
DOCTORAL THESIS

Mgr. Peter Zvirinský

Data mining in social network analysis

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the doctoral thesis: doc. RNDr. Iveta Mrázová CSc.

Study programme: Theoretical Computer Science
and Artificial Intelligence

Prague 2023



I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In ........ date ............ signature of the author

i



Acknowledgments

First of all, I would like to thank my supervisor, doc. RNDr. Iveta Mrázová,
CSc. for her kind, patient, and tireless guidance and support throughout my PhD
studies. I am also thankful for all the feedback and corrections I received for this
dissertation to make it my best work yet. For all the remaining errors, I alone
am responsible.

Throughout my doctoral study, my research work was partially supported by
the Grant Agency of Charles University under Grant No. 120616, and I would
like to thank Charles University for its support.

Finally, I am grateful to my whole family, especially my wife Romana and son
Dorian, for supporting me during my seemingly never-ending studies. They were
always patient with me and provided me with time and space to finish this thesis.

ii



Title: Data mining in social network analysis

Author: Mgr. Peter Zvirinský

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: doc. RNDr. Iveta Mrázová CSc., Department of Theoretical Com-
puter Science and Mathematical Logic

Abstract. In the past several years, the global economy has experienced a sig-
nificant increase in overall debt, reaching 238% of the world GDP in 2022, as
reported by the International Monetary Fund. This growing indebtedness raises
concerns about the stability of the financial system and the welfare of individuals
and institutions. It also underscores the need for effective strategies to under-
stand the intricate relationships between debtors and creditors and to mitigate
associated risks. In response, this thesis proposes a novel approach based on
data mining methods for the comprehensive analysis of debt formation patterns
among individuals and companies, focusing on the largely untapped data from
the Insolvency Register (IR) of the Czech Republic.

We aim to leverage social network analysis (SNA) methods to model and analyze
the interactions among subjects participating in insolvencies, namely debtors,
creditors, and insolvency administrators. Additionally, we focus our research on
dynamic social networks that capture structural changes in the data over time.
Our approach enables an in-depth exploration of interactions, offering insights
into debtors’ and creditors’ behavior and facilitating the prediction of future
developments related to bankruptcies.

The methodology proposed in this thesis contributes to a better understanding
of economic systems, identification of financial distress patterns, and facilitates
decision-making in insolvency-related matters. Furthermore, the generic nature of
the approach allows for its application to data from other insolvency registers and
publicly available datasets, assuming similar preprocessing steps are undertaken.

Keywords: data mining, knowledge discovery, social network analysis, insolvency
register, structured data, unstructured data

iii



Contents

Introduction 5

1 Goals of this thesis 8

2 Social network analysis 10
2.1 Research areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Statistical properties of social networks . . . . . . . . . . . . . . . 12

2.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Static properties . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Dynamic properties . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Measuring node importance . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Centrality . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Random walk based measures . . . . . . . . . . . . . . . . 18

2.4 Community detection and clustering . . . . . . . . . . . . . . . . 21
2.4.1 Quality functions . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 The Kernighal-Lin (KL) algorithm . . . . . . . . . . . . . 23
2.4.3 The Agglomerative/Divisive algorithms . . . . . . . . . . . 23
2.4.4 Spectral algorithms . . . . . . . . . . . . . . . . . . . . . . 24
2.4.5 Markov clustering . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Evolution in social networks . . . . . . . . . . . . . . . . . . . . . 26
2.5.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.2 Incremental tracing of communities . . . . . . . . . . . . . 27
2.5.3 Tracing smoothly evolving communities . . . . . . . . . . . 29

2.6 Link prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6.2 Feature-based methods . . . . . . . . . . . . . . . . . . . . 31

2.7 Pattern mining in graphs . . . . . . . . . . . . . . . . . . . . . . . 34
2.7.1 Static graphs . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7.2 Dynamic graphs . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Insolvencies in the Czech Republic 39
3.1 Insolvency Act . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Insolvency . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1



3.1.2 Participants in the insolvency proceedings . . . . . . . . . 42
3.1.3 Exceptions from the effects of the Insolvency Act . . . . . 43
3.1.4 Methods of insolvency resolution . . . . . . . . . . . . . . 43
3.1.5 Insolvency states . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.6 Amendments . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Insolvency Register . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.1 Insolvency data . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.2 Documents . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.3 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.4 Data expiration . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.5 Using the Insolvency Register . . . . . . . . . . . . . . . . 51

4 Czech insolvency dataset 55
4.1 Dataset schema and storage . . . . . . . . . . . . . . . . . . . . . 55
4.2 Insolvency Register data extraction . . . . . . . . . . . . . . . . . 56

4.2.1 Web application scraper . . . . . . . . . . . . . . . . . . . 57
4.2.2 Web service scraper . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Extracting data from documents . . . . . . . . . . . . . . . . . . . 58
4.3.1 Optical Character Recognition . . . . . . . . . . . . . . . . 60
4.3.2 Document Preprocessing . . . . . . . . . . . . . . . . . . . 61
4.3.3 Scaling up to millions of documents . . . . . . . . . . . . . 63
4.3.4 Extracting missing creditor names . . . . . . . . . . . . . . 65
4.3.5 Extracting receivables’ values . . . . . . . . . . . . . . . . 68
4.3.6 Extracting origin of debt . . . . . . . . . . . . . . . . . . . 72

4.4 Preliminary Data Analysis . . . . . . . . . . . . . . . . . . . . . . 72
4.4.1 Demographics . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.2 Receivables and creditors . . . . . . . . . . . . . . . . . . . 77

4.5 Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Definitions and tools 83
5.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Existing tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3 GraphSlices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.1 Design considerations . . . . . . . . . . . . . . . . . . . . . 86
5.3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.3 Implementation details . . . . . . . . . . . . . . . . . . . . 88

2



5.3.4 Example usage . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Experiments 97
6.1 Experiment 1: Insolvency process as a static social network . . . . 97

6.1.1 Dataset construction . . . . . . . . . . . . . . . . . . . . . 97
6.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Experiment 2: Insolvency process as a dynamic social network . . 99
6.2.1 Dataset construction . . . . . . . . . . . . . . . . . . . . . 100
6.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Experiment 3: Understanding where debt originates . . . . . . . . 106
6.3.1 Dataset construction . . . . . . . . . . . . . . . . . . . . . 106
6.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4 Experiment 4: Understanding the value of claimed debt . . . . . . 108
6.4.1 Dataset construction . . . . . . . . . . . . . . . . . . . . . 110
6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.5 Experiment 5: Assessing the future impact of subjects involved in
insolvencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.5.1 Proposed methodology . . . . . . . . . . . . . . . . . . . . 116
6.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Conclusion 126

Bibliography 129

List of Figures 140

List of Tables 143

List of Abbreviations 145

List of publications 146

A Dataset schema documentation 147

3



A.1 Insolvency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
A.2 Subject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
A.3 Administrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
A.4 Insolvency State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.5 File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.6 Receivable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
A.7 WS Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

B Attachments 151
B.1 Czech insolvency dataset . . . . . . . . . . . . . . . . . . . . . . . 151
B.2 Source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4



Introduction
In recent years, the global economy has experienced a surge in debt levels,

reaching unprecedented heights. According to the International Monetary Fund
(IMF), the worldwide total debt-to-GDP (public, household, and corporate) ratio
soared to 238% in 20221. Of the total debt-to-GDP ratio, 38.7% corresponds to
public debt, 23.1% to household debt, and 38.2% to corporate debt. This surge
in indebtedness raises critical concerns about the stability of financial systems
and the well-being of individuals and institutions.

The same IMF report reveals comparable debt-to-GDP ratios of 254.4% for the
EU and 273.9% for the US, while Japan maintains the highest ratio at 447.7%.
However, the countries’ abilities to manage and repay their debt vary greatly. For
instance, despite its large debt-to-GDP for more than 30 years, Japan benefits
from the majority of its debt being in its local currency. The Bank of Japan’s low
to negative interest rate policy ensures manageable debt-servicing costs along-
side predictable economic growth and political stability. In contrast, Italy, de-
spite having a relatively small total debt-to-GDP ratio of just above 260%, faces
significantly higher risks. Unlike Japan, Italy’s debt is primarily denominated
in euro, making its debt-servicing costs directly susceptible to concerns about
its economic prospects. Political instability and struggle to implement essential
structural reforms further threaten Italy’s ability to meet its debt obligations.

As the volume of debt generally continues to rise, the processes of accruing
and managing debt are becoming increasingly complex. This poses a challenge
in comprehending the intricate relationships between debtors and their creditors.
At the same time, it is crucial to discover effective ways to minimize risks linked
to the attitudes of consumers and corporations toward debt to prevent potential
bankruptcies. A prominent case illustrating the consequences of failing to handle
these risks is the Lehman Brothers’ bankruptcy in 2008, recognized as one of
the largest corporate bankruptcies in history. This bankruptcy had far-reaching
implications and is considered to have triggered the 2008 financial crisis, resulting
in more than two trillion USD in losses to the global economy.

The Lehman Brothers’ bankruptcy was caused by an interplay of multiple fac-
tors, including excessive risk-taking, overexposure to subprime mortgages2, and
lack of adequate liquidity. This bankruptcy led to a credit market freeze as fi-
nancial institutions became hesitant to lend to one another, having cascading
effects on businesses and individuals, often resulting in secondary defaults. Con-
sequently, numerous countries witnessed negative economic growth, escalating
unemployment rates, and substantial consumer and business spending declines.
In 2009, the United States witnessed its unemployment rate3 soar to 10% and

1The debt-to-GDP ratio was obtained from the latest IMF report (page 1 and 6): https:
//www.imf.org/-/media/Files/Conferences/2023/2023-09-2023-global-debt-monitor.
ashx. Accessed 21 November 2023.

2Subprime mortgages are loans with higher interest rates than traditional bank loans offered
to borrowers with lower-quality credit histories.

3Source: US Bureau of Labor Statistics (https://www.bls.gov/)

5

https://www.imf.org/-/media/Files/Conferences/2023/2023-09-2023-global-debt-monitor.ashx
https://www.imf.org/-/media/Files/Conferences/2023/2023-09-2023-global-debt-monitor.ashx
https://www.imf.org/-/media/Files/Conferences/2023/2023-09-2023-global-debt-monitor.ashx
https://www.bls.gov/


also experienced a decline in GDP4 by -2.9%. Industries, particularly manufac-
turing, were severely affected, leading to major bankruptcies such as those of
General Motors5 and the Chrysler Corporation6. In light of these challenges,
there is a growing need to delve into the details of debt formation processes more
comprehensively than ever before.

A vast amount of bankruptcy-related data is readily available through pub-
licly accessible insolvency registers, particularly in the EU7. As of today, this data
represents an untapped opportunity for a comprehensive analysis of debtors’ be-
havior during the bankrutpcy process, but also the events leading up to it. In
this study, we propose a novel approach for the large-scale analysis of debt forma-
tion patterns among individuals and companies. The main source of data used
in this thesis will be the Insolvency Register (IR) of the Czech Republic, which
contains over 20 million documents related to more than 370,000 insolvencies
spanning over 14 years. Considering the substantial volume of data in the IR,
our approach will rely on big data technologies to first extract information from
structured data, such as debtors’ demographic information and the list of credi-
tors. More importantly, however, we will also use big data technologies to extract
domain-specific information from a much larger volume of unstructured data in
the IR, encompassing the 20 million documents related to individual insolvencies.

The use of big data technologies within the scope of this thesis will begin with
the effective scraping and storing of data from the IR. In the subsequent step,
we employ the latest Optical Character Recognition (OCR) software to extract
data from millions of documents that we will also download from the IR. We
will employ parallelization technologies available in both the Java and Python
ecosystems to facilitate this process. Ultimately, this approach should lead to a
comprehensive dataset related to insolvencies, offering us the advantage for sub-
sequent analyses. This dataset is intended to cover the insolvency process details,
including the studied debt’s amount, characteristics, and associated timeline.

The insolvency process involves various participants, including debtors, cred-
itors, insolvency courts, and, notably, insolvency administrators. Insolvency ad-
ministrators play a crucial role in facilitating communication between debtors and
creditors. We will refer to these entities collectively as insolvency actors. The
interactions among the insolvency actors are complex, typically occurring before
and during insolvency. Conventional mathematical methods often struggle to
capture the dynamic and complex nature of these interactions.

In this thesis, we plan to adopt the data mining methodology, which focuses on
extracting and discovering patterns in large datasets, employing techniques at the
intersection of machine learning, statistics, and database systems. Social network
analysis (SNA) is a subfield of data mining that utilizes networks and graph theory
to examine interactions among entities (nodes) and their relationships (edges).

4Source: The World Bank (https://data.worldbank.org/
5General Motors bankruptcy announcement: https://www.theguardian.com/business/

2009/jun/01/general-motors-bankruptcy-chapter-11. Accessed 21 November 2023
6Chrysler Corp. bankruptcy announcement: https://www.theguardian.com/business/

2009/apr/30/chrysler-verge-bankruptcy-talks-collapse. Accessed at 21 November 2023
7List of all active insolvency registers in the EU are available at: https://e-justice.

europa.eu/110/EN/bankruptcy_and_insolvency_registers. Accessed at 21 November 2023

6

https://data.worldbank.org/
https://www.theguardian.com/business/2009/jun/01/general-motors-bankruptcy-chapter-11
https://www.theguardian.com/business/2009/jun/01/general-motors-bankruptcy-chapter-11
https://www.theguardian.com/business/2009/apr/30/chrysler-verge-bankruptcy-talks-collapse
https://www.theguardian.com/business/2009/apr/30/chrysler-verge-bankruptcy-talks-collapse
https://e-justice.europa.eu/110/EN/bankruptcy_and_insolvency_registers
https://e-justice.europa.eu/110/EN/bankruptcy_and_insolvency_registers


Since insolvency actors naturally form a social network of interacting entities,
SNA is well-suited for addressing this problem and will be the primary focus of
this thesis. Moreover, we emphasize the use of dynamic social networks, i.e.,
networks that undergo structural changes over time. This approach enables a
comprehensive study of interactions over extended periods, allowing us to discern
trends in debtors’ and creditors’ behavior and forecast future developments.

Despite the wealth of information within the IR, this data source has so far
remained largely unexplored and underutilized, not only in the realm of data
mining but also more broadly in the fields of social sciences, economics, and
humanities. This thesis seeks to bridge that gap by harnessing data mining and
social network analysis, aiming to unlock the latent potential embedded within
this data source. The knowledge extracted using our approach can have important
implications for better comprehension of economic systems, identifying patterns
of financial distress, and improving decision-making regarding insolvencies and
their prevention. Furthermore, our approach is generic enough to apply to data
from other insolvency registers and publicly available datasets, assuming the data
was preprocessed similarly.

The text is organized as follows. In Chapter 1, we will formulate the main ob-
jectives of this thesis. Chapter 2 provides an overview of social network analysis,
specifically focusing on methods relevant to this work. Chapter 3 outlines the
insolvency process in the Czech Republic, with a particular focus on the IR.

Chapter 4 details the essential steps taken to prepare the Czech insolvency
dataset (CID), which will serve as the basis for all our experiments. First, we use
a relational database to establish the dataset’s schema and storage. Subsequently,
we outline the process of extracting and merging data from multiple interfaces
provided by the IR. The rest of this chapter centers on designing and implement-
ing our custom large-scale document extraction system, named IRES (Insolvency
Register Extraction System). IRES utilizes Open Source OCR technology to ex-
tract data from insolvency documents. In Chapter 5, we introduce the model of a
dynamic social network and propose a novel network processing software system,
GraphSlices, for analyzing such networks. We will use GraphSlices to perform
the most critical experiments in the following chapter.

Chapter 6 is dedicated to detailing the experiments conducted in this thesis.
Experiment 1 focuses on constructing a static insolvency social network (which
is not assumed to change over time) and defining the relationships within such a
network. In Experiment 2, we further enhance the insolvency network by consid-
ering the timestamps of the relationships (or edges) in the network, enabling us
to model insolvencies as a dynamic social network. Subsequently, Experiments 3
and 4 focus on enriching the insolvency network with additional domain-specific
data from the insolvency dataset, such as the reasons for the debt and its value.
This chapter culminates in Experiment 5, wherein we present our methodology
for forecasting the future evolution of the insolvency network.

7



1. Goals of this thesis
The main goal of this thesis is to use social network analysis (SNA) to un-

derstand the indebtedness structure present in the Czech society today. We aim
to introduce methods and tools enabling the application of SNA to insolvency-
related data, with a particular emphasis on data from the Insolvency Register
of the Czech Republic (IR). SNA will allow us to model interactions among in-
solvency actors before and during the insolvency process, letting us draw new
insights into the insolvency dynamics and the root causes leading to bankruptcy.
This thesis will focus on insolvency cases initiated in the Czech Republic between
January 1, 2008, and December 31, 2022.

The complexity of analyzing data, such as from the IR, arises from the need
to use a multifaceted approach. Traditional mathematical models typically rely
on tabular data, describing specific observations and subsequently applying sta-
tistical models for analysis and inference. However, the tabular form of data fails
to capture the dynamically changing interactions among the insolvency actors.

The first crucial aspect involves considering the structural relationships among
the insolvency actors. These actors engage with each other before and during the
insolvency process, forming a complex network where actors correspond to nodes
and relationships among the actors are represented as edges. The structure of
such a network can reveal essential patterns, such as a small number of nodes
with strong influence over the network or communities of nodes that are more
densely interconnected among themselves than with the rest of the network.

The second aspect we need to consider when studying the insolvency data is
time. Insolvency outcomes result from historical interactions between debtors and
creditors, often spanning years before the actual insolvency event. Understanding
the chronological sequence of these interactions is vital for comprehending the
factors leading up to the insolvency, its outcome, and future resolution.

Finally, the third and final aspect involves the domain-specific characteristics
(or metadata) related to the individual insolvency actors (or nodes) and their
relationships (or edges). This includes additional structured metadata, such as
demographic information (e.g., age, gender, education) and categorical informa-
tion about the entity type (e.g., natural person, self-employed, or company). Ad-
ditionally, there are supplementary data providing insights into the relationships
as well. This may encompass structured data, such as the amount of debt owed
by the debtor to the creditor, and unstructured data, such as textual descriptions
detailing the nature of the debt.

Thus, the goals of this thesis are:

Goal 1: Model the insolvency process utilizing a social network approach.

Goal 2: Model the insolvency process in time utilizing a dynamic
social network approach.

Goal 3: Enrich the insolvency network by metadata extracted from the IR.

Goal 4: Predict the future development of the insolvency network.

8



Goal 1: Model the insolvency process utilizing a social network ap-
proach. We aim to propose a strategy for modeling insolvency actors and their
relationships using a static social network. The primary challenge lies in the
many possibilities of constructing such a social network, and our objective is to
determine the fundamental relationships that need to be incorporated into the
insolvency network. We seek to explore if even a simple static social network
of insolvencies can capture certain aspects of the indebtedness structure in the
Czech Republic and provide novel insights into the insolvency process. We plan
to utilize the structure of the constructed network to identify the most important
nodes and evaluate whether nodes within the network form natural communities,
i.e., groups of mutually densely interconnected nodes.

Goal 2: Model the insolvency process in time utilizing a dynamic social
network approach. Our primary objective is to understand the main struc-
tural changes occurring within the insolvency network over time. To facilitate
this analysis, we intend to enhance the static social network from the previous
goal by incorporating time information indicating when individual relationships
were formed and analyzing distinct snapshots of the insolvency network. We aim
to quantify the structural changes in the insolvency network by measuring the
network’s density over time and examining how the importance of nodes evolves.

Goal 3: Enrich the insolvency network by metadata extracted from
the IR. We seek to propose an approach for extending the insolvency network
further by incorporating domain-specific information about individual nodes and
their relationships, such as the size and nature of the debt. The objective is then
to propose methods that can effectively utilize the enhanced structure of the in-
solvency network to gain deeper insights into the insolvency process. Specifically,
the proposed methods should be able to classify debtors based on the nature of
their debt, unveiling common patterns and circumstances leading to indebted-
ness. These methods should also be adept at utilizing the debt size to identify
key creditors acting as sources of specific types of debts within the insolvency
network, such as mortgages, credit card debts, or utility bills.

Goal 4: Predict the future development of the insolvency network.
Our primary objective is to introduce a methodology that integrates findings
from the preceding three goals to construct a predictive model capable of an-
ticipating future development in the insolvency network. The proposed model
should effectively utilize the insolvency network structure, edge timestamps, and
additional domain-specific metadata to predict the future importance of nodes
within the network. Furthermore, the proposed methodology also needs to in-
clude the interpretation of the constructed model, enabling the identification of
key drivers influencing the network’s future evolution.

9



2. Social network analysis
Social network analysis (SNA) is a field of study that investigates relationships

and interactions among individuals or entities within a network. Within SNA,
networks are defined as graphs where the nodes and edges possess attributes.
By studying patterns present in the networks, SNA can reveal the structure and
dynamics of complex systems. Utilizing concepts such as nodes, edges, and cen-
trality, it offers insights into information flow, influence, and community struc-
tures. Social network analysis is widely applied across many disciplines, including
biology, chemistry, sociology, and economics.

The growing interest in social network analysis is driven by the widespread use
of internet-enabled devices and digitization, transforming industries globally. The
popularity of online platforms like Twitter, Facebook, and Instagram contributes
to a wealth of network-centric data, offering insights into diverse scenarios and
situations. In this case, social networks can be defined as users communicating
with each other or sharing content on platforms like Facebook or Instagram.

Digitization is reshaping not just businesses but also governments. Many gov-
ernments today actively engage in the growing Open Data1 initiative and con-
tribute to a rapidly expanding pool of publicly available data. This initiative rev-
olutionizes how governments and institutions communicate with citizens, leading
to the transformation of legacy government systems into internet-era counter-
parts through electronic systems and public registers designed for efficient infor-
mation exchange.

For instance, electronic justice systems that allow users to access a specific ju-
dicial file are quickly becoming widespread in the EU2. Nearly every EU country
also provides a public company register with information about business enti-
ties, owners, and relationships. Similarly, almost every EU country maintains an
insolvency register3, documenting bankruptcies and financial obligations among
entities. In these cases, entities and their connections can also be viewed as social
networks, as visualized in Figure 2.1. Applying SNA to these types of govern-
mental data can bring a lot of new insights into how society works and evolves.

2.1 Research areas

One of the main aspects of online social networks is that they provide access
to not only a large amount of structural data in the form of relationships between
entities but also rich data about the entities themselves. This new entity-related
data opens new opportunities from data mining and knowledge extraction per-
spectives. Generally, the type of data analyzed in the context of social networks
can be assigned into the following two categories.

1EU Open Data Portal: https://data.europa.eu
2Overview of electronic judicial systems in the EU: https://e-justice.europa.eu/

content_judicial_systems-14-en.do. Accessed 21 November 2023
3The full list of insolvency registers available within EU: https://e-justice.europa.eu/

110/EN/bankruptcy_and_insolvency_registers. Accessed 21 November 2023

10

https://data.europa.eu
https://e-justice.europa.eu/content_judicial_systems-14-en.do
https://e-justice.europa.eu/content_judicial_systems-14-en.do
https://e-justice.europa.eu/110/EN/bankruptcy_and_insolvency_registers
https://e-justice.europa.eu/110/EN/bankruptcy_and_insolvency_registers


Figure 2.1: Visualization of debtor-creditor interactions as a social network con-
structed using data from the IR of the Czech Republic. The colors represent
different communities within the network obtained by applying a network clus-
tering algorithm (Section 2.4).

Structural analysis focuses solely on the linkage patterns in the network in
order to determine important nodes, communities, and evolving regions in the
network. Such analysis provides an excellent overall view of the behavior in the
studied network. Since it only relies on structural information, it transfers well
from one type of network to another.

Content-based analysis builds on top of the structural analysis by incorpo-
rating additional content available in online social networks. Social networks such
as message networks (Messenger, Whatsapp, Viber), Youtube, Facebook, or In-
stagram contain a large amount of textual, image, and video data shared by their
users (or nodes in the network). Typically, content-based analysis combined with
structural analysis provides more effective results in many applications. For in-
stance, community detection incorporating textual content is much more precise
in providing information about the topics relevant to individual communities.

Another important distinction in the field of social network analysis is between
static analysis and dynamic analysis. In static analysis, it is assumed that the
social network either does not change over time or only changes slowly. Such
analysis is usually performed on the whole network or a small number of snapshots
separately. An example of a very slowly evolving network is the bibliographic
network. Other networks, such as messaging networks, are much more dynamic
as they evolve almost continuously. The analysis of such networks often leads to
analysis using a large number of snapshots or even network streams [1].

11



The most well-known structural problem in social network analysis is com-
munity detection, which focuses on identifying structurally related groups in the
network. These groups are referred to as communities. The community detection
problem is relevant for analyzing both static and dynamic social networks. Some
of the popular community detection algorithms are the Kernighal-Lin algorithm
[2], the Girvan and Newman’s algorithm [3], and the MCL algorithm [4].

From the communication perspective, social networks can also be looked at
as structures that enable the spread of information through mutual interactions.
For instance, interactions between entities propagate essential news through the
network. The study of social interactions and how they affect the dissemination of
information is an important problem in social network analysis. A closely related
problem is one of influence analysis in social networks. This research focuses on
identifying the most influential members in the network and how their influence
is propagated through the network. The most influential members in the network
can be determined by using either flow models [5] or by using page rank style
methods [6], which identify the most well-connected nodes in the social network.

The last structural problem, which is especially important in the context of
this study, is the inference of links that are not known yet in the social network.
This problem can also be referred to as link prediction [7]. The problem of link
prediction is instrumental in the context of dynamic analysis for predicting future
linkages in the studied social networks. The future linkages can provide us with
an idea of future relationships and, thus also, future development in the network.

All of the applications above can be significantly enhanced by incorporating
content information. For instance, it has been shown that content associated with
nodes can significantly improve the quality of detected communities in the social
network [8]. This improvement stems from the fact that content information and
the network structure are often closely related. It has also been shown that using
content information can improve results for link prediction [9]. Incorporating
domain-specific content in the context of dynamic social network analysis will
also be one of the main aspects of this study.

2.2 Statistical properties of social networks

Properties of large social networks were first studied in the static context,
which led to the discovery of many interesting properties of real-world social net-
works. One such property is the small world phenomenon [10], which suggests
that any two individuals in the world are, on average, connected by a surprisingly
short chain of acquaintances, typically around six degrees of separation. Another
important property is the power-law degree distribution of nodes [11, 12]. Even
though time-evolving or dynamic graphs have attracted attention only recently,
their analysis already led to the discovery of many additional properties. For
example, the shrinking diameters and the so-called densification power law de-
scribed in [13]. Further studies have focused on the properties of networks with
multiple edges between the same nodes (multigraphs) or edge weights.

12



In this section, we will describe structural patterns that are common for social
networks. We will first formally define a social network as a graph. Then we will
focus on the most important statistical properties of static graphs. Afterward,
we will move our attention to dynamic graphs. We will also treat social networks
represented as weighted and unweighted graphs separately.

2.2.1 Definitions

Graphs. A social network can be represented by a graph. In the rest of this
chapter, we will use the terms network and graph interchangeably.

A static, unweighted graph G consists of a set of nodes V and a set of edges
E : G = (V , E). We will denote the sizes of V and E as N and E, respectively. A
graph can be either directed or undirected.

Graphs may also be weighted, and there may be multiple edges occurring be-
tween two nodes (e.g., multiple e-mails sent), or a specific weight may be associ-
ated with an edge (e.g., monetary value for a specific transaction). In a weighted
graph G, let ei,j denote the edge between node i and node j. These two nodes
will be referred to simply as neighboring nodes or incident nodes of edge ei,j. Let
wi,j denote the weight associated with edge ei,j. The total weight wi of node
i is defined as the sum of weights of all its incident edges, i.e., wi = ∑︁di

k=1 wi,k

where di denotes the node’s degree. All the notations used in this chapter are
summarized in Table 2.1.

Lastly, graphs may be unipartite or multipartite. Most real-world social net-
works are unipartite, i.e., all nodes belong to a single class, and an edge can be
drawn between any two nodes in the graph. In multipartite graphs, there are
multiple classes of nodes, and an edge exists only between nodes from different
classes. The simplest example is a bipartite graph which consists of two disjoint
sets of nodes V1 and V2, and an edge exists only between nodes from these two
different classes. An example of a bipartite graph can be a movie-actor graph
generated from the IMDB database4 consisting of two separate classes of nodes:
actors and movies.

There are multiple representations commonly used for graphs, including a
visual representation, list of edges, or an adjacency matrix A. In an adjacency
matrix, rows and columns correspond to nodes in the graph, and entries in the
matrix indicate the existence of edges. For unweighted graphs, all entries are
either a 0 or a 1, and for weighted graphs, the adjacency matrix contains number
values representing edge weights.

Components. A connected component in a graph is a set of nodes and edges
where a path exists between any two nodes in the set. For directed graphs, we
refer to these types of connected components as weakly connected components,
while a strongly connected component requires a directed path between any two
nodes in the set. The forming of a single giant connected component is common
for real-world social networks [13].

4IMDB is an online database of information related to films (https://www.imdb.com/).

13

https://www.imdb.com/


Notation Description

G Graph representation of a dataset

V Set of nodes for graph G

E Set of edges for graph G

N Number of nodes, corresponds to |V|

E Number of edges, corresponds to |E|

ei,j Edge between node i and node j

wi,j Weight of edge ei,j

deg(i) Degree of node in an undirected graph i

degout(i) Out-degree of node i in a directed graph, i.e. the number of edges
pointing out from i

degin(i) In-degree of node i in a directed graph, i.e. the number of edges
pointing to i

dist(i, j) Distance between node i and j measured as the number
of edges along the shortest path.

wi Weight of node i (sum of weights of all incident edges)

A
The adjacency matrix of a graph. The entry Aij is nonnegative
and corresponds to edge weight wij . For unweighted graphs Aij

is 1 for all edges.
λ1 Principal eigenvalue of an unweighted graph

λ1,w Principal eigenvalue of a weighted graph

Table 2.1: Notation used to describe social networks.

Diameter. For a given graph, the diameter is defined as the maximum distance
between any two nodes, where the distance is the minimum number of edges that
must be traversed on the path between nodes (ignoring directionality). Measuring
a graph’s diameter, especially over time, can be used to understand how large
components evolve, for instance, whether they are growing or shrinking.

Heavy-tailed distributions. Even though the Gaussian distribution is com-
mon in nature, there are many domains where the probability of events far from
the mean is significantly higher than the Gaussian would allow. As we will see in
the following sections, social networks are precisely one of the areas where this
occurs. The so-called heavy-tailed distributions model such events, and while tra-
ditional exponential distributions have a bounded variance, i.e., large deviations
from the mean are almost impossible. For heavy-tailed distributions, the proba-
bility of an event p(x) decays polynomially rather than exponentially as x→∞.
As a result, these types of distribution have a ”fat tail” for extreme values in their
corresponding PDF (probability density function) plots.

Let us define a generic continuous distribution in the form:

p(x) = Cf(x) (2.1)

where f(x) is the basic functional form of a specific distribution and C is the
appropriate normalization constant such that

∫︁∞
xmin

Cf(x) dx = 1.

14



Using this generic form, we will now define the power law, a heavy-tailed
distribution typical for social networks:

f(x) = x−α

C = (α− 1)xα−1
min

α > 1, x ≥ xmin

(2.2)

2.2.2 Static properties

Next, we will review the static properties common in most real-world social
networks. Some of the networks we will mention in this section evolve over time.
However, the properties are always measured on a single graph snapshot. Among
the most common patterns occurring in static networks are: degree distributions,
minimal path length in terms of the number of edges between pairs of nodes, and
communities. Next, we will describe all these patterns in more detail.

Heavy-tailed degree distribution. The degree distribution in most real-
world social networks is governed by a power law in the form f(d) ∝ d−α, with
α > 1, where f(d) corresponds to the fraction of nodes with degree d. These types
of power law relations have been reported in many studies, including [12, 14, 15].
Intuitively, a power-like distribution in a graph indicates that the vast majority
of nodes have small degrees, and just a small fraction of the remaining nodes have
large degrees.

Small diameter. One of the most interesting patterns common for real-world
networks is that they often have a small diameter, which is often referred to as
the small-world phenomenon. The graph diameter intuitively tells us how quickly
we can get from one end of the network to the other. Many real-world graphs
that have been studied extensively have very small diameters. For instance, only
19 was measured for the Web [16] and only 6 for social networks [17]. Since the
diameter is defined as the maximum-length shortest path between all possible
pairs, it is often easily highjacked by long chains in the graph. Therefore, report-
ing the effective diameter is more common. This more robust metric reports a
specific percentile of the pairwise distances among all reachable pairs of nodes.

Community structure. Lastly, real-world graphs often exhibit a modular
structure in which nodes form groups and possibly groups form larger groups
[18, 19]. Consequently, this leads to the formation of communities where groups
of nodes in the same community are more tightly connected among each other
than with nodes outside of the community. The quantitative measurement for
such structure is called modularity, and it was first introduced in [3].

2.2.3 Dynamic properties

Next, we present the most important dynamic properties observed in real-
world evolving graphs. These are typically studied by examining a series of

15



static snapshots and comparing measurements across these snapshots. The most
notable patterns described in this section are shrinking diameter, the densification
law, and the largest eigenvalue law.

Shrinking diameter. It was shown by Leskovec et al.[13] that not only is the
diameter of real-world graphs small, but it also tends to shrink over time until
it reaches an equilibrium. This pattern occurs due to the so-called gelling point
and densification typical for real-world graphs (described in more detail below).
The gelling point indicates a moment when many small components in the graph
merge and form one giant component. During the ”coalescence” of the graph, the
diameter first spikes, and then as new edges are added to the graph, it tends to
keep shrinking until it reaches an equilibrium.

Densification power law. Let E(t) and N(t) denote the number of edges and
nodes for a specific graph at time t. Time-evolving graphs are governed by the
so-called ”Densification power law” that can be expressed as E(t) ∝ N(t)β for
all time ticks t [13], where β is the densification exponent. The densification
exponent was measured to be between 1.03 and 1.7 on several real-world graphs.
Intuitively, this law tells us that graphs are getting denser over time, explaining
the shrinking diameter described earlier.

2.3 Measuring node importance

One of the central tasks in the structural analysis of social networks is the
identification of important nodes. Intuitively, important nodes in the network
are nodes that are linked with other nodes extensively. For instance, in an orga-
nization, a person with extensive contacts who communicates with many other
people is generally considered more important than someone with significantly
fewer contacts. Following this simple intuition, several importance measures
have been proposed, collectively denoted as centrality measures. The calcula-
tion of centrality measures uses simple properties such as the number of edges
connected to the node (i.e., the degree) and/or counting the number of shortest
paths in the graph crossing the considered node.

As we will show, centrality-based measures have several shortcomings, one of
which is that when the importance calculation of a single node does not consider
the importance of nodes connected to the measured node. Such an approach
requires a recursive definition of importance and leads to more sophisticated
measures relying on random walks in graphs. Furthermore, this approach can be
used to frame the measuring of importance more generally as a problem of ranking
entities in the graph. The ranking can be used to define graph theoretic measures
of similarity that have applications in many areas, including link prediction, graph
search techniques, and collaborative filtering for recommender networks. Random
walks provide a simple framework for unifying information from ensembles of
paths between two nodes, leading to more robust similarity measures.

16



Here is the organization of this section: First, we will start by describing sim-
ple centrality-based measures for node importance and show their shortcomings.
Then, we will provide the mathematical background for random walks on graphs.
Finally, we will define several important measures using the random walks theory,
including PageRank, HITS, and Katz measure.

2.3.1 Centrality

A central node is a node that is connected to many other nodes in the graph.
There are different ways to quantify the connectedness of a node to the rest
of the network. Therefore, several types of centralities can be defined for both
undirected and directed graphs. In this section, we will cover the most relevant
types of centralities.

Degree. The degree centrality is the simplest one and relies mainly on the
degree of the node in the graph. For an undirected graph, we can define the
degree centrality of node i, denoted by CD(i), as follows:

CD(i) = deg(i)
N − 1 (2.3)

The value of CD(i) is between 0 and 1 since N − 1 is the maximum possible
value of deg(i). For directed graphs, the degree centrality is usually defined based
on the out-degree of nodes only:

C ′
D(i) = degout(i)

N − 1 (2.4)

Closeness centrality. The other way to view centrality is based on how close a
node is to all the other nodes in the graph. Intuitively, a central node is relatively
close to all (or at least the majority) nodes. To define the closeness, we will use
the distance measured as the number of edges along the shortest path between
two nodes i and j. The closeness centrality CC(i) for node i in an undirected
graph is defined as:

CC(i) = N − 1∑︁N
j=1 dist(i, j)

(2.5)

The value of this measure is also between 0 and 1, as N−1 is also the minimum
value of the sum of shortest distances from i to all the other nodes. Note that
this equation only makes sense for connected graphs.

For directed graphs, the closeness centrality is defined by the same equation,
it is only necessary to consider the direction of links in the distance computation,
and the graph must be strongly connected.

Betweenness centrality. If two non-adjacent nodes j and k want to interact
through their edges, and node i is on the shortest path between j and k, then
i might have some control over their interactions. The betweenness centrality

17



quantifies the control of node i over other pairs of nodes in the graph. Intuitively,
if node i is on the shortest paths of many such interactions then it should have a
high betweenness centrality.

Let pjk(i) be the number of shortest paths between nodes j and k that pass
node i. The notation pjk without specifying the target node is the total number of
shortest paths between j and k. The betweenness centrality CB is then defined as:

CB(i) =
∑︂
j<k

pjk(i)
pjk

(2.6)

There might be multiple shortest paths between nodes j and k, while some
may pass i and others may not. CB(i) has a minimum value of 0 when i is not a
part of any shortest paths. Its maximum value is (N−1)(N−1)/2, the number of
pairs of nodes not including i. We can use this maximum value as a normalization
factor to make sure the final betweenness centrality value is between 0 and 1:

C ′
B(i) =

2∑︁j<k
pjk(i)

pjk

(N − 1)(N − 2) (2.7)

We need to make two additional adjustments to make Equation 2.7 work for
directed graphs. First, it must be multiplicated by 2 because there are now
(N − 1)(N − 2) pairs to consider since a path from j to k and k to j are now
different. Secondly, pjk must consider the direction of edges when calculating the
shortest paths.

2.3.2 Random walk based measures

Centralities, such as those defined above, provide simple measures to identify
important nodes in the network. As was shown in the case of betweenness and
closeness, it is useful to consider a broader neighborhood of a node in the graph
when estimating its importance. Centralities solved this by employing shortest-
path statistics, which come with several shortcomings. First, all centrality mea-
sures assumed that each node was equally important during calculation. However,
intuitively, we expect connections to other important nodes to be weighted more
than connections to unimportant nodes. For instance, let us imagine a personal
website of someone who creates an arbitrary number of new websites that point to
it. A website such as this should naturally have a low importance score. Secondly,
we want to include more than just the shortest paths in the calculation but all
possible paths with different probabilities. We need a more robust mathematical
apparatus called random walk on graphs to fix these shortcomings.

In the first part of this section, we will provide the mathematical background
of random walks. Then, we will define some essential random walk-based mea-
sures such as PageRank, HITS, and others, some of which we will use in this
work extensively.

18



Random walks on graphs: Background

A graph G = (V , E) is defined5 as a set of vertices V and edges E . The ij-th
entry of the adjacency matrix A is non-negative and corresponds to the weight
wi,j assigned to edge ei,j. For unweighted graphs, the weight of any edge is 1. Let
D be an N ×N diagonal matrix, where Dii = ∑︁

j Aij. We will denote Dii also
as the degree deg(i) of node i. The Laplacian L of graph G is defined as D−A,
which is also commonly used in machine learning algorithms as a regularizer [20].

Next, let P = pij, i, j ∈ V denote the transition probability matrix, so that
Pij = Aij

Dii
if (i, j) ∈ E and 0 otherwise. A random walk on graph G is a Markov

chain [21] with transition probabilities specified by matrix P . For undirected
graphs, A is symmetric, and L is symmetric positive semi-definite. We will
denote the set of neighbors of a node i by N (i). For unweighted graphs, deg(i)
is the size of this neighborhood. For directed graphs, I(i) will denote the set of
nodes with a directed edge pointing to node i. Similarly, O(i) denotes the out-
neighbors, i.e., the set of nodes pointed to from node i. Both in and out-degrees
are assumed to be weighted for weighted graphs.

Let us now assume to start a random walk and let node v0 be chosen from a
distribution x0 (over all nodes). In the following steps, we choose from distribu-
tions x1, x2, . . ., which generally differ from each other. However, once xt = xt+1,
then we say that xt is the stationary distribution for graph G. According to the
Perron-Frobenius theorem, a unique stationary distribution exists if P is irre-
ducible and aperiodic.

Importance measures

Pagerank [22] is probably the most well-known method, especially for ranking
web pages. Suppose the world-wide-web is considered a graph, with web pages
representing nodes and URLs representing edges pointing from one web page to
another. In that case, PageRank is defined as the distribution that satisfies the
following linear equation:

v = (1− α)P T v + α

n
1 (2.8)

Parameter α is the probability of restarting the random walk at a given step,
also called the damping factor. Note that the damping factor α plays a vital role.
The Perron-Frobeniuns theorem indicates that a stochastic matrix P has a unique
principal eigenvector if and only if it is irreducible and aperiodic. The random
restart assures that: 1) all nodes are reachable from all other nodes during the
random walk and 2) the underlying Markov chain is aperiodic. The damping
factor also makes the second-largest eigenvalue upper bounded by α [23].

One of the first alternatives to PageRank introduced by Kleinberg [24] is the
Hubs and Authorities (HITS) algorithm. The fundamental intuition behind HITS
is that generally, there are two types of important web pages on the world-wide-
web: authorities and hubs. The authorities are pages that represent good sources

5In this section, we will continue to use the notation defined in Table 2.1.

19



of information and therefore are linked to from many other pages, i.e., tend to
have a larger in-degree. On the other hand, a hub links to many other websites
(often authorities) and has a large out-degree. During the computation of HITS,
the algorithm assigns two numbers to each node: an authority score and a hub
score. This leads to an iterative algorithm that uses two vectors h and a, with
updates defined as follows:

a(i) =
∑︂

j∈I(i)
h(j) (2.9)

h(i) =
∑︂

j∈O(i)
a(j) (2.10)

Both vectors from the previous equation are normalized to have unit length.
Assuming A is the unweighted adjacency matrix of the considered graph, the last
two equations can also be rewritten as follows:

a = AT h (2.11)

h = Aa (2.12)

The previous equations mean that h converges to the principal eigenvector of
AAT , whereas a converges to the principal eigenvector of AT A.

Similarity measures

In this section, we will generalize the ideas we used to define importance mea-
sures and adopt the same principles to define similarity (or proximity) measures
between nodes in the graph. These similarity measures will also be helpful in the
context of link prediction, which will be discussed in Section 2.6.

Simrank is a similarity measure introduced in [25], and it is based on the
intuition that two nodes are similar if they share many neighbors. Formally,
Simrank between nodes a and b is defined as:

s(a, b) = γ

|I(a)||I(b)|
∑︂

i∈I(a),j∈I(b)
s(i, j) (2.13)

This equation corresponds to two backward random walks that start simulta-
neously from nodes a and b. Therefore the value of s(a, b) can be interpreted as
the expectation of γl, where l equals the time when those two walks meet.

Katz Score [26] is a similarity measure based on the ensemble of paths between
nodes and is formally defined as:

Katz(i, j) =
∞∑︂

l=1
βlAl

i,j (2.14)

In this equation, Al
i,j is the number of paths of length l between nodes i and j. β

is the so-called attenuation factor, which works as a penalization factor for distant
neighbors. To compute the Katz score, solving a system of linear equations over
the adjacency matrix is necessary. A very small β yields Katz scores that mostly
return nodes with many common neighbors, whereas larger values of β emphasize

20



longer paths. There is also a weighted version of the Katz score, which considers
the weights assigned to the edges [7].

The Adamic/Adar score introduced in [27] is similar to the common neighbors
measure except that it weighs high degree neighbors less. The Adamic/Adar
score is defined as:

Adamic/Adar(i, j) =
∑︂

k∈N (i)∩N (j)

1
log(|N (k)|) (2.15)

The Jaccard coefficient computes the probability that two nodes will have a
common neighbor and is defined as:

J(i, j) = |N (i) ∩N (j)|
|N (i) ∪N (j)| (2.16)

It was shown that the matrix of Jaccard coefficients is positive definite [28].

2.4 Community detection and clustering

Many real-world problems can be effectively modeled as social networks, where
nodes represent entities of interest and edges correspond to relationships between
them. It is a very generic framework which is also why we find social network
analysis applied in many different domains, for instance – biology [29, 30], ecology
[31, 32], engineering [33, 34], linguistics [35], social science [36], and many other.

It was quickly observed that even though the networks in these empirical stud-
ies arise in entirely different contexts, they still share many essential concepts
and properties. One particular interest that arose from these studies was the
uncovering and understanding of community structures present in these different
networks. The communities can often be identified across multiple topological
and temporal scales.

Community detection discovery is challenging for several reasons. First, the
topological properties of most networks are very complex and often coupled with
uncertainties arising from the underlying data [37]. Second, networks’ natural
dynamic aspects must be incorporated into the solutions. Here, by dynamic, we
refer to any network that changes over time. These dynamic networks include
time-evolving networks and networks that change due to external factors (e.g.,
intelligence networks that are affected by credibility issues). Finally, the solutions
have to be able to scale to massive graphs that can involve millions of nodes and
billions of edges [38].

This section will be organized as follows. In Section 2.4.1, we will provide a
more formal definition of a community and quality functions associated with eval-
uating communities. In the remaining sections, we will discuss the core methods
for community discovery proposed in the literature to date. Every section will
focus on a particular group of algorithms.

21



2.4.1 Quality functions

Informally, a community in a network is a group of nodes that has a larger
number of ties internally than it has to the rest of the network. This intuitive
definition was formalized in several ways, usually through a quality function,
which quantifies the ”goodness” of a given network division into communities.
We will describe some of the quality functions used in the literature to date.

The normalized cut [39] of a set of vertices S ⊂ V is defined as:

Ncut(S) =
∑︁

i∈S,j∈S A(i, j)∑︁
i∈S deg(i) +

∑︁
i∈S,j∈S A(i, j)∑︁

i∈S deg(i) (2.17)

where S = V−S. In other words, the normalized cut of a set of nodes S equals the
sum of weights of the edges that connect S to the rest of the graph, normalized
by the total edge weight of S and S. Subsets of nodes with lower normalized
cut values represent good communities since they are well connected within the
subset S but are only sparsely connected to the rest of the graph.

The conductance [40] of a set of vertices S ⊂ V is similar to the normalized
cut and is defined as:

Conductance(S) =
∑︁

i∈S,j∈S A(i, j)
min(∑︁i∈S deg(i),∑︁i∈S deg(i)) (2.18)

Let V1, . . . , Vk be the division of the graph into k subsets (or clusters), then
the normalized cut (or conductance) is the sum of the normalized cuts (or con-
ductances) of each subset Vi, i = 1, . . . , k.

The Kernighan-Lin (KL) objective [2] minimizes the edge cut, i.e., the sum of
the inter-cluster edge weights, under the constraint that all clusters have the same
size (assuming the size of the network is a multiple of the number of clusters).
The KL objective is defined as:

KLObj(V1, . . . , Vk) =
∑︂
i ̸=j

A(Vi, Vj), subject to |V1| = |V2| = . . . = |Vk| (2.19)

where A(Vi, Vj) = ∑︁
u∈Vi,v∈Vj

A(u, v).
The most popular measure today is modularity [3]. One of its advantages is

that it is independent of the number of clusters the graph is divided into. Modu-
larity is based on the intuition that the farther the subgraph of each community
is from a random subgraph (or the null model), the better the discovered commu-
nity structure is. For a division of the graph into k clusters V1, . . . , Vk modularity
Q is given by:

Q =
k∑︂

c=1

⎡⎣A(Vi, Vi)
E

−
(︄

deg(Vi)
2E

)︄2
⎤⎦ (2.20)

where E is the number of edges in the graph and deg(Vi) is the total degree of
the cluster Vi. For each cluster, we compute the difference between the fraction
of edges within the cluster and the fraction of edges we would expect in a random
cluster with the same total degree.

Optimizing any of these objective functions is NP-hard as was shown in [41, 42].

22



2.4.2 The Kernighal-Lin (KL) algorithm

The KL algorithm [2] is one of the oldest partitioning algorithms proposed in
the 1970s. It aims to optimize the KL objective function as defined in Equation
2.19, i.e., minimize the edge cut while keeping the cluster sizes balanced. The
basic algorithm is iterative, and to explain how it works, let us first assume we only
want to partition the nodes into two equally large sets A and B. The algorithm
starts with an arbitrary assignment of all nodes to A or B. The only requirement
is |A| = |B|. Next, the algorithm maintains and improves the partitioning in each
pass using a simple greedy procedure. This greedy procedure pairs up vertices
from A with vertices from B so that switching the partitions of these two nodes
would reduce the edge cut. Once all the vertices are paired up, a subset of them is
chosen to accomplish the best overall reduction of the edge cut. Each iteration of
the original KL algorithm has a O(|E|log(|E|) complexity. The above algorithm
can be generalized to handle more than two partitions.

2.4.3 The Agglomerative/Divisive algorithms

Agglomerative algorithms begin with each node in the graph assigned to its
own community, and each iteration of the algorithm merges sufficiently similar
communities. This process is continued until the desired number of communities
is reached, or the remaining communities are too dissimilar to merge. Divisive
algorithms operate precisely in the opposite way. They begin with the entire
graph assigned to a single community, and each iteration of the algorithm selects
the most suitable community to be divided into two. Both algorithms generate a
hierarchical clustering and output a dendrogram as a binary tree. Each leave in
the dendrogram corresponds to a node in the network, and each internal node is
a community. In the case of divisive algorithms, a parent-child relationship indi-
cates that the community represented by the parent node was divided to obtain
the communities in the child nodes. In the case of agglomerative algorithms, the
parent-child relationship indicates that the communities represented by the child
nodes were merged to obtain the community in the parent node.

Girvan and Newman’s algorithm. The algorithm proposed by Newman and
Girvan [3] is a divisive algorithm for community detection which uses edge be-
tweenness. Edge betweenness is another centrality measure similar to node be-
tweenness defined in Section 2.3.1. The edge betweenness for each edge is defined
as the number of the shortest paths that go through that edge. The shortest
paths are calculated between each pair of nodes in the network. Intuitively, edges
with high betweenness scores are more likely to represent edges that connect dif-
ferent communities. More specifically, inter-community edges should have higher
edge betweenness scores than intra-community edges. Hence, one can split the
social network into its communities by iteratively identifying edges with high
betweenness and removing them from the graph.

The original Girvan and Newman’s algorithm follows these four steps:

1. Calculate the edge betweenness score for all edges in the network.

23



2. Find the edge with the highest score and remove it from the network.

3. Recalculate betweenness for all remaining edges.

4. Repeat from step 2.

The procedure above is continued until a sufficient number of communities is
obtained. The hierarchical nesting of the communities (dendrogram) is obtained
as the by-product of this process. The main disadvantage of this method is the
relatively high computational cost. Computing the betweenness for all edges
takes O(|V ||E|) time, and the algorithm requires O(|V |3) time overall.

Newman’s greedy optimization for modularity. In [43], Newman pro-
posed a greedy agglomerative clustering based on modularity optimization. The
basic idea behind this algorithm is that at each stage, groups of vertices are
successively merged to form larger and larger communities. The modularity of
the division of the network increases after each merge. At the start, each node
in the network belongs to its own community, and at each step, the algorithm
chooses the two communities whose merging will lead to the largest increase in
modularity. By using efficient data structures, this algorithm can achieve a time
complexity of O(|E|log(|V |)) [44].

2.4.4 Spectral algorithms

In general, spectral methods refer to algorithms that assign nodes to commu-
nities based on the eigenvectors of the graph-related matrices, e.g., the adjacency
matrix. The top k eigenvectors represent an embedding of the nodes as points in
a k-dimensional space. On this k-dimensional space, one can use classical data
clustering techniques such as K-means to derive the final assignment of nodes to
clusters [45]. The key idea behind these techniques is that the low-dimensional
representation obtained by the top eigenvectors exposes the community structure
in the graph.

The Laplacian matrix L is the most common matrix used by spectral clustering
algorithms. Let A be the adjacency matrix of the network, and let D be the
diagonal matrix with degrees of the nodes on the diagonal. The unnormalized
Laplacian matrix is given by L = D − A. The normalized Laplacian denoted
by L is given by L = D− 1

2 (D − A)D− 1
2 = I − D− 1

2 AD− 1
2 , where I is the

identity matrix. It can be shown that both L and L are symmetric and positive
definite and therefore have real and positive eigenvalues [45]. The number of 0
values among the eigenvalues of the Laplacian matrix is equal to the number of
connected components in the graph. Additionally, the eigenvector corresponding
to the smallest non-zero eigenvalue of L is known as the Fiedler vector [46], which
usually forms the basis for bi-partitioning graphs.

The main disadvantage of spectral algorithms lies in their computational com-
plexity. Most existing implementations of spectral algorithms rely on the Lanczos
algorithm for computing the eigenvector approximations. The Lanczos algorithm
is an iterative algorithm that performs a series of matrix-vector multiplications

24



in each step to obtain successive approximations of the eigenvectors. The com-
plexity for computing the top eigenvector is O(lM(m)), where l is the number
of matrix-vector multiplications and M(m) is the complexity of each multipli-
cation, which depends primarily on the number of non-zeros m in the matrix.
The value of l depends on the specific properties of graphs, such as the spectral
gap, i.e., the difference between the current eigenvalue and the next. The smaller
the spectral gap is, the larger number of matrix-vector multiplications are neces-
sary for convergence. Regarding applications, spectral clustering is hard to scale
up to networks with more than tens of thousands of vertices. That is, without
employing some parallelization techniques.

2.4.5 Markov clustering

The Markov clustering algorithm (MCL) was proposed by Stijn Van Dongen [4]
and is based on the manipulation of the transition probability matrix M (also
denoted as the stochastic matrix) of the underlying graph. For the rest of this
section, let us refer to the transition probability between nodes as the stochastic
flow. The MCL algorithm consists of two alternating operations on the stochastic
matrix, namely Expand and Inflate. Expand(M) simply performs M ×M
and Inflate(M , r) raises each entry of the matrix M to the inflation parameter
r, r > 1. The inflation step is followed by the re-normalization of matrix M
so that it again represents a valid stochastic matrix, i.e., the columns of M are
made to sum to 1. The algorithm starts with the initial stochastic matrix, and
then each iteration applies the expansion and inflation steps to the matrix. These
steps are repeated until the process converges.

The Expand step spreads the stochastic flow out of a vertex to new vertices.
Vertices that are reachable by multiple paths are naturally enhanced more during
this process. Intuitively, within-cluster stochastic flows are magnified since there
should be more paths between nodes in the same cluster than between nodes
in different clusters. The inflation step introduces non-linearity into the process
to reinforce the intra-cluster flow even further and reduce the inter-cluster flow.
As a result, all the nodes within a cluster stochastically flow into one attractor
node. We can also identify individual clusters in the graph by identifying the
attractor nodes.

MCL is especially popular in bioinformatics as it was shown to be very effective
at clustering biological networks [47]. However, MCL comes with two significant
downsides [48]. First, MCL is relatively slow and does not scale to large graphs,
primarily because of the Expand step, which involves a matrix-matrix multipli-
cation that is very time-consuming. Furthermore, many entries in the stochastic
flow matrix have not been pruned out in the first few iterations, so optimization
is limited. Second, MCL often produces imbalanced clusters, usually one very
large cluster with many small ones.

To address these issues, several new variants of MCL have been proposed re-
cently [48, 49]. First, regularization was introduced to MCL to ensure that the
stochastic flows of neighboring nodes are considered when updating each node’s
flows. In this case, the expand step is replaced by the Regularize step, which is

25



M = M ×MG, where MG is the stochastic matrix of the original graph. The
inflation step remains the same. These improvements lead to further enhancing
within-cluster flows. Multi-level regularized MCL (or MLR-MCL) employs reg-
ularized MCL in a multi-level framework, as described in the previous section.
MLR-MCL solves the scalability issues of the original MCL algorithm since the
initial iterations of the algorithm can be performed on a smaller graph. When
the matrices become sparse enough, the underlying graph can be uncoarsened.

2.5 Evolution in social networks

All the methods described so far were working under the assumption that
the underlying graph does not change or that they are being applied to a single
snapshot of an evolving graph. One of the most recent areas in social network
analysis that has gained a lot of traction in the past several years is the study of
evolving networks. The interest in this area is driven mainly by the abundance of
data that can be viewed as an evolving social network. These data sources include
interaction data (likes or follows) from platforms like Facebook and Twitter and
messaging networks such as Whatsapp and Messenger.

Informally, evolution refers to a change that manifests itself across the time
dimension. The field of Data Mining defines a clear distinction between mining
static data and mining data streams. The stream paradigm usually works under
the assumption that instances of data arrive in sequential order, and each instance
is seen only once [50]. Therefore, stream mining algorithms in social network
analysis often work by adapting or monitoring the underlying structures, such as
communities or node importance.

This section is organized as follows. First, we will introduce the stream
paradigm computation, which we will use as the basis for the rest of this sec-
tion. Then, we will focus mainly on the problem of community detection in
evolving social networks. The communities can be perceived as clusters built at
each point in time. In such cases, the analysis of community evolution involves
tracing the same community/cluster at consecutive time points and identifying
changes (Section 2.5.2). Communities can also be perceived as smoothly evolv-
ing structures when community monitoring involves learning models that adapt
smoothly from one time point to the other (Section 2.5.3).

Other tasks, such as importance modeling across time, are more closely related
to the problem of link prediction, which will be discussed in Section 2.6.

2.5.1 Framework

The activities of entities captured by a social network can be viewed as a stream
(e.g., a stream of edges). Streaming represents a natural model of computation
that can be used to describe evolving social networks across time and will also
be adopted in this section.

26



Modeling social networks across the time axis

In this section, we study a graph G(V , E) across the time axis, and we assume a
series of discrete time points t1, . . . , tn−1, tn, . . .. At each time point ti we observe
a graph instance G(Vi, Ei) which we will also denote as Gi. The most typical
change that can occur in the graph between two time points ti−1 and ti is the
addition of edges or nodes, i.e., Ei−1 ⊂ Ei and Vi−1 ⊂ Vi.

One way to model time evolution under such a definition is to assume that each
time point ti corresponds to a moment at which a new node or edge is recorded.
This approach corresponds to the streaming model of computation formalized
in [50]. A stream is a sequence of records x1, . . . , xi, . . . , xn, . . . arriving in an
increasing order, where xi is either a new node or a new edge. Alternatively, the
time axis can be discretized into intervals of equal lengths, such as years, days,
and hours, or buckets of records of equal size.

The objective of a streaming algorithm is to maintain an up-to-date model or
representation of the incoming data, which means the model must be continuously
adapted to the most recently added records. In the simplest case, a model can
store all records seen so far, or in other applications, some of the older records
might be forgotten over time and removed from the model. For instance, for
identifying important nodes or understanding how communities grow or shrink,
it would be reasonable to forget some graph elements as they age. The process
of forgetting is often modeled by a sliding window where only records within a
specific window are considered by the model at any given time. The records within
the window can also be assigned different weights based on their recency [51].

Modeling the changes in a dynamic social network represented by a stream of
ordered events makes it possible to abstract the joint task of community discov-
ery and community evolution monitoring as follows. One model Mi is built at
each time point ti and then adapted into model Mi+1 using the data from the
following time window. Methods leveraging this abstraction will be discussed in
the remaining part of this chapter.

2.5.2 Incremental tracing of communities

In incremental clustering and stream clustering, a cluster built at some point
in time evolves as new records arrive and old records are forgotten. One could
also observe a community as a cluster in community stream mining. However,
it is required to incorporate some additional insights about the evolution of each
specific community/cluster from one time point to the other. One research branch
focuses on tracing the same community at different time points, which we will
discuss in this section. The other branch learns communities across time while it
also ensures temporal smoothness. The latter will be discussed in Section 2.5.3.

One of the earliest works in this area was done by Aggarwal and Yu [1], which
adheres to the stream paradigm we defined here but also incorporates an offline
exploratory component. This method makes a distinction between online and
offline components. The online component is responsible for summarizing the
information in the stream and building micro-clusters. In contrast, the offline

27



component can be invoked for different time frames, delivering the final clusters
built from the microclusters. This method assumes three possible community
transitions: expansion, contraction, and no change, based on the interaction level
among the members of the communities. For community clustering, the arriving
interactions are weighted based on their recency during the summarization step.

To characterize the transitions that are taking place in the network, Aggarwal
and Yu point out that some edges in the graph indicate intensified interactions
(denoted as positive edges), and other edges are negative, indicating less inter-
action than before. The algorithm for the offline component starts with a set
of centroids, to which further nodes are assigned, which eventually leads to the
partitioning of the graph.

A distinction between positive and negative edges in community evolution was
also made by the authors of DENGRAPH [52], which is an incremental vari-
ation of DBSCAN adjusted for graph applications. For each snapshot of the
graph, DENGRAPH computes the proximity between nodes, thereby forgetting
old interactions and taking new ones into account. The former indicates negative
changes, which eventually lead to community splits or shrinking, while the lat-
ter are positive changes that lead to community growth and fusions with other
communities.

The approach adopted by Falkowski et al. also consists of a static and a
dynamic component [53, 54]. The static component uses the hierarchical divisive
clustering of Girvan and Newman introduced in Section 2.4.3 to cluster the graph
within the current time window. Subsequently, the dynamic component matches
communities detected at different time points. For this task, Falkowski et al.
employ the MONIC framework [55], specifically designed to compare clusters
across different time points. Within the MONIC framework, two communities are
considered the same if the number of their overlapping members exceeds a certain
threshold. The output from MONIC is a temporal graph where communities
found at different time points are represented by nodes, and two communities
(nodes) are connected by an edge if the overlap of their members exceeds the
predefined threshold. The clustering algorithm of Girvan and Newman is applied
again to this resulting graph which allows the study of the evolution of volatile
communities. Measures of stability, density, and cohesion of communities across
time points are also proposed in [54].

The authors of [56] also study the evolution of communities using clustering
over bipartite graphs. The graph clustering is performed at different time points,
and the algorithm (named TimeFall) compares the clusters at different time
points. The community must be expressed as a set of words, e.g., words describing
a user profile. This requirement limits the approach to networks where word
vectors can describe nodes. The upside of this method is that it employs the
robust Minimum Description Length criterion for community matching. Matched
communities are linked into a temporal graph that resembles a time waterfall
which inspired the name of this algorithm.

28



2.5.3 Tracing smoothly evolving communities

The methods described in Section 2.5.2 work by matching communities de-
tected at different time points and using this information to infer how they evolve
(e.g., shrink or grow). A completely different approach to community evolution
incorporates assumptions on how communities evolve into the model. To be
precise, let us assume that communities are a smoothly evolving collection of
interconnected entities. Then, community detection overtime translates either
into finding a sequence of models [57] or into dynamically learning and adapting
a probabilistic model [58], such that the model evolves smoothly from one time
point to the next.

Temporal smoothness for clusters

To explicitly capture the continuity between the new and prior models, the
authors of [57] introduce the notion of temporal smoothness. This notion is in-
cluded in the objective function to be optimized during learning. The model
quality at each time point is captured by a cost function, which has two com-
ponents. The first is the snapshot cost, which measures the clustering quality
at the given time point (or snapshot). The second is the temporal cost, which
measures the similarity of the clustering learned at two consecutive time points.
Under such formulation, community detection becomes an optimization problem
of finding a sequence of models that minimize the overall cost. The model cost
denoted by ξt is learned from the entity similarity matrix denoted by Mt valid
at time point t:

Cost(ξt, Mt) = snapshotCost(ξt, Mt) + β × temporalCost(ξt−1, ξt) (2.21)

The matrix Mt is computed by considering: (a) the similarity of entities from
the current snapshot of the underlying graph and (b) the temporal similarity,
which reflects the similarity between entities from earlier moments. The change
parameter β weighs the importance of the temporal smoothness relative to the
quality of the clustering model. β is typically chosen from the range [0, 1].

The authors of [59] extended this method first by adjusting the cost function by
introducing an α parameter to control the impact of the snapshot cost explicitly:

Cost(ξt, Mt) = α× snapshotCost(ξt, Mt) + β × temporalCost(ξt−1, ξt) (2.22)

Then, the authors also provided two ways of modeling temporal smoothness:
(a) preservation of cluster membership at time point t by measuring the overlap
between the clusters at t vs. the previous time point t − 1, (b) preservation of
cluster quality at t by measuring the degradation of the quality of clusters found
in t − 1. Further, they did not only consider K-means clustering as in [57] but
also spectral clustering. For K-means, the snapshot cost of model ξt is expressed
as the sum of square errors SSE(ξt, t). Preservation of cluster quality from t− 1
to t (PCM) is expressed as the SSE of the clusters in ξt towards the centers they
had at t− 1 and are normalized by the cluster cardinalities:

PCM(ξt−1, ξt) = −
∑︂

X∈ξt−1

∑︂
Y ∈ξt

|X ∩ Y |
|X| × |Y |

(2.23)

29



Dynamic probabilistic models

Probabilistic models are well suited for learning network dynamics under the
assumption of smooth evolution. A similar field where these methods have been
successfully applied for years is text stream mining (also called topic modeling),
e.g., [60, 61, 62]. In the methods discussed so far, a community was defined as
a cluster of proximal entities, where the proximity was modeled as a similarity
in behavior or properties of nodes. Probabilistic models, on the other hand,
assume that the formation of communities results from a generating process that
a number of latent variables can describe. If, for instance, the latent variables
are called communities, as in [63], then a community determines each activity
observed at each time point with some probability.

One of the earlier studies that applied dynamic probabilistic models to com-
munity evolution in networks was done by Sarkar and Moore [58]. They study a
social network of interacting entities, i.e., a single stream of interactions, and look
at the evolution of relationships among entities under two assumptions. First,
entities can move in the latent space between time steps, but large moves are
improbable. Second, they make the standard Markov assumption that latent lo-
cations at time t + 1 are conditionally independent of all previous locations given
latent locations at time t. Thanks to the first assumption, the contribution of
a latent variable to the given entity’s interaction behavior can change from one
time point to the next, but not drastically.

The model of Sarkar and Moore (named Dynamic Social Network in Latent
Space model or DSNL) consists of an observation model and a transition model
[58]. The observation model includes a likelihood score function that measures
how well the model explains pairs of connected entities in the graph. Entities
vary their sociability, and a kernel function weights linking probabilities. The
core idea of this method is that the sociability of each entity is a radius in the
latent space, and each entity will connect with all entities within its radius with
a high probability. They also model less likely connections to entities beyond
the radius with a constant probability p corresponding to noise. The transition
model penalizes drastic changes of the current model towards the previous one.

There is a correspondence between the snapshot and temporal costs proposed
for clusters introduced in Section 2.5.3. The method of Sarkar and Moore targets
the quality of the probability model at each time point (snapshot quality) and
minimal perturbation between time points (temporal smoothness). They also
make sure to avoid local minima, and as a result, this method performs very well
for both synthetic and real-world networks.

Dynamic topic modeling for community monitoring is used in FaceNet [63],
which builds upon the evolutionary clustering introduced in [57]. The cost of
deviating from temporal smoothness is modeled using Kubler-Leibler divergence.
A community is a latent variable, and each node is described by all communities
(with different probabilities). Community evolution is captured by a so-called
Evolution Net where the nodes correspond to communities at distinct time points.
In Evolution Net, an edge between community c at time t and a community c′ at
time t′ > t is the probability of reaching c′ from c.

30



2.6 Link prediction

Link prediction is an essential task in social network analysis and has ap-
plications in numerous areas, including information retrieval, e-commerce, and
bioinformatics. There are various approaches to link prediction in the literature,
ranging from feature-based classification [7, 64] and kernel methods to matrix
factorization [65] and probabilistic graphical models [66, 67]. These methods
differ from each other in terms of complexity, prediction performance, and scala-
bility. In this section, however, we will only cover the feature-based classification
methods as they are most relevant to this study.

2.6.1 Background

Formally, the link prediction problem can be formulated as follows. Given
a social network defined as graph G(V , E), in which an edge e = (u, v) ∈ E
represents some form of interaction between two nodes at a given time t(e).
Multiple interactions between two nodes can be represented by parallel edges or
by using complex time stamps for edges (e.g., a list of time stamps). For time
t ≤ t′, we assume that G[t, t′] denotes the sub-graph of G restricted to the edges
with time stamps between t and t′. In the link prediction task, we choose a
training interval [t0, t′

0] and a test interval [t1, t′
1] where t′

0 < t1. Now, the link
prediction task is to output a list of edges not present in G[t0, t′

0], but are predicted
to appear in the network G[t1, t′

1]. This formulation is based on one of the earliest
definitions of the link prediction problem proposed by Kleinberg et al. [7].

Link prediction has a wide variety of applications in many different domains.
In the context of the internet, it can be used for automatic web hyperlink cre-
ation [68] and website hyperlink prediction [69]. In e-commerce, one of the most
common usages of link predictions is to build recommendation systems [70]. In
bioinformatics, it is used to predict protein-protein interactions (PPI) [71]. In
security-related applications, it is used to identify hidden groups of terrorists and
criminals. Thanks to its generality, link prediction can be applied to graphs that
represent online social networks (e.g., Facebook) and other types of networks such
as information networks, biological networks, and many others.

2.6.2 Feature-based methods

The link prediction problem can be modeled as a supervised classification task,
where each data point corresponds to a pair of vertices in the social network. The
model is first trained on the link information from the training interval [t0, t′

0] and
then used to make predictions of future links between nodes in the test interval
[t1, t′

1]. More formally, let us assume that u, v ∈ V are two vertices in the graph
G(V , E) and the label of the data point ⟨u, v⟩ is y⟨u,v⟩. In this case, we will assume
that the interactions between u and v are symmetric, so the pair ⟨u, v⟩ and ⟨v, u⟩
represent the same data point. Now, the label y is defined as:

y⟨u,v⟩ =
⎧⎨⎩+1 if ⟨u, v⟩ ∈ E
−1 if ⟨u, v⟩ /∈ E

(2.24)

31



By using the above labeling on a set of training data points, it is possible
to build a classification model to predict unknown labels for pairs of vertices
⟨u, v⟩ /∈ E in the graph G[t1, t′

1]. Effectively, we have reduced link prediction
into a typical classification task that supervised classification algorithms, such as
naive Bayes, support vector machines, or neural networks, can solve. The key to
successful classification-based link prediction is the feature set construction which
we will discuss in the following subsection.

Feature set construction

Selecting an appropriate feature set is one of the most critical parts of any
machine learning algorithm. In link prediction, each data point represents a
pair of vertices with a label denoting their link status. Intuitively, the selected
features for link prediction should represent some form of proximity between
pairs of nodes. In existing research, most features are extracted from the graph
topology (or structure). However, one of the significant advantages of feature-
based link prediction is the ability to incorporate features based on any additional
node-relevant data. The use of domain-specific node data for link prediction is
valuable in areas such as online social networks where both the users and the
resources they upload represent rich data that can be converted to useful features
for prediction, e.g., users’ topic interests.

The work of [7, 64] on link prediction uses feature sets consisting of only topo-
logical features. They compute a similarity score based on the node neighborhood
or path-based statistics between pairs of nodes. The most common similarity
scores that are also used for link prediction have been discussed in Section 2.3,
and they include: the Adamic/Adar score, the Katz score, and the Jaccard coef-
ficient. All of these similarity measures can be directly used as features in the
classification task of predicting future links. The main advantage of these features
is that they are generic and applicable to graphs from any domain. However, for
large social networks, constructing some of these features may become computa-
tionally expensive.

Numerous studies, including [72, 73], showed that features derived from vertex
attributes can significantly increase the performance of link prediction tasks. For
instance, Hasan et al. [73] showed that attributes such as the degree of overlap
among the research keywords used by two authors were one of the most predictive
features in their dataset for link prediction in a co-authorship social network. In
this case, the vertex attribute was the research keyword set, and the assumption
was that a pair of authors were close (in the context of a social network) to each
other if their research work used a larger set of common keywords. The advantage
of such feature sets is that they are generally cheap to compute. On the other
hand, the main disadvantage is that these features are tightly tied to the domain,
which the user of this technique must be familiar with.

Classification models

Many classification models are used for supervised learning, including naive
Bayes, decision trees, random forests, SVMs, neural networks, and others. There

32



are also regression models, such as the logistic regression, which can be used for
link prediction as well [74]. Even though the performance of these methods is
often comparable, it was also shown that some methods might have advantages
in specific datasets or domains. For instance, in [73], the authors showed that
bagging and SVMs have a marginal competitive advantage over other methods in
a co-authorship social network. Learning a classification model in the context
of link prediction has some specific challenges that can make certain models
more attractive.

The first challenge in supervised link prediction is the underlying data’s ex-
treme class skeweness. The number of possible edges in a social network is
quadratic in the number of its vertices. The number of links to be added to
the graph is often only a small fraction of this number, which naturally leads to
a very large class skewness, making training and inference difficult. For example,
Hasan et al. [73] reported a good performance on the link prediction task on the
DBLP dataset. However, they ignored the class distribution and reported cross-
validation performance from a dataset where the population was balanced. If the
original class distribution were used, the performance would drop significantly.

To demonstrate the extent of this issue, let us look at the DBLP dataset more
closely. In 2000, the ratio of the actual and possible edges was as low as 2×10−5.
So, in a uniformly sampled dataset with one million training instances, we can
expect only approximately 20 positive examples. Even worse, it was observed that
the ratio between the number of positive edges and the number of possible edges
decreases over time because the number of negative links grows quadratically. In
contrast, positive links only grow linearly with each new node. It was reported
in [75] that the number of authors in DBLP increased from 22 thousand to 286
thousand between 1995 and 2005. Thus the possible collaborations increased by
a factor of 169, while the actual collaborations only increased by a factor of 21.

There are several different approaches to cope with class skewness. Some meth-
ods work by altering the training samples by either up-sampling or down-sampling
[76]. Then, other methods alter the learning method itself by turning it into an
active [77] or const-sensitive [78] process and by treating the classifier scores with
different thresholds [79]. For kernel-based classification methods such as SVMs,
there are specific approaches that can reduce the imbalance problem [80].

The second big challenge of supervised link prediction is model calibration
which is often even more important than the model selection in this context.
Model calibration is the process of finding a function that transforms the output
score value of the model into a label. This calibration function controls the ratio
of the false positive error and the false negative error. In many applications of
link prediction, such as, for instance, detecting links in a terrorist network, the
cost of missing a true link can be catastrophic. On the other hand, in online social
networks recommending a wrong link can be considered more severe than missing
a true link. Hence, it is essential to incorporate these assumptions into the model
by a calibration process. Popular calibration techniques used in machine learning
include Platt scaling [81] and Isotonic regression [82].

The last common problem in supervised link prediction is the training cost in
terms of time complexity. Most real-world social networks are very large, and

33



due to the class imbalances, a model’s training dataset needs to consist of many
samples so that rare cases are represented [83]. In such a scenario, classification
cost may also be considered when choosing the model. For instance, running an
SVM with millions of training samples could be costly regarding resource needs,
while a naive Bayes classification would be comparably cheaper.

2.7 Pattern mining in graphs

Pattern mining is a fundamental area of data mining that focuses on applying
algorithms to detect meaningful patterns within existing datasets. A pattern is
considered meaningful if it provides novel insights that contribute to understand-
ing historical trends in the data or predicting future occurrences. This approach
has been employed across diverse data types, including transactional data [84],
time series [85], spatial data [86], and graphs [87]. The challenges within pattern
mining stem from the need to consider a vast number of potential patterns before
identifying the desired ones. As a result, algorithms used for pattern mining rely
on efficient data structures and implementing strategies for pruning the search
space of all possible patterns.

Graphs, as a foundational structure in various data domains, have attracted
significant attention in the context of pattern mining. Graph pattern mining
pertains to analyzing patterns embedded within graph-structured data, encom-
passing different graph types such as weighted, directed, attributed, and dynamic
graphs. These methods are especially compelling in the context of dynamic net-
works since they can generate rules that describe the evolution of a network on
a microscopic level, i.e., individual nodes or edges. Furthermore, these rules are
easily understandable by humans and can be directly used to extract knowledge
from networks.

Graph mining is a very active field of research. In this section, we will cover
key concepts and approaches that underpin graph mining algorithms. By first
exploring fundamental techniques for pattern mining in static graphs, we will
establish a solid foundation to subsequently delve into algorithms designed for
discovering patterns in dynamic graphs.

2.7.1 Static graphs

Most algorithms designed for static graphs work with labeled graphs, as la-
bels represent additional data attached to the nodes/edges that the graph min-
ing algorithms can leverage. Therefore, we first introduce static labeled graphs
in Definition 2.7.1 below.

Definition 2.7.1 (Static labelled graph). A static labeled graph is a tuple G =
(V, E, LV , LE, ϕV , ϕE), where V is a set of vertices, E ⊆ V × V is a set of edges,
LV is a set of vertex labels, LE is a set of edge labels, ϕV : V → LV is a function
mapping vertices to labels, and ϕE : E → LE is a function mapping edges to
labels. The underlying graph can be directed or undirected, and this definition can
also be generalized to multigraphs.

34



One of the most popular graph mining tasks is frequent subgraph mining which
aims to find all subgraphs that appear frequently in a database of connected
graphs. Given a parameter called minimum support threshold or minsup, a graph
is frequent if it appears at least minsup times in the database. In the context of
this study, subgraph mining could help find associations between creditors that
appear together in different insolvencies. To formally define frequent subgraph
mining, we will first define the concept of a subgraph using graph isomorphism
in Definition 2.7.2 and then support of a subgraph in Definition 2.7.3.

Definition 2.7.2 (Graph isomorphism). Let GD = {G1, G2, G3, . . . , Gn} denote
a graph database which consists of n labeled static graphs. Consider two labeled
graphs, Gx = (Vx, Ex, LV x, LEx, ϕV x, ϕEx) and Gy = (Vy, Ey, LV y, LEy, ϕV y, ϕEy).
The graph Gx is isomorphic to graph Gy, if and only if there exists a bijective
function f : Vx → Vy such that the following requirements hold:

1. ∀v ∈ Vx, LV x(v) = LV y(f(v))

2. ∀{u, v} ∈ Ex, {f(u), f(v)} ∈ Ey

3. LEx(u, v) = LEy(f(u), f(v))

A graph Gx is a subgraph isomorphism (appears in) a graph Gz, denoted as Gx ⊑
Gz, if there exists a subgraph Gy ⊆ Gz such that Gx is isomorphic to Gy.

Definition 2.7.3 (Support). The support of a graph Gx in a graph database GD
is defined as sup(Gx) = |{g|g ∈ GD ∧Gx ⊑ g}|

A subgraph isomorphism is also called an embedding. Given a graph database
GD and a threshold minsup, the task of frequent subgraph mining is to enu-
merate all frequent subgraphs (or embeddings) that have support no less than
minsup. Frequent subgraph mining is difficult because many subgraphs must be
considered, and their support must be calculated before identifying the frequent
subgraphs. Several efficient algorithms were proposed for frequent subgraph min-
ing on static graphs in the literature, and the most notable ones will be covered
in the rest of this section.

Given a set of undirected graphs and a minsup threshold, the gSpan [87] algo-
rithm identifies all frequent subgraphs in the given set. gSpan maps subgraphs
to unique minimum depth-first search (DFS) codes and uses this code to sort the
subgraphs in lexicographic order. This lexicographic order allows gSpan to use a
DFS (depth-first search) strategy to mine subgraphs efficiently. More specifically,
gSpan traverses a DFS Code Tree, where the code of a node corresponds to the
parent’s code extended by one edge, and the siblings are ordered according to
the lexicographic order. The algorithm starts from the smallest subgraphs and
backtracks if the corresponding subgraph is not frequent.

Unlike gSpan, the Subdue [88] algorithm searches for subgraphs that can best
compress the input graph or the set of input graphs. The compressibility is eval-
uated by the Minimum Description Length (MDL) principle. The best substruc-
ture is the one that minimizes DL(S)+DL(G|S), where DL(S) is the description

35



length of the substructure and DL(G|S) denotes the description length of the in-
put graph G after the compression of S. Once the best substructure is found, the
input graph is compressed by replacing the occurrences of the substructure with
pointers. Then, the whole process repeats. This method results in a hierarchical
description of the input graph regarding the discovered substructures.

Another algorithm based on depth-first search is Sleuth [89], designed for min-
ing frequent subtrees from a set of rooted trees. An improved version of Sleuth
can also mine ordered and unordered trees and induced and embedded trees. In
ordered trees, the order of sibling nodes matters (unlike in unordered trees). On
the other hand, induced trees are tree embeddings that preserve the parent-child
relationship, i.e., if two nodes are in a parent-child relationship in the induced
tree, then the same relationship also exists in the input trees. Embedded trees
only require the ancestor-descendant relationship to be preserved. Specifically, if
two nodes are in a parent-child relationship in the embedded tree, then the path
connecting these two nodes must exist in the input graphs, but it can also contain
other nodes.

2.7.2 Dynamic graphs

In this section, we will focus on pattern mining in dynamic graphs. First, we
introduce a notion of a dynamic graph in the context of pattern mining. Then,
we focus on mining algorithms for subgraph mining and rule mining.

Definition 2.7.4 (Dynamic labeled graph). A dynamic graph is a sequence
DG = (G1, G2, . . . , Gn), where Gi is a static labeled graph extended by timestmap
functions tGI ,V , tGi,E for i = 1, . . . , n. The timestamp functions are defined as
TG,V : VG → T and TG,E : EG → T and map vertices and edges to a point in
time, respectively. We assume a discretized time represented by a set of integers,
i.e., T = Z. The graph Gi is called the snapshot of DG at time i.

An example of a dynamic graph in the context of this study is the insolvency
graph capturing debtor-creditor relationships where timestamps on the edges rep-
resent the creation of the creditor’s claim against the debtor. Using the timestamp
functions, we can add more information about the processes in the graphs and
look for relative differences between timestamps. For instance, we can discover
changes in a graph that happen at similar times. Vertex and edge timestamps
can represent the creation of the vertices and edges or the change in their labels.

It is essential to point out that there are also other definitions of dynamic
graphs in the literature, including other definitions of patterns in dynamic graphs.
In the following two (sub)sections, we will focus specifically on methods for mining
dynamic subgraph patterns and evolution rules. Other methods designed for min-
ing sequence patterns, discriminative patterns, or anomaly patterns are beyond
the scope of this work.

36



Dynamic subgraph mining

The algorithms described in this section are similar to those used for static
graphs. The mining process typically also involves solving a subgraph isomor-
phism problem with the additional requirement to consider constraints on the
node/edge timestamps.

The first algorithm, Dynamic GREW, proposed in [90], assumes the input
graph has a fixed set of nodes, and edges are inserted and deleted over time.
The presence of edges is expressed by a sequence of 0s and 1s called existence
strings, where 1 represents presence of an edge, and 0 represents absence. A
dynamic subgraph of length k of a dynamic graph is a subgraph from both the
topological and dynamic views. More specifically, the existence strings of the
dynamic subgraph have length k, and they are substrings of existence strings of
the original graph starting from the same position. A frequent dynamic subgraph
is one with at least t occurrences for a given value of t.

The dynamic subgraph enumeration algorithm proposed in [91] was designed
to solve the Dynamic Subgraph Enumeration Problem (DSE), which can be stated
as follows. Given a subgraph H and a sequence G of graphs G1, G2, . . ., where
Gt+1 is obtained by modifying a single edge in Gt. The goal of DSE is to maintain
a dynamic data structure for each Gt so that the number of subgraphs of Gt+1
isomorphic to H can be estimated efficiently without recomputing them in Gt+1
from scratch.

Subgraph mining from interaction temporal graphs was considered in [92]. An
interaction temporal graph was defined as a static directed graph, where edges
represented interactions between entities (nodes) and edges were marked with
the start time and duration of the interaction. The algorithm proposed in [92]
mines so-called time-respecting subgraphs, i.e., connected subgraphs in which the
interaction of an edge starts soon after the interactions of the adjacent edges.

Rule mining in dynamic graphs

In this part, we will cover methods for rule mining in dynamic graphs. Let
B and H be two graphs, then B → H is a graph rule in which B is the body
(precondition), and H is the head (postcondition) of the rule. Graphs B and
H are static graphs extended by timestamp functions on their edges or nodes.
Their embeddings are typically subgrahs of snapshots Gi and Gj of a dynamic
graph DG = (G1, G2, . . . , Gn), where 1 ≤ i, j ≤ n. Generally, the body and the
head can be arbitrary graphs, and their interpretation may differ for different
methods. For instance, if both the body and the head come from the same
snapshot, then the rule is denoted as an association rule, and such a rule can be
used to examine the co-occurrence of subgraphs. However, if the body precedes
the head’s snapshot, the rule is denoted as predictive or an evolution rule. These
evolution rules can help understand the evolution processes in dynamic graphs.

Similarly to frequent subgraph mining, a support measure is also defined for
these rules. The literature has several different support definitions, and each is
typically adapted to a specific scenario. For instance, rules in [93] only assume

37



edge additions. Thus, the body is always a subgraph of the head, and support
is calculated as the number of occurrences of the head. In order to allow the
algorithms to mine these rules efficiently, it is necessary for the support definitions
to be anti-monotonic, i.e., the support of a pattern is at least as large as the
support of its super patterns. Using the support measures, defining a confidence
measure for rules is also possible. Confidence is typically expressed as the support
ratio of the rule’s head to its body, and different definitions of support lead to
different definitions of confidence.

One of the earliest approaches for mining rules in dynamic graphs was proposed
in [93], where the authors introduced the so-called Graph Evolution Rules (GER).
A GER is a rule in which the same subgraph is used for the body and the head, but
the body contains all edges except those with maximum timestamps. The method
for extracting these rules is called the Graph Evolution Rule Miner (GERM), and
it was designed for undirected graphs in which nodes and edges are only added
and never deleted. This approach, however, can also be extended to cases with
edge and node deletions. Furthermore, this method assumes that the node and
edge labels do not change over time and timestamps are assigned only to edges
but not nodes.

Similarly, LFR-Miner proposed in [94] was also designed to mine rules for
predicting new edges between pairs of vertices in a directed graph. The body of
a rule is made up of a subgraph, but there is a designated pair of vertices called
the start node and end node. The head of a rule only contains a directed edge
from the start node to the end node. Timestamps of all edges in the body have
to be smaller than the timestamp of the edge in the head. Additionally, all the
other nodes in the body have to be connected to both the start node and the end
node. This algorithm also assumes that edges are only added and not removed.

38



3. Insolvencies in the Czech
Republic

On January 1, 2008, the Parliament of the Czech Republic adopted a new Act
No. 182/2006 Coll. on Insolvency and Methods of its Resolution, also known
as the Insolvency Act. The purpose of the new law was to modernize the ex-
isting insolvency process and to increase the transparency and effectiveness of
the insolvency proceedings in the Czech Republic. The new Insolvency Act was
also complemented by the launch of a new publicly accessible information system
called the Insolvency Register of the Czech Republic (IR), which the Ministry
of Justice of the Czech Republic operates. The new Act mandates that every
insolvency proceeding starting January 1, 2008, is published in the register.

As of 2022, IR contains detailed information regarding approx. 375,000 insol-
vencies. It contains demographic (e.g., age, gender, address) and socioeconomic
data (e.g., income, assets, debt information) of more than 270,000 debtors1 in the
Czech Republic, including both companies and individuals.

Figure 3.1: Number of insolvencies commenced each year since the launch of the
IR in 2008 in blue and the corresponding volume of receivables claimed2 by the
creditors in the same year in orange.

There is significant interest in analyzing this large and growing database of
insolvencies in the Czech Republic from multiple perspectives. From a purely
economic perspective, this data can help understand how company bankrupt-
cies occur and the network effects of a single bankruptcy on the whole company
ecosystem. Furthermore, the outcomes of this analysis can help financial insti-
tutions to build more robust risk models. From the socioeconomic perspective,
this data can shed light on how individuals get into debt, what role the demogra-
phy plays in this process, and what systemic changes could prevent people from
getting into excessive debt. Lastly, this analysis can provide great feedback to
policymakers and lawyers to understand the effects of individual amendments to
the existing law and how upcoming amendments could be designed.

1A single debtor can be the subject of multiple insolvencies, but not at the same time.
2In the insolvency proceeding the receivables are first claimed by the creditor by submitting

the application of receivables and then the insolvency court either admits or denies the claim.

39



Modern data mining methods represent an appealing approach to analyzing
these vast amounts of publicly available data. It would be especially interesting
to understand the ongoing proceedings in the context of mutual relationships of
individual entities participating in the insolvency proceedings (e.g., debtors, cred-
itors, and insolvency administrators). Social network analysis methods provide
a natural framework to study the indebtedness structure present in the Czech
society today and how it evolves.

The historical evolution of the IR in terms of the yearly number of commenced
insolvencies and claimed receivables is depicted in Figure 3.1 and Figure 3.2
respectively. In the first six years after adopting the Insolvency Act in 2008, the
number of commenced insolvencies increased yearly until the peak in 2013, when
the trend reversed. Another trend reversal can be seen in 2019, caused by the
new amendment (see Section 3.1.6) that came into effect in June 2019. This
amendment significantly relaxed the requirements for insolvencies of individuals,
thus making it available to a broader set of debtors.

Figure 3.2: Yearly volume of receivables per creditor category.

The rest of this chapter is organized as follows. First, we describe the Insol-
vency Act and define all the terms used in this study. Next, we will describe the
individual entities involved in the insolvency proceedings and the debt resolution
methods defined by the Insolvency Act. Lastly, we will describe the Insolvency
Register and the states of the insolvency proceedings and provide real-life exam-
ples of insolvencies to demonstrate the insolvency process.

3.1 Insolvency Act

This section will describe the Insolvency Act to the extent required for fully
comprehending this thesis. We will also provide the definitions of all essential
terms. Our description is based primarily on the English translation of the In-
solvency Act by Wolters Kluwer ČR, a.s.[95], and the terminology established in
this publication will be adopted for this study.

40



Since the Wolters Kluwer translation was published in 2011, it only contains
the original Insolvency Act from 2008 and all its amendments added until August
2011. Nevertheless, it still represents a valid source of more detailed information.
The most significant amendments in the context of this study will be reviewed at
the end of this section. The original up to date version of the Insolvency Act is
available in the Collection of Laws of the Czech Republic3.

The Insolvency Act denotes the Act No. 182/2006 Coll. on Insolvency and
Methods of its Resolution including all its later amendments4 and was created to
replace the former Act No. 328/1991 Coll.

For the purposes of this study:

• An insolvency proceeding (IP) is a court proceeding, the subject of which is
the debtor’s insolvency or imminent bankruptcy and the method of its res-
olution. A detail page in the IR corresponding to the insolvency proceeding
of a company called Pilsen Steel s.r.o. is shown in Figure 3.3).

• An insolvency court is the court before which the insolvency proceeding
is held. The insolvency courts are a part of the regional courts (listed in
Table 3.1) in the Czech Republic. The corresponding regional court can
be identified by the first four letters in the reference number. For instance,
KSPL in Figure 3.3 refers to the Regional Court of Plzeň.

• An insolvency proceeding is commenced by filing an insolvency petition to
the insolvency court. With equal rights, the petition can be filed by the
creditor(s) or the debtor himself to one of the regional courts. The insol-
vency proceeding must start within three days of submitting the petition.

• An application of receivable is a procedural act by which a creditor applies
the satisfaction of its rights (typically unpaid claims) in the insolvency
proceeding. In simple terms, this means that the creditor has to submit
an application of receivable to claim his unpaid debt by the debtor. The
typical due date for the submission is 30 days from the commencement of
the insolvency proceeding.

3.1.1 Insolvency

Debtors are insolvent from the perspective of the Insolvency Act if they have5:

1. several creditors and

2. outstanding financial liabilities for more than 30 days overdue, and

3. they are not able to fulfill such liabilities.
3The Collection of Laws of the Czech Republic (only in Czech) is available at: https:

//aplikace.mvcr.cz/sbirka-zakonu/. Accessed at 21 November 2023
4The current list of all amendments (only in Czech) is available at http://

insolvencni-zakon.justice.cz. Accessed at 21 November 2023
5Defined in Part 1, Chapter1, Section 3 of the Insolvency Act.

41

https://aplikace.mvcr.cz/sbirka-zakonu/
https://aplikace.mvcr.cz/sbirka-zakonu/
http://insolvencni-zakon.justice.cz
http://insolvencni-zakon.justice.cz


Figure 3.3: Insolvency Register detail page related to the insolvency proceeding
of the company Pilsen Steel s.r.o with the English translation of the fields in
blue.

It is believed that the debtors are not able to fulfill their financial liabilities if:

1. they stopped the payments for the substantial part of their
financial liabilities or

2. they have defaulted for more than three months overdue or

3. the enforcement of an execution might not satisfy any outstanding
financial receivables against the debtor.

3.1.2 Participants in the insolvency proceedings

The subjects of every insolvency proceeding are the debtor and the creditors
who exercise their rights against the debtor.

The creditor is a party (legal entity or an individual) that has delivered a
product, service, or a loan to the debtor and is owed money based on unpaid
claims. Conversely, the debtor is an entity (legal or an individual) that owes
money to the creditor. Creditors claim their receivables by submitting an appli-
cation of receivables and are satisfied based on the method of resolution chosen
by the insolvency court. A specific debtor can only be the subject of at most
one insolvency proceeding at a time. However, a debtor can become insolvent on
multiple occasions throughout his lifetime.

The role of the insolvency court in the insolvency proceeding is to issue deci-
sions per the Insolvency Act and to continuously supervise the process and activ-
ities of all the other procedural bodies (administrators, creditors, and debtors).

42



The entity that stands between the debtor and the creditors is the insolvency
administrator, whose purpose is the handling of assets of the debtor during the
insolvency proceeding to achieve the highest possible satisfaction of the creditors.
The insolvency administrator is appointed by the insolvency court from the official
list6 of administrators managed by the Ministry of Justice. The appointment of
administrators is governed by a special Act No. 312/2006 Coll on Insolvency
administrators.

3.1.3 Exceptions from the effects of the Insolvency Act

The Insolvency Act is not applicable if it is in regards to a debtor who is one
of the following:

1. the State

2. the local government unit

3. the Czech National Bank

4. the General Health Insurance Company of the Czech Republic

5. the Deposit Insurance Fund

6. the Guarantee Fund of the Securities Traders

7. a public non-profit institutional health facility

8. a public college.

3.1.4 Methods of insolvency resolution

The methods of resolution, as defined in the Insolvency Act, define different
ways to satisfy the receivables claimed by the creditors. The three primary meth-
ods of insolvency resolution are: (1) bankruptcy order, (2) restructuring, and (3)
discharge.

Bankruptcy order is a method of insolvency resolution based on the fact that
the determined receivables of the creditors will be essentially satisfied from the
proceeds of the liquidation of assets. However, the non-satisfied receivables or
any part thereof do not cease to exist unless the law stipulates otherwise. The
bankruptcy order applies to both legal entities and individuals.

Restructuring corresponds to the gradual satisfaction of creditors’ receivables
while preserving the operation of the debtor’s company, secured by measures
taken for the company’s economic recovery under the restructuring plan approved
by the insolvency court. The restructuring only applies to companies if their total
turnover for the last accounting period preceding the insolvency proceeding was
at least 100,000,000 CZK or if they have more than 100 employees.

6The up-to-date list of all licensed insolvency administrators is available at https://isir.
justice.cz/InsSpravci/public/seznamFiltr.do.Accessed at 21 November 2023

43

https://isir.justice.cz/InsSpravci/public/seznamFiltr.do
https://isir.justice.cz/InsSpravci/public/seznamFiltr.do


Discharge is applicable only in cases when the debtor is not an entrepreneur.
It may be performed by the liquidation of the debtor’s assets or through the
execution of a payment calendar. A discharge by liquidating the assets proceeds
similarly to liquidating assets in case of a bankruptcy order. The assets in this case
include immovable property (e.g., real estate), movable property (e.g., vehicles),
and financial assets (e.g., savings). In case of a discharge through the execution of
the payment calendar, the debtor must pay monthly installments to the creditors
from his income for at most five years. This resolution prefers social purpose
over economic, allowing the debtor a ”fresh start” and motivating him to repay
his debts [96].

3.1.5 Insolvency states

The description of the Insolvency Act described in the previous sections sug-
gests that the insolvency proceeding goes through a series of states that describe
its process. This section lists all the possible states of an insolvency proceeding.
The complete insolvency process, including all the states and possible transitions,
is depicted in Figure 3.4.

Unresolved is the first and initial state of every insolvency proceeding. In this
state, the insolvency court has admitted the insolvency proceeding, but the court
has yet to make any decisions about the matter.

Incorrect Entry state, as the name suggests, represents an incorrect entry sub-
mitted to the IR with no legal consequences. It is usually employed for cases
when an error was made by the court officials working with the register.

Unresolved — Advanced occurs when the insolvency petition was submitted to
the incorrect court. The most common example is that the insolvency petition
was submitted to the incorrect regional court. Again, this state has no legal
consequences, and no decisions or changes are made to the insolvency proceeding
while in this state. In this case, the court officials simply transfer the insolvency
petition to the proper regional court.

Bankruptcy denotes a state when the insolvency court has decided that the
debtor is insolvent based on the criteria defined in Section 3.1.1. While in this
state, the insolvency court determines the resolution method most suited for the
given insolvency proceeding. It may be one of the three methods defined in
Section 3.1.4: discharge, bankruptcy order, and restructuring. The insolvency
court can often determine the insolvency and the resolution method in a single
decision. In such a case, this state is skipped, and the insolvency proceeding
moves directly to the state corresponding to the resolution method.

Bankruptcy Order, Restructuring, and Discharge states correspond to the res-
olution methods described in Section 3.1.4.

Finished indicates that the insolvency court has decided to end the insolvency
proceeding, but the decision has yet to reach legal effect.

Effective follows the state Finished, indicating that the decision about the
insolvency proceeding’s end has attained legal effect. After the insolvency enters
this state, it is no longer possible to appeal against the court’s decision.

44



Checked Off indicates that the insolvency proceeding was removed from the
list of active cases of the corresponding court.

Revived is a special state used in the appeal procedure when the court declares
the previous court decision invalid, which causes the insolvency proceeding to be
”revived” and start over.

Canceled by Supreme Court is another special state that is used for cases when
the regional court’s decision gets overruled by the Supreme Court.

Moratorium is reserved for cases when the debtor can resolve his debts with its
creditors before the insolvency proceeding starts. The debtor may file a petition to
declare a moratorium to the insolvency court within seven days of the submission
of the insolvency petition. Once the Moratorium period has ended, the insolvency
court has to decide whether it was successful, and it can either end the proceeding
or decide that the debtor is still insolvent.

Bankruptcy Order After Cancellation is a special state reserved for cases when
the insolvency court has ended the ongoing Bankruptcy Order but the creditors
or the administrator make an appeal to restore it.

3.1.6 Amendments

Since 2008, more than 30 amendments7 have been added to the original Insol-
vency Act. The Wolter Kluwer[95] translation used for reference in this chapter
contains amendments up to the end of 2013. Covering all amendments is be-
yond the scope of this study. However, this section will review the two essential
amendments most relevant to this work.

Act No. 64/2017 Coll. on improved transparency and abuse prevention

The first amendment, Act No. 64/2017 Coll., took effect on July 1, 2017. This
act aimed to improve the transparency of the insolvency proceedings, emphasize
digitization of relevant processes, provide better oversight over the work of admin-
istrators, and provide more protection against the so-called ”bullying” insolvency
proposals. Bullying proposals are submitted to knowingly and purposefully harm
the reputation of the target entity, which is usually an entrepreneur, to create an
unfair competitive advantage.

This amendment significantly changed how the court judges the bankruptcy
of entrepreneurs. It provides debtors legal tools that leverage their accounting
books, which they can use to better defend themselves against dubious insolvency
proposals. Additionally, it gives the court the right to perform a preliminary ex-
amination before the insolvency is published in the Insolvency Register to prevent
reputation damage to the target entity.

7The current list of all amendments is available at https://insolvencni-zakon.justice.
cz. Accessed at 21 November 2023

45

https://insolvencni-zakon.justice.cz
https://insolvencni-zakon.justice.cz


Figure 3.4: Insolvency states as defined by the Insolvency Act.

Act 31/2019 Coll. on Discharge and its application

The second amendment, Act 31/2019 Coll., was enacted on June 1, 2019,
and focuses mainly on discharges. Its purpose was to ease the requirements for
entering discharge and thus make it accessible to a broader range of potential
debtors. Until June 2019, the debtor needed to show that he could repay at
least 30% of his debts to the creditors within five years. This requirement has
now been lifted, and it is up to the court to decide whether the discharge was
successful, regardless of the repaid amount. However, the amendment does not
specify any exact evaluation criteria which should be used for such decisions.
Understandably, this change gives more decision power to the court and creates
much uncertainty for creditors regarding their returns.

46



The main goal of the amendment was to ”unlock” the possibility of discharge
to low-income debtors who face multiple executions. These debtors were not
admissible for discharge under prior rules. There are between 600,000 and 850,000
such debtors in the Czech Republic8, representing 5.6% to 8% of the country’s
population. The effect of the amendment was noticeable immediately after it
took effect in June 2019, and the average number of new monthly insolvencies
rose by approximately 130% in the second half of 2019 (see Figure 3.5).

Figure 3.5: Number of newly commenced insolvency proceedings (individuals
only) per month in 2019.

3.2 Insolvency Register

The Insolvency Act also introduced a new information system called the Insol-
vency Register. The IR was created to provide up-to-date information about all
ongoing insolvency proceedings. The Insolvency Register is administered by the
Ministry of Justice of the Czech Republic, and it is fully accessible to the general
public without any restrictions. Based on the Insolvency Act, everyone has the
right to inspect the register and make copies and extracts of it.

The Insolvency Register is located at https://isir.justice.cz along with
its official documentation9. Unfortunately, the description of the IR in this chap-
ter is the only existing documentation in English.

3.2.1 Insolvency data

This section lists all the data recorded and published in the Insolvency Register
about every commenced insolvency proceeding.

8Source: The Chamber of Executors of the Czech Republic (https://www.ekcr.cz/)
9The official documentation of the Insolvency Register can be found at https://isir.

justice.cz/isir/common/stat.do?kodStranky=NASTENKA. Accessed at 21 November 2023

47

https://isir.justice.cz
https://www.ekcr.cz/
https://isir.justice.cz/isir/common/stat.do?kodStranky=NASTENKA
https://isir.justice.cz/isir/common/stat.do?kodStranky=NASTENKA


Identifier Court Region

KSBR Regional Court of Brno Jihomoravský

KSCB Regional Court of České Budějovice Jihočeský

KSUL Regional Court of Úst́ı nad Labem Ústecký

KSLB Branch Court Liberec Ústecký

KSOL Regional Court of Olomouc Olomoucký

KSOS Regional Court of Ostrava Moravskoslezský

KSHK Regional Court of Hradec Králové Královéhradecký

KSPA Branch Court of Pardubice Královéhradecký

KSPH Regional Court of Prague Prague

MSPH City Court of Prague Prague

KSPL Regional Court of Plzeň Plzeňský

Table 3.1: List of all insolvency courts in the Czech Republic

If the debtor is an individual, his (or her) basic identification information is
recorded: name, surname, domicile, and birth certificate number (if they do not
possess a birth certificate number, their date of birth is included). If the debtor is
also an entrepreneur, his place of business and identification number are recorded.
If the debtor is a legal entity, the company name, headquarters, and identification
number are recorded, too.

Every insolvency proceeding has a unique reference number in the format such
as KSPH 37 INS 4970/2010, where the first four letters KSPH identify the
insolvency court (in this case, the Regional Court of Prague) and the region where
the insolvency proceeding is being held. Table 3.1 lists all possible identifiers and
courts. Next in the example reference number comes the number 37, which
identifies the Senate that decides in the given insolvency matter. The Senate
is a concrete judicial body within the insolvency court structure. The senate
number is followed by letters INS, which denotes the case matter (insolvency).
Last comes the code 4970/2010, where the number before the slash is the case
number of the proceeding, and the number after the slash is the year of the
proceeding’s commencement.

The IR also contains detailed process-related information about the insolvency
proceeding, including the current state and the insolvency administrator assigned
to individual cases. Furthermore, the insolvency court is compelled to publish
the following information in the IR in chronological order:

1. all the court decisions related to individual insolvency proceedings

2. any other submissions related to the debtor’s case which are recorded in the
official judicial file kept by the insolvency court

48



3.2.2 Documents

The IR further contains various documents related to the insolvency proceed-
ings. These include court decisions and submissions by other parties participating
in the proceedings (e.g., creditors and administrators). Even though the new In-
solvency Act mandates that all this information must be published, it does not
regulate its publishing form. Unfortunately, this has led to limited digitization
of the insolvency process, and as a result, many of the documents are uploaded
in the form of PDF scans. Figure 3.6 shows an example of a scanned document.
As the IR matured over the last decade, there have been some improvements in
terms of digitization. Some documents (such as the applications of receivables)
are now mostly electronically generated. However, many other documents are
still being uploaded in the form of scans.

At the end of 2022, approximately 20M of documents related to more than
370,000 insolvency proceedings have been submitted to the IR. Additionally,
there are almost 900 different types of documents being used today for track-
ing the insolvency process and communication between individual stakeholders.
The content of these documents is crucial to fully understand the details of the
insolvency proceedings, such as how the debtor got into the debt in the first place,
what creditors the debtor owes money to, and the size of the debt. Naturally,
these details are also crucial for this study since our aim is to analyze and model
the dynamics of the insolvency process.

The documents related to a specific insolvency proceeding are divided into
five sections: (A) proceeding before declaring bankruptcy, (B) proceeding after
declaring bankruptcy, (C) incidental disputes, (D) others, and (P) applications
of receivables. As the name suggests, sections A and B, respectively, contain
all documents related to the insolvency proceeding before and after declaring
bankruptcy. They contain mostly the decisions of the insolvency court, such as the
declaration of bankruptcy, the selected method of resolution, or the appointment
of the insolvency administrator.

Section C is dedicated to disputes that might occur during the insolvency pro-
ceeding. Section D contains documents that do not belong to any other section,
such as various requests from creditors and debtors. In Section P, the user can
find all the applications of receivables and all their amendments submitted by
the creditors.

Applications of receivables

The applications of receivables represent the most essential documents for this
work since they determine which creditors take part in the insolvency proceeding
and what is the claimed debt. The applications of receivables are also the most
frequently submitted documents to the IR. By the end of 2022, more than 3.5
million applications of receivables have been submitted by approximately 130,000
different creditors. The total sum of receivables claimed through these applica-
tions adds up to approximately 590 billion CZK (∼ 26.6 billion USD), and the
yearly volume of submitted receivables is depicted in Figure 3.1.

49



Figure 3.6: One of the first applications of receivables ever published in the IR
in January 2008. The sensitive information about the debtor was blacked out for
privacy concerns.

Every application of receivables contains the following information:

• unique identification of the creditor (birth certificate number for natural
persons or identification number for entrepreneurs)

• list of individual claims (one creditor can have more than 1 claim against
the same debtor, e.g., different loans)

• origin of the debt (e.g., loan, unpaid credit cards, or unpaid utility bills)

• outstanding debt for individual claims and the total sum claimed

A significant part of this study focuses (see Section 4.3) on the automatic extrac-
tion of this information from the application of receivables.

50



3.2.3 Exceptions

Upon the request of an individual who made the relevant submission, the
insolvency court may decide that some of the personal data in the submission
shall not be publicly accessible in the IR. However, the insolvency court always
publishes at least the name and surname of such individuals.

The insolvency court can also decide that some submissions are subject to
confidentiality under special regulations and can exclude them from publication
completely. Nevertheless, all these submissions, together with the data on the
nature of the submission, must be indicated in the IR. In most cases, these
submissions only represent supporting documents for court decisions, never the
decisions themselves.

3.2.4 Data expiration

Five years after the decision by which the insolvency proceeding was completed,
the insolvency court deletes the debtor from the Insolvency Register and renders
all the information about the case inaccessible. The Insolvency Act also allows
the debtor to request the removal of his insolvency proceeding from the Insolvency
Register before the five-year expiration period has elapsed. These requests are
related to specific decisions made by the insolvency court regarding the particular
insolvency petition and include:

1. the rejection of the insolvency petition due to errors in the the submission

2. the termination of the proceeding due to the lack of the conditions of the
proceeding, which cannot be eliminated or which could not be eliminated,
or due to the withdrawal of the insolvency petition

3. the dismissal of the insolvency petition

3.2.5 Using the Insolvency Register

The IR comprises two main components: the web application and the web ser-
vice. Even though both of these components were designed for different purposes,
they only provide different ways of accessing the same data stored in the IR.

Web Application

The web application was designed mainly for the general public. It allows the
users to search through ongoing insolvency proceedings and provides detailed,
up-to-date information about them.

The landing page (shown in Figure 3.7) consists of a search form that allows one
to search and filter ongoing proceedings by different attributes and preferences.
The most important ones comprise (1) the name of the debtor, (2) identification
number for debtors who are also entrepreneurs, (3) birth certificate number or
date of birth, (4) domicile, (5) reference number, and (6) commencement date.

51



Once the search form is submitted, the application returns a list of all insol-
vency proceedings matching the criteria and links to their respective detail pages
(Figure 3.3). The detail page contains all the insolvency data described in Section
3.2.1 and the documents described in Section 3.2.2.

Figure 3.7: Insolvency Register’s landing page with the search form.

Web Service

Unlike the web application, the web service of the IR was designed to provide
a machine-readable interface for automated data processing. This interface10 was
implemented as a SOAP[97] web service on top of the classical HTTP protocol.
To guarantee high availability and throughput, the web service is hosted on a
different physical server than the web application, even though they are both
accessible from the same domain11. For the Ministry of Justice, the availability
of the web application has a higher priority than the web service because a much
broader set of people uses the web application. Just like the web application,
the access to the web service is not restricted in any way and can, therefore, be
utilized at all times.

Despite having no restrictions for the web service, its usage is regulated to
prevent the system from overloading, and it is recommended to send up to 1
request every 30 seconds. Any user (identified by his/her IP address) who overuses
the web service is blocked by the maintainers of the web service.

Another difference compared to the web application is that the web service
does not provide search and filtering capabilities. Instead, the interface adopted
a publish-subscription [98] design where the web service consumer only receives

10The WSDL definition of the interface is available at: https://isir.justice.cz:8443/
isir_public_ws/IsirWsPublicService?wsdl. Accessed at 21 November 2023

11The Insolvency Register’s web service is hosted at: https://isir.justice.cz:8443

52

https://isir.justice.cz:8443/isir_public_ws/IsirWsPublicService?wsdl
https://isir.justice.cz:8443/isir_public_ws/IsirWsPublicService?wsdl
https://isir.justice.cz:8443


incremental changes to the database. The user is responsible for creating his
internal database from these increments and structuring it to fit his/her needs.

Because of the publish-subscribe design, all the insolvency data from the web
service are provided as so-called events. For every change in an insolvency pro-
ceeding, an event is generated and immediately published by the web service.
The very first event shared by all insolvency proceedings indicates its creation.
All the following events can result from submitting documents or changing insol-
vency proceedings states. An example of an event in its original form is shown in
Listing 3.1. Finally, it is essential to note that in the publish-subscription model,
once an event is published, the event does not change. The effects of the event
can only be changed by a subsequent event.
<soapenv:Body>

<ns1:getIsirPub0012Responsexmlns:ns1=urn:IsirPub001/types>
<result>

<cas>2008-11-01T00:00:00.000Z</cas>
<id>522</id>
<idDokument></idDokument>
<poznamka><?xml version="1.0" encoding="UTF-8"?>

<tns:udalost
xmlns:tns="http://www.cca.cz/isir/poznamka"
xsi:schemaLocation="http://www.cca.cz/isir/poznamka
https://isir.justice.cz:8443/isir_ws/xsd/poznamka.xsd">
<idOsobyPuvodce>KSJIMBM</idOsobyPuvodce><vec>
<druhStavRizeni>NEVYRIZENA</druhStavRizeni></vec>
</tns:udalost>

</poznamka >
<spisZnacka>INS 86/2008</spisZnacka>
<typ>3</typ>
<typText>Insolvencni navrh</typText>
<oddil>A</oddil>
<poradiVOddilu>1</poradiVOddilu>

</result>
</ns1:getIsirPub0012Response>

</soapenv:Body>

Listing 3.1: An event describing the submission of an insolvency petition
(Insolvencni navrh) for a new insolvency proceeding with a file number INS
86/2008 which enters the state Unresolved (NEVYRIZENA).

The XML data structure of the event is divided into two parts. The first
contains common XML elements shared by all events such as id, and the second
called ”poznamka” (∼ ”note”), which is a nested XML snippet which includes
data specific to individual events. The content of the element ”note” has its own
XML structure defined in an XSD[99] format which can be found on the IR’s
website12. As a result, the definition and structure of ”note” can change without
directly affecting the web service interface. The elements shared by each event
are listed in Table 3.2.

12The up-to-date XSD definition is available at: https://isir.justice.cz/isir/help/
poznamka_1_9.xsd. Accessed at 21 November 2023

53

https://isir.justice.cz/isir/help/poznamka_1_9.xsd
https://isir.justice.cz/isir/help/poznamka_1_9.xsd


Element Element in
English

Description

Cas DateTime Date and time when the event occurred.

Id Id Unique serial id of the event in the IR.

idDokument DocumentId URL of the document complementing the event.

Note Note Variable XML note containing event specific data.

spisZnacka FileNumber Reference number of the affected insolvency proceeding.

Typ Type Event type id from the list of all existing event types13.

typText TextType Event type name.

Oddil Section One of the sections A,B,C,D or P (as defined in Section 3.2.2)
to which the complementing document belongs.

Poradi
v oddilu

Order within
section

Serial number of the event within the respective section.

Table 3.2: List of elements common for all events.

The structure of ”note” is more complicated than the structure of the web
service interface. It has also undergone significant changes, making it even more
challenging to grasp. Therefore, the structure of the ”note” will not be described
here. Instead, the reader will be referred to the latest documentation available
on the IR’s web page14.

13The list of all existing event types is available at: https://isir.justice.cz/isir/help/
Cis_udalosti.xls. Accessed at 21 November 2023

14The full description of the note structure is available at: https://isir.justice.cz/isir/
help/Popis_WS_1_v2_0.pdf. Accessed at 21 November 2023

54

https://isir.justice.cz/isir/help/Cis_udalosti.xls
https://isir.justice.cz/isir/help/Cis_udalosti.xls
https://isir.justice.cz/isir/help/Popis_WS_1_v2_0.pdf
https://isir.justice.cz/isir/help/Popis_WS_1_v2_0.pdf


4. Czech insolvency dataset
To perform the experiments in this thesis, we have to prepare a new dataset

that will capture the development of insolvencies in the Czech Republic over more
than a decade. The construction of this dataset is possible due to new legislation
adopted in the Czech Republic (see Section 3.1). This legislation mandates that
all insolvencies must be publicly available in the so-called Insolvency Register of
the Czech Republic.

Insolvencies in the Czech Republic represent a relatively novel legal framework
that was only introduced in 2008. For that reason, a similar dataset is yet to be
created. The preparation of this dataset requires a combination of big data ap-
proaches that rely on the ability to process large quantities of data and machine
learning-based document extraction methods. The result will be a dataset that
provides an unprecedented amount of information about every insolvency com-
menced between 2008 and 2022. In the remainder of this study, we will refer to
this dataset simply as the Czech insolvency dataset (CID).

In this section, we will describe the preparation of the CID in detail since it
will serve as the basis for all the experiments in this study. Every experiment in
this work will use the CID to derive its sub-dataset and use it to perform specific
experiments. We adopted this progressive approach because we developed the
CID over almost eight years and extended it multiple times. As a result, we always
executed individual experiments against a specific snapshot of this dataset. For
simplicity’s sake, we will describe the dataset construction as if someone were to
create it from scratch.

4.1 Dataset schema and storage

The data from the IR that we wanted to extract would not fit into a simple
tabular format because of its complexity. We decided to store all the data in
a relational database. Given the relatively small number of data entities in our
schema and the straightforward relationships between them, we found this stor-
age ideal. We also preferred a relational database due to its strong support for
enforcing data consistency and its ability to perform all the necessary data trans-
formations we required for the experiments in this study. We show the relational
model we used to represent the insolvency data in Figure 4.1. The complete de-
scription of each entity, including all their data fields, is provided in Appendix A.
We will refer to this database for the remaining part of this study as the CID DB.

We summarize the disk space required to store the data for each entity in Table
4.1. These amounts are well in the range of what today’s relational databases can
handle effectively. Therefore, at no point did we have to consider alternative data
stores, such as NoSQL databases, designed for more complicated data structures
and much larger amounts of data. Finally, we used the PostgreSQL1 relational
database for this study.

1PostgreSQL homepage: https://www.postgresql.org/

55

https://www.postgresql.org/


Figure 4.1: Entity-relationship (ER) model of the data extracted from the Insol-
vency Register.

Table 4.1: The estimations for the data size in terms of both the number of
entities and storage space required to store them in PostgreSQL.

Entity # entities Storage space
Insolvency 375,000 160 MB
Subject 180,000 23 MB
Administrator 2,000 < 500 kB
Creditor 140,000 < 500 kB
Insolvency
State 1,200,000 1,100 MB

Document 20,000,000 49 GB
Receivable 3,500,000 600 MB

4.2 Insolvency Register data extraction

The IR provides two ways to access the stored data. It is either through the
web application or the web service (API) interface (see Section 3.2.5). Both
interfaces provide slightly different views of the same data. For instance, the web
application’s purpose is to provide the general public with a simple current view
of every insolvency. On the other hand, the web service was created for advanced
users that require a complete view of each insolvency, including its entire history.

To create the CID, we will use both interfaces. First, we scrape the web
application to obtain the list of every IP and the current data about individual
IPs from their respective detail pages. For example, from the insolvency detail,
we scrape data such as the debtor’s information (name, address, age), the list
of creditors, and the list of documents. Then, we use the web service data to
enrich this basic data structure for additional information, such as the history of
administrators assigned to the particular IP and its state development.

56



4.2.1 Web application scraper

To extract data from the IR’s web application, we implemented a web scraper
that mimics the activity of a hypothetical user that browses through all IPs
commenced within a given range of dates. The scraper visits every IP’s detail
page, scrapes the relevant data from the HTML page using XPath[100], and stores
the result in CID DB. The scraping process is described in Algorithm 1.

Algorithm 1 The IR web scraping algorithm
1: Input
2: dateFrom start date for the scraper (e.g., January 1st, 2019)
3: dateTo end date, or until which date the scraper should run

4: procedure scapeIsir(dateFrom, dateTo)
5: currentDate← dateFrom
6: while currentDate ≤ dateTo do
7: listingHtml← fetch(

https://isir.justice.cz/isir/ueu/vysledek_lustrace.do
?spis_znacky_datum=currentDate

)
8: detailUrls← XPathQuery(

listingHtml,
//table[@class=’vysledekLustrace’]//tr[td//text()
[contains(.,’currentDate’)]]//a/@href

)
9: for detailUrl in detailUrls do

10: scrapeInsolvencyDetail(detailUrl)
11: end for
12: end while
13: end procedure

14: procedure scrapeInsolvencyDetail(detailUrl)
15: Extract IP data from the detailUrl using a series of XPath queries.
16: Store the extracted data in CID DB
17: end procedure

The scrapeInsolvencyDetail procedure extracts all the data available on the
IP detail page except for the birth certificate number and the date of birth.
This data is protected under the Personal Protection Data Act2 and should not
be stored by third parties. For this reason, we only extract the birth year and
information derived from the birth certification number, such as gender. We
store the output of the web scraper as the following entities in the CID DB:
Insolvency, Region, and File. For the complete list of extracted attributes refer
to Appendix A.

In the Czech Republic, gender and birth date are unambiguously embedded
into the birth certificate numbers3 of the holders. The process works as fol-
lows. First, the birth certificate number is a nine or ten-digit number, such as

2Act No. 101/2000 Coll on personal data protection.
3The method for generating birth certificate number is defined by Act No. 133/2000 Coll.

57

https://isir.justice.cz/isir/ueu/vysledek_lustrace.do
?spis_znacky_datum=
//table[@class='vysledekLustrace']//tr[td//text()
[contains(., '
')]] //a/@href


1272127890. The first six digits represent the date of birth in the format YYM-
MDD4. The remaining 3 or 4 digits are randomly selected to distinguish people
born on the same day. Lastly, for every female, a value of 50 or 70 is added to
their birth month — that is why the example number contains the number 72 as
the month of birth (which corresponds to month 2, i.e., February).

The maintainers of the IR did not set any access restrictions for accessing and
using the register, so it would be possible to scrape data without any limitations.
However, preventing the host server from overloading and limiting the number
of requests submitted per a given time frame is appropriate. Therefore, the
web scraper we implemented uses an adaptive policy that waits for 2 ∗ t seconds
between each download, where t represents the time it took to download the last
page. This policy represents a compromise between scraping speed and excessive
usage of the system. With this policy in place, it was possible to scrape all the
insolvency proceedings available in the register in approx. seven days.

4.2.2 Web service scraper

The web service interface provides two methods for querying the data in a
machine-readable format. Both methods are called getIsirPub0012, but have a
different set of input parameters. The first method takes an integer parameter
representing the event’s ID and returns all events with an ID larger than the
input ID. The second method takes a date parameter corresponding to the event’s
occurrence date and returns all events that occurred after the given date. Both
methods only return up to 1000 events in a single call.

To extract data from the IR’s web service, we implemented a web service
scraper which works in two phases. First, we store all the newly published events
from the web service in CID DB (WS Event entity). Then in the second phase,
the scraper runs through every new event and extracts additional data about
the IPs. Specifically, we extract the information about the change of state of
the IPs (described in Section 3.1.5) and the information about administrators
being assigned/unassigned to specific IPs. Finally, we store the output of the
web service scraper as the Administrator and Insolvency State entities.

By January 2023, approximately 51,000,000 events have been published in the
IR’s web service. Therefore, to scrape all events, roughly 51,000 requests are nec-
essary (the web service only returns up to 1,000 events per 1 request). Considering
the 30-second restriction stated in Section 3.2.5, it would take approximately 18
days to scrape all published events. Thus, scraping the entire IR, including the
web application (7 days) and the web service, would take approximately 25 days.

4.3 Extracting data from documents

The data obtained from the IR come in two forms: structured and unstruc-
tured. The structured data describe basic information about every IP, such as
its current participants, i.e., the debtor, administrator, and the list of creditors.

4Y — year, M — month, D — day

58



Additionally, structured data also includes the current state of each IP and a list
of documents that provide detail for every proceeding.

The semi-structured or unstructured information from the insolvency (PDF)
documents that often come in the form of scans is even more profound. It can be
leveraged to gain further insights into the IP and its participants. For instance,
we can determine the value of each creditor’s receivable, whether it is secured or
unsecured, and its origin. More than 20 million documents have been published
in the IR to date (see Section 3.2.2). Thus the amount of unstructured data is
naturally much larger than structured data.

The data contained within the documents is crucial for this study since it will
allow us to build more accurate models of debtors’ behavior. Therefore, we have
developed an automated data extraction system called IRES (Insolvency Register
Extraction System) explicitly designed for extracting data from PDF documents
(scanned or electronically generated) as part of this thesis. IRES consists of a
document processing pipeline that includes the following three high-level steps:
(1) custom document preprocessing, (2) Optical Character Recognition (OCR),
and (3) structured data extraction. We will now describe the individual compo-
nents of the document processing pipeline and explain how they work together
to maximize extraction accuracy.

The complete data-gathering process is visualized in Figure 4.2. The process
starts with gathering structured data and storing them in our database using
web scrapers. Then, the documents are processed separately by our document
processing pipeline. Finally, the extracted data flows back into CID DB in the
form of additional entities, such as Receivable in Figure 4.1.

Figure 4.2: The complete process of extracting data from the Insolvency Register.

59



4.3.1 Optical Character Recognition

The most challenging step of the proposed data extraction system is Optical
Character Recognition (OCR), which converts PDF documents back to electronic
text. The accuracy of the adopted OCR solution will be the most significant
determinant of the overall accuracy of our extraction framework. Given the large
volume of documents we have to process, this step will be computationally the
most expensive one.

The general OCR process typically consists of the following three steps: (1)
document preprocessing, (2) image segmentation, and (3) character recognition.
Most OCR software (especially commercial ones) comes with all three compo-
nents. We selected Tesseract [101] as our base OCR framework for this study.
As an open source project, Tesseract performs very well compared to existing
commercial tools such as ABBYY FineReader5, Transym OCR6, and AWS Tex-
tract7. A detailed technical comparison between Tesseract and Transym OCR is
available in [102].

To validate our decision to use Tesseract as our main OCR framework, we
performed a simple test that compared Tesseract’s performance on ARs with
two commercial tools mentioned above, namely AWS Textract and ABBYY. For
this test, we first created an evaluation dataset of 500 ARs. Next, we manually
extracted the full creditor name and the receivable value (in CZK) of each AR.
These two values must be present in every AR, and they are also essential for the
experiments in this study. Lastly, we used this dataset to evaluate how accurate
the selected OCR solutions are for extracting long, mainly alphabetical strings
(creditor names) and purely numerical strings (receivable values).

The test we applied to all 3 OCR solutions consisted of the following 4 steps:

1. perform OCR on every AR and save the obtained texts

2. perform a text search for the corresponding creditor name
in the obtained text

3. perform a text search for the corresponding receivable value
in the obtained text

4. count the number of matches for both searches

This test gave us a good approximation of the extraction accuracy that we
can expect from each solution when applied to ARs. We anticipate the OCR
software to correctly recognize both the creditor name and the receivable value
in the AR. Thus, both the creditor name and the receivable value should be
present in the obtained text, and finding them using a simple text search should
be straightforward. On the other hand, the only reason we would not find these
two texts in the OCR result would be that the given OCR solution failed to
process a specific document.

5ABBYY FineReader homepage: https://pdf.abbyy.com
6Transym OCR homepage: https://transym.com
7AWS Textract homepage: https://aws.amazon.com/textract

60

https://pdf.abbyy.com
https://transym.com
https://aws.amazon.com/textract


The results for AWS Textract, Abby Fine Reader, and Tesseract are shown in
Table 4.2. The results show that out-of-the-box Tesseract performs very poorly
on the test dataset without any preprocessing (denoted as Tesseract original).
For example, it correctly recognizes the creditor name in only 69.3% of cases and
the receivable value in only 63.1% of cases. The following section will describe
how we used advanced document preprocessing techniques to improve Tesseract’s
performance significantly.

4.3.2 Document Preprocessing

Tesseract’s advantage is its very sophisticated character recognition engine
built using neural networks [103]. That is why it typically performs on par with
commercial solutions [104]. On the other hand, Tesseract’s limitation are its im-
age segmentation capabilities, that cannot handle complex documents containing
forms and tables. Tesseract also comes with limited image preprocessing capa-
bilities which degrades its performance on low-quality scan images.

We investigated the OCR failures on our test dataset and realized we could
attribute most of them to the two limitations described above. The first and
most prevalent issue that accounted for more than 80% of errors was related to
the structured nature of ARs, which includes document forms and tables. These
structures proved to be beyond Tesseract’s basic segmentation capabilities. As
a result, Tesseract missed many texts in forms and tables, which explained the
poor results shown in Table 4.2. The second issue, which covered most of the
remaining errors, stemmed from documents scanned with low resolution and poor
quality, affecting Tesseract’s core character recognition capabilities.

The document (or image) preprocessing step is crucial for every OCR task,
and can lead to significant improvements in terms of overall accuracy [105][106].
Therefore, we designed a custom document preprocessing pipeline for insolvency
documents. The first goal of this pipeline was to simplify the document structure
by removing all nontextual artifacts from the pages, which included mainly form
and table outlines (borders). The simplified page structure would significantly
improve the odds of Tesseract’s built-in segmentation algorithm capturing all
the text on the page. The second goal of the preprocessing pipeline was to
improve Tesseract’s performance on poorly scanned documents by denoising and
straightening (deskewing) the images before the OCR step.

We used existing image manipulation tools such as ImageMagick [107] and
OpenCV [108] to build the preprocessing pipeline. First, we used ImageMagick
to binarize the image using Otsu’s thresholding method [109], which effectively
removed background noise from scanned documents. Next, we used ImageMag-
ick’s ability to deskew document pages, and finally, we used OpenCV to detect
and remove lines utilizing Probability Hough Transform [110].

By revisiting Table 4.2, we can see that these three preprocessing steps signif-
icantly improved Tesseract’s OCR accuracy on ARs. For example, the creditor
name and receivable value extraction accuracy improved to 92.1% and 93.4%,
respectively. Finally, we demonstrate the impact of the preprocessing steps on
Tesseract’s OCR accuracy on a sample document in Figure 4.3.

61



Figure 4.3: OCR process: (a) original (slightly skewed) scanned document, (b)
pre-processed document, (c) text extracted from the original document (a), and
(d) text extracted from the pre-processed document (b).

Table 4.2: OCR performance comparison

Tesseract
original

Tesseract
prepro-
cessed

AWS
Textract

Abby
Fine
Reader

Creditor name match 69.3% 92.1% 97.2% 91.4%
Receivable value match 63.1% 93.4% 85.5% 87.3%
Creditnor & rec. value match 59.4% 90.6% 83.5% 80.2%
Mean runtime per page (sec.) 11.2 21.4 N/A 9.5

We can see that our custom OCR processing framework outperforms both
commercial solutions by a relatively large margin (7.1% improvement over AWS
Textract and 10.4% improvement over Abby Fine Reader in creditor name &
receivable value match task), which shows how important domain specific image
preprocessing is for the OCR task at hand. These conclusions are in line with
findings from similar studies such as [105][106]. This test was performed on a
2017 MacBook pro with a 2.2 GHz Quad-Core Intel Core i7 processor and 16 GB
1600 MHz DDR3 RAM.

For total transparency, we must state that AWS Textract was at a slight
disadvantage in this test because, officially, it still only supported English-written
documents at the time of writing. However, despite this fact, AWS Textract
outperformed all solutions, including ours, by a large margin on the creditor
name match task. On the other hand, Textract performed significantly worse on
the receivable value extraction task (only 85.5% accuracy), which was surprising
since there is no language barrier related to the extraction of numerical values.

Abby Fine Reader performed more consistently on both creditor name (91.4%)
and receivable value (87.3%) tasks in terms of accuracy. However, these results
were still significantly worse than Tesseract with preprocessing and even worse in
overall accuracy (80.2%) than AWS Textract (83.5%).

62



Table 4.3: AWS Textract pricing for the Frankfurt Data Centera

Monthly Price per page
Effective Price
per 1,000
Pages

First 1 Million
pages $0.001875 $1.875

Over 1 Million
pages $0.00075 $0.75

aCost were obtained from https://aws.amazon.com/textract/
pricing/ on September 22nd, 2020

4.3.3 Scaling up to millions of documents

As of January 2023, the IR contained more than 20 million documents related
to more than 370,000 IPs, and this number continued to grow year from year.
These documents belonged to approximately 900 different types and included
various forms, submissions, and statements related to the individual IPs. For
instance, every IP is commenced by submitting an insolvency petition by the
debtor or one of the creditors. The most common document type in IR is the
application of receivables (AR), which we described in Section 3.2.2.

Given this vast amount of documents, we limited our focus to only a smaller
subset of these documents. We reasoned that ARs are the most useful for this
study since they will provide us with information about all creditors in the IR. In
addition, they will tell us the debt size and the reason behind the debt. However,
even focusing on ARs alone meant processing more than 3.5 million documents,
on average six pages8 long. Restricting ourselves to just a subset of pages in
every AR was not an option because the information we looked for could occur
on any page in the document, and we could not determine the relevant pages in
advance. Therefore, the task ahead was to OCR and extract information from
approximately 3.5M × 6 = 21M pages in a reasonable amount of time on a
minimal budget.

In the rest of this section, we will consider the economic feasibility of the
individual solutions we have proposed so far. Then, we will determine which one
is the most cost-effective for processing all 3.5 million ARs.

Estimating the total costs for AWS Textract is straightforward since the usage
of the service is billed on a per page basis, and there is a volume discount after
processing more than 1M pages in a single month. The complete pricing table is
shown in Table 4.3. We assumed that we would process all ARs within a single
month in our calculation, resulting in a total price of (1, 000, 000× $0.001875) +
(20, 000, 000× $0.00075) = $16, 875 for processing all ARs.

The pricing structure for Abby Fine Reader is much more opaque, and we could
not accurately estimate the licensing cost of the on-premise deployment. That is
why we considered Abby’s cloud service instead. The pricing structure is also on
a per-page basis, and it is similar to AWS Textract. The user first pays a fixed

8One page has a standard size of A4.

63

https://aws.amazon.com/textract/pricing/
https://aws.amazon.com/textract/pricing/


Table 4.4: Abby Cloud OCR SDK plans and pricinga

Price per month $29.99 $99.99 $199.99 $299.99 $839.99
# pages per month
for free 500 2000 5000 10000 30000

Price per addi-
tional page $0.06 $0.05 $0.04 $0.03 $0.028

aPlans and pricing were obtained from https://www.ocrsdk.com/plans-and-pricing/ on
September 22nd, 2020

monthly fee to be able to process a limited number of pages for free. After that,
every additional page beyond this limit is billed separately (see Table 4.4). The
total cost of this solution, assuming we would process all documents within one
month, is approximately $839.99+(21, 000, 000−30, 000)×$0.028 = $587, 999.99.

To estimate the cost-effectiveness of our custom Tesseract OCR solution, we
assumed the computation resources would be provided by Amazon AWS. More
specifically, the AWS EC29 service, which rents virtual servers billed on an hourly
basis. We also assumed that the computation requirements would be the same
ones10 as estimated in Table 4.2, i.e., the processing of a single page takes ap-
proximately 21.4 seconds.

Since our goal was to minimize the costs for OCR processing, we selected the
cheapest family of EC2 Instances called Spot Instances. Spot Instances are gen-
erally 80% cheaper than regular on-demand EC2 instances. However, they come
with a downside: they can be terminated at any given moment, and their price is
determined dynamically by the current demand in real-time. Consequently, their
price increases with the demand, and if someone is willing to pay more for a given
Spot Instance, then the instance is terminated and provided to the higher bidder.

The low price of Spot Instances is compensated by increased infrastructure
complexity since the user must anticipate that the instance can be stopped at
any moment. However, despite this obvious downside, Spot Instances are well
suited for batch processing, when the intermediate results can be stored on ex-
ternal storage. The OCR processing of a vast amount of documents falls into
this category of computation. A terminated OCR computation can be quickly
resumed, and it can pick up where it left off.

The price breakdown for different types of AWS Spot Instances is provided in
Table 4.5. For this study, we selected the compute-optimized instances (starting
with the letter c). We can see that even though the cost of the instances increases
with the number of virtual CPUs (vCPUs), the cost per a single vCPU remains
roughly the same. As a result, we can calculate the prices assuming single core
computation. The computation speed-up is then just a matter of introducing
more vCPUs by allocating more Spot Instances for the computation, which will
not significantly affect the resulting price for processing all documents.

9Amazon EC2: https://aws.amazon.com/ec2
10The OCR runtime statistics on AWS instances were comparable with those obtained on

our custom hardware.

64

https://www.ocrsdk.com/plans-and-pricing/
https://aws.amazon.com/ec2


Table 4.5: AWS Spot Instance pricing for the Frankfurt Data
Centera

Instance
Type # vCPUs Cost per

hour

Cost per
core per
hour

c5.large 2 $0.0333 $0.0166
c5.xlarge 4 $0.0681 $0.0171
c5.2xlarge 8 $0.1386 $0.0173
c5.4xlarge 16 $0.2718 $0.0169
c5.9xlarge 36 $0.6453 $0.0179

aCost were obtained from https://aws.amazon.com/ec2/spot/
pricing/ on September 22nd, 2020

Table 4.6: Total OCR costs for processing all 3.5M ARs by individual solutions

OCR Method Cost per a single AR
page

Total cost for 2.8M re-
ceivables

Tesseract on AWS Spot In-
stances $0.000100 $2,100.00

AWS Textract $0.000817 $16,875.00
Abby Cloud OCR SDK $0.028000 $587,999.99

We can now calculate the final cost of our custom Tesseract OCR solution
running on AWS Spot Instances using all the available pricing information. Let us
assume that we can process approximately 60×60/21.4 = 168.2 pages on a single
vCPU in an hour and that the cost of one vCPU-hour is, on average, $0.01696.
Then, the total cost for processing a single page equals $0.01696/168.2 = $0.0001,
and the total cost for processing all 21M pages of ARs is approx. 21, 000, 000 ×
$0.0001 = $2, 100.00.

The total costs for all three solutions are summarized in Table 4.6, and as we
can see, the cost differences are significant. The most expensive solution is Abby
Cloud OCR, with a total cost of $587,999.99 for processing all ARs. This price is
entirely unrealistic for us, given our limited budget. Therefore, we can conclude
that Abby Cloud OCR is a viable solution only for much smaller batches of
documents than we need. AWS Textract, on the other hand, is significantly more
cost-effective, totaling in $16,875.0 for processing all ARs. This cost is much
more reasonable, especially considering the relatively high extraction accuracy
we obtained in our tests. Finally, our custom solution built on Tesseract and
deployed on AWS Spot Instances is the most economically viable solution, with
a total cost of only $2,100 for processing all ARs. Given that this solution also
has the highest extraction accuracy, we can conclude that it is the best for the
task at hand.

4.3.4 Extracting missing creditor names

The IR provides the name of the creditor who submitted the given AR, and it
can be obtained through both the web application and the web service. However,

65

https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/ec2/spot/pricing/


this is true only for IPs commenced after October 2011. Therefore, this informa-
tion is not available in the approximately 50,000 IPs commenced before October
2011 (affecting more than 270,000 ARs). This information is missing in the early
years of the IR because the necessary functionality was not implemented yet. As
the IR evolves over time, so does the scope of information it provides.

The missing creditor names affected 50,000 out of the total 375,000 IPs (13%),
and approximately 270,000 ARs of the total 3.5 M of all ARs submitted to the
IR (8%). This is not necessarily a large number, but given that it only affects
IPs from a particular time period, it would mean that we could miss essential
information from the first three years of the IR’s existence. Since one of the main
goals of this study is to model the development of the entities in the IR, these
early years are crucial.

The only way to identify the creditors in the early 270,000 ARs is to look
into the document and look up the creditor by the name or the company ID. To
avoid the manual processing of approximately 270,000 documents, we decided to
leverage the texts extracted from all ARs by our OCR pipeline. We used the
texts of newer ARs for which the creditor name was already available and used
them to train a text classification model that could automatically assign missing
creditor names to older ARs.

Table 4.7: The 19 most frequent creditors in the Insolvency Register in 2012

Creditor # ARs
GE Money Bank a.s. 12,517
Česká spořitelna a.s. 6,588
CETELEM CR a.s. 6,261
Home Credit a.s. 5,850
PROFI CREDIT Czech
a. s. 4,721

SMART Capital a.s. 4,564
ESSOX s.r.o. 4,088
T-Moble CR a.s. 3,783
Provident Financial s.r.o. 3,666
Komerčńı banka a.s. 2,929
Všeobecná zdravotná
poistovňa, a.s. (VZP) 2,911

Cofidis s.r.o. 2,904
ČEZ Prodej a.s. 2,653
O2 CR a.s. 2,646
ČSOB a.s. 2,473
Bohemia Faktoring a.s. 2,324
Česká podnikatelská
pojǐsťovna a.s. 2,039

Citibank Europe plc 1,919
Raiffeisenbank a.s. 1,744

The distribution of creditors in the IR is skewed, and a small number of large
creditors submit the majority of receivables. For instance, in 2012, which was the

66



first year all creditor names were available in the IR, 182,045 ARs were submitted
by 26,184 different creditors. Out of those, 76,580 ARs were submitted by the
19 most frequent creditors, representing 42.1% of all ARs submitted that year.
Given the relatively short period of missing information (2008 to October 2011),
we assumed that the distribution of creditors would be similar to those in 2012.
Therefore focusing only on the top 19 creditors should yield missing creditor
labels on a large portion of the early 270,000 ARs. We list the selected creditors
in Table 4.7.

For this text classification task, we selected the ARs submitted by the 19 most
frequent creditors in 2012, and we used their names to generate a labeled dataset
as follows. First, for each of the 19 creditors, we randomly sampled 1000 ARs.
Then, we created an additional 20th class to represent all the ’other’ creditors and
sampled an additional 2,000 ARs submitted by any of the remaining creditors.
Thus, the final training dataset consisted of 21,000 samples (ARs), each labeled
by one of the 20 classes.

Before training, we converted the document texts to lowercase, and we re-
moved all Czech stop-words11. Next, we removed all low-frequency words that
did not occur in at least 100 documents. Similarly, we removed too frequent
words occurring in more than 50% of all documents. Finally, we transformed the
obtained texts into a bag of n-grams [111] representation (word level n-grams and
n ranged from 1 to 3). The final dictionary contained 34,740 different n-grams.

We used this dataset to train several different classifiers, including the Naive
Bayesian classifier, logistic regression, linear kernel SVMs [112], and Extreme
Learning Machines [113] (ELMs) with 500 and 5000 hidden neurons. We evalu-
ated the individual classifiers using 10-fold cross-validation and summarized the
results in Table 4.8.

Table 4.8: 10-fold cross-validation results for the creditor classification task. We
report Recall, Precision, F-measure and Training time for each of the considered
algorithms along with the corresponding 95% confidence interval.

Classifier Recall Precision F-measure Training time
(sec.)

Naive Bayes (multinomial) 0.854 ±0.005 0.828 ±0.005 0.824 ±0.005 1.143 ±0.027
Logistic Regression 0.966 ±0.002 0.965 ±0.002 0.965 ±0.002 235.004 ±1.053
SVM (linear kernel) 0.960 ±0.002 0.959 ±0.002 0.959 ±0.002 59.176 ±1.729
ELM (500 hidden neurons) 0.813 ±0.006 0.828 ±0.006 0.817 ±0.006 43.942 ±0.117

ELM (5000 hidden neurons) 0.943 ±0.003 0.942 ±0.003 0.941 ±0.003 3 736.228
±2.885

The best-performing classification algorithms were logistic regression and SVM
(linear kernel), with reported F-measures equal to 0.965 and 0.959, respectively.
The ELM model with 5,000 hidden neurons also performed very well (F-measure
equal to 0.941). However, given its very long training time (3,736.228 seconds on
average), it was unsuitable for the given task. The multinomial Naive Bayesian
classifier and ELM with only 500 hidden neurons performed significantly worse,
reporting an F-measure of less than 0.95.

11The stopwords were obtained from https://github.com/stopwords-iso/stopwords-cs
on October 10th, 2020

67

https://github.com/stopwords-iso/stopwords-cs


To evaluate the importance of the individual n-grams for classification, we also
performed correlation analysis, and we show the correlation matrix for selected
creditors and the corresponding n-grams in Figure 4.4. Correlation analysis shows
that parts of creditors’ names, for instance, ’cetelem’ or ’home credit’, are among
the most discriminative features. Other essential features include parts of credi-
tors’ addresses, e.g., ’karla’ from Cetelem’s company headquarters address (Karla
Englǐse 5/3208) and similarly ’michle’ which is a neighborhood of Prague where
GE Money Bank’s headquarters resided in 2012. In Figure 4.4, we can also no-
tice company identification numbers, such as ’25085689’, and data box addresses,
such as ’i48ae3q’. The last category of essential n-grams for classification were
the names of lawyers representing the creditors in the IP (e.g., ’sona’, which was
the first name of the lawyer commonly representing Home Credit in 2012).

Figure 4.4: Three selected n-grams (n ranging from one to three) most correlated
with five selected creditors.

Finally, the best-performing classification model, logistic regression, was used
to determine the missing creditor names. As a result, out of the 270,000 ARs
published before October 2012, we successfully assigned a creditor name to ap-
proximately 104,000 ARs (38.5%). We inserted the assigned creditors in the
File entity of CID DB to fill in missing creditor names from the web applica-
tion scraper. Using these classifications, we can now study the development of
insolvencies since their adoption in 2008.

4.3.5 Extracting receivables’ values

Another essential piece of information included in every AR is the debt value
claimed by the creditor in the IP. Unfortunately, this detail is available only in
the ARs and must be therefore extracted directly from the documents once again.
For this purpose, we will reuse the texts we already obtained from running our
OCR pipeline one very AR.

The claimed debt can be of two primary types, secured and unsecured. A
collateral backs secured debts to reduce the risk associated with lending. This
collateral typically corresponds to some asset the debtor owns, like a house or a

68



car. In the case of secured debt, the creditor has the right to seize the property
and use the proceeds from selling it to recoup the losses he/she accrues when the
borrower defaults on the loan. Secured debt usually represents larger loans such
as mortgages or company loans.

On the other hand, unsecured debt is not backed by any collateral. As a result,
the creditor has only limited options to mitigate his/her losses in case of a default.
Unsecured debt often originates from smaller consumer loans, credit card debts,
or unpaid phone and utility bills. A combination of both types of debt is possible,
e.g., a part of a loan can be secured while the other is not.

The AR must state exactly how much money the debtor owes to the given
creditor, and the overall debt corresponds to the sum of secured and unsecured
receivables. (see Figure 4.5). For an AR to be valid, it must contain at least
these three values (secured, unsecured and total).

Figure 4.5: The total value of the applied receivables (”Celková výše přihlášených
pohledávek (Kč)”, line 47) can be determined as the sum of unsecured (”Celková
výše nezajǐstěných pohledávek (Kč)”, line 48) and secured (”Celková výše
zajǐstěných pohledávek (Kc)”, 49) receivables.

The main challenge when extracting debt values is the lack of standardized
document forms used for ARs, which was especially true in the early years of the
IR. The lines and fields where these values occur are not fixed. In the example
from Figure 4.5, these values occur on lines 47 through 49, but this does not
hold for all ARs. The pages where these values appear also differ since ARs have
variable lengths depending on the specific creditor and type of debt. As a result,
we had to process the entire AR to extract the debt values.

Next, we had to tackle the inaccuracies introduced by the OCR process. The
limited segmentation capabilities of Tesseract mentioned in Section 4.3.2 promise
that we will likely extract the correct text. However, the precise spacing between
words or the exact position is not guaranteed. Therefore, the most robust ap-
proach we identified was only to consider the text surrounding the target values in
the document. Again, this is not a trivial task because the surrounding text is not
fixed and is also affected by the previously mentioned OCR process inaccuracies.

Figure 4.6: The process of extracting receivable values.

We illustrate the entire process of extracting receivable values in Figure 4.6.
The first step, cleaning, consists of simple text preprocessing, including trans-
formations such as removing redundant white spaces and newline characters and
removing all diacritical marks from the text. As we were interested in numeric
values only, no critical information is lost in this step. Furthermore, removing

69



diacritics makes the subsequent classification step more robust since OCR inac-
curacies often involve incorrectly recognized diacritical marks.

Then, we extracted all numeric candidates representing a valid monetary value
in Czech crowns. Because of the different conventions used to write monetary
values, we had to cover multiple formats. We implemented this step by matching
the preprocessed text against a series of regular expressions designed to capture
all the monetary formats occurring in ARs (see Table 4.9).

Table 4.9: Examples of monetary formats used in ARs

Format Corresponding Regular Expression
0.00 [0-9]1,3([ ][0-9]3)*[,.][0-9]1,2

1.000,00 [0-9]1,3([.][0-9]3)+[,][0-9]1,2
1 000,- [0-9]1,3([ ][0-9]3)*,-

In the classification step, we used the text surrounding each numeric candidate
(50 characters from the left and 50 from the right) to determine its category.
Specifically, we introduced four categories: overall, secured, unsecured, and other.
In the context of receivable values, the first three categories are self-explanatory,
and the fourth one represented all the other numeric values that were irrelevant
to our study.

We transformed the texts before and after each numeric candidate into a
character-level n-grams feature space, where n ranged from 3 to 4. We selected
character-level n-grams because they were more robust against typos introduced
in the OCR extraction step. The resulting bag-of-n-grams vector consisted of
21,170 different n-grams. Since our goal was to detect the candidates’ categories
automatically, we had to create a manually labeled training dataset. For this
purpose, we randomly selected 200 ARs from which we extracted approximately
7,000 numeric candidates, and we manually labeled each with its corresponding
category. The majority of the candidates (6,400) were labeled as other.

Next, we used the training dataset to train and test multiple classification al-
gorithms, including the Naive Bayesian classifier, logistic regression, linear kernel
SVMs, and random forests. We summarize the performance of the individual clas-
sifiers in Table 4.10. The results show that all classification algorithms performed
well on this task and reported an F-measure larger than 0.97. The best perform-
ing classifier in terms of F-measure was logistic regression which we adopted as
our main algorithm for this task.

Table 4.10: 10-fold cross-validation results obtained on the candidate value
dataset. We include Recall, Precision and F-measure for each of the considered
algorithms along with the corresponding 95% confidence interval.

Classifier Recall Precision F-measure Training time
(sec.)

Naive Bayes (multinomial) 0.974 ±0.006 0.985 ± 0.006 0.979 ± 0.006 0.005
Logistic Regression 0.982 ± 0.001 0.983 ± 0.001 0.982 ± 0.001 0.187
SVM (linear kernel) 0.981 ± 0.009 0.980 ± 0.009 0.980 ± 0.009 0.218
Random Forest 0.976 ± 0.008 0.973 ± 0.008 0.973 ± 0.008 27.609

70



The penultimate step in our extraction pipeline was designed to check the
consistency of the extracted values. As we already established, all three values
(overall, secured, and unsecured) must be present in each AR to be valid, and
each of the values must be present exactly once. By definition, it must also be true
that the sum of secured and unsecured values is equal to the overall value. Using
this information, we grouped outcomes including the potential errors from the ex-
traction process into the following categories: OK, INCONSISTENT, PARTIAL
and MISSING. We provide the definition of these categories in Table 4.11.

Table 4.11: Consistency categories used to validate extracted receivable values.

All 3 numbers
extracted?

Secured + Unsecured = Total ?
true false

true OK INCONSISTENT
false PARTIAL MISSING

Lastly, we created a manually labeled evaluation dataset to estimate how the
extraction pipeline would perform on real-life data. The evaluation dataset con-
sisted of 500 randomly selected ARs. For each AR, we manually extracted the
secured, unsecured, and overall receivable values, which served as ground truth.
Then, we processed the ARs from the evaluation dataset with our extraction
pipeline to obtain the following results: 84.1% of ARs were processed with status
OK, 9.9% with status PARTIAL, 4.5% with status MISSING, and only 5.5% with
status INCONSISTENT.

By examining the extraction errors on this evaluation dataset, we found that
OCR failures caused almost all (99%+) errors. Furthermore, all the errors orig-
inated from ARs scanned with inferior quality. The percentage of correctly pro-
cessed ARs (84.1%) is very close to the extraction accuracy measured in Table 4.2,
which confirms that OCR-related errors dominate the extraction failures. Based
on these results, we can conclude that our extraction process uses the obtained
OCR results to their full potential. Unless we improve the OCR accuracy, it is
impossible to improve the extraction accuracy of receivable values significantly.

The main benefit of the consistency check defined in Table 4.11 is that it can be
performed automatically and integrated into the extraction pipeline. In addition,
we can execute the consistency check after each pipeline run to track the ongoing
extraction accuracy and detect potential model drift12 over time.

We obtained the following results by running the extraction pipeline on all
3.5M ARs. First, the values were extracted with status OK in 63.2% of all cases
corresponding to roughly 2.2 million documents. For the purposes of this study,
values marked as OK can be mainly considered correct. Then, for the remaining
part, 17.8% of ARs were processed as PARTIAL, 5.4% as INCONSISTENT, and
13.6% as MISSING. The overall extraction accuracy on all ARs is slightly lower
than on our evaluation dataset, which is caused primarily by lower-quality ARs
submitted before 2013. These low-quality ARs are especially prone to OCR errors
and lead to a slight decrease in the observed extraction accuracy.

12By model drift, we mean the decay of models’ predictive power due to the changes in
real-world environments over time.

71



4.3.6 Extracting origin of debt

The next piece of information from ARs that is vital for this study is the debt
origin. The debt origin is another mandatory field occurring in each AR and
contains a text description detailing the reason for the receivable creation. Its
purpose is to clarify how/when the debt was accrued. The insolvency adminis-
trator admits or denies a given receivable based on its debt origin. So it is in
each creditor’s best interest to state a reasonable and accurate debt origin.

Typical debt origins include mortgages, consumer loans, credit card debts, or
insurance bills. We show an example of debt origin in Figure 4.7.

Figure 4.7: An example of a stated debt origin. Line 6 can be translated to
English as: ”Reason of origin: based on verbal orders, car repairs were done, and
a replacement vehicle was provided” and line 7 as ”Further circumstances: the
invoice has been partially paid by the amount of 26.450,- Kč”.

The approach we adopted to extract the debt origin was more straightforward
than the approach we used to extract debt values. The reason is that in every
receivable format currently used in the IR, debt origin is always preceded by a
text label ”Důvod vzniku” (reason of origin) and followed by ”Daľśı okolnosti”
(other circumstances). Additionally, these labels uniquely identify the relevant
section of the document, so simply locating these labels and extracting the text
between them is sufficient to extract the debt origin reliably.

We implemented the extractor by scanning each document’s text sequentially,
locating the relevant labels, and extracting debt origin as the text between
the labels. Again, to compensate for OCR-related errors like typos, we used
Levenshtein[114] distance of at most 2 to perform label matching. Using this
simple approach, we extracted the debt origin from approximately 66.3% of re-
ceivables, which corresponds to 2.32M of ARs (out of the total 3.5M). We did
not store the obtained debt origins directly in the CID DB, but the extraction
process can be invoked in an ad-hoc manner as needed.

4.4 Preliminary Data Analysis

The CID we prepared in this chapter is unparalleled in terms of both size and
depth of information it provides about IPs. At the time, we were unaware of any
other dataset from this domain that could be used to study bankruptcies at this
level of detail. The data regarding bankruptcies and IPs are rarely publicly avail-
able, especially for IPs of natural persons in the wake of new privacy regulations
such as GDPR13. The Czech Republic’s IR is the most open insolvency register
among all EU countries with regard to the data it provides.

13Find more information about GDPR at: https://www.gdpreu.org/

72

https://www.gdpreu.org/


Since this dataset is entirely new, it is helpful to take a bird’s eye view and
understand it at the macro level before we proceed to the main experiments in
Chapter 6. Furthermore, this preliminary analysis will be essential for interpret-
ing the experiments’ results.

Out of the 375,000 IPs commenced in the Czech Republic between 2008 and
2022, approximately 11% (40,000) were related to bankruptcies of organizations.
The remaining 89% (335,000) were related to bankruptcies of natural persons.
Out of the 335,000 insolvent natural persons, 74% (247,000) were self-employed.

The yearly development of the number of insolvencies commenced, and the
volume of receivables claimed by the creditors is shown in Figure 3.1. We can see
that the dynamics and trends in the IR can change significantly over the span
of a few years. These changes are primarily the result of the local economy’s
development and the amendments introduced into the Insolvency Act. Just how
radical the effect of a single legislative change can be is best showcased in Figure
3.5, which is related to one of the most recent amendments, Act 31/2019 Coll.
on Discharge and its application. This amendment significantly relaxed the re-
quirements for natural persons to enter an IP. Consequently, the number of IPs
almost doubled from month to month.

Lastly, Figure 3.2 shows that most of the receivables claimed by creditors in
terms of their value come from banks, and then a much smaller volume is driven
by non-bank lenders, insurers, and other creditors.

4.4.1 Demographics

As part of the data processing pipeline, we also extracted basic demographical
data about the debtors, such as their gender, age, and domicile. This information
helps understand what parts of the population and regions are mainly affected
by insolvencies.

Figure 4.8 shows the age distribution of debtors in the IR for both male and
female debtors. The age of the debtor was determined at the time when his/her
IP was commenced. We can immediately see that most debtors are between the
ages of 30 and 50 and that indebtedness is generally more common among men
than women. As of 2022, the retirement age in the Czech Republic is set to 65.
We can also conclude that a group of approximately 17,500 (5%) debtors in the
IR are already retired.

Recent amendments, such as Act 31/2019 Coll. on Discharge and its applica-
tion, significantly relax the requirements for personal bankruptcy (discharge) for
people older than 65. For instance, the amendment above reduces the payment
calendar’s duration from the typical five years to only three years. In addition,
the minimum quota for the repaid debt, which used to be 30%, was dropped
altogether. Given these favorable conditions, the number of pensioners with in-
solvencies is expected to grow in the following years.

The analysis of the regional distribution of IPs and its comparison to other
macroeconomic statistics, such as the unemployment rate, also yields interesting
insights. Since there are significant differences in population size (and the number

73



Figure 4.8: Age and gender distribution of debtors in the IR.

of companies) in individual regions, it is necessary to normalize the number of
IPs by the number of citizens (or companies) in each region. We visualize the
resulting IP and unemployment rates in Figure 4.9. The exact numbers used to
generate the charts in Figure 4.9 are available in Table 4.12.

By first looking at the IP rates of natural persons across different regions, we
can immediately see that the region with the most IPs relative to its population
is the Ústecký region (5.15%). On the other hand, Karlovarský (4.54%) and
Liberecký (4.05%) are the regions with the second and third largest IP rates.
A partial connection between the IP rates and the unemployment rates in the
regions above is noticeable since both Ústecký and Karlovarský regions also have
one of the two highest unemployment rates in the whole country (5.26% and 4.05%
respectively). The exception to this pattern seems to be the Moravskoslezský
region which has the the second largest unemployment rate in the Czech Republic
(4.87%) but has only slightly increased IP rates per capita (3.16%). As a result,
a high unemployment rate does not necessarily have to indicate high IP rates.

Conversely, there is a certain correspondence between regions with the lowest
unemployment rates and IP rates. For instance, Prague (Praha) has the lowest IP
rates of all regions, with only 1.84%. It is closely followed by the regions with the
second and third lowest IP rates, Vysočina and Zĺınský regions, with only 2.29%
and 2.51%, respectively. These regions also have relatively low unemployment
rates: Prague 3.03%, Vysočina 2.69%, and Zĺınský 2.64%.

Using company statistics from the Czech Statistical Office, we could also ana-
lyze company IP rates (Figure 4.9b). Company IPs are significantly more frequent
than IPs of natural persons. Specifically, the company IP rates are mainly within
the 5% to 10% range, while the IP rates of natural persons are mainly within the
2% to 4% range. The data shows that risks associated with starting and running
a company are generally much higher than those individuals face in Czech society,
such as unemployment or wrong financial decisions.

Interestingly enough, the two regions with one of the lowest unemployment
rates, Jihočeský (2.63%) and Královehradecký (2.91%), have the highest rate of
company IPs in the country (9.29% and 9.15% respectively). A similar pattern
is observable in regions Vysočina, Jihomoravský, and Zĺınský, which all have a
relatively high rate of company IPs. An exception to this pattern is again the
Moravskoslezský region which has the second highest unemployment rate in the
Czech Republic (4.87%) and one of the highest company IP rates (9.39%).

74



(a) IPs of natural persons.

(b) IPs of companies.

(c) Unemployment rate.

Figure 4.9: Macro statistics across different regions in the Czech Republic: (a)
IP rates of natural persons, (b) IP rates of companies, (c) unemployment rate.
The population size of individual regions, the number of companies registered in
each region and the unemployment rates were obtained from the 2022 reports of
the Czech Statistical Office (source: https://www.czso.cz).

75

https://www.czso.cz


Ta
bl

e
4.

12
:

M
ac

ro
st

at
ist

ic
s

us
ed

to
ge

ne
ra

te
al

lt
hr

ee
m

ap
s

sh
ow

n
in

Fi
gu

re
4.

9.

R
eg

io
n

P
op

ul
at

io
n

IP
s

of
na

tu
ra

l
pe

rs
on

s
IP

ra
te

(n
at

u-
ra

lp
er

so
ns

)
#

of
co

m
pa

-
ni

es
IP

s
of

co
m

pa
-

ni
es

IP
ra

te
(c

om
-

pa
ni

es
)

U
ne

m
pl

oy
-

m
en

t
ra

te
Ji

ho
če

sk
ý

63
7,

04
7

20
,1

89
3.

17
%

19
,7

60
1,

83
5

9.
29

%
2.

63
%

Ji
ho

m
or

av
sk

ý
1,

18
4,

56
8

32
,3

90
2.

73
%

64
,1

83
5,

96
9

9.
30

%
4.

03
%

K
ar

lo
va

rs
ký

28
3,

21
0

12
,8

51
4.

54
%

9,
34

6
62

0
5.

63
%

4.
05

%
K

rá
lo

vé
hr

ad
ec

ký
54

2,
58

3
20

,9
45

3.
86

%
16

,7
09

1,
52

9
9.

15
%

2.
91

%
Li

be
re

ck
ý

43
7,

57
0

17
,7

38
4.

05
%

13
,9

16
1,

06
7

7.
67

%
3.

77
%

M
or

av
sk

os
le

zs
ký

1,
17

7,
98

9
44

,7
05

3.
80

%
38

,5
05

3,
61

5
9.

39
%

4.
87

%
O

lo
m

ou
ck

ý
62

2,
93

0
19

,6
62

3.
16

%
19

,9
03

1,
22

6
6.

16
%

3.
3%

Pa
rd

ub
ick

ý
51

4,
51

8
13

,6
97

2.
66

%
15

,4
18

85
3

5.
53

%
2.

54
%

Pl
ze

ňs
ký

57
8,

70
7

19
,1

39
3.

31
%

19
,0

27
1,

25
0

6.
57

%
2.

73
%

Pr
ah

a
1,

27
5,

40
6

23
,4

84
1.

84
%

21
9,

57
8

12
,3

42
5.

62
%

3.
03

%
St

ře
do

če
sk

ý
1,

38
6,

82
4

35
,0

65
2.

53
%

42
,1

48
2,

31
6

5.
49

%
3.

10
%

Ú
st

ec
ký

79
8,

89
8

41
,1

23
5.

15
%

20
,2

33
1,

60
3

7.
92

%
5.

26
%

Vy
so

či
na

50
4,

02
5

11
,5

21
2.

29
%

12
,9

71
90

8
7.

00
%

2.
69

%
Zĺ

ın
sk

ý
57

2,
43

2
14

,3
42

2.
51

%
19

,2
83

1,
61

4
8.

37
%

2.
64

%

76



4.4.2 Receivables and creditors

In this section we want to provide a more holistic view of the receivable market
from the creditor’s perspective. We want to show that the receivable market in the
Czech Republic is very large and contains a large number of actors with different
roles and motivations. This causes the receivable market to be very dynamic in
nature which also directly affects the development of IPs in the Czech Republic.

The Czech National Bank (CNB)14 reported that the total household debt in
the Czech Republic reached 1.76 trillion CZK (76.52 billion USD) at the end of
2019. Approximately 75% of the household debt consists of housing loans and
mortgages. The CNB also reported that company debts reached the total of 1.14
trillions CZK (49.55 billion USD) in the same period.

The default rate of consumer loans provided by banks15 has mostly been in
the range of 6% to 12% between years 2010 and 2020. For housing loans and
mortgages the default rate was between 1.5% an 3.5% over the same period.
Using these numbers we can estimate that sum of all defaulted loans is in the
order of higher tens of billions of CZK, and likely over 100 billion CZK when we
also include company defaults16.

The defaulted debt is usually a subject of a collection process when the creditor
tries retrieve his/her money from the debtor. Insolvencies represent only one of
the stages in the debt collection process and they are usually preceded by an out
of court collection stage, when the creditor tries to recover his financial losses
by directly consulting the debtor. Out of court collection usually involves softer
methods such as repeatedly messaging/calling the debtor, or debt refinancing.

If out of court collections fails then typically the court gets involved and what
usually follows is an execution order. The execution order is issued by the court
and is executed by the court appointed executors (or bailiffs). When the debtor
reaches this stage, he/she usually already has several execution orders led against
him/her. Based on the data provided by the Chamber of Executors of the CR17,
we know that at the end of 2019 there was approximately 790,000 persons with
at least one execution order. A single debtor had an average of 5.8 execution
orders and there have been 131,400 persons with more than 10 execution orders.
Taking into consideration that CR has a population of 10.69 mil. we can infer
that execution orders directly affect approximately 7.4% of population.

It is usually this stage when the debtor has multiple execution orders led
against him/her when he decides to use the IP as the final solution to his/her
debts. The moment the debtor officially files an insolvency petition, all the exe-
cution orders have to be immediately stopped. As part of the insolvency process
all debtor’s debts are reviewed and a suitable method of IP’s resolution is decided
by the court (see Section 3.1.4). Once the IP has been successfully finished, the
debtor is free from all of his prior debts.

14CNB homepage: https://www.cnb.cz/
15CNB only gathers data on the performance of banking loans, which excludes all loans

provided non-banking financial institutions.
16We only provide a rough estimation because the exact overall statistics for the given period

was not available.
17Chamber of Executors of the Czech Republic homepage: https://www.ekcr.cz/

77

https://www.cnb.cz/
https://www.ekcr.cz/


Now we will explain the process from the creditor’s perspective and elaborate
more on what happens when one of the creditor’s receivables defaults. When
a default occurs, the creditor usually chooses one of the following 3 general ap-
proaches to recover his receivable.

The first approach is when the creditor decides to handle the collection process
by himself. In order for the creditor to take this approach, he/she must under-
stand all the legal and procedural aspects of out-of-court and court collection.
This approach of handling defaulted receivables internally is adopted mostly by
larger creditors who are often financial institutions, such as banks, non-banking
loan providers, or insurers. These companies usually have their own internal
collection departments that focus solely on retrieving defaulted loans.

The second, probably most common approach for recovering defaulted debt
is when the creditor decides to outsource the collection process to an external
collection agency. Most collection agencies can cover all stages of defaulted debts
and also represent the creditor in case of court proceedings. From the legal
standpoint, however, it is still the creditor who owns the receivables.

The third and final option is for the creditor to transfer the ownership of the
receivable to another entity (basically selling it). This is also very common for
large financial institutions such as banks which typically sell whole portfolios
of defaulted receivables through an auction process to the highest bidder. The
buyers of these portfolios are usually institutions that specialize in investing in
defaulted receivables. Since they provide the seller with immediate liquidity, they
are able to buy these portfolios at a discount and then they run the collection
process by themselves. The price in this transaction is typically between 10%
and 15% of the original value of the receivable.

To shed more light on the insolvency portion of the market with defaulted
receivables we created Table 4.13, which lists the top 20 creditors with the largest
portfolios of receivables in terms of their value that have reached the insolvency
stage. For reference, we also provide the number of all receivables and the average
size per one receivable. The average size of the receivable can tell us more about
the nature of receivables themselves. Since the value extraction process described
in Section 4.3.5 is not successful in all cases, we also report how many receivables
we managed to successfully process and obtain their value.

By looking at Table 4.13 we can immediately see, that the largest number
of receivables does not necessary imply the largest portfolio size in terms of its
total value. For instance, the largest creditors in terms of number of receivables
are Provident Financial (77,958), VZP (69,605) and GE Money Bank (64,032).
Additionally, GE Money Bank was re-branded as Moneta Money Bank in 2016
when the GE group decided to sell the bank and leave the local market. Between
2016 and 2022, Moneta Money Bank accrued an additional 27,820 receivables.

If we notice the average value of receivables of Provident Financial 41,790 CZK,
GE Money Bank 99,040 CZK, and Moneta Money Bank 202,430 CZK, we can
also tell that these are relatively small and have likely originated from consumer
loans. Another non-banking financial institution in the list fitting the consumer
loan pattern is Profi Credit Czech with 58,110 receivables and an average size of
160,400 CZK per receivable.

78



The top 4 creditors in the list correspond to the largest banks in the Czech
Republic, namely ČSOB, Česká spořitelna, Komerčńı banka, and Raiffeisenbank.
The average size of receivable for all of them is over 500,000 CZK. The two com-
panies with the largest average receivable are banks Hypotečńı banka (1,352.53
thous. CZK) and ČSOB (1,818.84 thous. CZK). The average size of these receiv-
ables indicates that they have likely originated from larger loans, such housing
loans or mortgages.

The following major creditor in the list is VZP which is the Czech Public Health
Insurance Company with 69,605 receivables and a smaller average size of 113.70
thous. CZK. These are smaller receivables which have likely originated from
unpaid health insurance bills from individuals and self-employed entrepreneurs.

Another interesting creditor is AB 4 B.V. which is a Netherlands based collec-
tion agency owned by the PPF group which is one of the largest financial groups
in the CR. PPF owns one of the major local banks Airbank and one of the largest
non-banking loan providers Home Credit. The reason why none of these compa-
nies show up in the list is that PPF as a group transfers the ownership of majority
of their defaulted receivables to AB 4 B.V. (or to AB 5 B.V.)

As we near the middle and the end of the list in Table 4.13 we can see companies
such as Bohemia Faktoring, Český inkasńı kapitál, CP Inkaso, and IFIS investičńı
fond. All of these companies specialize on investing in defaulted receivables and
buy them from other creditors. The largest among the group is IFIS investičńı
fond with more than 11,391 receivables and a total value of 5.7 bil. CZK.

The last thing we would like to draw attention to in this section is Figure 4.10
which breaks down how the median size of IPs in terms of their total value (sum
of all receivables per IP) have evolved over time. We calculated this breakdown
separately for natural persons (Figure 4.10a) and companies (Figure 4.10c).

If we first look at natural persons, we can see a slightly elevated median total
value of approximately 1 mil. CZK per insolvency in 2008. The following years
2009 and 2010 follow a decreasing trend which gets reversed in 2011. Since
then the median size of insolvencies has been growing year-to-year up till 2020.
This increasing trend can be explained by the fact that IPs became more widely
adopted by debtors (especially those facing multiple execution orders) and also
the fact that amendments added to the Insolvency Act in recent years had mostly
relaxed the requirements for natural persons to enter an IP.

The effect of a single amendment is once again best demonstrated by Act
31/2019 Coll. on Discharge and its application which came into effect on June
1st, 2019. From Figure 4.10b we can see that this amendment had an immediate
effect on the median size of IPs, which jumped from approximately 0.53 mil. CZK
in May 2019, to 0.73 mil. CZK in June 2019.

When we look at companies we can see significantly larger median sizes per
insolvency which is not surprising since companies typically operate with much
larger sums of money than a regular person. However, the general trend is very
similar to the development of IPs of natural persons. We can also see an elevated
total value of 1 mil. CZK in 2008, which then started dropping until 2010. Then,
starting 2011 we can again see an increasing trend that lasts until 2018.

79



Table 4.13: Top 20 creditors with the largest portfolios of receivables in terms of
their total value. For each creditor we report: the number of all receivables, the
number of receivables from which we were able to extract the receivable value
with OK status (see Table 4.11), the total value (sum) of all receivables, and
finally, the average size of receivables.

Creditor # all receiv-
ables

# of success-
ful value ex-
tractions

Value of
receivables
(CZK)

Average re-
ceivable size
(CZK)

ČSOB 31,098 25,328 (81.45%) 46,067.67 mil. 1,818.84 thous.
Česká
spořitelna 55,322 43,112 (77.93%) 32,801.04 mil. 760.83 thous.

Komerčńı
banka 25,521 17,970 (70.41%) 13,775.63 mil. 766.59 thous.

Raiffeisenbank 18,676 16,010 (85.72%) 8,956.04 mil. 559.42 thous.
VZP 69,605 63,860 (91.75%) 7,899.48 mil. 113.70 thous.
Profi Credit
Czech 58,110 45,131 (77.66%) 7,239.14 mil. 160.40 thous.

ČSSZ 42,782 12,358 (52.26%) 6,423.90 mil. 287.32 thous.
Hypotečńı
banka 7,765 4,370 (56.28%) 5,910.57 mil. 1,352.53 thous.

IFIS investičńı
fond 11,391 11,150 (97.88%) 5,659.55 mil. 507.58 thous.

Bohemia Fak-
toring 66,313 60,066 (90.58%) 5,549.73 mil. 92.39 thous.

Moneta Money
Bank 27,820 25,049 (90.04%) 5,070.69 mil. 202.43 thous.

Českomoravská
stavebńı
spořitelna

10,864 8,882 (81.76%) 4,683.00 mil. 527.25 thous.

GE Money
Bank 64,032 38,518 (60.15%) 3,815.06 mil. 99.04 thous.

Intrum Czech 16,455 16,011 (97.3 %) 2,915.96 mil. 2,915.96 thous.
Český inkasńı
kapitál 22,346 20,374 (91.18%) 2,901.69 mil. 142.42 thous.

Stavebńı
spořitelna
České
spořitelny

8,985 7,761 (86.38%) 2,879.36 mil. 371.00 thous.

Provident Fi-
nancial 77,958 66,832 (85.73%) 2,792.64 mil. 41.79 thous.

AB 4 B.V. 41,459 31,987 (77.15%) 2,449.05 mil. 76.56 thous.
CP Inkaso 28,121 26,563 (94.46%) 2,306.89 mil. 86.85 thous.
City Bank Eu-
rope 8,987 6,746 (75.06%) 2,052.88 mil. 304.31 thous.

80



(a) Median total debt of natural persons.

(b) Median total debt of natural persons, 2019 only.

(c) Median total debt of companies.

Figure 4.10: The median total debt is calculated by first adding up the value
of receivables of individual IPs and then calculating the median over all IPs
commenced in the given year. We calculated the median total debt separately
for natural persons and companies. To show how the amendment Act 31/2019
Coll. on Discharge and its application affected the median size of debt of natural
persons we also included more detailed view of 2019.

4.5 Reproducibility

The CID we prepared in this chapter is extensive, and reproducing it from
scratch would be challenging. As stated in Section 4.2, just rerunning the web
application scraper and the web service scraper would take 25 days. Then, re-
running the document processing pipeline on approx. 3.5M of ARs would take
additional weeks or even months, based on the size of the cluster it would be
deployed to. Furthermore, it would not even be possible to fully recreate our ver-
sion of the CID because, as mentioned in Section 3.2.4, the insolvencies become
unavailable in the IR 5 years after they have finished. As of 2022, most of the
insolvencies between 2008 and 2018 can no longer be scraped from the IR.

To reduce some of the challenges stated above, we have been scraping and
processing IR data continuously (daily) between 2014 and 2022. This way we

81



captured almost all insolvencies ever published in the IR. Additionally, this ap-
proach alleviated some of the hardware requirements too, because we would run
the document processing pipeline only on the newly published ARs (approxi-
mately 1000 a day). As a result, we were processing the daily data increment
on a single server instead of processing all documents in one large batch, which
would require significant computational resources (tens of machines). Although,
we performed one large OCR processing batch18 at the start of our study to catch
up with all the historical data. Since then, however, we were able to rely solely
on these minor incremental updates.

The individual components of the daily update were executed in the following
order: (1) Scrape new IPs from the IR Web Application, (2) Scrape and process
all new events from the IR Web Service, and (3) Using the Web Service events,
identify changed IPs and re-scrape them from the IR Web Application. In parallel
with the scraping components, we ran IRES on all the newly published ARs.

For the reasons above, we included our version of the CID (i.e., CID DB) in
the attachments of this thesis. This version of the CID was used to support all
the experiments in Chapter 6. We describe the process of restoring the CID from
the archive in Appendix B.1.

18The first batch included approximately 1.2M ARs, and the processing was done on AWS.

82



5. Definitions and tools
The main goal of this thesis is to model the data obtained from the IR using

social networks. In particular, we are interested in how entities in the IR and their
relationships evolve over time. To capture this evolution, we will use dynamic
social networks. For an introduction to the topic of dynamic (or evolving) social
networks, see Section 2.5.

As there are several approaches to the study of dynamic social networks, we
will first formally define the term dynamic social network in the context of this
thesis. Using this definition, we will then define a specific set of requirements
that need to be met by the tools used to analyze such networks. Then, we will
review how well these requirements are met by existing tools and frameworks
focused on social network analysis. Finally, we will propose a new system for
analyzing dynamic social networks that meets all our requirements and is named
GraphSlices. GraphSlices is a fundamental tool for this work as it is used in the
most critical experiments in Chapter 6.

5.1 Definitions

Informally, dynamic social networks can be described as graphs that change
their structure over time, i.e., edges and vertices are added and/or removed from
the graph at different times. Our point of view is edge-centric, meaning that the
time information is only attached to the edges as a list of activity-related time
spans. At any given point, the vertices thus exist in the network only if they are
connected to an active edge. Internally, the input graph corresponds to a (static)
multigraph with specific attributes assigned to the edges that indicate when the
given edge was active in the network. Naturally, there can be multiple edges
between the same two nodes at different times.

Definition 5.1.1. A static social network is a directed graph G = (V, E), where
V is the set of vertices and E = {(vk, vl)|vk, vl ∈ V } is the set of directed edges.

Further, we will assume that we observe social networks across a series of
discrete time points t1, . . . , tn−1, tn. At each time point ti; 1 ≤ i ≤ n, we observe
an instance of a static social network Gi = (Vi, Ei). The changes that may occur
between two time points ti−1 and ti; 1 ≤ i ≤ n include the addition or deletion
of edges and the appearance or disappearance of vertices.

Definition 5.1.2. Let n be the number of the considered time points and let us
observe an instance of the static social network Gi = (Vi, Ei) at each i. A dynamic
social network is a directed graph Gn

D = (V n
D , En

D), where

– V n
D = ⋃︁n

i=1 Vi is a set of vertices that have appeared at any of the considered
time points ti; 1 ≤ i ≤ n, and

– En
D = ⋃︁n

i=1 Ei is a set of edges that have appeared at any of the considered
time points ti; 1 ≤ i ≤ n, and all such edges are labeled by a sequence of

83



ordered pairs [i, j] that specify the time points at which the edge was present
in the network, i.e., from the time point ti to the time point tj in this case.
The time interval [ti, ti] can be abbreviated as [ti].

To address the evolution of the network over time, we expand this graph into
what we will refer to as the expanded graph. The expanded graph shall provide
a transparent view of the network at each of the considered time points. Further,
we will denote it as a slice. Expanded graphs thus incorporate multiple mutually
inter-connected graphs based on the user-defined slicing function (e.g., hourly or
daily). Each slice contains a copy of active edges and vertices from the original
graph. New ”meta” level edges are added to the network between the same
vertices at different time periods to support information flow between the vertices
and edges from different time slices. Figure 5.1 illustrates this unfolding process.

Figure 5.1: Unfolding of a dynamic social network into an expanded graph con-
sisting of 3 time slices t1, t2 and t3. A copy of each active vertex and edge is
created for each time slice. Additional meta edges connect the copies of the same
vertices across subsequent time slices to support information flow both within the
network and across time.

We will denote the inverse operation to the expansion of the graph as reduction
for the rest of this study. The reduction operation reverses the unfolding process
to recover the original graph. It is up to the user to specify how the information
from multiple copies of the original vertices/edges is supposed to be aggregated.

Definition 5.1.3. An expanded graph of a dynamic social network defined as
Gn

D = (V n
D , En

D) is a directed graph Gn
X = (V n

X , En
X), where

– V n
X = {vi

k|vk ∈ V n
D ∧ 1 ≤ i ≤ n} is the set of vertices and

– En
X = {(vi′

k , vi′
l )|i ≤ i′ ≤ j for any time interval [i,j] labeling (vk, vl) ∈ En

D}
∪ {(vi

k, vi+1
k )|vi

k ∈ V n
D ∧ 1 ≤ i < n} is the set of directed edges.

84



The processing of dynamic networks, as defined here, obviously places new
requirements on the graph mining tools used to analyze such networks. In par-
ticular, these requirements include:

1. Built-in support for the representation of evolving networks and their ma-
nipulation by time-dependent operations such as slicing.

2. Support for large-scale computation and parallelism, which allows process-
ing very large graphs (with millions or tens of millions of edges).

3. Provides a sufficient collection of algorithms for analyzing social networks.

4. The tool is easy to use and extensible.

5.2 Existing tools

The recent rise in the availability of network-structured data, mostly from
social networks (e.g., Facebook, Twitter, LinkedIn) and other sources, has created
an increased demand for the processing of large graphs. However, most existing
graph mining tools applicable to social network analysis are oriented toward static
(unchanging) graphs. On a high level, the existing tools can be divided into two
main categories: user-friendly libraries designed for single-machine processing and
large-scale distributed graph processing systems.

There is an abundance of single-machine libraries designed to analyze static
social networks. All these tools usually come with an extensive library of standard
network analysis algorithms for assessing network properties such as diameter,
connectivity, centrality measures, clustering, and many others. The two most
notable tools in this category are IGraph[115] and NetworkX [116]. Unfortunately,
the internal graph representation adopted by these tools does not allow them to
scale to large graphs. There are also single-machine tools such as SNAP[117],
which are highly optimized and can scale to very large graphs, especially when
used on computational hardware with a large amount of memory. However, the
other downside of these tools is that their graph abstraction does not directly
support parallel computation. As a result, if the user wants to use parallelization
to speed up computation, he/she has to do it separately for each algorithm.

Systems such as Pregel[118], PowerGraph[119] and GraphX [120] can scale to
extremely large graphs by distributing the computation over a cluster of ma-
chines. However, they provide only a handful of standard graph algorithms.
Therefore, the scope of the analysis they allow the user to perform is very lim-
ited compared to the single-machine systems. The main reason for this limited
support for network algorithms is the somewhat restrictive gather-apply-scatter
(GAS) computation model adopted by all these tools. Although the GAS model
is great for scaling to massive graphs in a distributed setting, it is only well suited
for the implementation of some specific algorithms such as PageRank, HITS, or
connected components. The usability of GAS for other types of algorithms still
needs to be improved [121].

85



All the above-discussed tools have been designed to analyze static graphs and
do not incorporate any notion of dynamic graphs. For the user to perform dy-
namic analysis on a series of snapshots of a network, it is up to the user to
construct these snapshots beforehand. This approach is tedious and requires to
re-implement the snapshotting logic over and over again. This approach is incred-
ibly ineffective for analyzing large graphs when every re-computation of snapshots
takes a long time.

To overcome these disadvantages, several frameworks oriented specifically to-
wards time-evolving graphs have been proposed recently, such as Chronos[122],
Kineograph[123], or GraphTau[124]. However, their primary focus is on the dis-
tributed setting and high-performance graph storage. These systems lack both in
terms of flexibility and implementation of a sufficiently large collection of network
mining algorithms.

5.3 GraphSlices

Since none of the aforementioned frameworks meet all of the requirements for
the effective processing of dynamic graphs we listed at the beginning of this sec-
tion, we decided to design and implement our own framework named GraphSlices.
This section will first describe the design consideration that led to the resulting
architecture described in Section 5.3.2. Then, we will describe the implementa-
tion of this system in the Scala programming language and provide an overview
of the interface GraphSlices provides for manipulating dynamic graphs.

5.3.1 Design considerations

We started with a similar observation as the authors of SNAP, which was
that the capacity of RAM memories has drastically increased in recent years.
This increase went hand-in-hand with a significant drop in the prices of available
memory modules. This means that machines with hundreds of GBs of RAM be-
came available and affordable to a broader user base. For instance, the largest
memory-optimized Spot Instances m4.16xlarge provided by the AWS (see Section
4.3.3), which operate with 256GB of memory can be rented at a price of only $0.7
per hour1. Given this abundance of RAM, it is possible to load and process even
the most extensive network datasets entirely in memory. Keeping the computa-
tion on a single machine significantly reduces the system’s complexity since we do
not have to worry about synchronizing the computation over multiple machines.

Regarding the basic internal graph representation, we drew inspiration from
GraphX, which uses a straightforward relational representation. GraphX stores
the whole graph in two tables: one is reserved for the list of nodes (vertices), and
the second for the list of edges. On top of this representation, GraphX exposes a
functional interface that provides a collection of expressive computational primi-
tives that allow users to perform graph manipulation and computation. GraphX
internally performs a very effective implementation of the join operation between

1Source: https://aws.amazon.com/ec2/spot/pricing/. Accessed at 12 October 2022

86



the nodes table and the edges table to pass information between nodes during
computation. The graph computation is implemented using Apache Spark[125],
one of the major distributed data processing engines today. However, the down-
side of GraphX is that it is only limited to the GAS computational paradigm,
which restricts the scope of operations exposed in the functional interface.

The simple relational graph representation of using only two tables for vertices
and edges is very effective for implementing graph transformations since the in-
memory join operation can be implemented very easily (e.g., using a hashmap).
This representation is also well suited for implementing graph-dependent opera-
tions such as graph slicing. Additionally, by restricting ourselves to in-memory
computation, we can create a functional graph interface similar to what GraphX
uses. However, we can also extend it beyond the GAS computational model. For
instance, we can extend our abstraction by more generic computational primi-
tives such as effective vertex/edge iterators, which allow high-speed sequential
processing and can be used to build a wider variety of graph algorithms.

The last thing to consider is the platform and the programming language we
will use to implement GraphSlices. We aimed to select a functional language
that is expressive enough to implement our designed graph interface (see Listing
5.2). Also, the language must allow us to implement high-performance code and
provide fast collection data structures and iterators, which we will need to im-
plement all the graph operations. The language must have sufficient support for
concurrent computation – even though we are not interested in distributed com-
putation, we still want to be able to leverage multiple cores on the same machine.
The language that best fits all of these requirements is the Scala programming
language, which runs on top of the Java Virtual Machine (JVM) platform.

5.3.2 Architecture

We designed GraphSlices as a generic framework for the analysis of dynamic
networks. GraphSlices needed to provide sufficient functionality in 3 key areas
to accomplish this goal. The first area was a rich and high-performance graph
abstraction that could be used to manipulate graphs and implement various graph
mining algorithms. The second key area was implementing a sufficient collection
of graph mining algorithms. Finally, the third area was to allow the user to easily
generate synthetic graphs or load existing graph data from various formats.

The architecture of GraphSlices depicted in Figure 5.2 reflects the essential
elements laid out in the previous paragraph. At the core of GraphSlices is the
Graph interface, which encapsulates a dynamic graph defined in Section 5.1 and
provides methods to manipulate the graph. The Graph interface currently has two
implementations, a serial one using plain Scala core collections, and a parallel one
which leverages Scala’s parallel collections2. Graph computation is performed by
chaining multiple operations of the Graph interface, and every operation returns
a new transformed version of the original graph. To see how this interface can be
used to implement node degree calculation, see Listing 5.3.

2Overview of Scala’s parallel collections: https://docs.scala-lang.org/overviews/
parallel-collections/overview.html. Accessed at 21 November 2023

87

https://docs.scala-lang.org/overviews/parallel-collections/overview.html
https://docs.scala-lang.org/overviews/parallel-collections/overview.html


To effectively slice the graph based on the user-defined function and manipu-
late the expanded graph, we created a fast multi-level index for quick access to
nodes and edges. The current Graph interface and multi-level index implemen-
tation allow the user to slice/expand the graph over more than one dimension.
In Figure 5.1, we show an expansion using the time information attached to the
edges; however, this is not necessarily the only dimension that might be interest-
ing when analyzing a dynamic graph.

For instance, let us assume we want to study a dynamic multi-graph combining
data from multiple individual online social networks such as Facebook, Twitter,
and e-mail. Since many people use two or even three online social networks, these
separate networks share some of the same nodes, which can be interconnected by
different edges (based on the type of communication). In this example, the other
dimension (besides time) that might be of interest to us when we analyze it could
be, for instance, how nodes’ roles evolve in these separate social networks and
how they affect each other.

To perform such an analysis, we could first expand the graph over the type
of graph dimension (Facebook, Twitter, e-mail) and then the time dimension
using the time stamps on the edges. Then, we could simply run one of the node
importance algorithms, such as PageRank, and see how the development of nodes’
rank in different online social networks affects each other.

Every user-friendly graph mining library needs a set of rich methods for gener-
ating graphs and/or loading existing graphs from various formats. For the former,
we have the module called Generators, which contains methods for generating
standard classes of artificial graphs such as random, complete, or Barabasi-Albert
graphs. Graph loading is handled in the Builders module, which provides meth-
ods to load existing graphs from common formats such as a list of edges, CSV
files, or the popular GraphML3 format.

The last module called Algorithms contains the implementation of a collection
of common graph algorithms for link analysis (PageRank, EvolvingPageRank,
HITS), graph structure analysis (MaxIndependentSet, Coloring) and clustering
(Label Propagation). All the implemented algorithms can be used directly on the
expanded graph, which makes working with dynamic graphs straightforward.

5.3.3 Implementation details

In GraphSlices, graph computation is expressed as a series of transformations
that are sequentially applied to a directed graph. Each such transformation yields
a new graph, which is why the core data structure in the GraphSlices framework
is an immutable graph. The underlying immutable data structure stores both
the directed adjacency structure of the graph and arbitrary data associated with
either the edges or vertices (using the Vertex and edge Edge classes shown in
Listing 5.1). The transformation operations provided by the Graph interface can
transform both the data associated with the vertices/edges and the adjacency
structure of the original graph.

3The official site for the GraphML format: http://graphml.graphdrawing.org/. Accessed
at 21 November 2023

88

http://graphml.graphdrawing.org/


Figure 5.2: Architecture of GraphSlices. At the center lies the Graph interface, re-
sponsible for all graph manipulation operations. The two basic implementations
this interface supports are the serial single-threaded implementation and the par-
allel multi-threaded implementation. The rest of the code is organized into three
modules: Generators with various methods to construct synthetic graphs, Algo-
rithms that contain a suite of techniques implemented for social network analysis,
and Builders that load the graphs to/from memory.

.

Each vertex and edge is identified by a unique Id, which consists of a list (or
sequence) of integer numbers. The reason why we need a list of numbers instead
of just a single number is to be able to perform the expansion/reduction opera-
tions on temporal graphs using the pushDimension and popDimension methods
described later in this chapter. Each graph expansion adds one new number to
the Id of the vertex/edge to uniquely identify that vertex/edge across different
slices. For instance, imagine a graph with a single vertex with Id([1]). Now,
we perform an expansion operation over the time dimension and slice the graph
using a yearly time window, so the resulting copies of the original vertex in our
graph will get Ids of Id([1, 2020]), Id([1, 2019]), ...

Listing 5.1: Essential classes used to represent a graph in GraphSlices.
type Id = Seq [ Long ]

c l a s s Vertex [VD] ( va l id : Id , va l data : VD)

c l a s s Edge [ED] (
va l id : Id , va l s r c I d : Id , va l ds t Id : Id , va l data : ED

)

In Listing 5.2, we present the complete Graph interface, which exposes methods
for manipulating the graph and performing graph computation. The methods
vertices and edges provide a list view of the vertices and edges in the graph. Next,
methods vertexIndex() and edgeIndex() provide access to the multi-dimensional

89



index used for keeping track of the components in the expanded graph. These
are just convenience methods; the user does not have to use the indices directly.
However, they are leveraged by the other methods in this interface.

In terms of graph manipulation, the Graph interface exposes methods mapVer-
tices and mapEdges, which apply a user-defined function to vertices and edges and
return a new version of the graph. To update the list of vertices/edges, the user
can use the methods updateVertices and updateEdges, respectively. The method
outerJoinVertices provides the ability to join the vertices with some external
data using the vertex Id and then apply a user-defined function that can combine
the existing vertex data with external data to create a new graph. The method
reverseEdges simply changes the orientation of the edges in the graph. Lastly,
the method subgraph takes as arguments two user-defined functions edgePredicate
and vertexPredicate, which allow the user to filter edges and vertices to create a
sub-graph of the original graph.

When performing graph computation, it is usually necessary to have direct
access to both the edge and vertex data simultaneously. These methods require
some sort of join operation between the list of edges and the list of vertices. In
the case of GraphSlices, this join operation is handled by the individual imple-
mentations of the Graph interface (usually using a hash map). The user is not
exposed to the underlying mechanism of joining the edge and vertex data; he/she
is only concerned with the methods exposed by the Graph interface, which pro-
vides access to the necessary data. For instance, the method triplets provides a
list view of all triplets in the graph in the format (source vertex, edge, destination
vertex). The method mapTriplets allows the user to apply a user-defined function
to each triplet to create a new graph.

Next, the Graph interface exposes the method aggregateNeighbours, which joins
the vertex and edge data, applies the mapFunc on each edge and then performs
a reduce by the destination vertex using the reduceFunc function. The aggre-
gateNeighbours method allows the user to pass information between the vertices
along the edges and then aggregate the information at the destination vertices.
The aggregateNeighbours method is the essence of the GAS abstraction.

The last group of methods in the interface was designed to efficiently ma-
nipulate dynamic graphs using the expansion/reduction operations described in
Section 5.1. The method pushDimension expands the current graph using the
user-defined mapToSubKey function, which is applied to all the edges in the graph.
The mapToSubKey function has access to all the data associated with a partic-
ular edge. It can, for instance, use the edge time stamps to map the edge into
some time interval, e.g., yearly, monthly, or daily. GraphSlices does not provide
direct access to the vertices during expansion since the copies of relevant vertices
are created automatically for each slice (if that vertex is active, i.e., connected
to some edge). The method pushDimension also provides an optional argument
keepAllNodes, which ensures that a copy of each vertex is created in each slice, re-
gardless of whether that vertex is connected to any edge. The keepAllNodes=True
argument is handy when the user wants to fix the set of all vertices across slices.

The popDimension method performs the inverse operation, i.e., the reduction
of the expanded graph using the least recent dimension added to the graph. To

90



perform reduction, the user needs to provide two functions reduceFuncVertices
and reduceFuncEdges as arguments, determining how the data from different
slices are aggregated. The most straightforward aggregation function can gather
the information from each slice into a list, which the user can later explore. The
mapDimension functions provide the ability to apply an arbitrary transformation
function to the sub-graph in each slice of the most recent dimension.

We also want to point out that the current implementation of the pushDimen-
sion operation does not automatically add the meta-edges between the graph
slices as formulated in Definition 5.1.3. However, these edges (and others) can be
added to the expanded graph using the updateEdges method.

We want to stress that all three methods popDimension, pushDimension, and
mapDimension create new versions of the original graph. However, the new
graphs can still be accessed using the same Graph interface. This ability to pro-
vide a simple, transparent, and unified interface to manipulate dynamic graphs is
the core idea behind GraphSlices. Many algorithms, such as PageRank or HITS,
can be applied directly to the expanded graph; thus, get a dynamic version of
those algorithms without any additional work. Furthermore, the current imple-
mentation allows users to use arbitrary dimensions when analyzing the graph.
The only limitation of the analysis is the size of the available RAM.

Listing 5.2: The complete Graph interface as currently implemented in the Graph-
Slices framework. The methods in this interface are grouped into four categories:
(1) methods for accessing graph data, (2) basic graph manipulation methods, (3)
graph computation methods, and (4) methods for working with dynamic graphs.
c l a s s Graph [VD, ED] {

// methods f o r a c c e s s i n g graph data
de f v e r t i c e s ( ) : Seq [ Vertex [VD] ]

de f edges ( ) : Seq [ Vertex [VD] ]

de f vertexIndex ( ) : MultiIndex [ Vertex [VD] ]

de f edgeIndex ( ) : Mult iIndex [ Edge [ED] ]

// ba s i c graph manipulat ion methods

de f mapVertices [VD2] ( map : Vertex [VD] => VD2) : Graph [VD2, ED]

de f mapEdges [ED2 ] ( map : Edge [ED] => ED2 ) : Graph [VD, ED2]

de f updateVert i ce s [VD2] (
v e r t i c e s : Seq [ Vertex [VD2 ] ]

) : Graph [VD2, ED]

de f updateEdges [ED2 ] ( edges : Seq [ Edge [ED2 ] ] ) : Graph [VD, ED2]

de f ou t e r J o i nV e r t i c e s [D, VD2] ( other : Seq [ ( Id , D) ] ) (
mapFunc : ( Vertex [VD] , Option [D] ) => VD2

) : Graph [VD2, ED]

de f reverseEdges ( ) : Graph [VD, ED]

de f subgraph (

91



edgePred icate : EdgeTrip let [VD, ED] => Boolean ,
ve r t exPred i ca t e : Vertex [VD] => Boolean

) : Graph [VD, ED]

// methods f o r per forming graph computation
de f t r i p l e t s ( ) : Seq [ EdgeTrip let [VD, ED] ]

de f mapTriplets [ED2 ] (
mapFunc : EdgeTrip let [VD, ED] => ED2

) : Graph [VD, ED2]

de f aggregateNeighbors [A] (
mapFunc : ( EdgeContext [VD, ED, A] ) => Seq [ Message [A] ] ,
reduceFunc : (A, A) => A\

) : Graph [A, ED]

// methods f o r expanding / reduc ing graphs
// and manipulat ion o f expanded graphs
de f pushDimension [ED2 ] (

mapToSubKey : Edge [ED] => Seq [ ( Long , ED2) ] ,
keepAllNodes : Boolean = f a l s e

) : Graph [VD, ED2]

de f popDimension [VD2, ED2 ] (
reduceFuncVert ices : ( Seq [ ( Long , Seq [ Long ] , VD) ] ) => VD2,
reduceFuncEdges : ( Seq [ ( Long , Seq [ Long ] , ED) ] ) => ED2

) : Graph [VD2, ED2]

de f mapDimension [VD2, ED2 ] (
mapFunc : Graph [VD, ED] => Graph [VD2, ED2]

) : Graph [VD2, ED2]
}

The GraphSlices framework currently provides two implementations of the
Graph interface. The first serial implementation named GraphSerial is built us-
ing Scala’s core collections only. The serial implementation relies mainly on the
Vector data structure, which provides fast random access and updates, as well
as very fast append and prepend operations4. GraphSlices also provides a paral-
lel implementation called GraphParallel to leverage multi-core processors. This
implementation uses Scala’s parallel collections and in our case we rely primarily
on the ParVector5 trait/interface, which provides the ability to parallelize basic
operations on Vectors such as map, reduce, and flatMap. Since parallelization
comes with a particular amount of overhead compared to the standard collections,
we recommend using it only for large graphs with at least millions of nodes/edges.

The complete source code for GraphSlices is included in the attachments of
this thesis (Appendix B.2) and is also publicly available at https://github.
com/zviri/GraphSlices.

4Vectors in Scala: https://www.scala-lang.org/api/2.12.4/scala/collection/
immutable/Vector.html. Accessed at 10 October 2022

5Scala’s parallel collections: https://www.scala-lang.org/api/2.9.1/scala/
collection/parallel/immutable/ParVector.html. Accessed at 10 October 2022

92

https://github.com/zviri/GraphSlices
https://github.com/zviri/GraphSlices
https://www.scala-lang.org/api/2.12.4/scala/collection/immutable/Vector.html
https://www.scala-lang.org/api/2.12.4/scala/collection/immutable/Vector.html
https://www.scala-lang.org/api/2.9.1/scala/collection/parallel/immutable/ParVector.html
https://www.scala-lang.org/api/2.9.1/scala/collection/parallel/immutable/ParVector.html


5.3.4 Example usage

To showcase the expressiveness of the Graph interface introduced in the pre-
vious section, we will provide an example implementation of the PageRank algo-
rithm in Listing 5.4. For clarity, we will describe this implementation line-by-line
and explain the logic behind every transformation performed on the input graph.
Then, in Listing 5.5 we will show how the implemented algorithm can be used on
the simple dynamic graph shown in Figure 5.1.

Before explaining the primary implementation, we will first introduce two
auxiliary methods required for implementing PageRank in Listing 5.3. These
methods are inDegreeWeighted and out outDegreeWeighted, which, as their name
suggests, compute the (weighted) in-degree and out-degree of nodes in the input
graph. Both methods accept as input arguments (lines 2 and 15) an instance of a
Graph with arbitrary vertex data (VD). However, the edges must be associated
with only a single float (double) value. The edge value (or data) represents the
edge weight, which can be used optionally to calculate weighted degrees in the
graph. If the user only wants to calculate ordinary unweighted in/out-degrees,
he/she can apply these functions to a graph with constant (1.0) edge weights.

To calculate the in-degree, we will use the aggregateNeighbors method provided
by the Graph interface (line 4). This method requires two input arguments;
the first is a mapFunc function, which accepts a parameter containing the edge
context (including all its data) and returns a sequence of messages that are sent
to other vertices. After all the messages have been sent, the function passed as
the second argument reduceFunc is invoked on every vertex. This function takes
as input two messages received by the given node and returns a single aggregate
value. The reduceFunc method is applied on each message received by a specific
node iteratively using an accumulator to obtain a single final value.

To implement the in-degree, we will use a mapFunc (line 5), which sends the
weight associated with the current edge (cts.edge.data) as a message to its des-
tination vertex. Then, the reduceFunc (line 6) will sum the weights received
by each node. After the aggregateNeighbors method is finished, each node that
is connected to at least one in-edge contains its in-degree. To fill in the ze-
roes for nodes with no in-edges, we will first create a list of tuples in format
(vertex id, vertex in degree) on line 7. Afterward, using the outerJoinVertices,
which takes as an input argument a function (also called mapFunc) that is ap-
plied to each vertex in the graph. This mapFunc function provides access to
the current vertex data and the new value provided by the join operation and
returns the vertex’s new value. In our case, we will replace the vertex value with
the pre-computed in-degree if available. If the in-degree is unavailable, we are
dealing with a vertex with 0 in-degree.

To calculate the out-degree of vertices (line 14), we will reuse the inDe-
greeWeighted method by passing it to the input graph with reversed edge ori-
entation. To reverse the orientation of edges in the input graph, we will use the
reverseEdges method in line 17.

93



Listing 5.3: Utility functions for calculating the in-degree and out-degree of nodes
using GraphSlices.

1 de f inDegreeWeighted [VD] (
2 graph : Graph [VD, Double ]
3 ) : Graph [ Double , Double ] = {
4 va l degree s = graph . aggregateNeighbors [ Double ] (
5 ctx => Seq ( ctx . msgToDst ( ctx . edge . data ) ) ,
6 ( a , b) => a + b
7 ) . v e r t i c e s .map( v => ( v . id , v . data ) )
8
9 graph . o u t e r J o i n V e r t i c e s ( degree s ) {

10 (v , d) => d . getOrElse ( 0 . 0 )
11 }
12 }
13
14 de f outDegreeWeighted [VD] (
15 graph : Graph [VD, Double ]
16 ) : Graph [ Double , Double ] = {
17 inDegreeWeighted ( graph . reverseEdges ( ) )
18 }

Using the methods defined in Listing 5.3, we can now proceed to the main
implementation of the PageRank algorithm (PR). The implementation in this
example will use the power iteration method. The pagerank method (line 1), in
our case, accepts three arguments: (1) the input graph with weighted edges, (2)
reset probability (or the damping factor) to use for calculating the PR, (3) the
number of iterations to use.

The first step in the implementation is calculating the out-degree of vertices
in the input graph, for which we will use the outDegreeWeighted method (line
6). Notice that if we want to calculate a weighted PR, we pass a graph with
specific weights assigned to each edge. By default, we will assume the user passes
a graph with constant (1.0) weights. Next, on lines 10 − 15, we will initialize
the graph variable rankGraph, which we will use to update the PRs iteratively.
The rankGraph is initialized with vertices set to 1.0 (line 15) and edges set to
edge weight/source vertex degree (line 14).

Using the pre-initialized rankGraph, we will proceed to the power iteration
implemented on lines 17 to 35. The rank updates work as follows. Using the
aggregateNeighbours method on line 20, we will first send the current rank of
each vertex over its outgoing edges (line 23). Then, using the reduceFunc we
will sum the incoming ranks of every destination vertex on line 266. Finally, we
will update the ranks of the rankGraph using the outerJoinVertices method in
combination with the rankUpdates computed in the previous step on line 29. In
the map function on line 33, we will also apply the necessary damping factor to
finish the rank updates correctly. These updates are repeated until we hit the
predefined number of iterations passed in the numIter argument.

The typical PR implementation usually includes a convergence check, which
ensures the rank updates are getting smaller, and once they fall below a predefined
threshold ϵ, the iteration is stopped. We omitted the early stoppage to keep this
example implementation as simple as possible.

6In Scala, the function + corresponds to (a, b) => a + b.

94



Listing 5.4: Implementation of the PageRank algorithm using GraphSlices.
1 de f pagerank [VD] (
2 graph : Graph [VD, Double ] ,
3 resetProb : Double = 0 .15 ,
4 numIter : Int = 100
5 ) : Graph [ Double , Double ] = {
6 va l degree s = outDegreeWeighted ( graph )
7 . v e r t i c e s
8 .map( v => ( v . id , v . data ) )
9

10 var i = 0
11 var rankGraph = graph . o u t e r J o in V e r t i c e s ( degree s ) {
12 ( vertex , degree ) => degree . getOrElse ( 0 . 0 )
13 } . mapTriplets (
14 t r i p l e t => t r i p l e t . edge . data / t r i p l e t . s rcVertex . data
15 ) . mapVertices [ Double ] ( => 1 . 0 )
16
17 whi l e ( i < numIter ) {
18 i += 1
19
20 va l rankUpdates = rankGraph . aggregateNeighbors [ Double ] (
21 edgeCtx => Seq (
22 edgeCtx . msgToDst (
23 edgeCtx . s rcVertex . data ∗ edgeCtx . edge . data
24 )
25 ) ,
26 +
27 )
28
29 rankGraph = rankGraph . o u t e r J o i n V e r t i c e s (
30 rankUpdates . v e r t i c e s .map( v => ( v . id , v . data ) )
31 ) {
32 ( vertex , prSum) => (
33 resetProb + ( 1 . 0 − resetProb ) ∗ prSum . getOrElse ( 0 . 0 )
34 )
35 }
36 }
37 }

Finally, in Listing 5.5 we will showcase how the PR implementation can be
used on the example graph from Figure 5.1. We will first load the dynamic
graph structure, vertex, and edge attributes from a file using the Builders class
on line 1. We will assume that the time data associated with the edges have the
form of a list. Then, using the pushDimension method on line 3, which accepts
as a first argument a mapToSubKey function applied to every edge in the graph.
The mapToSubKey function returns a sequence of tuples of size 2, where the first
element is the sub-key to which the current edge should be mapped, and the
second is the data that should be assigned to the new edge. To calculate the PR
for each time slice, we can apply the pagerank method we defined earlier to the
expanded graph.

95



Listing 5.5: An example for calculating the dynamic PageRank. Using
the example from Figure 5.1, we first load the (dynamic) graph structure, vertex,
and edge attributes from a file. Afterward, assuming the time indicators have the
form of a list, we create an expanded form of the network graph and compute the
PageRank for every snapshot.

1 va l graph = Bui lde r s . loadFromFile ( ” . . . ” )
2
3 va l s l i cedGraph = graph . pushDimension (
4 edge => edge . data .map( time => ( time , 1 . 0 ) )
5 )
6
7 va l prGraph = Algorithms . pagerank ( s l i cedGraph )

96



6. Experiments

6.1 Experiment 1: Insolvency process as a static
social network

In this experiment, we will view the participants of the IPs as entities intercon-
nected through various types of relationships. For example, these relationships
can represent whether a specific debtor owes money to a creditor or whether the
debtors are somehow related (e.g., married). Furthermore, our approach models
insolvencies as a social network, where nodes represent individual participants and
edges relationships between the participants. This novel approach can uncover
new insights into the structure of debtors, particularly in the Czech Republic.

Depending on what relationships are important, there are different ways of
constructing such a social network. However, the fundamental relationship in the
network should be the ”owes” relationship between a debtor and a creditor. Next,
we are interested in the role of the insolvency administrator, which is a mediator
between the creditors and debtors in the IPs. Lastly, we want to capture the
direct relationships between the debtors who share the same domicile (these can
be members of the same household).

We are particularly interested in obtaining new insights concerning the process
of IPs and the structure of mutual relationships between the IP’s participants.
In particular, we are interested in answering the following questions:

1. Is it possible to build a social network from insolvency data?

2. What would the structure of the insolvency network be?

3. Is it possible to find groups of nodes with similar relationships among the
data groups?

6.1.1 Dataset construction

For this experiment, we used the CID to construct the social network as follows.
First, we used the debtors, creditors, and administrators to create nodes. Then,
we included a directed edge from the node d to c if debtor d owes money to
creditor c. The ”owes” relationship in the CID is represented by the creditor
having a receivable against the debtor. Similarly, we included a directed edge
from node a to d if a administers the IP of d. Finally, we included bidirectional
edges between all the debtors sharing the same address.

Given the large number of insolvencies, we decided to focus on a smaller subset
of IPs only. Therefore, in this experiment, we only considered the IPs commenced
between 2008 and 2014 from Ústecký kraj. The analyzed social network comprised
almost 6000 nodes of 3 types (debtors, creditors, and administrators).

97



6.1.2 Results

We used Gephi [126] to construct, visualize, and analyze the insolvency net-
work. To get a sense of the importance of individual nodes, we calculated the
PageRank of each node. Finally, we used a community detection algorithm called
the Method of Optimal Modularity [127] (MOOM) to partition nodes into groups
based on their similarity in the network. We set the resolution parameter of
MOOM controlling the granularity of the partitioning experimentally to 1.1. We
show the resulting network in Figure 6.1.

We can see that the insolvency network is a dense and highly interconnected
network where most nodes belong to one large connected component1. However,
we can also notice that the network contains a small number of highly important
nodes, most of which are large creditors like GE Money Bank, CETELEM, and
Česká spořitelna. The network structure also shows that the creditors share most
of their debtors with other creditors.

Using the MOOM algorithm, we discovered four large communities colored
green, light blue, navy, and purple. Each of the found communities contains all
three types of nodes: debtors, creditors, and administrators. The largest is the
green community, which contains mainly large financial institutions like the three
most important creditors mentioned in the previous paragraph. These creditors
often participate in the same IPs. The second, light blue community, contains a
larger number of less frequent creditors like Telefonica CR and T-Mobile CR.

At last, we want to bring attention to the highly interconnected clusters of
nodes on the outer edges of the visualization. We denoted the largest clusters
as SA1 and SA2. These groups contain debtors who all share the same address.
However, based on their last names, the debtors in these clusters did not seem
to be related. After a short investigation, we found that the shared addresses
belong to the town councils of Chomutov, Most, and other cities. These debtors
likely lost their homes and were assigned a domicile at their local town council.

6.1.3 Summary

In this experiment, we showed the applicability of social network analysis on
data obtained from the IR. Furthermore, we managed to construct an insolvency
social network that provided novel insights into the structure of debtors in the CR.
We showed that the insolvency network is very dense and contains a small number
of highly influential creditors that often participate in the same IPs. Still, after
applying community detection analysis, we found two large yet distinct groups
of IP participants with different characteristics. We also identified larger clusters
of debtors who share their addresses and are not relatives but people who moved
their domicile to the town council.

We only used a small part of the CID for this experiment, i.e., insolvencies from
the Ústecký region. Therefore, in the following experiments, we will broaden the
scope of our analysis to cover the entire CR.

1We removed several smaller disconnected components from the visualization because they
were irrelevant.

98



Figure 6.1: Visualization of the insolvency network constructed from insolvencies
in the Ústecky region commenced between 2008 and 2014. The node size reflects
the importance of individual nodes calculated using PageRank. The colors rep-
resent communities discovered by the MOOM algorithm.

.

6.2 Experiment 2: Insolvency process as a dy-
namic social network

In the previous experiment, we showed that subjects involved in insolvencies
(debtors, administrators, and creditors) form a complex social network. This
insolvency network is dense, and link analysis showed that it contains a small
number of important nodes with different roles. This experiment aims to de-
termine if and how the insolvency network evolves. We want to capture this
evolution through the changes in the importance of nodes over time. We will
be especially interested in the network’s most important/influential nodes at any
given time. Lastly, we will extend the studied network by an additional node
type in the form of senates representing courts handling a particular IP.

99



Since almost every region in the Czech Republic has its regional court that
exclusively handles the IPs commenced in the given region, we will also extend
the scope of this experiment to every region (14 in total). Furthermore, we want
to study the regions independently to capture potential differences in IPs.

Understanding the role of important nodes in the network and their evolution
over time could provide helpful hints for future link prediction. That is why we
will use association rule mining in the second part of the experiments to predict
the emergence of future links in the insolvency network. These rules could help
us predict, for example, what subjects are likely to participate in an IP together.

To summarize, in this experiment, we will be interested in answering the
following questions:

1. How to identify prominent nodes in the insolvency social network?

2. Does the importance of nodes and the network structure change over time?

3. Can strong relationships found in the network predict the emergence of
future links between the nodes?

6.2.1 Dataset construction

For this experiment, we selected all IPs from the CID commenced between
2008 and 2014. Then, for every region and every year, we created an individual
network snapshot containing only insolvencies commenced in that year in the
given region. As a result, we created 7 ∗ 14 = 98 different network snapshots.
During the construction of the networks, we considered the following four types
of nodes: creditors, debtors, administrators, and judicial senates. Lastly, we
included edges between the nodes to capture the following relationships:

• a directed edge between debtor d and creditor c means that debtor d owes
money to creditor c

• a directed edge between administrator a and debtor d indicates that ad-
ministrator a manages the insolvency proceeding of debtor d

• a directed edge between senate s and debtor d shows that senate s handles
the IP of debtor d.

6.2.2 Results

Social network analysis

Given the construction described in the previous section, we knew that some
nodes in the network only contained incoming edges (e.g., creditors), and some
nodes only contained outgoing edges (e.g., administrators). To capture the dy-
namics in the network over time, we wanted to calculate meaningful importance
scores for both types of nodes. As a result, we used the HITS algorithm to calcu-
late the authority and hub scores. Naturally, the creditors who did not contain

100



any outgoing edges represented the authorities in the network, and the adminis-
trators and senates formed, on the contrary, the network’s hubs. For comparison,
we also calculated the normalized degrees of every node.

Next, we used the NetworkX [116] Python software package to construct the
individual networks and calculate all nodes’ authority and hub scores. Then,
to explore and visualize the networks, we used Gephi once more. Finally, we
show the evolution of the authority scores from the region Jihomoravský between
2008 and 2014 in Figure 6.2. We can see that the number of IPs dramatically
increased in that period, and the influence of the involved subjects (particularly
the creditors) changed significantly over time. The number of subjects used to
construct the network is shown in Table 6.1.

Table 6.1: The number of subjects involved in IPs in the Jihomoravský region
between 2008 and in 2014 used to construct networks shown in Figure 6.2.

Year Debtors

Creditors (the
total number of
all creditors if
known)

Administrators Senates

2008 150 21 154 15
2009 371 21 226 19
2010 545 21 107 19
2011 1,057 21 133 30
2012 1,574 21 (4,008 ) 132 25
2013 1,927 21 (4,113 ) 188 34
2014 2,003 21 (3,819 ) 211 46

We can identify creditors whose initial dominance declined substantially over
time, e.g., General Health Insurance (VZP), Home Credit lending company, or
Telefónica Czech Republic. On the other hand, some creditors maintain their
prominence over all seven years, e.g., GE Money Bank. We can, however, also
notice a rapid rise in the influence of initially almost dormant creditors like Prov-
ident Financial (starting in 2011). This observation is in accordance with the
authority scores computed for the Jihomoravský and Karlovarský regions, see
Figure 6.3a. The network dynamics in other regions are very similar to these two
regions and, therefore, will be omitted in this report.

In the case of administrators and senates, we can observe a different trend
(Figure 6.3b,c). Initially, a small number of dominant (with respect to the number
of IPs to be handled) nodes is present in the IR. However, with the growing
number of insolvencies, their influence (measured as hub scores) tends to become
more evenly distributed over time. An exception to this rule is the Jihomoravský
region, especially in 2012 and 2014. In this case, a small group of nodes appears
to yield higher hub scores. On the other hand, normalized node degrees did not
reveal any meaningful trend in this respect, see Figure 6.3d.

101



Figure 6.2: Authority scores of IP subjects from the Jihomoravský region between
2008 and in 2014. Creditors are marked blue, debtors green, administrators red
and senates purple.

.

102



Figure 6.3: Importance evolution (authority scores, hub scores and normalized
degrees) for the union of the top individuals over the considered period in the
regions Jihomoravský and Karlovarský.

103



Mining association rules for link prediction

In the second part of this experiment, we used association rules mining with
rules containing authority or hub nodes as items that could explain potentially
emerging relationships in the network. These rules could help us predict what
subjects will likely participate in an IP together. For this task, we used the open-
source data mining toolkit Weka [128]. The itemset we used to mine rules con-
tained between 400 and 600 different subjects (debtors, creditors, administrators,
and senates), one item for each of the years 2008 to 2014, and two items repre-
senting the debtor’s type: natural person (N) or legal entity (L). The transaction
set contained approximately 9,000 transactions for the region Jihomoravský and
4,500 for the region Karlovarský. We created one transaction for one IP where at
least one debtor, administrator, and senate participated.

Since our goal was to use association rules for link prediction, we were in-
terested in very particular forms of rules. To ensure these rules would end up
in the mined rules set, we had to set the minimum required support thresholds
extremely low, for instance, 0.001, which corresponded to tens of transactions.
As a result, this would lead to an exponential increase in the number of mined
rules, which would cause the mining algorithms to use an excessive amount of
memory and time for computation. For this reason, we adjusted the two main
rule mining algorithms in Weka, Apriori, and FP-growth, to only mine rules in
the forms we were interested in. These adjustments would lead to the pruning
of the search space and the mined rules set. This strategy was effective and led
to performance improvements in both algorithms, although the improvements for
FP-growth were much more significant than for Apriori.

To demonstrate the performance improvements, when we were looking for
rules matching the pattern person type, senate, year ⇒ administrator, both the
Apriori and FP-growth algorithms returned the same rules for both regions within
a few seconds. In the case of rules matching the pattern creditor, person type,
senate, year⇒ creditor, the FP-growth algorithm finished the search within a few
seconds again, as looking for more specific rules decreased the number of paths to
be searched for in the FP-tree. In the case of the Apriori algorithm, however, the
system ran out of memory and could not generate any rules. The main reason
Apriori remained less efficient is that the pruning of the search space in each step
can only occur after all the candidates have been generated. Compared to FP-
growth, we could implement the pruning procedure directly into the candidate
generation function, which was much more memory efficient.

In both cases, we found several interesting rules with high confidence and lift
scores even over 100. In the first set of rules, we found different administrators
only on the right-hand side (RHS) of the rules for different years — see Table 6.2.
This result means we did not find any strong association between the adminis-
trators, i.e., no administrators are likely to occur in IPs together. However, we
identified several strong associations between specific senates (judges) and spe-
cific administrators. Based on the second set of rules involving creditors, we can
conclude which creditors are likely to participate in future IPs together — see
Table 6.3. For example, in the Jihomoravský region, legal entities owing money to
General Health Insurance (VZP) seem to also owe money to the Czech Social Se-

104



curity Administration (Česká správa sociálńıho zabezpečeńı). In the Karlovarský
region, instead, natural persons are affected by mounting amounts of debt ar-
ranged with several non-banking lending companies like Provident Financial or
Door Financial.

Table 6.2: Examples of association rules of the form person type, senate, year
⇒ administrator found for the regions Jihomoravský (senate codes starting with
KSBR) and Karlovarský (senate codes starting with KSPL). Support corresponds
to the number of transactions.

LHS RHS Support Confidence Lift
pt N, sen KSBR-24, y 2009 admin Mgr. Vladimı́ra Zukalová 9 0.257 165.323
pt N, sen KSBR-24, y 2013 admin Mgr. Tomáš Gartš́ık 11 0.066 4.361
pt N, sen KSPL-27, y 2014 admin CITY TOWER, v.o.s. 11 0.080 3.266
pt N, sen KSPL-27, y 2014 admin admin Ing. Petr Bendl 12 0.087 3.186

Table 6.3: Examples of association rules of the form creditor, person type, senate,
year ⇒ creditor found for the regions Jihomoravský (senate codes starting with
KSBR) and Karlovarský (senate codes starting with KSPL). Support corresponds
to the number of transactions.

LHS RHS Support Confidence Lift
cred VZP, pt L, sen KSBR-24, y 2011 cred čssz 10 0.714 40.067
cred VZP, pt L, sen KSBR-40, y 2012 cred čssz 13 0.692 38.834
cred VZP, pt L, sen KSBR-24, y 2012 cred čssz 9 0.619 34.725
cred bohemiafaktoring, pt N, sen KSPL-65,
y 2014

cred intrumjustitia 11 0.550 22.535

cred gemoneybank, pt N, sen KSPL-65,
y 2014

cred intrumjustitia 15 0.172 7.064

cred providentfinancial, pt N, sen KSPL-29,
y 2013

cred doorfinancial 10 0.179 6.097

cred providentfinancial, pt N, sen KSPL-27,
y 2014

cred doorfinancial 10 0.175 5.990

6.2.3 Summary

In this experiment, we showed that the insolvency network is very dynamic
in nature and undergoes significant change over time. This evolution can be
effectively captured by analyzing the importance of individual nodes at different
time frames. We have shown that the set of most influential nodes in the network
changes as existing players become stagnant and new players enter insolvencies.
Using the HITS algorithm, we could model nodes with different roles. Some
nodes naturally became authorities, i.e., nodes with mostly incoming edges, such
as creditors, and others became hubs, i.e., mainly nodes with outgoing edges, such
as administrators or senates. We also determined that there are no significant
differences between the Czech Republic’s region regarding the evolution of their
respective insolvency networks and that studying the entire insolvency network
as a whole is appropriate.

In the second part of the experiments, we used rule mining to find associations
that would capture the co-occurrence of subjects in the IPs. We found several

105



strong associations between certain senates and administrators and also associ-
ations among creditors who participate in the same IPs. The rules also showed
that these associations change over time. As a result, association rule mining in
the context of the insolvency network has proved applicable for link prediction.

6.3 Experiment 3: Understanding where debt
originates

In the experiments so far, we focused solely on the nodes in the insolvency
network and the relationships between them, i.e. purely structural information.
The only information beyond the structure we used in the experiments was the
time information about when individual relationships in the network were formed.
However, as described in Section 4.3, a large amount of additional information
about individual nodes or relationships is available in the ARs, and some of this
data is already included in the CID. We will use this additional data to enrich
our analysis and gain further insights into the process of IPs. In this experiment,
we wanted to test if we could use the debt origins (see Section 4.3.6) from ARs
to segment receivables based on the nature of their debt. Since debt origins only
come in the form of natural text, we used basic NLP methods in combination
with unsupervised learning to cluster the receivables based on their nature.

In this experiment, we will focus on answering the following questions:

1. Can unstructured data from documents be used to enrich the insolvency
network and gain additional insights into IPs?

2. Can we deduce the circumstances that cause indebtedness, and how much
does its overall structure vary across the Czech society?

6.3.1 Dataset construction

This experiment focused on the 1,200,000 ARs from the CID that were pub-
lished in the IR between 2008 and 2016. However, given the nature of the analysis
performed in this section, it was intractable for us to consider all ARs. As a re-
sult, we randomly selected 100,000 ARs with successfully extracted debt origins,
representing approximately 8.3% of all ARs. The sampling process for selecting
the ARs included stratification over the years the ARs were submitted and also
over different regions, they were submitted. Thus the results obtained in this
section are representative of the entire population o ARs.

6.3.2 Results

The debt origin is a unique text field that loosely describes the reason for
the claimed receivable. For this experiment, we first transformed the extracted
debt origin texts to TF-IDF vectors of size 5,000. Then, we used the vectors to
train a SOFM [129] with 900 neurons organized into a 30 × 30 grid. Next, we

106



grouped the found weight vectors based on their similarities in possible reasons for
debt. Finally, we estimated the appropriate number of these higher-level groups
as the (local) maximum found by both the Dunn method [130] and the Silhouette
coefficient [131], see Figure 6.4. As the (global) maximum equal to 2 tends to
group distinct reasons for debt into larger clusters, the next viable option was
15, which we selected. The weights of SOFM neurons were thus grouped into
15 clusters employing Agglomerative Clustering [132]. We show the visualized
SOFM map, including clustering, in Figure 6.5.

Figure 6.4: Evaluation of the (normalized) Dunn and Silhouette indicators. We
set the appropriate number of clusters to 15, where both indicators reach a local
maximum.

To interpret the revealed indebtedness structure, we selected a small set of
representative keywords using the χ2-statistics over all of the considered n-grams
that were assigned to each cluster. Based on the results, we could also label
individual clusters by the typical debt origin they represent. We show the seven
most relevant clusters in Figure 6.6, including their absolute and relative size,
assigned semantics, top creditors involved, representative keywords, and a brief
description of the cluster (prototype).

The largest Cluster 3, which included 50% of all ARs, is characterized by
credit card debts and loans. The ARs in this cluster were filed by various cred-
itors, mainly financial institutions. The remaining 14 clusters are smaller and
correspond to rather specific reasons for debt. For instance, Cluster 4 contains
outstanding phone bills for T-Mobile CR. Although T-Mobile CR is the biggest
operator and serves about 60% of the Czech population, these ARs come from the
country’s Eastern regions. Cluster 5 includes both outstanding electricity bills
and seizures from western regions of the country. Typical creditors for these ARs
are companies Bohemia Faktoring and CEZ Prodej. The debtors from Cluster
5 tend to suffer under a heavier load of ARs than is typical for other clusters.
ARs grouped in Cluster 8 are specific and represent outstanding health insurance
bills, mainly from two northwestern regions with high unemployment rates.

6.3.3 Summary

In this experiment, we showed that unstructured data (debt origins) obtained
from documents could be used to deeper our understanding of the insolvency
process in the CR. Furthermore, the methodology developed in this experiment
allowed us to cluster ARs effectively based on the nature of the debt they rep-
resented. We could even assign meaningful semantic descriptions to individual
clusters based on the prototype ARs we found and their most typical keywords.

107



Figure 6.5: The SOFM map trained on debt origins and the 15 clusters obtained
by using Agglomerative Clustering. The size of the circles reflects the number of
ARs assigned to the given neuron.

The results confirmed that the indebtedness structure varies across the country
and may include region-specific reasons for debt. Namely, we showed that the
most significant chunk of ARs (50%) originated from financial products provided
by banks and nonbanking lenders. However, we also found specific types of debts
like phone bills or health insurance bills specific to certain regions.

Quite naturally, the information on the amount of the claimed debt would add
a lot to the analysis of the underlying social structure of debtors. Therefore,
analyzing the debt amounts will be the main focus of the experiment in the
following section.

6.4 Experiment 4: Understanding the value of
claimed debt

This experiment will continue exploring how additional data extracted from
documents can be used to provide us with more insights into the process of IPs in
the CR. In order to identify the main patterns of indebtedness across the Czech
society, we will further aim at grouping together debtors who have similar cred-
itors and also owe a similar amount of debt. For this purpose, we will use the
claimed debt, i.e., receivable values extracted for ARs (see Section 4.3.5). We
expect that the extracted value of the claimed debt will help us find meaningful
clusters of debtors with clear semantic interpretations.

108



Figure 6.6: An overview of the clustering results, including the cluster identifiers
and their brief (prototype) description by a set of keywords. The maps in (a)
illustrate the distribution of cluster members over the country. Furthermore, in
(b), we show the percentage of debtors with the corresponding number of debt
obligations (or ARs) and the main creditors involved for each cluster.

For this experiment, we will use both structured data obtained from the IR and
the extracted receivable values. In addition, we will be interested in answering
the following questions:

1. How much money is claimed across the Czech society?

2. What amount of debt is usually claimed by one AR?

3. How much money and to whom do Czech debtors owe?

109



6.4.1 Dataset construction

To begin this analysis, we targeted all of the 1.5 million ARs in the CID that
were published between 2008 and 2017. However, for this experiment, we also re-
quired complete information about which creditor submitted the given AR, which
became available only in late 2012. Therefore, we decided to only focus on the
top 18 creditors whose ARs we identified by creating a custom creditor classi-
fier in Section 4.3.4. In the considered timeframe, these 18 creditors submitted
approximately 300,610 ARs, from which we managed to extract the receivable
value in 243,436 cases. Even though this subset only represents approximately
16% out of the total 1.5 million ARs, it provides us with complete information
on receivable activities by the top 18 creditors between 2008 and 2017, which will
be sufficient for this experiment.

6.4.2 Results

Total value of the claimed debt

The estimated debt value claimed against natural persons by the 18 largest
creditors totals 28,622,258,855 CZK (USD 1,168,552,375). However, we deter-
mined the above amount based on 237,783 ARs out of the total 1.5 million ARs
submitted in the considered timeframe. The overall debt value claimed across the
Czech society is thus even larger. For the five biggest creditors, missing receivable
values (extraction failure) amount to more than 5 billion CZK (see the estimated
errors in Table 6.4). We estimated this error based on each creditor’s average
receivable value, which we then multiplied by the number of receivables for which
the extraction status was not OK (see Section 4.3.5).

From Table 6.4, we can see that the biggest creditor in terms of the claimed
debt against natural persons is Česká spořitelna, Komerčńı banka comes in as the
second, and GE Money Bank as the close third. This finding was quite surprising
at the time because, in Experiment 1, we showed that GE Money Bank was the
most frequent creditor in terms of the number of debtors by far. However, its
role has changed when we also consider the value of its receivables.

Similarly, when we switched our focus to debt claimed against company debtors
by the top 18 creditors, we found 5,653 ARs with an estimated overall debt size
of 9,705,055,947 CZK (USD 396,124,726). In this case, the missing receivable
values accounted for 5,356,792,701 CZK in estimated error.

Clustering of insolvencies

For the analysis performed in this section, we used the same data extracted
from 243,436 ARs submitted by the 18 most frequent creditors (with extraction
status OK), i.e., 237 783 ARs for natural persons and 5,653 ARs for companies.
We show the histogram of the values from these receivables in Figure 6.7a. The
spike on the left-hand side of the graph indicates that many ARs claim less than
1,000 CZK, i.e., they represent just minor debts.

110



Table 6.4: The estimated amount of debt claimed by the five biggest creditors
against natural persons.

Creditor Claimed Debt Estimated Error
Česká spořitelna 8,489.75 mil. CZK 1,815.81 mil. CZK
Komerčńı banka 4,006.79 mil. CZK 1,286.55 mil. CZK
GE Money Bank 3,457.88 mil. CZK 675.76 mil. CZK
Profi Credit 2,320.74 mil. CZK 986.45 mil. CZK
Raiffeisen Bank 2,142.93 mil. CZK 352.81 mil. CZK

The number of ARs decreases naturally with the increasing amount of the
claimed debt. The histogram of the number of ARs per debtor, on the other
hand, illustrates that most debtors have already accumulated several sources for
debt (ARs), see Figure 6.7b.

(a) Receivables’ values histogram.

(b) Histogram of the numbers of receivables per debtor.

Figure 6.7: Summary statistics of the considered 243,436 ARs.

To uncover the structure underlying the debts, we first grouped the debtors
according to their creditors and the amount of debt they claimed. Before the
actual clustering, we preprocessed the data related to the claimed debt as follows:

1. we aggregated the receivables from the same insolvency,

2. we grouped the overall claimed debt for each insolvency into nine intervals
based on the following boundary values: 10,000; 20,000; 50,000; 100,000;
200,000; 500,000; 1,000,000; 5,000,000; and 10,000,000.

Afterward, we transformed the above groups into feature vectors for each
debtor/insolvency by one hot encoding, i.e., we indicated the respective debtor’s
total debt amount by setting the feature corresponding to the given interval to

111



1, and setting the remaining features to 0. Insolvencies with an overall claimed
debt larger than 10,000,000 were removed as outliers. Further, we extended the
set of features by including one feature for each of the 18 creditors considered
in the dataset. We set these features to the amounts claimed by the creditors
against the given debtor and then normalized them, to sum up to 1. Overall, the
new dataset covered 93 626 insolvencies, each characterized by 27 features.

Figure 6.8: Cluster validity evaluation using the Dunn index: the appropriate
number of clusters was set to 16 where the Dunn index reaches its maximum.

On this new dataset, we trained a self-organizing feature map (SOFM) with
15×15 neurons. Already within the trained SOFM, we noticed a fine-grained
structure with several well-separated groups of insolvencies. To make these groups
explicit, we further clustered the SOFM map using agglomerative clustering to
make the semantic assignment to individual clusters easier. The cluster semantics
was crucial for interpreting the uncovered debt structure. We estimated the
appropriate number of clusters as the maximum (16) of the Dunn index, see
Figure 6.8. We show the resulting SOFM with the labeled clusters in Figure 6.9.

The analysis of the individual clusters revealed several intriguing relationships.
Figure 6.10, for example, depicts Cluster 2 of medium-sized debtors with an over-
all debt ranging between 100,000 CZK and 200,000 CZK. Based on the creditor
frequency histogram shown in Figure 6.10a, these debts mainly include receivables
from banks and non-bank lending companies. To investigate this observation fur-
ther, we collected the total debts claimed by these two groups of creditors in the
individual insolvencies from Cluster 2, normalized the values to sum up to 1, and
visualized the result using a scatter plot. We show the scatter plot in Figure
6.10b. We can see that the debtors from Cluster 2 tend to owe money to both
banks and non-bank lending companies and often to no one else. This picture
might thus indicate the beginning of a debt spiral when the debtor first borrows
money from a bank and then tries to compensate for his inability to repay his
debt by borrowing money from less credible creditors.

Cluster 16, on the other hand, represents debtors with large overall debts
ranging from 1 to 2 million CZK. In this cluster, the receivables are claimed mainly
by the banks, see Figure 6.10a: Česká spořitelna, Raiffeisenbank, Komerčńı banka,
and GE Money Bank. The scatter plot from Figure 6.10c further shows that most
debt in this cluster originates from bank receivables, while at the same time, no
or just a small amount of debt is owed to non-bank lending companies.

Finally, we also found interesting age distribution patterns for different clus-
ters. Figure 6.11, e.g., illustrates that Cluster 3 contains younger debtors com-
pared to Cluster 2. Although the debtors from Cluster 3 bear the same overall

112



Figure 6.9: The trained SOFM map clustered by means of agglomerative clus-
tering. The size of the circles reflects the number of ARs assigned to the given
neuron.

debt as those from Cluster 2, most of the receivables are claimed by a single
creditor — Provident Financial. Younger people likely represent one of the main
target groups of Provident Financial. No other creditor from our dataset had
shown a similar tendency.

6.4.3 Summary

The values extracted from receivables in Section 4.3.5 allowed us to assess
the amount of debt claimed over the Czech society and the overall debt owed
to significant creditors. This analysis confirmed, e.g., that the most frequent
creditors and the creditors with the largest debt do not have to be the same
ones. The following clustering of individual insolvencies revealed various patterns
common for the indebtedness structure and evolution. We identified clusters of
debtors with different characteristics in both the size of their debt and the way
they accumulated debt, eventually leading to bankruptcy.

The knowledge of the claimed amount of debt also contributes to understand-
ing the role and mutual relationship of the individual subjects participating in
the IPs – the debtors, the creditors, the administrators, and the judicial senates.
As we have already shown in the previous experiments, all these subjects form
a complex social network of densely interconnected nodes. If we could enhance
this social network by the knowledge of the claimed debts, such a model would
offer a much clearer insight into the money flow within the network and the true
role of its prominent nodes.

113



(a) Histogram of creditors for clusters 2 and 16.

(b) Scatter plot for Cluster 2

(c) Scatter plot for Cluster 16

Figure 6.10: Characteristics of selected clusters obtained using Agglomerative
Clustering.

114



Figure 6.11: Age distribution comparison of Cluster 2 and 3.

6.5 Experiment 5: Assessing the future impact
of subjects involved in insolvencies

In the previous experiments, we first showed that the subjects participating
in IPs, such as debtors, creditors, and administrators, form a social network of
densely interconnected nodes that evolves significantly over time. Typically, we
studied the insolvency social network on a regional level. Then, we showed that
the primary data extracted from the IR could be significantly enriched by data
extracted from the documents, such as receivable values or debt origins. This
additional data can be used to enrich the insolvency social network in the form
of metadata attached to individual edges or nodes and provide a semantic layer
on top of the purely structural data we have used to construct the network so
far. In this experiment, we want to combine the approaches from the previous
experiments by studying the largest insolvency network yet (300 000 IPs from
all regions) and leveraging all the additional metadata that we already showed
provides crucial insights into the process of IPs.

The central goal of this experiment is to build a reliable model for assessing
the future impact of the subjects involved in IPs. Despite a large amount of social
network data available for experimenting, this task remains challenging because
data from real-life networks tend to be extremely skewed. Most of the subjects
(nodes) do not exhibit much influence over time, yet there are (relatively few)
players who significantly change their impact and affect others in the process.
Furthermore, these players and their essential role in the entire process are not
known in advance. Besides capturing the evolution trends, our goal was also to
keep the model simple and interpretable, i.e., we wanted to identify impactful
individuals and which inputs are essential for predicting future importance.

In the considered insolvency social network, we will once again model the
subjects involved in IPs as nodes and their mutual relationships as edges. We will
use artificial neural networks to capture the underlying evolution trends. Further,
we will use sensitivity analysis to identify the most significant input features and
omit the irrelevant ones to add to the final model’s explainability. The rest of
this section is organized as follows. We will first outline an original methodology
to assess the nodes’ impact in evolving social networks. Then, we will devote the
second part to the analysis of the obtained results and their discussion. Finally,
in the last section, we will summarize the achieved results.

115



6.5.1 Proposed methodology

In this section, we will outline a generic methodology for analyzing the evolu-
tion of individual nodes’ impact in a social network. This methodology addresses
various issues during the process, including data extraction from dynamic social
networks or the pitfalls of using machine learning techniques on network data
which are highly skewed terms of node degree distribution. In dynamic social
networks, typically, a small number of nodes develop a vast number of ties over
time, while most entities retain only a few of them. The entire methodology
consists of the following five stages:

1. Construct a relevant social network: this phase integrates data extraction
and preparation, network slicing for the considered time intervals, and sig-
nificance assessment for individual nodes.

2. Construct a dataset: includes data extraction and cleaning, followed by the
construction of other features.

3. Preprocess the dataset: consists of the dataset re-balancing, re-weighting,
and oversampling with jitter.

4. Build the model: comprises model selection and training, iterative model
pruning, re-training, and testing.

5. Evaluate: provides the evaluation of the obtained results and the interpre-
tation of the found knowledge.

Below, we discuss the individual stages in more detail and apply them to the
data from the CID.

Constructing a relevant social network

For this experiment, we used approx. 300,000 IPs from the CID commenced
between 2008 and 2019, i.e., we covered a 12-year history of the IR. This data
covers the IPs of about 188,000 individual debtors (a debtor can be involved in
multiple insolvencies) and 900 administrators appointed by the court. Further-
more, approximately 170,000 unique creditors participated in the selected set of
IPs. However, 118,000 (69%) creditors only occurred in a single IP. Since we
wanted to study how the importance of nodes (esp. creditors) evolves, these low-
frequency creditors were irrelevant for this experiment. For this reason, we only
included the 1,000 most frequent creditors in the final network. These creditors
occurred in at least 100 different IPs in the considered time period. Despite this
selection process, the resulting insolvency network still included the data of more
than 81% of all IPs commenced between 2008 and 2019, and it was the largest
social network we studied in this work yet.

Based on the extracted data, we built a social network that mimics the ex-
pected financial flow among IPs participants. The debtors transfer money to
the administrators managing their IPs through monthly installments or selling

116



their assets (e.g., a house). Afterward, the administrators distribute the collected
means to the creditors. In the constructed network, we included directed edges
between the respective debtors and their administrators and between the admin-
istrators and the involved creditors. We did not include any other edges in the
final network. Additionally, we associated temporal information with each edge
that reflects the period (start date and end date) when the particular relationship
(e.g., IP administration) occurred. Given the possibility of repeated IPs by a sin-
gle debtor, multiple edges between the same nodes, but in different time periods,
were allowed. The constructed network effectively formed a multigraph.

We used PageRank (PR) to capture the individual nodes’ significance. When
calculating the PR for a specific time frame, we considered only the subset of edges
relevant for the given period (we denote this step as slicing). After experimenting
with different time granularities, we used one slice of the original network for each
year between 2008 and 2019, i.e., 12 slices. Consequently, we also obtained 12
PR values for each node in the network. We employed the library GraphSlices
we developed earlier (see Section 5.3) to perform slicing and PR calculation.
We could load the entire multigraph representation of the explored network into
GraphSlices, use the time-related information associated with the edges to slice
the network dynamically with any given granularity and calculate PR scores in
parallel for each slice.

Constructing a dataset

We approach the evolution of the node’s impact as a regression task. Based
on the past significance of nodes, we want to estimate their future influence. In
principle, PR values reflect the network’s nodes’ importance (or prestige). The
PR values lie between 0 and 1, and for all nodes in the network, they sum up to 1.
Therefore, we can construct several training samples for each node using a rolling
window function. For a rolling window of size n, we use past n − 1 PR values
to predict the node’s n-th PR value. Given the 12-year history captured in our
dataset and yearly slicing, we can create 12–n + 1 samples for each node in the
network. This study considered rolling windows of sizes 3, 4, and 5 that produced
training sets of about 1.85M (million), 1.65M, and 1.47M samples, respectively.
We refer to them as Dataseti, with i indicating the window size.

As shown in Figure 6.12, the PR distributions in the generated datasets were
significantly skewed. Most PR values remained minimal in the studied insolvency
network of roughly 189,000 nodes. In particular, the debtor nodes did not have
any incoming edges, and the number of their connections did not change much
over time. Similarly, the impact of other nodes with fewer connections showed a
decreasing trend over time. On the other hand, the network grew significantly
year by year (see Figure 6.13), and a few nodes developed a PR several times
larger than the others (see Figure 6.12). Primarily, these nodes can reveal intrinsic
patterns crucial for the evolution of the network.

The steady nodes with PRs that remain small over time were irrelevant to the
prediction task and posed a potential problem for ML algorithms we wanted to
employ, e.g., those that utilize SGD. For this reason, we eliminated the steady
nodes from the considered dataset. In this step, we removed 99.75% of the least

117



Figure 6.12: PageRank distribution in the insolvency network across years.

Figure 6.13: Snapshots of the insolvency network in different years. The size of
the nodes correspond to their PageRank and different nodes are visualized as fol-
lows: debtors (red), creditors (green) and administrators (blue). For illustrative
purposes the role of the creditor Bohemia Faktoring (BF) is highlighted (orange)
in the first two snapshots.

relevant steady nodes, mostly debtors. As a result, the number of samples shrank
to 4,175 for Dataset3, 4,004 for Dataset4, and 3,887 for Dataset5. The final
dataset retained node samples for all 100 creditors included in the network and
about 600 administrators (out of the total 900 appointed by the court). Next, we
rescaled their PR feature values, x, into the (0,1) interval (6.1) and transformed
them using a sigmoid function (6.2):

rescale(x) = x−min(x)
max(x)−min(x) − 1 (6.1)

transform(x) = 1
1 + e−rescale(x) (6.2)

So far, the samples consisted of 2–4 features (depending on the chosen window
size) corresponding to the transformed historical PRs and their target value. We
have omitted the patterns generated by debtor nodes and smaller administrator
nodes behaving similarly. The rest of this section will focus on building a model
predicting the remaining nodes’ future development.

To facilitate the application of more complex models, like neural networks, we
have also constructed additional features beneficial for the node’s future impact
assessment. These features included the evolution trends, the ratio of shared
insolvency participants, and the debt origin. Various external factors, such as
economic growth, policy alteration, and amendments to the Insolvency Act, shape
the trends in the development of insolvencies. As these trends may vary for
different types of entities, such as administrators and creditors, we aggregated

118



yearly average PR statistics for each node type in the network. In addition, we
used the identical size of the rolling window and preprocessing steps (6.1, 6.2)
like the original PR data, which resulted in additional 2–4 features.

Shared insolvency participants In Experiment 2, we showed that the in-
fluence of nodes in the insolvency network could change considerably over time.
A significant development shift can also be noticed in Figure 6.13, just over five
years. Most observed creditors are financial institutions, such as banks, non-
banking lenders, or insurance companies. Naturally, they might form groups
providing similar financial products targeting similar customers. For creditors
from such groups, it becomes very likely to share their debtors. When predicting
future development for a given creditor, the information about shared debtors
with other creditors can be beneficial. This overlap also occurs (yet less fre-
quently) among administrators since multiple administrators can participate in
the same insolvencies, e.g., in the case of corporate IPs.

For constructing this feature set, we considered the 100 most frequent creditors
and 100 most frequent administrators and determined their ratios of mutually
shared debtors. The new features corresponded to the percentage of debtors
shared between entities ei and ej:

shared debtors(ei, ej) = |debtors(ei) ∩ debtors(ej)|
|debtors(ei) ∪ debtors(ej)|

∗ 100 (6.3)

We calculated the percentage of shared debtors separately for each year and
each pair of creditors and administrators, respectively. Then, using the same
rolling window function as before, we extended the data by additional 200–400
features depending on the window size.

Debt origin To further enrich the dataset, we wanted to include features that
would differentiate between different types of debt, e.g., loans, utility bills, and
others. We already showed in Experiment 3 that these categories could be ob-
tained by clustering the debt origins extracted from the individual ARs. There-
fore, we adopted a similar methodology for this experiment and applied it to
approx. 2.5M ARs related to the 300,000 IPs in consideration. We used the ob-
tained clusters to form logical categories to construct features that could capture
the node’s involvement with different types of debt.

Using the CID we obtained about 2M (80%) of debt origins from the overall
2.5M of ARs. Next, we removed all stop-words and unwanted numeric tokens,
such as company IDs or account numbers, and generated word-level n-grams
(n ∈ 1, 2, 3). Finally, we removed n-grams that occurred in more than 20% of
debt origins or less than 100. The remaining n-grams built a dictionary of size
42,078 we used to generate a TF-IDF weighted bag-of-n-grams representation of
all 2M debt origins. The following k-means clustering (k=15) revealed one large
cluster (Cluster 1) with most of the ARs (63.78%) and a smaller Cluster 13 that
contained 9.97% of ARs. The remaining clusters (including Cluster 12) were
much smaller and covered between 1% to 3% of all ARs.

119



Table 6.5: Most relevant clusters obtained by clustering the debt origins obtained
from approximately 2M of ARs.

Cluster 1 Cluster 12 Cluster 13
Top 5 n-grams contract; loan; credit;

contractual; provide
social; national;
social security;
employment; state
policy

distraint; court;
proceeding; costs;
distrainer

# receivables 1,594,165 58,283 249,195
% receivables 63.78% 2.33% 9.97%
Mean debt (USD) $12,164 $13,465 $2,462
Mean debt as % of
GDPPCa 52.7% 58.3% 10.7%

aGDP per Capita (GDDPC) of the Czech Republic was $23,101.778 in 2019, source: World
Bank (https://data.worldbank.org).

The most frequent n-grams associated with the respective clusters (see Table
6.5) show that Cluster 1 contained generic defaulted loans, including mortgages,
from various creditors. Cluster 13 instead consisted of the debts related to dis-
traint (foreclosure) and mainly distrainers’ fees. Cluster 12 represented debts
caused by failed social security payments from employers. We counted the inci-
dence frequency with the individual clusters for each creditor and administrator.
Then, we transformed the frequencies into incidence rates by normalizing them,
to sum up to 1. Using the same window function as before, we obtained 30 to 60
new features depending on the window size (15 for each year).

Preprocessing the dataset

Even after we removed the majority of steady debtor nodes from the considered
data, the remaining dataset was still skewed regarding the target variable. Only a
few sample nodes (of the order of tens) have retained a PR significantly larger than
all the other nodes. On the other hand, these nodes exhibited the most noticeable
changes over time. It was thus crucial to emphasize their role during training.
However, most training algorithms tend to optimize against the prevalent class
of available patterns, in our case, those nodes with smaller PRs. We employed a
re-weighting scheme to mitigate this effect and assigned a weight to each sample
in the dataset to emphasize rare patterns.

To each sample, we first assigned one of the three predefined categories (small,
medium, and large), which we determined equidistantly according to the observed
PR values. For instance, for the dataset generated using a rolling window of size
4, the maximum observed PR was 0.114, and the smallest was close to 0. Then,
we divided this range among the three categories as follows: small ∼ (0, 0.0038],
medium ∼ (0.0038, 0.0076], and large ∼ (0.0076, 0.0114]. For Dataset4, the cate-
gory small comprised 3,970 samples, the category medium 29, and the last (large)
5. Then, we determined the actual sample weights using the weight category
assigned to individual samples by employing the ”balanced” heuristic from [7],
accompanied by a log transform:

120



Weight(C) = log(1 + nsamples

ncategories ∗ countSamples(C)) (6.4)

Here, nsamples denotes the total number of samples present in the dataset,
ncategories is the number of distinct categories (3), and countSamples(C) counts
the number of samples in the dataset belonging to a specific category (C ∈
low, medium, large). The log transform prevents underrepresented categories
from obtaining weights that are too large. Because of too few samples from the
class medium (29) and large (5), we further increased their number by oversam-
pling with jitter. We generated two additional input patterns for each sample
node from the dataset by applying uniform random noise of size at most 3% of
the original value to each nonzero feature value.

Building the model

Changes that take place in the environment of insolvencies are rapid, non-
linear, and difficult to capture. However, they usually only affect a small number
of nodes simultaneously. For this reason, we chose a non-linear feed-forward
neural network architecture with one hidden layer to predict the future impact of
nodes (i.e., their PR). We have determined the number of neurons in the hidden
layer for the considered neural network (NN) through a meta-parameter search
using Hyperopt [133], see Table 6.6. First, we initialized the NN weights randomly
using the normal distribution and chose the mean squared error (MSE) with L2
regularization as the loss function. Then, we trained the NN using the SGD
algorithm implemented in TensorFlow [134]. Finally, we used the L2 regularized
linear regression (LR) as a reference model.

Table 6.6: Learning parameters determined by Hyperopt.

NN LR
# hidden neurons Learning Rate L2 reg. L2 reg.

Dataset3 25 0.929 4.579e-05 1.098
Dataset4 26 0.908 4.575e-05 1.101
Dataset5 23 1.087 5.663e-05 1.102

Both models allow for some introspection to explain the development patterns
encountered in the data. For LR, we can inspect the weights of the trained model
and see which feature contributes most to the prediction. In the case of the NN,
more complex methods, such as sensitivity analysis [135], are necessary. The mean
sensitivity computed for each feature over the training set can be used to iden-
tify input features irrelevant to prediction. The proposed methodology iteratively
prunes redundant inputs out of the network. After each pruning, the network has
to be retrained shortly to adjust for missing inputs, and the method recalculates
the model’s performance on the test set. A significant drop in the model’s accu-
racy would signal that we removed essential features from the model. Therefore,
in our case, we stopped pruning when the test set’s performance dropped more
than 5% compared to the original model before pruning.

121



Algorithm 2 NN pruning and sensitivity-based re-training.
1: Input
2: dataset split into train, test and validation parts, including category

small, medium, large for each sample.
3: max drop is the maximum error rate drop allowed during the pruning

procecure (in comparison to the orig. model), default=0.05
4: step size is the number of features pruned in each iteration, default=10

5: ▷ Initialize the neural network using meta-parameters from Hyperopt
6: model← init nn()

7: ▷ Calculate sample weights using sample categories
8: weightstrain ← compute sample weights(datatrain)
9: weightsvalid ← compute sample weights(datavalid)

10: ▷ Fit the base model using SGD and employ early stopping using the validation dataset
11: model.fit(datasettrain, datasetvalid, weightstrain, weightsvalid)

12: ▷ Calculate the Mean Squared Error of the base model using the test dataset
13: base error ←MSE(model, test)

14: ▷ Calculate the mean sensitivity of every feature across the training dataset and use it to
sort the features from the least to the most sensitive ones

15: featuresensitivities ← sorted(mean feature sensitivity(model, train)
16: modelpruned ← model.copy()

17: while True do
18: ▷ Take the step size least sensitive features and remove them from the input layer

of the NN (remaining weights stay the same) and the dataset
19: features to prune← feature sensitivities.pop(step size)
20: modeliter, datasest← prune(modelpruned, dataset)

21: ▷ Retrain the neural net using the same meta-parameters
22: modeliter.fit(datasettrain, datasetvalid, weightstrain, weightsvalid)

23: ▷ Re-evaluate the pruned model and if the error exceeds the maximum allowed limit,
stop pruning

24: current error = MSE(modeliter, test)
25: if current error > base error ∗ (1 + max drop) then
26: break
27: end if
28: model pruned← modeliter

29: end while

30: ▷ For each sample, calculate the mean sensitivity and use its squared root
as the sample weight

31: sens weightstrain ← sqrt(mean feature sensitivity(model, datasettrain)
32: sens weightsvalid ← sqrt(mean feature sensitivity(model, datasetvalid)

33: ▷ Re-train pruned model using sensitivity-based weights
34: modelsens ← modelpruned.copy()
35: modelsens.fit(datasettrain, datasetvalid, sens weightstrain, sens weightsvalid)

36: return modelsens

122



On the other hand, samples with a considerable mean sensitivity might cause
problems during prediction. A slight change in the input would cause a significant
difference in the output. For this reason, we focused more on samples with large
sensitivity during retraining. In our approach to retraining, we increased the
samples’ weights according to their sensitivity. In our case, the medium and large
categories belonged to the most affected ones. Hence, we calculated each sample’s
mean sensitivity first, aggregating over the features’ sensitivity coefficients. We
adopted a similar re-weighting scheme to calculate the sample’s actual weight as
in the previous section. However, this time we divided the range of sensitivity
values into five categories (instead of 3) and used the squared root transformation
instead of the logarithmic one. Algorithm 2 summarizes the heuristic approach
that we adopted for model training.

Evaluation

Hyperopt [133] framework helped us find the appropriate LR and NN parame-
ters utilizing the default Tree-structured Parzen Estimator [136] (TPE) algorithm
over 100 trials. The parameters we looked for comprised the number of neurons in
the hidden layer, the learning rate, and the L2 regularization parameter. We used
the scikit-learn [137] implementation of LR with an optimized L2 regularization
parameter to train the baseline model. We evaluated each test using stratified 5-
fold cross-validation (CV) with 80% training and 20% testing data. We used SGD
with early stopping (limited to 2,000 epochs) to train the NN and evaluated each
test with 5-fold stratified cross-validation (we used 60% of samples for training
and 20% for each testing and validation). Both the NN and LR used the sample
weights from Equation 6.4 during training. For the best hyper-parameters found,
the NN was allowed to use up to 100,000 epochs (SGD), followed by pruning and
sensitivity-based re-training according to Algorithm 2.

We repeated the experiments for three different datasets, with window sizes
3, 4, and 5. Table 6.6 presents the learning parameters obtained through the
hyper-parameter search; they were similar for all three datasets. Figure 6.14 and
Table 6.7 show that more expansive windows do not necessarily yield improved
results. The future impact of a node, thus, is most affected by its recent develop-
ment. We can observe a significant variance in the performance of LR across the
datasets. Although not statistically significant, the NN model promises better
overall performance with tighter confidence intervals. Consistently, we removed
between 84% and 92% of the original features, and the subsequent sensitivity-
based re-training further improved the network performance while performing
best on Dataset3. In both these aspects, NN utilizing L2 also outperforms train-
ing with dropout.

Table 6.7: 5-fold cross-validation results along with the 95% confidence intervals
for MSE performance.

# initial
features

LR MSE
(·10−5)

NNDropout

MSE (·10−5)
Pruned
features

NNL2
MSE (·10−5)

NNL2 P runed

MSE (·10−5)
Pruned
features

NNSensitivity

MSE (·10−5)
Dataset3 234 317 ± 206 701 ± 121 13% (30) 279 ± 108 262 ± 090 85% (198) 193 ± 072
Dataset4 351 466 ± 410 706 ±181 14% (48) 283 ± 135 270 ± 113 88% (310) 205 ± 096
Dataset5 468 591 ± 512 796 ±136 22% (102) 321 ± 150 295 ± 118 92% (428) 244 ± 107

123



Figure 6.14: 5-fold CV results along with the 95% confidence intervals.

6.5.2 Results

Figure 6.15 shows the top 12 remaining features in the pruned NN trained
for Dataset3. The essential characteristics reported here remained consistent
for the other datasets too. The results show that the most critical inputs to
predict subsequent development were the PageRanks from the previous two years.
Further essential inputs consisted of the shared nodes 13, 20, 6, and 7, referring
to the corresponding most frequent creditor (or administrator). In the same
order, these nodes were creditors AB 5 BV, Czech Social Security Administration
(CSSA), AB 4 BV, and Home Credit (HC).

Figure 6.15: The mean sensitivities of top 12 features remaining after pruning
one NN trained on Dataset3.

AB 5 BV, AB 4 BV, and Home Credit all belong to the same financial group
(PPF) known for frequent receivables ownership transfers among its entities.
This observation might explain the predictive power of particular nodes in the
network. For AB 4 BV and Home Credit, Figure 6.16 illustrates the performance
of the individual models. For AB 4 BV (left), the proposed model (depicted in
red) clearly outperforms the reference models and closely approaches the actual
PR development (shown in blue). For Home Credit (right), the standard NN
model (labeled by green) seems to match the performance of the proposed model;
however, the sensitivity-based network achieved a similar accuracy with just a
small fraction of inputs (15%). The proposed model also exploits information on
debt’s nature related to specific clusters like Cluster 1 and 13 (see Table 6.5).
Cluster 12 refers to CSSA already encompassed by shared node 20 (as CSSA is
the only receiver of social security payments in the Czech Republic). For this
reason, Cluster 12 does not appear among the essential features.

124



(a) AB 4 B.V. (b) Home Credit

Figure 6.16: Real PR development of nodes AB 4 BV and Home Credit compared
to the predictions made by individual models.

6.5.3 Summary

The social network we built in this experiment (and the prior ones) to cap-
ture the involved subjects’ mutual relationships manifests several phenomena al-
ready known in dynamic social networks, such as densification. However, we still
struggled to reveal the real relationship explaining the particular subjects’ actual
impact in the evolving system. To find such a relationship, we have proposed a
general methodology that employs a relatively simple neural network as a viable
alternative. Another option would be to consider, e.g., more recent but complex
and computationally intensive deep learning approaches [138], [139]. The data
analysis indicates that the actual influence (measured in the form of a PageRank)
of the respective subjects (nodes) does not depend only on their previous values
but also on other domain-specific features, such as the nature of the creditors and
the type of debt. The main contribution of this experiment thus consists in:

1. Proposing a methodology that allows efficient analysis of influence evolution
in social networks. An essential part of the developed approach represents
a robust model of an artificial neural network. The found model succeeded
in capturing the nodes’/actors’ behavior and outperformed linear regression
used for reference. The methodology also addresses skewed data with non-
balanced data class distribution.

2. Identifying input pattern features that are crucial for an accurate model of
social network evolution. We have used the notion of sensitivity to assess
how much would (even slightly) changed in input affect the neural network’s
output. High sensitivity values indicate an inclination to swift changes
in output values for even mildly altered inputs. Input features with low
sensitivity can be, on the other hand, considered irrelevant, and we can
prune them from the network. The remaining network benefits from short
re-training afterward.

3. The evaluation of the developed approach on a real-life dataset extracted
from the Czech Insolvency Register. The obtained results show the impor-
tance of both previous PageRank values and other characteristics describing
the type of debt the considered subjects (creditors or administrators) share
in common. In this context, the overlap appears to play a more significant
role than the actual debt type.

125



Conclusion
In this thesis, we employed social network analysis (SNA) to comprehend the

current structure of indebtedness in Czech society. We first designed and imple-
mented a data processing pipeline capable of scraping, processing, and storing
nearly all structured data from the IR (we omitted primarily sensitive data such
as birth certificate numbers and dates of birth). Recognizing the significance of
the 3.5 million applications of receivables (ARs) among all the 20 million docu-
ments submitted to the Insolvency Register (IR), we devised a custom document
extraction technology named IRES. The primary purpose of IRES was to extract
crucial details about the debt from the ARs, such as the debt value, its reason,
and initial default dates. As a result, we prepared one of the most extensive
insolvency-related datasets in the world (to our knowledge) named the Czech in-
solvency dataset (CID). The CID covers over 370,000 insolvency cases initiated
between January 1, 2008, and December 31, 2022.

To further facilitate the experiments performed as a part of this thesis, we
developed a new network processing framework named GraphSlices. This frame-
work, implemented in Scala, addresses some of the shortcomings of existing frame-
works (listed in Chapter 5) and enables the effective analysis of social networks
represented by multigraphs. GraphSlices incorporates parallel implementations
of key algorithms used in this thesis, namely PageRank and HITS, and other
algorithms for graph structure analysis and clustering.

Utilizing the CID, we constructed an unweighted static social network that
modeled the interactions among the subjects involved in insolvencies, including
debtors, creditors, insolvency administrators, and insolvency courts (insolvency
actors). Even with this simple network, we were able to draw novel insights into
the structure of indebtedness in the Czech Republic. Notably, the static insol-
vency network demonstrated high density and revealed a small number of highly
influential nodes (creditors) consistently participating in the same insolvency pro-
ceedings. We further confirmed this finding by applying a community detection
algorithm to the static insolvency network, uncovering two distinct groups of
creditors with diverse characteristics. Financial institutions constituted the first
group, while nonfinancial creditors, such as phone providers, formed the second
major group.

Subsequently, we showed that insolvency-related data can also be effectively
modeled as a dynamic social network. This was achieved by enriching the static
insolvency network with edge timestamps, indicating the occurrence of edges
(or relationships) in the network. Utilizing this enriched insolvency network, we
analyzed the network’s structural evolution over time, assessing the importance of
nodes in various time snapshots. Our findings revealed significant changes in the
insolvency network over time, indicating a highly dynamic nature. The set of most
influential nodes exhibited notable changes, with established actors becoming
stagnant and new participants emerging in the IR. In insolvency proceedings,
rule mining can be applied to underlying network data to predict future edge
occurrences, allowing us to capture associations among insolvency actors in the
form of rules.

126



Next, we utilized unstructured data extracted from ARs, specifically the tex-
tual description of the reasons for debt, to employ clustering to categorize debtors
into different groups based on the nature of their debt. Moreover, we identified
the most typical keywords for each cluster to assign meaningful semantic de-
scriptions to the categories of debtors. Our findings revealed that over 50% of
ARs in insolvencies originated from financial products provided by banks and
non-banking lenders.

Then, we utilized the debt amount, also extracted from ARs, to quantify the
money claimed across Czech society. The estimated debt value claimed against
individuals only by the 18 largest creditors exceeded 28 billion CZK (1.1 billion
USD). Leveraging the debt amount of individual claims, we estimated the extent
of individuals’ indebtedness to different creditors. This analysis unveiled that
the most frequent creditors and those with the largest amount of debt did not
necessarily align. For instance, the largest creditor in terms of the number of
ARs was GE Money Bank (over 60,000), but in terms of the total debt claimed
against natural persons, it was Česká spořitelna (8.5 billion CZK).

The subsequent clustering of individual insolvencies revealed groups of debtors
with different characteristics, encompassing variations in the size of their debt and
how it was accumulated. For example, one of the identified clusters contained
medium-sized debtors with an overall debt ranging between 100,000 CZK and
200,000 CZK, and these debts originated mainly from consumer loans provided
by non-bank lenders. Another cluster represented debtors with large overall debts
ranging from 1 to 2 million CZK, mainly constituted by mortgages from the
largest banks in the Czech Republic, such as Česká spořitelna, Raiffeisenbank,
and Komerčńı banka.

Finally, we proposed a methodology based on neural networks to assess the
insolvency network’s future development by predicting the significance of sub-
jects involved in insolvency proceedings measured as PageRank. To construct
the prediction model, we developed a methodology that addressed the primary
challenges associated with using predictive models, specifically neural networks,
on social network data. These challenges encompassed handling extreme imbal-
ance present in the training data, as the network typically only contains a very
small number of highly impactful nodes. Our methodology employed a feed-
forward neural network architecture, and we utilized sensitivity analysis to inter-
pret the final model, identifying key variables influencing the future development
in the network.

Our findings indicated that the current influence of nodes, measured as PageR-
ank, depends not only on previous influence (i.e., previous PageRank values) but
also on other domain-specific features, such as the nature of creditors and the
type of debt. This underscores the significance of incorporating all three facets
present in the insolvency data: the structure of the relationship, the timestamp
of the occurrence of edges, and additional metadata about the nodes/edges. Our
approach results in more robust and accurate models for predicting future devel-
opment in the insolvency network.

127



Thus, by applying SNA to insolvency-related data we were able to:

1. Effectively model the insolvency process using a static social
network approach.

2. Effectively model the insolvency process using a dynamic social
network approach.

3. Gain additional insights into the insolvency process by enriching the insol-
vency network with additional metadata extracted from the IR, such as the
size of the debt and its nature.

4. Incorporate all three facets of insolvency data, namely, the structure of
relationships, the timestamps marking the occurrence of relationships, and
domain-specific metadata to build a superior model for predicting future
development in the insolvency network.

Future work

While our research has yielded valuable insights into insolvency proceedings,
several directions for future exploration and development emerged. We propose
three potential directions to enhance the potential of this methodology further.

One of the primary limitations we encountered in this study was the restricted
scope of data available in the Insolvency Register, which primarily encompasses
information regarding insolvency proceedings. Data such as financial statements,
which are publicly accessible through the Company Register of the Czech Re-
public and credit risk databases, could significantly enrich our understanding of
nodes’ historical development prior to the bankruptcy and their overall finan-
cial health. This additional data could lead to even more accurate models for
predicting future development in the insolvency process.

In recent years, there has been a notable shift towards applying deep learning
techniques, particularly graph neural networks, to analyze and extract informa-
tion from graph-structured data. Graph neural networks [140] have demonstrated
remarkable progress in their capabilities and expressive powers. Future research
in this domain can explore integrating advanced graph neural network models
into our methodology and using them to discover more complex patterns.

Beyond the area of insolvency analysis, the methodologies and insights devel-
oped in this research have the potential to find practical applications in vari-
ous other domains. Future research can explore how similar approaches can be
adapted to analyze social networks in other contexts, such as corporate mergers
and acquisitions or supply chain management.

128



Bibliography
[1] Charu C. Aggarwal and Philip S. Yu. Online analysis of community evo-

lution in data streams. In Proceedings of the 2005 SIAM International
Conference on Data Mining (SDM), pages 56–67, 2005.

[2] Brian W. Kernighan and Shen Lin. An efficient heuristic procedure for
partitioning graphs. The Bell System Technical Journal, 49(2):291–307,
1970.

[3] Mark E. J. Newman and Michelle Girvan. Finding and evaluating commu-
nity structure in networks. Physical review. E, Statistical, nonlinear, and
soft matter physics, 69:026113, 2004.

[4] Stijn van Dongen. Graph Clustering by Flow Simulation. PhD thesis, Uni-
versity of Utrecht, 2000.

[5] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of in-
fluence through a social network. In Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, page
137–146, 2003.

[6] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: Bringing order to the web. In Proceedings of the
7th International World Wide Web Conference, pages 161–172, 1998.

[7] David Liben-Nowell and Jon Kleinberg. The link prediction problem for
social networks. In Proceedings of the Twelfth International Conference on
Information and Knowledge Management, CIKM ’03, page 556–559, 2003.

[8] Yang Zhou, Hong Cheng, and Jeffrey X. Yu. Graph clustering based on
structural/attribute similarities. Proc. VLDB Endow., 2(1):718–729, 2009.

[9] Lisa Getoor, Nir Friedman, Daphne Koller, and Benjamin Taskar. Learning
probabilistic models of link structure. J. Mach. Learn. Res., 3:679–707,
2003.

[10] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ’small-
world’ networks. Nature, 393(6684):440–442, 1998.

[11] Albert-László Barabási and Réka Albert. Emergence of scaling in random
networks. Science, 286(5439):509–512, 1999.

[12] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law
relationships of the internet topology. In Proceedings of the conference on
Applications, technologies, architectures, and protocols for computer com-
munication, SIGCOMM ’99, pages 251–262, 1999.

[13] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time:
Densification laws, shrinking diameters and possible explanations. In
Proceedings of the Eleventh ACM SIGKDD International Conference on
Knowledge Discovery in Data Mining, KDD ’05, page 177–187, 2005.

129



[14] Jon M. Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Ra-
jagopalan, and Andrew S. Tomkins. The web as a graph: Measurements,
models, and methods. In Computing and Combinatorics: 5th Annual In-
ternational Conference, pages 1–17, 1999.

[15] Mark E. J. Newman. Power laws, pareto distributions and zipf’s law. Con-
temporary Physics, 46(5):323–351, 2005.

[16] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Diameter of the
world-wide web. Nature, 401:130–131, 1999.

[17] Jure Leskovec and Eric Horvitz. Planetary-scale views on a large instant-
messaging network. In Proceedings of the 17th International Conference on
World Wide Web, WWW ’08, page 915–924, 2008.

[18] Gary W. Flake, Steve Lawrence, C. Lee Giles, and Frans Coetzee. Self-
organization and identification of web communities. Computer, 35(3):66–71,
2002.

[19] Michelle Girvan and Mark E. J. Newman. Community structure in social
and biological networks. Proceedings of the National Academy of Sciences,
99(12):7821–7826, 2002.

[20] Alexander J. Smola and Risi Kondor. Kernels and regularization on graphs.
In Computational Learning Theory and Kernel Machines, 16th Annual Con-
ference on Computational Learning Theory and 7th Kernel Workshop, vol-
ume 2777 of Lecture Notes in Computer Science, pages 144–158, 2003.

[21] David Aldous and James A. Fill. Reversible Markov Chains and Random
Walks on Graphs. 2002.

[22] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
web search engine. Comput. Netw. ISDN Syst., 30(1-7):107–117, 1998.

[23] Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Manning, and
Gene H. Golub. Extrapolation methods for accelerating pagerank compu-
tations. In WWW ’03: Proceedings of the 12th international conference on
World Wide Web, pages 261–270, 2003.

[24] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J.
ACM, 46(5):604–632, 1999.

[25] Glen Jeh and Jennifer Widom. Simrank: A measure of structural-context
similarity. In Proceedings of the Eighth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’02, page 538–543,
2002.

[26] Leo Katz. A new status index derived from sociometric analysis. Psychome-
trika, 18(1):39–43, 1953.

[27] Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social
Networks, 25:211–230(20), 2003.

130



[28] John C. Gower. A general coefficient of similarity and some of its properties.
Biometrics, 27(4):857–871, 1971.

[29] Hawoong Jeong, Sean Mason, Albert-Laszlo Barabási, and Zoltan N. Oltvai.
Lethality and centrality in protein networks. Nature, 411(6833):41–42, 2001.

[30] Janos Podani, Zoltan Oltvai, Hawoong Jeong, Albert-Laszlo Barabasi, and
Eörs Szathmáry. Comparable system-level organization of archaea and eu-
karyotes. Nature genetics, 29:54–6, 2001.

[31] Jordi Bascompte, Pedro Jordano, Carlos Melian, and Jens Olesen. The
nested assembly of plant-animal mutualistic networks. Proceedings of the
National Academy of Sciences of the United States of America, 100:9383–7,
2003.

[32] Jennifer Dunne, Richard Williams, and Neo Martinez. Network structure
and biodiversity loss in food webs: Robustness increases with connectance.
Ecology Letters, 5:558 – 567, 2002.

[33] James Abello, Panos M. Pardalos, and Mauricio G. C. Resende. On max-
imum clique problems in very large graphs. In External Memory Algo-
rithms, volume 50 of DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science, pages 119–130, 1998.

[34] Mark E. J. Newman. Assortative mixing in networks. Physical Review
Letters, 89(20):208701, 2002.

[35] Ramon Ferrer i Cancho and Richard V. Solé. The small world of human
language. Proceedings of the Royal Society of London. Series B: Biological
Sciences, 268(1482):2261–2265, 2001.

[36] Noel M. Tichy, Michael L. Tushman, and Charles Fombrun. Social network
analysis for organizations. The Academy of Management Review, 4(4):507–
519, 1979.

[37] Einat Sprinzak, Shmuel Sattath, and Hanah Margalit. How reliable are ex-
perimental protein-protein interaction data? Journal of Molecular Biology,
327(5):919–923, 2003.

[38] U Kang, Charalampos E. Tsourakakis, Ana P. Appel, Christos Faloutsos,
and Jure Leskovec. Radius plots for mining tera-byte scale graphs: Algo-
rithms, patterns, and observations. In Proceedings of the SIAM Interna-
tional Conference on Data Mining, SDM, pages 548–558, 2010.

[39] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 22(8):888–905,
2000.

[40] Rangaramanujam Kannan, S. Santosh Vempala, and Adrian Veta. On
clusterings-good, bad and spectral. In FOCS ’00: Proceedings of the 41st
Annual Symposium on Foundations of Computer Science, page 367, 2000.

131



[41] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Görke, Martin Hoe-
fer, Zoran Nikoloski, and Dorothea Wagner. On finding graph clusterings
with maximum modularity. In Graph-Theoretic Concepts in Computer Sci-
ence, volume 4769 of Lecture Notes in Computer Science, pages 121–132.
2007.

[42] Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some sim-
plified np-complete graph problems. Theor. Comput. Sci., 1(3):237–267,
1976.

[43] Mark E. J. Newman. Fast algorithm for detecting community structure in
networks. Physical Review E, 69:066133, 2004.

[44] Aaron Clauset, Mark E. J. Newman, and Cristopher Moore. Finding com-
munity structure in very large networks. Physical review. E, Statistical,
nonlinear, and soft matter physics, 70:066111, 2004.

[45] Ulrike Luxburg. A tutorial on spectral clustering. Statistics and Computing,
17(4):395–416, 2007.

[46] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical
Journal, 23(98):298–305, 1973.

[47] Sylvain Brohée and Jacques van Helden. Evaluation of clustering algorithms
for protein-protein interaction networks. BMC Bioinform., 7:488, 2006.

[48] Venu Satuluri and Srinivasan Parthasarathy. Scalable graph clustering us-
ing stochastic flows: Applications to community discovery. In Proceedings of
the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’09, page 737–746, 2009.

[49] Venu Satuluri, Srinivasan Parthasarathy, and Duygu Ucar. Markov cluster-
ing of protein interaction networks with improved balance and scalability. In
Proceedings of the First ACM International Conference on Bioinformatics
and Computational Biology, pages 247–256, 2010.

[50] Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and Liadan
O’Callaghan. Clustering data streams: Theory and practice. IEEE Trans.
on Knowl. and Data Eng., 15(3):515–528, 2003.

[51] Olfa Nasraoui, Cesar Cardona Uribe, Carlos Rojas Coronel, and Fabio Gon-
zalez. Tecno-streams: Tracking evolving clusters in noisy data streams with
a scalable immune system learning model. In Proceedings of the Third IEEE
International Conference on Data Mining, ICDM ’03, page 235, 2003.

[52] Tanja Falkowski, Anja Barth, and Myra Spiliopoulou. Studying community
dynamics with an incremental graph mining algorithm. In Proceedings of
the 14th Americas Conference on Information Systems (AMCIS), page 29,
2008.

[53] T. Falkowski, J. Bartelheimer, and M. Spiliopoulou. Community dynamics
mining. In Proc. of 14th European Conference on Information Systems,
2006.

132



[54] Tanja Falkowski, Jörg Bartelheimer, and Myra Spiliopoulou. Mining and
visualizing the evolution of subgroups in social networks. In Web Intelli-
gence, pages 52–58, 2006.

[55] Myra Spiliopoulou, Irene Ntoutsi, Yannis Theodoridis, and Rene Schult.
Monic - modeling and monitoring cluster transitions. In Proc. of KDD’06,
pages 706–711, 2006.

[56] Jure Ferlez, Christos Faloutsos, Jure Leskovec, Dunja Mladenic, and Marko
Grobelnik. Monitoring network evolution using MDL. In Proceedings of
the 2008 IEEE 24th International Conference on Data Engineering, pages
1328–1330, 2008.

[57] Deepayan Chakrabarti, Ravi Kumar, and Andrew Tomkins. Evolutionary
clustering. In Proceedings of the 12th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD ’06, page 554–560,
2006.

[58] Purnamrita Sarkar and Andrew W. Moore. Dynamic social network analy-
sis using latent space models. In Advances in Neural Information Processing
Systems, pages 1145–1152, 2005.

[59] Yun Chi, Xiaodan Song, Dengyong Zhou, Koji Hino, and Belle L. Tseng.
Evolutionary spectral clustering by incorporating temporal smoothness. In
Knowledge Discovery and Data Mining, page 153–162, 2007.

[60] Ata Kaban and Mark Girolami. A dynamic probabilistic model to visualise
topic evolution in text streams. Journal of Intelligent Information Systems,
18(2/3):107–125, 2002.

[61] Satoshi Morinaga and Kenji Yamanishi. Tracking dynamics of topic trends
using a finite mixture model. In Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages
811–816, 2004.

[62] André Gohr, Alexander Hinneburg, Rene Schult, and Myra Spiliopoulou.
Topic evolution in a stream of documents. In Proceedings of the 2009 SIAM
International Conference on Data Mining, pages 859–872, 2009.

[63] Yu-Ru Lin, Yun Chi, Shenghuo Zhu, Hari Sundaram, and Belle L. Tseng.
Analyzing communities and their evolutions in dynamic social networks.
ACM Trans. Knowl. Discov. Data, 3(2), 2009.

[64] Hisashi Kashima and Naoki Abe. A parameterized probabilistic model of
network evolution for supervised link prediction. In Proceedings of the Sixth
International Conference on Data Mining, pages 340–349, 2006.

[65] Jérôme Kunegis and Andreas Lommatzsch. Learning spectral graph trans-
formations for link prediction. In Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning, ICML ’09, page 561–568, 2009.

133



[66] Chao Wang, Venu Satuluri, and Srinivasan Parthasarathy. Local probabilis-
tic models for link prediction. In Proceedings of the 7th IEEE International
Conference on Data Mining, pages 322–331, 2007.

[67] Aaron Clauset, Cristopher Moore, and Mark E. J. Newman. Hierarchical
structure and the prediction of missing links in networks. Nature, 453:98–
101, 2008.

[68] Sisay Fissaha Adafre and Maarten de Rijke. Discovering missing links in
wikipedia. In Proceedings of the 3rd international workshop on Link dis-
covery, LinkKDD ’05, pages 90–97, 2005.

[69] Jianhan Zhu, Jun Hong, and John G. Hughes. Using markov models for
web site link prediction. In Hypertext, pages 169–170, 2002.

[70] Zan Huang, Xin Li, and Hsinchun Chen. Link prediction approach to col-
laborative filtering. In JCDL ’05: Proceedings of the 5th ACM/IEEE-CS
joint conference on Digital libraries, pages 141–142, 2005.

[71] Valerio Freschi. A graph-based semi-supervised algorithm for protein func-
tion prediction from interaction maps. In LION, volume 5851 of Lecture
Notes in Computer Science, pages 249–258, 2009.

[72] Janardhan Rao Doppa, Jun Yu, Prasad Tadepalli, and Lise Getoor. Learn-
ing algorithms for link prediction based on chance constraints. In Machine
Learning and Knowledge Discovery in Databases, pages 344–360, 2010.

[73] Mohammad Al Hasan, Vineet Chaoji, Saeed Salem, and Mohammed Zaki.
Link prediction using supervised learning. In In Proc. of SDM 06 workshop
on Link Analysis, Counterterrorism and Security, 2006.

[74] Joshua O’Madadhain, Jon Hutchins, and Padhraic Smyth. Prediction and
ranking algorithms for event-based network data. SIGKDD Explor. Newsl.,
7(2):23–30, 2005.

[75] Matthew J. Rattigan and David D. Jensen. The case for anomalous link
discovery. SIGKDD Explorations, 7(2):41–47, 2005.

[76] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip
Kegelmeyer. Smote: Synthetic minority over-sampling technique. Journal
of Artificial Intelligence Research, 16:321–357, 2002.

[77] Seyda Ertekin, Jian Huang, and Lee Giles. Active learning for class imbal-
ance problem. In Proceedings of the 30th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages
823–824, 2007.

[78] Grigoris Karakoulas and John Shawe-Taylor. Optimizing classifiers for im-
balanced training sets. In Proceedings of the 11th International Conference
on Neural Information Processing Systems, page 253–259, 1998.

[79] Foster J. Provost and Tom Fawcett. Robust classification for imprecise
environments. Mach. Learn., 42(3):203–231, 2001.

134



[80] Chan-Yun Yang, Jr-Syu Yang, and Jian-Jun Wang. Margin calibration in
SVM class-imbalanced learning. Neurocomputing, 73(1-3):397–411, 2009.

[81] John C. Platt. Probabilistic outputs for support vector machines and com-
parisons to regularized likelihood methods. In Advances in Large Margin
Classifiers, pages 61–74, 1999.

[82] Nilotpal Chakravarti. Isotonic median regression: A linear programming
approach. Mathematics of Operations Research, 14(2):303–308, 1989.

[83] Gary M. Weiss. Mining with rarity: A unifying framework. SIGKDD
Explor. Newsl., 6(1):7–19, 2004.

[84] Gwangbum Pyun, Unil Yun, and Keun Ho Ryu. Efficient frequent pattern
mining based on linear prefix tree. Knowledge-Based Systems, 55:125–139,
2014.

[85] Joo-Chang Kim and Kyung-Yong Chung. Mining based time-series sleep-
ing pattern analysis for life big-data. Wireless Personal Communications,
105:475–489, 2018.

[86] Shashi Shekhar, Michael R. Evans, James M. Kang, and Pradeep Mohan.
Identifying patterns in spatial information: A survey of methods. Wiley In-
terdisciplinary Reviews: Data Mining and Knowledge Discovery, 1:193–214,
2011.

[87] Xifeng Yan and Jiawei Han. gSpan: graph-based substructure pattern
mining. In 2002 IEEE International Conference on Data Mining, pages
721–724, 2002.

[88] Diane J. Cook and Lawrence B. Holder. Graph-based data mining. IEEE
Intelligent Systems, 15(2):32–41, 2000.

[89] Mohammed J. Zaki. Efficiently mining frequent embedded unordered trees.
Fundam. Informaticae, 66:33–52, 2004.

[90] Karsten M. Borgwardt, Hans-Peter Kriegel, and Peter Wackersreuther. Pat-
tern mining in frequent dynamic subgraphs. Sixth International Conference
on Data Mining, pages 818–822, 2006.

[91] Abhijin Adiga, A. Vullikanti, and Dante Wiggins. Subgraph enumeration
in dynamic graphs. 2013 IEEE 13th International Conference on Data
Mining, pages 11–20, 2013.

[92] U. Redmond, M. Harrigan, and P. Cunningham. Identifying time-respecting
subgraphs in temporal networks. In In Proceedings of the 3rd International
Workshop on Mining Ubiquitous and Social Environments, 2012.

[93] Michele Berlingerio, Francesco Bonchi, Björn Bringmann, and Aristides
Gionis. Mining graph evolution rules. In Machine Learning and Knowledge
Discovery in Databases, pages 115–130, 2009.

135



[94] Cane Wing ki Leung, Ee-Peng Lim, D. Lo, and Jianshu Weng. Mining
interesting link formation rules in social networks. Proceedings of the 19th
ACM international conference on Information and knowledge management,
page 209–218, 2010.

[95] Wolters Kluwer. Insolvency Act. 2011.

[96] Marie Paseková. Personal bankruptcy and its social implications. Interna-
tional Advances in Economic Research, 19(3):319–320, 2013.

[97] Brian Suda. SOAP Web Services. 2003.

[98] Antonino Virgillito. Publish/Subscribe Communication Systems: from Mod-
els to Application. 2003.

[99] Henry S. Thompson et al. XML Schema Part1: Structures (Second Edi-
tion). 2004.

[100] W3C. XML Path Language (XPath) 2.0. https://www.w3.org/TR/
xpath20/, 2011. Accessed: 2023-12-12.

[101] Ray Smith. An overview of the Tesseract OCR engine. In Proceedings of
the Ninth International Conference on Document Analysis and Recognition
- Volume 02, ICDAR ’07, pages 629–633, 2007.

[102] Chirag Patel, Atul Patel, and Dharmendra Patel. Article: Optical character
recognition by open source OCR tool Tesseract: A case study. International
Journal of Computer Applications, 55(10):50–56, 2012.

[103] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Comput., 9(8):1735–1780, 1997.

[104] Ahmad P. Tafti, Ahmadreza Baghaie, Mehdi Assefi, Hamid R. Arabnia,
Zeyun Yu, and Peggy Peissig. OCR as a service: An experimental evalua-
tion of Google Docs OCR, Tesseract, ABBYY FineReader, and Transym.
In Advances in Visual Computing, pages 735–746, 2016.

[105] Wojciech Bieniecki, Szymon Grabowski, and Wojciech Rozenberg. Image
preprocessing for improving OCR accuracy. In 2007 International Con-
ference on Perspective Technologies and Methods in MEMS Design, pages
75–80, 2007.

[106] Matteo Brisinello, Ratko Grbić, Matija Pul, and Tihomir Anelić. Improving
optical character recognition performance for low quality images. In 2017
International Symposium ELMAR, pages 167–171, 2017.

[107] Michael Still. The Definitive Guide to ImageMagick (Definitive Guide).
2005.

[108] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer Vision in
C++ with the OpenCV Library. 2nd edition, 2013.

[109] Nobuyuki Otsu. A threshold selection method from gray-level histograms.
IEEE Transactions on Systems, Man, and Cybernetics, 9(1):62–66, 1979.

136

https://www.w3.org/TR/xpath20/
https://www.w3.org/TR/xpath20/


[110] Nahum Kiryati, Yonina Eldar, and Alfred Bruckstein. A probabilistic hough
transform. Pattern Recognition, 24(4):303 – 316, 1991.

[111] Olfa Nasraoui. Web data mining: Exploring hyperlinks, contents, and usage
data. SIGKDD Explor. Newsl., 10(2):23–25, 2008.

[112] Vladimir N. Vapnik. The nature of statistical learning theory. 1995.

[113] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning
machine: Theory and applications. Neurocomputing, 70(1):489–501, 2006.

[114] Sascha Schimke and Claus Vielhauer. Similarity searching for on-line hand-
written documents. Journal on Multimodal User Interfaces, 1:49–54, 2008.

[115] Gabor Csardi and Tamas Nepusz. The Igraph software package for complex
network research. InterJournal, Complex Systems, (5):1–9, 2005.

[116] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network
structure, dynamics, and function using NetworkX. In Proceedings of the
7th Python in Science Conference, pages 11 – 15, 2008.

[117] Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis
and graph-mining library. ACM Trans. Intell. Syst. Technol., 8(1), 2016.

[118] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehn-
ert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A system
for large-scale graph processing. In Proceedings of the 2010 ACM SIG-
MOD International Conference on Management of Data, SIGMOD ’10,
page 135–146, 2010.

[119] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos
Guestrin. Powergraph: Distributed graph-parallel computation on natu-
ral graphs. In Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI’12, page 17–30, 2012.

[120] Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, and Ion Stoica.
Graphx: a resilient distributed graph system on spark. In First Inter-
national Workshop on Graph Data Management Experiences and Systems,
pages 2–8, 2013.

[121] Vasiliki Kalavri, Vladimir Vlassov, and Seif Haridi. High-level program-
ming abstractions for distributed graph processing. IEEE Transactions on
Knowledge and Data Engineering, 30(2):305–324, 2018.

[122] Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou,
Vijayan Prabhakaran, Wenguang Chen, and Enhong Chen. Chronos: A
graph engine for temporal graph analysis. In Proceedings of the Ninth Eu-
ropean Conference on Computer Systems, EuroSys ’14, 2014.

[123] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng,
Ming Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. Ki-
neograph: Taking the pulse of a fast-changing and connected world. In
Proceedings of the 7th ACM European Conference on Computer Systems,
EuroSys ’12, page 85–98, 2012.

137



[124] Anand Padmanabha Iyer, Li Erran Li, Tathagata Das, and Ion Stoica.
Time-evolving graph processing at scale. In Proceedings of the Fourth Inter-
national Workshop on Graph Data Management Experiences and Systems,
GRADES ’16, 2016.

[125] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker,
and Ion Stoica. Spark: Cluster computing with working sets. In Proceed-
ings of the 2nd USENIX Conference on Hot Topics in Cloud Computing,
HotCloud’10, page 10, 2010.

[126] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: An
open source software for exploring and manipulating networks. Proceedings
of the International AAAI Conference on Web and Social Media, 3(1), 2009.

[127] M. E. J. Newman. Modularity and community structure in networks. Pro-
ceedings of the National Academy of Sciences, 103(23):8577–8582, 2006.

[128] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten. The WEKA data mining software: An
update. SIGKDD Explor. Newsl., 11(1):10–18, 2009.

[129] Teuvo Kohonen. Self-Organizing Maps. Springer Series in Information
Sciences. 2012.

[130] Joseph C. Dunn. Well-separated clusters and optimal fuzzy partitions.
Journal of Cybernetics, 4(1):95–104, 1974.

[131] Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis. Journal of Computational and Applied
Mathematics, 20:53–65, 1987.

[132] Juha Vesanto and Esa Alhoniemi. Clustering of the self-organizing map.
IEEE Transactions on Neural Networks, 11(3):586–600, 2000.

[133] James Bergstra, Daniel Yamins, and D. David Cox. Making a science of
model search: Hyperparameter optimization in hundreds of dimensions for
vision architectures. In Proceedings of the 30th International Conference
on International Conference on Machine Learning - Volume 28, ICML’13,
page 115–123, 2013.

[134] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael
Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore,
Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete War-
den, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system
for large-scale machine learning. In Proceedings of the 12th USENIX Con-
ference on Operating Systems Design and Implementation, OSDI’16, page
265–283, 2016.

[135] Jacek M. Zurada, Aleksander Malinowski, and Ian Cloete. Sensitivity anal-
ysis for minimization of input data dimension for feedforward neural net-
work. In Proceedings of IEEE International Symposium on Circuits and
Systems, pages 447–450, 1994.

138



[136] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algo-
rithms for hyper-parameter optimization. In Advances in Neural Informa-
tion Processing Systems, page 2546–2554, 2011.

[137] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer,
Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David
Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay.
Scikit-learn: Machine learning in python. Journal of Machine Learning Re-
search, 12(85):2825–2830, 2011.

[138] Hoon-Keng Poon, Wun-She Yap, Yee-Kai Tee, Wai-Kong Lee, and Bok-
Min Goi. Hierarchical gated recurrent neural network with adversarial and
virtual adversarial training on text classification. Neural Networks, 119:299–
312, 2019.

[139] Cosimo Ieracitano, Nadia Mammone, Amir Hussain, and Francesco C.
Morabito. A novel multi-modal machine learning based approach for au-
tomatic classification of EEG recordings in dementia. Neural Networks,
123:176–190, 2020.

[140] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE Transactions
on Neural Networks, 20(1):61–80, 2009.

139



List of Figures

2.1 Visualization of debtor-creditor interactions as a social network
constructed using data from the IR of the Czech Republic. The
colors represent different communities within the network obtained
by applying a network clustering algorithm (Section 2.4). . . . . . 11

3.1 Number of insolvencies commenced each year since the launch of
the IR in 2008 in blue and the corresponding volume of receivables
claimed2 by the creditors in the same year in orange. . . . . . . . 39

3.2 Yearly volume of receivables per creditor category. . . . . . . . . . 40
3.3 Insolvency Register detail page related to the insolvency proceed-

ing of the company Pilsen Steel s.r.o with the English translation
of the fields in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Insolvency states as defined by the Insolvency Act. . . . . . . . . 46
3.5 Number of newly commenced insolvency proceedings (individuals

only) per month in 2019. . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 One of the first applications of receivables ever published in the IR

in January 2008. The sensitive information about the debtor was
blacked out for privacy concerns. . . . . . . . . . . . . . . . . . . 50

3.7 Insolvency Register’s landing page with the search form. . . . . . 52

4.1 Entity-relationship (ER) model of the data extracted from the In-
solvency Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 The complete process of extracting data from the Insolvency Register. 59
4.3 OCR process: (a) original (slightly skewed) scanned document, (b)

pre-processed document, (c) text extracted from the original docu-
ment (a), and (d) text extracted from the pre-processed document
(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Three selected n-grams (n ranging from one to three) most corre-
lated with five selected creditors. . . . . . . . . . . . . . . . . . . 68

4.5 The total value of the applied claims (”Celková výše přihlášených
pohledávek (Kč)”, line 47) can be determined as the sum of un-
secured (”Celková výše nezajǐstěných pohledávek (Kč)”, line 48)
and secured (”Celková výše zajǐstěných pohledávek (Kc)”, 49) re-
ceivables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 The process of extracting receivable values. . . . . . . . . . . . . . 69

140



4.7 An example of a stated debt origin. Line 6 can be translated to
English as: ”Reason of origin: based on verbal orders, car repairs
were done, and a replacement vehicle was provided” and line 7 as
”Further circumstances: the invoice has been partially paid by the
amount of 26.450,- Kč”. . . . . . . . . . . . . . . . . . . . . . . . . 72

4.8 Age and gender distribution of debtors in the IR. . . . . . . . . . 74
4.9 Macro statistics across different regions in the Czech Republic: (a)

IP rates of natural persons, (b) IP rates of companies, (c) unem-
ployment rate. The population size of individual regions, the num-
ber of companies registered in each region and the unemployment
rates were obtained from the 2022 reports of the Czech Statistical
Office (source: https://www.czso.cz). . . . . . . . . . . . . . . . 75

4.10 The median total debt is calculated by first adding up the value
of receivables of individual IPs and then calculating the median
over all IPs commenced in the given year. We calculated the me-
dian total debt separately for natural persons and companies. To
show how the amendment Act 31/2019 Coll. on Discharge and its
application affected the median size of debt of natural persons we
also included more detailed view of 2019. . . . . . . . . . . . . . . 81

5.1 Unfolding of a dynamic social network into an expanded graph
consisting of 3 time slices t1, t2 and t3. A copy of each active
vertex and edge is created for each time slice. Additional meta
edges connect the copies of the same vertices across subsequent
time slices to support information flow both within the network
and across time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Architecture of GraphSlices. At the center lies the Graph inter-
face, responsible for all graph manipulation operations. The two
basic implementations this interface supports are the serial single-
threaded implementation and the parallel multi-threaded imple-
mentation. The rest of the code is organized into three modules:
Generators with various methods to construct synthetic graphs,
Algorithms that contain a suite of techniques implemented for so-
cial network analysis, and Builders that load the graphs to/from
memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1 Visualization of the insolvency network constructed from insolven-
cies in the Ústecky region commenced between 2008 and 2014. The
node size reflects the importance of individual nodes calculated us-
ing PageRank. The colors represent communities discovered by the
MOOM algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Authority scores of IP subjects from the Jihomoravský region be-
tween 2008 and in 2014. Creditors are marked blue, debtors green,
administrators red and senates purple. . . . . . . . . . . . . . . . 102

141

https://www.czso.cz


6.3 Importance evolution (authority scores, hub scores and normalized
degrees) for the union of the top individuals over the considered
period in the regions Jihomoravský and Karlovarský. . . . . . . . 103

6.4 Evaluation of the (normalized) Dunn and Silhouette indicators.
We set the appropriate number of clusters to 15, where both indi-
cators reach a local maximum. . . . . . . . . . . . . . . . . . . . . 107

6.5 The SOFM map trained on debt origins and the 15 clusters ob-
tained by using Agglomerative Clustering. The size of the circles
reflects the number of ARs assigned to the given neuron. . . . . . 108

6.6 An overview of the clustering results, including the cluster identi-
fiers and their brief (prototype) description by a set of keywords.
The maps in (a) illustrate the distribution of cluster members
over the country. Furthermore, in (b), we show the percentage
of debtors with the corresponding number of debt obligations (or
ARs) and the main creditors involved for each cluster. . . . . . . . 109

6.7 Summary statistics of the considered 243,436 ARs. . . . . . . . . 111
6.8 Cluster validity evaluation using the Dunn index: the appropriate

number of clusters was set to 16 where the Dunn index reaches its
maximum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.9 The trained SOFM map clustered by means of agglomerative clus-
tering. The size of the circles reflects the number of ARs assigned
to the given neuron. . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.10 Characteristics of selected clusters obtained by Agglomerative Clus-
tering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.11 Age distribution comparison of Cluster 2 and 3. . . . . . . . . . . 115
6.12 PageRank distribution in the insolvency network across years. . . 118
6.13 Snapshots of the insolvency network in different years. The size of

the nodes correspond to their PageRank and different nodes are
visualized as follows: debtors (red), creditors (green) and admin-
istrators (blue). For illustrative purposes the role of the creditor
Bohemia Faktoring (BF) is highlighted (orange) in the first two
snapshots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.14 5-fold CV results along with the 95% confidence intervals. . . . . 124
6.15 The mean sensitivities of top 12 features remaining after pruning

one NN trained on Dataset3. . . . . . . . . . . . . . . . . . . . . . 124
6.16 Real PR development of nodes AB 4 BV and Home Credit com-

pared to the predictions made by individual models. . . . . . . . . 125

142



List of Tables

2.1 Notation used to describe social networks. . . . . . . . . . . . . . 14

3.1 List of all insolvency courts in the Czech Republic . . . . . . . . . 48
3.2 List of elements common for all events. . . . . . . . . . . . . . . . 54

4.1 The estimations for the data size in terms of both the number of
entities and storage space required to store them in PostgreSQL. . 56

4.2 OCR performance comparison . . . . . . . . . . . . . . . . . . . . 62
4.3 AWS Textract pricing for the Frankfurt Data Center . . . . . . . 63
4.4 Abby Cloud OCR SDK plans and pricing . . . . . . . . . . . . . . 64
4.5 AWS Spot Instance pricing for the Frankfurt Data Center . . . . 65
4.6 Total OCR costs for processing all 3.5M ARs by individual solutions 65
4.7 The 19 most frequent creditors in the Insolvency Register in 2012 66
4.8 10-fold cross-validation results for the creditor classification task.

We report Recall, Precision, F-measure and Training time for each
of the considered algorithms along with the corresponding 95%
confidence interval. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.9 Examples of monetary formats used in ARs . . . . . . . . . . . . 70
4.10 10-fold cross-validation results obtained on the candidate value

dataset. We include Recall, Precision and F-measure for each of
the considered algorithms along with the corresponding 95% con-
fidence interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.11 Consistency categories used to validate extracted receivable values. 71
4.12 Macro statistics used to generate all three maps shown in Figure

4.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.13 Top 20 creditors with the largest portfolios of receivables in terms

of their total value. For each creditor we report: the number of all
receivables, the number of receivables from which we were able to
extract the receivable value with OK status (see Table 4.11), the
total value (sum) of all receivables, and finally, the average size of
receivables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1 The number of subjects involved in IPs in the Jihomoravský region
between 2008 and in 2014 used to construct networks shown in
Figure 6.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Examples of association rules of the form person type, senate, year
⇒ administrator found for the regions Jihomoravský (senate codes
starting with KSBR) and Karlovarský (senate codes starting with
KSPL). Support corresponds to the number of transactions. . . . 105

143



6.3 Examples of association rules of the form creditor, person type,
senate, year⇒ creditor found for the regions Jihomoravský (senate
codes starting with KSBR) and Karlovarský (senate codes starting
with KSPL). Support corresponds to the number of transactions. 105

6.4 The estimated amount of debt claimed by the five biggest creditors
against natural persons. . . . . . . . . . . . . . . . . . . . . . . . 111

6.5 Most relevant clusters obtained by clustering the debt origins ob-
tained from approximately 2M of ARs. . . . . . . . . . . . . . . . 120

6.6 Learning parameters determined by Hyperopt. . . . . . . . . . . . 121
6.7 5-fold cross-validation results along with the 95% confidence inter-

vals for MSE performance. . . . . . . . . . . . . . . . . . . . . . . 123

A.1 Insolvency entity attributes . . . . . . . . . . . . . . . . . . . . . 147
A.2 Subject entity attributes . . . . . . . . . . . . . . . . . . . . . . . 148
A.3 Administrator entity attributes . . . . . . . . . . . . . . . . . . . 148
A.4 Insolvency State entity attributes . . . . . . . . . . . . . . . . . . 149
A.5 File entity attributes . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.6 Receivable entity attributes . . . . . . . . . . . . . . . . . . . . . 150
A.7 WS Event entity attributes . . . . . . . . . . . . . . . . . . . . . . 150

144



List of Abbreviations
AR Application of receivables

CR Czech Republic

CID Czech insolvency dataset

GCC Giant connected component

HITS Hyperlink-induced topic search

IRES Insolvency register extraction system

IR Insolvency Register of the Czech Republic

IP Insolvency proceeding

MCL Markov clustering algorithm

ML Machine learning

NN Neural network

PR Page Rank

SNA Social network analysis

SOFM Self-organizing feature map

145



List of publications
• Iveta Mrázová and Peter Zvirinský. Mining the czech insolvency proceed-

ings data. Procedia Computer Science, 36:308–313, 2014. Complex Adap-
tive Systems Philadelphia, PA November 3-5, 2014.

• Iveta Mrázová and Peter Zvirinský. Czech insolvency proceedings data:
Social network analysis. Procedia Computer Science, 61:52–59, 2015. Com-
plex Adaptive Systems San Jose, CA November 2-4, 2015.

• Iveta Mrázová and Peter Zvirinský. Extraction and interpretation of textual
data from czech insolvency proceedings. In Leszek Rutkowski, Marcin Kory-
tkowski, Rafal Scherer, Ryszard Tadeusiewicz, Lotfi A. Zadeh, and Jacek M.
Zurada. Artificial Intelligence and Soft Computing, pages 116–125, Cham,
2017.

• Iveta Mrázová and Peter Zvirinský. Dynamic Social Networks and Their
Analysis. In Jaroslav Zendulka, Mária Bieliková, Radek Burget, Zbyněk
Křivka. Data a znalosti & WIKT 2018, pages 231–236, 2018.

• Iveta Mrázová and Peter Zvirinský. Czech insolvency proceedings: Ex-
traction of numerical information and its analysis. In Proceedings of the
2018 10th International Conference on Machine Learning and Computing,
ICMLC 2018, page 150–156, New York, NY, USA, 2018.

• Iveta Mrázová and Peter Zvirinský. Subjects involved in czech insolvency
proceedings: An assessment of their future impact. Procedia Computer
Science, 185:63–72, 2021. Big Data, IoT, and AI for a Smarter Future.

146



A. Dataset schema
documentation

This section contains detailed descriptions of individual entities considered in
the database schema designed for the Czech insolvency dataset (CID), including
individual fields we store in the database.

A.1 Insolvency

Insolvency is the core entity of the proposed relational model and represents
a single insolvency proceeding. This entity contains all the basic information
related to an IP, most of which can be found on the IP’s detail page (see Figure
3.3). We list the attributes of the Insolvency entity in Table A.1.

Table A.1: Insolvency entity attributes

Attribute Description Example

id
A unique identifier generated
from the IP’s reference num-
ber.

msphins9997/2010

debtor name Name of the debtor. TAKING s.r.o.

ico
Organization identification
number, if the subject is a
business entity.

27204316

reference number Official reference number of
the IP. MSPH 93 INS 9997 / 2010

proposal timestamp

Date and time when the IP
was commenced and the in-
solvency petition was sub-
mitted.

2010-09-01 16:42:00

url
URL to the IP’s detail page
(eventually becomes unavail-
able).

https://isir.justice.
cz/isir/ueu/evidence_
upadcu_detail.do?
id=AF7BD0355DAD6E...
ADE05333F21FAC39CD

gender Debtor’s gender (if avail-
able). M

debtor address Debtor’s domicile (if avail-
able).

Praha 10 Vršovice,
Moskevská 617/58, PSČ
101 00

year of birth Debtor’s year of birth (if
available). 1960

region id Id if the region extracted
from debtor’s domicile. 1

147

https://isir.justice.cz/isir/ueu/evidence_upadcu_detail.do?id=AF7BD0355DAD6E...ADE05333F21FAC39CD
https://isir.justice.cz/isir/ueu/evidence_upadcu_detail.do?id=AF7BD0355DAD6E...ADE05333F21FAC39CD
https://isir.justice.cz/isir/ueu/evidence_upadcu_detail.do?id=AF7BD0355DAD6E...ADE05333F21FAC39CD
https://isir.justice.cz/isir/ueu/evidence_upadcu_detail.do?id=AF7BD0355DAD6E...ADE05333F21FAC39CD
https://isir.justice.cz/isir/ueu/evidence_upadcu_detail.do?id=AF7BD0355DAD6E...ADE05333F21FAC39CD


A.2 Subject

Subject is a generic entity aggregating all the subjects involved in any IP in
any role (debtor, creditor, or administrator). Its purpose is to provide detailed
information about subjects only accessible from the IR’s web service. All the
attributes of the subject entity are listed in Table A.2.

Table A.2: Subject entity attributes

Attribute Description Example
name Name of the subject Ing. Jana Vodrážková

ico
Organization identification
number, if the subject is a
business entity.

27204316

form
Specifies whether the subject
is a natural person (F) or a
legal entity (P).

P

legal form Legal form of the subject, if
the subject is a legal entity. a.s.

address form

The type of address provided
by the subject, e.g. per-
manent residence (∼ ”TR-
VALÁ”), temporary resi-
dence, etc.

TRVALÁ

address city City/town component of the
address. Prague

address street Street component of the ad-
dress. Štepánska

address country Country component of the
address. Česká republika

address zip code ZIP code component of the
address. 150 00

A.3 Administrator

One or more administrators are associated with every IP that has reached
at least the Bankruptcy stage (see Figure 3.4). Unfortunately, the IR provides
minimal information about each administrator (see Table A.3). We can only
obtain the administrator’s name and role in the given IP.

Table A.3: Administrator entity attributes

Attribute Description Example

id Administrator’s internal ID
(automatically generated). 1

administrator Name of the administrator. Ing. Jana Vodrážková
administrator type Type of the administrator. Insolvenčńı správce

148



A.4 Insolvency State

The Insolvency State entity captures the entire history of all the states a
particular IP has gone through. One instance of the Insolvency State entity
represents a state change of exactly one IP. The attributes of this entity are
listed in Table A.4.

Table A.4: Insolvency State entity attributes

Attribute Description Example

insolvency id ID of the IP the state is con-
nected to. msphins9997/2010

state The new state of the IP (as
defined in Figure 3.4) Bankruptcy

state change timestamp Date and time when the
state change occurred. 2010-09-01 16:42:00

action id
ID of the event published
by the Web Service which
moved the IP into this state.

1234

A.5 File

The File entity represents all files (or documents) related to individual IPs
published in the IR. This entity only stores the metadata about the files (like
type and publication date) and the textual content obtained by applying OCR
on some of them (mostly ARs). We list all the File entity attributes in Table A.5.

Table A.5: File entity attributes

Attribute Description Example

id Internal ID of the document
(automatically generated). 1

file type Type of the document. Přihláška pohledávky (∼ ap-
plication of receivable)

url Publicly accessible URL of
the document.

https://isir.justice.
cz/isir/doc/dokument.
PDF?id=1592027

insolvency id ID of the IP to which this
document is related to. msphins9997/2010

publish date
Date and time when the doc-
ument was published in the
IR.

2010-09-01 16:42:00

document section Document section as de-
scribed in Section 3.2.2. A

content Text extracted from the doc-
ument using OCR. Soud Městský soud v Praze...

149

https://isir.justice.cz/isir/doc/dokument.PDF?id=1592027
https://isir.justice.cz/isir/doc/dokument.PDF?id=1592027
https://isir.justice.cz/isir/doc/dokument.PDF?id=1592027


A.6 Receivable

The Receivable entity represents data related explicitly to receivables, such
as the creditor’s name and all the additional meta-data we extracted using our
extraction pipeline, namely the receivable values. We provide the list of all at-
tributes in Table A.6.

Table A.6: Receivable entity attributes

Attribute Description Example

file id ID of the document this re-
ceivable is related to. 1

creditor Name of the creditor. HOLUB Roman s.r.o.

total The total value of the receiv-
able (or debt value). 100 000 Kč

secured The value of secured receiv-
ables. 50 000 Kč

unsecured The value of unsecured re-
ceivables. 50 000 Kč

status
Validation status of the ex-
tracted values as defined in
Table 4.11.

msphins9997/2010

A.7 WS Event

The WS Event entity corresponds to all the events published in the IR’s web
service. Every WS Event represents a discrete change of a single insolvency. We
list the WS Event’s attributes in Table A.7.

Table A.7: WS Event entity attributes

Attribute Description Example
id Unique ID of the event. 1

event timestamp Date and time when the
event was published. 2010-09-01 16:42:00

insolvency id ID of the IP the event is con-
nected to. msphins9997/2010

event The event’s data in the orig-
inal XML format. <localId>2538</localId>

150



B. Attachments

B.1 Czech insolvency dataset

The CID (i.e., CID DB) used in this thesis is too large to be stored directly in
the attachments; that is why it is included on the physical SD card attached to
the printed version of this thesis and also published publicly at https://github.
com/zviri/czech-insolvency-dataset.

To restore the CID DB from the SD Card, follow these steps:

1. Copy the archive cid_db.sql.gz into a local folder.

2. Decompress the database SQL archive:
gzip -d cid_db.sql.zip

3. Restore the CID DB into an empty PostgresSQL database:
pg_restore -U $USERNAME -d $DB_NAME -1 cid_db.sql

B.2 Source code

In the attachment, we provide the most relevant source code for this thesis,
organized in the following folder structure:

• IRES — All source codes related to the Insolvency Register Extraction
system, including all the scrapers and the main OCR engine.

– isir.data-access — Common functionality shared by other projects.
– isir.html-scraper — Scraper for extracting insolvency data from the

IR’s web application.
– isir.ocr — Main OCR engine, including functionality for information

extraction.
– isir.ocr-reliability-tes — OCR engine evaluation functionality.
– isir.sql-runner — Simple project for running scheduler SQL queries.
– isir.ws-cache-scraper — Scraper for downloading insolvency events

from IR’s web service.
– isir.ws-scraper — Scraper for updating changes insolvencies.
– cid db — SQL init script for the CID DB.

• GraphSlices — Full implementation of GraphSlices, including tests.

• PredictionModel — Complete implementation of the prediction methodol-
ogy used in Section 6.5.

151

https://github.com/zviri/czech-insolvency-dataset
https://github.com/zviri/czech-insolvency-dataset

	Introduction
	Goals of this thesis
	Social network analysis
	Research areas
	Statistical properties of social networks
	Definitions
	Static properties
	Dynamic properties

	Measuring node importance
	Centrality
	Random walk based measures

	Community detection and clustering
	Quality functions
	The Kernighal-Lin (KL) algorithm
	The Agglomerative/Divisive algorithms
	Spectral algorithms
	Markov clustering

	Evolution in social networks
	Framework
	Incremental tracing of communities
	Tracing smoothly evolving communities

	Link prediction
	Background
	Feature-based methods

	Pattern mining in graphs
	Static graphs
	Dynamic graphs


	Insolvencies in the Czech Republic
	Insolvency Act
	Insolvency
	Participants in the insolvency proceedings
	Exceptions from the effects of the Insolvency Act
	Methods of insolvency resolution
	Insolvency states
	Amendments

	Insolvency Register
	Insolvency data
	Documents
	Exceptions
	Data expiration
	Using the Insolvency Register


	Czech insolvency dataset
	Dataset schema and storage
	Insolvency Register data extraction
	Web application scraper
	Web service scraper

	Extracting data from documents
	Optical Character Recognition
	Document Preprocessing
	Scaling up to millions of documents
	Extracting missing creditor names
	Extracting receivables' values
	Extracting origin of debt

	Preliminary Data Analysis
	Demographics
	Receivables and creditors

	Reproducibility

	Definitions and tools
	Definitions
	Existing tools
	GraphSlices
	Design considerations
	Architecture
	Implementation details
	Example usage


	Experiments
	Experiment 1: Insolvency process as a static social network
	Dataset construction
	Results
	Summary

	Experiment 2: Insolvency process as a dynamic social network
	Dataset construction
	Results
	Summary

	Experiment 3: Understanding where debt originates
	Dataset construction
	Results
	Summary

	Experiment 4: Understanding the value of claimed debt
	Dataset construction
	Results
	Summary

	Experiment 5: Assessing the future impact of subjects involved in insolvencies
	Proposed methodology
	Results
	Summary


	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	List of publications
	Dataset schema documentation
	Insolvency
	Subject
	Administrator
	Insolvency State
	File
	Receivable
	WS Event

	Attachments
	Czech insolvency dataset
	Source code


