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Abstract: This thesis is focused on studying the properties of function spaces from
three distinct angles: abstract classes of function spaces, one particular class of
function spaces, and some specific applications of the function space theory. It
contains six papers; two for each of the above mentioned topics.

The first paper studies the properties of quasi-Banach function spaces. We prove
several results that provide useful tools for working with concrete examples of
spaces belonging to this class.

The second paper studies the so-called Wiener–Luxemburg amalgam spaces, an
abstract framework that allows for constructing a space where the conditions
on local and global behaviour of its functions is prescribed separately. We de-
scribe the fundamental properties of such constructed spaces and develop tools
for working with them.

The third paper provides a thorough and comprehensive treatment of Lorentz–
Karamata spaces. We consider a wide variety of topics (e.g. normability, absolute
continuity of the (quasi)norm, associate spaces) and investigate each of them
extensively.

The fourth paper is focused on proving the result, that for every slowly varying
function b there exists an equivalent (hence also slowly varying) function c which
has continuous classical derivatives of all orders.

The fifth paper is dedicated to proving a so-called reduction principle, which
states that operators of a certain form are bounded if and only if their restriction
to the cone of non-increasing functions is bounded.

In the sixth paper we develop a new strongly non-linear version of the Gagliardo–
Nirenberg inequality which we then use to obtain a priori estimates for several
examples of non-linear PDEs. The paper also contains several variants of the
main result and other applications.
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1. Prologue
Function spaces have long been studied, because they appear most naturally in
many different settings, e.g. harmonic analysis or theory of partial differential
equations, and proper understanding of their properties often leads to signifi-
cant advances in the related fields. It is therefore only natural that the study of
function spaces constitutes a significant part of the field of functional analysis.
This thesis attempts to contribute to this process by studying the properties of
function spaces from three distinct angles: studying abstract classes of function
spaces, studying a concrete class of function spaces, and developing some specific
applications of the function space theory. It consists of six papers, a note con-
taining some improvements to two of the results contained in one of the papers,
and this Introduction, where we provide some basic context for the papers and a
brief overview of their content.

This Introduction is divided into three sections, each of them corresponding
to one of the main topics and covering the two relevant papers. In Section 2 we
present Papers (I) and (II), which concern themselves, respectively, with the prop-
erties of (r.i.) quasi-Banach function spaces and Wiener–Luxemburg amalgams
constructed upon them. This section is distinguished by the fact that the studied
objects are abstract in nature, defined via axioms or an abstract construction.
Paper (II) is further complemented by Note (II’) which contains improvements
to two of its results that have been developed after publication. In Section 3
we redirect our focus to the class of Lorentz–Karamata spaces, a specific class of
function spaces that are studied in great detail in Paper (III). The second paper
of the section, Paper (IV), provides a positive answer to the question whether
slowly varying functions can be a priori assumed to be smooth; this problem is
closely related to the study of Lorentz–Karamata spaces, as it appeared natu-
rally during our work on characterising their corresponding endpoint spaces and
associate spaces in some limiting cases. Finally, the focus of Section 4 is on ap-
plications of the theory of function spaces. The Papers (V) and (VI) cover very
distinct topics; both are however related to problems from the theory of Sobolev
spaces.

To conclude this section, let us briefly discuss the relationship of some of the
papers to the previous theses by the author.

• Some of the results of Paper (I) have been included in the author’s Mas-
ter thesis, as they were necessary prerequisites for the work done there.
However, the submitted version of the paper contains several more results,
including the most involved ones concerning separability and especially the
boundedness of dilation operator, which is arguably the most interesting
result of the paper.

• Paper (II) is based on the principal part of the author’s Master thesis,
but compared to it it contains significant additions and improvements. The
most important one is the description of associate spaces, in which the proof
in the thesis required an additional assumption that greatly weakened the
result. Proving this description without the extra assumption is the most
involved part of the paper and it made the theory significantly stronger
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and more useful, as one of the consequences is that the Wiener–Luxemburg
amalgams of r.i. Banach function spaces are always normable. Yet another
essential difference from the thesis is that the paper also covers the amal-
gams of quasi-Banach function spaces and includes many new results in this
context.

• Paper (III) has roots in the author’s Bachelor thesis, but it has since been
revised in most significant ways: the very definition of slowly varying func-
tions has been changed to the modern and more general version presented
below as Definition 3.1 (see Section 3 for discussion of the various defini-
tions of slowly varying functions that appear in literature; the definition
presented there as (D1) has been used in the thesis), many of the proofs
have been changed to accommodate the modified definition, the gaps that
were present in many of the results (e.g. characterisation of embeddings and
normability and description of associate spaces) have been filled, and many
entirely new topics have been added.

Notation
Let us now establish some basic notation that is common through the entirety of
this Introduction (other notation and definitions will appear later, as necessary).

By (R, µ) we denote some arbitrary (totally) sigma-finite measure space.
Given a µ-measurable set E ⊆ R we will denote its characteristic function by χE.
By M(R, µ) we will denote the set of all extended complex-valued µ-measurable
functions defined on R. As is customary, we will identify functions that coincide
µ-almost everywhere. We will further denote by M+(R, µ) the subset of M(R, µ)
containing the non-negative functions.

When there is no risk of confusing the reader, we will abbreviate µ-almost
everywhere, M(R, µ), and M+(R, µ) to µ-a.e., M, and M+, respectively.

When X is a set and f, g : X → C are two maps satisfying that there is some
positive and finite constant C, depending only on f and g, such that |f(x)| ≤
C|g(x)| for all x ∈ X, we will denote this by f ≲ g. We will also write f ≈ g, or
sometimes say that f and g are equivalent, whenever both f ≲ g and g ≲ f are
true at the same time.

When X, Y are two topological linear spaces, we will denote by Y ↪→ X that
Y ⊆ X and that the identity mapping I : Y → X is continuous.

As for some special cases, we will denote by λn the classical n-dimensional
Lebesgue measure, with the exception of the 1-dimensional case in which we will
simply write λ. We will further denote by m the counting measure over N. When
p ∈ (0,∞] we will denote by Lp the classical Lebesgue space (of functions in
M(R, µ)) defined by

Lp =
{︃

f ∈M(R, µ);
∫︂

R
|f |p dµ < ∞

}︃

equipped with the customary (quasi-)norm

∥f∥p =
(︃∫︂

R
|f |p dµ

)︃ 1
p
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with the usual modifications when p = ∞. In the special case when (R, µ) =
(N, m) we will denote this space by lp.

Note that in this Introduction we consider 0 to be an element of N.
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2. Function spaces in the abstract
The first two papers deal with function spaces from an abstract point of view,
in the sense that they study classes of spaces defined either via axioms (in the
case of Paper (I)) of via an abstract construction (in the case of Paper (II)), in
contrast to concrete spaces equipped with specific norms.

Axiomatic approach to function spaces
The starting point of our work are the standard Banach function spaces, which
were developed as a useful abstract framework by taking several significant prop-
erties of Lebesgue spaces and using them as the defining axioms for the norm
that will then induce the space itself:

Definition 2.1. Let ∥·∥ : M → [0,∞] be some non-negative functional such
that it holds for all f ∈M that ∥f∥ = ∥ |f | ∥. We then say that ∥·∥ is a Banach
function norm if its restriction to M+ satisfies the following conditions:

(P1) ∥·∥ is a norm, i.e.

(a) it is positively homogeneous, i.e. ∀a ∈ C ∀f ∈M+ : ∥a · f∥ = |a|∥f∥,
(b) it satisfies ∥f∥ = 0 ⇔ f = 0 µ-a.e.,
(c) it is subadditive, i.e. ∀f, g ∈M+ : ∥f + g∥ ≤ ∥f∥+ ∥g∥.

(P2) ∥·∥ has the lattice property, i.e. if some f, g ∈ M+ satisfy f ≤ g µ-a.e.,
then also ∥f∥ ≤ ∥g∥.

(P3) ∥·∥ has the Fatou property, i.e. if some fn, f ∈ M+ satisfy fn ↑ f µ-a.e.,
then also ∥fn∥ ↑ ∥f∥.

(P4) ∥χE∥ < ∞ for all E ⊆ R satisfying µ(E) < ∞.

(P5) For every E ⊆ R satisfying µ(E) < ∞ there exists some finite constant CE,
dependent only on E, such that for all f ∈ M+ the inequality

∫︁
E f dµ ≤

CE∥f∥ holds.

Furthermore, when ∥·∥ is a Banach function norm, then the set

X = {f ∈M; ∥f∥ < ∞}
equipped with the norm ∥·∥ will be called a Banach function space.

The definition above is adapted from [3, Definition 1.1], but the concept itself
is older, originating from [28]. We would like to note that while this definition is
standard, there are also competing approaches: the Fatou property (P3) is often
not required and the properties (P4) and (P5) are sometimes used in a weaker
form (e.g. by considering a smaller class of admissible sets E) or even omitted
entirely. We shall stick to this definition, as the Fatou condition is not very
restrictive and implies many interesting and useful results, while the properties
(P4) and (P5) become natural when combined with the property of rearrange-
ment invariance, which we define below, and we are interested mainly in spaces
satisfying this extra condition.
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Definition 2.2. We say that a Banach function norm ∥·∥ is rearrangement in-
variant, abbreviated r.i., if it satisfies the following additional condition:

(P6) If two functions f, g ∈M+ satisfy f ∗ = g∗ then ∥f∥ = ∥g∥.

Here, f ∗ is the non-increasing rearrangement of a function f ∈ M, which is
defined as the generalised inverse of the distribution function, that is, for every
t ∈ [0,∞) we put

f ∗(t) = inf{s ∈ [0,∞); µf (s) ≤ t},
where the distribution function µf of a function f ∈ M is defined for s ∈ [0,∞)
by

µf (s) = µ({t ∈ R; |f(t)| > s}).
The class of r.i. Banach function spaces is a wide one. In most of the cases,

Lebesgue spaces and their various generalisations (e.g. Lorentz spaces, Orlicz
spaces, etc.) belong to this class. However, one does not have to go far to find
spaces that do not fit to this class, the notable examples being Lebesgue spaces Lp

for p ∈ (0, 1) and the space L1,∞ which appears naturally in weak-type estimates
of many operators. We are thus motivated to consider the following more general
class of function spaces:

Definition 2.3. Let ∥·∥ : M→ [0,∞] be some non-negative functional such that
it holds for all f ∈M that ∥f∥ = ∥ |f | ∥. We then say that ∥·∥ is a quasi-Banach
function norm, if it satisfies the axioms (P2), (P3), and (P4) from the definition
of r.i. Banach function norm and also a weaker version of (P1), namely

(Q1) ∥·∥ is a quasinorm, i.e.

(a) it is positively homogeneous, i.e. ∀a ∈ R∀f ∈M+ : ∥a · f∥ = |a|∥f∥,
(b) it satisfies ∥f∥ = 0 ⇔ f = 0 µ-a.e.,
(c) it is subadditive up to a constant, i.e. there is some finite constant C

such that ∀f, g ∈M+ : ∥f + g∥ ≤ C(∥f∥+ ∥g∥).

If ∥·∥ further satisfies (P6) we say that it is an r.i. quasi-Banach function norm.
Moreover, when ∥·∥ is an (r.i.) quasi-Banach function norm, then the set

X = {f ∈M; ∥f∥ < ∞}

equipped with the norm ∥·∥ will be called an (r.i.) quasi-Banach function space.

This class now includes all the above mentioned examples (as it includes all
non-trivial Lorentz spaces) and more. However, while the theory of (r.i.) Banach
function spaces is very well developed, the theory of the more general (r.i.) quasi-
Banach function spaces was until recently almost untouched. Even the most basic
property of completeness has only been proved in 2016 in the paper [6]. This is
the motivation for Paper (I), where we aim to take the first steps in developing
a comprehensive theory.
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Amalgam approach to function spaces
When examining spaces of functions where the underlying domain is in some
sense non-atomic and infinite, it quickly becomes apparent that in many cases
the space in fact imposes two separate conditions, one concerning the local be-
haviour of its functions and the other concerning their global behaviour (global is
meant in the sense “behaviour near infinity”). This is evident for Lebesgue spaces
(over non-atomic measure space of infinite measure), where the local condition
prescribes how fast a blow-up can be while the global condition prescribes how
fast the decay must be, and where these conditions are clearly separate; this is
well illustrated by the fact that the local condition gets stronger as p increases,
while the global condition gets weaker at the same time. This phenomenon is
present in all r.i. (quasi-)Banach function spaces, but it is not limited to them.
For example, consider some topological space G which is locally compact, non-
compact, and without isolated points. Consider further the classical-one point
compactification of G (with the added point denoted by ∞). Then the space
C0(G) of continuous functions f satisfying the extra condition that

lim
s→∞

f(s) = 0,

prescribes continuity as the local condition, which is totally separate from the
global condition of decay.

It turns out that it is often desirable to make the distinctness of the local
and global conditions explicit, i.e. to prescribe them separately when specifying a
function space. To this end, a framework called Wiener amalgam spaces has been
developed during the last century, starting with the work of Wiener in [33] and
culminating with the introduction of their most general form by Feichtinger in
[13]. As the full definition is rather involved and requires significant preparation,
we shall present here only a much simpler definition for the case of Lebesgue
spaces:

Definition 2.4. Let p, q ∈ [1,∞]. Consider the classical Lebesgue spaces Lp of
functions belonging to M([0,∞), λ) and lq of sequences belonging to M(N, m).
We then define, for all f ∈M([0,∞), λ), the Wiener norm ∥·∥W (Lp,lq) by

∥f∥W (Lp,lq) =
(︄ ∞∑︂

n=0
∥fχ[n,n+1)∥qLp

)︄1/q

for q ∈ [1,∞),

∥f∥W (Lp,lq) = sup
n∈N

∥fχ[n,n+1)∥Lp for q = ∞,

and the corresponding Wiener amalgam space (or just Wiener amalgam) by

W (Lp, lq) = {f ∈ M([0,∞), λ); ∥f∥W (Lp,lq)) < ∞}.
Wiener amalgams are very useful and they accumulated a wide range of ap-

plications, great reviews of which have been conducted by Fournier and Stewart
in [18] and by Feichtinger in [14] and [15]. However, they are not very well
compatible with the class of r.i. Banach function spaces; even the amalgams of
Lebesgue spaces as defined above (except for the trivial case p = q) fail to satisfy
the property (P6) and either (P4) (for p > q) or (P5) (for p < q). This limitation
motivates Paper (II), in which we develop an alternative approach that is more
compatible with the class of r.i. (quasi-)Banach function spaces.
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2.1 Paper (I): On the properties of
quasi-Banach function spaces

In this paper we take the first steps in developing a comprehensive theory of
quasi-Banach function spaces. We were motivated by the fact, that even though
quasi-Banach function spaces appear naturally in many settings, the literature
on this topic lacks even some of the most basic results. This is in direct contrast
to the case of Banach function spaces, where the theory is very well developed
and extremely useful, as it provides many great tools for the study of particular
cases of function spaces. This paper thus aims at providing such tools even for
the more general quasi-Banach function spaces, with emphasis on those which we
needed ourselves in our research.

The main part of the paper (i.e. Section 3.) can be roughly divided into three
parts. The first two subsections cover some basic, but very useful, results that
translate more or less directly from corresponding results for Banach function
spaces. The third subsection then treats separability, where we provide a precise
treatment using a direct construction. Finally, in the last subsection, we show
that the dilation operator is bounded on any r.i. quasi-Banach function space over
M(Rn, λn). This part of the paper is the most involved one, as all the known
techniques for Banach function spaces failed and an entirely new approach had
to be developed.

2.2 Paper (II): Wiener–Luxemburg
amalgam spaces

This paper is dedicated to introducing the so-called Wiener–Luxemburg amalgam
spaces and developing their theory. Said spaces are constitute abstract construc-
tion which provides a rigorous framework for the following simple idea: having
two r.i. quasi-Banach function spaces A and B, construct a space that measures
blow-ups in the same way as A and decay in the same way as B, and do so in
such a way that the result is, once again, an r.i. quasi-Banach function space.

We were greatly inspired by the more classical Wiener amalgam spaces (which
are discussed above), which provide a solution to this task, except that the result-
ing space is generally not an r.i. quasi-Banach function space. As this behaviour
often leads to rather counter-intuitive situations, we decided to develop an alter-
native construction that would be more compatible with this setting.

The principal tool of our construction is the non-increasing rearrangement
(as defined above), which naturally separates the local behaviour of a function
(i.e. blow-ups) from its global behaviour (i.e. decay). This allows the construction
to be very simple, but it also leads to some significant technical difficulties when
working with the resulting space. To be more specific, it is on one hand easy
to show that the construction preserves all the axioms of quasi-Banach function
spaces and that the local integrability condition (P5) is inherited from the local
component, while on the other hand it is not immediately apparent whether a
Wiener–Luxemburg amalgam of two r.i. Banach function spaces is normable; this
result is in fact proved indirectly through the description of associate spaces of
Wiener–Luxemburg amalgams, which is the most involved result of the paper.
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Beside the above mentioned results, we also characterise the embeddings of
Wiener–Luxemburg amalgams, describe their relation with the spaces A + B and
A∩B, introduce a new concept of the so-called integrable associate spaces which
we then use to describe the associate space of Wiener–Luxemburg amalgams
of quasi-Banach function spaces in the case when the local component has the
property (P5) while the global component does not, and provide a much more
precise treatment of the classical result that if X is an r.i. Banach function space,
then

L1 ∩ L∞ ↪→ X ↪→ L1 + L∞. (2.1)
Let us consider the last topic in more detail as it is rather interesting. It turns

out that the embeddings (2.1) contain in fact four separate pieces of information:
L1 is both locally largest of r.i. Banach function spaces and globally smallest of
them, while L∞ is in the same setting the locally smallest and the globally largest
space. When expanding the setting to the class of r.i. quasi-Banach function
spaces, we find out that the two statements concerning L∞ remain valid, while
the local embedding of L1 into any given r.i. quasi-Banach function spaces X holds
if and only if X has the property (P5). The most interesting is the remaining
statement, i.e. that L1 is in the global sense smaller than any given r.i. quasi-
Banach function space X. For this we provide only sufficient conditions, the
weakest of which is that the statement holds provided that the space X satisfies
the Hardy–Littlewood–Pólya principle, i.e. that it holds for any pair of functions
f, g ∈M that

(︃
∀t ∈ (0,∞) :

∫︂ t

0
g∗ dλ ≤

∫︂ t

0
f ∗ dλ

)︃
=⇒ ∥g∥X ≤ ∥f∥X .

Given that there are clearly spaces that are, in the global sense, smaller than L1

while still having the property (P5) (e.g. the Lorentz space L1, 1
2 ), this provides

a positive answer to the previously open question whether there are r.i. quasi-
Banach spaces with the property (P5) which violate the Hardy–Littlewood–Pólya
principle.

We complement this paper with Note (II’) where we provide essential improve-
ments to two results of the paper which were developed after its publication, as
we believe that these improvements provide better insights and understanding of
the matter.
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3. Lorentz–Karamata spaces
The second two papers concern themselves with a specific class of spaces, namely
the Lorentz–Karamata spaces, and the closely related concept of slowly varying
functions. Said spaces were introduced by Edmunds, Kerman, and Pick in [12],
and represent a further generalisation of Lorentz–Zygmund spaces that has found
a wide range of applications, for example in relation to Sobolev embeddings and
interpolation (e.g. [1], [2], [9], [22], and [31]).

Slowly varying functions
The defining distinction of Lorentz–Karamata spaces, in contrast to (generalised)
Lorentz–Zygmund spaces, is that instead of being defined using functions of log-
arithmic or broken-logarithmic type, they employ the so-called slowly varying
functions. In our work, we always consider the following modern and general
definition:

Definition 3.1. Let b : (0,∞) → (0,∞) be a measurable function. Then b is
said to be slowly varying, abbreviated s.v., if for every ε > 0 there exists a non-
decreasing function bε and a non-increasing function b−ε such that tεb(t) ≈ bε(t)
on (0,∞) and t−εb(t) ≈ b−ε(t) on (0,∞).

We make this distinction because there are three different definitions of slowly
varying functions that can be found in the literature. The three defining condi-
tions (for b ∈ M((0,∞), λ)) are:

(D1) For every ε > 0 the function tεb(t) is non-decreasing on some neighbour-
hoods of zero and infinity while the function t−εb(t) is non-increasing on
some neighbourhoods of zero and infinity.

(D2) For every ε > 0 there exists a non-decreasing function bε and non-increasing
function b−ε such that

lim
t→0

tεb(t)
bε(t)

= lim
t→∞

tεb(t)
bε(t)

= lim
t→0

t−εb(t)
b−ε(t)

= lim
t→∞

t−εb(t)
b−ε(t)

= 1.

(D3) b satisfies Definition 3.1.

The condition (D1) was used in the original definition of Lorentz–Karamata
spaces in [12] and the functions satisfying it are said to belong to the Zygmund
class Z (see [34] for further details). The condition (D2) is the closest to the
original definition of slowly varying functions as given by Karamata in [25] and
[26]—while it is not the original definition, it is equivalent to it. Functions satis-
fying this condition are treated thoroughly in [4]. The condition (D3) is the one
currently used in most papers concerning Lorentz–Karamata spaces and it first
appeared in either [20] or [21] (the idea to use only the equivalence with monotone
functions appeared originally in the paper [31], but in this case the function was
also required to behave the same way near zero as it does near infinity, so the
definition was significantly less general).
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Lorentz–Karamata spaces
Definition 3.2. Let p ∈ (0,∞], q ∈ (0,∞] and let b be an s.v. function. We
then define the Lorentz–Karamata functionals ∥·∥p,q,b and ∥·∥(p,q,b), for f ∈ M , as
follows:

∥f∥p,q,b = ∥t 1
p

− 1
q b(t)f ∗(t)∥q,

∥f∥(p,q,b) = ∥t 1
p

− 1
q b(t)f ∗∗(t)∥q,

where ∥·∥q is the classical Lebesgue functional on (0,∞).
We then define the corresponding Lorentz–Karamata spaces Lp,q,b and L(p,q,b)

as

Lp,q,b = {f ∈ M ; ∥f∥p,q,b < ∞},
L(p,q,b) = {f ∈ M ; ∥f∥(p,q,b) < ∞}.

The definition of Lorentz–Karamata spaces is conceptually similar to that of
Lorentz and (generalised) Lorentz–Zygmund spaces which preceded them; need-
less to say, these predecessors are included in the class (among many others). On
the other hand, Lorentz–Karamata spaces are themselves included in the wider
class of classical Lorentz spaces. The main usefulness of the Lorentz–Karamata
spaces lies in the fact, that they are on one hand quite general, while on the other
hand their definition is specific enough to make the spaces manageable; in this
regard they are similar to their above-mentioned predecessors.

3.1 Paper (III): Lorentz–Karamata spaces
This paper is a comprehensive study of Lorentz–Karamata spaces which provides
complete characterisation for many of their fundamental properties. This is in
contrast with the existing literature, where the papers are usually focused on ap-
plications (e.g. [2] or [20]) and thus contain only partial results necessary for their
particular topic of interest. There are some exceptions which go deeper (e.g. [11]
or [31]), however those consider a much more restricted definition of s.v. functions
(and thus the derived Lorentz–Karamata spaces) than is appropriate, either by
requiring that the behaviour near zero be the same as that near infinity or by
using the condition (D1).

We cover a wide range of topics, including a complete characterisation of
normability, description of the corresponding fundamental functions and end-
point spaces, Boyd indices, embeddings, absolute continuity of the quasinorm,
and description of the associate spaces. We would like to stress especially the
description of associate spaces in limiting and sublimiting cases (i.e. when either
p ∈ {1,∞} or when q ∈ (0, 1]∪{∞}) which is rather involved and, to our knowl-
edge, only few of the cases have been treated before even when considering the
more restrictive definitions of s.v. functions as outlined above.

Throughout the paper, we employ a variety of techniques, opting for direct
and elementary proofs when possible, resorting to the powerful abstract tools
only when necessary to provide optimal results.
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3.2 Paper (IV): On the smoothness of slowly
varying functions

This paper is directly motivated by our work in Paper (III), where it turned out
that in some endpoint cases the description of the Lorentz endpoint spaces could
be made significantly more elegant if the s.v. functions defining those spaces were
assumed to be differentiable in the classical sense. The question then naturally
arose, whether such an assumption could be made without loss of generality.
Paper (IV) provides a positive answer to this question, as its main result shows
that for every s.v. function b there is an equivalent (and thus also slowly varying)
function c (i.e. we have c ≈ b) which has continuous classical derivatives of all
orders.

We prove our result by using a mollification technique, which we have suitably
modified to be compatible with this setting, and new techniques for decomposing
and combining s.v. functions. To be more precise, the direct mollification of
an s.v. function yields an equivalent (and thus s.v.) function only when the original
function has finite positive limit at zero. Hence, an arbitrary s.v. function b has
to be first decomposed into two parts, each containing either the information
about the behaviour of b near zero or near infinity and with both satisfying
this extra assumption. These can than be mollified and combined together to
obtain the desired smooth function c. Needless to say, a careful application of the
properties of s.v. function is necessary in every step (decomposition, mollification,
recombination) to ensure that the function c indeed has the desired properties.
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4. Applications of function spaces
The last two papers contain some applications of function spaces to other prob-
lems. Both of the papers are focused on problems related to the important class
of Sobolev spaces:

Definition 4.1. Let X be a Banach function space over (R, µ), where Ω ⊆ Rn is
open and connected and µ is absolutely continuous with respect to the Lebesgue
measure. Let further m ∈ N . Then the homogeneous and inhomogeneous Sobolev
spaces V mX(R, µ) and WmX(R, µ), respectively, are defined as

V mX(Ω, µ) = {f ∈M; f is m-times weakly differentiable,

|∇mf | ∈ X},
WmX(Ω, µ) = {f ∈M; f is m-times weakly differentiable,

∀k ∈ N, k ≤ m : |∇kf | ∈ X},

with the natural norms

∥f∥VmX(Ω,µ) =
⃦⃦
⃦⃦ |∇mf |

⃦⃦
⃦⃦
X

,

∥f∥WmX(Ω,µ) =
m∑︂

k=0

⃦⃦
⃦⃦ |∇kf |

⃦⃦
⃦⃦
X

.

When µ is just the restriction of the usual Lebesgue measure λn, we will omit
it from the notation. If X = Lp then we will simplify the notation of V mLp and
WmLp to V m,p and Wm,p, respectively.

Sobolev embeddings via isoperimetric inequalities
Since the pioneering work of Maz’ya in [29] and [30], it has been known that the
first-order Sobolev embeddings follow from either isoperimetric or isocapacitary
inequalities and that they are equivalent under some additional assumptions on
the domain. Recently, it has been shown in [10] that (under some mild assump-
tions on the domain) the same is true for higher-order embeddings. The core
step of their result is the so-called reduction principle, which tells us that, given
r.i. Banach function spaces X, Y over (Ω, µ) (normalised such that µ(Ω) = 1),
the embedding

V mX(Ω, µ) ↪→ Y (Ω, µ)
follows, if the operator Hm

I , defined for a given f ∈M((0, 1), λ) by

Hm
I f(t) = 1

(m− 1)!

∫︂ 1

t

f(s)
I(s)

(︄∫︂ s

t

1
I(r) dr

)︄m−1

ds, (4.1)

is bounded from the representation space of X to the representation space of Y ,
where both representation spaces being considered with respect to the measure
µ. The converse implication again requires some additional assumptions on the
domain. Here, I is an increasing function that is smaller near zero than the
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isoperimetric profile of Ω. The operator Hm
I is the result of composing with itself

m-times the simpler operator HI , defined for a given f ∈M((0, 1), λ) by

HIf(t) =
∫︂ 1

t

f(s)
I(s) ds,

which appears in the previously known reduction principle for the first-order
Sobolev embedding (see [9], [12] or [27]). This corresponds naturally to the fact
that the higher-order Sobolev embeddings in [10] were obtained through iteration
of first-order Sobolev embeddings that were known to be optimal in the class of
r.i. Banach function spaces.

It is worth noting, that the formula for the operator Hm
I simplifies for many

cases of domains with specific isoperimetric profiles. For example, if Ω is a John
domain (Rn, n ≥ 2), then its isoperimetric function IΩ is known to satisfy

IΩ(s) ≈ s
1
n′

near zero, where n′ = n
n−1 . If we put

I1 = s
1
n′ , Im = s

n−m
n ,

then it holds for every f ∈M((0, 1), λ) that

Hm
I1 f(t) ≈ HImf(t).

However, this is not the case for other choices of I (and thus for domains with
more complicated isoperimetric profiles); hence the more general operators of the
form (4.1) have to be considered. An important example of a setting where this
behaviour is manifested are the Gauss–Sobolev embeddings, see e.g. [9].

In Paper (V) we study operators similar to those defined in (4.1), except that
we consider them on M((0,∞), λ) instead of M((0, 1), λ).

Gagliardo–Nirenberg inequality
A pivotal result in the theory of Sobolev spaces and their applications is the
much celebrated (to put it mildly) Gagliardo–Nirenberg inequality which was
first independently obtained by both Gagliardo in [19] and Nirenberg in [32].
The result, in its most general form for the classical Sobolev spaces over Rn,
states the following:

Theorem 4.2. Let 1 ≤ q ≤ ∞, j, k ∈ N with k < m, and either
⎧
⎨
⎩

r = 1
k
m
≤ θ ≤ 1

or

⎧
⎪⎪⎨
⎪⎪⎩

1 < r < ∞
m− k − n

r
∈ N

k
m
≤ θ < 1

.

If we set
1
p

= k

n
+ θ

(︃1
r
− m

n

)︃
+ 1− θ

q
,

then there exists a constant C, depending only on the parameters listed above,
such that it holds for every u ∈ Lq(Rn) ∩Wm,r(Rn) that

∥∇ku∥p ≤ C∥∇mu∥θr∥u∥1−θ
q .

15



We adopt this formulation from the paper [17] where one can also find a
complete elementary proof and interesting historical context.

This result, because of its enormous usefulness in the field of partial differential
equations, sparked an impressive development which led to a plethora of distinct
variants and generalisations of the original inequality. We shall not attempt to
provide a summary of these results or an overview of the vast literature, but a
good starting point for the reader interested in the topic would probably be the
papers [5] and [16], as they cover the state of the art in two of the major directions
of research. In Paper (VI), we join this endeavour by proving a certain strongly
non-linear version of the inequality on bounded Lipschitz domains.

4.1 Paper (V): Reduction principle for a certain
class of kernel type operators

In this paper we prove a reduction principle for Copson-type operators of the
form

Hm
I f(t) = 1

(m− 1)!

∫︂ ∞

t

f(s)
I(s)

(︄∫︂ s

t

1
I(r) dr

)︄m−1

ds,

where m ∈ N and I : (0,∞) → (0,∞) is a non-decreasing function. We were
inspired by [10, Theorem 5.1], where it had been proven that we have for any given
pair of Banach function spaces X, Y over the interval (0, 1) that Hm

I : X → Y
if and only if the restriction of Hm

I to the cone of non-increasing function is
bounded in the same sense. We show that under some additional assumptions on
the function I the result holds also for Banach function spaces over the interval
(0,∞).

The operators of this form are closely related to Sobolev embeddings (with I
being some lower bound for the isoperimetric function of the underlying domain),
which was the motivation for their study in [10]. The assumptions in question
are not too strong and they are satisfied for many of the choices of I that may
arise naturally in this context. For example:

(i) if m = 1 then the result holds for any non-decreasing I,

(ii) if I(t) = tα with α ≥ 1 then the result holds for any m ∈ N.

Our proof follows roughly the same lines as the original one in [10], with
some necessary modifications that address the problems introduced by the un-
boundedness of the underlying interval. The key ingredients of the proof come
from the theory of Banach function spaces; especially the concept of the so-called
down-dual space plays a crucial role.
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4.2 Paper (VI): Nonlinear Gagliardo–Nirenberg
inequality and a priori estimates for nonlin-
ear elliptic eigenvalue problems

This paper is dedicated to obtaining inequalities of the form
∫︂

Ω
|∇u(x)|2h(u(x)) dx ≤ C

∫︂

Ω

(︃√︂
|Pu(x)||TH(u(x))|

)︃2
h(u(x)) dx + Θ;

where Ω ⊂ Rn is a bounded Lipschitz domain, u ∈ W 2,1
loc (Ω) is non-negative, P is

a uniformly elliptic operator in non-divergent form (in general with non-constant
coefficients), TH(·) is certain transformation of the non-negative continuous func-
tion h(·), and Θ is a boundary term which depends on the boundary values of u
and ∇u; which holds under some additional assumptions. Several different ver-
sions of the inequality are proved; first we prove the comparatively weak version
which holds under minimal assumption and then show how different sets of addi-
tional assumptions allow for obtaining the stronger versions. In the second half of
the paper we then present possible applications of our result, mainly to obtaining
a priory estimates for non-linear PDEs but also to some other problems.

The paper follows up on the earlier work done by Kalamajska and Peszek in
[23] and [24] and by Choczewski and Kalamajska in [7] and [8], where less general
versions were obtained. The notable difference is that our paper considers the
operator P with non-constant coefficient which makes the analysis significantly
more involved.
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