SUPPLEMENTARY INFORMATION

OF THE MASTER THESIS

PHARMACOKINETICS OF INTRAMUSCULARLY ADMINISTERED THERMORESPONSIVE POLYACRYLAMIDES

 $\mathbf{B}\mathbf{Y}$

ONDŘEJ GROBORZ

Table of Content

S1. NMR spectra	2
S1.1. <i>N</i> -acryloylpyrrolidine (¹ H, ¹³ C, ¹ H- ¹³ C HSQC-edit)	
S1.2. N-(2,2-difluoroethyl)acrylamide (¹ H, ¹³ C, ¹⁹ F, ¹ H- ¹³ C HSQC-edit)	6
S1.3. Poly[(N-2,2-difluorethyl)acrylamide] (¹ H, ¹³ C, ¹⁹ F, ¹ H- ¹³ C HSQC-edit)	
S1.4. Poly[(<i>N</i> -isopropyl)acrylamide] (¹ H, ¹³ C, ¹ H- ¹³ C HSQC-edit)	14
S1.5. Poly[(<i>N</i> , <i>N</i> -diethyl)acrylamide] (¹ H, ¹³ C, ¹ H- ¹³ C HSQC-edit)	17
S1.6. Poly[(<i>N</i> -acryloyl)pyrrolidine] (¹ H, ¹³ C, ¹ H- ¹³ C HSQC-edit)	
S2. Size exclusion chromatograms (SEC traces)	
S3. Turbidimetric data – tables	25
S4. Raw turbidimetric data	
S5. Isothermal titration calorimetry	
S5.1. ITC – titration of polymers F3, I3, E3, and P3	
S5.2. ITC – enthalpies of F3, I3, E3, and P3	
S5.3. ITC - titration of benzoic acid	41
S6. Dynamic light scattering data	
S7. Refractive index increment (dn/dc)	55
S8. Additional information	67
S8.1. Heating/cooling cycles of turbidimetry	67
S8.2. Structure-to-properties relationship	67
S8.3. Detection of terminal moiety	69
S9. Calibration curves for labelled polymers	70
S10. Size exclusion chromatograms of labelled polymers	71
S11. In vivo experiments	71
S12. Polymer pharmacokinetics - raw data	72
S13. Polymer pharmacokinetics - fitting curves	
S14. Polymer pharmacokinetics - results	108
S15. Staining protocols in histological examination.	109
S16. Histopathological findings	110
S17. Observations of mice behaviour after the polymer administration	113
S18. Co-authors contributions	114
S19. Additional references	115

S1. NMR spectra

¹H, ¹³C (¹H decoupled), ¹⁹F and ¹H-¹³C multiplicity-edited ¹H-¹³C HSQC NMR spectra were measured on a Bruker Avance III HD 400 MHz spectrometer (Bruker, Billerica, MA, USA) equipped with a broadband probe. All compounds (5 to 10 mg) were dissolved in MeOH-4d or DMSO-6d (0.70 to 1.00 mL). All 1D spectra were processed in MestReNova 6.0.2 (Mestrelab Research S.L., Santiago de Compostela, Spain), and all 2D spectra were processed in TopSpin 3.6.1 (Bruker, Billerica, MA, USA).

Figure S1. ¹H NMR (400 MHz) spectrum of the *N*-acryloylpyrrolidine monomer in MeOH-4d: 6.62 (dd, J = 16.8, 10.4 Hz, 1H), 6.27 (dd, J = 16.8, 2.0 Hz, 1H), 5.74 (dd, J = 10.4, 2.0 Hz, 1H), 3.62 (t, J = 6.8 Hz, 1H), 3.50 (t, J = 6.9 Hz, 1H), and 2.07-1.85 ppm (m, 4H)

Figure S2. ¹³C {¹H} NMR (101 MHz) spectrum of the N-acryloylpyrrolidine monomer in MeOH-4d: 165.1, 128.7, 126.6, 46.5, 45.7, 25.6, and 23.8 ppm

Figure S3. Multiplicity-edited HSQC NMR spectrum (400 MHz) of the **N-acryloylpyrrolidine** monomer in MeOH-4d; negative values (**red**) indicate CH₂ moieties, while positive values (**blue**) indicate CH or CH₃ moieties.

Figure S4. ¹H NMR (400 MHz) spectrum of the *N*-(2,2-difluoroethyl)acrylamide monomer in DMSO-6d: 8.48 (t, J = 4.9 Hz, 1H), 6.28 (dd, J = 17.1, 10.1 Hz, 1H), 6.14 (dd, J = 17.1, 2.2 Hz, 1H), 6.04 (tt, J = 55.8, 3.8 Hz, 1H), 5.65 (dd, J = 10.1, 2.2 Hz, 1H), and 3.57 ppm (tdd, J = 16.1, 6.0, 3.9 Hz, 2H). The signal **n** in the zoom area was apodized differently from the rest of this spectrum. As shown in the spectrum, the signal **e** is split into three areas, and the total signal integral of all three areas is ≈ 0.97 .

Figure S5. ¹³C{¹H} NMR (101 MHz) spectrum of the *N*-(2,2-difluoroethyl)acrylamide monomer in DMSO-6d: 165.66, 131.40, 126.67, 114.95 (t, J = 239.7 Hz), and 41.29 ppm (t, J = 25.6 Hz).

Figure S6. ¹⁹F NMR (376 MHz) spectrum of the *N*-(2,2-difluoroethyl)acrylamide monomer in DMSO-6d: -121.79 ppm (dt, J = 55.9, 16.1 Hz; 2F)

Figure S7. Multiplicity-edited HSQC NMR (400 MHz) spectrum of N-(2,2-difluoroethyl)acrylamide in DMSO-6d; negative values (red) indicate CH₂ moieties, while positive values (blue) indicate CH or CH₃ moieties.

Figure S8. ¹H NMR (400 MHz) spectrum of the pDFEA polymer in MeOH-4d: 8.00 (1H), 5.95 (t, J = 56.1, 1H), 3.58 (t, J = 14.4 Hz, 2H), 2.18 (1H) and 1.67 ppm (2H).

S11

Figure S11. Multiplicity-edited HSQC NMR (400 MHz) spectrum of **pDFEA** polymer in MeOH-4d; negative values (**red**) indicate CH₂ moieties, while positive values (**blue**) indicate CH or CH₃ moieties.

Figure S13. ¹³C{¹H} NMR (101 MHz) spectrum of the pNIPAM polymer in MeOH-4d: 174.8, 42.9, 41.1-41.9, 35.0, and 21.4 ppm

Figure S14. Multiplicity-edited HSQC NMR (400 MHz) spectrum of the **pNIPAM** polymer in MeOH-4d; negative values (**red**) indicate CH₂ moieties, while positive values (**blue**) indicate CH or CH₃ moieties.

Figure S17. Multiplicity-edited HSQC NMR (400 MHz) spectrum of the **pDEA** polymer in MeOH-4d; negative values (**red**) indicate CH₂ moieties, while positive values (**blue**) indicate CH or CH₃ moieties.

Figure S18. ¹H NMR (400 MHz) spectrum of the pAP polymer in MeOH-4d: 3.1-3.8 (4H), 2.3-2.7 (1H), 1.96 (4H), and 1.68 ppm (2H)

Figure S19. ¹³C{¹H} NMR (101 MHz) spectrum of the pAP polymer in MeOH-4d: 173.7, 45.9-46.5, 39.0, 35.0, 24.0-25.7 ppm

Figure S20. Multiplicity-edited HSQC NMR (400 MHz) spectrum of the pAP polymer in MeOH-4d; negative values (red) indicate CH₂ moieties, while positive values (blue) indicate CH or CH₃ moieties.

Time (min) Figure S21. Size exclusion chromatograms of pDFEA polymers; mobile phase methanol and sodium

acetate buffer (0.3 M, pH 6.5) mixture (80:20 v/v, flow rate of 0.6 mL·min⁻¹). These data were subsequently used to determine the M_w , M_n , and dispersity (D_M) of the polymers.

Figure S22. Size exclusion chromatograms of pNIPAM polymers; mobile phase methanol and sodium acetate buffer (0.3 M, pH 6.5) mixture (80:20 v/v, flow rate of 0.6 mL·min⁻¹). These data were subsequently used to determine the M_w , M_n , and dispersity (D_M) of the polymers.

Figure S23. Size exclusion chromatograms of **pDEA** polymers; mobile phase methanol and sodium acetate buffer (0.3 M, pH 6.5) mixture (80:20 v/v, flow rate of 0.6 mL·min⁻¹). These data were subsequently used to determine the M_w , M_n , and dispersity (D_M) of the polymers.

Figure S24. Size exclusion chromatograms of **pAP** polymers; mobile phase methanol and sodium acetate buffer (0.3 M, pH 6.5) mixture (80:20 v/v, flow rate of 0.6 mL·min⁻¹). These data were subsequently used to determine the M_w , M_n , and dispersity (D_M) of the polymers.

S3. Turbidimetric data – tables

Table S1. T_{CP} values in various solvents (water, PBS and FBS) as a function of the concentration of **pDFEA** polymers (**F1**, **F2**, and **F3**); the data are expressed as mean of 6 experiments and their standard deviation (SD). An asterisk (*) indicates concentration points with multiple outlier points, that were excluded.

Polymer	F1 (°C)	F2 (°C)	F3 (°C)	F1 (°C)	F2 (°C)	F3 (°C)	F1 (°C)	F2 (°C)	F3 (°C)	
<i>c</i> (mg/ml)	$T_{\rm CP} \pm SD$	$T_{\rm CP} \pm SD$	$T_{\rm CP} \pm SD$	$T_{\rm CP} \pm SD$	$T_{\rm CP} \pm SD$					
Medium	Ultrapure water			Pho	Phosphate saline buffer			Foetal Bovine Serum		
1.25	-	-	-	64.07 ± 0.05	55.25 ± 0.04	52.22 ± 0.04	33.85 ± 0.10	48.00 ± 0.17	49.97 ± 0.35	
2.50	-	-	-	27.07 ± 0.23	30.75 ± 0.12	42.32 ± 0.25	28.25 ± 0.19	37.90 ± 0.23	34.60 ± 0.11	
5.0	-	-	-	29.17 ± 0.14	29.95 ± 0.10	42.08 ± 0.24	24.58 ± 0.08	32.52 ± 0.10	29.99 ± 0.08	
10.0	27.21 ± 0.62	34.00 ± 0.90	27.33 ± 0.68	27.05 ± 0.25	29.30 ± 0.11	42.48 ± 0.43	22.60 ± 0.06	30.10 ± 0.22	28.67 ± 0.10	
20.0	-	-	-	25.57 ± 0.05	31.64 ± 0.20	43.88 ± 0.23	24.63 ± 0.15	28.87 ± 0.12	$40.35\pm0.10^{\boldsymbol{*}}$	
40.0	-	-	-	24.14 ± 0.10	24.96 ± 0.36	26.73 ± 0.29	24.90 ± 0.35	28.41 ± 0.08	43.80 ± 0.14	

Table S2. T_{CP} values in various solvents (water, PBS and FBS) as a function of the concentration of **pNIPAM** polymers (**I1**, **I2**, and **I3**); the data are expressed as mean of 6 experiments and their standard deviation (SD). An asterisk (*) indicates concentration points with multiple outlier points, that were excluded.

Polymer	I1 (°C)	I2 (°C)	I3 (°C)	I1 (°C)	I2 (°C)	I3 (°C)	I1 (°C)	I2 (°C)	I3 (°C)	
<i>c</i> (mg/ml)	$T_{\rm CP} \pm SD$	$T_{\rm CP} \pm SD$	$T_{\rm CP} \pm SD$	$T_{\rm CP} \pm SD$	$T_{\rm CP} \pm SD$					
Medium	Ultrapure water			Pho	Phosphate saline buffer			Foetal Bovine Serum		
1.25	-	-	-	33.42 ± 0.04	30.98 ± 0.04	29.65 ± 0.10	33.62 ± 0.08	30.88 ± 0.04	29.72 ± 0.04	
2.50	-	-	-	32.25 ± 0.18	30.18 ± 0.11	29.13 ± 0.05	30.90 ± 0.15	28.62 ± 0.10	27.64 ± 0.05	
5.0	-	-	-	31.08 ± 0.10	29.48 ± 0.08	28.75 ± 0.05	28.98 ± 0.10	26.30 ± 0.11	25.70 ± 0.06	
10.0	29.98 ± 0.27	31.39 ± 0.17	31.59 ± 0.43	29.25 ± 0.10	28.30 ± 0.06	28.05 ± 0.10	25.67 ± 0.10	24.39 ± 0.10	24.60 ± 0.06	
20.0	-	-	-	28.95 ± 0.05	26.80 ± 0.00	28.29 ± 0.04	28.90 ± 0.09	29.23 ± 0.15	33.05 ± 0.32	
40.0	-	-	-	26.90 ± 0.34	28.37 ± 0.05	28.28 ± 0.04	28.82 ± 0.34	28.43 ± 0.16	31.03 ± 0.13	

is mean of o experiments and then standard deviation (5D). In asterisk (7) meledies concentration points with multiple outlier points, that were excluded.									
Polymer	E1 (°C)	E2 (°C)	E3 (°C)	E1 (°C)	E2 (°C)	E3 (°C)	E1 (°C)	E2 (°C)	E3 (°C)
<i>c</i> (mg/ml)	$T_{\rm CP} \pm SD$	$T_{\rm CP} \pm SD$	$T_{\rm CP}\pm SD$	$T_{\rm CP} \pm SD$	$T_{\rm CP} \pm SD$	$T_{\rm CP} \pm SD$			
Medium	Ultrapure water			Phosphate saline buffer			Foetal Bovine Serum		
1.25	-	-	-	31.88 ± 0.04	31.72 ± 0.04	31.17 ± 0.05	35.77 ± 0.25	32.60 ± 0.24	31.53 ± 0.23
2.50	-	-	-	29.58 ± 0.08	30.85 ± 0.08	29.30 ± 0.09	31.90 ± 0.14	30.00 ± 0.20	29.12 ± 0.15
5.0	-	-	-	28.20 ± 0.06	29.98 ± 0.04	28.35 ± 0.08	28.03 ± 0.20	27.97 ± 0.16	27.07 ± 0.15
10.0	29.28 ± 0.04	30.16 ± 0.11	29.92 ± 0.12	27.37 ± 0.08	28.47 ± 0.10	27.60 ± 0.11	23.95 ± 0.12	25.82 ± 0.17	25.27 ± 0.19
20.0	-	-	-	$28.92\pm0.16\texttt{*}$	$29.17\pm0.06\texttt{*}$	$29.18\pm0.05\texttt{*}$	27.93 ± 0.13	29.47 ± 0.09	29.34 ± 0.07
40.0	-	-	-	$28.85 \pm 1.34 \texttt{*}$	$28.75\pm0.07\texttt{*}$	$28.87\pm0.06\texttt{*}$	27.57 ± 0.23	28.33 ± 0.05	27.88 ± 0.08

Table S3. T_{CP} values in various solvents (water, PBS and FBS) as a function of the concentration of **pDEA** polymers (**E1**, **E2**, and **E3**); the data are expressed as mean of 6 experiments and their standard deviation (SD). An asterisk (*) indicates concentration points with multiple outlier points, that were excluded.

Table S4. T_{CP} values in various solvents (water, PBS and FBS) as a function of the concentration of **pAP** polymers (**P1**, **P2**, and **P3**); the data are expressed as mean of 6 experiments and their standard deviation (SD). An asterisk (*) indicates concentration points with multiple outlier points, that were excluded.

Polymer	P1 (°C)	P2 (°C)	P3 (°C)	P1 (°C)	P2 (°C)	P3 (°C)	P1 (°C)	P2 (°C)	P3 (°C)
<i>c</i> (mg/ml)	$T_{\rm CP} \pm SD$	$T_{\rm CP} \pm SD$	$T_{\rm CP} \pm SD$	$T_{\rm CP} \pm SD$	$T_{\rm CP} \pm SD$	$T_{\rm CP} \pm SD$			
Medium	Ultrapure water			Phosphate saline buffer			Foetal Bovine Serum		
1.25	-	-	-	64.06 ± 0.05	55.28 ± 0.06	52.22 ± 0.04	75.02 ± 0.79	59.18 ± 0.08	55.31 ± 0.08
2.50	-	-	-	58.35 ± 0.16	52.68 ± 0.08	50.23 ± 0.10	70.70 ± 0.57	53.67 ± 0.19	50.55 ± 0.14
5.0	-	-	-	55.15 ± 0.08	49.15 ± 0.10	47.73 ± 0.08	60.85 ± 0.37	51.83 ± 0.08	48.53 ± 0.08
10.0	58.10 ± 0.10	56.78 ± 0.42	56.2 ± 0.58	53.65 ± 0.10	47.30 ± 0.17	46.27 ± 0.10	56.72 ± 0.34	48.63 ± 0.14	45.73 ± 0.08
20.0	-	-	-	54.65 ± 0.04	50.09 ± 0.02	50.13 ± 0.05	54.62 ± 0.40	$58.40\pm0.14\texttt{*}$	49.57 ± 0.08
40.0	-	-	-	54.00 ± 0.14	48.38 ± 0.22	48.08 ± 0.12	49.53 ± 0.38	33.65 ± 0.20	48.98 ± 0.12

Note: At high polymer concentrations (20 and 40 mg/mL), the cloud point temperatures were poorly reproducible and unreliable, and the inter-run-differences were up to 20°C (particularly in **pDFEA** in PBS). At low concentrations (1.25 to 10.0 mg/mL), multiple independent experiments provided the same value of T_{CP} (within a margin of 0.5°C). We kept repeating measurements until two independent runs provided *similar* results and reliable turbidimetry-as-a-function-of-temperature graphs (*i.e.*, the turbidity decreased monotonously and relatively quickly with no sudden or inexplicable changes in trends). Therefore, we concluded that turbidimetry is not a reliable method for determining T_{CP} s at high polymer concentrations and these data were accordingly disregarded from further interpretations. Nevertheless, we present the complete set of our results in **Tables S3** to **S6**.

S4. Raw turbidimetric data

Every polymer solution was measured at least 6 times. If the data from all runs were similar, the data was processed: we calculated the mean values and standard deviations of T_{CPS} (**Table S1 to S4**). Only one cycle is shown in **Figures S25** to **S36** for clarity.

Figure S25. Transmittance of the **F1** (**pDFEA**) solution in ultrapure water (MiliQ), PBS, and FBS (serum), respectively, as a function of temperature

Figure S26. Transmittance of the **F2** (**pDFEA**) solution in ultrapure water (MiliQ), PBS, and FBS (serum), respectively, as a function of temperature

Figure S27. Transmittance of the **F3 (pDFEA)** solution in ultrapure water (MiliQ), PBS, and FBS (serum), respectively, as a function of temperature

Figure S28. Transmittance of the **I1** (**pNIPAM**) solution in ultrapure water (MiliQ), PBS, and FBS (serum), respectively, as a function of temperature

Figure S29. Transmittance of the **I2** (**pNIPAM**) solution in ultrapure water (MiliQ), PBS, and FBS (serum), respectively, as a function of temperature

Figure S30. Transmittance of the **I3** (**pNIPAM**) solution in ultrapure water (MiliQ), PBS, and FBS (serum), respectively, as a function of temperature

Figure S31. Transmittance of the **E1** (**pDEA**) solution in ultrapure water (MiliQ), PBS, and FBS (serum), respectively, as a function of temperature

Figure S32. Transmittance of the **E2** (**pDEA**) solution in ultrapure water (MiliQ), PBS, and FBS (serum), respectively, as a function of temperature

Figure S33. Transmittance of the **E3** (**pDEA**) solution in ultrapure water (MiliQ), PBS, and FBS (serum), respectively, as a function of temperature

Figure S34. Transmittance of the **P1** (**pAP**) solution in ultrapure water (MiliQ), PBS, and FBS (serum), respectively, as a function of temperature

Figure S35. Transmittance of the **P2** (**pAP**) solution in ultrapure water (MiliQ), PBS, and FBS (serum), respectively, as a function of temperature

Figure S36. Transmittance of the **P3** (**pAP**) solution in ultrapure water (MiliQ), PBS, and FBS (serum), respectively, as a function of temperature

S5. Isothermal titration calorimetry S5.1. ITC – titration of polymers F3, I3, E3, and P3

c

50 100 Molar Ratio

40

mm Model

N1

K1

∆H1

∆S1

N2

K2

∆H2

∆S2

60

TTTTTT

woSites 16 Sites

464Sites

-27,8 cal/mol

6,8 cal/mol/deg

32 M⁻¹

100

Molar Ratio

b

Time (min)

40

Model[.]

N1

K1

۸H1

∆S1

N2

K2

∆H2

∆S2

150

60

1.85*10³ M⁻¹ -200.0 cal/mol 14.3 cal/mol/deg

6.7 cal/mol/deg

150

TwoSites 24 Sites

188 Sites

30.6 M⁻¹ -40.5cal/mol

minnun

80

2.74*10³ M⁻¹ -449,9 cal/mol 14,2 cal/mol/deg

80

d

Figure S37. Titration of the **F3 (pDFEA)** solution in ultrapure water with PBS (a,c,e) and FBS (b,d,f) respectively; 293 K (a,b), 301 K (c,d) and 323 K (e,f). Upper graph – heat flux as a function of time; red line – titration of PBS or FBS, respectively, into ultrapure water; black line – titration into polymer solution. Lower graph – integrated heat per 1 mol of titrant (scatter); fit to a two-site model (line).

Figure S38. Titration of the **I3** (**pNIPAM**) solution in ultrapure water with PBS ($\mathbf{a}, \mathbf{c}, \mathbf{e}$) and FBS ($\mathbf{b}, \mathbf{d}, \mathbf{f}$) respectively; 293 K (\mathbf{a}, \mathbf{b}), 303 K (\mathbf{c}, \mathbf{d}) and 313 K (\mathbf{e}, \mathbf{f}). Upper graph – heat flux as a function of time; red line – titration of PBS or FBS, respectively, into ultrapure water; black line – titration into polymer solution. Lower graph – integrated heat per 1 mol of titrant (scatter); fit to the two-site model (line).

d

Figure S39. Titration of the **E3** (**pDEA**) solution in ultrapure water with PBS ($\mathbf{a}, \mathbf{c}, \mathbf{e}$) and FBS ($\mathbf{b}, \mathbf{d}, \mathbf{f}$) respectively; 293 K (\mathbf{a}, \mathbf{b}), 301 K (\mathbf{c}, \mathbf{d}) and 313 K (\mathbf{e}, \mathbf{f}). Upper graph – heat flux as a function of time; red line – titration of PBS or FBS, respectively, into ultrapure water; black line – titration into polymer solution. Lower graph – integrated heat per 1 mol of titrant (scatter); fit to the two independent binding sites model (line).

Figure S40. Titration of the **P3** (**pAP**) solution in ultrapure water with PBS ($\mathbf{a}, \mathbf{c}, \mathbf{e}$) and FBS ($\mathbf{b}, \mathbf{d}, \mathbf{f}$) respectively; 293 K (\mathbf{a}, \mathbf{b}), 323 K (\mathbf{c}, \mathbf{d}) and 333 K (\mathbf{e}, \mathbf{f}). Upper graph – heat flux as a function of time; red line – titration of PBS or FBS, respectively into ultrapure water; black line – titration into polymer solution. Lower graph – integrated heat per 1 mol of titrant (scatter); fit to the two independent binding sites model (line).

The titration isotherms of complex shape consist of heat effects originating from (i) "pseudo-binding" event and (ii) non-linear heat of mixing. Therefore, we fitted cumulated reaction heat as a function of titrant-to-analyte molar ratio with two independent binding sites model (one Wiseman isoterm^{S1} for each effect, both i and ii). Because the concentration of titrant (PBS or FBS) is unknown (as these mixtures contain many compounds in various concentrations), we chose an arbitrary value 162.7 mM (ionic strength of PBS) for **both** PBS and FBS. Reaction enthalpy as an independent fitting parameter was then normalized to the concentration of analyte (polymer). The remaining fitting parameters (stoichiometry *n*, binding constant K_a) are influenced by titrant to analyte molar ratio and, therefore, were not used in the results discussion.

The fitting parameters for the second binding site (ii) were: a) $K_{a1} \gg K_{a2}$ b) $\Delta H_1 > \Delta H_2$

S5.2. ITC – enthalpies of F3, I3, E3, and P3

1																								
Sample	F3 (pDFEA)			I3 (pNIPAM)				E3 (pDEA)				P3 (pAP)												
Conc. (mM)* 0.213			0.221				0.267				0.216													
pH in H ₂ O** ≈ 4.9			≈ 4.6				pprox 4.0				≈ 5.5													
Titrant		PBS			FBS			PBS			FBS			PBS			FBS			PBS			FBS	
<i>Т</i> , К	293	301	323	293	301	323	293	303	313	293	303	313	293	301	313	293	301	313	293	323	333	293	323	333
ΔH , (J/mol)	-73.9	-100.7	-394.4	-86.7	-57.9	-559.6	4.9	9.1	113.1	-14.2	pprox 0.0	19.5	15.8	-12.3	-105.4	-52.5	-92.9	-287.2	14.4	32.3	-6.3	-36.7	-32.6	-19.6
transition conc. (mM)***	17.4	13.4	17.5	9.3	8.8	16.3	11.0	11.0	19.0	21.1	N/A	21.2	9.7	7.0	14.6	8.9	11.6	17.3	12.3	16.3	20.0	12. 0	14.6	8.1
transition conc. (mg/mL)****	1.0	0.8	1.0	3.0	2.9	5.3	0.6	0.6	1.1	6.9	N/A	6.9	0.5	0.4	0.8	2.9	3.8	5.6	0.7	0.9	1.1	3.9	4.8	2.6

Table S5. Concentrations and pH of polymer solutions; enthalpy ΔH (J/mol of monomer) of mixing of polymer solutions with PBS and FBS at various temperatures.

* polymer concentration in the analyte solution

** pH of aqueous solution of polymer, 10 mg/mL

*** concentration of titrant (PBS or FBS) in units of ionic strength of PBS solution, determined from the coordinate on the x-axis (molar ratio) on

Figures S37 to 40.

**** concentration of titrant in mg/mL

c

d

Figure S41. ITC isotherms of the titration of the solution of benzoic acid (0.25 mM) with PBS (**a**, **c**, **e**) and FBS (**b**, **d**, **f**) at 293 K (**a**, **b**), 313 K(**c**, **d**) and 333 K (**e**, **f**).

Figure S42. Size distributions of molecular assemblies of polymer **F1** (10 mg/mL in PBS) as a function of temperature; depicted as 3D plot (**A**) and contour graph (**B**). T_{CP1} (dashed lines) was assigned to 28 °C, T_{CP2} was assigned to 38 °C.

Figure S43. Size distributions of molecular assemblies of polymer F2 (10 mg/mL in PBS) as a function of temperature; depicted as 3D plot (A) and contour graph (B). T_{CP1} (dashed lines) was assigned to 31 °C, T_{CP2} was assigned to 50 °C.

Figure S44. Size distributions of molecular assemblies of polymer F3 (10 mg/mL in PBS) as a function of temperature; depicted as 3D plot (A) and contour graph (B). T_{CP1} (dashed lines) was assigned to 28 °C, T_{CP2} was assigned to 44 °C.

Figure S45. Size distributions of molecular assemblies of polymer I1 (10 mg/mL in PBS) as a function of temperature; depicted as 3D plot (**A**) and contour graph (**B**). T_{CP} (dashed line) was assigned to 30 °C. The measurement stopped prematurely because the size of the aggregates exceeded the detection limit.

Figure S46. Size distributions of molecular assemblies of polymer **I2** (10 mg/mL in PBS) as a function of temperature; depicted as 3D plot (**A**) and contour graph (**B**). T_{CP} (dashed line) was assigned to 29 °C. The measurement stopped prematurely because the size of the aggregates exceeded the detection limit.

Figure S47. Size distributions of molecular assemblies of polymer **I3** (10 mg/mL in PBS) as a function of temperature; depicted as 3D plot (**A**) and contour graph (**B**). T_{CP} (dashed line) was assigned to 29 °C. The measurement stopped prematurely because the size of the aggregates exceeded the detection limit.

Figure S48. Size distributions of molecular assemblies of polymer E1 (10 mg/mL in PBS) as a function of temperature; depicted as 3D plot (A) and contour graph (B). T_{CP1} (dashed lines) was assigned to 22 °C, T_{CP2} was assigned to 28 °C.

Figure S49. Size distributions of molecular assemblies of polymer **E2** (10 mg/mL in PBS) as a function of temperature; depicted as 3D plot (**A**) and contour graph (**B**). T_{CP} (dashed line) was assigned to 28 °C. The measurement stopped prematurely because the size of the aggregates exceeded the detection limit.

Figure S50. Size distributions of molecular assemblies of polymer **E3** (10 mg/mL in PBS) as a function of temperature; depicted as 3D plot (**A**) and contour graph (**B**). T_{CP} (dashed line) was assigned to 29 °C. The measurement stopped prematurely because the size of the aggregates exceeded the detection limit.

Figure S51. Size distributions of molecular assemblies of polymer **P1** (10 mg/mL in PBS) as a function of temperature; depicted as 3D plot (**A**) and contour graph (**B**). T_{CP} (dashed line) was assigned to 52 °C. The measurement stopped prematurely because the size of the aggregates exceeded the detection limit.

Figure S52. Size distributions of molecular assemblies of polymer P2 (10 mg/mL in PBS) as a function of temperature; depicted as 3D plot (**A**) and contour graph (**B**). T_{CP} (dashed line) was assigned to 48 °C. The measurement stopped prematurely because the size of the aggregates exceeded the detection limit.

Figure S53. Size distributions of molecular assemblies of polymer P3 (10 mg/mL in PBS) as a function of temperature; depicted as 3D plot (**A**) and contour graph (**B**). T_{CP} (dashed line) was assigned to 49 °C. The measurement stopped prematurely because the size of the aggregates exceeded the detection limit.

Date: Jul 29, 2021

Time: 10:54:38

S7. Refractive index increment (dn/dc)

Brookhaven Instruments Corp. Differential Refractometer Software Ver. 5.32

Sample ID F1, PBS Operator ID PC Notes

Figure S54. Refractive index increment (dn/dc) measurement report of F1 (pDFEA) in PBS.

Brookhaven Instruments Corp. Differential Refractometer Software Ver. 5.32 Date: Jul 29, 2021 Time: 11:06:16

Sample ID F2, PBS Operator ID PC Notes

Figure S55. Refractive index increment (dn/dc) measurement report of F2 (pDFEA) in PBS.

Date: Jul 29, 2021 Time: 11:15:27

Sample ID F3, PBS Operator ID PC Notes

Figure S56. Refractive index increment (dn/dc) measurement report of F3 (pDFEA) in PBS.

Brookhaven Instruments Corp. Differential Refractometer Software Ver. 5.32

Date: Jul 29, 2021 Time: 12:14:20

Sample ID I1, PBS Operator ID PC Notes

Figure S57. Refractive index increment (dn/dc) measurement report of I1 (pNIPAM) in PBS.

Date: Jul 29, 2021 Time: 12:26:10

Sample ID I2, PBS Operator ID PC Notes

Figure S58. Refractive index increment (dn/dc) measurement report of I2 (pNIPAM) in PBS.

Sample ID I3, PBS Operator ID PC Notes

Figure S59. Refractive index increment (dn/dc) measurement report of I3 (pNIPAM) in PBS.

Date: Jul 30, 2021 Time: 11:08:22

Sample ID E1, PBS Operator ID PC Notes

Figure S60. Refractive index increment (dn/dc) measurement report of E1 (pDEA) in PBS.

Date: Jul 29, 2021 Time: 11:55:03

Sample ID E2, PBS Operator ID PC Notes

Figure S61. Refractive index increment (dn/dc) measurement report of E2 (pDEA) in PBS.

Figure S62. Refractive index increment (dn/dc) measurement report of E3 (pDEA) in PBS.

Date: Jul 30, 2021 Time: 11:28:37

Sample ID P1, PBS Operator ID PC Notes

Figure S63. Refractive index increment (dn/dc) measurement report of P1 (pAP) in PBS.

Date: Jul 29, 2021 Time: 12:59:10

Sample ID P2, PBS Operator ID PC Notes

Figure S64. Refractive index increment (dn/dc) measurement report of P2 (pAP) in PBS.

Figure S65. Refractive index increment (dn/dc) measurement report of P2 (pAP) in PBS.

S8. Additional information

S8.1. Heating/cooling cycles of turbidimetry

Some polymers (particularly **pDFEA** and **pDEA**) tend to coalesce into large particles, which may sink, float, or stick to the cuvette. Coalescence is observed in some heating cycles (see, *e.g.*, **Figure S30**): initially small polymer aggregates are formed, and transmittance decreases. However, upon further heating, these small polymer aggregates may coalesce into large assemblies and (in some cases) move out of the detection area. As a result, transmittance increases again. In some samples, the coalesced assemblies occasionally and temporarily obscure the light beam and thus cause fluctuations in transmittance (caused by sample stirring).

Coalescence and polymer sticking/ floating do not prevent us from determining T_{CP} in the heating cycle: T_{CP} is defined by the initial polymer aggregation. For this reason, such a T_{CP} measurement is well reproducible (inter-run variation was mostly within 0.2 °C; see **Figure 3**). Conversely, T_{CP} measurements during the cooling cycle were unreliable – the polymer may behave as intended but may also float away from the laser beam or stick to the glass and thus hinder proper reading (the T_{CP} values in the cooling cycle varied more than 15 °C). We were unsure whether transmittance increased because the polymer aggregates dissolved or because they moved away from the light beam. Therefore, we decided to disregard these values and focus only on the T_{CP} determined during the heating cycle. The cooling cycle in turbidimetry was used merely as a regeneration phase for subsequent heating cycles; the samples remained at 10 °C for 30 minutes, which reliably ensured that all residual polymer aggregates dissolved.

S8.2. Structure-to-properties relationship

Scheme S1. Hydrogen bond acceptors, donors, and hydrophobic moieties in the molecules.

Zhao *et al.* ^{S2} suggested, that LCST-type thermoresponsive polymers must be hydrophilic (negative $\Delta H_{\rm m}$) and that the entropy of mixing ($\Delta S_{\rm m}$) must be negative as well (see **Scheme S3**). *T*_{CP} can then be calculated according to **Equation 1**.

$$T_{\rm CP} = \frac{\Delta H_{\rm m}}{\Delta S_{\rm m}} \tag{1}$$

The $\Delta H_{\rm m}$ of a polymer correlates with its hydrophilicity. Some researchers rank the hydrophilicity of polymers according to their $T_{\rm CP}$.^{S3} Therefore, the rank of hydrophobicity of the study polymers would be as follows:

pAP ≫ **pNIPAM** ≈ **pDEA** > **pDFEA**

Nevertheless, this approach is most suitable for ranking hydrophilicity of *similar* copolymers (*i.e.* those with *similar* molecular moieties, *e.g.* alkyls). However, **pDFEA** contains -CF₂H moiety, which is somewhat lipophilic, but can also form hydrogen bonds,^{S4} decreasing the enthalpy of aggregation and

potentially lowering the T_{CP} . Therefore, we chose a different approach to rank the hydrophilicity of the polymers.

Scheme S2. A thermodynamic map showing the solubility and solution properties of polymers in water, redrawn according to [S2].

Zhao *et al.*^{S2} suggests ranking the hydrophilicity of polymers according to the enthalpy of mixing (ΔH_m) of the alkanes (corresponding to the hydrophobic moiety) with water. We were unable to find mixing enthalpy of 1,1-difluoroethane with water in the literature, but the mixing enthalpy should inversely correlate with the solubility of the corresponding alkanes in water, enabling us to estimate the ranks of hydrophilicities of study polymers. The concentration of saturated 1,1-difluoroethane aqueous solution is 50 to 80 mmol/l (0 °C), ^{S5,S6} ethane 4.2 mmol/l (0 °C), ^{S6} propane 3.5 mmol/l (4 °C), ^{S6} and butane 3.1 mmol/l (3 °C). ^{S6} In this approach, we consider only the "hydrophilicity" of the substituent, and we disregard the effect of ligands on the hydrophilicity of the rest of the acrylamide (due to changes of electron densities on NH). Because 1,1-difluoroethane has (by far) the highest aqueous solubility of all corresponding alkanes, we rank **pDFEA** as the most hydrophilic (contrary to the rank suggested by method in [S3]). Both **pDEA** and **pAP** are di-substituted acrylamides; therefore, we rank them as the least hydrophilic. The cyclic structure of the **pAP** side chain will, however, be more compact, thereby shielding the hydrophilic amide less and being more hydrophilic than pDEA. This approach would suggest the following rank of hydrophilicities of polymers: ^{note1}

pDFEA » pNIPAM > pAP > pDEA

As shown in the ITC results, **pDFEA** has strong intramolecular interactions, which decrease the aggregation enthalpy, possibly due to its intramolecular hydrogen bonds.^{S4} These hydrogen bonds may explain the strong interactions of **pDFEA** with proteins as well.

The ΔS_m is hard to estimate from commonly available material quantities as it is strongly related to the release of 'high energy' hydrating water molecules. In line with this statement, the more hydrophilic **pAP** has a higher T_{CP} as **pDEA** as the hydration ΔS_m will be similar based on the presence of a tertiary amide (**Scheme S2**). Despite the higher hydrophilicity of **pNIPAM** and **pDFEA**, these polymers have a lower T_{CP} than **pAP**, which can be ascribed to the higher ΔS_m resulting from a more efficient hydration thanks to the secondary amide groups (both **pNIPAM** and **pDFEA**) and to the difluoroalkyl group (**pDFEA**).

^{note 1} **pDEA** contains two ethyls; therefore, it is considered less hydrophilic than **pNIPAM**. Its monoethyl analogue (poly(ethyl-*N*-acrylamide) would be more hydrophilic than **pNIPAM**; and its T_{CP} is ≈ 73 °C.²

S8.3. Detection of terminal moiety

Detecting these terminal moieties in polymers with M_w around/ above 25 kg/mol is notoriously difficult because of their very low content, broad peaks, noise and trace contaminants (see NMR spectra in ESI).^{S7} The terminal CH₃O moiety provides ¹H NMR signals at ≈ 3.5 -3.6 ppm, and -CH₂CH₂- (from acrylate) provides NMR signals at 2.6 to 2.8 ppm.^{S8,S9} Unfortunately, these signals are often partly masked by broad peaks from solvents or polymers (NCH₂, 3.2 to 3.9 ppm; acrylamide peak at ≈ 2.3 ppm; see NMR spectra in ESI). Nevertheless, we remeasured ¹H NMR spectra of all polymers in higher concentrations and with a higher number of scans (256 scans), now added to ESI as raw files (available for inspection). We were able to detect signals of terminal -CH₂CH₂-, most pronounced in polymers **F1** and **P1**, where the content of end-moiety is the highest and the end-moiety signals are not masked by polymer signals (**Figure S69**). Therefore, the signals of terminal -CH₂CH₂- serve as an indirect evidence of terminal -CH₂CH₂COOCH₃ moiety. The remaining peaks in this region can be attributed to low-molecular weight contaminants (mostly solvents; their peaks are narrow, but the overall integral is low).

We measured ¹H-NMR spectra in MeOH-4d solutions because polymers dissolve in MeOH, whose residual peak is found at 3.31 ppm, whereas the peak of water is at 4.78 ppm;^{S10} therefore, MeOH does not mask these terminal peaks. DMSO-6d has a peak at 2.50 ppm, and water has a peak at 3.33 ppm; thus, the peaks of these solvents would mask the peaks of interest.^{S10}

Figure S66. ¹H NMR of polymer **F1** in MeOH-4d showing the peaks at 2.6 and 2.8 ppm, corresponding to terminal CH₂CH₂ moieties. ^{S8,S9} The CH₃O- moiety remained masked by other peaks.

S9. Calibration curves for labelled polymers

Figure S67. Calibration curve; the absorbance of Cy7-amine as a function concentration ($\lambda = 700$ nm) in MeOH, given by the formula $A = 0.0668 \pm 0.0084 + c \cdot (22.429 \pm 0.323)$; $R^2 = 0.9997$.

S10. Size exclusion chromatograms of labelled polymers

Figure S68. Size exclusion chromatograms (SEC traces) of Cy7-labelled polymers; normalized absorbance at 505 nm as a function of time. The absorbance of polymers in most cases exceeded the detection maximum of the detector. The concentration of low-molecular Cy7 (non-covalently bound) was in most cases below the limit of detection; its concentration was $\geq 0.5\%$).

S11. In vivo experiments

Figure S69. Weights of mice from all groups as a function of time and their comparison with control group (injected with mere DMSO).

S 1	12.	Poly	mer	phar	maco	okine	etics -	raw	data
_									

Mous	se M1	Mouse	e M2	Mouse M3				
Time (d)	Signal	Time (d)	Signal	Time (d)	Signal			
0.013461	7553548.5	0.0194213	28789540	0.01521991	31360926			
0.015451	8117890.5	0.0218287	31039352	0.01748843	34445812			
0.245405	15775586	0.23212963	53403336	0.22951389	64652064			
0.247280	16275670	0.23398148	52192068	0.23135417	65437296			
1.040648	18469152	1.00384259	46714892	0.98439815	55626292			
1.043160	18370780	1.00635417	46124912	0.98690972	53828384			
1.992164	17010132	1.9553588	44558780	1.93591435	49688332			
1.994664	17324938	1.9578588	42068244	1.93841435	49639340			
2.933530	16122334	2.89672454	41400336	2.87728009	44955364			
2.936968	16588533	2.90016204	39764792	2.88071759	46544544			
6.965347	15363530	6.92854167	35814676	6.90909722	38848812			
6.967801	15119886	6.93099537	34991516	6.91155093	38013320			
14.961748	9715552	14.9249421	24411188	14.9054977	29248908			
14.964178	9733786	14.9273727	24318764	14.9079282	28798778			
28.996458	8228305	28.9596528	21997504	28.9402083	24370120			
28.999225	8114443.5	28.962419	21839146	28.9429745	24357358			
56.111609	6878973	56.0748032	18392500	56.0553588	18631800			
56.113819	6900557.5	56.0770139	19244228	56.0575694	18706046			
70.259271	5063877.5	70.2224653	12027219	70.2030208	13582575			
70.261840	5318400.5	70.2250347	13532210	70.2055903	13935688			
86.117326	5881183	86.0805208	16400983	86.0610764	13944691			
86.119433	6108106	86.0826273	16605837	86.0631829	13939347			
122.075046	4463150.5	122.038241	11754967	122.018796	8767569			
122.077396	4765173.5	122.04059	11860858	122.021146	8973079			
150.043866	6004102	150.00706	15556560	149.987616	10899622			
150.046377	6273049	150.009572	15228101	149.990127	10932180			
184.027361	4179011.25	183.990556	10701935	183.971111	6763285.5			
184.029525	4357977.5	183.99272	11277099	183.973275	6819046.5			
247.073785 4320709.5		Mouse sac	rificed on	247.017535	5867368.5			
247.075775	4238285.5	day 2	202	247.019525	5761552			
Mouse M1		Mouse M2		Mouse M3				
------------	-----------	--------------	-------------	------------	-----------			
Time (d)	Area (px)	Time (d)	Area (px)	Time (d)	Area (px)			
0.013461	7113	0.0194213	12983	0.01521991	15194			
0.015451	7346	0.0218287	13324	0.01748843	15692			
0.245405	12878	0.23212963	27028	0.22951389	28771			
0.247280	12897	0.23398148	27946	0.23135417	29381			
1.040648	17878	1.00384259	30996	0.98439815	34191			
1.043160	18410	1.00635417	31069	0.98690972	32400			
1.992164	16673	1.9553588	31485	1.93591435	34665			
1.994664	16872	1.9578588	31173	1.93841435	34590			
2.933530	15699	2.89672454	29728	2.87728009	32840			
2.936968	15901	2.90016204	29994	2.88071759	35051			
6.965347	14318	6.92854167	28486	6.90909722	31393			
6.967801	13887	6.93099537	28515	6.91155093	31205			
14.961748	9477	14.9249421	25585	14.9054977	26450			
14.964178	9520	14.9273727	25239	14.9079282	26038			
28.996458	7961	28.9596528	22404	28.9402083	18563			
28.999225	7855	28.962419	22449	28.9429745	18145			
56.111609	6344	56.0748032	15517	56.0553588	14194			
56.113819	6212	56.0770139	16540	56.0575694	14496			
70.259271	4788	70.2224653	11463	70.2030208	12070			
70.261840	5154	70.2250347	12956	70.2055903	13058			
86.117326	5875	86.0805208	13839	86.0610764	11908			
86.119433	6113	86.0826273	14109	86.0631829	11884			
122.075046	3844	122.038241	11073	122.018796	9264			
122.077396	4161	122.04059	11064	122.021146	9298			
150.043866	5238	150.00706	13343	149.987616	10513			
150.046377	5513	150.009572	13029	149.990127	10620			
184.027361	3309	183.990556	10548	183.971111	7395			
184.029525	3540	183.99272	10857	183.973275	7387			
247.073785	3662	Mouse sacrif	iced on day	247.017535	6218			
247.075775	3599	20	2	247.019525	6212			

Table S7. Area of depot of polymer F1 (pixels) in mice M1, M2, and M3 as a function of time.

Mouse M1		Mous	Mouse M2		Mouse M3	
Time (d)	Signal	Time (d)	Signal	Time (d)	Signal	
0.010347	54262996	0.0159838	125203992	0.02002315	157183568	
0.012211	61030380	0.0177662	133387432	0.02228009	175427376	
0.224722	257556048	0.22340278	364630176	0.22635417	330966784	
0.226412	265424240	0.22518519	373037920	0.22885417	340889376	
1.047130	142496336	1.03324074	220129952	1.01240741	163846848	
1.049306	146766496	1.03541667	217174976	1.01458333	155595920	
2.045625	111878280	2.03173611	169421696	2.01090278	135859856	
2.050220	114271352	2.03633102	169046400	2.01549769	131863624	
2.976250	92945104	2.96236111	137816128	2.94152778	116386472	
2.978449	98889128	2.96456019	138315120	2.94372685	117224224	
7.159144	72358720	7.14525463	103049336	7.1244213	86234424	
7.161262	74814096	7.14737269	103634992	7.12653935	85673040	
14.950382	48842072	14.9364931	68152000	14.9156597	54715500	
14.955000	50066312	14.9411111	67186296	14.9202778	55931768	
28.877488	38519392	28.8635995	46626184	28.8427662	38159616	
28.880637	39757032	28.8667477	48511032	28.8459144	41520100	
56.979942	29742360	56.9660532	37191264	56.9452199	28764126	
56.982188	30193790	56.9682986	38076452	56.9474653	30001436	
70.180891	15863670	70.1670023	21505322	70.146169	22380846	
70.183657	16490397	70.1697685	20601730	70.1489352	21944422	
85.974792	18855626	85.9400694	24156698	85.9343866	25128722	
85.960903	22300382	85.9552199	28349002	85.9365278	24962034	
85.969109	24780614	85.9573611	28949976	122.948773	19910804	
85.971250	25026776	122.969606	21052802	122.950926	20359668	
122.983495	18948076	122.971759	21255298	149.893275	21743064	
122.985648	19395514	149.914109	26752054	149.898021	22090932	
149.927998	22636072	149.918854	27206508	183.023657	16337871	
149.932743	22618798	183.044491	20172262	183.02831	16523300	
183.058380	16835932	183.049144	20732726	247.055856	13095169	
183.063032	17176454	Mouse sac	rificed on	247.062211	13351230	
247.090579	12716399	day	202			
247.096933	12210013					

 Table S8. Signal of polymer F2 (arbitrary units) in mice M1, M2, and M3 as a function of time.

Mouse M1		Mouse M2		Mouse M3	
Time (d)	Area (px)	Time (d)	Area (px)	Time (d)	Area (px)
0.010347	16378	0.0159838	29436	0.02002315	25347
0.012211	16762	0.0177662	29150	0.02228009	26676
0.224722	57313	0.22340278	74117	0.22635417	69478
0.226412	60470	0.22518519	75451	0.22885417	68387
1.047130	61276	1.03324074	76031	1.01240741	72292
1.049306	63638	1.03541667	74992	1.01458333	67642
2.045625	57793	2.03173611	70070	2.01090278	66796
2.050220	58448	2.03633102	67156	2.01549769	66146
2.976250	52045	2.96236111	61223	2.94152778	61498
2.978449	54150	2.96456019	62252	2.94372685	61795
7.159144	47431	7.14525463	55139	7.1244213	52711
7.161262	46490	7.14737269	56592	7.12653935	52553
14.950382	42139	14.9364931	52632	14.9156597	46269
14.955000	43394	14.9411111	51761	14.9202778	48562
28.877488	39903	28.8635995	45565	28.8427662	41493
28.880637	39630	28.8667477	46000	28.8459144	43524
56.979942	32427	56.9660532	37388	56.9452199	30885
56.982188	32049	56.9682986	38558	56.9474653	34163
70.180891	22960	70.1670023	29409	70.146169	29317
70.183657	22805	70.1697685	29411	70.1489352	28401
85.974792	23213	85.9400694	29090	85.9343866	28015
85.960903	28978	85.9552199	32389	85.9365278	28445
85.969109	26666	85.9573611	33158	122.948773	22181
85.971250	26334	122.969606	25770	122.950926	22153
122.983495	20365	122.971759	26676	149.893275	25797
122.985648	19765	149.914109	32245	149.898021	25390
149.927998	22560	149.918854	32741	183.023657	18403
149.932743	22686	183.044491	26213	183.02831	18752
183.058380	19502	183.049144	26833	247.055856	11868
183.063032	19990	Mouse sacrif	ficed on day	247.062211	11959
247.090579	14313	20	2		
247.096933	14029				

Table S9. Area of depot of polymer F2 (pixels) in mice M1, M2, and M3 as a function of time.

Mous	se M1	Mous	se M2	Mous	e M3
Time (d)	Area (px)	Time (d)	Area (px)	Time (d)	Area (px)
0.02633102	40819784	0.01673611	36644768	0.01299769	64834648
0.02996528	44773180	0.01873843	38908120	0.01515046	73464312
0.22190972	90299304	0.22025463	89767080	0.22270833	195998768
0.22383102	95070320	0.2259838	90036632	0.22454861	202969536
1.02435185	103279472	1.02292824	105543352	1.03050926	168052912
1.02648148	102399920	1.02537037	96409176	1.03290509	166631664
2.03247685	112248640	2.0019213	132527464	1.98108796	175614352
2.0350463	120344688	2.00449074	133243152	1.98365741	177275344
3.0316088	111311000	3.00105324	115107552	2.98021991	170138112
3.03372685	107239544	3.0031713	115683040	2.98233796	172770032
7.21012731	98133752	7.17957176	105373544	7.15873843	169507056
7.21243056	100931640	7.181875	101545024	7.16104167	166734912
14.9954051	74861344	14.9648495	73298632	14.9440162	128718520
14.9974769	76377616	14.9669213	74637264	14.946088	127076672
28.9281713	67346872	28.8976157	61217040	28.8767824	104246528
28.9306597	67641416	28.9001042	63226592	28.8792708	104403656
57.0315972	35490684	57.0010417	40205780	56.9802083	63406312
57.0342361	36121528	57.0036806	41205004	56.9828472	63892100
70.1842824	11815777	70.1537269	16556711	70.1328935	37086536
70.187581	10599304	70.1570255	16804756	70.1361921	36601864
85.9946065	19913270	85.9737731	38267076	85.9685417	43776440
86.0199306	20589960	85.989375	23767526	85.9707986	43463804
86.0221875	20231838	85.9916319	23795058	122.990764	4934739.5
86.025162	15257848	123.011597	11812462	122.99338	4977021
123.042153	10225124	123.014213	11842725	123.143553	21010404
123.044769	10180461	123.164387	1684026	123.145579	20460130
123.194942	1675300.5	123.166412	1642069.25	149.929352	21444948
123.196968	1620633.63	149.950185	16974868	183.063484	14851167
149.980741	11585462	183.084317	11152629	183.065741	15068273
183.114873	7154293.5	183.086574	11154938	247.094583	10037237
183.11713	7015475	247.115417	7451302.5	247.096771	9839475
Mouse sacri	ficed on day	247.117604	7722107		
20)2				

Table S10. Signal of polymer **I1** (arbitrary units) in mice M1, M2, and M3 as a function of time.

Mouse M1		Mouse N	Mouse M2		Mouse M3	
Time (d)	Signal	Time (d)	Signal	Time (d)	Signal	
0.02633102	14356	0.01673611	14561	0.01299769	17818	
0.02996528	15407	0.01873843	15327	0.01515046	19355	
0.22190972	24857	0.22025463	28558	0.22270833	35973	
0.22383102	26085	0.2259838	28648	0.22454861	36739	
1.02435185	27779	1.02292824	31557	1.03050926	41403	
1.02648148	30106	1.02537037	30886	1.03290509	41239	
2.03247685	34890	2.0019213	39366	1.98108796	47599	
2.0350463	35763	2.00449074	41604	1.98365741	47514	
3.0316088	32411	3.00105324	38578	2.98021991	43929	
3.03372685	34431	3.0031713	37271	2.98233796	45866	
7.21012731	31717	7.17957176	34210	7.15873843	38580	
7.21243056	32353	7.181875	34000	7.16104167	38861	
14.9954051	25996	14.9648495	32427	14.9440162	35054	
14.9974769	26919	14.9669213	32789	14.946088	35706	
28.9281713	22132	28.8976157	28257	28.8767824	30733	
28.9306597	22596	28.9001042	29916	28.8792708	32798	
57.0315972	17099	57.0010417	23847	56.9802083	21825	
57.0342361	17524	57.0036806	23899	56.9828472	21839	
70.1842824	10293	70.1537269	15661	70.1328935	17257	
70.187581	9443	70.1570255	16199	70.1361921	17323	
85.9946065	16913	85.9737731	15650	85.9685417	16225	
86.0199306	13563	85.989375	18251	85.9707986	16790	
86.0221875	13435	85.9916319	18335	122.990764	2960	
86.025162	12212	123.011597	12906	122.99338	2965	
123.042153	9379	123.014213	12722	123.143553	12276	
123.044769	9363	123.164387	258	123.145579	11647	
123.194942	93	123.166412	260	149.929352	11415	
123.196968	91	149.950185	16431	183.063484	8843	
149.980741	9758	183.084317	13395	183.065741	8911	
183.114873	7005	183.086574	13071	247.094583	7464	
183.11713	7043	247.115417	10132	247.096771	7195	
Mouse sacrif	ficed on	247.117604	10836			
day 20	2					

Table S11. Area of depot of polymer I1 (pixels) in mice M1, M2, and M3 as a function of time.

Mous	e M1	Mouse	e M2	Mous	e M3
Time (d)	Signal	Time (d)	Signal	Time (d)	Signal
0.032778	18719762	0.01844907	33847708	0.01446759	51774700
0.035521	18982692	0.02033565	35520840	0.01644676	57045540
0.242720	36602796	0.26974537	51685164	0.25232639	104401752
0.244618	34985852	0.2718287	50911232	0.25450231	101315544
1.073611	46416612	1.03125	65149736	0.99930556	84368520
1.075903	46315612	1.03354167	54239184	1.00159722	89002648
2.035255	43738808	1.99289352	54652188	1.96094907	89313928
2.037593	46241268	1.99523148	59481224	1.96328704	89875296
3.026563	48850688	2.98420139	65064300	2.95225694	94513128
3.029097	48543836	2.98673611	65080808	2.95479167	93729056
7.055336	45888696	7.01297454	63067996	6.98103009	96953496
7.057593	45574720	7.01523148	61650760	6.98328704	95358432
15.047234	34346584	15.0048727	50252372	14.9729282	75662992
15.050243	35257972	15.0078819	45221096	14.9759375	81280568
29.182743	25249454	29.1403819	48598280	29.1084375	72847080
29.185405	25436142	29.143044	49131672	29.1110995	73792056
56.171192	17100800	56.128831	31848922	56.0968866	45324592
56.175382	18043014	56.1330208	33270792	56.1010764	48038380
70.350521	11047815	70.3081597	25482802	70.2762153	32795702
70.353565	10768138	70.3112037	25107712	70.2792593	33140768
86.211505	10611325	86.1691435	22572650	86.1371991	28086168
86.213646	11582647	86.1712847	23184970	86.1393403	27958440
122.168889	7938186	122.126528	13841878	122.094583	15355841
122.171273	8030185	122.128912	14988715	122.096968	15831957
150.137176	9159573	150.094815	15772427	150.06287	15523631
150.139375	8933243	150.097014	14240340	150.065069	15354183
184.123391	5963470.5	184.08103	11065047	184.049086	9364890
184.128218	6446911	184.085856	10279452	184.053912	9416439
247.167245	4623424	Mouse sac	rificed on	247.09294	7858573.5
247.169271	4684578	day	202	247.094965	7599768

 Table S12. Signal of polymer I2 (arbitrary units) in mice M1, M2, and M3 as a function of time.

Mous	e M1	Mouse	e M2	Mous	e M3
Time (d)	Signal	Time (d)	Signal	Time (d)	Signal
0.032778	18719762	0.01844907	33847708	0.01446759	51774700
0.035521	18982692	0.02033565	35520840	0.01644676	57045540
0.242720	36602796	0.26974537	51685164	0.25232639	104401752
0.244618	34985852	0.2718287	50911232	0.25450231	101315544
1.073611	46416612	1.03125	65149736	0.99930556	84368520
1.075903	46315612	1.03354167	54239184	1.00159722	89002648
2.035255	43738808	1.99289352	54652188	1.96094907	89313928
2.037593	46241268	1.99523148	59481224	1.96328704	89875296
3.026563	48850688	2.98420139	65064300	2.95225694	94513128
3.029097	48543836	2.98673611	65080808	2.95479167	93729056
7.055336	45888696	7.01297454	63067996	6.98103009	96953496
7.057593	45574720	7.01523148	61650760	6.98328704	95358432
15.047234	34346584	15.0048727	50252372	14.9729282	75662992
15.050243	35257972	15.0078819	45221096	14.9759375	81280568
29.182743	25249454	29.1403819	48598280	29.1084375	72847080
29.185405	25436142	29.143044	49131672	29.1110995	73792056
56.171192	17100800	56.128831	31848922	56.0968866	45324592
56.175382	18043014	56.1330208	33270792	56.1010764	48038380
70.350521	11047815	70.3081597	25482802	70.2762153	32795702
70.353565	10768138	70.3112037	25107712	70.2792593	33140768
86.211505	10611325	86.1691435	22572650	86.1371991	28086168
86.213646	11582647	86.1712847	23184970	86.1393403	27958440
122.168889	7938186	122.126528	13841878	122.094583	15355841
122.171273	8030185	122.128912	14988715	122.096968	15831957
150.137176	9159573	150.094815	15772427	150.06287	15523631
150.139375	8933243	150.097014	14240340	150.065069	15354183
184.123391	5963470.5	184.08103	11065047	184.049086	9364890
184.128218	6446911	184.085856	10279452	184.053912	9416439
247.167245	4623424	Mouse sac	rificed on	247.09294	7858573.5
247.169271	4684578	dav	202	247.094965	7599768

Table S13. Area of depot of polymer I2 (pixels) in mice M1, M2, and M3 as a function of time.

Mouse M1		Mouse M2		Mouse M3	
Time (d)	Signal	Time (d)	Signal	Time (d)	Signal
0.011493	100759712	0.01586806	78106272	0.02699074	131686488
0.013692	107975536	0.0177662	85563992	0.02877315	142938224
0.225417	230897776	0.22773148	200423840	0.22833333	233372432
0.227512	236489648	0.2300463	201566368	0.2308912	226985744
1.035475	295543264	1.02158565	301522240	1.01047454	272491008
1.037512	298796448	1.02362269	298698880	1.01251157	296743424
2.032593	272779808	2.0187037	303773312	2.00759259	275909664
2.035069	265408608	2.02118056	296266272	2.01006944	267746992
2.910428	285479424	2.89653935	308300864	2.88542824	281708160
2.912407	289008064	2.89851852	294158240	2.88740741	261369760
7.093634	253235968	7.07974537	258022960	7.06863426	248822416
7.095995	259362800	7.08210648	263048128	7.07099537	246230640
14.888090	110368880	14.8742014	117601776	14.8630903	104723224
14.890556	111002744	14.8766667	121179648	14.8655556	106058088
28.838588	42676336	28.8246991	50589816	28.813588	42154000
28.841157	42855020	28.8272685	51638080	28.8161574	42306628
56.961609	17888342	56.9477199	22021410	56.9366088	16956844
56.963611	18067414	56.9497222	22271998	56.9386111	17774838
70.226042	5628809.5	70.2121528	7461319	70.2010417	7186982
70.238461	5454129	70.2245718	7895244	70.2134606	6957034
85.996516	4200149.5	85.9715162	6304246	85.9663542	6664610
85.982627	6300436	85.9774653	8394923	85.9687616	6727956
85.991354	6659401	85.9798727	8309783	122.899873	4031186
85.993762	6966501	122.910984	4256246	122.902014	4166084
122.924873	3950179	122.913125	4335072	149.843137	4071684
122.927014	4066735.75	149.854248	4202816	149.845949	3960995
149.868137	4045237.75	149.85706	4208418	182.97081	2743187
149.870949	4079474.5	182.981921	2945409	182.974109	2769228
182.995810	2932700.25	182.98522	2940675	Mouse sac	rificed on
182.999109	2934117	247.951123	2938057	day	202
Mouse sacri	ficed on day	247.953171	2883426		
202					

Table S14. Signal of polymer E1 (arbitrary units) in mice M1, M2, and M3 as a function of time.

Mouse M1		Mouse M2		Mouse M3	
	Area		Area		
Time (d)	(px)	Time (d)	(px)	Time (d)	Area (px)
0.011493	21086	0.01586806	19759	0.02699074	22934
0.013692	22278	0.0177662	19683	0.02877315	24553
0.225417	36334	0.22773148	33197	0.22833333	34148
0.227512	36973	0.2300463	33321	0.2308912	34740
1.035475	107895	1.02158565	113291	1.01047454	84471
1.037512	110202	1.02362269	115791	1.01251157	84720
2.032593	105167	2.0187037	112384	2.00759259	82002
2.035069	104788	2.02118056	111906	2.01006944	79910
2.910428	103571	2.89653935	119053	2.88542824	80793
2.912407	104028	2.89851852	113431	2.88740741	80503
7.093634	86480	7.07974537	98786	7.06863426	65515
7.095995	88091	7.08210648	102514	7.07099537	65542
14.888090	34810	14.8742014	32588	14.8630903	30464
14.890556	36009	14.8766667	36399	14.8655556	30954
28.838588	23023	28.8246991	24098	28.813588	23183
28.841157	23052	28.8272685	24255	28.8161574	22170
56.961609	15460	56.9477199	15560	56.9366088	14291
56.963611	15627	56.9497222	15770	56.9386111	14743
70.226042	8735	70.2121528	8458	70.2010417	9033
70.238461	8525	70.2245718	9109	70.2134606	9070
85.996516	5326	85.9715162	7445	85.9663542	8400
85.982627	7292	85.9774653	9457	85.9687616	8629
85.991354	8483	85.9798727	9480	122.899873	3184
85.993762	8861	122.910984	4153	122.902014	3500
122.924873	3195	122.913125	4104	149.843137	1972
122.927014	3407	149.854248	3231	149.845949	1914
149.868137	2574	149.85706	3200	182.97081	244
149.870949	2568	182.981921	86	182.974109	273
182.995810	61	182.98522	106	Mouse sac	rificed on
182.999109	94	247.951123	6	day	202
Mouse sacr day 2	ificed on 02	247.953171	4		

Table S15. Area of depot of polymer E1 (pixels) in mice M1, M2, and M3 as a function of time.

Mouse M1		Mouse M2		Mouse M3	
Time (d)	Area (px)	Time (d)	Area (px)	Time (d)	Area (px)
0.014248	85746872	0.023438	47450956	0.03496528	94031336
0.016308	90715736	0.025266	53224272	0.03700231	101594424
0.233553	224295040	0.255868	89545808	0.24475694	116376224
0.237211	221386736	0.257917	84671288	0.24680556	113001568
1.078912	66576880	1.066412	89433784	1.05530093	106334560
1.081262	68607304	1.068762	89428480	1.05765046	96833936
2.060162	65122096	2.047662	85086280	2.03655093	97769640
2.062292	67881624	2.049792	86090368	2.03868056	97225376
3.051863	65181180	3.039363	82204560	3.02825231	96996560
3.054572	65996256	3.042072	82188040	3.03096065	93691632
7.079803	62955308	7.067303	76157904	7.05619213	85718328
7.082315	62609716	7.069815	75010088	7.0587037	86282680
15.116968	134638784	15.104468	129166072	15.0933565	197852384
15.119954	136148720	15.107454	121394072	15.0963426	195390480
29.195035	59214444	29.182535	41696132	29.1714236	80526160
29.197188	59814280	29.184688	44500948	29.1735764	85674392
56.193160	25166426	56.180660	21042212	56.1695486	45022580
56.195787	24914136	56.183287	21373730	56.1721759	47373124
70.366667	9485862	70.354167	9283645	70.3430556	24444674
70.370995	9145668	70.358495	10110350	70.3473843	25011100
86.182789	7787146	86.170289	8015856	86.1591782	15740525
86.184942	7985573.5	86.172442	8161466.5	86.161331	16655944
122.196285	3591569	122.183785	3532736.25	122.172674	7394382
122.198391	3650486	122.185891	3685406.25	122.17478	7428091
150.162384	4211164.5	150.149884	4408554.5	150.138773	7468021
150.164688	4231040	150.152188	4435089	150.141076	7369665
184.150914	2643604.5	184.138414	2989652.25	184.127303	4401534
184.153461	2730022	184.140961	3009296.25	184.12985	4590717
Mouse sac	rificed on	247.182743	3069384	247.171632	4306085
day	202	247.185266	3170592.25	247.174155	4399593

 Table S16. Signal of polymer E2 (arbitrary units) in mice M1, M2, and M3 as a function of time.

Mouse M1		Mouse N	Mouse M2		Mouse M3	
Time (d)	Signal	Time (d)	Signal	Time (d)	Signal	
0.014248	18587	0.023438	12176	0.03496528	21179	
0.016308	17720	0.025266	13545	0.03700231	22494	
0.233553	35972	0.255868	24664	0.24475694	28795	
0.237211	34494	0.257917	24437	0.24680556	27192	
1.078912	24504	1.066412	27293	1.05530093	27509	
1.081262	24612	1.068762	29235	1.05765046	27690	
2.060162	22141	2.047662	26749	2.03655093	27688	
2.062292	22419	2.049792	27293	2.03868056	27951	
3.051863	21958	3.039363	24684	3.02825231	27081	
3.054572	21391	3.042072	25440	3.03096065	26024	
7.079803	20236	7.067303	22940	7.05619213	25383	
7.082315	20608	7.069815	24505	7.0587037	25985	
15.116968	45451	15.104468	50284	15.0933565	44809	
15.119954	42850	15.107454	46837	15.0963426	44838	
29.195035	22831	29.182535	23254	29.1714236	29500	
29.197188	22499	29.184688	22632	29.1735764	31735	
56.193160	15237	56.180660	16188	56.1695486	22387	
56.195787	14947	56.183287	16564	56.1721759	22849	
70.366667	9778	70.354167	9861	70.3430556	15940	
70.370995	9252	70.358495	11961	70.3473843	16891	
86.182789	8165	86.170289	9090	86.1591782	12595	
86.184942	8113	86.172442	9129	86.161331	13227	
122.196285	2876	122.183785	2071	122.172674	7558	
122.198391	2894	122.185891	2099	122.17478	7596	
150.162384	2444	150.149884	2051	150.138773	7083	
150.164688	2558	150.152188	2109	150.141076	7052	
184.150914	217	184.138414	679	184.127303	4395	
184.153461	280	184.140961	581	184.12985	4603	
Mouse sacrif	iced on	247.182743	165	247.171632	3696	
day 20	2	247.185266	186	247.174155	3690	

Table S17. Area of depot of polymer E2 (pixels) in mice M1, M2, and M3 as a function of time.

Mouse M1		Mouse M2		Mouse M3	
Time (d)	Signal	Time (d)	Signal	Time (d)	Signal
0.012836	154887312	0.0287037	108204912	0.05402778	125653488
0.015046	161041872	0.03050926	99065472	0.05605324	128814272
0.236042	279881120	0.21969907	456556032	0.21454861	132311896
0.237963	282674464	0.22186343	457324992	0.21667824	133418048
1.058287	229188256	1.00898148	275546688	0.98814815	305203936
1.060428	222781312	1.01112269	283785824	0.99028935	313983584
1.934028	251478208	1.88472222	292941216	1.86388889	329541184
1.936377	252007584	1.88707176	305490752	1.86623843	332254976
2.874641	234527392	2.82533565	307356768	2.80450231	313274080
2.876829	246496880	2.82752315	303854784	2.80668981	330575296
6.907106	225847744	6.85780093	322972160	6.83696759	306682784
6.909606	239675344	6.86030093	315422464	6.83946759	319124512
14.919120	106640712	14.8698148	142372480	14.8489815	160397536
14.921794	108571584	14.8724884	140454416	14.8516551	163068608
28.941736	72051984	28.8924306	88760312	28.8715972	97913776
28.944757	73080744	28.8954514	95740256	28.8746181	104045736
56.025822	20177468	55.9765162	24346508	55.9556829	32669470
56.029977	20624290	55.9806713	26945896	55.959838	31215204
70.203449	8089560.5	70.1541435	10222686	70.1333102	14021357
70.206343	8043254.5	70.157037	10068751	70.1362037	14013940
87.048657	7717418	86.9993519	9669622	86.9785185	12588132
87.051551	7956233	87.0022454	9926090	86.981412	12678964
122.015833	3377739	121.966528	4191970.5	121.945694	5518841
122.018137	3546953	121.968831	4105463	121.947998	5639853
149.986389	4013929	149.937083	4324199.5	149.91625	5295717
149.988553	3868657.5	149.939248	4452572.5	149.918414	5060149
183.973345	2477204.5	183.924039	2619053.25	183.903206	3103979
183.975544	2403427	183.926238	2497420.25	183.905405	3024662
Mouse sac	rificed on	246.964363	2673012.75	246.94353	2820044
day	202	246.966736	2674293.75	246.945903	2801602

Table S18. Signal of polymer P1 (arbitrary units) in mice M1, M2, and M3 as a function of time.

Mouse M1		Mous	e M2	Mouse M3		
Time (d) Area (px)		Time (d)	Area (px)	Time (d)	Area (px)	
0.012836 33001		0.0287037	29802	0.05402778	30537	
0.015046 33814		0.03050926	28614	0.05605324	31256	
0.236042 55447		0.21969907	89576	0.21454861	33509	
0.237963 54178		0.22186343	88394	0.21667824	34371	
1.058287 95713		1.00898148	118664	0.98814815	84112	
1.060428 102888		1.01112269	112544	0.99028935	87542	
1.934028 116166		1.88472222	125396	1.86388889	91508	
1.936377	120024	1.88707176	125418	1.86623843	94016	
2.874641	107495	2.82533565	117667	2.80450231	91365	
2.876829	116111	2.82752315	126101	2.80668981	94134	
6.907106	106528	6.85780093	120682	6.83696759	88482	
6.909606 111629		6.86030093	125123	6.83946759	90682	
14.919120 45010		14.8698148	53007	14.8489815	52000	
14.921794 46265		14.8724884	57117	14.8516551	50815	
28.941736 34296		28.8924306	37080	28.8715972	35563	
28.944757 35406		28.8954514	38632	28.8746181	39915	
56.025822 23269		55.9765162	26198	55.9556829	27103	
56.029977 23282		55.9806713	28077	55.959838	26709	
70.203449 9016		70.1541435	16023	70.1333102	15224	
70.206343	9112	70.157037	14672	70.1362037	15406	
87.048657	7308	86.9993519	12316	86.9785185	13034	
87.051551 7769		87.0022454	12191	86.981412	12377	
122.015833	2042	121.966528	3085	121.945694	5620	
122.018137	2405	121.968831	2765	121.947998	5652	
149.986389	2105	149.937083	2313	149.91625	5067	
149.988553	1877	149.939248	2487	149.918414	4598	
183.973345	21	183.924039	124	183.903206	1515	
183.975544	14	183.926238	50	183.905405	1505	
Mouse sacrif	ficed on day	246.964363	8	246.94353	380	
202		246.966736	9	246.945903	445	

Table S19. Area of depot of polymer P1 (pixels) in mice M1, M2, and M3 as a function of time.

Mouse M1		Mous	e M2	Mouse M3		
Time (d) Area (px)		Time (d)	Area (px)	Time (d)	Area (px)	
0.015718	54501	0.015266	35564	0.01445602	39366	
0.017488	55192	0.017002	38378	0.0162037	41140	
0.228264	52261	0.230995	36413	0.22918981	62368	
0.230139 53669		0.997037	108688	0.23116898	61648	
1.010926 103085		0.999329	125795	0.98175926	85180	
1.013218 113268		2.011065	127918	0.98405093	86875	
2.024954	118307	2.013414	129939	1.99578704	91598	
2.027303	123054	2.928044	121229	1.99813657	97601	
2.941933	118956	2.930139	123391	2.9127662	92423	
2.944028	113727	7.108056	122998	2.91486111	92356	
7.121944	107826	7.112905	117699	7.09277778	82523	
7.126794	111763	14.904560	59488	7.09762731	86213	
14.918449	54274	14.907685	56496	14.8892824	51213	
14.921574	53514	28.851331	37850	14.8924074	49447	
28.865220	35588	28.855197	37633	28.8360532	31997	
28.869086	35498	56.939838	29109	28.839919	32429	
56.953727	26663	56.942627	29636	56.9245602	18311	
56.956516	26909	70.237604	18027	56.9273495	19818	
70.251493 1847		70.240197	17982	70.2223264	10467	
70.254086	3738	85.926921	7381	70.224919	10077	
85.942199	12575	85.936134	17797	85.9208565	7515	
85.950023	5308	85.939190	18140	85.923912	7556	
85.953079	5214	122.939815	5205	122.924537	1841	
85.956088	1016	122.941944	5306	122.926667	1882	
122.953704	3	149.881215	3917	149.865938	793	
122.955833	16	149.884109	3983	149.868831	757	
149.895104	2	183.014711	523	182.999433	277	
149.897998	6	183.017002	541	183.001725	244	
183.028600	9	247.984745	4	247.969468	232	
183.030891	0	247.986771	14	247.971493	293	
247.998634	0					
248.00066	0					

Table S20. Area of depot of polymer P2 (pixels) in mice M1, M2, and M3 as a function of time.

Mous	se M1	Mous	se M2	Mouse M3		
Time (d)	Time (d) Signal		Signal	Time (d)	Signal	
0.015718	182731056	0.015266	222033440	0.01445602	247837232	
0.017488	182161360	0.017002	250553952	0.0162037	252251376	
0.228264	231932272	0.230995	140752112	0.22918981	372584832	
0.230139	233438608	0.997037	336779296	0.23116898	390281312	
1.010926	219447040	0.999329	354007904	0.98175926	277054944	
1.013218	230945264	2.011065	388713664	0.98405093	288075168	
2.024954	224264352	2.013414	392865824	1.99578704	279141600	
2.027303	237709264	2.928044	377100576	1.99813657	293722336	
2.941933	209337056	2.930139	382994560	2.9127662	292883840	
2.944028	221618032	7.108056	370583008	2.91486111	275523488	
7.121944	218936160	7.112905	379360480	7.09277778	259383216	
7.126794	210496480	14.904560	211303552	7.09762731	266491488	
14.918449	110368408	14.907685	207180224	14.8892824	124180472	
14.921574	103478080	28.851331	83511440	14.8924074	122191904	
28.865220	28.865220 40770040		85220440	28.8360532	43586332	
28.869086	28.869086 40270200		35206748	28.839919	45037324	
56.953727	17189172	56.942627	35357748	56.9245602	16478573	
56.956516	17766150	70.237604	12564073	56.9273495	16265671	
70.251493	4388745.5	70.240197	12670079	70.2223264	8342033.5	
70.254086	4885701	85.926921	6374145.5	70.224919	8143282.5	
85.942199	9523845	85.936134	12588164	85.9208565	6207786	
85.950023	6139817	85.939190	12786431	85.923912	6189218.5	
85.953079	6027451.5	122.939815	5542673.5	122.924537	3662393	
85.956088	4199413.5	122.941944	5626556.5	122.926667	3672003.5	
122.953704	3148978.25	149.881215	5052904.5	149.865938	3815709.5	
122.955833	3333047	149.884109	4931006.5	149.868831	3669871.25	
149.895104	3355014.75	183.014711	3272383.5	182.999433	2666931.75	
149.897998	3296004.25	183.017002	3236646	183.001725	2545537.5	
183.028600	2565520.75	247.984745	3141866.25	247.969468	2958416.5	
183.030891	2509487.75	247.986771	3238033.25	247.971493	3089208.25	
247.998634	2853189.75					
248.00066	2896543.75					

 Table S21. Area of depot of polymer P2 (pixels) in mice M1, M2, and M3 as a function of time.

Mou	se M1	Mous	se M2	Mouse M3		
Time (d)	Time (d) Signal		Signal	Time (d)	Signal	
0.021204	70673272	0.02197917	283337376	0.01547454	54470576	
0.023160	71270424	0.02417824	290718112	0.01768519	52146660	
0.230845	250990432	0.22875	104115808	0.23915509	46086672	
0.232801	0.232801 250163152		97453512	0.2409838	45629548	
1.045174	1.045174 78536712		123167424	1.00003472	11619925	
1.047720	79967232	1.02063657	116126248	1.00258102	11844664	
2.042720	73382144	2.01563657	110531032	1.99758102	9142454	
2.044769	68012648	2.01768519	106823080	1.99962963	8607974	
5.342083	167414752	5.315	286664448	5.29694444	25349484	
5.344514	5.344514 171695296		286676256	5.299375	24623624	
6.083484	6.083484 152731424		259348048	6.03834491	23052426	
6.086042 156788176		6.05895833	260531408	6.04090278	22903890	
15.167164 26948396		15.140081	45813784	15.1220255	5871099.5	
15.170266	15.170266 27082226		46255968	15.1251273	5971087	
29.280613	6551659	29.2535301	11326173	29.2354745	2688971	
29.283438	6809372.5	29.2563542	11593822	29.2382986	2564405.25	
57.314549	2625429.75	57.2874653	3791530.25	57.2694097	1901502.63	
57.317106	2612183.25	57.2900231	3733947	57.2719676	1905894.25	
69.454954	1998970	69.4278704	2380125.75	69.4098148	1881207.25	
69.457512	1949823.25	69.4304282	2370743.5	69.4123727	1751782.5	
85.189363	2128030.5	85.1622801	2449296.75	85.1442245	1968201.75	
85.191597	2107862.5	85.1645139	2421435.25	85.1464583	1869644.88	
121.100891	2127014.25	121.073808	2201486.5	121.055752	2141068.5	
121.107928	2102814	121.080845	2235757	121.062789	2173531.75	
149.266551	2271334.25	149.239468	2404249.25	149.221412	2523788	
183.249641	1860027.63	183.222558	1911268.25	183.204502	1907063.63	
183.252072	1839011.5	183.224988	1915366.38	183.206933	1869627.5	
246.272627	2097062.63	246.245544	2160823.25	Mouse sacrificed on da		
246.274444	2164975.5	246.247361	2182537.75	202		

 Table S22. Signal of Cy7-amine (arbitrary units) in mice M1, M2, and M3 as a function of time.

Mouse M1		Mous	e M2	Mouse M3		
Time (d) Area (px)		Time (d)	Area (px)	Time (d)	Area (px)	
0.021204	23262	0.02197917	42521	0.01547454	17312	
0.023160	27387	0.02417824	43265	0.01768519	17649	
0.230845 37918		0.22875	24964	0.23915509	18295	
0.232801 38691		0.23070602	24946	0.2409838	18506	
1.045174 30763		1.01809028	29751	1.00003472	8019	
1.047720 30183		1.02063657	29626	1.00258102	7980	
2.042720	29685	2.01563657	27639	1.99758102	6376	
2.044769	29593	2.01768519	27268	1.99962963	6121	
5.342083	58033	5.315	65657	5.29694444	18866	
5.344514	58838	5.31743056	67382	5.299375	18081	
6.083484	54428	6.05640046	59868	6.03834491	15890	
6.086042	54337	6.05895833	61511	6.04090278	15688	
15.167164	21840	15.140081	20619	15.1220255	3228	
15.170266	22148	15.1431829	20274	15.1251273	3233	
29.280613	7624	29.2535301	10313	29.2354745	466	
29.283438 7865		29.2563542	10269	29.2382986	307	
57.314549	57.314549 371		4108	57.2694097	494	
57.317106	413	57.2900231	4042	57.2719676	527	
69.454954	0	69.4278704	878	69.4098148	470	
69.457512	2	69.4304282	960	69.4123727	320	
85.189363	1	85.1622801	270	85.1442245	328	
85.191597	4	85.1645139	290	85.1464583	231	
121.100891	0	121.073808	1	121.055752	151	
121.107928	0	121.080845	0	121.062789	172	
149.266551	0	149.239468	1	149.221412	581	
183.249641	0	183.222558	2	183.204502	262	
183.252072	3	183.224988	1	183.206933	254	
246.272627	0	246.245544	4	Mouse sacrif	acrificed on day	
246.274444	1	246.247361	1	20	2	

Table S23. Area of depot of Cy7-amine (pixels) in mice M1, M2, and M3 as a function of time.

S13. Polymer pharmacokinetics - fitting curves

Figure S70. Signal of F1 (arbitrary units) in mice M1, M2, and M3 as a function of time. Both outlier points and points in Phase 1 and Phase 3 are marked in red.

Figure S71. Area of depot of F1 (pixels) in mice M1, M2, and M3 as a function of time. Both outlier points and points in Phase 1 and Phase 3 are marked in red.

Figure S72. Signal of F2 (arbitrary units) in mice M1, M2, and M3 as a function of time. Both outlier points and points in Phase 1 and Phase 3 are marked in red.

Figure S73. Area of depot of F2 (pixels) in mice M1, M2, and M3 as a function of time. Both outlier points and points in Phase 1 and Phase 3 are marked in red.

Figure S74. Signal of I1 (arbitrary units) in mice M1, M2, and M3 as a function of time. Both outlier points and points in Phase 1 and Phase 3 are marked in red.

Figure S75. Area of depot of I1 (pixels) in mice M1, M2, and M3 as a function of time. Both outlier points and points in Phase 1 and Phase 3 are marked in red.

Figure S76. Signal of I2 (arbitrary units) in mice M1, M2, and M3 as a function of time. Both outlier points and points in Phase 1 and Phase 3 are marked in red.

Figure S77. Area of depot of I2 (pixels) in mice M1, M2, and M3 as a function of time. Both outlier points and points in Phase 1 and Phase 3 are marked in red.

Figure S78. Signal of E1 (arbitrary units) in mice M1, M2, and M3 as a function of time. Both outlier points and points in Phase 1 and Phase 3 are marked in red.

Figure S79. Area of depot of E1 (pixels) in mice M1, M2, and M3 as a function of time. Both outlier points and points in Phase 1 and Phase 3 are marked in red.

Figure S80. Signal of E2 (arbitrary units) in mice M1, M2, and M3 as a function of time. Both outlier points and points in Phase 1 and Phase 3 are marked in red.

Figure S81. Area of depot of E2 (pixels) in mice M1, M2, and M3 as a function of time. Both outlier points and points in Phase 1 and Phase 3 are marked in red.

Figure S82. Signal of P1 (arbitrary units) in mice M1, M2, and M3 as a function of time. Both outlier points and points in Phase 1 and Phase 3 are marked in red.

Figure S83. Area of depot of P1 (pixels) in mice M1, M2, and M3 as a function of time. Both outlier points and points in Phase 1 and Phase 3 are marked in red.

Figure S84. Signal of P2 (arbitrary units) in mice M1, M2, and M3 as a function of time. Both outlier points and points in Phase 1 and Phase 3 are marked in red.

Figure S85. Area of depot of P2 (pixels) in mice M1, M2, and M3 as a function of time. Both outlier points and points in Phase 1 and Phase 3 are marked in red.

Figure S86. Signal of Cy7-amine (arbitrary units) in mice M1, M2, and M3 as a function of time. Both outlier points and points in Phase 1 and Phase 3 are marked in red.

Figure S87. Area of depot of Cy7-amine (pixels) in mice M1, M2, and M3 as a function of time. Both outlier points and points in Phase 1 and Phase 3 are marked in red.

S14. Polymer pharmacokinetics - results

Table S24. Calculated parameters of polymer release: time of maximum signal (T_{max}), biological halflives ($T_{1/2}$), and fitting R²; all parameters were calculated both from signal and depot size as a function of time.

Polymer; mouse		Total signal (I)			Depot area (S)			
		T _{max}	$T_{1/2, I}$	D ²	T _{max}	$T_{1/2, S}$	R ²	
		(d)	(d)	K-	(d)	(d)		
		M1	≈ 1	179 ± 26	0.670	2 ± 1	180 ± 26	0.737
	F1	M2	≈ 1	158 ± 27	0.658	2 ± 1	157 ± 27	0.684
-DEE A	_	M3	≈ 1	128 ± 12	0.907	2 ± 1	128 ± 12	0.875
PDFEA		M1	2 ± 1	149 ± 13	0.902	2 ± 1	151 ± 13	0.859
	F2	M2	2 ± 1	139 ± 21	0.793	2 ± 1	177 ± 26	0.710
		M3	2 ± 1	149 ± 11	0.931	2 ± 1	124 ± 7	0.941
		M1	2 ± 1	42 ± 2	0.955	2 ± 1	78 ± 4	0.956
	I1	M2	2 ± 1	59 ± 5	0.840	2 ± 1	127 ± 12	0.834
»NIDAM	_	M3	2 ± 1	54 ± 3	0.935	2 ± 1	87 ± 5	0.935
		M1	2 ± 1	53 ± 2	0.982	2 ± 1	104 ± 6	0.927
	I2	M2	2 ± 1	69 ± 3	0.957	2 ± 1	96 ± 6	0.918
		M3	2 ± 1	59 ± 4	0.895	2 ± 1	108 ± 4	0.961
		M1	2 ± 1	14 ± 1	0.964	2 ± 1	27 ± 2	0.929
	E1	M2	2 ± 1	15 ± 1	0.969	2 ± 1	29 ± 2	0.903
»DE A		M3	2 ± 1	14 ± 1	0.966	2 ± 1	28 ± 1	0.961
PDEA		M1	2 ± 1	20 ± 1	0.961	2 ± 1	26 ± 2	0.932
	E2	M2	2 ± 1	22 ± 2	0.939	2 ± 1	29 ± 1	0.963
		M3	2 ± 1	23 ± 1	0.972	2 ± 1	50 ± 3	0.983
		M1	2 ± 1	13 ± 1	0.970	2 ± 1	24 ± 1	0.966
	P1	M2	2 ± 1	14 ± 1	0.957	2 ± 1	26 ± 1	0.973
n A D		M3	2 ± 1	21 ± 1	0.954	2 ± 1	32 ± 1	0.990
pAI		M1	2 ± 1	14 ± 1	0.956	2 ± 1	30 ± 4	0.860
	P2	M2	2 ± 1	15 ± 1	0.975	2 ± 1	27 ± 2	0.940
		M3	2 ± 1	14 ± 1	0.973	2 ± 1	22 ± 1	0.991
		M1	< 0.5	6.8 ± 0.3	0.968	< 0.5	9 ± 1	0.894
Cy7		M2	< 0.5	5.4 ± 0.3	0.943	< 0.5	11 ± 1	0.969
		M3	< 0.5	4.0 ± 0.5	0.822	< 0.5	6 ± 1	0.822
S15. Staining protocols in histological examination.

Table S25. The report detailed description of haematoxylin & eosin staining protocol. Asterisk (*) indicates that a solution from staining kit (H&E FastStaining KitArt. No. 9194) was used without.

На	ematoxylin & Eosin Staining	Protocol
ston	compound/procedure	approximate
step	(concentration %)	time
1	Xylene (100%)	5 min
2	Xylene (100%)	5 min
3	Ethanol (100%)	2 min
4	Ethanol (100%)	2 min
5	Ethanol (95%)	2 min
6	Distilled water wash	2 min
7	Haematoxylin (< 0.5%)*	3 min
8	Distilled water wash	30 s
9	Hydrochloric acid in ethanol (0.5%)	2 s
10	Running water washing	1 min
11	Ethanol (95%)	1 min
12	Eosin (1%)*	90 s
13	Ethanol (95%)	1 min
14	Ethanol (95%)	1 min
15	Ethanol (100%)	1 min
16	Acetone (100%)	5 min
17	Xylene (100%)	5 min
18	Xylene (100%)	5 min
19	Mounting: Canada balsam	-

Haematoxylin & Eosin Staining Protocol

Table S26. The report detailed description of haematoxylin & eosin staining protocol. Asterisk (*) indicates that a solution from staining kit (Van Gieson Trichrome Staining Kit 9193.1) was used without.

Van Gieson Trichrome Staining Protocol						
sten	compound/procedure	approximate				
sicp	(concentration %)	time				
1	Xylene (100%)	5 min				
2	Xylene (100%)	5 min				
3	Ethanol (100%)	2 min				
4	Ethanol (96%)	2 min				
5	Ethanol (80%)	2 min				
6	Ethanol (70%)	2 min				
7	Solution A+B (1:1)*	5 min				
8	Destilled water wash	2 min				
9	Hydrochloric acid in ethanol (0.5%)	2 s				
10	Running water washing	10 min				
11	Van Gieson solution*	2 min				
12	Ethanol (70%)	2 s				
13	Ethanol (80%)	2 s				
14	Ethanol (96%)	2 s				
15	Ethanol (95%)	2 s				
16	Ethanol (100%)	2 s				
17	Xylene (100%)	5 min				
18	Xylene (100%)	5 min				
19	Mounting: Canada balsam	-				

S16. Histopathological findings

Table S27. List of all findings from autopsy and subsequent histopathological examination.

Polymer	Autopsy finding (macroscopic)	Spleen	Liver	Kidney	Injected muscle	Control muscle
F1	Liver: size normal; darker than in DMSO	No sign of chronic congestion, fibrosis, or hemosiderin accumulation; well developed white	No sign of steatosis, fibrosis, or ischemia; no sign of pathologic	No sign of fibrosis or any other pathologic change;	No sign of fibrosis or chronic inflammation. Cells are basophilic, cytoplasm is slightly	No sign of fibrosis or chronic inflammation. Cells are basophilic, cytoplasm is slightly
	Kidney : Larger than in F2 or DMSO, colour normal					
	Spleen: normal size and colour					
	Lungs: normal size and colour					
	Heart: normal size and colour					
	colour	and red pulp, no	Kupffer cell	mild	granular; presence of	granular; presence
	Muscles: normal size and colour	foreign material	mild autolysis	autorysis	mast cens.	of mast cens.
	Liver: Smaller than F1 or DMSO, colour normal	No sign of chronic	No sign of			
F2	Kidney : Larger than in DMSO, colour normal	congestion,	steatosis, fibrosis, or ischemia; no sign of pathologic	No sign of fibrosis or any other pathologic change;	No sign of fibrosis or chronic inflammation. Cells are basophilic, cytoplasm is slightly	No sign of fibrosis or chronic inflammation. Cells are basophilic, cytoplasm is slightly
	Spleen: normal size and colour	fibrosis, or hemosiderin accumulation; well developed white				
	Lungs: normal size and colour					
	Heart: normal size and colour					
	Pancreas: darker than in F1 or DMSO.	and red pulp, no	Kupffer cell	mild	granular; presence of	granular; presence
	Muscle: normal colour	sign of presence of foreign material	mild autolysis	autolysis	mast cells.	of mast cells.
	Liver: Larger than DMSO, colour normal. Small	6	5			
	haemorrhage in the capsule	No sign of chronic	No sign of			
	Kidney : larger and lighter than P2 and DMSO, one	congestion,	steatosis,	No sign of	No sign of fibrosis or	No sign of fibrosis
	Spleen: normal size and colour	hemosiderin accumulation; well developed white and red pulp, no sign of presence of foreign material	ischemia; no sign of pathologic Kupffer cell proliferation; mild autolysis	any other pathologic change; mild autolysis	inflammation. Cells are basophilic, cytoplasm is slightly granular; presence of mast cells.	inflammation. Cells are basophilic, cytoplasm is slightly granular; presence of mast cells.
P1	Lungs: small fibrotic fusions with pleura					
	Heart: Larger than in P2 and DMSO, one					
	haemorrhage					
	Pancreas: smaller than in DMSO.					
	Muscle: normal colour					
Р2	Liver: smaller than in P1 and DMSO, lighter than in	No sign of chronic	No sign of	No sign of	No sign of fibrosis or	No sign of fibrosis
	DMSO; capsule enlargement in one lobe.	congestion, fibrosis, or	steatosis, fibrosis, or	fibrosis or any other	chronic inflammation. Cells	or chronic inflammation. Cells
	Kidneys: Normal size and colour; visible vein					
	Spleen: normal size and colour	nemosiderin	ischemia; no	painologic	are basopnilic,	are basopnilic,

Supplementary Information of Master Thesis, Ondřej Groborz, 2021

	Lungs: normal size and colour Heart: normal size and colour Pankreas: N/A Muscle: normal colour	accumulation; well developed white and red pulp, no sign of presence of foreign material	sign of pathologic Kupffer cell proliferation; mild autolysis	change; mild autolysis	cytoplasm is slightly granular; presence of mast cells.	cytoplasm is slightly granular; presence of mast cells.
E1	 Liver: Larger than DMSO, colour uneven, local capsule enlargement. Kidneys: Normal size, lighter than in E2 and DMSO. Spleen: normal size and colour Lungs: normal size and colour Heart: normal size and colour Pancreas: smaller than in DMSO Muscle: normal colour 	No sign of chronic congestion, fibrosis, or hemosiderin accumulation; well developed white and red pulp, no sign of presence of foreign material	No sign of steatosis, fibrosis, or ischemia; no sign of pathologic Kupffer cell proliferation; mild autolysis	No sign of fibrosis or any other pathologic change; mild autolysis	No sign of fibrosis or chronic inflammation. Cells are basophilic, cytoplasm is slightly granular; presence of mast cells.	No sign of fibrosis or chronic inflammation. Cells are basophilic, cytoplasm is slightly granular; presence of mast cells.
E2	 Liver: same as in E1, colour normal. Dark stripe on one lobe Kidneys: Normal size and colour, accumulation of adipose tissue around the capsule. Spleen: Normal size and colour, accumulation of adipose tissue around the capsule. Lungs: normal size and colour Heart: normal size and colour Pancreas: normal colour, smaller than DMSO Muscle: normal colour 	No sign of chronic congestion, fibrosis, or hemosiderin accumulation; well developed white and red pulp, no sign of presence of foreign material	No sign of steatosis, fibrosis, or ischemia; no sign of pathologic Kupffer cell proliferation; mild autolysis	No sign of fibrosis or any other pathologic change; mild autolysis	No sign of fibrosis or chronic inflammation. Cells are basophilic, cytoplasm is slightly granular; presence of mast cells.	No sign of fibrosis or chronic inflammation. Cells are basophilic, cytoplasm is slightly granular; presence of mast cells.
I1	 Liver: Smaller and lighter than in DMSO. Light stripe on one lobe. Kidney: larger than in I2 or DMSO, normal colour. Spleen: normal size and colour, accumulation of adipose tissue around the capsule. Lungs: normal size and colour Heart: normal size and colour Pancreas: normal size and colour Muscle: normal colour 	No sign of chronic congestion, fibrosis, or hemosiderin accumulation; well developed white and red pulp, no sign of presence of foreign material	No sign of steatosis, fibrosis, or ischemia; no sign of pathologic Kupffer cell proliferation; mild autolysis	No sign of fibrosis or any other pathologic change; mild autolysis	No sign of fibrosis or chronic inflammation. Cells are basophilic, cytoplasm is slightly granular; presence of mast cells.	No sign of fibrosis or chronic inflammation. Cells are basophilic, cytoplasm is slightly granular; presence of mast cells.
	Liver: smaller than in I1 and DMSO, normal colour.					

Supplementary Information of Master Thesis, Ondřej Groborz, 2021

I2	 Kidneys: Larger than in DMSO, normal colour; large haemorrhage in capsule. Spleen: normal size and colour; adipose tissue accumulation around the capsule. Lungs: normal size and colour Heart: normal size and colour Pancreas: normal size and colour Muscle: normal colour 	No sign of chronic congestion, fibrosis, or hemosiderin accumulation; well developed white and red pulp, no sign of presence of foreign material	No sign of steatosis, fibrosis, or ischemia; no sign of pathologic Kupffer cell proliferation; mild autolysis	No sign of fibrosis or any other pathologic change; mild autolysis	No sign of fibrosis or chronic inflammation. Cells are basophilic, cytoplasm is slightly granular; presence of mast cells.	No sign of fibrosis or chronic inflammation. Cells are basophilic, cytoplasm is slightly granular; presence of mast cells.
Saline	 Liver: Normal size and colour Kidney: Normal colour, larger size than in DMSO. Spleen: Larger than in DMSO. Lungs: two small haemorrhages. Heart: Normal size, lighter than in Cy7 or DMSO Pankreas: smaller than in DMSO. Muscle: normal colour 	No sign of chronic congestion, fibrosis, or hemosiderin accumulation; well developed white and red pulp, no sign of presence of foreign material	No sign of steatosis, fibrosis, or ischemia; no sign of pathologic Kupffer cell proliferation; mild autolysis	No sign of fibrosis or any other pathologic change; mild autolysis	No sign of fibrosis or chronic inflammation. Cells are basophilic, cytoplasm is slightly granular; presence of mast cells.	No sign of fibrosis or chronic inflammation. Cells are basophilic, cytoplasm is slightly granular; presence of mast cells.
Cy7	Liver: normal size, lighter than in DMSO Kidney: normal size and colour Spleen: larger than in DMSO, less fat. Lungs: small haemorrhage. Small fibrotic granule Heart: normal size and colour Pancreas: normal size and colour Muscle: normal colour	No sign of chronic congestion, fibrosis, or hemosiderin accumulation; well developed white and red pulp, no sign of presence of foreign material	No sign of steatosis, fibrosis, or ischemia; no sign of pathologic Kupffer cell proliferation; mild autolysis	No sign of fibrosis or any other pathologic change; mild autolysis	No sign of fibrosis or chronic inflammation. Cells are basophilic, cytoplasm is slightly granular; presence of mast cells.	No sign of fibrosis or chronic inflammation. Cells are basophilic, cytoplasm is slightly granular; presence of mast cells.
DMSO	Liver: used as reference for the rest of the samples Kidney: used as reference for the rest of the samples Spleen: used as reference for the rest of the samples Lungs: used as reference for the rest of the samples Heart: used as reference for the rest of the samples Pancreas: used as reference for the rest of the samples Muscles: used as reference for the rest of the samples	No sign of chronic congestion, fibrosis, or hemosiderin accumulation; well developed white and red pulp, no sign of presence of foreign material	No sign of steatosis, fibrosis, or ischemia; no sign of pathologic Kupffer cell proliferation; mild autolysis	No sign of fibrosis or any other pathologic change; mild autolysis	No sign of fibrosis or chronic inflammation. Cells are basophilic, cytoplasm is slightly granular; presence of mast cells.	No sign of fibrosis or chronic inflammation. Cells are basophilic, cytoplasm is slightly granular; presence of mast cells.

*Colour changes of liver, kidney, spleen, and heart were probably caused by anaesthesia and autopsy (redistribution of blood in organs). Haemorrhages were probably *post-mortem* changes. The signs of mild autolysis of the specimen; autolysis of liver was probably caused during processing.

S17. Observations of mice behaviour after the polymer administration

One hour after the administration, most mice exhibited at least some level of agitation, discomfort to pain in the left hind leg after the administration. By the day 2, the mice exhibited no agitation or fear of researchers, but 36 % (13/36) exhibited at least some decrease of strength in the administered leg and/or pain; 31 % (4/13) of them exhibited a complete paralysis and limping, possibly caused by the nerve injury during the administration.* By the day 8, the 25 % (9/36) of all mice exhibited some level of hind leg/foot weakness; the paralysed mice exhibited a significant recovery process, all mice were able to use both their hind legs and more rather well. By the day 11, 3 % (1/36) exhibited any limping and inability to grab by their hind feet. By the day 16, this mouse began to use their hind leg normally (**Figure 16**).

Figure S88. Percentage of mice with normal walk as a function of time.

*Nerve injury during intramuscular administration cannot be avoided even when using smallest possible needles. Despite popular belief, aspiration during the intramuscular administration does not improve the safety of the intramuscular administration, therefore, we avoided it.^{S11}

S18. Co-authors contributions

Babuka, David (D.B.) - Investigation, Methodology, Data curation, Software

Beneš, Hynek (H.B.) - Investigation, Methodology, Data curation

Černoch, Peter (P.Č.) - Investigation

Dalecká, Linda (L.D.) - Investigation, Methodology

Groborz, Ondřej (O.G.) - Conceptualization, Supervision, Methodology, Data curation,

Investigation, Formal analysis, Visualization, Project administration, Writing – original draft, Writing – review & editing, Funding acquisition, Resources, Software

Hoogenboom, Richard (R.H.) - Validation, Methodology, Writing – review & editing, Resources, Funding acquisition, Supervision

Hovořáková, Mária (M.Ho.) - Investigation, Methodology, Data curation

Hrubý, Martin (M.Hr.) - Resources, Validation, Funding acquisition, Writing – review & editing, Supervision

Kadlec, Jan (J.K.) - Methodology, Data curation, Investigation, Formal analysis, Visualization, Software

Keša, Peter (P.K.) - Investigation, Methodology, Data curation, Validation, Formal analysis, Writing – review & editing

Kolouchová, Kristýna (K.K.) - Investigation, Methodology, Data curation, Writing – original draft, Writing – review & editing, Visualization, Project administration

Krunclová, Tereza (T.Kr.) - Investigation, Methodology, Data curation, Validation, Visualization, Formal analysis, Writing – review & editing

Kučera, Tomáš (T.Ku.) - Resources, Funding acquisition

Lobaz, Volodymyr (V.L.) - Investigation, Methodology, Validation, Formal analysis, Writing – original draft, Data curation

Loukotová, Lenka (LL) - Validation, Writing – review & editing

Pankrác, Jan (J.P.) - Investigation, Methodology, Data curation, Validation, Formal analysis, Writing – review & editing

Pierzynová, Aneta (A.P.) - Investigation, Methodology, Data curation, Writing – review & editing Rosa, Victor R. de la (V.R.R.) - Investigation, Methodology, Writing – review & editing

Šefc, Luděk (L.Š.) - Resources, Funding acquisition

Šrámek, Jaromír (J.Š.) - Investigation, Methodology, Data curation

Štěpánek, Petr (P.Št.) - Validation, Methodology, Writing – review & editing

Švec, Pavel (P.Šv.) - Validation, Data curation, Methodology, Writing – review & editing

O.G. conceived the presented ideas, K.K. synthesized the monomers, K.K., O.G. synthesized, modified, purified, and characterized the polymers (SEC, NMR). K.K. and V.R.R. measured and evaluated T_{CP} as a function of polymer temperature. V.L., and H.B. measured and evaluated calorimetry data. D.B. collected and evaluated DLS. J.P. and P.K. performed the *in vivo* biological experiments, injected the polymer into mice, performed the long-term photoacoustic imaging and evaluated corresponding data. J.K. derived the pharmacological models and the data curation. T.Kr. assessed and evaluated *in vitro* cytotoxicity on cell lines. P.Č. measured study polymers' dn/dc. A.P., J.Š., M.Ho., L.D., and T.Ku have assessed and evaluated the histological examinations. K.K., O.G., V.L., R.H., P.Št., M.Hr., D.B., H.B., and P.Šv. were involved in methodology design. K.K., O.G., V.L., R.H., P.Št., M.H., D.B., H.B., and P.Šv evaluated the measured data; O.G., K.K., and R.H. have proposed the study strategies, validated data, and formulated the conclusions of the study. M.Hr., R.H., O.G., T.Kr., T.Ku., and P.Št. and have secured the resources for this study, M.Hr., O.G. and R.H. have secured its funding. O.G. supervised the project, K.K. and O.G. controlled the project management and administration. O.G. and K.K wrote major parts of the manuscript, R.H., V.R.R., P.Šv, M.Hr., J.P., P.K., P.Št., and L.L. wrote and/ or reviewed parts of the manuscript.

S19. Additional references

- (S1) Wiseman, T.; Williston, S.; Brandts, J. F.; Lin, L.-N. Rapid Measurement of Binding Constants and Heats of Binding Using a New Titration Calorimeter. *Anal. Biochem.* 1989, 179 (1), 131– 137. https://doi.org/10.1016/0003-2697(89)90213-3.
- (S2) Zhao, C.; Ma, Z.; Zhu, X. X. Rational Design of Thermoresponsive Polymers in Aqueous Solutions: A Thermodynamics Map. *Prog. Polym. Sci.* 2019, 90, 269–291. https://doi.org/10.1016/j.progpolymsci.2019.01.001.
- (S3) Bloksma, M. M.; Bakker, D. J.; Weber, C.; Hoogenboom, R.; Schubert, U. S. The Effect of Hofmeister Salts on the LCST Transition of Poly(2-Oxazoline)s with Varying Hydrophilicity. *Macromol. Rapid Commun.* 2010, 31 (8), 724–728. https://doi.org/10.1002/marc.200900843.
- S(4) Zafrani, Y.; Yeffet, D.; Sod-Moriah, G.; Berliner, A.; Amir, D.; Marciano, D.; Gershonov, E.;
 Saphier, S. Difluoromethyl Bioisostere: Examining the "Lipophilic Hydrogen Bond Donor" Concept. J. Med. Chem. 2017, 60 (2), 797–804. https://doi.org/10.1021/acs.jmedchem.6b01691.
- (S5) Horvath, A. L. Halogenated Hydrocarbons: Solubility-Miscibility with Water; CRC Press, 1982.
- (S6) Yalkowsky, S. H. Handbook of Aqueous Solubility Data, 2nd ed.; CRC Press, 2003.
- (S7) Izunobi, J. U.; Higginbotham, C. L. Polymer Molecular Weight Analysis by ¹H NMR Spectroscopy. J. Chem. Educ. 2011, 88 (8), 1098–1104. https://doi.org/10.1021/ed100461v.
- (S8) Qiu, X.-P.; Winnik, F. M. Facile and Efficient One-Pot Transformation of RAFT Polymer End Groups via a Mild Aminolysis/Michael Addition Sequence. *Macromol. Rapid Commun.* 2006, 27 (19), 1648–1653. https://doi.org/10.1002/marc.200600436.
- (S9) Zhou, C.; Hillmyer, M. A.; Lodge, T. P. Micellization and Micellar Aggregation of Poly(Ethylene-Alt-Propylene)-b-Poly(Ethylene Oxide)-b-Poly(N-Isopropylacrylamide) Triblock Terpolymers in Water. Macromolecules 2011, 44 (6), 1635–1641. https://doi.org/10.1021/ma102786q.
- (S10) Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. J. Org. Chem. 1997, 62 (21), 7512–7515. https://doi.org/10.1021/jo971176v.
- (S11) Sisson, H. Aspirating during the Intramuscular Injection Procedure: A Systematic Literature Review. J. Clin. Nurs. 2015, 24 (17–18), 2368–2375. https://doi.org/10.1111/jocn.12824.