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plexes.

Next, we study the computational complexity of the PL geometric category of
2-dimensional polyhedra introduced by Borghini which is a combinatorial notion
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whether the PL geometric category of a 2-dimensional polyhedron is equal 1, we
show that it is NP-hard to decide whether this category is at most 2.

Finally, we show that computing the rank of higher homotopy groups of a
simply connected topological space is #W[2]-hard using a problem called VEST,
given by Anick, as an intermediate problem. We also establish results for the
decision version of VEST and for its variants as self-contained problems. For
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Introduction
An abstract simplicial complex is a structure for describing various topological
spaces in an elegant way. From the set theoretical viewpoint, it is just a family of
sets closed under taking subsets. Its geometric realization then forms a Hausdorff
topological space and two geometric realizations of the same abstract simplicial
complex are always homeomorphic.

Simplicial complexes were inspired by algebraic topology.1 However, they are
also used in another fields of mathematics, such as combinatorics. On the one
hand, there are combinatorial problems which where solved using topology. (See,
e.g., [Mat03].) On the other hand, establishing the notion of simplicial complexes,
which can also be viewed as a generalization of graphs, led to new notions of sev-
eral interesting combinatorial properties for simplicial complexes. Some of them
can be viewed as “discrete”, or “combinatorial”, versions of important topological
properties. For instance, collapsibility of simplicial complexes can be viewed as a
discrete version of contractibility of topological spaces. Moreover, if a simplicial
complex is collapsible, then its geometric representation is contractible.

Decomposition properties of simplicial complexes

Many combinatorial properties of simplicial complexes, especially decomposition
properties and their relations, have been widely studied since 1980s. For the
purpose of this thesis the following properties (to be defined later2) are most
important:

• collapsibility,

• vertex-decomposability,

• shellability.

All these three properties are related: Vertex-decomposability implies shellabil-
ity and complexes which are shellable and their geometric realizations are con-
tractible are always collapsible. It is also interesting to ask when collapsibility
implies shellability. This question was studied by Hachimori [Hac08] who showed
that if a 2-dimensional simplicial complex becomes collapsible after removing a
certain number of facets and the link of each its vertex is connected then such
complex has a shellable subdivision.

In Chapter 2, we generalize his result in two ways: We show that the condition
implies not only shellability but more general vertex-decomposability and we also
prove that this holds in arbitrary dimension.

This chapter is essentially the content of the article [MST21] which is a joint
work with Thomas Magnard and Martin Tancer.

1They are a special case of more general CW complexes.
2Shellability and collapsibility are defined in Chapter 1, vertex-decomposability in Chapter 2.
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Computational problems
Note that an abstract simplicial complex is also a convenient way how to represent
topological spaces on computers. Therefore, one can ask how hard is to decide, or
whether it is possible to decide if a topological space represented by a simplicial
complex satisfies a given (not only combinatorial) property. For instance, one
can ask how hard it is to decide if a simplicial complex satisfies the properties
mentioned in the previous paragraph: collapsibility, vertex-decomposability and
shellability.

Their complexity was studied recently. Collapsibility was shown to be NP-
complete by Tancer [Tan16] even for 3-dimensional complexes (it was previously
known that the problem is polynomial for 2-dimensional complexes). Vertex-
decomposability and shellability were also shown to be NP-complete even for 2-
dimensional complexes by Goaoc, Paták, Patáková, Tancer and Wagner [GPP+19].
Let us point out that for this purpose, they used the result of Hachimori [Hac08]
which was mentioned in the previous paragraph.

PL geometric category in dimension 2 In Chapter 3, we study compu-
tational complexity of another but related property, the PL geometric category
of 2-dimensional polyhedra introduced by Borghini [Bor20]. It can be viewed
as a discrete approximation and a natural upper bound of the famous Lus-
ternik–Schnirelmann category, LS for short. We point out that a 2-dimensional
topological space can have LS category equal to 1, 2 or 3. The same holds for
polyhedra and their PL geometric category. While nothing is basically known
about the actual complexity of determining LS category of 2-dimensional topo-
logical space, deciding whether a 2-dimensional polyhedron has PL geometric
category 1 is in P. We prove that deciding whether a polyhedron represented
by a simplicial complex has PL geometric category 2 is NP-hard. A useful step
towards our proof is that we observe a relation between PL geometeric category 2
and shellability.

This chapter is essentially the content of the article [ST23] which is a joint
work with Martin Tancer.

Computing higher homotopy groups and VEST The last chapter of the
thesis, Chapter 4, is slightly motivated by the problem of computing higher ho-
motopy groups and their rank, respectively.

An important result, implied by undecidability of the word problem for groups
due to Novikov [Nov55] and independently to Boone [Boo59], was undecidability
of computing the first homotopy group of a topological space (represented, e.g.,
by a simplicial complex).

However, for simply connected spaces and their higher homotopy groups the
problem becomes decidable [Bro57]. It was later shown by Anick [Ani89] that the
problem of computing the rank of higher homotopy groups for a simply connected
space is #P-hard. As an intermediate problem whose hardness implies hardness of
the original problem he used a problem called vector evaluated after a sequence
of transformations, VEST for short, which is defined as follows. Let v ∈ Qd

be a rational vector, (T1, T2 . . . Tm) a list of d × d rational matrices, S ∈ Qh×d a
rational matrix not necessarily square and a parameter k. The goal is to compute
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the number of ways one can choose k matrices Ti1 , Ti2 , . . . , Tik
from the list such

that STik
· · · Ti1v = 0 ∈ Qh.

It is also possible to look at the problem of computing the rank of the k-th
homotopy group (for k ≥ 2) from the viewpoint of parameterized complexity.
The parameter is then the degree k. It was shown by Čadek, Krčál, Matoušek,
Vokř́ınek and Wagner [ČKM+14b] that this problem is in XP and Matoušek later
showed #W[1]-hardness by showing #W[1]-hardness of VEST.

In Chapter 4, we show that the problem of VEST is #W[2]-hard which also
implies #W[2]-hardness of the original problem.

Note that the parameterized complexity of VEST is a self-contained problem
which can be also viewed as a generalization of the recently studied k-Sum prob-
lem [ALW14]. Therefore, we also further discuss a decision version of VEST and
its several modifications for which we show W[1]− or W[2]-hardness. In addition,
we show that the decision version of VEST without the parameter k is an unde-
cidable problem, and we give a fixed-parameter tractable algorithm for matrices
of bounded size over finite fields, parameterized by the matrix dimensions and
the order of the field.

This chapter is based on the articles [Sko22] and [BKSS23]. The results from
the former were incorporated to the latter which is a joint work with Cornelius
Brand, Viktoriia Korchemna and Kirill Simonov.
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1. Preliminaries
In this chapter, we briefly recall basic terminology regarding simplicial complexes
and computational complexity up to the level we need in this thesis. However, we
generally assume that the reader is familiar with such notions. Thus, the main
purpose of this chapter is to set up the notation.

1.1 Simplicial complexes and topology
Abstract simplicial complex. An abstract simplicial complex is a finite set
system K such that if σ ∈ K and σ′ ⊆ σ, then σ′ ∈ K. Elements of K are faces;
a k-face is a face of dimension k, that is, a face of size k + 1. Vertices correspond
to 0-faces of K (specifically, a vertex v corresponds to a 0-face {v}); and the set
of vertices is denoted V (K). The dimension of K is the dimension of the largest
face (or −∞, if K is empty). The k-skeleton of a complex K, is a subcomplex
K(k) consisting of faces of dimension at most k. The complex K is pure if all
inclusion-wise maximal faces have the same dimension.

Such structure is essentially a combinatorial description of the following struc-
ture.

Geometric simplicial complex. A geometric simplicial complex is a collec-
tion of (geometric) simplices embedded in some Rm such that two simplices in-
tersect in a face of both of them; and a face of any simplex in the complex
belongs again to the complex. The dimension of a simplex is the number of its
vertices minus one; the dimension of a simplicial complex is the maximum of the
dimensions of simplices appearing in the complex.

Each geometric simplicial complex determines an abstract simplicial complex.
Indeed, faces of an abstract simplicial complex can be viewed as sets of vertices
of simplices of a geometric simplicial complex. The converse also holds. In
other words, each abstract simplicial complex K has a geometric realization as a
geometric simplicial complex:

• Let n be the number of vertices of the abstract simplicial complex.

• Pick an n-simplex. That is, a simplex on n vertices which lives in Rn−1.

• Arbitrarily identify vertices of the simplicial complex with the vertices of
the n-simplex.

• The corresponding geometric complex consists of {conv(σ); σ ∈ K}.

Since these two structures are basically two different descriptions of the same
mathematical object we will usually say just simplicial complex. Let us only
point out that for the purpose of Chapter 2 it is sufficient to speak only about
abstract simplicial complexes. However, in Chapter 3 we also want to work with
polyhedra. Therefore, we will be using geometric simplicial complexes (with a
single exception that the input for any computational problem we consider is
the corresponding abstract simplicial complex). For more details on simplicial
complexes, we refer to textbooks such as [RS82, Mat03].
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Figure 1.1: The barycentric subdivision sd K of a complex K. The notation on
the right picture is simplified so that 12 stands for {1, 2}, etc.

Polyhedron. We work with polyhedra as defined in [RS82]. When we say ‘poly-
hedron’ we always mean a compact polyhedron. Because every compact polyhe-
dron can be triangulated, an equivalent definition is that a polyhedron is the
underlying space |K| := ⋃︁

σ∈K σ of some finite (geometric) simplicial complex K
(a.k.a. the polyhedron of K).

Simplicial mapping. A mapping Ψ: V (K1) → V (K2) between sets of vertices
of simplicial complexes K1, K2 is called simplicial if Ψ(σ) ∈ K2 for each σ ∈ K1.
Such a mapping also induces a continuous mapping between |K1| and |K2|, i.e.
the polyhedrons of K1 and K2, respectively.

Subdivision of simplicial complexes. A geometric simplicial complex K′ is
a subdivision of a complex K if |K′| = |K| and every σ′ ∈ K′ is a subset of some
σ ∈ K. Given a subcomplex L of K, then the subcomplex L′ of K′ corresponding
to L is the complex L′ := {σ′ ∈ K ′ : σ ⊆ |L|}.

An important subdivision of a simplicial complex K is called barycentric sub-
division. It is denoted by sd K and on the level of abstract simplicial complexes
it has the following nice combinatorial description.

sd K := {{σ1, . . . , σn} : σ1, . . . , σn ∈ K, ∅ ≠ σ1 ⊊ σ2 ⊊ · · · ⊊ σn}.

The geometric idea behind the definition of barycentric subdivision is the
following: According to the definition, the vertices of sd K are nonempty faces
of K. Place a vertex of sd K into the barycenter of the face it represents in K
(viewed as a geometric simplicial complex). Then sd K represents a (geometric)
subdivision of K; see Figure 1.1.

Join, star, link of abstract simplicial complexes. A join of two abstract
simplicial complexes K1 and K2 is the complex K1 ∗ K2 := {σ1 ⊔ σ2 : σ1 ∈
K1, σ2 ∈ K2} where ⊔ stands for disjoint union.1 In our inductive arguments, we
will carefully distinguish the empty complex ∅ and the complex {∅} containing a
single face, which is ∅. Note that K ∗ ∅ = ∅, whereas K ∗ {∅} = K.

1We can perform the disjoint union of two sets A and B even if A and B are not disjoint.
The standard model in such case is to take A × {1} ∪ B × {2}.
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Given a face σ of an abstract simplicial complex K, the link of σ in K is
defined as lk(σ, K) := {σ′ \ σ : σ′ ∈ K, σ ⊆ σ′}. The (closed) star of σ in K is
defined as st(σ, K) := {σ′ ∈ K : σ′ ∪ σ ∈ K}.

Note that it is possible to define join, star and link also on the level of geo-
metric simplicial complexes. However, we only need these notions in Chapter 2
where we work only with abstract simplicial complexes.

Collapsibility and PL collapsibility. Let K be a simplicial complex (abstract
or geometric) and σ ∈ K be a face which is contained in only one face τ ∈ K
with σ ⊊ τ . (Necessarily dim τ = dim σ + 1 and τ is a facet K, that is, an
inclusion-wise maximal face of K). In this case, we say that σ is a free face of
K and we also say that a complex K′ arises from K by an elementary collapse if
there are σ and τ as above such that K′ = K\{σ, τ}, we denote this by K ↘ K′.
A complex K is collapsible, if there is a sequence (K1, . . . , Kr) of complexes such
that K1 = K, Kr is a point, and K1 ↘ K2 ↘ · · · ↘ Kr. An important property
of collapsibility is that the elementary collapses preserve the homotopy type, a
fortiori, the homology groups.

A polyhedron P is PL collapsible if some triangulation of P is a collapsible
simplicial complex. Similarly, a simplicial complex K is PL collapsible if |K| is
a PL collapsible polyhedron. Here, we should point out a certain subtlety in the
definition of PL collapsible simplicial complex: If K is PL collapsible, then there
is some triangulation K′ of |K| which is collapsible (in the simplicial sense). This
triangulation K′ need not be a priori a subdivision of K. However, by [Hud69,
Theorem 2.4] we may assume that K′ actually is a subdivision of K.

In general, collapsibility and PL collapsibility of a simplicial complex differ
because PL collapsibility allows an arbitrarily fine subdivision before starting the
collapses. In Chapter 3, we need both and we carefully distinguish these two
notions.

Shellability. Let K be a pure k-dimensional simplicial complex (abstract or
geometric). For its face ϑ, we denote K(ϑ) the inclusion-wise minimal subcomplex
of K containing ϑ.2

A total order ϑ1, . . . , ϑm of facets of K is called a shelling if for every k ∈
{2, . . . , m} the complex K(ϑk) ∩

(︂⋃︁k−1
i=1 K(ϑi)

)︂
is a pure (k − 1)-dimensional com-

plex.
A simplicial complex K is then said to be shellable if it admits a shelling

order. For comparison with collapsibility, we will also use the reverse shelling
order ϑm, . . . , ϑ1.

Homology. In our auxiliary computations in Chapters 2 and 3, we will often
need homology groups, including the exact sequence for pairs, the Mayer-Vietoris
exact sequence and the Lefschetz duality. In general, we refer to the literature
such as [Hat02, Mun84] for details (in case of Lefschetz duality, we will recall its
statement when used).

In all our computations, we work with homology with Z2-coefficients. When
working with simplicial complexes, we use simplicial homology. In particular,

2In other words, K(ϑ) consists of ϑ and all its faces. In the case of an abstract complex,
K(ϑ) is in fact the power set of ϑ.
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when we speak of k-chains, then we can identify a k-chain with a collection of
k-simplices (in its support). (Similarly, a k-cycle is such a collection with trivial
boundary, i.e., each (k − 1)-simplex is in an even number of k-simplices of the
cycle.) In case of polyhedra, we use singular homology. However, we of course
implicitly use that the simplicial and singular homology groups are (naturally)
isomorphic (for a simplicial complex and its polyhedron).

Homotopy groups. The main problem of Chapter 4 is inspired by computa-
tion of homotopy groups of a topological space X, denoted by πk(X), for k ≥ 1.
However, we actually do not need their precise definition as we only deal with an
intermediate problem related to the computation of them.

We briefly mention that the most intuitive of them is the group π1(X), which
is often called the fundamental group of the space X. Intuitively, it is a group
of continuous mappings S1 → X, where S1 is the 1-dimensional sphere, up to
homotopy. The higher homotopy groups (k > 1) are then groups of mappings
from higher dimensional spheres to the topological space up to homotopy. In
general, they carry more information than homology groups.

1.2 Computational complexity

Here, we briefly overview a few notions from computational complexity we need
in this thesis. For more details see, e.g., [AB09, Chapter 2].

A decision problem belongs to the class NP if an affirmative answer to it can
be verified in polynomial time using a certificate of polynomial size. A decision
problem A is NP-hard if for each problem B from the class NP there is a poly-
nomial time reduction from B to A. More precisely, given an instance q of the
problem B one can construct in polynomial time in the size of q an instance p of
the problem A such that the answer to q is yes if and only if the answer to p is
yes.

An important NP-hard problem is the so called 3-satisfiability problem (it also
belongs to NP). An input for the 3-satisfiability problem is a 3-CNF formula ϕ,
that is, a boolean formula in conjunctive normal form where every clause contains
exactly three literals.3 The output is the answer whether the formula is satisfiable,
that is, whether it is possible to assign the variables TRUE or FALSE so that the
formula evaluates to TRUE in this assignment.

It is well known that 3-satisfiability is NP-hard. In order to show that another
problem X is NP-hard, it is sufficient to construct a polynomial time reduction
from 3-satisfiability to X.

Note that if a problem is shown to be NP-hard one should not expect existence
of a polynomial time algorithm solving this problem. (This is equivalent to the
standard conjecture P ̸= NP in theory of computation.)

3A literal is some variable x or its negation ¬x; a clause with 3 literals is a (sub)formula
of form (ℓ1 ∨ ℓ2 ∨ ℓ3) where ℓi are literals. A formula ϕ is in conjunctive normal form if it can
be written as ϕ = c1 ∧ c2 ∧ · · · ∧ cm where cj are clauses. An example of a 3-CNF formula is
(x ∨ ¬y ∨ z) ∧ (¬x ∨ ¬y ∨ t).

10



a

b

c

d

e

fg

a b c d e f g

¬ ¬ ¬ ¬ ¬ ¬ ¬

∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨

∧

Figure 1.2: A boolean circuit solving the problem of existence of an independent
set of size k in the graph on the left. There is an independent set of size k in the
graph if and only if the boolean circuit outputs TRUE for an input consisting of
exactly k true values.

1.3 Parameterized complexity
For the purpose of Chapter 4, we also need basic notions from parameterized
complexity which classifies decision or counting computational problems with
respect to a given parameter(s). For instance, one can ask if there exists an
independent set of size k in a given graph or how many independent sets of size k
(for counting version) are in a given graph, respectively, where k is the parameter.
From this viewpoint, we can divide problems into several groups which form the
W-hierarchy.

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] ⊆ XP

The class FPT consists of decision problems solvable in time f(k)nc, where
f(k) is a computable function of the parameter k, n is the size of input and c is a
constant, while the class XP consists of decision problems solvable in time cnf(k).
The class W[1] consists of all problems which admit a parameterized reduction to
the satisfiability problem of a boolean circuit of constant depth with AND, OR
and NOT gates such that there is at most 1 gate of higher input size than 2 on
each path from the input gate to the final output gate (such number of larger
gates in a circuit is called weft), where the parameter is the number of input gates
set to TRUE. Here, a parameterized reduction from a parameterized problem A
to a parameterized problem B is an algorithm that, given an instance (p, k) of A,
in time f(k)nc produces an equivalent instance (q, k′) of B such that k′ ≤ g(k),
for some computable functions f(·), g(·), and a constant c. See Figure 1.2 for an
example of a reduction showing W[1]-completeness of finding independent set of
size k.

The class W[i] then consists of problems that admit a parameterized reduc-
tion to the satisfiability problem of a boolean circuit of a constant depth and
weft at most i, parameterized by the number of input gates set to TRUE. Fi-
nally, the class W[P] can be defined as a class of problems that can be solved by
a non-deterministic Turing machine that can make at most O(g(k) log n) non-
deterministic choices and that works in time f(k)nc where f(·) is a computable
function and c is a constant.

11



It is only known that FPT ⊊ XP, while the other inclusions in the W-hierarchy
are not known to be strict. However, it is strongly believed that FPT ⊊ W[1].
Therefore, one should not expect existence of an algorithm solving a W[1]-hard
problem in time f(k)nc where f(k) is a computable function of k and c is a con-
stant. For the detailed presentation of W-hierarchy and parameterized complexity
in general we refer the reader to [FG04a].

Analogously, one can define classes FPT and XP for counting problems. That
is, a class of counting problems solvable in time f(k)nc or cnf(k), respectively.
Problems for which there is a parameterized counting reduction to a problem
of counting solutions for a boolean circuit of constant depth and weft at most
i then form the class #W[i]. Note that there are decision problems from FPT
whose counting versions are in #W[1], e.g., counting paths or cycles of length k
parameterized by k [FG04b]. Similarly to the decision case, if a counting problem
is shown to be #W[i]-hard for some i, one should not expect existence of an
algorithm solving this problem in time f(k)nc. For more details on parameterized
counting we refer the reader to [FG04b].
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2. Shellings and sheddings
induced by collapses

2.1 Introduction
Shellability and collapsibility are two widely used approaches for combinatorial
decomposition of a simplicial complex. They are similar in spirit, yet there are
important differences among those two notions. There are shellable complexes
homotopy equivalent to a wedge of spheres, whereas no non-trivial wedge can be
collapsible. On the other hand, two triangles sharing a vertex provide an example
of a collapsible complex that is not shellable. Yet in some important cases, one
can relate these two notions.

The easy direction is that shellability implies collapsibility whenever the com-
plex is contractible (in fact, whenever the complex has trivial homology). We will
focus here on a more interesting direction: when collapsibility implies shellability?

In this spirit, Hachimori [Hac08] proved the following theorem.

Theorem 2.1 ([Hac08]). Let K be a 2-dimensional simplicial complex. Then the
following statements are equivalent:

(i) The complex K has a shellable subdivision.

(ii) The second barycentric subdivision sd2 K is shellable.

(iii) The link of each vertex of K is connected and K becomes collapsible after
removing χ̃(K) triangles where χ̃ denotes the reduced Euler characteristic.1

As Hachimori points out, one cannot expect that such an equivalence would be
achievable in higher dimensions. Namely, the implication (i) ⇒ (ii) cannot hold
in higher dimensions due to the examples by Lickorish [Lic91]. However, we will
show that it is possible to generalize the interesting implication (iii) ⇒ (ii). The
equivalence of (iii) and (ii) was one of the important steps in a recent proof of NP-
hardness of recognition of shellable complexes [GPP+19]. Though the hardness
reduction requires the implication only in dimension 2, we find it interesting
to provide a higher-dimensional generalization. For example, the computational
complexity status of recognition of shellable/collapsible 3-spheres is unknown and
the implication (iii) ⇒ (ii) could provide a link between the two notions.

For explaining our generalization, we first introduce a removal-collapsibility
condition.

Removal-collapsibility condition. We will say that a pure complex K sat-
isfies the removal-collapsibility condition, abbreviated to (RC) condition, if K is
either empty or K becomes collapsible after removing some number of facets. We
remark that if dim K = d the number of removed facets can be easily computed as

1The equivalence of (i) and (iii) in particular implies that χ̃(K) cannot be negative if K has
a shellable subdivision. This can be deduced directly from the fact that those shelling steps
that change the homotopy type decrease the Euler characteristic by 1 while the other shelling
steps keep the Euler characteristic. For more details see [Hac08].
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β̃d(K;Z2) where β̃d(K;Z2) denotes the reduced d-th Betti number, i.e., the rank
of the reduced homology group H̃d(K;Z2).2 Indeed, by a routine application of
the Mayer-Vietoris exact sequence, removing a facet either decreases β̃d(K;Z2)
by one or increases β̃d−1(K;Z2) by one. But we cannot afford the latter case
if the complex becomes collapsible after removing some number of facets. In
addition, the lower dimensional homology remains unaffected when removing a
facet (directly from the definition of simplicial homology or again by a Mayer-
Vietoris exact sequence), therefore a complex satisfying (RC) condition also sat-
isfies β̃i(K;Z2) = 0 for 0 ≤ i ≤ d − 1. In particular, χ̃(K) = (−1)dβ̃d(K;Z2).

We also observe that if d = 1, that is, if K is a graph, then the (RC) condition
is equivalent with stating that K is connected. Also, every 0-complex satisfies
the (RC) condition.

Altogether, Hachimori’s condition (iii) for 2-complexes is equivalent to saying
that the link of the empty face (i. e., K) and the link of every vertex satisfies the
(RC) condition. This is furthermore equivalent with saying that the link of every
face of K satisfies the (RC) condition as links of dimension at most 0 always satisfy
the (RC) condition. We say that K satisfies the hereditary removal-collapsibility
condition, abbreviated to (HRC) condition, if the link of every face of K satisfies
the (RC) condition. In particular, (HRC) is equivalent to Hachimori’s condition
(iii) for 2-complexes. This condition is hereditary in the following sense: If K
satisfies (HRC) and σ ∈ K, then the link lk(σ, K) also satisfies (HRC). Indeed,
the link of σ′ in lk(σ, K) is just the link of σ ∪ σ′ in K.3

We establish the following generalization of Hachimori’s implication (iii) ⇒
(ii).

Theorem 2.2. Let K be a pure simplicial d-complex satisfying the (HRC) con-
dition, then the second barycentric subdivision sd2 K is shellable.

We suspect that the reverse implication does not hold but we are not aware
of a concrete complex violating the reverse implication. Possibly interesting ex-
amples could be the non-collapsible triangulations of the 3-ball B15,66 and B17,95
constructed by Benedetti and Lutz [BL13] but we do not know if their second
barycentric subdivisions are shellable.

For the proof of Theorem 2.2, we will define two coarser notions than shella-
bility called star decomposability and star decomposability in vertices, which may
be of independent interest. Together with vertex decomposability of Provan and
Billera [PB80] we will establish the following chain of implications, where the last
implication is a result of Provan and Billera.

star decomposable in vertices ⇒ star decomposable ⇒ vertex decomposable
⇒ shellable

Therefore, for a proof of Theorem 2.2 it is sufficient to prove the following
generalization (together with the first two promised implications).

Theorem 2.3. Let K be a pure simplicial d-complex satisfying the (HRC) con-
dition, then the second barycentric subdivision sd2 K is star decomposable in ver-
tices.

2The choice of coefficients Z2 is not very important here. We could choose an arbitrary field.
3Note that we do not claim that (HRC) is hereditary with respect to subcomplexes or induced

subcomplexes.
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Additional motivation and background. Both notions, collapsibility and
shellability, play an important role in PL topology because they may help to
determine not only the homotopy type of a given collapsible/shellable space but
sometimes even the (PL) homeomorphism type. For example, a collapsible PL
manifold is a ball, and a shelling of a PL-manifold (if it does not change the
homotopy type) preserves the homeomorphism type [RS82].

A relation between collapsibility or shellability of some subdivision of a com-
plex and of some barycentric subdivision has been studied by Adiprasito and
Benedetti [AB17]. Namely, they show that a simplicial complex is PL homeo-
morphic to a shellable complex if and only if it is shellable after finitely many
barycentric subdivisions,4 and they show an analogous result for collapsibility. If
we were interested only in shellability of some barycentric subdivision of K in
Theorem 2.2, it is possible that the proof could be easier, because it would be
possible to use arbitrary suitable subdivisions in the intermediate steps.

Hachimori’s implication (iii)⇒(ii), as well as its generalization, Theorem 2.2,
can be understood as a tool for showing that a concrete complex is shellable. A
lot of effort has been devoted to developing such tools in various contexts; see
e.g. [BW83, Koz97]. The advantage of Theorem 2.2 could be that the (HRC)
condition may naturally follow from the topological/combinatorial properties of
a considered problem as it is in the case of the application of Hachimori’s result
in [GPP+19]. A possible disadvantage could be that we have to allow some
flexibility on the target complex (it has to be the second barycentric subdivision
of another complex).

An additional piece of motivation may come from commutative algebra. For
example, Herzog and Takayama [HT02] found out that if K is a complex (not
necessarily pure) and IK is the Stanley-Reisner ideal corresponding to K, then
IK has linear quotients if and only the Alexander dual K∗ is shellable (in the non-
pure sense, but the pure case is a special case, of course). Thus, Theorem 2.2 may
serve as a tool showing that certain Stanley-Reisner ideals have linear quotients.

Finally, the notions of star decomposability and star decomposability in ver-
tices that we introduce along the way may be of independent interest as inductive
tools similar to collapsibility, shellability, vertex-decomposability, etc. Although
their definitions are slightly technical, they appear very naturally in our context,
as we sketch in the proof strategy below. It would also be interesting to know
whether these notions admit some counterpart in terms of commutative algebra
(similarly to the Herzog-Takayama equivalence above).

Proof strategy. Here we first sketch Hachimori’s proof (iii) ⇒ (ii), in our words
though. Then we sketch the necessary steps for upgrading the proof to higher
dimensions.

Let K be a pure 2-complex satisfying the conditions of (iii). We want to sketch
a strategy how to shell sd2 K. For simplicity of pictures, we will assume that K
is already collapsible (as we want to avoid the non-trivial second homology in the
pictures).

The second barycentric subdivision sd2 K is covered by stars of vertices of
sd2 K which correspond to original faces of K; see Figure 2.1. The stars may

4The result is stated in terms of derived subdivisions but there is no difference on the
combinatorial level.
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e
st(e, sd2K)

K sd2K

Figure 2.1: Decomposition of sd2 K into stars. For example, an edge e of K
becomes a vertex in sd2 K. Consequently, its star in sd2 K is one of the stars in
the decomposition.
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τ

Figure 2.2: Reverse shelling of sd2 K following an elementary collapse of K. The
numbers in triangles indicate a valid order of removing triangles.

overlap, but they overlap only in their boundaries (in links). Now, let us consider
an elementary collapse K ↘ K′ while removing a free face σ and a maximal
face τ containing σ. Naturally, in sd2 K we want to emulate this by a reverse
shelling removing the triangles first in st(σ, sd2 K) and then in st(τ, sd2 K);5 see
Figure 2.2. This is indeed a good strategy as Hachimori [Hac08] showed. However,
this quite heavily depends on the fact that the dimension of the complex is 2 as
the structure of sd2 K is so simple that all steps are obvious.

In general dimension we want to proceed similarly. However it seems out
of reach to describe directly the order of removals of facets of sd2 K and check
that this is a shelling order due to a complicated structure of sd2 K. At least we
initially tried this approach but we quickly got lost in addressing too many cases.
Therefore, we instead use the aid of some coarser notions.

The first helpful notion is vertex decomposability introduced by Provan and

5Formally speaking, st(σ, sd2 K) stands for st({{σ}}, sd2 K), etc.; see our convention in the
preliminaries.
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σ

K sd2K

σ

τ
τ

1

2
3

Figure 2.3: Vertex decomposition (shedding) of sd2 K following an elementary
collapse of K. In this case, we first remove σ, then the vertex in between of σ
and τ and finally τ .

Billera [PB80]. A simplicial d-complex K is vertex decomposable if it is pure and

• K is a d-simplex, or

• there is a vertex v ∈ V (K) such that K − v is d-dimensional vertex de-
composable (where K−v denotes the complex obtained by removing v and
all faces containing v from K) and lk(v, K) is (d − 1)-dimensional vertex
decomposable.

This recursive definition induces an order v1, . . . , vn−(d+1) of n − (d + 1) vertices
of K according to the sequence of vertex removals in the second item (where n
is the number of vertices of K). This order is called a shedding order and we
artificially extend any shedding order to all vertices of K so that the remaining
vertices follow in arbitrary order. (Intuitively, as soon as we reach a d-simplex in
the first item, we allow removing vertices in arbitrary order.)

Proving that sd2 K is vertex decomposable is stronger than showing that sd2 K
is shellable, and it also seems easier to specify the shedding order as we deal with
a smaller number of objects. For example, in case of the collapse from Figure 2.2,
we specify the order only on three vertices; see Figure 2.3.

On the other hand, it is even easier to start removing the closed stars of
vertices (and then taking a closure to get again a simplicial complex). In case
of Figure 2.3, we would first remove the closed star of σ in sd2 K. Subsequently,
when taking the closure, we reintroduce the full link of σ. Thus in this case,
our first step coincides with removing σ (and therefore the open star of σ). The
second step is, however, more interesting (see Figure 2.4): First we remove the
closed star of τ . Then, when taking the closure, we do not reintroduce the vertex
in between of σ and τ . Therefore, this second step removes simultaneously two
vertices.

This will be our notion of star decomposability; however, one of the key steps
in our approach is to identify an appropriate property of order of removals as
above, which implies vertex decomposability of our complex. For sketching the
idea, let us again consider the case of removing the closed star of τ in the second
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sd2K

τ

O

sd2K

O

Figure 2.4: Overlap of the link of τ and the rest of the complex.

step above. Similarly as in the case of vertex decomposability, we will need that
the link of the center of the removed star (in this case the link of τ) is star
decomposable. However, this is not the only condition that we require. Let O
be the overlap of the link of τ and the remainder of the complex after removing
the star of τ (see Figure 2.4). We will actually need a star decomposition of the
link of τ such that O is an intermediate step in this decomposition. Overall,
this additional condition ensures a well working induction for deducing vertex
decomposability. We postpone the precise definition of star decomposability to
Section 2.2.

Finally, we will utilize the fact that we are interested in star decomposability
of the complex sd2 K which is a barycentric subdivision of another complex,
namely sd2 K = sd L where L = sd K. We will introduce the notion of star
decomposability in vertices which will mean that we are removing only stars
centered in vertices of sd L which are simultaneously vertices of L as in Figure 2.4.
(Note that vertices of L are faces of K.) This brings one more advantage. We
will essentially need claims of the following spirit: If sd(X) and sd(Y) are star
decomposable in vertices, then sd(X ∗ Y) is star decomposable in vertices as well
(here X ∗ Y denotes the join of X and Y). In addition, we will also need to
describe the order of the star decomposition in vertices of sd(X ∗ Y). Though it
is probable that analogous claims are valid also for star decomposability, vertex
decomposability and/or shellability, the notion of star decomposability in vertices
removes at least one layer of complications in the proof: It is just sufficient to
describe the order of the decomposition of sd(X ∗ Y) as some total order on
V (X ∗ Y) = V (X) ⊔ V (Y) via a suitable way of interlacing the total orders on
V (X) and V (Y) (here V (X) ⊔ V (Y) denotes the disjoint union of V (X) and
V (Y)).

Convention regarding notation. Let us recall that we use the following com-
binatorial description of barycentric subdivision for an abstract simplicial complex
K. (For more details see Chapter 1.)

sd K := {{σ1, . . . , σn} : σ1, . . . , σn ∈ K, ∅ ≠ σ1 ⊊ σ2 ⊊ · · · ⊊ σn}.

Therefore, if v is a vertex K, then {v} is a vertex of sd K. If there is no risk of con-
fusion, we write v instead of {v} in formulas such as lk(v, sd K). We apply similar
conventions to the second barycentric subdivision, so we write lk(v, sd2 K) instead
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of the cumbersome lk({{v}}, sd2 K), or lk(σ, sd2 K) instead of lk({σ}, sd2 K) if σ
is a face of K.

2.2 Star decomposability
Given a simplicial complex X and a set W ⊆ V (X), we say that W induces a
star partition of X if

(i) X = ⋃︁
w∈W st(w, X), and

(ii) any two distinct vertices w1, w2 ∈ W are not neighbors in X.

An example of a set inducing a star partition is the set {w1, w2, w3, w4} in Fig-
ure 2.5.

Now, let us assume that W induces a star partition. Given a total order
≺ on W , W ′ ⊆ W , and w ∈ W , we set W ′

≻w := {w′ ∈ W ′ : w′ ≻ w} and
W ′

⪰w := {w′ ∈ W ′ : w′ ⪰ w}. We will also use the notation

st(W ′, X) :=
⋃︂

w′∈W ′
st(w′, X)

for an arbitrary subset W ′ of V (X). Furthermore, given x ∈ W and a set W ′ ⊆
W , we define6

O(x, W ′) := lk(x, X) ∩ st(W ′, X) = lk(x, X) ∩
⋃︂

w′∈W ′
st(w′, X)

= lk(x, X) ∩
⋃︂

w′∈W ′
lk(w′, X). (2.1)

See Figure 2.5. Note that this is the overlap mentioned in the introduction.
Occasionally, if we need to emphasize dependency on X, we write OX(x, W ′).

Now, we are ready to introduce star decomposability. Following the sketch
in the introduction, we want to introduce star decomposability of a simplicial
complex X. However, in order to formulate all conditions correctly, we need to
state this definition for pairs.

Definition 2.4 (Star decomposability). Let (X, X) be a pair where X is a sim-
plicial complex which is pure and k-dimensional, k ≥ −1 (that is, X ̸= ∅), and
X ⊆ V (X). We inductively define star decomposability of the pair (X, X). We
also say that X is star decomposable if there is X ⊆ V (X) for which the pair
(X, X) is star decomposable.

For k = −1, the pair ({∅}, ∅) is star decomposable.
If k ≥ 0, then (X, X) is star decomposable, if there is a set W ̸= ∅ inducing

a star partition and a total order ≺ on W with the following properties.

Order condition: X = W⪰w′ for some w′ ∈ W .

Link condition: For any vertex w ∈ W except for the last vertex in the order
≺, there is a nonempty set U = U(w) ⊆ V (lk(w, X)) such that

6The symbol O in the notation stands for the ‘overlap’ of lk(x, X) and st(W ′, X).
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w1
w2

w3

w4

lk(w2,X)

O(w2,W≻w2
)

X

u1

u2

Figure 2.5: An example of the star decomposition induced by the set W =
{w1, w2, w3, w4} with the order w1 ≺ w2 ≺ w3 ≺ w4 (left) and an example of the
set U(w2) = {u1, u2} such that st(U(w2), lk(w, X)) = O(w2, W≻w2) and the pair
(lk(w2, X), U(w2)) is star decomposable (right).

• st(U, lk(w, X)) = O(w, W≻w) and
• the pair (lk(w, X), U) is star decomposable.

Last vertex condition: For the last vertex ŵ ∈ W in the order ≺, the link
lk(ŵ, X) is star decomposable.

If the order ≺ on W satisfies the three conditions above, we say that ≺ induces
a star decomposition of (X, X).

See Figure 2.5 for an example.

Remarks 2.5.

(i) Observe that the order condition implies X ̸= ∅ if k ≥ 0.

(ii) In the definition above, we remark that if X is k-dimensional and pure, for
k ≥ 0, then for any w ∈ V (X), the link lk(w, X) is (k − 1)-dimensional
and pure. Therefore, in the last two conditions, we indeed refer to star
decomposability of a pure complex of smaller dimension.
In addition, for any W ′ ⊆ V (X), W ′ ̸= ∅, st(W ′, X) is k-dimensional
and pure. In particular, when replacing X with lk(w, X), we get that
O(w, W≻w) = st(U, lk(w, X)) is (k − 1)-dimensional and pure.

(iii) If k = 0, then every pair (X, X) is star decomposable if and only if X ̸= ∅.
Indeed, the only if part follows from (i). For the ‘if’ part, we observe that we
can set W = V (X) and we can use any order ≺ on W such that X = W⪰w′

for some w′. Both the link condition and the last vertex condition refer to
star decomposability of ({∅}, ∅), which we assume.

(iv) If k = 1, then it is not difficult to show that X is star decomposable if and
only if X is a connected bipartite graph. Note that requiring that X is con-
nected is a must as we want to get that star decomposability implies vertex
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decomposability. Here is the place where the possibly slightly mysterious
property ‘X ̸= ∅ if k ≥ 0’ comes into the play. Indeed, this property and
the link condition achieve that the overlap O(w, W≺w) is nonempty, thus X
must be a connected graph.

2.3 Star decomposability implies vertex decom-
posability.

In this section, we want to describe how star decomposability implies vertex
decomposability. We start with a simple (folklore) lemma verifying that some
order is a shedding order (with respect to our convention that we extend the
shedding order also to the vertices of the last simplex). Given a simplicial complex
X, a total (or partial) order ≺ on V (X), and v ∈ V (X), by X≻v we denote the
subcomplex of X induced by vertices that are greater than v. Similarly X⪰v is
induced by v and the vertices that are greater than v.

Lemma 2.6. Let X be a pure k-dimensional simplicial complex, k ≥ 0. Let ≺ be
a total order on V (X). Then ≺ is a shedding order if and only if for every vertex
v except for the last k + 1 vertices, the link lk(v, X⪰v) is vertex decomposable and
(k − 1)-dimensional, and X≻v is pure k-dimensional.

Proof. The ‘only if’ part of the statement follows immediately from the definition
of vertex decomposability and the shedding order, thus we focus on the ‘if’ part.

If X has k + 1 vertices, then X is a k-simplex and we are done. Otherwise,
we proceed by induction on the number of vertices of K.

Let v1 be the first vertex in the order ≺. Then we need to check that
lk(v1, X⪰v1) is vertex decomposable and (k − 1)-dimensional, which is part of
the assumptions. We also need to check that X − v1 = X≻v1 is vertex decompos-
able and k-dimensional. Again, k-dimensional is part of the assumptions, thus,
it remains to check that X − v1 is vertex decomposable. However, this follows
from the induction applied to X≻v1 and ≺ restricted to V (X) \ {v1}.

Now, let X be a star decomposable simplicial complex, let W be a subset of
V (X) which induces a star partition of X and let ≺ be a total order which induces
a star decomposition of X. We will define a suitable partial order ≺′ on V (X)
extending ≺ such that the desired shedding order in the vertex decomposition of
X will follow ≺′.

For arbitrary v ∈ V (X), let p(v) be the last vertex in the ≺ order among the
vertices w ∈ W such that v ∈ st(w, X). In particular p(w) = w for any w ∈ W .
If we want to emphasize ≺, we write p(v, ≺) (which will be used in a single but
important case of the proof of Theorem 2.8). Now, we define ≺′ in the following
way. We set v ≺′ v′ if p(v) ≺ p(v′) for v, v′ ∈ V (X). In addition, we set v ≺′ w
if p(v) = w and v ̸= w. Finally, if p(v) = p(v′) and v, v′ ̸∈ W , then v and v′ are
incomparable in ≺′. We say that ≺′ is derived from ≺. An example of this order
is given in Figure 2.6 where P (w) = {v ∈ V (X) : v ̸= w, p(v) = w} for w ∈ W ;
the elements in P (w) are incomparable.

We will often need that st(W≻w, X) is an induced subcomplex of X for w ∈
W \ {ŵ}:
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w1
w2

w3

w4

X

P (w1) = ∅

P (w2)

P (w3) P (w4)

P (w1) ≺′ w1 ≺′ P (w2) ≺′ w2 ≺′ P (w3) ≺′ w3 ≺′ P (w4) ≺′ w4

Figure 2.6: The set P (w) and the auxiliary order ≺′ for the star decomposition
in Figure 2.5.

Lemma 2.7. Let X be a star decomposable complex, let W be a subset of V (X)
which induces a star partition of X and let ≺ be a total order on W which induces
a star decomposition of X. Let ≺′ be the partial order on V (X) derived from ≺
and let w ∈ W be different from the last vertex ŵ. Then st(W≻w, X) is the induced
subcomplex X≻′w of X.

Proof. If dim X = −1, then the statement is void. If dim X = 0, the assertion
easily follows from Remark 2.5(iii). Thus, we may assume dim X ≥ 1, which we
will implicitly when referring to the link condition.

Recall that st(W≻w, X) = ⋃︁
w+∈W≻w

st(w+, X). It is easy to check the inclusion
X≻′w ⊇ ⋃︁

w+∈W≻w
st(w+, X) because st(w+, X) ⊆ X≻′w for every w+ ≻ w. (Note

that if v is a neighbor of w+ in X, then p(v) ⪰ w+ ≻ w. Thus, v belongs to
V (X≻′w).) Therefore, it remains to show X≻′w ⊆ ⋃︁

w+∈W≻w
st(w+, X≻′w).

Let σ ∈ X≻′w. For contradiction, let us assume that σ ̸∈ st(w+, X) for all
w+ ≻ w. (In particular, σ ̸= ∅.) Let w− ⪯ w be the largest vertex in W
(according to the total order ≺) such that σ ∈ st(w−, X). Such w− must exist
because W induces a star partition of X. In addition, because σ ∈ X≻′w and
w− ⪯ w, we get that w− ̸∈ σ. Thus, σ ∈ lk(w−, X).

Now, we use that X is star decomposable. Namely, we use the link condition
for w−. There is U ⊆ V (lk(w, X)) such that st(U, lk(w−, X)) = O(w−, W≻w−)
and the pair (lk(w−, X), U) is star decomposable. By the order condition for this
pair, there is a set Z ̸= ∅ inducing a star partition of lk(w−, X) and a total order
◁ on Z such that U = Z⊵z′ for some z′ ∈ Z. Because σ ∈ lk(w−, X) and Z
induces a star partition of lk(w−, X) some vertex v of σ has to belong to Z. If
v ∈ U , then σ ∈ st(U, lk(w−, X)) = O(w−, W≻w−) which contradicts the fact that
w− is the largest vertex such that σ ∈ st(w−, X). If v ∈ Z \ U , then p(v) = w−

which contradicts σ ∈ X≻′w.

Now, we are ready to state and prove that star decomposability implies vertex
decomposability. As the reader may expect, the order ≺′ appears in the statement
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to allow a well working induction.

Theorem 2.8. Let X be a star decomposable simplicial complex; let W be a
subset of V (X) which induces a star partition of X; and let ≺ be a total order
which induces a star decomposition of X. Let ≺′ be the partial order on V (X)
derived from ≺. Then X is vertex decomposable in a shedding order extending
≺′.

Proof. We prove the statement by induction on k, the dimension of X. If k = −1,
the complex {∅} is vertex decomposable according to the definition of vertex
decomposability (it is regarded as a −1-simplex). Although it could be covered
by the second induction step, we can observe that the case k = 0 is also easy as
any order of removing vertices from a 0-complex is a shedding order.

Now, let us prove the theorem for some k ≥ 1 assuming that it is valid for
lower values.

We first describe a total order ≺′′ on V (X) extending ≺′. Then we verify
that ≺′′ is a shedding order. Recall that for w ∈ W , P (w) is the set of vertices
v ∈ V (X) such that p(v) = w but v ̸= w; see Figure 2.6. To describe ≺′′ it
remains to describe ≺′′ on each P (w) separately. We distinguish whether w is
the last vertex in ≺.

If w = ŵ is the last vertex, then P (ŵ) = V (lk(ŵ, X)). By the last vertex con-
dition (for star decomposability) lk(ŵ, X) is star decomposable, therefore vertex
decomposable by induction as well. We set ≺′′ on P (ŵ) as an arbitrary shedding
order of lk(ŵ, X).

If w is not the last vertex, then P (w) = V (lk(w, X)) \ V (O(w, W≻w)). By the
link condition, the pair (lk(w, X), U) is star decomposable where U ⊆ V (lk(w, X))
satisfies st(U, lk(w, X)) = O(w, W≻w).

Claim 2.8.1. Let w ∈ W be different from the last vertex ŵ. Then the link
lk(w, X) is vertex decomposable in some shedding order ◁′′ that starts on P (w) =
V (lk(w, X)) \ V (O(w, W≻w)) and then continues on V (O(w, W≻w)).

Proof. Consider a set Z ⊆ V (lk(w, X)) inducing a star partition of lk(w, X) and
a total order ◁ on Z witnessing that the pair (lk(w, X), U) is star decomposable.
In particular, U = Z⊵z′ for some z′ ∈ Z by the order condition. Let ◁′ be the
partial order on V (lk(w, X)) derived from ◁. By induction, lk(w, X) is vertex
decomposable in a shedding order ◁′′ extending ◁′.

In addition, by the link condition (on star decomposable X) we get

O(w, W≻w) = st(U, lk(w, X)) = st(Z⊵z′ , lk(w, X)).

The vertices of st(Z⊵z′ , lk(w, X)) are exactly the vertices of lk(w, X) with p(v,◁) ∈
Z⊵z′ . Therefore all vertices in V (lk(w, X)) \ V (O(w, W≻w)) precede the vertices
in V (O(w, W≻w)) = V (st(Z⊵z′ , lk(w, X))) in the order ◁′, a fortiori, in the order
◁′′, as we need.

Now, we set ≺′′ on P (w) as the shedding order ◁′′ on lk(w, X) from Claim 2.8.1,
restricted to P (w); see Figure 2.7.

It remains to check that ≺′′ is the required shedding order which we do via
Lemma 2.6. Namely, given a vertex v ∈ V (X) which is not one of the last k + 1
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w1
w2

w3

w4

lk(w2,X)
X

u1

u2
a1

a2
b1

b2

b3

b4

a1 ◁ a2 ◁ u1 ◁ u2

a1 ◁′ b1 ◁′ a2 ◁′ b2 ◁′ u1 ◁′ {b3, b4}◁′ u2

w1 ≺′′ a1 ≺′′ b1 ≺′′ a2 ≺′′ w2 ≺′′ · · ·

P (w2)

Figure 2.7: Setting up the order ≺′′ on P (w2). The order ◁ on Z = {a1, a2, u1, u2}
induces a star decomposition of (lk(w2, X), U) where U = {u1, u2}. Then ◁′ is the
corresponding partial order on V (lk(w2, X)) (similarly as ≺′ corresponds to ≺).
Finally, we take a shedding order ◁′′ on lk(w2, X) extending ◁′ (by induction)
and restrict it to P (w2) obtaining ≺′′.

vertices, we need to check that lk(v, X⪰′′v) is vertex decomposable and (k − 1)-
dimensional and that X≻′′v is pure k-dimensional. We distinguish whether v ∈ W .

Case 1, v ∈ W : We observe that v is not the last vertex ŵ of ≺ as ŵ is also
the last vertex of ≺′′. This allows to describe lk(v, X⪰′′v) as an overlap.

Claim 2.8.2. lk(v, X⪰′′v) = O(v, W≻v).

Proof. According to the definition of the overlap, we have O(v, W≻v) = lk(v, X)∩
st(W≻v, X).

First, let us assume that σ ∈ lk(v, X) ∩ st(W≻v, X). Each vertex v′ of
st(W≻v, X) satisfies p(v′) ≻ v which implies v′ ≻′′ v. Therefore, each vertex
of σ ∪ {v} belongs to V (X⪰′′v). Because σ simultaneously belongs to lk(v, X), we
get that it belongs to lk(v, X⪰′′v).

Now, for the second inclusion, let us assume that σ ∈ lk(v, X⪰′′v). Im-
mediately, σ ∈ lk(v, X). Because σ ∈ X≻′v = X≻′′v, Lemma 2.7 gives σ ∈
st(W≻v, X).

By Claim 2.8.2, lk(v, X⪰′′v) = O(v, W≻v) which is (k − 1)-dimensional by
Remark 2.5(ii). In addition, lk(v, X⪰′′v) is vertex decomposable, as we checked
that lk(v, X) is vertex decomposable in some shedding order starting with P (v) =
V (lk(v, X)) \ V (O(v, W≻v)) and continuing with V (O(v, W≻v)); see Claim 2.8.1.
Also X≻′′v = X≻′v = st(W≻v, X) by Lemma 2.7. Therefore X≻′′v is pure k-
dimensional by Remark 2.5(ii). This finishes Case 1.
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Case 2, v ̸∈ W : Let w := p(v) ∈ W . Note that, in particular, w ≻′ v. We
first check that lk(v, X⪰′′v) is vertex decomposable and (k −1)-dimensional. This
will follow from the following two claims.

Claim 2.8.3. The link lk(v, X⪰′′v) is the join of w and lk({v, w}, X⪰′′v).

Proof. The link lk({v, w}, X⪰′′v) consists of simplices σ ∈ X⪰′′v satisfying v, w ̸∈
σ, and σ ∪ {v, w} ∈ X⪰′′v. Therefore, the join of w and lk({v, w}, X⪰′′v), consid-
ered as a subcomplex of X⪰′′v, consists of simplices σ ∈ X⪰′′v satisfying

v ̸∈ σ, and σ ∪ {v, w} ∈ X⪰′′v. (2.2)

On the other hand, lk(v, X⪰′′v) consists of simplices σ ∈ X⪰′′v satisfying

v ̸∈ σ, and σ ∪ {v} ∈ X⪰′′v. (2.3)

A simplex σ ∈ X⪰′′v satisfying (2.2) immediately satisfies (2.3) as well. Thus,
it remains to consider a simplex σ ∈ X⪰′′v satisfying (2.3); and to show that it
satisfies (2.2).

First, we want to deduce that σ ∪ {v} belongs to st(w′, X) for some w′ ⪰ w.
If w is the first vertex of W in the order ≺, then this claim follows from the fact
that W induces a star partition of X. If w is not the first vertex of W , let w− be
the vertex that immediately precedes w in the order ≺. Note that σ ∈ X≻′w− .
By Lemma 2.7, σ ∪ {v} belongs to st(w′, X) for some w′ ≻ w−, that is, w′ ⪰ w
as required.

Now, because p(v) = w, the only option is that w′ = w. Therefore, σ ∪ {v} ∈
st(w, X); that is, σ ∪ {v, w} ∈ X. Because all vertices of σ ∪ {v, w} belong to
X⪰′′v, σ satisfies (2.2).

Claim 2.8.4. The link lk({v, w}, X⪰′′v) is vertex decomposable and (k − 2)-
dimensional.

Proof. We will deduce the claim from the ‘only if’ part of Lemma 2.6 used with
the pure (k−1)-dimensional complex lk(w, X) and the shedding order ◁′′, coming
from Claim 2.8.1. Let us recall that ≺′′ is defined so that it coincides with ◁′′

on lk(w, X) restricted to P (w). Because v ∈ P (w), we in particular get that
lk(w, X)⪰′′v = lk(w, X)⊵′′v.

In order to apply Lemma 2.6, we also check that v is not among the last k
vertices of the aforementioned shedding ◁′′ of lk(w, X). If w = ŵ, we get this
because we assume that v is not among the last k + 1 vertices in the ≺′′ order
on V (X) (the last one is ŵ, and the vertices of P (ŵ) immediately precede). If
w ̸= ŵ we get this because the overlap O(w, W≻w) is (k − 1)-dimensional (see
Remark 2.5(ii)), and the vertices of this overlap belong to V (lk(w, X)) while they
do not belong to P (w).

Now, using Lemma 2.6 as explained above, we get that lk(v, lk(w, X)⪰′′v) =
lk(v, lk(w, X)⊵′′v) is vertex decomposable and (k − 2)-dimensional. Finally,
lk(v, lk(w, X)⪰′′v) = lk({v, w}, X⪰′′v) because X⪰′′v is an induced subcomplex
of X.

It follows immediately from Claims 2.8.3 and 2.8.4 that lk(v, X⪰′′v) is (k − 1)-
dimensional. In addition, because the join of two vertex decomposable complexes
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X
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st(W≻w2
,X)

st(w2,X)≻′′a1

a2

a1

Figure 2.8: The complex X≻′′a1 as the union of st(W≻w2 , X) and st(w2, X)≻′′a1 .
Here we use the order ≻′′ from Figure 2.7.

is vertex decomposable [PB80, Proposition 2.4], we also get that lk(v, X⪰′′v) is
vertex decomposable.

Finally, we need to check that X≻′′v is pure k-dimensional. We need one more
claim; see also Figure 2.8.

Claim 2.8.5. If w ̸= ŵ, then X≻′′v = st(W≻w, X) ∪ st(w, X)≻′′v. If, w = ŵ, then
X≻′′v = st(w, X)≻′′v.

Proof. If w ̸= ŵ, then st(W≻w, X) = X≻′w = X≻′′w by Lemma 2.7. Therefore
it is sufficient to show that every σ ∈ X≻′′v which contains a vertex v′ with
v′ ⪯ w belongs to st(w, X)≻′′v. This will resolve both cases, w = ŵ and w ̸= ŵ,
simultaneously. The ideas in the reminder of the proof are very similar to the
ideas in the proof of Claim 2.8.3.

First, we check that σ ∈ st(w′, X) for some w′ ⪰ w. If w is the first vertex
of W , then this follows from the fact that W induces a star decomposition of X.
If w is not the first vertex of W , let w− be the vertex of W that immediately
precedes w. By Lemma 2.7, st(W≻w− , X) = X≻′′w− . Because σ ∈ X≻′′w− , this
implies that there is w′ ≻ w− with σ ∈ st(w′, X).

On the other hand, σ cannot belong to st(w′′, X) with w′′ ≻ w as σ contains
v′ with v′ ⪯ w. Therefore, w′ = w. Given that st(w, X)≻′′v = X≻′′v ∩ st(w, X),
we deduce that σ ∈ st(w, X)≻′′v.

The union of two pure k-dimensional complexes is a pure k-dimensional com-
plex. Therefore, due to Claim 2.8.5, it remains to check that st(W≻w, X) and
st(w, X)≻′′v are pure k-dimensional (the former case applies only if w ̸= ŵ).

Checking that st(W≻w, X) is pure k-dimensional is easy; see Remark 2.5(ii).
For checking that st(w, X)≻′′v is pure k-dimensional, we need that lk(w, X)≻′′v

is pure (k − 1)-dimensional. Because v ∈ P (w), lk(w, X)≻′′v = lk(w, X)⊵′′v where
◁′′ is the shedding of lk(w, X) as introduced below Claim 2.8.1. This means that
lk(w, X)≻′′v is an intermediate step in the shedding ⊵′′ of lk(w, X). If we realize
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that v is not among the last k vertices of the order ◁′′ on lk(w, X), then we can
deduce that lk(w, X)≻′′v is pure and (k − 1)-dimensional.

If w ̸= ŵ, then lk(w, X)≻′′v still contains the overlap O(w, W≻w) which is
(k − 1)-dimensional by Remark 2.5(ii). If w = ŵ, then we assume that v is not
among the last k + 1 vertices of ≺′′ while ≺′′ and ◁′′ coincide on P (ŵ) and the
vertices of P (ŵ) immediately precede ŵ in ≺′′. This finishes Case 2 and thereby
the proof of the theorem.

2.4 Star decomposability in vertices
Star decomposability of a barycentric subdivision. In our approach, we
will need to consider the star decomposability of the barycentric subdivision
sd(X) of a complex X. In fact, we will consider only a special type of star
decomposition of sd(X) using only stars of vertices of X, that is, the faces of X
which are actually vertices of X. For a well working induction, we will need that
this property is kept also in the link condition and the last vertex condition of
Definition 2.4. For stating this precisely, first, we need a more explicit description
of lk(ϑ, sd(X)) if ϑ is a face (possibly a vertex) of X.

Lemma 2.9. Let ϑ be a face of a simplicial complex X, then

lk(ϑ, sd X) ∼= sd ∂ϑ ∗ sd lk(ϑ, X).

In particular, if x is a vertex of X, then

lk(x, sd X) ∼= sd lk(x, X).

Proof. We will construct a simplicial isomorphism

Ψ: V (lk(ϑ, sd X)) → V (sd ∂ϑ ∗ sd lk(ϑ, X)).

First, we observe that

V (sd ∂ϑ ∗ sd lk(ϑ, X)) = V (sd ∂ϑ) ⊔ V (sd lk(ϑ, X)) = ∂ϑ ⊔ lk(ϑ, X).

Next, we realize that the vertices of lk(ϑ, sd X) are all the faces λ ̸= ∅, ϑ of
X such that {λ, ϑ} forms a simplex of sd X, that is, either ∅ ≠ λ ⊊ ϑ or ϑ ⊊ λ.
Thus, we can define Ψ in the following way

Ψ(λ) =
⎧⎨⎩λ ∈ ∂ϑ if ∅ ≠ λ ⊊ ϑ,

λ \ ϑ ∈ lk(ϑ, X) if ϑ ⊊ λ.

From the description above, it immediately follows that Ψ is a bijection. It
is also routine to check that Ψ is a simplicial isomorphism. Indeed, a simplex of
lk(ϑ, sd X) is a collection {α1, . . . , αk, β1, . . . , βℓ} satisfying

∅ ≠ α1 ⊊ · · · ⊊ αk ⊊ ϑ ⊊ β1 ⊊ · · · ⊊ βℓ.

Such a simplex maps to a simplex {α1, . . . , αk, β1 \ ϑ, . . . , βℓ \ ϑ} of sd ∂ϑ ∗
sd lk(ϑ, X) and the inverse map works analogously (note that βi \ ϑ is disjoint
from ϑ whereas αi are subsets of ϑ).
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X

x

w1

w2 w3

x

w1

x

w1

sd X sd X

(lk(x, sdX),O(x,W )) ∼= (sd lk(x,X), st({w1, w2}, sd lk(x,X)))

w2 w3 w2 w3

Figure 2.9: Isomorphism from Lemma 2.10 with W = {w1, w2, w3}. The left hand
side of the formula in Lemma 2.10 is depicted in the middle picture and the right
hand side is in the right picture. Note that W ∩ V (lk(x, X)) = {w1, w2} as w3
does not belong to lk(x, X).

Now, we extend the isomorphism above to certain pairs; for the statement,
recall that O(x, W ) is defined via formula (2.1).

Lemma 2.10. Let x be a vertex and W a subset of vertices of the simplicial
complex X such that x ̸∈ W . Then

(lk(x, sd X), Osd X(x, W )) ∼= (sd lk(x, X), st(W ∩ V (lk(x, X)), sd lk(x, X))) .

Though the formula in Lemma 2.10 may seem complicated at first sight, it
has a nice geometric interpretation. All objects are subcomplexes of sd X and the
isomorphism in the formula pushes the pair on the left hand side farther away
from x; see Figure 2.9.

Proof. From Lemma 2.9 we have a simplicial isomorphism Ψ from lk(x, sd X) to
sd lk(x, X). Hence, it remains to show that Ψ maps Osd X(x, w) := lk(x, sd X) ∩
lk(w, sd X) to st(w, sd lk(x, X)) for w ∈ W ∩V (lk(x, X)), where we use the explicit
Ψ from the proof of Lemma 2.9, and that Osd X(x, w) = ∅ for w ∈ W \V (lk(x, X)).
(Note that Osd X(x, W ) = ⋃︁

w∈W Osd X(x, w).)
The faces of Osd X(x, w) are collections {β1, . . . , βℓ} of faces of X satisfying

{x, w} ⊆ β1 ⊊ · · · ⊊ βℓ.

Let us emphasize that the first inclusion need not be strict. Therefore, Osd X(x, w)
is non-empty if and only if {x, w} ∈ X, that is, if and only if w ∈ W ∩V (lk(x, X))
as required. In sequel, we assume that w ∈ W ∩ V (lk(x, X)).

The collections {β1, . . . , βℓ} are mapped under Ψ to {β1\{x}, . . . , βℓ\{x}} sat-
isfying the same condition due to the description of Ψ in the proof of Lemma 2.9.
Setting γj = βj \ {x} we get

{w} ⊆ γ1 ⊊ · · · ⊊ γℓ

for γj not containing x but such that γj ∪ {x} is a face of X, which is exactly a
description of st(w, sd(lk(x, X))).
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Now, we can define star decomposibility in vertices:
Definition 2.11 (Star decomposability in vertices). Let X be a pure simplicial
complex of dimension k where k ≥ −1 and let X ⊆ V (X). We inductively define
star decomposability in vertices of the pair (sd X, X). We also say that sd X is
star decomposable in vertices if the pair (sd X, V (X)) is star decomposable in
vertices.

If k = −1, then (sd{∅}, ∅) = ({∅}, ∅) is star decomposable in vertices. (This
is the same as star decomposability in this case.)

If k ≥ 0, then (sd X, X) is star decomposable in vertices, if there is a total
order ≺ on the set V (X), inducing a star partition of sd X, with the following
properties.7

Order condition: X = V (X)⪰w′ for some w′ ∈ V (X).

Link condition: For any vertex w ∈ V (X) except for the last vertex in the order
≺, the pair (sd lk(w, X), V (lk(w, X))≻w) is star decomposable in vertices.

Last vertex condition: For the last vertex x̂ ∈ V (X) in the order ≺, the link
sd lk(x̂, X) is star decomposable in vertices.

If the order ≺ on W satisfies the three conditions above, we say that ≺ induces
a star decomposition of (sd X, X) in vertices.

Lemma 2.10 implies the following proposition.
Proposition 2.12. Let us assume that the pair (sd X, X) is star decomposable
in vertices, then it is star decomposable.
Proof. We check that the order condition, the link condition and the last vertex
condition in Definition 2.4 imply the corresponding conditions in Definition 2.11.
The rest of the proof is a straightforward induction given that in dimensions −1
and 0 the notions coincide.

The order condition in Definitions 2.4 and 2.11 is actually identical.
For checking the link condition in Definition 2.4, for a given w ∈ V (X)

we need to find a set U ⊆ V (lk(w, sd X)) such that (i) st(U, lk(w, sd X)) =
Osd X(w, V (X)≻w) and (ii) the pair (lk(w, sd X), U) is star decomposable in ver-
tices (therefore star decomposable by induction). By Lemma 2.10 we have an
isomorphism Ψ mapping the pair

(lk(w, sd X), Osd X(w, V (X)≻w))

to the pair
(sd lk(w, X), st(V (lk(w, X))≻w, sd lk(w, X))) ,

using that V (X)≻w ∩ V (lk(w, X)) = V (lk(w, X))≻w. We set

U := Ψ−1(V (lk(w, X))≻w),

then (i) follows immediately from the isomorphism above. On the other hand,
(lk(w, sd X), U) is isomorphic to (sd lk(w, X), V (lk(w, X))≻w) by applying Ψ.
Therefore, (ii) indeed follows from the link condition of Definition 2.11.

Finally the last vertex condition of Definition 2.11 implies the same condition
of Definition 2.4 via Lemma 2.9 (and the induction).

7Note that V (X) induces a star partition of sd X for an arbitrary complex X.
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Merging orders inducing a star decomposition in vertices. Given sim-
plicial complexes X and Y such that sd(X) and sd(Y) are star decomposable
in vertices, we want to provide an order on V (X) ⊔ V (Y) which induces a star
decomposition in vertices of sd(X ∗ Y). For the proof of our main result we need
some flexibility how to merge the orders on V (X) and V (Y). First we provide a
recipe that works in general but does not give all we need. This is the contents
of the forthcoming Proposition 2.13. Then we also provide a more specific recipe
which gives more under additional assumptions on Y (see Proposition 2.15).

Proposition 2.13. Let X and Y be pure simplicial complexes such that sd(X)
and sd(Y) are star decomposable in vertices. Let ≺ be an arbitrary total order on
V (X) ⊔ V (Y) satisfying that

(i) the restriction of ≺ to V (X) induces a star decomposition in vertices of
sd(X),

(ii) the restriction of ≺ to V (Y) induces a star decomposition in vertices of
sd(Y),

(iii) if both X and Y are nonempty, then the last two elements in ≺ are the last
element of V (X) and the last element of V (Y) (in arbitrary order).

Then sd(X ∗ Y) is star decomposable in vertices in the order ≺ on V (X ∗ Y) =
V (X) ⊔ V (Y).

Corollary 2.14. Let X and Y be simplicial complexes and X ⊆ V (X), Y ⊆
V (Y). Assume that the pairs (sd X, X) and (sd Y, Y ) are star decomposable in
vertices. Then the pair (sd(X ∗ Y), X ⊔ Y ) is star decomposable in vertices as
well. In addition, if |Y | = 1, then the pair (sd(X ∗ Y), Y ) is star decomposable
in vertices.

Proof of Corollary 2.14. First, let us assume that X = ∅. Because (sd X, X) is
star decomposable, we deduce that X = {∅}. Consequently, (sd(X∗Y), X ⊔Y ) =
(sd Y, Y ), which is star decomposable in vertices. Similarly, we resolve the case
Y = ∅.

Now we can assume X, Y ̸= ∅. Let ≺X be a total order on V (X) inducing a
star decomposition of (sd X, X) in vertices and let ≺Y be a total order on V (Y)
inducing a star decomposition of (sd Y, Y ) in vertices. Let x̂ be the last vertex
of V (X) in ≺X and ŷ be the last vertex of V (Y) in ≺Y. Necessarily, x̂ ∈ X and
ŷ ∈ Y as X, Y ̸= ∅.

We define a total order ≺ on V (X) ⊔ V (Y) so that we consider the vertices of
V (X) ⊔ V (Y) in the order [V (X) \ X, V (Y) \ Y, X \ {x̂}, Y \ {ŷ}, x̂, ŷ], where the
individual sets V (X) \ X, V (Y) \ Y , X \ {x̂}, and Y \ {ŷ} are sorted according to
≺X and ≺Y respectively. Then ≺ satisfies the assumptions of Proposition 2.13.
Therefore, sd(X ∗ Y) is star decomposable in vertices in the order ≺.

Given that st(X ⊔Y, sd(X∗Y)) = st((V (X)⊔V (Y))⪰z, sd(X∗Y)) where z is
the first vertex of X ∪ Y in ≺, we deduce that ≺ gives also a star decomposition
of (sd(X ∗ Y), X ⊔ Y ) in vertices.

Finally, if |Y | = 1, then Y = {ŷ}. Thus st(Y, sd(X ∗ Y)) = st((V (X) ⊔
V (Y))⪰ŷ, sd(X ∗ Y)) which means that ≺ gives a star decomposition of (sd(X ∗
Y), Y ) in vertices as well.
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Proof of Proposition 2.13. First, similarly as in the previous proof, the statement
is trivial if X = {∅} or Y = {∅} as a join with {∅} yields the same complex. There-
fore, we can assume X, Y ̸= {∅}. In particular, the item (iii) of the statement is
non-void.

Now, we prove the proposition by induction on dim(X ∗ Y). The start of the
induction, when dim(X ∗ Y) ≤ 0, is covered by the observation above.

We are given the order ≺ on V (X∗Y); therefore it remains to check the order
condition, the link condition and the last vertex condition.

As we check star decomposability of sd(X ∗ Y), that is, the pair (sd(X ∗
Y), V (X) ⊔ V (Y)), the order condition is trivial. (It is sufficient to take the first
vertex of V (X) ⊔ V (Y) for checking the order condition.)

For checking the link condition, we consider arbitrary x ∈ V (X) ⊔ V (Y)
distinct from the last vertex. Without loss of generality, we can assume x ∈ V (X)
as the argument is symmetric for a vertex from V (Y). We need to check star
decomposability of the pair

(sd(lk(x, X ∗ Y)), V (lk(x, X ∗ Y))≻x).

Given that x ∈ V (X), this equals

(sd(lk(x, X) ∗ Y), (V (lk(x, X)) ⊔ V (Y))≻x). (2.4)

From the assumption on star decomposability of sd Y in the order ≺, we
deduce that the pair

(sd(Y), V (Y)≻x) (2.5)
is star decomposable in vertices as long as V (Y)≻x is nonempty. However, V (Y)≻x

is indeed nonempty as x is not the last vertex of V (X)⊔V (Y) in ≺ whereas there
is a vertex from V (Y) among the last two vertices.

From the assumption on star decomposability of X in the order ≺, checking
the link condition gives that the pair

(sd lk(x, X), V (lk(x, X))≻x) (2.6)

is star decomposable in vertices if x is not the last vertex of V (X). Therefore, if x
is not the last vertex of V (X), we will use the induction. From Corollary 2.14 for
pairs (2.6) and (2.5) we deduce that the pair in (2.4) is indeed star decomposable
in vertices as required. (Note that this is a correct use of the induction as we
deduced Corollary 2.14 from Proposition 2.13 in the same dimension.)

It remains to consider the case when x is a last vertex of V (X). In this case,
x is the second to last vertex of V (X) ⊔ V (Y). Let ŷ be the last vertex of V (Y),
that is, the last vertex of V (X) ⊔ V (Y) as well. Then the pair (2.4) simplifies to

(sd(lk(x, X) ∗ Y), {ŷ}).

Now, we can use Corollary 2.14 again with pairs (sd lk(x, X), V (lk(x, X))) and
(sd(Y), {ŷ}), using the ‘in addition’ part.

Finally, it remains to check the last vertex condition. Let us therefore assume
that x̂ is the last vertex of V (X)⊔V (Y). Again, we can without loss of generality
assume that x̂ ∈ V (X). We need to check star decomposability in vertices of
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sd lk(x̂, X ∗ Y) = sd(lk(x̂, X) ∗ Y). By the last vertex condition on sd(X) we
get that sd lk(x̂, X) is star decomposable in vertices. Therefore, by the induction
applied to sd(lk(x̂, X)) and sd Y, we get that sd(lk(x̂, X)∗Y) is star decomposable
in vertices as required.

Now, we state a more specialized version of Proposition 2.13 with an additional
condition on homology. Let us recall that given a simplicial complex Y and
Y ⊆ V (sd Y), the star st(Y, sd Y) is defined as ⋃︁v∈Y st(v, sd Y). Following our
convention of neglecting a difference between v ∈ V (Y) and {v} ∈ V (sd Y), we
also set st(Y, sd Y) := ⋃︁

v∈Y st(v, sd Y) for Y ⊆ V (Y).

Proposition 2.15. Let X and Y be pure simplicial complexes, dim X, dim Y ≥ 0,
and Y be a nonempty subset of V (Y). Assume that sd X and (sd Y, Y ) are star
decomposable in vertices and st(Y, sd Y) has trivial reduced homology groups. Let
≺ be an arbitrarily total order on V (X) ⊔ V (Y) satisfying:

(i) The restriction of ≺ to V (X) induces a star decomposition in vertices of
sd(X);

(ii) The restriction of ≺ to V (Y) induces a star decomposition in vertices of
sd(Y, Y ); and

(iii) Y = (V (X) ⊔ V (Y))≻x̂ where x̂ is the last vertex of V (X) in ≺.

Then sd(X∗Y, Y ) is star decomposable in vertices in the order ≺ on V (X∗Y) =
V (X) ⊔ V (Y).

For the proof, we need a following auxiliary lemma which will be useful in the
induction.

Lemma 2.16. Let Y be a pure simplicial complex and Y ⊆ V (Y). Assume
that the pair (sd Y, Y ) is star-decomposable in vertices in some total order ≺
on V (Y) and also that st(Y, sd Y) has trivial reduced homology groups. Then
st(V (lk(y, Y))≻y, sd(lk(y, Y))) has trivial reduced homology groups as well for all
y ∈ Y except for the last vertex in Y .

Proof. Let y ∈ Y be different from the last vertex in the order ≺. First, we show
that st(Y≻y, Y) has trivial reduced homology groups.

Since the pair (sd Y, Y ) is star decomposable in vertices, Theorem 2.8 implies
that sd Y is vertex decomposable. In addition, we get that sd Y is vertex de-
composable in a shedding order ≻′′ extending ≻′ where is derived from ≻. (We
recall that the definition of the derived order is given above the statement of
Lemma 2.7.) In particular, st(Y, sd Y) and later st(Y≻y, sd Y) are intermediate
steps in the sequence of complexes obtained by gradually removing vertices of Y
in the given shedding order ≻′′.

We also get that st(Y, sd Y) and st(Y≻y, sd Y) are shellable by [PB80] (see The-
orem 2.8 and the note below Definition 2.1 in [PB80]). Therefore, each of them is
homotopy equivalent to a wedge of d-spheres where d = dim Y; see [Koz08, The-
orem 12.3]. Since st(Y, sd Y) has trivial homology groups, this must be a trivial
wedge. However, following the shedding order from st(Y, sd Y) to st(Y≻y, sd Y),
we cannot introduce homology in dimension d when gradually removing vertices.
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Therefore, st(Y≻y, sd Y) has to be homotopy equivalent to a trivial wedge as well
showing that st(Y≻y, sd Y) has trivial reduced homology groups.

Note that st(Y⪰y, sd Y) has trivial reduced homology groups as well by anal-
ogous reasoning.

Now, by Lemma 2.10,

st(V (lk(y, Y))≻y, sd(lk(y, Y))) ∼= Osd Y(y, V (Y)≻y).

We use a Mayer-Vietoris sequence for st(Y⪰y, sd Y) covered by st(y, sd(Y))
and st(Y≻y, sd Y). Then

st(y, sd(Y)) ∩ st(Y≻y, sd Y) = Osd Y(y, Y≻y) = Osd Y(y, V (Y)≻y)

and we get the following long exact sequence

· · · −→ H̃n+1(st(Y⪰y, sd Y)) −→ H̃n(Osd Y(y, V (Y)≻y)) −→
−→ H̃n(st(y, sd Y)) ⊕ H̃n(st(Y≻y, sd Y)) −→ H̃n(st(Y⪰y, sd Y)) −→ · · ·

All st(Y⪰y, sd Y), st(y, sd Y) and st(Y≻y, sd Y) have trivial reduced homology
groups. Therefore, H̃n(Osd Y(y, V (Y)≻y)) ∼= H̃n(st(V (lk(y, Y))≻y, sd(lk(y, Y)))
is trivial for all n ∈ Z.

Proof of Proposition 2.15. Similarly, as in the proof of Proposition 2.13, we pro-
ceed by induction on dim(X ∗ Y).

First, we observe that the case dim Y = 0 is covered by Proposition 2.13.
Indeed, the only issue is to verify (iii) of Proposition 2.13. If dim Y = 0, then Y
must contain a single vertex ŷ (due to the condition on homology of st(Y, sd(Y))).
Consequently, (iii) (of this proposition) implies that the last two vertices of ≺ are
x̂ and ŷ which verifies (iii) of Proposition 2.13.

Now, let us assume dim X ≥ 0 and dim Y ≥ 1. The order condition is satisfied
since Y is non-empty and it is equal to (V (X) ⊔ V (Y))≻x̂ by (iii).

For checking the link condition, we consider arbitrary z ∈ V (X) ⊔ V (Y)
distinct from the last vertex. We need to check star decomposability of the pair

(sd(lk(z, X ∗ Y)), V (lk(z, X ∗ Y))≻z). (2.7)

If z ∈ V (X) \ {x̂} ⊔ V (Y) \ Y , then the analysis is the same as in the proof
of Proposition 2.13.

If z = x̂, the pair (2.7) becomes

(sd(lk(x̂, X) ∗ Y), Y ).

If dim X = 0, then we further get (sd Y, Y ) which is star decomposable in vertices
by the assumptions. If dim X ≥ 1, then dim lk(x̂, X) ≥ 0 and we can use the
induction (note that sd lk(x̂, X) is star decomposable in vertices by the last vertex
condition for decomposition of sd X).

Finally, by assuming z ∈ Y \ {ŷ}, where ŷ is the last vertex of ≺, we get the
pair

(sd(X ∗ lk(z, Y)), V (lk(z, Y)≻z). (2.8)
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By Lemma 2.16 the pair st(V (lk(z, Y)≻z, sd(lk(z, Y))) has trivial reduced homol-
ogy groups. Therefore, (2.8) is star-decomposable in vertices by the induction hy-
pothesis. (Here we use that dim lk(z, Y) ≥ 0 and that (sd lk(z, Y), V (lk(z, Y)≻z))
is star decomposable in vertices by the link condition for the decomposition of
(sd Y, Y ).)

Finally, we check the last vertex condition. We need star decomposability
in vertices of sd lk(ŷ, X ∗ Y). Note that lk(ŷ, X ∗ Y) = X ∗ lk(ŷ, Y) as both
sides contain simplices of the form ξ ∪ η, where ξ ∈ X, η ∪ {ŷ} ∈ Y, and
ŷ ̸∈ η. Thus, we need star decomposability in vertices of sd(X ∗ lk(ŷ, Y)). This
is star decomposable in vertices by Proposition 2.13. (Here, we again use that
dim lk(ŷ, Y) ≥ 0 and also that sd lk(ŷ, Y) is star decomposable in vertices by the
last vertex condition in the decomposition of sd Y.)

2.5 Proof of the main result
In this section, we prove Theorem 2.3 which also finishes the proof of Theorem 2.2.

We first need two auxiliary observations that we will use in the proof.

Observation 2.17. The boundary of a simplex ∂σ satisfies the (HRC) condition.

Proof. We prove the observation by induction on dim σ, starting with dim σ = 0,
in which case ∂σ = ∅. If dim σ > 0, let σ′ ⊊ σ. We need to check that lk(σ′, ∂σ)
satisfies the (RC) condition. This link is again a boundary of a simplex. If σ′ ̸= ∅,
we get a simplex of small dimension, therefore, we can use the induction. If σ = ∅,
then lk(σ′, ∂σ) = ∂σ which is collapsible after removing an arbitrary facet (it is
a cone then).

Observation 2.18. Let K be a collapsible complex and w be an arbitrary vertex
of K. Then K collapses to w.

Proof. First, we use the well known fact that the collapses of K can be rearranged
so that they are ordered by non-increasing dimension [Whi39, Section 3]. In
particular, this means that K collapses to a graph G with V (G) = V (K). This
graph must be a tree as K is collapsible, and we can further rearrange the collapses
of G so that w is the last vertex.

Now we prove Theorem 2.3 by induction on the dimension of K. We know
that K satisfies the (RC) condition. Therefore, there are facets ϕ1, . . . , ϕt of K
such that K′ := K − {ϕ1, . . . , ϕt} is collapsible. We further consider a sequence
(K1, . . . , Ks) of elementary collapses of K′ where K′ = K1, Ks is a vertex (de-
noted by z), and Ki+1 arises from Ki by removing faces σi and τi where σi ⊂ τi

and dim σi = dim τi − 1, and τi is the unique maximal face containing σi. Then
we consider the following total order ≺ on nonempty faces of K, that is, vertices
of sd K:

ϕ1 ≺ · · · ≺ ϕt ≺ σ1 ≺ τ1 ≺ σ2 ≺ τ2 ≺ · · · ≺ σs−1 ≺ τs−1 ≺ {z}.

Our aim is to show that ≺ induces a star decomposition in vertices of sd2 K.
This we will also use in the induction; that is, for complexes L of lower dimension
satisfying the (HRC) condition, we assume that a sequence of removals of facets
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and collapses induces a star decomposition in vertices of sd2 L as above. The
proof is easy if dim K = 0 (here no collapses are used), thus we may assume that
dim K > 0 and proceed with the second induction step.

There is essentially nothing to check for the order condition as we provide a
total order on vertices of sd K. Thus the only issue is to check the link condition
and the last vertex condition.

In order to access the vertices of sd K more easily in the given order, we also
give them alternate names ω1, . . . , ωk so that

(ϕ1, . . . , ϕt, σ1, τ1, . . . , σs−1, τs−1, {z}) = (ω1, . . . , ωk)

where k = t + 2s − 1. That is, ϕ1 = ω1, σ1 = ωt+1, etc.

Checking the last vertex condition. Because it is easier, we check the last
vertex condition first. We need to check that sd lk(ωk, sd K) is star decompos-
able in vertices. Because ωk is a vertex of K, this complex is isomorphic to
sd2 lk(ωk, K) by Lemma 2.9. Therefore, this complex is star decomposable in
vertices by induction because lk(ωk, K) satisfies the (HRC) condition as this con-
dition is hereditary for links.

Checking the link condition: For checking the link condition, we need to
check that the pair (sd lk(ωi, sd K), V (lk(ωi, sd K))≻ωi

) is star decomposable in
vertices for i ∈ {1, . . . , k − 1}. For checking this condition we again need to
‘simplify’ this pair so that we remove the subdivision from the link. The tool for
this is again Lemma 2.9. For the first entry it gives

sd lk(ωi, sd K) ∼= sd(sd ∂ωi ∗ sd lk(ωi, K)).

We use the specific isomorphism Ψ from the proof of Lemma 2.9 and our next
task is to describe V (lk(ωi, sd K))≻ωi

) after applying this isomorphism.
First of all, we briefly describe the set V (lk(ωi, sd K))≻ωi

. The vertices of
lk(ωi, sd K) are the nonempty faces η of K such that either η ⊊ ωi or ωi ⊊ η.
Therefore, the set V (lk(ωi, sd K))≻ωi

consists of faces η as above, which in addition
satisfy η ≻ ωi. The isomorphism Ψ from the proof of Lemma 2.9 maps η again
to η if η ⊊ ωi and it maps η to η \ ωi if ωi ⊊ η. Hence

Ψ(V (lk(ωi, sd K))≻ωi
) = V (sd ∂ωi)≻ωi

⊔ {η \ ωi : η ⊋ ωi, η ≻ ωi},

which we denote by W . Thus, we need to check the star decomposability in
vertices of the pair

(sd(sd ∂ωi ∗ sd lk(ωi, K)), W ). (2.9)

We distinguish several cases according to the type of ωi.

1. ωi = ϕi, that is, i ≤ t:
In this case, ϕi is a facet. Therefore, lk(ϕi, K) = ∅. Also η ≻ ϕi for all proper
subfaces η. Therefore, the pair (2.9) simplifies to (sd(sd ∂ϕi), V (sd ∂ϕi)); see
Figure 2.10. That is, we only need that sd(sd ∂ϕi) is star decomposable in
vertices which follows by the induction and Observation 2.17.
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K

φi

φi

sd2K

lk(φi, sd
2K)

sd lk(φi, sdK) ∼= sd2∂φi

∼ =

Figure 2.10: Isomorphisms for verifying the link condition in case 1. We consider
the case of the removal of the facet ϕi. If we were checking star decomposabil-
ity only, we would be interested in star decomposability of lk(ϕi, sd2 K). For
star decomposability in vertices, this translates to checking the link condition
for sd lk(ϕi, sd K) which is further isomorphic to sd2 ∂ϕi (in this case, the last
isomorphism is even equality).

2. ωi = σj for some j, that is, i > t and t − i is odd:
We need to describe W , for which we need to describe the faces η such that
η ⊊ σj or σj ⊊ η such that η ≻ σj. As σj induces an elementary collapse
in a sequence of collapses of K′, we get τj ≻ σj but η ≺ σj for any η ⊋ σj

different from τj. On the other hand all proper subfaces of σj are removed
only later on in collapsing of K′. Altogether W = V (sd ∂σj) ⊔ {τj \ σj}.
See Figure 2.11 for an example of the pair (2.9) in this case.
Now, we aim to use Corollary 2.14 with

(X, X) = (sd ∂σj, V (sd ∂σj))

and
(Y, Y ) = (sd lk(σj, K), {τj \ σj}).

The pair (sd X, X) is star decomposable in vertices by Observation 2.17 and
the induction. For checking star decomposability in vertices of (sd Y, Y ), we
know that lk(σj, K) satisfies the (HRC) condition. In particular, lk(σj, K)
is collapsible after removing some number of facets, and the subsequent
collapses can be rearranged so that the vertex τj \ σj is the last vertex in
the sequence of collapses. (If dim lk(σj, K) = 0, then we instead rearrange
the removals of the facets so that τj \σj is the last.) Now, by induction, this
sequence of removals of facets and collapses induces a star decomposition
in vertices of sd sd lk(σj, K) such that {τj \ σj} is the last vertex in this
decomposition. This exactly means that (sd Y, Y ) is star decomposable in
vertices.
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K

sd2K

σ1

τ1
σ2 τ2

σ2

σ1

τ1 τ2

a

b

a

b

lk(σ2, sd
2K)

sd lk(σ2, sdK) ∼= sd(sd∂σ2 ∗ sd lk(σ2,K))

∼ =

a ∈ W

b ∈ W

cd

c = τ2 \ σ2 ∈ Wd = τ1 \ σ2 /∈ W

σ1 ≺ τ1 ≺ σ2 ≺ τ2 ≺ · · ·

Figure 2.11: Isomorphisms for verifying the link condition in case 2. Here
we consider the case σj = σ2 coming from the collapses on the top left
picture. The vertex decomposability of (sd lk(σ2, sd K), V (lk(σ2, sd K))≻σ2) =
(sd lk(σ2, sd K), {a, b, τ2}) in the middle picture translates to vertex decompos-
ability of the pair (sd(sd ∂σ2 ∗ sd lk(σ2, K)), W ) in the top right picture where
W = {a, b, τ2 \ σ2}, which coincides with V (sd ∂σj) ⊔ {τj \ σj} as required.
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K

sd2K

σ1

τ1

σ2

τ2

τ3

σ1

τ1 τ2

b

σ3 = a

b

lk(τ3, sd
2K)

sd lk(τ3, sdK) ∼= sd(sd∂τ3 ∗ sd lk(τ3,K))

∼ =

a = σ3 ̸∈ W

b ∈ W

cd

c = τ2 \ τ3 ̸∈ Wd = τ1 \ τ3 /∈ W

σ3 = a

τ3

σ2

σ1 ≺ τ1 ≺ σ2 ≺ τ2 ≺ σ3 ≺ τ3 ≺ · · ·

Figure 2.12: Isomorphisms for verifying the link condition in case 3. Here we con-
sider the case τj = τ3 coming from the collapses on the top left picture. The vertex
decomposability of (sd lk(τ3, sd K), V (lk(τ3, sd K))≻τ3) = (sd lk(τ3, sd K), {b}) in
the middle picture translates to vertex decomposability of the pair (sd(sd ∂τ3 ∗
sd lk(τ3, K)), W ) in the top right picture where W = {b}, which coincides with
V (sd ∂τj) \ {σj} as required.

Altogether, Corollary 2.14 implies that the pair (sd(X ∗ Y), X ⊔ Y ) is star
decomposable in vertices which is exactly the required pair (2.9).

3. ωi = τj for some j, that is, i > t and t − i is even:
We again first determine W . For each η ⊋ τj, we get η ≺ τj as τj is
a maximal face during the elementary collapse. On the other hand, for
η ⊊ τj we get η ≻ τj unless η = σj as all subfaces of τj have to be present
at the moment of removing of σj, and τj immediately succeeds. Altogether,
W = (V (∂τj) \ {σj}) ⊔ ∅. See Figure 2.12 for an example of the pair (2.9)
in this case.
We aim to use Proposition 2.15 with X = sd lk(τj, K), Y = sd ∂τj and
Y = V (sd ∂τj) \ {σj}. We get that X is star decomposable in vertices
by induction as lk(τj, K) satisfies the (HRC) condition. We also need that
(sd Y, Y ) is star decomposable in vertices. For this we use Observation 2.17
and the induction while choosing σj to be the first face removed from
V (sd ∂τj). Then Y = V (sd ∂τj)≻′{σj} where ≻′ is the corresponding or-
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der on V (sd ∂τj). Altogether, for application of Proposition 2.15 we choose
the order ≻′ on V (sd lk(τj, K)) ⊔ V (sd ∂τj) so that it starts with σj, it con-
tinues on V (sd lk(τj, K) in order of a star decomposition in vertices of sd X
and finally it continues on Y = V (sd ∂τj) \ {σj} in the already prescribed
order ≻′. Then we get the required conclusion that (sd(X ∗ Y), Y ), which
is the pair (2.9), is star decomposable in vertices. This finishes the proof of
Theorem 2.3.
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3. NP-hardness of PL geometric
category 2

3.1 Introduction
An important notion in homotopy theory is the Lusternik–Schnirelmann category
(LS category) of a topological space. This notion is important not only as a purely
mathematical object (see, e.g., the book [CLOT03]) but also in computer science
as it is closely related to the topological complexity of motion planning; see,
e.g, [Far03, Far04, FM20].

The LS category, cat(X), of a topological space X is the smallest n (if it
exists) such that X can be covered by n open sets so that the inclusion of each
of the open sets is nullhomotopic in X. One difficulty when working with the LS
category is that it is often hard to determine. For example, determining whether
cat(X) = 1 is equivalent to contractibility of X. This is known to be undecidable
if X is a simplicial complex of dimension at least 4; see [VKF74, §10] and [Tan16,
Appendix] while it is an open problem whether this is decidable for simplicial
complexes of dimension 2.1 (We are mainly interested in complexes of dimension
2.)

In order to bound the LS category from above we can use some closely re-
lated notions. One of them is the geometric category, gcat(X), which requires
that the open sets covering X are already contractible. (For more details see
again [CLOT03].) If X is a polyhedron, this is equivalent to finding the min-
imum number of subpolyhedra covering X each of which is contractible. This
may make estimating gcat(X) sometimes easier. However, determining whether
gcat(X) = 1 is still equivalent to contractibility of X.

Next step in this direction has been done by Borghini [Bor20] who introduced
PL geometric category plgcat(P ) of a compact (connected) polyhedron P . It
is the minimum number of PL collapsible subpolyhedra of P that cover P . In
this case determining whether plgcat(P ) = 1 is equivalent to asking whether
P is PL collapsible. At least for 2-complexes this is a significant improvement
as PL collapsibility of 2-complexes is a purely combinatorial notion which is
easy to check. Indeed, it is not hard to derive from known results that this is
a polynomially checkable criterion (by performing the collapses greedily on an
arbitrary triangulation).

Proposition 3.1. Given a 2-dimensional triangulated polyhedron P , it can be
checked in polynomial time whether plgcat(P ) = 1.

Borghini further proved [Bor20] that a connected d-dimensional polyhedron
has PL geometric category at most d + 1. For connected 2-polyhedra, this means
that the only options are 1, 2, or 3. One of the main aims in [Bor20] is to provide
a partial characterization of polyhedra P with plgcat(P ) ≤ 2 (which we do not
reproduce here). All these positive results suggest that determining plgcat(P )

1Via tools in [HAMS93] (using the exercise on page 8) decidability of this problem is equiv-
alent to determining whether a given balanced presentation of a group presents a trivial group.
In this form, the problem is mentioned for example in [BMS02].
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τi′

Figure 3.1: A subdivision of triangle τi into seven parts from the proof of Propo-
sition 3.3.

could be easy for 2-polyhedra. In particular, one should be curious whether
it is possible to extend Borghini’s results to a full characterization that would
distinguish 2-polyhedra with PL geometric category equal to 2 from those for
which it equals 3.

We will show that this is essentially impossible, at least for an efficiently al-
gorithmically checkable characterization. In technical terms, we show that deter-
mining whether plgcat(P ) ≤ 2 is NP-hard. Let us recall that NP-hard problems
are believed not to be solvable in polynomial time.

Theorem 3.2. Given a 2-dimensional triangulated polyhedron P , it is NP-hard
to decide whether plgcat(P ) ≤ 2.

We should also point out that we actually do not know whether recognition
of triangulated polyhedra with plgcat(P ) ≤ 2 belongs to the class NP(not even
whether it is decidable). This could be certified by two subpolyhedra witnessing
plgcat(P ) ≤ 2 but we do not know whether we can bound their sizes.

A useful step towards our proof of Theorem 3.2 is that we observe a relation
between plgcat(P ) ≤ 2 and shellability (of some triangulation) of P .

Proposition 3.3. If a 2-dimensional polyhedron P admits a (pure) shellable
triangulation, then plgcat(P ) ≤ 2.

Proof. The proposition easily follows from the theorem of Hachimori (Theo-
rem 2.1) which we have already mention in Chapter 2.

Let K be a pure shellable triangulation of P . By Theorem 2.1 there is a list of
triangles τ1, . . . , τℓ such that the resulting complex K′ is collapsible after removing
these triangles. Now we build an auxiliary complex L from K by subdividing
each of the triangles τ1, . . . , τℓ as in Figure 3.1. We also build a complex L′ by
removing the middle triangle τ ′

i from each subdivided τi in L. The complex K′

is a subcomplex of L′ and it is not hard to see that L′ collapses to K′. Hence L′

is collapsible as well. Then |L′| is one of the two collapsible polyhedra covering
P . The second polyhedron is obtained by taking the union of τ ′

i and connecting
them along the 1-skeleton of L so that the resulting complex is collapsible (the
connection along the 1-skeleton of L can be, for example, obtained so that we pick
two edges in each triangle and then we extend this forest to a spanning tree).

It has been shown by Goaoc, Paták, Patáková, Tancer and Wagner [GPP+19]
that shellability is NP-hard already for 2-dimensional simplicial complexes. In
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addition, the reduction in [GPP+19] is quite resistant with respect to subdivi-
sions. Thus, we could hope to prove Theorem 3.2 in the following way: Consider
a complex K that appears in the reduction in [GPP+19]. If K is shellable, then
plgcat(|K|) ≤ 2 by Proposition 3.3 (let us recall that |K| stands for the polyhe-
dron of K). If we were able to show the other implication: ‘if K is not shellable,
then plgcat(|K|) = 3’, we would immediately get a proof of Theorem 3.2. Unfor-
tunately, the other implication, stated this way, is not true: with some more effort
(which we do not do here), it could be shown that every complex K from the
reduction in [GPP+19] satisfies plgcat(|K|) = 2. However, this problem can be
circumvented. We construct certain enriched complex K+ (by attaching a torus
in a suitable way to every triangle of K—it may be slightly surprising that this
indeed helps). It turns out that plgcat(|K+|) stays 2 for shellable K but it grows
to 3 for non-shellable K (coming from [GPP+19]). This will prove Theorem 3.2.

We point out that Proposition 3.3 as stated is not really necessary in the
proof of Theorem 3.2. But we state it here as it provides the motivation for
our approach as well as it can be seen as a complementary result to the re-
sults of Borghini [Bor20] providing some sufficient (or necessary) conditions for
plgcat(P ) ≤ 2.

We also point out that instead of the reduction from [GPP+19], it would
be in principle possible to use also a modification of reduction by Santamaŕıa-
Galvis and Woodroofe [SGW21] where some of the gadgets are slightly simplified.
However, some intermediate steps in [GPP+19] are done via collapsibility thus,
for our purposes, it is easier to adapt to the setting in [GPP+19].

3.2 PL collapsibility of 2-complexes
It is a folklore result going back at least to Lickorish (according to [HAMS93])
that simplicial 2-complexes can be collapsed greedily:

Proposition 3.4 (see [HAMS93, page 20] or [MF08, Lemma 1 + Corollary 1]).
Let K be a collapsible 2-complex. Assume that K collapses to a subcomplex L.
Then L is collapsible as well. In particular, it can be checked in polynomial time
whether a simplicial 2-complex is collapsible.

For PL collapsibility we can essentially deduce the same conclusion as for
collapsibility as soon as we observe that PL collapsibility of a 2-complex does not
depend on the choice of the subdivision, which also might be a folklore result.

Lemma 3.5. Let K be a simplicial complex of dimension at most 2 and K′ be a
subdivision of K. Then K is collapsible if and only if K′ is collapsible.

In the proof of the lemma we use the following observation.

Observation 3.6. Let τ be a triangle with vertices a, b, c. Let K′ be an arbitrary
subdivision of τ . Then K′ collapses to the subcomplex V′ formed by the subdivision
of the edges ab and bc.

Proof. We greedily perform collapses through free edges of K′ which are not in
V′. Let L′ be the resulting complex. We observe that L′ contains no triangle.
Indeed, every edge contained in some triangle of L′ is either an edge of V′ or it
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has to be contained in both neighboring triangles (otherwise we could continue
with collapses). This means, because the dual graph of K′ is connected, that once
there is a single triangle of K′ in L′, then L′ contains all triangles of K′ which is
a contradiction.

Thus, L′ contains no triangles and it has the same homotopy type as K′. That
means that L′ is a tree. Now we greedily perform collapses of edges not in V′

through vertices of degree 1. By essentially the same argument as above, only
the edges of V′ remain (otherwise, we would find a cycle in L′).

Proof of Lemma 3.5. First, we show that if K is collapsible, then K′ is collapsible
by induction on the number of simplices of K (the case of one vertex is trivial).
Assume that K1 arises from K by the first elementary collapse in some collapsing
of K. First, assume that it removes an edge ac and a triangle abc. Perform
the collapses from Observation 3.6 on K′ obtaining a complex K′

1. Then K′
1 is

a subdivision of K1. Thus, it collapses by induction. The other option is that
the first elementary collapse removes some vertex a and some edge ab. Then we
obtain a subdivision K′

1 of K1 by collapses on K′ removing a and the subdivided
edge ab in direction from a towards b.

Now, we show that if K′ is collapsible, then K is collapsible again by induction
on the number of simplices of K. Assume that K′ is collapsible. This implies
that K′ contains a free face σ′ (a vertex or an edge) which subdivides a face σ of
K which again has to be free. We perform a collapse on K through σ obtaining
K1. As in the previous paragraph, we also collapse K′ to a subdivision K′

1 of K1.
By Proposition 3.4 we get that K′

1 is collapsible. Therefore, K1 is collapsible by
induction which also implies that K is collapsible.

Proof of Proposition 3.1. Let K be the input triangulation of P . By definition,
plgcat(P ) = 1 if and only if P is PL collapsible which occurs if and only if some
subdivision K′ of K is collapsible. By Lemma 3.5, it is sufficient to check whether
K is collapsible. This can be done in polynomial time due to Proposition 3.4.

3.3 NP-hardness of PL geometric category 2
In this section, we prove Theorem 3.2. As we have sketched in the introduc-
tion, in our construction we need to attach a torus to every triangle of a certain
intermediate complex. We start with the details regarding this attachment.

3.3.1 Attaching tori
First, let us us consider the standard torus T = S1 × S1. An important curve in
T is the longitude λ = S1 × {·} where ‘·’ stands for some fixed point in S1.

Definition 3.7 (Enriched complex K+). Given a simplicial complex K, we define
the enriched complex K+ as follows. For each triangle τ ∈ K we consider a copy
Tτ of the standard torus with longitude λτ triangulated as in Figure 3.2. We get
K+ as a result of gluing all tori Tτ to K so that we identify λτ with ∂τ . In the
sequel, we consider K as well as all the tori Tτ as subcomplexes of K+.

Note that the enriched complex K+ can be constructed in polynomial time in
the size of K.
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λτ

λτ

Tτ

Aτ,1

Aτ,2

λτ

λτ

Tτ

Figure 3.2: Left: The torus Tτ with longitude λτ . Opposite edges are identified
as usual. Right: Splitting Tτ to two annuli.

Observation 3.8. If K admits a covering by two collapsible subcomplexes K1, K2
such that both K1 and K2 contain the whole 1-skeleton of K then K+ can be also
covered by two collapsible subcomplexes.

Proof. Split each Tτ to two annuli Aτ,1 and Aτ,2 as in Figure 3.2. (Both of them
are subcomplexes of Tτ and they share λτ on one of their boundaries.) Take K+

i

as the union of Ki and all annuli Aτ,i for i ∈ {1, 2}. Then K+
1 and K+

2 cover K+.
In addition, they are both collapsible because K+

i collapses to Ki as each Aτ,i

collapses to λτ .

We continue with the main technical lemma for our reduction.

Lemma 3.9. Let P be a polyhedron which is a union of two subpolyhedra R and
T . Assume that T = S1 × S1 is the torus and assume that R and T intersect
exactly in the longitude λ = S1 × {·} of T . Assume that P can be covered by two
contractible subpolyhedra Q1, Q2. Then λ ⊆ Q1, Q2 and λ is nullhomologous in
R ∩ Q1 as well as in R ∩ Q2.

Proof. Let Ai := T ∩ Qi for i = 1, 2. The lemma is implied by the following two
claims where all the homology is considered with Z2 coefficients.

Claim 3.9.1.

(i) If H1(A1) = 0, then dim H1(A2) ≥ 2.

(ii) If H1(A2) = 0, then dim H1(A1) ≥ 2.

Claim 3.9.2.

(i) If H1(A1) ̸= 0, then dim H1(A1) = 1, λ belongs to Q1 and λ is nullhomolo-
gous in R ∩ Q1.

(ii) If H1(A2) ̸= 0, then dim H1(A2) = 1, λ belongs to Q2 and λ is nullhomolo-
gous in R ∩ Q2.
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A1
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N1 : +
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λ

λ

Figure 3.3: A1, N1 and C inside T .

Indeed, the conjunction of Claims 3.9.1 and 3.9.2 implies that only option
is that dim H1(A1) = dim H1(A2) = 1 and thus we can use the conclusions of
Claim 3.9.2. Therefore, it remains to prove the claims. In each of the claims, we
only prove the first item as the other one is symmetric.

Proof of Claim 3.9.1(i). Let N1 be the regular neighborhood2 of A1 inside T ,
which is homotopy equivalent to A1; see Figure 3.3. Then N1 is a surface with
boundary. Thus we may apply the Lefschetz duality3 obtaining

H1(N1, ∂N1) ∼= H1(N1) ∼= H1(N1) ∼= H1(A1) = 0 (3.1)

where the second isomorphism follows from the fact that the homology and the
cohomology groups are isomorphic over a field.

Now let C be the closure of the complement of N1 in T , that is, C := T \ N1.
By the excision property of homology, and then by (3.1)

H1(T, C) ∼= H1(N1, ∂N1) = 0. (3.2)

Finally, we consider the long exact sequence of the pair:

· · · → H1(C) i∗−→ H1(T ) → H1(T, C) → · · ·

The map i∗ is induced by the inclusion i : C → T . Because of (3.2), the map
i∗ is surjective. The inclusion i can be decomposed into inclusions j : C → A2
and k : A2 → T . (Note that C ⊆ A2 as A1 and A2 cover T .) By functorial-
ity of homology, k∗ : H1(A2) → H1(T ) must be surjective as well. Therefore,
dim H1(A2) ≥ dim H1(T ) = 2.

Proof of Claim 3.9.2(i). Let R1 := R ∩ Q1. Consider the Mayer-Vietoris exact
sequence:

· · · → H1(A1 ∩ R1)
f−→ H1(A1) ⊕ H1(R1)

g−→ H1(Q1) → · · ·

As we assume that Q1 is contractible, we get H1(Q1) = 0. Therefore, f
is surjective (from exactness). As we also assume that H1(A1) ̸= 0, there is

2In this case N1 is a 2-manifold with boundary inside T which collapses to A1. For a general
definition of regular neighborhood see [RS82, Chapter 3].

3Lefschetz duality (see e.g. Theorem 3.43 in [Hat02]) over Z2: Let M be an n-dimensional
compact manifold with boundary N . Then Hi(M, N ;Z2) ∼= Hn−i(M ;Z2) for every i.
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a nonzero vector v = (z, 0) ∈ H1(A1) ⊕ H1(R1). We know v ∈ im f as f is
surjective. In particular, H1(A1 ∩ R1) ̸= 0. On the other hand, A1 ∩ R1 ⊆
T ∩ R = λ. Therefore, A1 ∩ R1 = λ. This gives λ ⊆ Q1 as we need. Using that
f is surjective again, we get dim H1(A1) + dim H1(R1) ≤ dim H1(A1 ∩ R1) = 1.
Because H1(A1) ̸= 0 we actually get dim H1(A1) = 1 and dim H1(R1) = 0. This
gives that λ is nullhomologous in R1 = R ∩ Q1.

3.3.2 Construction from [GPP+19]
As we sketched in the introduction, we use the construction from [GPP+19] as
an intermediate step. Given that this construction is somewhat elaborated, we
prefer to state it as a blackbox only mentioning the properties that we need in
our reduction.

The NP-hardness in [GPP+19] is proved by a reduction from the classical
3-satisfiability problem.

Proposition 3.10 ([GPP+19]). There is a polynomial time algorithm that pro-
duces from a given 3-CNF formula ϕ (with n variables) a pure 2-dimensional
complex Kϕ with the following properties.

(i) Kϕ contains pairwise disjoint triangulated 2-spheres S1, . . . , Sn, one for each
variable.

(ii) The second homology group, H2(Kϕ), is generated by the spheres S1, . . . , Sn.
In particular, H2(Kϕ) ∼= Zn

2 and no triangle outside the spheres S1, . . . , Sn

is contained in a 2-cycle.

(iii) If ϕ is satisfiable, then there are triangles τi in Si for every i ∈ [n] such
that Kϕ becomes collapsible after removing these triangles. In addition, for
every i ∈ [n], there are at least two options how to pick τi in Si. (Such a
choice can be done independently in each Si yielding at least 2n collapsible
subcomplexes.)

(iv) If an arbitrary subdivision of Kϕ becomes collapsible after removing some n
triangles, then ϕ is satisfiable.

Proof. The proof of the proposition consists mostly of references to [GPP+19].
However, a few items are not as explicitly stated in [GPP+19] as we need them
here, thus we explain in detail how all the items of the proposition can be deduced
from the text in [GPP+19].

The construction of Kϕ is given in Section 4 of [GPP+19]. The spheres
S1, . . . , Sn of item (i) are the spheres S(u) introduced in §4.3 of [GPP+19]. For
checking the other items, we first point out that [GPP+19, Proposition 12] states
that the number of variables, n, is equal to the reduced Euler characteristic
χ̃(Kϕ).

It is stated in Remark 13 in [GPP+19] that Kϕ is homotopy equivalent to the
wedge of n 2-spheres; in particular, dim H2(Kϕ) = n. Then item (ii) immediately
follows as the disjoint spheres S1, . . . , Sn generate a subspace of dimension n in
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H2(Kϕ). Unfortunately, Remark 13 is only a side remark in [GPP+19] and it
is not proved there. Therefore, we explain in the last section of this chapter
(Section 3.3.4), Proposition 3.11, how Remark 13 of [GPP+19] follows from their
tools.

Item (iii), using n = χ̃(Kϕ), is the content of Proposition 8(ii) in [GPP+19]
with the addendum that it is also necessary to check the proof: In the beginning
of Section 7 of [GPP+19], it is specified that the triangles are removed in certain
regions D[ℓ(u)]. By checking the construction of D[ℓ(u)] in §4.3 of [GPP+19],
these regions are in the correct spheres (Si in our notation; S(u) in the notation
of [GPP+19]) and in addition there are at least two choices of the removed triangle
for every i (actually exactly three choices).

Item (iv), using n = χ̃(Kϕ), is exactly the content of Proposition 8(iii).

3.3.3 The final reduction
Proof of Theorem 3.2. Given a 3-CNF formula ϕ and its corresponding complex
Kϕ we construct its enriched complex K+

ϕ . (See Definition 3.7.) Theorem 3.2
is proved by showing that ϕ is satisfiable if and only if plgcat(K+

ϕ ) ≤ 2 as 3-
satisfiability is an NP-hard problem.

(a) ϕ is satisfiable =⇒ K+
ϕ can be covered by two collapsible subcomplexes.

Suppose that the formula ϕ is satisfiable. Then by Proposition 3.10(iii) Kϕ is
collapsible after removal of n triangles, one from each sphere Si, and for each
Si there are at least two options, say τ

(1)
i , τ

(2)
i , how to pick such a triangle.

Therefore, the subcomplexes

K1 := Kϕ \ {τ
(1)
1 , . . . , τ (1)

n }, K2 := Kϕ \ {τ
(2)
1 , . . . , τ (2)

n }

are collapsible subcomplexes of Kϕ and they cover it.
Moreover, each of K1 and K2 contains the whole 1-skeleton of Kϕ. Indeed,
the complex Kϕ is pure thus every edge of Kϕ is contained in at least one
triangle and in addition in at least two triangles if it is an edge in some of the
spheres Si. In order to get K1 or K2, at most one triangle is removed from
each Si. Therefore, each edge of Kϕ is still contained in at least one triangle
of K1 and in at least one triangle of K2. Then Observation 3.8 implies that
K+

ϕ can be covered by two collapsible subcomplexes.

(b) A subdivision
(︂
K+

ϕ

)︂′
of K+

ϕ can be covered by two collapsible subcomplexes
=⇒ ϕ is satisfiable.
First, we sketch the idea: Let (K+

1 )′ and (K+
2 )′ be the two collapsible sub-

complexes of (K+
ϕ )′ covering it. (We point out that (K+

i )′ is just a notation
not implying that (K+

i )′ is a subdivision of some complex K+
i .) We want to

verify the assumption in Proposition 3.10(iv) in order to deduce that ϕ is sat-
isfiable. For this, we need a subdivision of Kϕ such that removing n triangles
from this subdivsion yields a collapsible complex. In fact, our subdivision
will be trivial, thus we need to find n triangles in Kϕ such that their removal
yields a collapsible complex. We will take (K+

1 )′, say, and we will (essen-
tially) deduce that in each Si there must be τi such that (K+

1 )′ must miss at
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least one triangle in the subdivided τi. These triangles τi are the triangles
we want to remove from Kϕ. However, we need several intermediate claims
to deduce that the resulting complex is indeed collapsible. (We will use the
second complex (K+

2 )′ only very sparingly in order to verify the assumptions
of Lemma 3.9.)
Let K′

ϕ be the subcomplex of (K+
ϕ )′ corresponding to Kϕ in this subdivision.

(Let us recall that this means that K′
ϕ is formed by simplices σ ∈ (K+

ϕ )′ such
that σ ⊆ |Kϕ|.) Let K′

1 := K′
ϕ ∩ (K+

1 )′.

Claim 3.10.1. The complex K′
1 is a collapsible subcomplex of K′

ϕ.

Proof. Our aim is to show that (K+
1 )′ collapses to K′

1. Then it follows from
Proposition 3.4 that K′

1 is collapsible.
We pick an arbitrary triangle τ of Kϕ. Recall that Tτ is the torus attached
to τ . (See Definition 3.7.) Let T′

τ be the subcomplex of (K+
ϕ )′ corresponding

to Tτ . Note that (the subdivsion of) ∂τ belongs to (K+
1 )′ by Lemma 3.9. We

also observe that T′
τ is not a subcomplex of (K+

1 )′ otherwise (K+
1 )′ would

contain a nontrivial 2-cycle which is not possible if it is collapsible.
Now we proceed similarly as in the proof of Observation 3.6. We greedily
perform collapses in (K+

1 )′ on simplices of T′
τ with the exception that we are

not allowed to remove the simplices belonging to (the subdivision of) ∂τ . (See
Figure 3.4 for a realistic example of the intersection of (K+

1 )′ and T′
τ .) Let L′

be the resulting complex. We first observe that L′ contains no triangles of T′
τ

as at least one triangle is missing and the dual graph to our triangulation of
T′

τ is connected even after removing the dual edges crossing ∂τ . Therefore,
L′ ∩T′

τ is a graph. Due to our restriction on collapses, subdivided ∂τ is inside
this graph. We observe that no other (graph theoretic) cycle may belong to
this graph. Indeed, another cycle would contain an edge which is not in
∂τ , thus not contained in any triangle of L′. Therefore, such a cycle could
not be filled with a 2-chain, and thus it would be necessarily homologically
nontrivial in L′ which is a contradiction with the fact that L′ is contractible
(obtained by collapses from a collapsible complex). Thus, we may conclude
that L′ ∩T′

τ is the subdivided ∂τ with a collection of pendant trees. However,
these pendant trees have to be actually trivial as they get collapsed during
the greedy collapses.
Altogether we have collapsed (K+

1 )′ to a complex L′ which agrees with K′
1

on K′
ϕ while we have removed all simplices of T′

τ except those that belong
to K′

ϕ. Now we pick another triangle σ of Kϕ and we remove (via collapses)
the simplices of T′

σ except those belonging to K′
ϕ by an analogous approach.

After passing through every triangle of Kϕ, we get exactly K′
1 as required.

Claim 3.10.2. For every triangle τ ∈ Kϕ, ∂τ is contained in |K′
1| and it is

nullhomologous in |K′
1|.

Proof. Let P := |K+
ϕ | = |(K+

ϕ )′|. Let R be the polyhedron of Kϕ and all tori
of K+

ϕ except Tτ . Let Q1 := |(K+
1 )′| and Q2 := |(K+

2 )′|. Then R, |Tτ |, Q1
and Q2 satisfy the assumptions of Lemma 3.9. Then we deduce that ∂τ is
nullhomologous in R ∩ Q1. Assume that τ is such that T′

τ is the first torus
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λτ = ∂τ

λτ = ∂τ

T′
τ

(K+
1 )

′ ∩T′
τ

λτ = ∂τ

λτ = ∂τ

Figure 3.4: Left: A realistic example how may (K+
1 )′ intersect Tτ . Right: Greedy

collapses (only very schematically without emphasizing the triangulation).

to be removed in the proof of Claim 3.10.1, we can choose so. Then R ∩ Q1
is exactly the polyhedron of L′ in the proof of Claim 3.10.1. In particular,
L′ collapses to K′

1. As collapses provide a homotopy equivalence, we deduce
that ∂τ is nullhomologous in |K′

1| as well.

Now, for any triangle τ ∈ Kϕ let τ ′ be the subcomplex of K′
ϕ corresponding

to this triangle.

Claim 3.10.3.

(i) If τ ∈ Kϕ is a triangle which does not belong to any of the spheres
S1, . . . , Sn, then τ ′ is a subcomplex of K′

1.
(ii) For every i ∈ [n], all triangles τ in Si except exactly one satisfy that τ ′

is a subcomplex of K′
1.

Proof. Let τ ∈ Kϕ. Due to Claim 3.10.2, it has to be possible to fill the
subdivision of ∂τ by some 2-chain c = c(τ) in K′

1.
If τ does not belong to any of the spheres S1, . . . , Sn, then the only option
for c is to contain all simplices of τ ′. Indeed, if there is another such c′, then
considering τ ′ as a 2-chain, we get a nontrivial 2-cycle τ ′ + c′ with support
at least partially outside the spheres S1, . . . , Sn which contradicts Proposi-
tion 3.10(ii). Therefore, τ ′ must be a subcomplex of K′

1 which concludes
(i).
Now for (ii), take i ∈ [n]. Then K′

1 has to miss at least one triangle in
|Si| otherwise subdivided Si forms a non-trivial 2-cycle in K′

1 which is a
contraction with Claim 3.10.1. Assume that τ in Si was chosen so that
this missing triangle belongs to τ ′. Then ∂τ splits (subdivided) Si to two
hemispheres; one of them is formed by τ ′ and another is formed by the union
of subcomplexes σ′ taken over all triangles σ in Si different from τ . By using
Proposition 3.10(ii) again, the only options are that c = c(τ) contains all the
simplices of one or the other (subdivided) hemispheres. But the hemisphere
of τ ′ is ruled out as τ ′ misses a triangle of K′

1. Thus c has to be filled by
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S1 S2

τ ′1 τ ′2

K′
φ : + +

K′
1 : +

+

+

(K−
φ )

′ : +

Figure 3.5: A schematic drawing of K′
ϕ, K′

1 and K−
ϕ . We emphasize that this not

really a realistic drawing of K′
ϕ (with the same polyhedron as Kϕ) as constructed

in [GPP+19]. We only attempt to draw as simple complex as possible satisfying
conclusions (i) and (ii) of Proposition 3.10 and so that K′

1 is collapsible. (The
space inside the spheres is completely hollow.)

the other hemisphere. Then we conclude (ii) for all simplices σ in Si except
exactly τ as required.

In the light of Claim 3.10.3(ii), let τi be the unique triangle of Si such that
τ ′

i is not a subcomplex of K′
1. Let K−

ϕ be the subcomplex of Kϕ obtained
by removing all triangles τ1, . . . , τn and let (K−

ϕ )′ be the subcomplex of K′
ϕ

corresponding to K−
ϕ . Note that Claim 3.10.3 implies that (K−

ϕ )′ is a sub-
complex of K′

1. See Figure 3.5 for comparison of K′
ϕ, K′

1 and K−
ϕ after using

Claim 3.10.3.

Claim 3.10.4. K′
1 collapses to (K−

ϕ )′.

Proof. The complexes K′
1 and (K−

ϕ )′ differ only so that K′
1 may contain some

simplices of τ ′
i for some i (except those that subdivide ∂τi) which are not in

(K−
ϕ )′.

Now, we continue analogously as we did in the proof of Observation 3.6
or Claim 3.10.1. We greedily collapse all simplices of K′

1 in τ ′
i except those

that subdivide ∂τi. We first deduce that the resulting complex contains no
triangles of τ ′

i as at least one triangle was missing in the beginning. Then we
deduce that there is no graph-theoretic cycle among simplices of τ ′

i except the
one corresponding to ∂τi by the same argument as in the proof of Claim 3.10.1
(using that K′

1 is collapsible). Then, we deduce that among the simplices of
τ ′

i only the simplices subdividing ∂τi remain in the complex. After repeating
this approach for every i ∈ [n] we obtain (K−

ϕ )′.
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Now, we have acquired enough tools to conclude the case (b) and therefore
to conclude the proof of the theorem. From Claims 3.10.1 and 3.10.4 and
Proposition 3.4 we deduce that (K−

ϕ )′ is collapsible. By Lemma 3.5 we deduce
that K−

ϕ is collapsible. Finally, by Proposition 3.10(iv) we deduce that ϕ is
satisfiable.

3.3.4 Verification of Remark 13 from [GPP+19]
Our aim in this subsection is to verify Remark 13 in [GPP+19] which is stated but
not proved in [GPP+19]. The exact statement we need is given by the following
proposition. We will provide all the necessary detail in order to verify correctness
of Remark 13 of [GPP+19]. On the other hand, we warn the reader that our
proof is not self-contained but it relies on the construction of Kϕ and partially the
notation in [GPP+19]; thus it is necessary to consult the contents of [GPP+19].

Proposition 3.11. The complex Kϕ from [GPP+19] is homotopy equivalent to
the wedge of n 2-spheres (where n is the number of variables).

In the proof, we need the following simple lemma.

Lemma 3.12. Let K1, K2 be simplicial complexes. Assume that K1 ∩ K2 and
K2 are contractible, then K1 and K1 ∪ K2 are homotopy equivalent.

Proof. It is well known that contracting a contractible subcomplex is a homotopy
equivalence [Mat03, Proposition 4.1.5]. Therefore, we get

|K1 ∪ K2| ≃ |K1 ∪ K2|/|K2| = |K1|/|K1 ∩ K2| ≃ |K1|

as required.

Proof of Proposition 3.11. We follow essentially in verbatim the proof of Propo-
sition 12 in [GPP+19]. The only difference is that we use Lemma 3.12 instead
of the weaker statement in [GPP+19]: If K1 ∩ K2 and K2 are contractible, then
χ̃(K1 ∪ K2) = χ̃(K1) where χ̃ stands for the reduced Euler characteristic.

As described in the proof of Proposition 12 in [GPP+19], the complex Kϕ can
be transformed into certain complex K′ by a series of steps when we decompose
some intermediate complex as K1∪K2 where K2 and K1∩K2 are contractible, and
then we replace the intermediate complex with K1. Therefore, using Lemma 3.12
we get that the resulting complex K′, after performing all these steps is homotopy
equivalent to Kϕ.

By a further homotopy equivalence Goaoc et al., [GPP+19], obtain another
complex K′′ which is already (obviously) homotopy equivalent to the wedge of n
2-spheres. Therefore, Kϕ is homotopy equivalent to the wedge of n 2-spheres.
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4. VEST and related problems
from the viewpoint of
parameterized complexity

4.1 Introduction
The homotopy groups πk, for k = 1, 2, . . ., are important invariants of topological
spaces. The most intuitive of them is the group π1 which is often called the
fundamental group.

Many topological spaces can be described by finite structures, e.g., by abstract
simplicial complexes. Such structures can be used as an input for a computer and
therefore, it is natural to ask how hard it is to compute these homotopy groups
of a given topological space represented by an abstract simplicial complex.

Novikov in 1955 [Nov55] and independently Boone in 1959 [Boo59] showed
undecidability of the word problem for groups. Their result also implies undecid-
ability of computing the fundamental group. In fact, even determining whether
the fundamental group of a given topological space is trivial is undecidable.

On the other hand, for simply connected spaces (for those, whose π1 is trivial)
it is know that their πk for k ≥ 2 are finitely generated abelian groups which are
always isomorphic to groups of the form

Zn ⊕ Zp1 ⊕ Zp2 ⊕ · · · ⊕ Zpm ,

where p1, . . . , pm are powers of prime numbers. An algorithm for computing πk

of a simply connected topological space, where k ≥ 2, was first introduced by
Brown in 1957 [Bro57].

In 1989, Anick [Ani89] proved that even computing the rank of πk, that is, the
number of direct summands isomorphic to Z (represented by n in the expression
above) is #P-hard for 4-dimensional simply connected spaces.1 Another compu-
tational problem called VEST, which we define below, was used in Anick’s proof
as an intermediate step. Briefly said, #P-hardness of the problem of VEST
implies #P-hardness of computing the rank of πk.

Vector evaluated after a sequence of transformations (VEST). The in-
put of this problem defined by Anick [Ani89] is a vector v ∈ Qd, a list (T1, . . . , Tm)
of rational d × d matrices and a rational matrix S ∈ Qh×d where d, m, h ∈ N.

Now, let M-sequence be a sequence of integers M1, M2, M3, . . ., where

Mk := |{(i1, . . . , ik) ∈ {1, . . . , m}k; STik
· · · Ti1v = 0}|.

Given an instance of VEST and k ∈ N, the goal is to compute Mk.
From an instance of VEST, it is possible to construct a corresponding al-

gebraic structure called 123H-algebra in polynomial time whose Tor-sequence
is equal to the M -sequence of the original instance of a VEST. This is stated

1When k is a part of the input and represented in unary.
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in [Ani89, Theorem 3.4] and it follows from [Ani85, Theorem 1.3] and [Ani87,
Theorem 7.6].

Given a presentation of a 123H-algebra, one can construct a corresponding
4-dimensional simplicial complex in polynomial time whose sequence of ranks
(rk π2, rk π3, . . .) is related to the Tor-sequence of the 123H-algebra. In particu-
lar, it is possible to compute that Tor-sequence from the sequence of ranks using
an FPT algorithm. This follows from [Roo79] and [ČKM+14a].

Parameterized complexity and W-hierarchy It is also possible to look at
the problem of computing πk from the viewpoint of parameterized complexity.
In our case, the dimension k of the homotopy group πk plays the role of the
parameter.

In 2014, Čadek et al. [ČKM+14b] proved that computing πk (and thus, also
computing the rank of πk) of a simply connected space is in XP when parameter-
ized by k.

A lower bound for the complexity from the parameterized viewpoint was ob-
tained by Matoušek in 2013 [Mat13]. He proved that computing Mk of a VEST
instance is #W[1]-hard. This also implies #W[1]-hardness for the original prob-
lem of computing the rank of higher homotopy groups πk (for 4-dimensional
simply connected spaces) when parameterized by k. Matoušek’s proof also works
as a proof for #P-hardness and it is shorter and considerably easier than the
original proof of Anick in [Ani89].

In this chapter, we strengthen the result of Matoušek and show that computing
Mk of a VEST instance is #W[2]-hard.

Theorem 4.1. The problem of computing Mk of a VEST instance is #W[2]-hard
when parameterized by k.

Theorem 4.1 together with the result of Anick [Ani89] implies the following.

Corollary 4.2. The problem of computing the rank of the k-th homotopy group
for a 4-dimensional simply connected space is #W[2]-hard when parameterized
by k.

Remark 4.3. Note that computing Mk of a VEST instance is an interesting self-
contained problem even without the topological motivation. We point out that
our reduction showing #W[2]-hardness of this problem uses only 0, 1 values in
the matrices and in the initial vector v. Moreover, each matrix will have at most
one 1 in each row. Therefore, such construction also shows #W[2]-hardness of
computing Mk of a VEST instance in the Z2 setting. That is, for the case when
T1, T2, . . . Tm ∈ Zd×d

2 , S ∈ Zh×d
2 and v ∈ Zd

2.

The decision version of VEST We also provide a comprehensive overview
of the parameterized complexity of VEST as a decision problem, where given an
instance of VEST one needs to determine whether Mk > 0. In addition to the
standard variant of the problem, we consider several simplified modifications of
VEST: When the matrices are of constant size, when the special matrix S is the
identity matrix, when we omit the initial vector and the target is the identity/zero
matrix etc.
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Unfortunately, even considering the simplifications above, we show that nearly
all versions in our consideration are W[1]- or W[2]-hard. Table 4.1 is an overview
of our results.

Size of Ti a) no constraint b) S = I c) only S d) no v, no S

1. 1 × 1 in P in P 0 in P in P
I W[1]-hard W[1]-hard

2. 2 × 2 W[1]-hard W[1]-hard 0 W[1]-hard W[1]-hard
I

3. input size W[2]-hard W[2]-hard 0 W[2]-hard W[2]-hard
I W[1]-hard W[1]-hard

Table 4.1: The first column stands for the standard VEST while the second
stands for the VEST without the special matrix S or alternatively, for the case
when S is the identity matrix. Therefore, the hardness results for the first column
follow from the second. The third and the fourth columns stands for the variants
without the initial vector v. In this case, it is natural to assume the following
two targets for the result of the sought matrix product: the zero matrix (the
rows labeled by 0) and the identity matrix (the rows labeled by I). Again, the
hardness results for the third column follow from the fourth.

Regarding the 1 × 1 case, the only nontrivial case is when the target is I = 1.
The W[1]-hardness results for the 1 × 1 case also implies W[1]-hardness for the
2 × 2 case and the input size case when the target is the identity matrix.

In Section 4.3, we show

• W[1]-hardness for the 1 × 1 case without S and v and with target I = 1,
that is, “1 d) I” in Table 4.1 (Theorem 4.9).

• W[1]-hardness for the 2 × 2 case with S = I, that is, “2 b)” in Table 4.1
(Theorem 4.11).

• W[1]-hardness for the 2 × 2 case with without S and v and with target 0,
that is, “2 d) 0” in Table 4.1 (Theorem 4.10).

The W[2]-hardness for the standard decision version of VEST, that is, for
the case of input size without any constraint, “3 a)”, follows from the proof of
Theorem 4.1 (see Remark 4.6) and we show that the variant with S = I, “3 b)”,
and the variant without S and v and with target 0, “3 d) 0”, are equivalent to the
standard version, “3 a)”, under parameterized reduction (Theorems 4.12, 4.13).

Note that it is also easy to observe that all discussed decision variants of
VEST from Table 4.1 are in W[P].

Observation 4.4. Each variant of the decision version of VEST from Table 4.1
is in W[P] for parameter k.

Proof. Let n be the size of the input and m the number of matrices in the col-
lection. In particular, m ≤ n.

We can guess which k matrices we choose from the collection. Each matrix
can be represented by an integer ≤ m which can be described by ⌈log m⌉ bits.
Therefore, we need at most k⌈log m⌉ ≤ k(log n + 1) non-deterministic choices.
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Then, we need to multiply k (or (k + 1)) matrices (together with 1 vector).
This can be easily done in time (k + 2)n3.

Fixed-parameter tractability over finite fields Reductions from the pre-
vious section show that VEST remains hard even on highly restricted instances,
such as binary matrices with all the ones located along the main diagonal (see
Remark 4.6), or matrices of a constant size. However, it turns out that combina-
tion of this two restrictions – on the field size and the matrix sizes – makes even
the counting version of VEST tractable.

We proceed by lifting tractability to the matrices of unbounded size but with
all non-zero entries occurring in at most the p first rows.

Theorem 4.5. Given an instance of VEST and k ∈ N, computing Mk is FPT
when parameterized by |F| and p, if all but the first p rows of the input matrices
are zeros.

The problem remains FPT with respect to |F| and p even if the task is to find
the minimal k for which the vanishing sequence of length k exists, or to report
that there is no such k.

Undecidability of VEST without parameter In contrast, we show in the
last section (Section 4.5) that for F = Q the problem of determining whether
there exists k such that Mk > 0 for an instance of VEST is an undecidable
problem (even for the case where T1, . . . , Tm are of size 4 × 4).

4.2 The proof of #W[2]-hardness of VEST
In this section, we prove that computing Mk of a VEST is #W[2]-hard (Theo-
rem 4.1).

Our reduction is from the problem of counting dominating sets of size k which
is known to be #W[2]-complete (see [FG04b]) and which we recall in the para-
graph below.

For a graph G(V, E) and its vertex v ∈ V let N [v] denote the closed neigh-
borhood of a vertex v. That is, N [v] := {u ∈ V ; {u, v} ∈ E}∪{v}. A dominating
set of a graph G(V, E) is a set U ⊆ V such that for each v there is u ∈ U such
that v ∈ N [u].

Number of dominating sets of size k

Input: A graph G(V, E) and a parameter k.
Question: How many dominating sets of size k are in G?

Proof of Theorem 4.1. As we said, we show an FPT counting reduction from the
problem of counting dominating sets of size k to VEST.

Let G = (V, E) be the input graph and let n = |V |. The corresponding
instance of VEST will consist of n matrices {Tu; u ∈ V } of size 4n × 4n, one for
each vertex, and matrix S of the same size. Whence, the initial vector v must be
of size 4n. For each vertex u ∈ V , we introduce four new coordinates u1, . . . , u4
and set vu1 = 1, vu2 = vu3 = 0 and vu4 = 1.
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⎛⎜⎜⎜⎝
0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 1

⎞⎟⎟⎟⎠
Figure 4.1: The submatrix of Tu consisting of rows and columns u1, . . . , u4. The
rest of the non-diagonal entries of Tu are zero. The diagonal entries T w1,w1

u for
w ∈ N [u] are equal to zero, the rest of the diagonal entries are one.

We define the matrices {Tu; u ∈ V } and S by describing their behavior. Let
x be a vector which is going to be multiplied with a matrix Tu (that is, some
intermediate vector obtained from v after potential multiplications). The matrix
Tu sets xw1 to zero for each w ∈ N [u], which corresponds to domination of vertices
in N [u] by the vertex u, and also sets xu2 to xu3 and xu3 to xu4 . The rest of the
entries of x including xu4 are kept, see Figure 4.1.

The matrix S then nullifies coordinates u3, u4 and keeps the coordinates u1
and u2 for each u ∈ V . In other words, S is diagonal such that Su1,u1 = Su2,u2 = 1
and Su3,u3 = Su4,u4 = 0.

The parameter remains equal to k.
For correctness, let u1, . . . , uk be any vertices from V , and let r be the vector

obtained from v after multiplying by the matrices Tu1 , . . . , Tuk (observe that the
order of multiplication does not matter since all Tu, u ∈ V , pairwise commute).
By construction, for every vertex u ∈ V , the entry ru1 = 0 if and only u is
dominated by some ui, i ∈ {1, . . . k}, and ru2 = 0 if and only if Tu appears among
Tu1 , . . . , Tuk at most once. Indeed, if Tu is selected once then ru2 = vu3 = 0 while
if it is selected more than once then ru2 = vu4 = 1. If Tu is not among Tu1 , . . . , Tuk

then ru2 = vu2 = 0.
Therefore, r = Tu1 . . . Tukv is a zero vector if and only if u1, . . . , uk are pairwise

distinct and form the dominating set in G. This provides a one-to-one correspon-
dence between subsets of matrices yielding the solution of VEST and dominating
sets of size k in G. It remains to note that every such subset of matrices gives
rise to k! sequences that have to be counted in Mk. Hence, Mk = k!Dk where Dk

is the number of dominating sets of size k in G.
The reduction is clearly FPT since the construction does not use the parameter

k and it is polynomial in the size of the input.

Remark 4.6. Note that the decision version of the problem of Dominating Sets
of Size k is W[2]-hard. For showing W[2]-hardness of the decision version of
VEST we need not deal with the repetition of matrices. In particular, we do not
need the special coordinates u2, u3, u4 and therefore, the corresponding instance
of VEST can consist only of 0, 1 diagonal matrices of size n × n.

4.3 Modifications of VEST and their relation-
ships

In this section, we prove hardness for the variants of the decision version of
VEST we have discussed in the introduction. First of all, we recall a well-known
W[1]-hard k-Sum problem. See also [ALW14].
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k-Sum
Input: A set A of integers and parameter k.
Question: Is it possible to choose k distinct integers from A such that their

sum is equal to 0?

A similar problem appears if we allow to choose not exactly, but at most k
integers.

At-Most-k-Sum
Input: A set A of integers and a parameter k.
Question: Is it possible to choose at most k distinct integers from A such

that their sum is equal to 0?

We note that in the versions of k-Sum studied in the literature, the goal is to
pick distinct elements of the input set in order to achieve 0 or eventually another
number. However, the motivation for VEST, to the contrary, does not suggest
that the matrices chosen for the product have to be distinct. Thus, in order to
model VEST by k-Sum, it is more natural to also allow repetition of numbers.
For our particular proofs, we will use the following version with target number 1.

At-Most-k-Sum with Repetitions and Target 1
Input: A set A of integers and parameter k.
Question: Is it possible to choose at most k integers from A (possibly with

repetition) such that their sum is equal to 1?

We are not aware of any previous studies on parameterized complexity of
At-Most-k-Sum with Repetitions and Target 1, nor does it seem that
there exists a simple parameterized reduction from the original variant of the
problem to the one with repetitions. Therefore, in the next theorem we prove
W[1]-hardness of this problem directly. The starting point of our reduction is the
problem of k-Exact Cover, which is known to be W[1]-hard (see [DF95]).

k-Exact Cover
Input: A universe U , a collection C of subsets of U and a parameter k.
Question: Can U be partitioned into k sets from C?

Theorem 4.7. At-Most-k-Sum with Repetitions and Target 1 is W[1]-
hard when parameterized by k.

Proof. Consider an instance (U, C, k) of Unique Hitting Set. Intuitively, we
would like to model the sets in C as their characteristic vectors over |U | dimen-
sions, where each dimension corresponds to an element from U , and the vector
representing a set C ∈ C is set to one exactly in those dimensions which corre-
spond to the elements contained in the set which is represented by the vector. To
model this in an instance of At-Most-k-Sum with Repetitions and Target
1, we will represent said characteristic vectors as numbers in base (k + 2).

Formally, let m = |U |, U = {u1, . . . , um}, and x = k + 2. For each C ∈ C, we
add an element aC := −

(︂
xm+1 +∑︁

j;uj∈C xj
)︂

to the set A of numbers. Then we
also add to A the number y := kxm+1 +∑︁m

j=0 xj and we set the new parameter to
k +1. Note that the numbers in A are bounded by xm+2, thus can be represented
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by O(m log k) bits, and |A| = |C| + 1, meaning that the reduction can be done in
polynomial time. It remains to verify that the produced instance of At-Most-
k-Sum with Repetitions and Target 1 is equivalent to the original instance
of k-Exact Cover.

First of all, let C1, . . . , Ck ∈ U be a solution to k-Exact Cover. Then
{y, aC1 , . . . , aCk

} ⊂ A is a solution to the instance (A, k +1) of At-Most-k-Sum
with Repetitions and Target 1. Indeed, by construction and since each ele-
ment of U is covered exactly once, we have aC1+· · ·+aCk

= −
(︂
kxm+1 +∑︁m

j=1 xj
)︂

=
−y + x0 = −y + 1. Therefore, y + aC1 + · · · + aCk

= 1.
In the other direction, consider a solution q1, . . . , qt ∈ A to At-Most-k-Sum

with Repetitions and Target 1 where t ≤ k + 1. First of all, we observe
that y must be chosen precisely once. The sum ∑︁t

j=1 qt = 1 = x0 and y is the
only number with a coefficient (= 1) of x0. Therefore, y can be chosen (ℓx + 1)
times where ℓ ∈ N0. However t < x = k + 2. Whence, ℓ = 0. In other words, y is
chosen precisely once and without loss of generality, we suppose that q1 = y

Next, we show that t = k + 1. The number y which is chosen precisely once
has k as the coefficient of xm+1 which has to be nullified. The only option how
to do that is to choose k numbers other than y. (Such numbers have −1 as the
coefficient of xm+1.)

Finally, from the equality ∑︁k+1
j=2 qj = −y + 1 = −kxm+1 −∑︁m

j=1 xj we conclude
that no −xi for i ≤ m is contained in more than one qj as a summand since
k < k + 2 = x. By the same argument we observe that each −xi is contained in
some qj as a summand. Indeed, addition of at most k terms −xi cannot affect
coefficient of xi+1. Therefore, each −xi for i ≤ m is contained in precisely one qj

and thus, {C; aC ∈ {q2, . . . , qk+1}} is a desired k-exact cover.

If we assume multiplication instead of addition the following problem arises.

k-Product with Repetitions
Input: A set A of rational numbers and a parameter k.
Question: Is it possible to choose k numbers from A (possibly with repeti-

tions) such that their product is equal to 1?

W[1]-hardness for this problem might be a folklore result but we present a
complete proof using a reduction from k-Exact Cover. The idea will be in
principle the same as in the previous proof. We start with a lemma which is
essentially an easy consequence of the prime number theorem.

Lemma 4.8. Let pn denote the n-th prime. Then pn ≤ n2 for n ≥ 2.

Proof. Let π(x) denote the number of primes less than or equal to x. The lemma
follows, e.g., from the following claims:

• pn < n (ln n + ln ln n) for 6 ≤ n ≤ e95 (see [Bar41, Theorem 28]),

• x
ln x+2 ≤ π(x) for x ≥ 55 (see [Bar41, Theorem 29.A]),

• p2 = 3, p3 = 5, p4 = 7, p5 = 11.
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Theorem 4.9. k-Product with Repetitions is W[1]-hard when parameter-
ized by k.

Proof. We show a parameterized reduction from k-Exact Cover. For each
element u ∈ U we associate one prime pu, then for each C ∈ C we set aC :=
p
∏︁

u∈C pu where p is a prime which is not used for any element from U and
y := 1

pk
∏︁

u∈U
pu

.
The integers aC , for each C ∈ C, and y then form the input for (k + 1)-

Product with Repetitions
If C1, C2, . . . , Ck ∈ C is a solution of k-Exact Cover then y

∏︁k
i=1 aCi

= 1.
Conversely, let q1, q2, . . . , qk+1 be a solution of the constructed instance of

(k + 1)-Product with Repetitions. First of all, note that y must be chosen
precisely once. Indeed, all numbers except for y are greater than 1 and thus, y
must be chosen at least once. If it were chosen more than once it would not be
possible to cancel a power of pk in the denominator since the numerator would
contain at most pk−1. Therefore, the product of q1, q2, . . . , qk+1 is of the form
yaCjk

aCjk−1
· · · aCj1

= 1 which means that each prime representing an element of
U in the denominator is canceled. In other words, each element of U is covered.
Note also that since y is chosen precisely once, there cannot be any repetition
within aCjk

aCjk−1
. . . aCj1

.
The reduction is parameterized since we only need the parameter k for k

multiplications of 1
p

and the first n + 1 primes, where n = |U |, can be generated
in time ≤ O(n3) using, e.g., the Sieve of Eratosthenes for (n + 1)2. This follows
from Lemma 4.8.

Let us now call the variant of VEST without S and v Matrix k-Product
with Repetitions. As we have mentioned in the introduction we consider two
cases regarding the target matrix. Namely, the Identity matrix and the Zero
matrix:

Matrix k-Product with Repetitions resulting to Zero Matrix
Input: A list of d × d rational matrices and a parameter k.
Question: Is it possible to choose k matrices from the list (possibly with

repetitions) such that their product is the d × d zero matrix?

Matrix k-Product with Repetitions resulting to Identity Matrix
Input: A list of d × d rational matrices and a parameter k.
Question: Is it possible to choose k matrices from the list (possibly with

repetitions) such that their product is the d × d identity matrix?

Note that Matrix k-Product with Repetitions resulting to Iden-
tity Matrix for 1 × 1 matrices is exactly k-Product with Repetitions.
Therefore W[1]-hardness for Matrix k-Product with Repetitions result-
ing to Identity Matrix for all matrix sizes follows from Theorem 4.9.

Regarding Matrix k-Product with Repetitions resulting to Zero
Matrix, we can easily see that it is solvable in linear time for 1 × 1 matrices.
Indeed, it is sufficient to check whether Ti = 0 for some i. However, already for
2 × 2 matrices the problem becomes hard.
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Theorem 4.10. Matrix k-Product with Repetitions resulting to Zero
Matrix is W[1]-hard for parameter k even for 2 × 2 integer matrices.

Proof. We reduce from At-Most-k-Sum with Repetitions and Target 1.
For every integer x let us define

Ux :=
⎛⎝ 1 x

0 1

⎞⎠ .

It is easy to see that UxUy = Ux+y. Let I be an instance of At-Most-k-Sum
with Repetitions and Target 1 with the set of integers A and parameter
k. We create an equivalent instance I ′ of Matrix (k + 2)-product with
Repetitions with the set of matrices {Ua; a ∈ A} ∪ {X}, where

X =
⎛⎝ 0 0

−1 1

⎞⎠ .

For correctness, assume that I is a YES-instance and a1, . . . , aℓ ∈ A are such
that ℓ ≤ k and ∑︁ℓ

i=1 ai = 1. Consider the following product of ℓ + 2 matrices:

X ·
ℓ∏︂

i=1
Uai

· X = X · U∑︁ℓ

i=1 ai
· X = XU1X =

⎛⎝ 0 0
−1 1

⎞⎠⎛⎝ 1 1
0 1

⎞⎠⎛⎝ 0 0
−1 1

⎞⎠
=
(︄

0 0
0 0

)︄
.

For the other direction, assume that I ′ is a YES-instance. Let ℓ, 1 ≤ ℓ ≤ k + 2,
be the minimal integer such that there are matrices T1, T2, . . . , Tℓ from {Ua; a ∈
A} ∪ {X} with TℓTℓ−1 · · · T1 = 0 ∈ Q2×2. Since the matrix X is idempotent
(i.e. X2 = X), it does not appear two times in a row, otherwise we could reduce
the length of the product. Notice that X should appear at least once, since the
determinants of all Ua are non-zero. Assume that there is precisely one occurrence
of X, then the product has form:

UrXUs =
⎛⎝ 1 r

0 1

⎞⎠⎛⎝ 0 0
−1 1

⎞⎠⎛⎝ 1 s

0 1

⎞⎠
=
(︄

−r r
−1 1

)︄(︄
1 s
0 1

)︄
=
(︄

−r −rs + r
−1 1 − s

)︄
̸=
(︄

0 0
0 0

)︄
.

Hence, X appears at least twice. Let us fix any two consequent occurrences and
consider the partial product between them:

XUrX =
⎛⎝ 0 0

−1 1

⎞⎠⎛⎝ 1 r

0 1

⎞⎠⎛⎝ 0 0
−1 1

⎞⎠ =
⎛⎝ 0 0

r − 1 1 − r

⎞⎠ = (1 − r) · X.

If r ̸= 1, we would get a shorter product resulting in zero, which contradicts to
minimality of ℓ. Hence r = 1, so the product of Ua that appear between two
occurrences of X is equal to U1. Since there are at most k of such Ua and the
sum of corresponding indices a is equal to 1, we obtain a solution to I.
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We can use similar approach to establish hardness of the VEST problem
without S (or alternatively when S is the identity matrix). Recall that here the
task is to obtain not necessarily a zero matrix but any matrix which contains the
given vector v in its kernel.

Theorem 4.11. VEST is W[1]-hard for parameter k even for 2 × 2 integer
matrices and when S is the identity matrix.

Proof. As in the proof of Theorem 4.10, we proceed by reduction from At-Most-
k-Sum with Repetitions and Target 1. Let I be an arbitrary instance of
the problem with the set of integers A, and parameter k. We create an equivalent
instance I ′ of VEST with parameter k + 1, vector v = (0, 1)T and the set of
matrices {Ua; a ∈ A} ∪ {X}, where Ua and X are defined same as in the proof of
Theorem 4.10. We set S equal to the identity matrix.

For correctness, assume that I is a YES-instance and a1, . . . , aℓ ∈ A are such
that ℓ ≤ k and ∑︁ℓ

i=1 ai = 1. Consider the application of following ℓ + 1 matrices
to v:

X ·
ℓ∏︂

i=1
Uai

· v = XU1v =
⎛⎝ 0 0

−1 1

⎞⎠⎛⎝ 1 1
0 1

⎞⎠⎛⎝ 0
1

⎞⎠ =
⎛⎝ 0

0

⎞⎠ .

For the other direction, assume that I ′ is a YES-instance. Let ℓ, 1 ≤ ℓ ≤ k + 1,
be the minimal integer such that Tℓ, Tℓ−1 · · · T1v = (0, 0)T for some T1, T2, . . . , Tℓ

from {Ua; a ∈ A} ∪ {X}. Since the determinants of all Ua are non-zero, Ti = X
for some i ∈ {1, 2, . . . , ℓ}. Observe that Xv = v, so by minimality of ℓ we have
that T1 ̸= X. Let i be the minimal index such that Ti = X, 2 ≤ i ≤ ℓ. Then
Ti−1 · · · T1 = Us for some integer s. Let us apply first i matrices to v:

TiTi−1 · · · T1v = XUs · v =
⎛⎝ 0 0

−1 1

⎞⎠⎛⎝ 1 s

0 1

⎞⎠⎛⎝ 0
1

⎞⎠
=
(︄

0 0
−1 1

)︄(︄
s
1

)︄
=
(︄

0
1 − s

)︄
.

If s ̸= 1, we get a multiple of v, which is in contradiction to minimality of ℓ.
So Ti−1, . . . , T1 = U1, which is a product of at most k matrices of the form Ua

with a ∈ A. The sum of corresponding indices a is then equal to 1, resulting in
a solution to I.

At the end of this section, we show that VEST is equivalent to VEST without
S (in other words, when S = Id) and to Matrix k-Product with Repeti-
tions resulting to Zero Matrix.

Theorem 4.12. There is a parameterized reduction from VEST to the special
case of VEST where S is the identity matrix, and the other way around.

Proof. One direction is trivial since the case when S = Id is just a special case of
VEST.

Regarding the other, let
(︂
S ∈ Qh×d, T1, T2, . . . , Tm ∈ Qd×d, v ∈ Qd, k

)︂
be an

instance of VEST. First, we observe that without loss of generality we can sup-
pose that S is a square matrix (in other words, h = d). Indeed, if h < d then we
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⎛⎜⎜⎜⎝
0 . . . 0

S
... . . . ...
0 . . . 0

⎞⎟⎟⎟⎠ ∈ Qh×h,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0
Ti

... . . . ...
0 . . . 0

0 . . . 0 0 . . . 0
... . . . ... ... . . . ...
0 . . . 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ Qh×h,

⎛⎜⎜⎜⎜⎜⎜⎝
v
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ Qh.

Figure 4.2: A figure showing how to make all matrices square in the proof of
Theorem 4.12 when h > d.

v′ =

⎛⎜⎜⎝
v
k

1

⎞⎟⎟⎠ , S ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
S

... ...
0 0

0 . . . 0 10 0
0 . . . 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, T ′

i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
Ti

... ...
0 0

0 . . . 0 1 −1
0 . . . 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Figure 4.3: A construction forcing the matrix S ′ to be selected last in the proof
of Theorem 4.12.

just add d − h zero lines to S. If h > d we add h − d zero columns to S, h − d
zero entries to v and h − d zero lines as well as h − d zero columns to each Ti.
See Figure 4.2.

Now, we add 2 dimensions: To the vector v we add k on the (d + 1)-st
position and 1 on the (d + 2)-nd position. To each matrix matrix Ti we add a
2 × 2 submatrix which subtracts the (d + 2)-nd component of a vector from the
(d + 1)-st. To the matrix S we add a submatrix which nullifies the (d + 2)-nd
component and multiplies the (d + 1)-th component by 10. Let S ′, T ′

1, T ′
2 . . . , T ′

m

denote the resulting (d+2)× (d+2) matrices and v′ denote the resulting (d+2)-
dimensional vector. See Figure 4.3. The new parameter is set to k + 1.

If there is a solution of the original problem, that is, there are k matrices
Ti1 , . . . , Tik

such that STik
Tik−1 · · · Ti1v = 0, then S ′T ′

ik
T ′

ik−1
· · · T ′

i1v′ = 0, since
1 is k times subtracted from the (d + 1)-st component of v′ and the (d + 2)-nd
component is then nullified by S ′.

Conversely, if there are k+1 matrices Y1, Y2, . . . , Yk+1, where each Yi is either S ′

or T ′
j for some j, such that r = Yk+1Yk · · · Y1v′ = 0 then Yk+1 must be equal to S ′

and the rest of the matrices are of type T ′
j , otherwise rd+1 ̸= 0 or rd+2 ̸= 0. Indeed,

at first k matrices of type T ′
j must be selected to nullify the (d+1)-st component:

If Yi = S ′ for some i ≤ k, this would increase the non-zero (d + 1)-st component,
so there would be no way to nullify it by remaining matrices Yi+1, . . . , Yk+1. At
the same time, S ′ should be necessarily selected once to nullify the (d + 2)-nd
component, so Yk+1 = S ′. Therefore, by restricting the matrices Y1, . . . , Yk to the
first d coordinates we obtain a solution to VEST with matrix S.
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Theorem 4.13. VEST and Matrix k-Product with Repetitions result-
ing to Zero Matrix are equivalent under parameterized reduction.

Proof.

1. “Parameterized reduction from Matrix k-Product with Repetitions
resulting to Zero Matrix to VEST”
For each matrix Ti ∈ Qd×d we introduce a block matrix T ′

i ∈ Qd2×d2 whose
each block is Ti. We set v = (e1, e2, . . . , ed)T ∈ Qd2 where each ei is the
d-dimensional unit vector with 1 on its i-th coordinate and S to the d2-
dimensional identity matrix. Therefore, Tik

Tik−1 · · · Ti1 = R if and only if
ST ′

ik
· · · T ′

i1v = (R∗,1, R∗,2, . . . , R∗,d)T where R∗,j is the j-th column of the
matrix R.

2. “Parameterized reduction from VEST to Matrix k-Product with Rep-
etitions resulting to Zero Matrix”
We first reduce VEST to the version of VEST without S as we did in the
proof of Theorem 4.12. Thus, we assume that our input consists of square
matrices S ′, T ′

1, T ′
2, . . . , T ′

m and v where S ′ represents the original special
matrix S and the parameter is k +1. Let us recall that S ′ has to be selected
precisely once as the leftmost matrix otherwise the resulting vector cannot
be zero by the construction from the proof of Theorem 4.12.
Now, we make an instance of Matrix (k + 3)-Product with Repeti-
tions. Let Tv be a matrix containing the vector v in the first column and
zero otherwise. The idea is to use the matrix Tv instead of the vector v
and force such matrix to be selected as the rightmost after S ′ and k ma-
trices of type T ′

i by adding some blocks. We use the construction from the
proof of Theorem 4.10. Namely, we use matrices X and U−2 and U2k+1 as
submatrices. By the same argument as in the proof of Theorem 4.10 the
only way how to make the zero matrix by multiplying k + 3 matrices from
{X, U−2, U2k+1} is to choose X twice, as the leftmost and the rightmost
matrix, k-times U−2 and once U2k+1 as intermediate matrices. Therefore,
we can add X to Tv and to the identity matrix as block submatrices, U2k+1
to S ′ (since S ′ must be selected precisely once) and U−2 to T ′

i . It remains
to force the order of Tv and the identity matrix enriched by X. For this, we
add submatrices A, B such that AB = 0 while BA ̸= 0, AA ̸= 0, BB ̸= 0.
We add A to the identity matrix enriched by X, B to Tv enriched by X
and identity matrices to the rest. See Figure 4.4. The following settings for
A and B, respectively, work.

A =

⎛⎜⎜⎝
0 0 0
0 1 0
0 0 0

⎞⎟⎟⎠ , B =

⎛⎜⎜⎝
0 1 0
0 0 0
0 0 1

⎞⎟⎟⎠ .

To sum up,

(a) matrices of type T ′′
i must be chosen precisely k-times by the proof of

Theorem 4.12.
(b) The matrix S ′′ must be chosen precisely once and it must be on the left

of the product of k matrices of type T ′′
i by the proof of Theorem 4.12.
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T ′′
i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
T ′

i

... ... ... ... ...
0 0 0 0 0

0 . . . 0 0 0
0 . . . 0 I3 0 0
0 . . . 0 0 0
0 . . . 0 0 0 0
0 . . . 0 0 0 0

U−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, S ′′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
S ′ ... ... ... ... ...

0 0 0 0 0
0 . . . 0 0 0
0 . . . 0 I3 0 0
0 . . . 0 0 0
0 . . . 0 0 0 0
0 . . . 0 0 0 0

U2k+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

T ′
v =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
Tv

... ... ... ... ...
0 0 0 0 0

0 . . . 0 0 0
0 . . . 0 B 0 0
0 . . . 0 0 0
0 . . . 0 0 0 0
0 . . . 0 0 0 0

X

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
Id

... ... ... ... ...
0 0 0 0 0

0 . . . 0 0 0
0 . . . 0 A 0 0
0 . . . 0 0 0
0 . . . 0 0 0 0
0 . . . 0 0 0 0

X

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Figure 4.4: A figure showing what an instance of Matrix k-Product with
Repetitions resulting to Zero Matrix looks like after the reduction from
VEST in the proof of Theorem 4.13.

(c) The leftmost matrix has to be H by the proof of Theorem 4.10 and by
the fact that AB = 0 while BA ̸= 0, AA ̸= 0, BB ̸= 0.

(d) The rightmost matrix has to be T ′
v again by the proof of Theorem 4.10

and by the fact that AB = 0 while BA ̸= 0, AA ̸= 0, BB ̸= 0.

4.4 Fixed-Parameter Tractability of VEST over
Finite Fields

While most of the hardness results for VEST and its variations in the previous
section use constant-sized matrices, the entries of this matrices can be arbitrarily
large. Here, we study the variation of the problem when all the matrices have
entries from some finite field. Notice that restricting the field size by itself does
not make the problem tractable: Recall the reduction from dominating set from
Section 4.2 which also works over Z2. However, along with a bound on the matrix
sizes this makes the problem tractable.

Lemma 4.14. Computing Mk for a given instance of VEST over finite field F
is FPT when parameterized by the size of F and the size of matrices.
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Proof. Let Md
F be the set of all d × d matrices with entries from F, then |Md

F| =
|F|d2 . For every X ∈ Md

F and every integer i ∈ {1, . . . , k} we will compute a
value ai

X ∈ N0 equal to the number of sequences of i matrices from the input
such that their product is equal to X. In particular, this allows to obtain

Mk =
∑︂

X∈Md
F;SXv=0

ak
X .

For i = 1, the computation can be done simply by traversing the input ma-
trices. Assume that ai

X have been computed for all the matrices X and all
i ∈ {1, . . . , j}. We initiate by setting aj+1

X = 0 for every X ∈ Md
F. Then, for

every pair (X, q), where X ∈ Md
F and q ∈ {1, . . . , m}, we increment aj+1

XTq
by aj

X .
In the end, we will then have a correctly computed value

aj+1
Y =

m∑︂
q=1

∑︂
X;XTq=Y

aj
X .

Our next step is to consider the matrices of unbounded size, but with at
most p first rows containing non-zero entries. In particular, if F = Z2, we can
associate to every such matrix T a graph with the vertex set {1, . . . , d} such that
there exists an edge between the vertices i and j, i ≤ j, if and only if T i,j = 1.
Conversely, a graph with the vertex set {1, ldots, d} can be represented by such
a matrix if and only if the vertices in {1, . . . , p} form it’s vertex cover.

Observe that every matrix T with at most p first non-zero rows has the fol-
lowing form:

T =

⎛⎜⎜⎜⎜⎝
A B
0 0 . . . 0
... ... . . . ...
0 0 . . . 0

⎞⎟⎟⎟⎟⎠ ,

where A is p×p matrix and B is p×(d−p) matrix. Further, we will denote matrices
of this form by A|B. Consider the product of two such matrices T1 = A1|B1 and
T2 = A2|B2:⎛⎜⎜⎜⎜⎝

A1 B1
0 0 . . . 0
... ... . . . ...
0 0 . . . 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

A2 B2
0 0 . . . 0
... ... . . . ...
0 0 . . . 0

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
A1A2 A1B2

0 0 . . . 0
... ... . . . ...
0 0 . . . 0

⎞⎟⎟⎟⎟⎠ = (A1A2)|(A1B2).

Corollary 4.15. ∏︁k
i=1(Ai|Bi) = (∏︁k

i=1 Ai)|(
∏︁k−1

i=1 Ai · Bk) = (XAk)|(XBk), where
X = ∏︁k−1

i=1 Ai. In particular, the product does not depend on Bi for i < k.

Theorem 4.5. Given an instance of VEST and k ∈ N, computing Mk is FPT
when parameterized by |F| and p, if all but the first p rows of the input matrices
are zeros.
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Proof. We slightly modify the definition of ai
X ∈ N0 from the proof of Theo-

rem 4.14. Now, for every i ∈ [k] and every matrix X ∈ Mp
F, let ai

X be the
number of sequences of i matrices Tj = Aj|Bj from the input such that corre-
sponding product of Aj is equal to X.

The values of ai
X for every i ∈ {1, . . . , k − 1} can be computed same as in the

proof of Theorem 4.14. Given this information, we can count the sequences of
length k that nullify v. Indeed, by Corollary 4.15, the number of such sequences
with the last matrix Tj = Aj|Bj is precisely

bj =
∑︂

X∈Mp
F;S·(XAj)|(XBj)·v=0

ak−1
X ,

and Mk is then equal to ∑︁m
j=1 bj.

We remark that the algorithm for computing ai
X from the last proof can be

exploited to determine minimal k such that Mk > 0, or to report that there is no
such k. For this, let us run the algorithm with k = 1, then with k = 2 and so
on. If after some iteration k = j + 1 we obtain that Mi = 0 for all i ∈ {1, . . . , j}
and there is no X ∈ Mp

F such that a1
X = · · · = aj

X = 0 and aj+1
X ̸= 0, we may

conclude that Mk = 0 for all k ∈ N , since every product of length more than j
can be obtained as a product of length at most j, and none of the latter nulify
v. Otherwise, there exists at least one X ∈ Mp

F such that a1
X = · · · = aj

X = 0
and aj+1

X ̸= 0. Note that every X ∈ Mp
F can play this role only for one value of

k. Therefore, it always suffices to make |Mp
F| iterations of the algorithm.

4.5 Undecidability of VEST with no parameter
In this section, we show that determining whether there exists k ∈ N such that
Mk > 0 for an instance of VEST is an undecidable problem. The reduction is
from Post’s Correspondence Problem which is known to be undecidable.
See [Pos47].

(Binary) Post’s Correspondence Problem
Input: m pairs (v1, w2), (v2, w2), . . . , (vm, wm) of words over alphabet

{0, 1}.
Question: Is possible to choose k pairs (vi1 , wik

), (vi2 , wi2) . . . , (vik
, wik

), for
some k ∈ N, such that vi1vi2 · · · vik

= wi1wi2 · · · wik
? (Where

vi1vi2 · · · vik
and wi1wi2 · · · wik

denote concatenation of the words
vi1 , vi2 , · · · , vik

and wi1 , wi2 , · · · , wik
, respectively.)

For a word v ∈ {0, 1}∗ let |v| be its length and let (v)2 be the integer value
of v interpreting it as a binary number. Let us define the following matrix for a
binary word v.

Tv =
(︄

2|v| − (v)2 (v)2
2|v| − (v)2 − 1 (v)2 + 1

)︄

The following holds.

Lemma 4.16. Let v, w be binary words. Then, TvTw = Twv where wv is the
concatenation of w and v.
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Note that the construction of Tv is a based on [Cla71][Satz 28, p. 157] which
we are aware of thanks to Günter Rote.

Proof of Lemma 4.16. First of all, note that 2|v|(w)2 + (v)2 = (wv)2. Using this
observation, we compute all the entries of the matrix

TvTw =
(︄

2|v| − (v)2 (v)2
2|v| − (v)2 − 1 (v)2 + 1

)︄(︄
2|w| − (w)2 (w)2

2|w| − (w)2 − 1 (w)2 + 1

)︄
.

Thus,

(TvTw)1,1 =
(︂
2|v| − (v)2

)︂ (︂
2|w| − (w)2

)︂
+ (v)2

(︂
2|w| − (v)2 − 1

)︂
=2|wv| − 2|v|(w)2 − 2|w|(v)2 + (v)2(w)2 + 2|w|(v)2 − (v)2(w)2 − (v)2

=2|wv| − 2|v|(w)2 − (v)2

=2|wv| − (wv)2,

(TvTw)1,2 =
(︂
2|v| − (v)2

)︂
(w)2 + (v)2 ((w)2 + 1)

=2|v|(w)2 − (v)2(w)2 + (v)2(w)2 + (v)2

=2|v|(w)2 + (v)2

=(wv)2,

(TvTw)2,1 =
(︂
2|v| − (v)2 − 1

)︂ (︂
2|w| − (w)2

)︂
+ ((v)2 + 1)

(︂
2|w| − (w)2 − 1

)︂
=2|wv| − 2|v|(w)2 − 2|w|(v)2 + (v)2(w)2 − 2|w| + (w)2

+ 2|w|(v)2 − (v)2(w)2 − (v)2 + 2|w| − (w)2 − 1
=2|wv| − 2|v|(w)2 − (v)2 − 1
=2|wv| − (wv)2 − 1,

(TvTw)2,2 =
(︂
2|v| − (v)2 − 1

)︂
(w)2 + ((v)2 + 1) ((w)2 + 1)

=2|v|(w)2 − (v)2(w)2 − (w)2 + (v)2(w)2 + (v)2 + (w)2 + 1
=2|v|(w)2 + (v)2 + 1
=(wv)2 + 1.

Reduction Given an instance of Post’s Correspondence Problem we
describe what an instance of VEST may look like. For each pair (v, w) we define

T(v,w) =

⎛⎜⎜⎜⎜⎜⎝
0 0

Tv 0 0
0 0
0 0

Tw

⎞⎟⎟⎟⎟⎟⎠ ,

we set the initial vector v := (0, 1, 0, 1)T and S := (1, 0, −1, 0). The undecidability
of VEST then follows from the following lemma.
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Lemma 4.17. Let (vi1 , wi1), (vi2 , wi2) . . . , (vik
, wik

) be k pairs of binary words.
Then

ST(vik
,wik

)T(vik−1 ,wik−1 ) · · · T(vi1 ,wi1 )v = 0

if and only if

vi1vi2 · · · vik
= wi1wi2 · · · wik

.

Proof. By Lemma 4.16, T(vik
,wik

)T(vik−1 ,wik−1 ) · · · T(vi1 ,wi1 ) = T(vi1 vi2 ···vik
,wi1 wi2 ···wik

).
The vector v selects the second column of the submatrix Tvi1 vi2 ···vik

and the second
column of the submatrix Twi1 wi2 ···wik

. In other words, the result is equal to
(︂
(vi1vi2 · · · vik

)2 , (vi1vi2 · · · vik
)2 + 1, (wi1wi2 · · · wik

)2 , (wi1wi2 · · · wik
)2 + 1

)︂T
.

The final result after multiplying S with the vector above is the following 1-
dimensional vector (vi1vi2 · · · vik

)2 − (wi1wi2 · · · wik
)2.
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322. Springer, 1979.

[RS82] C. P. Rourke and B. J. Sanderson. Introduction to piecewise-linear
topology. Springer Study Edition. Springer-Verlag, Berlin-New York,
1982. Reprint.
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