materials, so the
low-temperature Sommerfeld term Ce = γT [30] corresponding to the specific
heat from conduction electrons can be ignored.

By measuring the specific heat of a non-magnetic analogue - an appropriate
non-magnetic material with the same crystal structure as the material of interest,
we can estimate the phonon contribution from lattice vibrations and subtract it
to estimate the magnetic specific heat, Cmag. The magnetic entropy is then given
by

Smag(T ) =
∫︂ T

0

Cmag(T ′)
T ′ dT ′ + S0 (2.14)
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Figure 2.3: PPMS calorimeter puck on a sample-mounting station with vacuum
suction holding the sapphire stage without applying stress to the eight electrical
wires. [44]

where S0 is the residual entropy, an integration constant corresponding to the
entropy at T = 0 K (the 3rd law of thermodynamics). It is equal to zero if
a unique ground state is present, but is non-zero in the case of magnetically
frustrated systems.

We can compare this experimental value with a theoretically predicted en-
tropy of a magnetic ion with a total angular momentum J inside a crystal field
generated by the surrounding ions. In the high temperature limit, the probability
of populating all energy levels is equal. This gives the magnetic entropy per one
mole Smag = R ln(Ω), where R is the universal gas constant and Ω is the multi-
plicity of energy levels. In the isotropic Heisenberg model Ω = 2J + 1, whereas
in the Ising model Ω = 2, corresponding to a doublet ground state:

SHeisenberg
mag = R ln(2J + 1) and SIsing

mag = R ln2 (2.15)

In the present work, specific heat was measured via the heat relaxation method
(the ”two-tau model”), using the Heat Capacity option in the Quantum Design
Physical Property Measurement System (PPMS). [44] A calorimeter puck with a
non-magnetic sapphire stage was used, with Apiezon-N grease for mounting the
sample.
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3. Materials review

3.1 A2B2O7 pyrochlore oxides
Among the most extensively studied pyrochlores, a family of materials isostruc-
tural to the naturally occuring mineral pyrochlore (Na,Ca)2(Nb,Ta)2O6(F,OH),
are pyrochlore oxides with the general formula A2B2O7. [45] Typically, A is a
3+ rare-earth ion and B is a 4+ transition metal ion, but A2+

2 B5+
2 O7 and off-

stoichiometric pyrochlores also exist. Both A and B sites make up two separate
interpenetrating sublattices of corner-sharing tetrahedra. Considering that either
A, B or both ions can be magnetic, large geometrical frustration arises due to
the nearest-neighbor antiferromagnetic exchange interactions on the pyrochlore
lattice, producing a myriad of exotic magnetic ground states. [4]

Table 3.1: Structural details of A2B2O7 pyrochlores
A2B2O6O‘ pyrochlores - S.G.: Fd3̄m (#227, origin 2), cubic, Z = 8
Atom Wyckoff site Occupancy Point group x, y, z Charge
A 16d 1.0 3̄m (D3d) 1

2 ,
1
2 ,

1
2 +3 or +2

B 16c 1.0 3̄m (D3d) 0, 0, 0 +4 or +5
O 48f 1.0 mm (C2v) x, 1

8 ,
1
8 -2

O‘ 8b 1.0 4̄3m (Td) 3
8 ,

3
8 ,

3
8 -2

Pyrochlore oxides crystallize in the face-centered cubic system with the space
group Fd3̄m (#227), with four non-equivalent atomic positions and eight formula
units per unit cell (Z = 8), see Table 3.1. The A site is 8-fold (dodecahedrally) co-
ordinated, while the B site is 6-fold (octahedrally) coordinated by oxygen atoms,
as shown in Figure 3.4. Based on more than 180 A2B2O7-type compounds, a
structural tolerance factor τ = 3(RA + RO)/(

√
17(RB + RO)) was developed on

the basis of polyhedral geometry dictated by the ionic radii, predicting the py-
rochlore phase stability for compounds in range τ ∈ [0.826, 0.943]. [16]

Figure 3.1: a) A (purple) and B (blue) site sublattices of corner-sharing tetrahe-
dra in A2B2O7 pyrochlores. b) Coordination polyhedra around A and B site ions
- dodecahedra and octahedra, respectively.

The interest in pyrochlore oxides was sparked by the 1997 discovery of the
spin-ice state in Ho2Ti2O7 [46, 47], shortly followed by the alleged spin-liquid
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state discovery in Tb2Ti2O7 in 1999. [48] Today, a multitude of pyrochlore oxides
have been studied [4], showing a variety of magnetic ground states such as long-
range-ordered [49, 50, 51], spin glass [52, 53, 54], spin ice [55, 56, 57] and spin
liquid candidates [58, 59, 60]. These ground states seem to be very fragile, as
shown by experiments in extreme applied pressures [61], high magnetic fields
[62], off-stoichiometry compositions [63] and thin epitaxial films [64].

The variety of properties seen in the rare-earth pyrochlores often comes about
due to the enhanced importance of crystal-electric field splitting in 4f electron
magnetism, that can change the isotropy of the magnetic interaction from Heisen-
berg [65] (3D isotropic) to XY -type [66] (2D isotropic interaction, usually inside
the plane perpendicular to the local <111> axis) to Ising [67] (1D interaction con-
strained to a specific crystallographic direction, usually the local <111> axis).
The contracted nature of the 4f orbitals typically leads to low orbital overlap
and weak magnetic exchange interactions (J ∼ 100 − 101 K), requiring extremely
low temperatures (well below 1 K) to reach the most interesting properties and
physics.

3.2 AA′B2F7 pyrochlore fluorides
Since the correlated ground states of the weakly-interacting rare-earth-based
pyrochlore oxides can only be accessed at very low temperatures, the imple-
mentation of magnetic 3d transition metals with stronger exchange interactions
(J ∼ 102 − 103 K) is essential to make the exotic phenomena more accessible.
However, it is extremely difficult to use the late 3d metal ions (Mn - Cu) on
either A or B sites in the A2B2O7 pyrochlores due to the problems with charge
neutrality and the structural tolerance factor. [16]

To solve this problem, the divalent oxygen O2− is replaced by a monovalent
fluorine F−1, allowing for the creation of (A2)3+B2+

2 F−1
7 pyrochlore fluorides with

magnetic B = Mn2+, Fe2+, Co2+, Ni2+ and Cu2+ ions, where the exchange in-
teractions are mediated by superexchange through fluoride ligands. The overall
electrical neutrality, however, results in a potential issue - an effective 1.5+ va-
lence state on the A site. As a result, chemical disorder is introduced on the
A site, shared between a monovalent A+ ion and a divalent A′2+ ion randomly
distributed over the A sublattice. This brings us to A+A′2+B2+

2 F 1−
7 pyrochlore

fluorides, where in the so-far-studied compounds A = Na+ is an alkali metal and
A′ = Ca2+, Sr2+ are alkaline earths. [68]

Table 3.2: Structural details of AA′B2F7 pyrochlores
AA′B2F6F‘ pyrochlores - S.G.: Fd3̄m (#227, origin 2), cubic, Z = 8
Atom Wyckoff site Occupancy Point group x, y, z Charge
A/A′ 16d 0.5/0.5 3̄m (D3d) 1

2 ,
1
2 ,

1
2 1+/2+

B 16c 1.0 3̄m (D3d) 0, 0, 0 2+
F 48f 1.0 mm (C2v) x, 1

8 ,
1
8 1-

F‘ 8b 1.0 4̄3m (Td) 3
8 ,

3
8 ,

3
8 1-

Pyrochlore fluorides share the same cubic Fd3̄m crystal structure with 8 for-
mula units per unit cell as pyrochlore oxides, see Table 3.2. The main difference
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Figure 3.2: a) A/A′ (yellow/pink) and B (blue) site sublattices of corner-sharing
tetrahedra in AA′B2F7 pyrochlores. b) Octahedrally coordinated B site by fluo-
rine atoms.

is the randomly occupied A site by A+ and A′2+ ions, each with a 50% occupancy.
The only free structural parameter, the x coordinate of the fluorine ions on the
48f site dictates the geometry of the coordination polyhedra of A and B site
ions. If x = 0.3125, the fluorine ions create an ideal BF6 octahedron around the
B site, while for x = 0.375 an ideal AF8 cube of fluorine ions surrounds the A site
[45, 69], see Figure 3.3. For x > 0.3125, the BF6 octahedra are compressed along
the local <111> axis with two different F-Co-F bond angles, differing from the
ideal 90◦ value. [10] Since the magnetic ions reside on the B site, the geometry
of the coordination octahedra influences the magnetism of pyrochlore fluorides,
as the superexchange pathways are dictated by the Co-F-Co bond angles, while
the position of the coordinating fluorine ions also determines the size and effect
of the crystal field on the magnetic B ion.

Figure 3.3: Coordination polyhedra - AF8 (pink dodecahedron) and BF6 (blue
octahedron) as a function of the free parameter x of the 48f fluorine site. a) Ideal
BF6 octahedron for x = 0.3125. b) AF8 dodecahedron around A and a distorted
octahedron around B for 0.3125 < x < 0.375. c) Ideal AF8 cube for x = 0.375.

Crystallographic studies on polycrystalline pyrochlore fluorides were first per-
formed in 1970 [9], but it was not until 2014 when first magnetic studies appeared
on NaCaCo2F7 [10] due to the use of advanced floating zone technique for the
growth of large single crystals.
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Figure 3.4: Elements known to form pyrochlore oxides and fluorides. Taken from
[68].

In all of the so-far-studied AA′B2F7 materials (A = Na+, A′ = Ca2+, Sr2+ and
B = Mn2+, Fe2+, Co2+, Ni2+) [10, 11, 12, 13], despite strong antiferromagnetic
interactions evidenced by Curie-Weiss temperatures ranging from θCW = -73 K
in NaCaFe2F7 [13] to -140 K in NaCaCo2F7 [10], no magnetic order is observed
with cooling down to below 4 K, indicating a large magnetic frustration. In all
of the studied cases, this frustration is quenched by a spin-freezing transition at
a temperature Tf . The spin freezing is believed to originate from the exchange
disorder ∆ (assuming an average nearest-neighbor exchange interaction J with
small fluctuations ∆, such that ∆ ≪ J), introduced by the chemical disorder
on the A site. [70] Theoretical studies show that the magnetic bond disorder
in the pyrochlore Heisenberg antiferromagnets can induce a spin-glass transi-
tion commensurate with the energy scale of the bond disorder, kBTf =

√︂
8/3∆.

[71] The glassy nature is evidenced by the bifurcation of ZFC and FC magnetic
susceptibility [10, 13]. Indeed, an extensive study of the short range magnetic
correlations of NaA′Co2F7 (A‘ = Sr, Ca) shows frozen XY -like magnetism at low
temperature, but with magnetic correlations that persist up to 200 K [14]. A re-
cent investigation of the inelastic neutron excitation spectra of NaCaNi2F7 found
a continuum of scattering with low energy pinch points indicating a correlated
spin-liquid character [15].

In recent years, the interesting properties of Co2+-based pyrochlore fluorides
NaA′Co2F7 (A‘ = Ca, Sr) have been extensively studied due to the intriguing
magnetism invoked by the octahedral CoF6 complexes on the pyrochlore lattice.
Unlike most of the 3d transition metals where the orbital moment is quenched,
when the high spin Co2+ (S = 3/2) ion is placed in an octahedrally coordinated
cubic environment with small tetragonal distortions, the crystal electric field com-
bined with spin-orbit coupling forms a Jeff = 1/2 single-ion Kramers doublet
groundstate [72]. A strong XY -like anisotropy (evidenced by the g-tensor com-
ponents gxy/gz ∼ 3) has been found in a single-ion energy level study by inelastic
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neutron scattering [73]. At sufficiently low temperatures, the Jeff = 1/2 Kramers
doublet is the only occupied state (indicated by the entropy change approaching
the R ln2 limit [10, 11]), making Co2+-based pyrochlores a new promising av-
enue in the search of a quantum spin liquid. Recent high frequency/high field
electron spin resonance investigation of NaCaCo2F7 revealed two coexisting mag-
netic phases above a spin-glass freezing temperature (Tf ∼ 2.4 K) – a cooperative
paramagnetic phase characterised by a gapless excitation mode, as well as a spin-
glass phase below 20 K with a gapped low-energy excitation. [74] Ultrasound
velocity measurements of NaCaCo2F7 uncovereded elastic anomalies in the bulk
modulus and the trigonal shear modulus below 20 K, revealing an enhancement
of the exchange disorder (responsible for the spin freezing) due to the spin-lattice
coupling, as well as a coupling of the lattice to the dynamical spin-cluster state.
[75]

Despite the increasing interest in a number of members of this family, beyond
the intial report of a pyrochlore structure compound with formula NaCdCu2F7
[9], no properties have been reported for any Cu2+ containing pyrochlore fluorides,
where enhanced quantum fluctuations of the low spins state (S = 1/2) Cu2+ ion
are expected to further destabilise magnetic order, retaining a quantum spin-
liquid ground-state. [21]

3.3 A3A′M3M′F14, A2M3M′F12 kagome fluorides
The kagome lattice, a 2D layered network of vertex-sharing triangles, is one of the
most geometrically frustrated systems. The 2D kagome planes can be isolated
within the 3D pyrochlore structure by selectively diluting the pyrochlore lattice
with non-magnetic ions in an appropriate, ordered way. This ordered dilution
is found in the natural mineral Coulsellite, Na3CaMg3AlF14 [20] with full 1:3
ordering of Ca:Na on the A sites and Al:Mg on the B sites, but has so far not
been reported in any synthetic fluorides.

Table 3.3: Predicted structural details of A3A
′M3M

′F14 kagomes (based on
Na3CaMg3AlF14 [20] and standardized in VESTA[76])
A3A

′M3M
′F14 kagomes - S.G.: R3̄m (#166, setting 1), rhombohedral, Z = 3

Atom Wyckoff position Occupancy Point group x, y, z Charge
A 9d 1.0 .2/m 1

2 , 0,
1
2 1+

A′ 3a 1.0 3̄m 0, 0, 0 2+
M 9e 1.0 .2/m 1

2 , 0, 0 2+
M ′ 3b 1.0 3̄m 0, 0, 1

2 3+
F1 18h 1.0 .m x+ 1,−x, z 1-
F2 18h 1.0 .m x+ 1,−x, z 1-
F3 6c 1.0 3m 0, 0, z 1-

A series of crystallographically ordered, ideal rare earth 2D kagome com-
pounds have been reported, e.g. the RE3Sb3Zn2O14 family (RE = La, Pr, Nd,
Sm, Eu, Gd), [77] as well as the magnetic transition-element-basedRE3Sb3Mn2O14
(RE = La, Pr, and Nd) [78] and RE3Sb3Co2O14 (RE = La, Pr, Nd, Sm-Ho) [79],
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Figure 3.5: a) Predicted unit cell of A3A
′M3M

′F14 kagomes (based on
Na3CaMg3AlF14 [20]). b) 2D kagome network of M2+ ions viewed along the
c axis.

all showing high frustration with strong antiferromagnetic interactions, evidenced
by the Curie-Weiss temperatures down to θCW = -620 K. This motivates us to
examine the possibility of synthesizing isostructural fluoride-based A3A

′M3M
′F14

kagome compounds, where A is a 1+ alkali metal, A‘ is a 2+ alkaline earth, M is
a magnetic 2+ transition metal and M ‘ is a non-magnetic 3+ ion (Al, Ga).

Figure 3.6: a) Predicted unit cell of A2M3M
′F12 kagome fluorides (based on

Cs2Cu3TiF12 [80]). b) 2D kagome network of M2+ ions viewed along the c axis.

In fact, some structurally related kagome fluorides have already been success-
fully synthesised – systems with the composition A2Cu3M ‘F12 (A = Rb, Cs; M ‘
= Sn, Zr, Hf, Ti) have been studied (see eg. [17, 18, 81, 80]), all based on the
3d transition metal Cu2+ (S = 1/2) ion, aiming to utilize large quantum fluc-
tuations in the T → 0 limit to potentially destabilise magnetic order. However,
a symmetry-lowering structural phase transition is seen in these materials (from
Tt = 172 K in Cs2Cu3HfF12 to 225 K in Cs2Cu3ZrF12) and magnetic ordering
occurs from TN = 20 K (Cs2Cu3HfF12) to 24.5 K (Cs2Cu3SnF12), resulting in a
small ferromagnetic moment. No Co2+-based analogues have yet been reported,
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motivating our research towards synthesizing A2Co3M
′F12 compounds (A = Rb,

Cs; M ‘ = Sn, Zr, Hf, Ti) with the hope of obtaining a Jeff = 1/2 Heisenberg
kagome antiferromagnet with a quantum spin liquid groundstate.

Table 3.4: Predicted structural details of A2M3M
′F12 kagomes (based on [80], at

room temperature)
A2M3M

′F12 kagomes - S.G.: R3̄m (#166), rhombohedral, Z = 3
Atom Wyckoff position Occupancy Point group x, y, z Charge
A 6c 1.0 3m 0, 0, z 1+
M 9d 1.0 .2/m 1

2 , 0,
1
2 2+

M ′ 3b 1.0 3̄m 0, 0, 1
2 4+

F1 18h 1.0 .m x,−x, z 1-
F2 18h 1.0 .m x,−x, z 1-
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4. Results

4.1 NaCdB2F7 pyrochlore fluorides
By applying the previously discussed A2B2O7 pyrochlore oxide structure tolerance
factor τ [16] to the AA′B2F7 pyrochlore fluorides, we attempted to predict and
synthesize new stable pyrochlore fluorides with the composition NaCdB2F7 (B =
Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+). The adjusted tolerance factor is

τ = 3(RA +RF )√
17(RB +RF )

, τ ∈ [0.826, 0.943] (4.1)

where RA = 1
2(RA+ + RA′2+) is the effective A-site ionic radius taken as the

arithmetic mean of the A+ and A′2+ ionic radii, and RB and RF are the ionic
radii of the B site ion and fluorine, respectively. The calculation of τ is based on
the Shannon ionic radii [82] of elements with a specific coordination number (CN):
CN = 8 for the dodecahedrally coordinated A site, CN = 6 for the octahedrally
coordinated B site and CN = 4 for the tetrahedrally coordinated 48f and 8b
fluorine sites. The octahedrally coordinated B = Mn, Fe and Co typically take
the high-spin configuration, for which the ionic radius is shown.

Table 4.1: Shannon ionic radii [82] for the actual CN of A,B and F sites (CN =
8, 6 and 4, respectively) and Ahrens ionic radii [83] for CN = 6.

ion Na+ Cd2+ Mn2+ Fe2+ Co2+ Ni2+ Cu2+ Zn2+ F1−

RShannon [Å] 1.18 1.10 0.83 0.78 0.745 0.69 0.73 0.74 1.31
RAhrens [Å] 0.97 0.97 0.80 0.74 0.72 0.69 0.72 0.71 1.33

We are also able to predict the lattice parameter of the cubic AA′B2F7 py-
rochlore fluorides [84], based on the Chakoumakos function [85] in the form
apred = MRA + NRB + O, where RA and RB are the Ahrens ionic radii [83]
of A and B site corresponding to CN = 6 (where RA = 1

2(RA+ +RA′2+) is defined
as above) and M,N and O are refinable parameters. By applying the multiple lin-
ear regression analysis, the best match with the previously-reported compounds
[9, 10, 11, 12, 13, 77] was reached with the formula [84]

apred = 2.846RA + 2.567RB + 5.762 (4.2)

Applying these formulae, we predict the stability of the pyrochlore structure
as well as the lattice parameters for the whole series of compounds with the
formula NaCdB2F7 (B = Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+), see Table 4.2.

Table 4.2: Calculated pyrochlore tolerance factor τ (stable in range [0.826, 0.943])
[16] and predicted lattice parameters apred for NaCdB2F7 pyrochlores. [84]

B2+ ion Mn2+ Fe2+ Co2+ Ni2+ Cu2+ Zn2+

τ 0.833 0.853 0.867 0.891 0.874 0.870
apred [Å] 10.576 10.422 10.371 10.294 10.371 10.345
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4.1.1 NaCdZn2F7

To begin with, we decided to synthesize a non-magnetic Zn2+-based pyrochlore
fluoride, NaCdZn2F7, previously reported in several polycrystalline and single
crystal studies. [9, 86, 87, 88] The main purpose of this compound is to be
later used as a non-magnetic analogue in the specific heat subtraction of the
lattice vibration (phonon) contribution, separating the magnetic specific heat
of the magnetic pyrochlores and probing the nature of their ground state by
means of magnetic entropy analysis. We were able to successfully synthesize a
polycrystalline powder as well as grow single crystals of NaCdZn2F7.

4.1.1.1 Solid state synthesis, PXRD

A stoichiometric mix (m = 2 g) of dry, high-purity binary fluorides was weighed
out and ground inside the glovebox with a protective argon atmosphere to prevent
any reaction with air moisture. The mix was poured into a platinum crucible
along with 30 mg of XeF2 and crimp-sealed with a pair of pliers, creating a double-
fold for a good protection against a possible expansion and leakage of the Pt tube
at high temperatures. The Pt tube was then placed inside two enclosing alumina
crucibles with a small portion of CaO inside, which would react with fluorine gas
in the case of a leakage, preventing a damage of the furnace heating elements.
The crucibles were inserted into a programmable furnace with an extraction hood.
The furnace was programmed to ramp up to 700 ◦C at the rate of 2 ◦C/min, dwell
there for 5 days and rapidly cool to room temperature. The intended solid state
(marked as the subscript (s)) reaction is described by the following equation:

NaF(s) + CdF2(s) + 2 ZnF2(s)
700◦C in Ar(g)/F2(g)−−−−−−−−−−−−→

5 days
NaCdZn2F7(s)

Figure 4.1: Glovebox used for the preparation of the stoichiometric mix (left).
Sealed Pt crucible (middle). A close-up view of the double-folded seal (right).

White polycrystalline material was obtained and a small portion was ground
for a Powder X-Ray Diffraction measurement. PXRD confirmed a successful
synthesis of polycrystalline NaCdZn2F7 with a 96 wt.% phase fraction, confirming
the cubic Fd3̄m structure with the lattice parameter refined to a = 10.3450(3)
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Å, agreeing perfectly with the predicted value in Table 4.2. However, a 4 wt.%
impurity phase was also detected - the fluoperovskite β-NaZnF3 [89] (the low-
temperature phase of NaZnF3 existing below 683 ◦C) with the orthorhombic space
group Pnma (#62) and refined lattice parameters a = 5.587(2) Å, b = 7.773(3)
Å and c = 5.414(2) Å.

Figure 4.2: PXRD refinement of the solid-state-reacted NaCdZn2F7 (96 wt.%),
revealing a NaZnF3 impurity (4 wt.%).

4.1.1.2 Crystal growth, PXRD

A 4g stoichiometric mix of binary fluorides was prepared in the glovebox and filled
into a hollow graphite crucible, which was then installed into the laser floating
zone furnace and used for pre-melting into a precursor rod. The pre-melting
took place inside a dynamic argon flow of 0.25 l/min at the pressure of 8 bar to
minimize evaporation. The graphite was heated at constant 18% power (∼ 1050
◦C @ 0.72 emissivity). The hot zone was moved up-down-up along the crucible
length at the speed of 100 mm/hr with a 5 RPM rotation to further homogenize
the heating. The precursor rod was then broken into two pieces - a seed and a
feed rod, which were again installed in the laser furnace for the crystal growth.

The growth was again performed in a dynamic argon flow of 0.25 l/min at 8
bar, this time with 9.2% power (∼ 650 ◦C @ 0.85 emissivity), 2 mm/hr and 4
mm/hr pulling speed (upper and lower shaft, respectively) and 5 RPM rotation
of both shafts. An oligocrystalline ingot was obtained, which was then broken
into small single grain segments. A small selection of single crystals were crushed
into a fine powder and analyzed by PXRD.

PXRD analysis confirmed a phase-pure NaCdZn2F7 pyrochlore with a re-
fined parameter a = 10.3399(3) Å and a refined 48b site fluorine (F2) x coor-
dinate, xF 2 = 0.3268(7). A good chi-squared value of the fit was reached, [90]
χ2 = 1.13. The previous room-temperature single crystal diffraction data report
slightly higher values, a = 10.34657(3) Å and xF 2 = 0.3327(1). [86, 87]

46



Figure 4.3: PXRD refinement of the powdered NaCdZn2F7 crystal, grown in the
laser floating zone furnace.

4.1.2 NaCdCo2F7

The first interesting magnetic candidate is the Co2+-based pyrochlore fluoride,
NaCdCo2F7. The previously studied compounds, NaCaCo2F7 and NaSrCo2F7
[10, 11], reported a Jeff = 1/2 groundstate with XY -type anisotropy [73, 91]. We
managed to successfully synthesize a polycrystalline powder and subsequently
grow and characterize single crystals of NaCdCo2F7, allowing for a comparison
with the A′ = Ca, Sr compounds.

4.1.2.1 Solid state synthesis, PXRD

Similarly to NaCdZn2F7, 2 grams of the stoichiometric binary-fluoride mix were
prepared in the glovebox, filled into a Pt tube with 30 mg of XeF2, crimp-sealed
with a double fold and inserted into the furnace inside two alumina crucibles with
CaO. The same heating program was used - ramp up to 700 ◦C at the rate of 2
◦C/min, hold there for 5 days and cool to room temperature:

NaF(s) + CdF2(s) + 2 CoF2(s)
700◦C in Ar(g)/F2(g)−−−−−−−−−−−−→

5 days
NaCdCo2F7(s)

Dark red polycrystalline material was obtained, a small portion of which was
ground and analyzed via PXRD. The Fd3̄m pyrochlore structure of NaCdCo2F7
(96 wt.% phase fraction) was confirmed with a refined lattice parameter a =
10.3658(1) Å, lower than the predicted value in Table 4.2 by 0.07 %. Two im-
purity phases were also revealed: 2 wt.% of CoF2, crystallizing in the tetrago-
nal P42/mnm (#136) rutile structure [92] with refined lattice parameters a =
4.7197(5) Å and c = 3.1997(7) Å, and also 2 wt.% of NaCoF3, crystallizing
in the orthorhombic Pbnm (#62) perovskite structure [93] with refined lattice
parameters a = 5.480(2) Å, b = 5.611(2) Å and c = 7.797(2) Å.
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Figure 4.4: PXRD refinement of the polycrystalline NaCdCo2F7 (96 wt.%) with
two impurity phases: CoF2 (2 wt.%) and NaCoF3 (2 wt.%).

4.1.2.2 Crystal growth, PXRD

Similarly to NaCdZn2F7, single crystals of NaCdCo2F7 were grown using the
laser floating zone furnace. A 4 gram stoichiometric mix of elemental fluorides
was weighed out and ground in the glovebox. The ground powder was then filled
into a hollow graphite tubular crucible and melted in the laser furnace under
an 8 bar atmosphere of argon, at 16.6 % laser power (∼ 1000 ◦C at 0.72 emmi-
sivity of graphite), to form a polycrystalline precursor. After cooling, the rod
was extracted from the graphite and re-mounted within the furnace for standard
floating-zone growth using platinum wire. The growth was again performed un-
der a dynamic flow of argon atmosphere (0.25 l/min) at high pressure (8 bar) to
minimize evaporation.

The obtained oligocrystalline ingot was broken into smaller pieces, many of
which were single grain fragments. A black layer on the surface of the oligocrys-
talline ingot was formed due to the pre-melting in the graphite crucible, but
did not influence the purity of the crystals in the center. Large multiple-grain
crystals appeared to have white/grey impurities formed on the grain boundaries,
later identified as CoF2 by PXRD analysis. These crystals were not used in the
measurements, instead small transparent single-grain crystals were picked and
oriented on the Laue diffractometer for directional single crystal property mea-
surements.

A small selection of the transparent single-grain crystals were crushed into a
fine powder and analyzed by PXRD, which confirmed a phase pure NaCdCo2F7
pyrochlore with the lattice parameter a = 10.3636(2) Å and the F (2)
x-coordinate xF 2 = 0.3329(5).
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Figure 4.5: Mounted graphite crucible (left). Obtained pre-melted NaCdCo2F7
rod with a black surface layer from the graphite (middle). A feed rod with a Pt
hook and a mounted seed (right).

Figure 4.6: Obtained oligocrystalline ingot (left), broken into smaller pieces con-
taining pure transparent single-grain crystals, as well as impure crystals with grey
CoF2 inclusions and/or surface layers. (right)
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Figure 4.7: NaCdCo2F7 single crystals oriented along the [100], [110] and [111] di-
rections, used for directional measurements (top). Laue diffraction patterns show-
ing four-fold, two-fold and three-fold rotational symmetry, respectively. (bottom)

Figure 4.8: PXRD refinement of the powdered transparent NaCdCo2F7 crystals
(top) and crystals containing grey CoF2 impurities (bottom, stopped at 65◦).
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4.1.2.3 Single crystal diffraction

Single crystal X-ray diffraction (SCXRD) was performed by a collaborator, Prof.
Gerald Giester (Department of Mineralogy and Crystallography, Faculty of Geo-
sciences, Geography and Astronomy, University of Vienna), at room temperature
using a Bruker Kappa X8 APEX diffractometer equipped with a CCD detector
and Incoatec Microfocus Source IµS (30 W, multilayer mirror, MoKα).

The single crystal reflections could be indexed by space-group Fd3̄m with cell
parameter a = 10.3488(5) Å. The solved structure, summarised in Table 4.3, is
isostructural to that of NaCdZn2F7 [86, 87] with (Na, Cd), Zn, and F(1) atoms at
the special positions (0,0,0), (1

2 ,1
2 ,1

2), and (1
8 ,1

8 ,1
8), respectively. The F(2) atom is

at the position (1
8 ,1

8 ,z), where the free z coordinate can be converted to x = −z+ 3
4

to directly compare with the free xF 2 coordinate of NaSrCo2F7 (0.33289(14)) [10],
NaCaCo2F7 (0.3285(2)) [11] and the other recently studied pyrochlore fluorides
[13, 12]. The refined F(2) z-coordinate in NaCdCo2F7 is zF 2 = 0.41580(10) and
after conversion, xF 2 = 0.33420(10), which is close to the NaSrCo2F7 value and
signals a compression of the CoF6 octahedra along the <111>-type direction.

As with these previous examples, no superstructure reflections were seen,
indicating no ordering of Na and Cd on the pyrochlore (16d) A-site. No A − B
intersite mixing was detected either.

Table 4.3: Refined NaCdCo2F7 single crystal diffraction data.
Space group: Fd3̄m (#227, origin 2)

a = 10.3488(5) Å V = 1108.3(3) Å3 Z = 8
Atom Site x/a y/a z/a Occ.

Na 16d 0 0 0 0.5
Cd 16d 0 0 0 0.5
Co 16c 0.5 0.5 0.5 1

F(1) 8b 0.125 0.125 0.125 1
F(2) 48f 0.125 0.125 0.41580(10) 1

Table 4.4: Displacement parameters from the single-crystal refinement.
Atom U11 U22 U33 U23 U13 U12

Na 0.01507(12) 0.01507(12) 0.01507(12) -0.00292(4) -0.00292(4) -0.00292(4)
Cd 0.01507(12) 0.01507(12) 0.01507(12) -0.00292(4) -0.00292(4) -0.00292(4)
Co 0.00836(10) 0.00836(10) 0.00836(10) -0.00034(3) -0.00034(3) -0.00034(3)

F(1) 0.0167(3) 0.0167(3) 0.0167(3) 0 0 0
F(2) 0.0201(3) 0.0201(3) 0.0245(5) 0 0 -0.0106(3)

4.1.2.4 Magnetization

Temperature-dependent DC magnetization measurements in a constant field H
= 2000 Oe (converted to magnetic susceptibility as χ = M/H), with the field
applied along the [100], [110] and [111] crystallographic directions of NaCdCo2F7,
are shown in Figure 4.9. The data in all three high symmetry directions overlap,
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Figure 4.9: Inverse DC susceptibility of NaCdCo2F7 in H ∥ [111] with the Curie-
Weiss fit (left) and magnetization vs. field at T = 2 K in the [110] and [111]
directions (top left inset). DC susceptibility in all three high-symmetry directions
(right) and ZFC/FC splitting at Tf = 4 K (top right inset).

confirming the isotropic behaviour of DC susceptibility of NaCdCo2F7, as seen
in the previously reported compounds NaCaCo2F7 and NaSrCo2F7. [10, 11] The
inverse susceptibility 1/χ data with H ∥ [111] (main panel) were used for the
Curie-Weiss fit in the temperature range of 100 - 350 K, in the standard form
χ = C/(T − θCW), described in (1.45) and (1.66). The top left inset shows a
very linear dependence of magnetization vs. field (at T = 2 K) up to µ0H = 7
T in the [110] and [111] directions, justifying our calculation of susceptibility as
M/H at 2000 Oe. The Curie-Weiss fit of the temperature-dependent susceptibil-
ity data yields a large negative Curie-Weiss temperature (a mean-field measure of
the interaction strength) of θCW = -108.0(2) K, confirming that NaCdCo2F7 is a
strongly frustrated Co-based pyrochlore with dominant antiferromagnetic inter-
actions. A magnetic transition is seen at Tf = 4.0 K as a sharp cusp in the DC
susceptibility, resulting in a high frustration index f = |θCW| /Tf = 27. The ef-
fective moment per cobalt was extracted as µeff = 5.40(1) µB, which significantly
differs from the S = 3/2 Co2+ spin-only value (3.87 µB) with quenched orbital
momentum, and is approaching the J = 9/2 total angular momentum value (6.63
µB), as was seen previously in the other isostructural analogues. [10, 11]

The top right inset shows the zero field cooled (ZFC) and field cooled (FC)
DC susceptibility data measured in a 100 Oe field applied parallel to the [110]
direction of NaCdCo2F7. The cusp at T = 4.0 K, along with bifurcation of the
ZFC and FC data indicate a magnetic transition with history dependence, either
magnetic ordering or spin freezing into a disordered state – a spin glass. Cooling
a spin-glass material below Tf in zero field results in a metastable state, in which
the clusters of spins are frozen in random directions. Upon applying a field, the
spin clusters partially align with the field, resulting in a configuration with a
smaller net moment than in the field cooled process, where the clusters of spins
are already preferentially aligned with the field at T > Tf and freeze in this
configuration below Tf .
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Figure 4.10: Real phase of AC susceptibility χ′(T ) in NaCdCo2F7: shift of Tf

with increasing frequency (left), fitted with the Vogel-Fulcher law (right).

4.1.2.5 AC susceptibility

AC susceptibility was measured as a function of temperature in the vicinity of the
transition temperature (Tf = 4.0 K) to probe the spin dynamics of NaCdCo2F7
around the transition (Figure 4.10). A frequency-dependent excitation field with
the amplitude of HAC = 5 Oe was applied along the [100] crystallographic direc-
tion, with no additional DC field used. A frequency range of 10 Hz to 10 000 Hz
(evenly distributed on the log10 scale) was employed, although the 10 Hz, 21.5
Hz and 46.4 Hz data were later omitted due to a large noise contribution to the
signal. The data in Figure 4.10 with a frequency higher than 100 Hz are offset
by a constant value of −2.5 × 10−4 emu/Oe.mol-Co for the sake of clarity.

The temperature-dependent measurement of the real component of AC sus-
ceptibility χ‘ reveals a rounded cusp centered around Tf with a weak but well
defined frequency-dependent shift, indicative of a spin-glass ground-state. The
peaks were fitted using an asymmetric “perturbed pseudo-Voigt“ function [94] to
extract the freezing temperature as the maximum of χ‘. A shift in the freezing
temperature ∆Tf = 0.12 K (between 100 Hz and 10 000 Hz) was observed with
increasing frequency as a shift of the χ‘ peak to higher temperatures. A quan-
titative measure of the frequency-dependent shift of the freezing temperature is
given by the expression δTf = ∆Tf/(Tf∆log10ν) (see (2.10)), describing a rela-
tive shift of Tf per decade of frequency in spin-glasses or spin-glass-like materials.
[32] It can be evaluated from the linear fit of Tf vs. log10ν as the slope of the
line divided by Tf . For NaCdCo2F7, we obtained δTf = 0.010(1). This value
is similar to that of canonical (RKKY-type) spin-glasses such as AuFe (0.010)
or CuMn (0.005), but lower than what is expected for insulating spin-glasses
such as (EuSr)S (0.060) [32] or the pyrochlore fluorides NaCaCo2F7 (0.029) and
NaSrCo2F7 (0.027). [10, 11].

Additional inferences about the properties of the spin-glass are typically ex-
tracted by fitting the frequency-dependent shift to the Vogel-Fulcher law (see
(2.11), which takes into account the interactions of clusters of spins during the
dynamic freezing process [32], as opposed to the Arrhenius law, which only con-
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siders a thermally activated glass transition of non-interacting clusters (typical for
superparamagnets). These parameters can be extracted from a linear fit on Tf vs.
−1/ln(τ0ν), but since we are fitting a restricted frequency range (7 datapoints),
free fitting of all parameters is not possible. Instead, the intrinsic relaxation time
τ0 is usually fixed to a value typical for the particular class of material (ranging
from 10−13 s in conventional spin-glasses, to 10−7 s for cluster glasses and super-
paramagnets [10]). For a direct comparison with the compounds NaCaCo2F7 and
NaSrCo2F7 [10, 11], the same value τ0 = 10−12 s was used in our Vogel-Fulcher
fit of NaCdCo2F7. We obtained Ea = 6.6(6) × 10−4 eV and T0 = 3.7(1) K, as
opposed to 1.0 × 10−3 eV and 2.17 K in NaCaCo2F7, or 1.3 × 10−3 eV and 2.6(1)
K in NaSrCo2F7. The actual physical meaning of “the ideal glass temperature“
is still in dispute – the main possibilities are either relating it to the inter-cluster
interaction strength in a spin-glass, or associating it with the true critical tem-
perature of the phase transition, whereas Tf is the dynamic indication of the
spin-freezing process. [32]

4.1.2.6 Specific heat

Figure 4.11: Specific heat of NaCdCo2F7 and NaCdZn2F7 (left panel), with the
broad peak around 4 K zoomed in (top left inset) and suppressed with applied
field (lower right inset). Magnetic entropy of NaCdCo2F7 (right panel) and the
Cmag/T vs. T plot (top left inset).

The temperature dependence of the specific heat is shown in Figure 4.11.
The lattice contribution was subtracted using the previously grown isostructural
non-magnetic analogue NaCdZn2F7. In the left panel of Figure 4.11 we show
the raw specific heat data of NaCdCo2F7, as well as the non-magnetic analogue
NaCdZn2F7 with no further scaling.

To approximate the magnetic contribution to the specific heat, we subtracted
the non-magnetic Zn data from the data of Co, to remove the phonon contribution
as well as the step-like anomaly around 215 K from the Apiezon-N grease. The
magnetic heat capacity Cmag ≈ ∆Cp can be seen in the top-left inset of the right
panel, where it is shown on the ∆Cp/T vs. T semi-logarithmic scale. A close-up
look on the low-temperature region of the raw specific heat (top-left inset in the
left panel) reveals that the specific heat of Co is much higher than that of Zn,
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indicating a loss of entropy due to the spin-freezing transition. This transition
is reflected on the magnetic specific heat as a broad peak around 4 K, which
coincides with the freezing temperature extracted from the DC susceptibility
cusp. Suppression of the peak with increasing applied field can be seen in the
lower right inset, and is typical in spin-glass systems.

To estimate the magnetic entropy loss as a function of temperature, we inte-
grated ∆Cp/T in the low-temperature region up to 40 K (right panel), in which
the possible differences in the phonon contributions of Zn and Co do not play
a significant part. We see a saturation of the magnetic entropy by 40 K, the
value of which we can compare to the Heisenberg limit (R ln (2S+1)) and Ising
limit (R ln2) for a S = 3/2 Co2+ magnetic ion. The saturated entropy is almost
60% of R ln(2) (similar result as seen in NaCaCo2F7 [10]), which may suggest
an Ising-like nature of the system or a Jeff = 1/2 ground state, similar to the
XY -type groundstate seen in the Jeff = 1/2 pyrochlores, NaA′Co2F7 (A′ = Ca,
Sr). [73] However, a microscopic look at the magnetic interactions is needed to
further characterise the nature of the magnetism present in NaCdCo2F7.

4.1.3 NaCdMn2F7

The next compound we successfully managed to synthesize and fully characterize
(however only in the polycrystalline form) is the S = 5/2 Mn2+-based pyrochlore,
NaCdMn2F7. Only one previous crystallographic and magnetic study was per-
formed on the isostructural NaSrMn2F7 [13], allowing us to compare our results
with the Mn2+-based pyrochlore with Sr2+ on the A′ site.

In the very late stage of the project, phase-pure crystals of NaCdMn2F7 were
finally grown, but are yet to be fully characterized.

4.1.3.1 Solid state synthesis, PXRD

Similarly to the previous two compounds, 2 grams of the stoichiometric binary-
fluoride mix were prepared in the glovebox, filled into a Pt tube, crimp-sealed
with a double fold and inserted into the furnace inside two alumina crucibles with
CaO. This time, a different heating protocol was used - ramp up to 800 ◦C at
the rate of 2 ◦C/min, hold there for 3 hours and slow-cool to 600 ◦C over 7 days,
then rapidly cool to room temperature:

NaF(s) + CdF2(s) + 2 MnF2(s)
800◦C→600◦C−−−−−−−−→

7 days
NaCdMn2F7(s)

White polycrystalline material was obtained, a small portion of which was
ground and analyzed via PXRD. A phase-pure NaCdMn2F7 with the Fd3̄m py-
rochlore structure was confirmed, with a refined lattice parameter a = 10.5384(1)
Å, lower than the predicted value in Table 4.2 by 0.4%. The F(2) x-coordinate
was refined to xF 2 = 0.365(1).

4.1.3.2 Crystal growth, PXRD

About a gram of polycrystalline NaCdMn2F7, produced by solid-state synthesis
described above, was filled into a Pt tube inside the glovebox, crimp-sealed with
a double-fold and used for a recrystallization in the furnace. Aiming for a slow

55



Figure 4.12: PXRD refinement of the phase-pure polycrystalline NaCdMn2F7.

crystallization from the melt, the following heating protocol was used: ramp up
to 850◦C at the rate of 2 ◦C/min, hold there for 3 hours, slow-cool to 650◦C over
7 days, then rapidly cool to room temperature:

NaF + CdF2 + 2 MnF2
850◦C→650◦C−−−−−−−−→

7 days
NaCdMn2F7

Light-yellow transparent crystals were obtained, a small portion of which was
ground and analyzed via PXRD. A phase-pure NaCdMn2F7 with the Fd3̄m py-
rochlore structure was confirmed, with a refined lattice parameter a = 10.5645(2)
Å, higher than in the polycrystalline sample, but lower than the predicted value
in Table 4.2 by 0.3%. The F(2) x-coordinate was refined to xF 2 = 0.3592(6).

Figure 4.13: PXRD refinement of powdered crystals of NaCdMn2F7.
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Figure 4.14: Inverse DC susceptibility of NaCdMn2F7 in H = 2000 Oe with the
Curie-Weiss fit (left panel) and magnetization vs. field at T = 2 K (top left inset).
DC susceptibility in H = 2000 Oe (right panel) and ZFC/FC curves in H = 200
Oe above 2 K (top right inset).

4.1.3.3 Magnetization

Temperature-dependent magnetizaton measurements in a constant field H =
2000 Oe (converted to magnetic susceptibility as χ = M/H) on polycrystalline
NaCdMn2F7 were performed in a Quantum Design Physical Property Measure-
ment System (PPMS) using the Vibrating Sample Magnetometer (VSM) option
[38] and can be seen in Figure 4.14. The top left inset shows a subtle curvature of
the isothermal magnetization curve µ(H) (measured at T = 2 K) up to µ0H = 7
T, however the magnetic moment is far from saturation (µsat = 2SµB = 5µB).The
inverse susceptibility 1/χ data (left panel) were used for the Curie-Weiss fit in
the temperature range of 100-300 K. The fit yields a negative Curie-Weiss tem-
perature of θCW = -38.4(2) K, resulting in a frustration index f = 19 (as opposed
to θCW = −89.7 K and f = 35.9 in NaSrMn2F7 [13]). The effective moment
per manganese was extracted as µeff = 5.81(1) µB, which closely approaches the
high-spin free-ion S = 5/2 Mn2+ spin-only value (5.92 µB) with quenched orbital
momentum (L = 0). Inside an octahedral crystal field, the 3d5 Mn2+ is usu-
ally found in the high spin configuration, with all three t2g orbitals and both eg

orbitals singly occupied. However, a deviation from the ideal MnF6 octahedral
crystal field, dictated by the F(2) fluorine x-coordinate, can result in a devia-
tion from the L = 0 effective moment due to an increased orbital contribution.
This is seen in the higher effective moment of NaSrMn2F7 (µeff = 6.25 µB for
xF 2 = 0.3331(2)), however, in our NaCdMn2F7 sample a lower effective moment
is seen despite the large deviation from the ideal xF 2 = 0.3125 value (µeff = 5.81(1)
µB for xF 2 = 0.365(1)). Since our xF 2 value was refined from a PXRD Rietveld
refinement, it may not be trustworthy and single crystal diffraction measurements
would be essential to confirm this xF 2 value.

The right panel shows the DC susceptibility of NaCdMn2F7 measured in a
2000 Oe applied field. Due to the problems with temperature stabilization be-
tween 1.8-2.5 K, the measurement was performed in the temperature range 2.5-
300 K and hence no cusp is seen in the low-temperature χ(T ) data. The top right
inset shows the zero field cooled (ZFC) and field cooled (FC) DC susceptibility
data measured in a 200 Oe applied field between 1.9-4 K. Again, no cusp or bi-
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furcation is seen in this temperature interval, although the maximum of χ(T ) is
reached around Tf ≈ 2.0 K, again indicating a magnetic transition likely to be a
spin-glass transition. The spin-freezing temperature in NaSrMn2F7 was taken as
Tf ≈ 2.5 K. [13]

4.1.3.4 AC susceptibility

Figure 4.15: Real phase of AC susceptibility χ′(T ) in NaCdMn2F7: a shift of Tf

with increasing frequency (left), fitted with the Vogel-Fulcher law (right).

Temperature- and frequency-dependent AC susceptibility was measured in the
vicinity of the transition temperature (Tf ≈ 2.0 K) to probe the low-temperature
freezing behaviour of polycrystalline NaCdMn2F7 (Figure 4.15). A frequency-
dependent excitation field with the amplitude of HAC = 5 Oe was applied with
no additional DC field used. A frequency range of 10 Hz to 10 000 Hz (evenly
distributed on the log10 scale) was employed, although the 10 Hz, 21.5 Hz and
46.4 Hz data were again omitted due to the large noise. The data in Figure 4.15
with a frequency higher than 100 Hz are offset by a constant value of −0.005
emu/Oe.mol-Mn for the sake of clarity.

The spin-glass ground-state is again indicated by the frequency-dependent
shift of the rounded χ′(T ) cusps, centered around the freezing temperature Tf .
The peaks were fitted using an asymmetric “perturbed pseudo-Voigt“ function
[94] to extract the freezing temperature as the maximum of χ‘. A shift in the
freezing temperature ∆Tf = 0.07 K (between 100 Hz and 10 000 Hz) was observed
with increasing frequency. The relative shift of Tf per decade of frequency was
evaluated as δTf = 0.018(1) from the linear fit of Tf vs. log10ν, as the slope
of the line divided by Tf . Unfortunately, the δTf value for NaSrMn2F7 [13] is
not explicitely stated. However, it could be recalculated from the Vogel-Fulcher
graph using the ”Digitize Image” function in Origin Pro 2019 software [95], using
which we estimated a shift of approximately ∆Tf = 0.09 K between two decades
of frequency (100 Hz and 10 000 Hz), corresponding to δTf = 0.018, agreeing
with our obtained NaCdMn2F7 result.

Further probing of the spin-glass properties can again be done by fitting the
frequency-dependent shift to the Vogel-Fulcher law with a linear fit of Tf vs.
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−1/ln(τ0ν), but due to the fitting of a restricted frequency range (7 datapoints),
the intrinsic relaxation time τ0 was fixed to a reasonable spin-glass value τ0 =
10−12, allowing us to directly compare with the fitted values with NaSrMn2F7
[13]. We obtained Ea = 5.4(3) × 10−4 eV and T0 = 1.90(2) K, as opposed to
8.3(4) × 10−4 eV and 2.2(7) K in NaSrMn2F7. The lower spin-freezing activation
energy and the ideal glass temperature can be ascribed to the lower mean-field
interaction strength in NaCdMn2F7 given by θCW = -38.4(2) K, as opposed to
θCW = −89.7 K in NaSrMn2F7 [13].

4.1.3.5 Specific heat

Figure 4.16: Specific heat of NaCdMn2F7 and 94%-scaled NaCdZn2F7 (left panel),
with the broad low-temperature peak zoomed in (top left inset), not influenced
by the applied field (lower right inset). Magnetic entropy of NaCdMn2F7 (right
panel) and the Cmag/T vs. T plot (lower right inset).

The temperature-dependent specific heat is shown in Figure 4.16. The lattice
contribution was again subtracted using the previously grown isostructural non-
magnetic analogue NaCdZn2F7. In the left panel of Figure 4.11 we show the raw
specific heat data of NaCdMn2F7 between 2-250 K in zero applied field, as well
as the non-magnetic analogue NaCdZn2F7, this time scaled by a factor of 0.94
(or 94%) to better match the Mn data.

To approximate the magnetic contribution to the specific heat, we subtracted
the scaled non-magnetic Zn data from the data of Mn, approximately removing
the lattice vibration contribution. The magnetic heat capacity Cmag ≈ ∆Cp can
be seen in the bottom-right inset of the right panel, where it is shown on the linear
∆Cp/T vs. T scale. The zoomed-in low-temperature region of the raw specific
heat (top-left inset in the left panel) reveals a rounded maximum between 2-20
K, with a much higher specific heat of Mn than that of Zn, indicating a loss of
entropy due to the spin-freezing transition. As opposed to NaCdCo2F7, we do
not see a suppression of the peak with increasing applied field, but rather the
curves overlap, as can be seen in the bottom right inset of the left panel.

To provide a rough estimate of the magnetic entropy loss as a function of tem-
perature, we integrated ∆Cp/T in the low-temperature region up to 70 K (right
panel), in which there are only subtle differences in the phonon contributions of
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Zn and Co. We see a saturation of the magnetic entropy by 35 K, the value of
which we can compare to the Heisenberg limit (R ln (2S+1) = R ln6) for a S =
5/2 Mn2+ magnetic ion. The saturated entropy is approximately 78% of R ln(6),
meaning that less entropy is released in the spin-freezing transition than expected
in a S = 5/2 Heisenberg magnetic system. Conversely, in the previously-studied
NaSrMn2F7 the magnetic entropy saturates above R ln6, releasing more entropy
during the transition.

4.1.4 NaCdCu2F7

Due to the strong Jahn-Teller effect in octahedral Cu2+ complexes [96], no Cu2+-
based pyrochlores have yet been studied [68] beyond the initial crystallographic
report of the pyrochlore structure in the polycrystalline NaCdCu2F7 [9]. Synthesis
of a single-crystalline S = 1/2 Cu2+-based pyrochlore is of great interest due to
the strong quantum fluctuations of the low-spin state in the T → 0 limit, which
could further destabilise magnetic order and potentially reach a quantum spin-
liquid ground-state.

Here we report our latest progress with the crystal growth of the S = 1/2
NaCdCu2F7 pyrochlore fluoride. A small selection of basic characterization ex-
periments were performed due to the rather large impurity content, aiming to
optimize the growth before a full characterization of a phase-pure crystal is done.

4.1.4.1 Crystal growth, PXRD

Two grams of the stoichiometric binary-fluoride mix were prepared in the glove-
box, filled into a Pt tube, crimp-sealed with a double fold and inserted into the
furnace inside two alumina crucibles with CaO. Aiming for a slow crystallization
from the melt, the following heating protocol was used: ramp up to 710 ◦C at
the rate of 2 ◦C/min, hold there for 1 hour and slow-cool to 600 ◦C over 7 days,
then rapidly cool to room temperature:

NaF + CdF2 + 2 CuF2
710◦C→600◦C−−−−−−−−→

7 days
NaCdCu2F7

A large number of small, clear transparent crystals with black and white
inclusions/surface layers was obtained. A small selection of crystals was ground
and analyzed via PXRD. The Fd3̄m pyrochlore structure of NaCdCu2F7 (91
wt.%) was confirmed, with a refined lattice parameter a = 10.3278(4) Å, lower
than the previously reported value 10.35 Å[9] by 0.2% and also lower than the
predicted value in Table 4.2 by 0.4%. The F(2) x-coordinate was refined to
xF 2 = 0.331(2). Two impurities were revealed: 3 wt.% of CdF2 and 6 wt.% of
CdCuF4. [97] The black inclusions impurity is not shown in the PXRD refinement
due to its low abundance, but they were later isolated and identified as CuO (also
known as tenorite - monoclinic, S.G. C12/c1) in a separate PXRD refinement,
meaning that our Pt tube leaked at high temperatures, hence the molten fluorides
were exposed to air and subsequently oxidized. The oxidation could also happen
due to any remaining adsorbed water in the highly hygroscopic CuF2 precursor.
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Figure 4.17: PXRD refinement of NaCdCu2F7 powdered crystals (91 wt.%), re-
vealing CdF2 (3 wt.%) and CdCuF4 (6 wt.%) impurities.

Figure 4.18: Inverse DC susceptibility of NaCdCu2F7 in µ0H = 1 T with the
150-300 K Curie-Weiss fit (left panel) and magnetization vs. field at different
temperatures (top left inset). DC susceptibility in µ0H = 1 T (right panel) and
ZFC/FC curves in H = 1000 Oe between 1.8-5 K (top right inset).

4.1.4.2 Magnetization

Temperature-dependent magnetizaton measurements in a constant field H = 10
000 Oe (converted to magnetic susceptibility as χ = M/H) were performed in
a SQUID magnetometer inside a Quantum Design Magnetic Property Measure-
ment System (model MPMS-XL 7T) using the Reciprocating Sample Option
(RSO) mode and can be seen in Figure 4.18. The inverse susceptibility 1/χ data
(left panel) were used for the Curie-Weiss fit in the temperature range of 150-300
K. The fit yields a negative Curie-Weiss temperature of θCW = -87(2) K and the
effective moment per copper µeff = 1.77(1) µB, which is slightly higher than the
free-ion S = 1/2 Cu2+ spin-only value (1.73 µB) with quenched orbital momen-
tum, possibly due to the additional orbital contribution as a result of the CuF6
octahedron distortion (given by the refined free parameter xF 2 = 0.331(2)). The
top left inset shows the field dependence of the magnetic moment per copper at
T = 2, 10, 100, 200 and 300 K. We see a highly linear dependence down to 10
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K, however, at T = 2 K we see a Brillouin-shaped magnetization curve with no
hysteresis. The curve approaches saturation at only 0.2 µB/Cu, whereas the sat-
urated moment of a free S = 1/2 Cu2+ ion is expected to be 1 µB. The origin of
this feature is still unknown to us, but one possible explanation includes a small
unknown ferromagnetic impurity superimposed on the linear µ(H) curve. How-
ever, none of the impurities shown by PXRD are ferromagnetic: that includes
the non-magnetic CdF2, the long-range-ordered antiferromagnetic CuO (TN ∼
230 K) [98] and CdCuF4, which shows a very linear inverse susceptibility down
to 20 K and cooperative antiferromagnetic interactions (θCW ≈ -3 K) down to
the lowest measured temperature, 4.2 K. [97]

The right panel shows the DC susceptibility of NaCdCu2F7 measured in a
10 000 Oe applied field. No magnetic transition can be seen down to 1.8 K.
The top right inset shows the zero field cooled (ZFC) and field cooled (FC) DC
susceptibility data measured in a 1000 Oe applied field between 1.8-5 K. Again,
no cusp or bifurcation is seen in this temperature interval, hence a sub-1.8 K Hall
probe magnetometry measurement would be essential to uncover the magnetic
ground-state of NaCdCu2F7. [13]

4.1.4.3 Specific heat

Figure 4.19: Specific heat of NaCdCu2F7 and 103%-scaled NaCdZn2F7 (left
panel), with the low-temperature lambda-type peak zoomed in (top left inset),
moved to lower temperatures by the applied field (lower right inset). Magnetic
entropy of NaCdCu2F7 (right panel) and the Cmag/T vs. T plot (top inset).

The temperature-dependent specific heat is shown in Figure 4.19. The lattice
contribution was once again subtracted using the previously grown isostructural
non-magnetic analogue NaCdZn2F7. In the left panel of Figure 4.11 we show the
raw specific heat data of NaCdCu2F7 between 1.8-300 K in zero applied field, as
well as the non-magnetic analogue NaCdZn2F7 scaled by a factor of 1.03 (or 103
%) to better match the NaCdCu2F7 phonon contribution to the specific heat.

To approximate the magnetic contribution to the specific heat, we subtracted
the scaled non-magnetic Zn data from the data of Cu, approximately removing
the lattice vibration contribution. The magnetic heat capacity Cmag ≈ ∆Cp can
be seen in the top-left inset of the right panel, where it is shown on the semilog-
arithmic ∆Cp/T vs. T scale. The zoomed-in low-temperature region of the raw
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specific heat (top-left inset in the left panel) reveals a lambda-shaped peak cen-
tered at TC = 3.3 K, which shifts to lower temperatures with the application of
an external field (down to 2.3 K at µ0H = 9 T), as can be seen in the bottom
right inset of the left panel. This behaviour is indicative of an antiferromagnetic
ordering transition at TN = 3.3K, although the peak is too small to originate
from the primary phase and most likely comes from an unknown antiferromag-
netic impurity. Looking at the impurities revealed by PXRD, the only potential
candidate could be CdCuF4, the only magnetic study of which reports weak anti-
ferromagnetic interactions below 20 K, evidenced by a small negative Curie-Weiss
temperature θCW = −3K. [97] The measurement of CdCuF4 was carried out be-
tween 4.2-300 K, it is therefore unknown what happens in the low-temperature
region below 4.2 K, where the peak in our specific heat appears.

To provide a rough estimate of the magnetic entropy loss as a function of
temperature, we integrated ∆Cp/T in the low-temperature region up to 70 K
(right panel). We see a saturation of the magnetic entropy by 60 K, the value
of which we can compare to the Heisenberg limit (R ln (2S+1) = R ln2) for a
S = 1/2 Cu2+ magnetic ion, which in this case is equal to the Ising limit. The
saturated entropy is only approximately 28% of R ln2. The explanation for this
behaviour remains unknown at this point, hence new sub-1.8 K 3He-probe specific
heat measurements on a pure single-phase crystal are needed to confirm and fully
explain this behaviour seen in our NaCdCu2F7 measurements.

4.1.5 NaCdNi2F7

Another member of the NaCdB2F7 pyrochlore fluoride family we decided to syn-
thesize is the S = 1 Ni2+-based pyrochlore, NaCdNi2F7. The previously-reported
isostructural NaCaNi2F7 pyrochlore [12] was used in studies of spin freezing and
persistent spin dynamics by µSR measurements [99]. Inelastic neutron scattering
experiments [15, 100] showed a continuum of quantum fluctuations and proved
that NaCaNi2F7 is an almost ideal model material for the realization of the S = 1
Heisenberg antiferromagnet on the pyrochlore lattice, despite the A-site Na/Ca
disorder.

We managed to successfully synthesize polycrystalline NaCdNi2F7, however
due to the rather large impurity content only magnetization was measured. In
the very late stage of the project, several small phase-pure crystals of NaCdNi2F7
were finally grown, but are yet to be fully characterized.

4.1.5.1 Solid state synthesis, PXRD

Similarly to previous samples, 2 grams of the stoichiometric binary-fluoride mix
were prepared in the glovebox, filled into a Pt tube with 30 mg of XeF2, crimp-
sealed with a double fold and inserted into the furnace inside two alumina cru-
cibles with CaO. The following heating program was used: ramp up to 700 ◦C at
the rate of 2 ◦C/min, hold there for 5 days and cool to room temperature:

NaF(s) + CdF2(s) + 2 NiF2(s)
700◦C in Ar(g)/F2(g)−−−−−−−−−−−−→

5 days
NaCdNi2F7(s)

Lime green polycrystalline material was obtained, a small portion of which was
ground and analyzed via PXRD. The Fd3̄m pyrochlore structure of NaCdNi2F7
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(91 wt.%) was confirmed with a refined lattice parameter a = 10.2528(1) Å,
lower than the predicted value in Table 4.2 by 0.4% but agreeing perfectly with
the previously-reported value [9]. The F(2) fluorine x-coordinate was refined
to xF 2 = 0.3277(5). An impurity phase was also revealed: 9 wt.% of NaNiF3
crystallizing in the orthorhombic Pbnm (#62) structure [101], with refined lattice
parameters a = 5.371(1) Å, b = 5.533(1) Å and c = 7.781(1) Å.

Figure 4.20: PXRD refinement of the polycrystalline NaCdNi2F7 (96 wt.%) with
a 9 wt.% impurity phase, NaNiF3 (2 wt.%).

4.1.5.2 Crystal growth, PXRD

Two grams of the stoichiometric binary-fluoride mix were sealed in a Pt crucible
and inserted into the furnace like described above. Aiming for a slow crystalliza-
tion from the melt, but not knowing the exact melting temperature, four different
heating protocols were gradually tested with intermediate regrinds: ramp up to
800◦C (1st regrind) / 850◦C (2nd regrind) / 900◦C (3rd regrind) / 950◦C (4th
regrind) at the rate of 2 ◦C/min, hold there for 3 hours and slow-cool by 100◦C
over 7 days, then rapidly cool to room temperature. The final successful heating
protocol was as follows:

NaF + CdF2 + 2 NiF2
950◦C→850◦C−−−−−−−−→

7 days
NaCdNi2F7

Several small (∼ 1 mm3) transparent crystals of lime green color were ob-
tained. Rest of the material was sintered into one polycrystalline lump, suggesting
that a slightly higher temperature should be utilized in the next growth attempt.
PXRD of the powdered crystals confirmed 98 % purity of NaCdNi2F7 with a re-
fined lattice parameter a = 10.2565(4) Åand the F(2) fluorine x-coordinate xF 2 =
0.326(1). A 2 wt.% CdF2 impurity was also identified.

4.1.5.3 Magnetization

Temperature-dependent magnetization measurements in different fields (converted
to magnetic susceptibility as χ = M/H) on polycrystalline NaCdNi2F7 were per-
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Figure 4.21: PXRD refinement of powdered NaCdNi2F7 single crystals (98 wt.%)
with a 2 wt.% CdF2 impurity phase.

Figure 4.22: Inverse DC susceptibility of NaCdMn2F7 in µ0H = 5 T with the
200-300 K Curie-Weiss fit (left panel) and inverse susceptibility at different fields
(top left inset). DC susceptibility in µ0H = 5 T (right panel) and ZFC/FC curves
in H = 2000 Oe (µ0H = 0.2 T) above 3 K (top right inset).

formed in a Quantum Design Physical Property Measurement System (PPMS)
using the Vibrating Sample Magnetometer (VSM) option [38] and can be seen
in Figure 4.14. Looking at the inverse susceptibility measured at 0.2 T, 2 T and
5 T applied fields (top left inset), we immediately spot a ferromagnetic impu-
rity in the 0.2 T data, which saturates at higher applied field. According to the
PXRD, there was a 9% impurity of NaNiF3, which is an antiferromagnet (TN =
156 K) with weak ferromagnetism along the c-axis and is matching the transition
temperature seen in our data.

Despite the impurity, the inverse susceptibility 1/χ data in applied field µ0H =
5 T (left panel) were used for the Curie-Weiss fit in the temperature range of
200-300 K to provide an estimate of the effective moment and the Curie-Weiss
temperature. The fit yields a negative Curie-Weiss temperature of θCW = -82(1)
K, as opposed to -129 K in NaCaNi2F7. [12] The effective moment per nickel
was extracted as µeff = 3.22(1) µB, which is higher than the free-ion S = 1
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Ni2+ spin-only value (2.83 µB) with quenched orbital momentum (L = 0), but
smaller than the NaCaNi2F7 value (3.7(1) µB/Ni). The higher effective moment
seen in NaCaNi2F7 most likely originates from the enhanced distortion of NiF6
octahedron (xF 2 = 0.3303(2)) producing a higher orbital contribution, as opposed
to the lower distortion in NaCdNi2F7 (xF 2 = 0.3277(5)), causing a lower effective
moment.

The right panel shows the DC susceptibility of NaCdNi2F7 measured in a 5
T applied field. The top right inset shows the zero field cooled (ZFC) and field
cooled (FC) DC susceptibility data measured in a 2000 Oe applied field between
2.9-5 K, revealing a rounded cusp at Tf ≈ 3.5 K, corresponding to a magnetic
transition likely to be a spin-glass transition (seen at Tf = 3.6 K in NaCaNi2F7).
The ZFC and FC curves are already split due to the history dependence of the
impurity transition at 156 K.

4.1.6 NaCdFe2F7

The last compound from the transition-metal based NaCdB2F7 pyrochlore fluo-
ride family is the S = 2 Fe2+-based NaCdFe2F7. Two isostructural compounds,
NaCaFe2F7 and NaSrFe2F7 have so far been reported in a single magnetic and
structural study [13].

A solid-state synthesis as well as crystallization from the melt were attempted,
however both resulted in a very large impurity content, making it impossible for
us to further characterize this compound.

4.1.6.1 Solid state synthesis, PXRD

500 milligrams of the stoichiometric binary-fluoride mix were prepared in the
glovebox, pressed into pellets using a quick-press kit for a better contact of the
reactants, inserted into a Pt tube with 30 mg of XeF2, crimp-sealed with a double
fold and inserted into the furnace inside two alumina crucibles with CaO. The
following heating program was used: ramp up to 700 ◦C at the rate of 2 ◦C/min,
hold there for 1 day and cool to room temperature:

NaF(s) + CdF2(s) + 2 FeF2(s)
700◦C in Ar(g)/F2(g)−−−−−−−−−−−−→

1 day
NaCdFe2F7(s)

After two regrinds, grey/silver polycrystalline material was obtained, a small
portion of which was ground and analyzed via PXRD. We were able to confirm
the Fd3̄m pyrochlore structure of NaCdFe2F7 (73 wt.%) with a refined lattice
parameter a = 10.4291(3) Å, lower than the predicted value in Table 4.2 by
0.07%. The F(2) fluorine x-coordinate was refined to xF 2 = 0.332(1). Two
impurity phases were revealed: 13 wt.% of CdF2 and 14 wt.% of FeF2. [92]

4.1.6.2 Crystal growth, PXRD

Two grams of the stoichiometric binary-fluoride mix were sealed in a Pt crucible
and inserted into the furnace like before. Aiming for a slow crystallization from
the melt, the following heating protocol was tested: ramp up to 800◦C at the rate
of 2 ◦C/min, hold there for 3 hours, slow-cool to 600◦C over 7 days, then rapidly
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Figure 4.23: PXRD refinement of the polycrystalline NaCdFe2F7 (73 wt.%) pre-
pared by solid-state synthesis at 700◦C, with 13 wt.% CdF2 and 14 wt.% FeF2
impurities.

cool to room temperature:

NaF + CdF2 + 2 FeF2
800◦C→600◦C−−−−−−−−→

7 days
NaCdFe2F7

Multi-phase material consisting of crystals of different colors (brown, metallic
silver, black and yellow) was obtained. A selection of the crystals were crushed for
PXRD, which confirmed only 64 % of NaCdFe2F7 pyrochlore with a refined lattice
parameter a = 10.4422(3) Åand the F(2) fluorine x-coordinate xF 2 = 0.326(1).
Impurities identified by PXRD included CdF2 (22%) and FeF2 (14 wt.%).

As we can see, NaCdFe2F7 decomposes at temperatures too high above the
melting point, meaning that the highest temperature of the heating profile has
to be optimized. In the future growth attempts, several temperatures between
700 and 800 ◦C will be utilized to find the ideal temperature for the growth of
phase-pure NaCdFe2F7 single crystals.

Figure 4.24: PXRD refinement of powdered NaCdFe2F7 crystals prepared at
800◦C: NaCdFe2F7 (64 wt.%) with 22 wt.% CdF2 and 14 wt.% FeF2 impurites.
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4.2 Kagome fluorides

4.2.1 Na3CdCo3AlF14

Based on the mineral Coulsellite Na3CaMg3AlF14 [20], which features an ordered
dilution of the NaCaMg2F7 pyrochlore lattice by non-magnetic Al3+ ions and thus
features 2D kagome networks of Mg ions in the ab plane, we decided to synthesize
a magnetic Na3CdCo3AlF14 kagome fluoride by replacing the non-magnetic Mg2+

ions by the magnetic Jeff = 1/2 Co2+ ions, as well as replacing the divalent Ca by
Cd. By implementing the Jeff = 1/2 Co2+ ions on the kagome lattice, we hope to
produce a new highly frustrated kagome antiferromagnet with a quantum liquid
groundstate.

4.2.1.1 Crystal growth, PXRD

500 milligrams of the stoichiometric binary-fluoride mix were prepared in the
glovebox, pressed into pellets using a quick-press kit, inserted into a Pt tube with
30 mg of XeF2, crimp-sealed with a double fold and inserted into the furnace
inside two alumina crucibles with CaO. The following heating program was used:
ramp up to 800 ◦C at the rate of 1 ◦C/min, hold there for 60 minutes, slow-cool
to 500 ◦C over the course of 7 days and rapidly cool to room temperature:

3 NaF + CdF2 + 3 CoF2 + AlF3
800◦C→500◦C−−−−−−−−→

7 days
Na3CdCo3AlF14

A black/red recrystallized lump of multi-phase polycrystalline material was
obtained, a small portion of which was ground and analyzed via PXRD. We were
unable to confirm the R3̄m kagome structure of Na3CdCo3AlF14, but we could
identify the Fd3̄m pyrochlore structure of NaCdCo2F7 (20 wt.%) with a refined
lattice parameter a = 10.3157(4) Å, although it was not the most abundant
phase. The biggest phase fraction (41 wt.%) belonged to Na3AlF6 (also known as
the mineral cryolite) with a monoclinic P21/n symmetry [102] and refined lattice
parameters a = 5.417(2) Å, b = 5.570(1) Å, c = 7.700(3) Å and β = 90.18(4)◦.
The second most abundant phase was identified as Na2AlCoF7 (28 wt.%) with the
weberite-related monoclinic C2/c structure [103] and refined lattice parameters
a = 12.386(3) Å, b = 7.211(3) Å, c = 24.053(6) Å and β = 99.67(2)◦. Lastly, we
identified 12 wt.% of CdF2 [104] with the cubic Fm3̄m structure and a refined
lattice parameter a = 5.3842(3) Å.

Several different heating protocols will have to be attempted in the future to be
able to produce single crystals of a new kagome antiferromagnet, Na3CdCo3AlF14.

4.2.2 Rb2Co3SnF12

Motivated by the previous research on A2Cu3M ‘F12 compounds (A = Rb, Cs;
M ‘ = Sn, Zr, Hf, Ti) [17, 18, 81, 80], all based on the S = 1/2 Cu2+ ions on
the kagome lattice, we decided to try to synthesize a new Jeff = 1/2 Co2+-based
kagome compound, Rb2Co3SnF12 with the hope of destabilizing magnetic order
down to the lowest temperatures.
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Figure 4.25: PXRD refinement of attempted Na3CdCo3AlF14 synthesis, revealing
Na3AlF6 (41 wt.%), Na2AlCoF7 (28 wt.%), NaCdCo2F7 (20 wt.%) and CdF2 (12
wt.%) phases.

4.2.2.1 Crystal growth, PXRD

500 milligrams of the stoichiometric binary-fluoride mix were prepared in the
glovebox, pressed into pellets using a quick-press kit, inserted into a Pt tube with
30 mg of XeF2, crimp-sealed with a double fold and inserted into the furnace
inside two alumina crucibles with CaO. The following heating program was used:
ramp up to 800 ◦C at the rate of 1 ◦C/min, hold there for 60 minutes, slow-cool
to 500 ◦C over the course of 7 days and rapidly cool to room temperature:

2 RbF + SnF4 + 3 CoF2
800◦C→500◦C−−−−−−−−→

7 days
Rb2SnCo3F12

A dark-red/white recrystallized lump of multi-phase polycrystalline material
was obtained, a small portion of which was ground and analyzed via PXRD.
We were unable to confirm the R3̄m kagome structure of Rb2Co3SnF12. The
biggest phase fraction (43 wt.%) belonged to Rb2SnF6 with a hexagonal P 3̄m1
symmetry [105] and refined lattice parameters a = 6.0589(3) Å and c = 4.8385(4)
Å. The second most abundant phase was identified as CoF2 (39 wt.%) [92] with
the tetragonal P42/mnm structure and refined lattice parameters a = 4.6966(2)
Å and c = 3.1812(2) Å. Lastly, we identified 18 wt.% of RbCoF3 [106] with the
cubic Pm3̄m structure and a refined lattice parameter a = 4.1282(2) Å.

We will have to be optimize the growth process using several different heating
protocols to be able to produce single crystals of a new kagome antiferromagnet,
Rb2Co3SnF12 .

4.2.3 Cs2Co3ZrF12

Similarily to Rb2Co3SnF12, we decided to attempt a synthesis of Jeff = 1/2 Co2+-
based kagome compound, Cs2Co3ZrF12 by replacing the divalent S = 1/2 copper
in the previously reported compound, Cs2Cu3ZrF12 [107] by cobalt, again hoping
to produce a highly frustrated Jeff = 1/2 kagome antiferromagnet.
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Figure 4.26: PXRD refinement of attempted Rb2Co3SnF12 synthesis, revealing
Rb2SnF6 (43 wt.%), CoF2 (39 wt.%) and RbCoF3 (18 wt.%) phases.

4.2.3.1 Crystal growth, PXRD

500 milligrams of the stoichiometric binary-fluoride mix were prepared in the
glovebox, pressed into pellets using a quick-press kit, inserted into a Pt tube with
30 mg of XeF2, crimp-sealed with a double fold and inserted into the furnace
inside two alumina crucibles with CaO. The following heating program was used:
ramp up to 800 ◦C at the rate of 1 ◦C/min, hold there for 60 minutes, slow-cool
to 500 ◦C over the course of 7 days and rapidly cool to room temperature:

2 CsF + ZrF4 + 3 CoF2
800◦C→500◦C−−−−−−−−→

7 days
Cs2ZrCo3F12

A pink recrystallized lump of multi-phase polycrystalline material was ob-
tained, a small portion of which was ground and analyzed via PXRD. We were
unable to confirm the R3̄m kagome structure of Cs2Co3ZrF12. The biggest phase
fraction (74 wt.%) belonged to Cs2ZrF6 with a hexagonal P 3̄m1 symmetry [108]
and refined lattice parameters a = 6.4138(3) Å and c = 5.0173(3) Å. The sec-
ond most abundant phase was again identified as CoF2 (21 wt.%) [92] with the
the tetragonal P42/mnm structure and refined lattice parameters a = 4.6957(2)
Å and c = 3.1808(3) Å. Lastly, we identified 5 wt.% of CsCoF3 [106] with the
rhombohedral R3̄m structure and refined lattice parameters a = 6.2003(5) Å
and c = 22.658(4) Å.

The growth procedure will have to be optimized using several different heating
protocols in order to produce single crystals of a new kagome antiferromagnet,
Cs2Co3ZrF12.
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Figure 4.27: PXRD refinement of attempted Cs2Co3ZrF12 synthesis, revealing
Cs2ZrF6 (74 wt.%), CoF2 (21 wt.%) and CsCoF3 (5 wt.%) phases.
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5. Discussion
The successful synthesis of a new series of pyrochlore fluoride compounds with
the formula NaCdB2F7 (B = Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+) confirmed
the pyrochlore structure stability prediction [16] given by the tolerance factor τ
described in the previous sections.

All newly-synthesized pyrochlore fluoride compounds were analyzed by PXRD
and could be refined with the cubic Fd3̄m structure with one free parameter
- the F(2) fluorine x-coordinate, xF 2. As was already shown, this parameter
dictates the geometry of the BF6 octahedra as well as the AF8 dodecahedra. If
xF 2 = 0.3125, the BF6 complex is an ideal octahedron with six equal F-B bond
lengths and eight 90◦ F-B-F bond angles. When xF 2 > 0.3125, the BF6 octahedra
are distorted in such a way that they are flattened along the local <111> direction
(the axis of the octahedron), distorting away from the ideal 90◦ F-B-F bond angle
by a value δ (creating 90◦-δ and 90◦+δ bond angles), but retaining 6 equal F-B
bond lengths. This is important for the magnetism of 3d metals in octahedral
complexes, as the distortion from the ideal octahedral crystal field can result in an
orbital contribution to the effective moment, as opposed to the expected quenched
orbital momentum value. The PXRD-refined structural parameters of samples
used in the magnetization/AC-susceptibility/heat capacity measurements, as well
as the data of the previously-reported isostructural pyrochlore fluoride compounds
for comparison, are summarized in Table 5.1.

Single crystal diffraction performed on NaCdCo2F7 revealed no ordering of
Na/Cd on the A-site, as well as no A−B intersite mixing, as was the case in all
of the previously studied pyrochlore fluorides. The rest of our single-crystalline
samples are yet to be measured by SCXRD.

Table 5.1: Structural details of cubic (Fd3̄m, origin 2) AA′B2F7 pyrochlores:
our data (bold) vs. the previously reported data, including the experimentally
determined lattice parameter aexp, the free F(2) fluorine x-coordinate xF 2, the
F-B-F bond angles distorted away from the ideal 90◦ value, the super-exchange
pathway B-F-B bond angle and the B-F bond distance (from VESTA [76]).

Compound aexp (Å) xF 2 F-B-F (◦) B-F-B (◦) B-F (Å)
NaCdZn2F7 10.3399(3) 0.3268(7) 84.5(3) and 95.5(3) 133.0(4) 1.993(3)

NaCdZn2F7 [86] 10.34657(3) 0.33273(10) 82.35(3) and 97.65(3) 129.80(6) 2.0197(5)
NaCdMn2F7 10.5384(1) 0.365(1) 73.1(1) and 106.9(1) 114.4(3) 2.217(3)

NaSrMn2F7 [13] 10.8012(3) 0.3331(2) 82.2 and 97.8 129.5 2.11
NaCdFe2F7 10.4291(3) 0.332(1) 82.7(5) and 97.3(1) 130.3(7) 2.031(6)

NaCaFe2F7 [13] 10.4471(2) 0.33702(18) 80.9 and 99.1 127.6 2.06
NaSrFe2F7 [13] 10.6323(4) 0.3313(2) 82.9 and 97.1 130.6 2.07
NaCdCo2F7 10.3636(2) 0.3329(5) 82.3(2) and 97.7(2) 129.7(3) 2.024(3)

NaCaCo2F7 [10] 10.4056(2) 0.33289(14) 82.3 and 97.7 129.8 2.03
NaSrCo2F7 [11] 10.545(4) 0.3285(2) 83.9 and 96.1 132.1 2.05
NaCdNi2F7 10.2528(1) 0.3277(5) 84.2(2) and 95.8(2) 132.5(3) 1.980(3)

NaCaNi2F7 [12] 10.3001(1) 0.3303(2) 83.2 and 96.8 131.3 2.00
NaCdCu2F7 10.3278(4) 0.331(2) 82.9(6) and 97.1(6) 130.6(1) 2.010(8)
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Figure 5.1: Predicted NaA′B2F7 lattice parameters [84] vs. the experimental
values. (left) Prediction of new stableAA′B2F7 pyrochlores based on the structure
tolerance factor τ [16]. The pyrochlore structure stability is expected in the green
shaded region, where the predicted compounds are shown as the intersections of
the vertical (AA′) and horizontal (B) lines. (right)

The prediction of the lattice parameters of the AA′B2F7 disordered cubic flu-
oride pyrochlores [84] in the form apred = 2.846RA + 2.567RB + 5.762 also turned
out exceedingly well, as can be seen in the plot in Figure 5.1 with a compari-
son with previously-reported compounds. The maximum difference between the
predicted and experimentally determined values was around 0.04 Å(NaCdNi2F7,
NaCdCu2F7 and NaCdMn2F7). Ahrens ionic radii for a six-fold coordination of
ions were used in this calculation, as suggested by Sidey. [84]

As we were able to confirm, the pyrochlore structure tolerance factor τ can be
used to predict new families of stable AA′B2F7 pyrochlore fluorides, based purely
on the average A-site ionic radius, RA and the B-site ionic radius, RB. Shannon
ionic radii [82] (CN = 6 for RB, CN = 8 for AA′) are used in the calculation of τ .
In Figure 5.1, we show the plot of RB vs. RA with the predicted stability region
(shaded green) given by 0.823 ≤ 3(RA + RF )/(

√
17(RB + RF )) ≤ 0.946, which

can be used in our future work to plan a synthesis of new AA′B2F7 families.
For each AA′ combination (vertical line), we are able to predict stable AA′B2F7
compounds as the intersections with B2+ ions (horizontal lines) inside the green
region. As an example, combinations of A = Li+, Na+, K+ and A′ = Ca2+, Sr2+

and Cd2+ are shown for B = Mg2+, Ti2+,V2+, Cr2+, Mn2+, Fe2+, Co2+, Ni2+,
Cu2+, Zn2+ and Ag2+ (the rest is ommited for clarity).

The measured magnetic properties of NaCdB2F7 pyrochlores (except for Fe,
which has not yet been measured) are summarized in Table 5.2 and compared
with the previous results. Curie-Weiss fits of the high-temperature DC inverse
susceptibility regions reveal large negative Curie-Weiss temperatures (ranging
from -38.4 K in NaCdMn2F7 to -108 K in NaCdCo2F7), indicating strong antifer-
romagnetic interactions. No magnetic ordering is visible until a magnetic transi-
tion is seen below 5 K in B = Mn, Co and Ni as a cusp in the DC susceptibility,
confirming that NaCdB2F7 fluorides are highly frustrated pyrochlore antiferro-
magnets with frustration indices ranging from 19 in NaCdMn2F7 to more than 48
in NaCdCu2F7 (no magnetic transition seen down to the lowest measured temper-
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Table 5.2: Magnetic properties of AA′B2F7 pyrochlores: our data (bold) vs.
the previously reported data, including the B2+-ion’s spin-state S, the extracted
effective moment per B2+ ion, the calculated free-ion spin-only moment µS =
2
√︂
S(S + 1)µB, the calculated free-ion J moment µJ = gJ

√︂
J(J + 1)µB, the spin-

freezing temperature Tf , the Curie-Weiss temperature θCW and the frustration
index f = |θCW| /Tf . Question marks imply unknown or questionable data.

Compound S µeff/B2+ (µB) µS (µB) µJ (µB) Tf (K) θCW (K) f

NaCdMn2F7 5
2

5.81(1) 5.92 5.92 2.0 -38.4(2) 19
NaSrMn2F7 [13] 6.25 2.5 -127 51

NaCdFe2F7

2
?

4.90 6.70
? ? ?

NaCaFe2F7 [13] 5.61 3.9 −72.8 19
NaSrFe2F7 [13] 5.94 3.7 −98.1 27
NaCdCo2F7

3
2

5.40(1)
3.87 6.63

4.0 -108.0(2) 27
NaCaCo2F7 [10] 6.1 2.4 −140 58
NaSrCo2F7 [11] 5.9 3.0 −127 42
NaCdNi2F7 1 3.22(1)? 2.83 5.59 3.5 -82(1) 23

NaCaNi2F7 [12] 3.7 3.6 −129 36
NaCdCu2F7

1
2 1.77(1) 1.73 3.55 <1.8 -87(2) >48

ature, 1.8 K). These transitions show a history dependence, which is evidenced
by the ZFC/FC curve splitting below the transition temperature. Additional
AC susceptibility and heat capacity measurements in B = Co and Mn suggested
that this transition is a spin-glass transition, as seen in all previously-reported
pyrochlore fluorides. [10, 11, 12, 13] The spin-glass transition in the pyrochlore
Heisenberg antiferromagnets is believed to originate from the enhanced magnetic
bond disorder brought about by the chemical disorder on the A-site, which comes
as a result of the effective 1.5+ valence state to preserve the overall chemical neu-
trality in AA′B2F7 pyrochlores. [71]

In Figure 5.2, we attempted to relate the magnetic properties of NaA′B2F7
(A′ = Cd, Ca, Sr; B = Mn, Fe, Co, Ni) pyrochlore fluorides to the structural dis-
tortion of BF6 octahedra. In the top right figure, we show the B-F-B bond angle
between two corner-sharing BF6 octahedra, which influences the character of the
super-exchange interaction between two neighbouring B2+ ions, mediated by an
intermediate fluorine F− ligand. Generally, a 90 degree B-F-B bond angle results
in a ferromagnetic exchange, while a 180 degree B-F-B bond angle causes an anti-
ferromagnetic exchange interaction. Therefore, we would normally expect a larger
negative Curie-Weiss temperature with the increasing B-F-B bond angle. This
is seen in NaCdMn2F7-NaSrMn2F7 and NaCaFe2F7-NaSrFe2F7, but the trend is
unclear with the rest. In the bottom-left figure, a similar consideration was made
to relate the Curie-Weiss temperature to the B-F bond length, expecting larger
negative Curie-Weiss temperature with a decreasing B-F bond distance due to
a larger B-F wavefunction overlap, resulting in a stronger exchange interaction.
This is only seen in NaCdMn2F7-NaSrMn2F7 and NaCaCo2F7-NaSrCo2F7, while
the opposite is seen in the rest. In the bottom-right figure, we tried to relate the
B2+ effective moment to the degree of distortion of the F-B-F bond from the ideal
90◦ value, δ. In octahedral complexes of 3d-metal B2+ ions, the orbital moment is
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Figure 5.2: The super-exchange B-F-B bond angle, as well as the BF6 octahedron
distortion along the <111> direction. (top-right) The Curie-Weiss temperature
as a function of the super-exchange B-F-B bond angle (top-left) and the B-F
bond length (bottom-right). The B2+ effective moment as a function of the
distortion angle, δ.

usually quenched by the ideal octahedral crystal electric field, resulting in an ef-
fective moment close to the free-ion spin-only value. As soon as the octahedron is
distorted, some orbital contribution is present and the effective moment is larger.
We see this only in NaCdNi2F7-NaCaNi2F7 and NaCaCo2F7-NaSrCo2F7, but not
in the rest of the materials. The discrepancies in the expected trends could be
caused by the imprecise refinement of the F(2) fluorine xF 2 coordinate, which
was done by a Rietveld refinement of the PXRD data. Accurate structural data
from single crystal XRD, as well as a larger dataset would be essential to draw
any conclusions from this analysis.

Temperature- and frequency-dependent AC susceptibility measurements of
NaCdCo2F7 and NaCdMn2F7 showed a small frequency-dependent shift of the
real-phase χ′ peak (centered at the freezing temperature Tf ) towards higher tem-
peratures, a typical behaviour seen in spin-glass materials. [32] This is usu-
ally parametrized by the relative shift of Tf per decade of frequency, δTf =
∆Tf/(Tf∆log10ν), the magnitude of which is usually typical for a particular class
of materials. The lowest frequency-dependent shift is seen in canonical (metallic,
RKKY-type) spin glasses with δTf between 0.0045 (AuMn) and 0.018 (NiMn).
The frequency dependence is a magnitude higher in insulating spin glasses (δTf =
0.060 in (EuSr)S or 0.080 in (FeMg)Cl2), while the biggest frequency-dependent
shift is seen in superparamagnets (δTf = 0.280 in α-(Ho2O3)(B2O3)). [32] The

75



Table 5.3: AC susceptibility data, including the relative shift of Tf per decade of
frequency and the fitted Vogel-Fulcher parameters: the intrinsic relaxation time
τ0 (fixed), the spin-freezing activation energy Ea and the ideal glass temperature
T0.

Compound δTf τ0 (s) Ea (meV) T0 (K)
NaCdMn2F7 0.018(1) 10−12 0.54(3) 1.90(2)

NaSrMn2F7 [13] 0.018(1) 10−12 0.83(4) 2.2(7)
NaCdCo2F7 0.010(1) 10−12 0.66(6) 3.7(1)

NaCaCo2F7 [10] 0.029(1) 10−12 1.0(1) 2.2(1)
NaSrCo2F7 [11] 0.027(1) 10−12 1.3(1) 2.6(1)

obtained results, compared with the previously-reported data are summarized in
Table 5.3. Equal δTf was seen in NaCdMn2F7 and NaSrMn2F7 [13], while the
relative shift seen in NaCdCo2F7 was approximately three times lower than in
NaCaCo2F7 and NaSrCo2F7, although all values fall within the expected insu-
lating spin-glass range. The frequency-dependent shift was fitted to the Vogel-
Fulcher law with a fixed, physically reasonable intrinsic relaxation time τ0 = 10−12

s, as was done in all previous pyrochlore fluoride studies. [10, 11, 12, 13] The
activation energy of the spin-freezing transition, as well as the ideal glass tempera-
ture are lower in NaCdMn2F7 than in NaSrMn2F7, which could be ascribed to the
lower mean-field interaction strength between the clusters of spins (θCW = −38 K
in NaCdMn2F7, while θCW = −127 K in NaSrMn2F7). The same trend, however,
is not seen in NaCdCo2F7 (θCW = −108 K), which shows a lower Ea, but higher
T0 than the two previously-studied cobalt pyrochlore fluorides, which are more
strongly frustrated (θCW = −140 K and −127 K in NaCaCo2F7 and NaSrCo2F7,
respectively). The physical meaning of T0 is still unknown, but the possibilities
include either relating it to the inter-cluster interaction strength in spin glasses,
or it could be the actual critical temperature of the spin-freezing transition, for
which Tf is just a dynamic manifestation. [32]

Specific heat measurements were done on the B = Co (single crystal), Mn and
Cu (polycrystalline) samples to further probe the magnetic ground state of these
highly frustrated pyrochlore fluorides. In NaCdCo2F7 and NaCdMn2F7, a broad
peak in the low-temperature region was seen, again reinforcing the idea of a spin-
glass ground state. [32] In NaCdCu2F7, we saw a small, sharp lambda-shaped
peak at T = 3.3 K, which moved to lower temperatures upon the application of
high fields, suggesting an antiferromagnetic ordering transition from an impurity
(likely CdCuF4). Following the specific heat subtraction of Zn, we were able to
estimate the magnetic specific heat, which was used for a temperature-dependent
entropy loss estimation as the integration of Cmag/T vs. T . The magnetic entropy
of NaCdCo2F7 saturated at 40 K to about 60% of R ln2, suggesting either an
Ising-like nature of the ground state or a Jeff = 1/2 ground state, in line with
the previous studies of XY -type anisotropy in Jeff = 1/2 NaA′Co2F7 (A′ = Ca,
Sr). [73] In NaCdMn2F7, we saw a saturation at 35 K to about 80% of R ln6,
indicative of the high-spin S = 5/2 Mn2+ configuration. In NaCdCu2F7, the
saturation entropy only reached about 30% of R ln2, the reason of which is still
unclear to us.
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Conclusion
In this work, we presented a successful synthesis of a new pyrochlore fluoride fam-
ily with the composition NaCdB2F7 (B = Zn, Mn, Fe, Co, Ni and Cu), and an
unsuccessful synthesis of new Na3CdCo3AlF14, Rb2SnCo3F12 and Cs2ZrCo3F12
kagome compounds. A variety of sample synthesis techniques were utilized, in-
cluding the solid-state synthesis of polycrystalline materials, as well as laser float-
ing zone melting and melt crystallization for the single crystal growth.

We were able to grow small single crystals (∼ 1 mm3) of B = Zn, Co, Mn,
Ni and Cu pyrochlore fluorides, although only Co has so far been fully char-
acterized. The Zn sample was used as a non-magnetic analogue in the heat
capacity measurements. The crystals of Mn and Ni were grown in the late stage
of the project, thus we only present the measurements on polycrystalline sam-
ples. The Cu crystals have a rather large impurity content and the growth has
to be optimized before further measurements are performed. The Fe sample has
so far not been synthesized in a phase-pure form, hence different synthesis tech-
niques have to be attempted. On the other hand, the attempted syntheses of
Na3CdCo3AlF14, Rb2SnCo3F12 and Cs2ZrCo3F12 did not lead to the creation of
the intended kagome phases.

The structural PXRD measurements on NaCdB2F7 compounds confirmed the
Fd3̄m pyrochlore structure, while SCXRD showed full A-site disorder and no
A − B intersite mixing in the Co sample. The magnetic measurements revealed
large negative Curie-Weiss temperatures, indicative of strong antiferromagnetic
interactions. The materials show no magnetic transition down to temperatures as
low as 4 K, suggesting that the new NaCdB2F7 compounds are strongly frustrated
pyrochlore antiferromagnets with a weak bond disorder induced by the A-site
chemical disorder, which precipitates a spin-freezing transition into a spin-glass
ground state.
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Ŝ, L̂, Ĵ Spin, orbital and total angular momentum operators
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µeff Effective magnetic moment

µsat Saturated magnetic moment
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Q Heat

W work
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Jeff Effective spin-state
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PXRD, SCXRD Powder and Single Crystal X-ray Diffraction
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A. Attachments

A.1 Effective magnetic moments of 4f and 3d
compounds

Figure A.1: Groundstate configurations and effective magnetic moments for iso-
lated trivalent rare-earth 4f ions. Taken from [31].

Figure A.2: Groundstate configurations and effective magnetic moments for iso-
lated divalent 3d transition metal ions. Taken from [31].
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A.2 TOPAS Academic v6 input file

jEdit - AKF041_NaCdMn2F7_1st-regrind.inp

26/04/22 23:14 :: page 1

1
2 '--------------------------------------------------------------
3 'Input File for simple Rietveld Refinement
4 'Use save/set current button then run with F6 in topas
5 'Replace $ and # symbols with text/numbers as needed
6 '--------------------------------------------------------------
7
8 r_wp  14.7646178 r_exp  24.3272442 r_p  9.92047016 r_wp_dash  30.7006524 

r_p_dash  29.1809424 r_exp_dash  50.5845987 weighted_Durbin_Watson  0.812752565 
gof  0.606916991

9
10 '--------------------------------------------------------------
11 'General information about refinement here
12 'Remove comments as required
13 '--------------------------------------------------------------
14
15 iters 100000
16 chi2_convergence_criteria 0.001
17 do_errors
18
19 '--------------------------------------------------------------
20 'Information on datafile etc here
21 'Check that default weighting is appropriate for your data
22 '--------------------------------------------------------------
23 xdd AKF041_NaCdMn2F7_1st-regrind.dat fullprof_format
24 x_calculation_step = Yobs_dx_at(Xo); convolution_step 4
25 bkg @  11.7731932`_0.0370029806  9.97165908`_0.0621615518  

0.234588805`_0.0526884943  2.36395838`_0.0481605366 -0.033216296`_0.0440101486 
-0.0476667957`_0.0386302411

26
27 LP_Factor(!th2_monochromator, 0)
28 CuKa2(0.0001)
29 Variable_Divergence_Intensity
30 Zero_Error(@, 0.09001`_0.00128)
31
32 str
33   space_group Fd-3m:2
34    phase_name "NaCdMn2F7"
35 scale @  4.9648005e-006`_5.166e-008
36 TCHZ_Peak_Type(pku, 0.00284`_0.00162,pkv,   -0.00748`_0.00242, 

pkw,0.00432`_0.00126, pkz, 0.00001`_0.00078,pky, 0.10375`_0.00468,pkx, 
0.03482`_0.00241)

37 Simple_Axial_Model(axial, 6.78595`_0.33091)
38 Phase_Density_g_on_cm3( 4.29361`_0.00015)
39
40  Cubic( NaCdMn2F7_lattice  10.538615`_0.000126)
41  
42    site Cd_1   x =1/2;   y =1/2;   z =1/2;                        occ Cd 

!occ_Cd_1_040148412 0.5   beq beq_Cd_1_040148412  3.40522`_0.48190
43    site Na_1   x =1/2;   y =1/2;   z =1/2;                        occ Na 

!occ_Na_1_040148412 0.5   beq beq_Na_1_040148412  0.58719`_1.36065
44    site Mn_1   x =0;   y =0;   z =0;                      occ Mn 

!occ_Mn_1_040148412 1.0   beq beq_Mn_1_040148412 0.09948`_0.05133
45    site F_1    x =3/8;   y =3/8;   z =3/8;                      occ F 

!occ_F_1_040148412 1.0     beq beq_F_1_040148412  13.49056`_0.98562
46    site F_2    x x_F_2_040148412  0.36506`_0.00055   y =1/8;   z =1/8;  occ F 

!occ_F_2_040148412 1.0     beq beq_F_2_040148412  4.16845`_0.12409
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jEdit - AKF041_NaCdMn2F7_1st-regrind.inp

26/04/22 23:14 :: page 2

47    MVW( 3026.126, 1170.344`_0.042, 100.000`_0.000)
48  
49    C_matrix_normalized
50 {
51                              1   2   3   4   5   6   7   8   9  10  11  12  13  

14  15  16  17  18  19  20  21  22
52 bkg24115520            1:  100  79  56  43  29  16   3   4   3   3  -7  36   0   

5  10   4  -5  -2   7 -17   8   1
53 bkg24115776            2:   79 100  75  48  38  25   1   2   7   1  -5  35   4   

2   9   6  -7   1   5 -20  15  -1
54 bkg24116288            3:   56  75 100  65  47  33  -1   0   4  -3   2  15   5  

-4   4   4  -5   2   2  -8   9  -2
55 bkg24117312            4:   43  48  65 100  62  40   2   1  -2  -1   2  -4  -4   

1   6   2  -1  -1   2   3  -5   2
56 bkg24113728            5:   29  38  47  62 100  50  -1   0   5   4  -3  -2  -3  

-2   8   4  -3   1   1  -5   5  -1
57 bkg24116544            6:   16  25  33  40  50 100  -1  -1   3   2  -1  -3   0 

-10   3   4  -4   3  -1  -1   2  -1
58 m62681175_26           7:    3   1  -1   2  -1  -1 100  83  -2   1  -1   3  -3  

11   3  26 -34  37 -12   5  -7  88
59 NaCdMn2F7_lattice      8:    4   2   0   1   0  -1  83 100  -1   1  -2   5  -2   

8   3  18 -23  26  -8  -3  -1  60
60 scale23130208_         9:    3   7   4  -2   5   3  -2  -1 100  80 -73  49  -6 

-19  38   3  -4   3  -0 -12  13  -4
61 beq_Cd_1_040148412    10:    3   1  -3  -1   4   2   1   1  80 100 -98  48 -13 

-18  33   0   1  -0  -1   1  -2  -0
62 beq_Na_1_040148412    11:   -7  -5   2   2  -3  -1  -1  -2 -73 -98 100 -58  10  

16 -30  -0  -1   0   2  -2   3  -1
63 beq_Mn_1_040148412    12:   36  35  15  -4  -2  -3   3   5  49  48 -58 100   9  

-4  17   5  -6   1   4 -20  15   0
64 beq_F_1_040148412     13:    0   4   5  -4  -3   0  -3  -2  -6 -13  10   9 100 

-11 -32  -1   1  -0  -0  -1   3  -4
65 x_F_2_040148412       14:    5   2  -4   1  -2 -10  11   8 -19 -18  16  -4 -11 

100  19  -2   1  -0   1  -3   2  11
66 beq_F_2_040148412     15:   10   9   4   6   8   3   3   3  38  33 -30  17 -32  

19 100   4  -5  -1   5 -10   6   3
67 pku                   16:    4   6   4   2   4   4  26  18   3   0  -0   5  -1  

-2   4 100 -87  75 -33 -23  25  31
68 pkv                   17:   -5  -7  -5  -1  -3  -4 -34 -23  -4   1  -1  -6   1   

1  -5 -87 100 -67   1  33 -35 -41
69 pkw                   18:   -2   1   2  -1   1   3  37  26   3  -0   0   1  -0  

-0  -1  75 -67 100 -71  -8  26  44
70 pkz                   19:    7   5   2   2   1  -1 -12  -8  -0  -1   2   4  -0   

1   5 -33   1 -71 100 -26   9 -13
71 pky                   20:  -17 -20  -8   3  -5  -1   5  -3 -12   1  -2 -20  -1  

-3 -10 -23  33  -8 -26 100 -90  10
72 pkx                   21:    8  15   9  -5   5   2  -7  -1  13  -2   3  15   3   

2   6  25 -35  26   9 -90 100 -10
73 axial                 22:    1  -1  -2   2  -1  -1  88  60  -4  -0  -1   0  -4  

11   3  31 -41  44 -13  10 -10 100
74 }

Figure A.3: A typical TOPAS Academic v6 [41] input file used in our PXRD
refinements (NaCdMn2F7 refinement file shown in the picture).
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