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and IT support. To Štěpán for coming in time so that I wouldn’t go crazy and
to Kuba for putting up with me through it all.

Next, I would like to thank my supervisor, Ondřej Souček, for being the best
supervisor one could ask for and for his endless help and patience (with my stupid
mistakes and forgetfulness).

Additionally, I thank all my fellow office cohabitants mainly for their friend-
ship and valuable advice, but also for other menial tasks such as watering the flow-
ers and scanning forgotten materials during home offices. I also thank Frantǐsek
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Abstract: Within this Ph.D. project, we have developed and validated a modeling
methodology for the evaluation of the influence of friction in regional and global
models of tidal deformation in icy bodies. We focus on the role of friction in two
specific scenarios: (i) strike-slip faults within Europa’s ice shell (expanding the
model by Kalousová et al. (2016)), and (ii) the frictional behavior of fault system
known as ’tiger stripes’ at the south pole of Enceladus, building upon the 3D
model of Enceladus’ ice shell developed by Souček et al. (2019).
Ad (i), we have developed a mathematical model predicting slip at the strike-
slip fault, its neighboring bulk’s deformation, and the region’s thermal evolution
driven by two dissipative processes. First, our investigation focuses on the mecha-
nism of meltwater generation, where results indicate a limited potential for gener-
ating near-subsurface meltwater and its confinement to the fault region. Second,
we confirmed the physical validity of the ’tidal walking’ concept, a theoretical
model for generating lateral offsets on Europa’s strike-slip faults. We show that
fault penetration across the entire shell or reaching a sufficiently low-viscosity
zone is necessary for producing observable offset, which is unlikely under current
europan conditions. Also, our model’s quantitative assessment of the associated
surface heat fluxes indicates that measuring thermal anomalies on Europa’s sur-
face might lead to the differentiation of active faults.
Ad (ii), we extended the numerical model by Souček et al. (2019), by includ-
ing Coulomb-type friction in the description of tiger stripes, which introduces
a mechanical asymmetry in the response of faults between the periods of normal
loading and unloading, resulting in a stress redistribution with potential geomor-
phological implications. We also observe an intriguing correlation between the
brightness of the plumes and tangential displacement at the faults, and the strong
dependence of Enceladus’ tidal deformation on the friction coefficient. Finally,
we present a proof-of-concept for incorporating a more realistic rate and state
frictional model in future 3D models of Enceladus’ ice shell.
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Preface
An in-depth examination of the icy moons in the outer Solar system through
space missions, namely Cassini-Huygens (exploring Saturn’s system) and Galileo
(investigating Jupiter’s system), yielded unexpected findings. Rather than life-
less rocky bodies, these missions revealed dynamically active entities. While the
notion of water presence on Europa had been theorized decades ago, the most
astounding revelation came with the identification of active vapor plumes on
Enceladus. This discovery not only demonstrated the availability of sufficient
energy to propel water at speeds exceeding the escape velocity, providing a re-
markable link between Enceladus’ geysers and Saturn’s E ring but also confirmed
the existence of liquid water. But where does this energy originate? And how is
it possible to sustain an ocean in such a small and distant celestial body where
solar radiation is feeble? The answer lies in the phenomenon of tides.

Most people commonly understand tides as the daily motion of the sea level.
The dynamical cause of this phenomenon is the interplay between gravity and
centrifugal forces in a binary (or more complex) system of a planet and its moon.
In the icy moon context (Saturn and Enceladus or Jupiter and Europa), tides may
have a huge dynamical impact on such an interacting system, affect the orbital
characteristics, and, due to the incessant distorting of the moon’s/planet’s shape,
generate dissipative heat that provides the source for internal dynamics and/or
may sustain a liquid ocean.

Since the initial revelation of vapor plumes on Enceladus, similar plumes have
been observed on Europa, and subsurface oceans have been confirmed on several
moons within the outer Solar system. Tides continue to provide explanations for
an increasing number of questions. Nevertheless, many aspects evade complete
understanding, such as the timing of plume activity on Enceladus, the underlying
reasons for the suggested presence of subsurface water lakes on Europa, and
the mechanism behind the lateral offset on Europa’s strike-slip faults, known as
“tidal walking”. This thesis endeavors to approach comprehensive answers to
these inquiries by enhancing numerical models of tidal deformation through the
inclusion of friction.
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1. Icy moons - geology and tides
In this chapter, we will provide a brief overview of the two icy moons that are
the focus of our study, namely Europa and Enceladus. We will present essential
geological information to establish the necessary context and introduce the fun-
damental concept of tides, which serve as the primary driving force behind the
modeled dynamical phenomena.

1.1 Europa

1.1.1 Exploration and interior structure

Figure 1.1: The interior structure of Europa. Background image: courtesy of
JPL NASA.

Galileo Galilei discovered the four large Jovian moons - Europa, Io, Ganymede,
and Callisto - in 1610. Amongst these (nowadays called Galilean satellites) Eu-
ropa is the smallest with a radius of 1565 kilometers. The first spacecraft views
of Europa were provided by the Pioneer 10 (launched in 1972) and Pioneer 11
(launched in 1973) missions. Subsequently, the Voyager 1 and 2 flybys in 1979
delivered the initial evidence of geological activity on Europa (e.g., Smith et al.,
1979a,b).

A significant breakthrough in our understanding of Europa occurred with the
arrival of the Galileo spacecraft in 1996. This mission provided high-resolution
images and measurements that allowed for inferences about the moon’s internal
structure, including the potential presence of liquid water. Gravitational data,
as presented by Anderson et al. (1997), indicated that Europa is fully differen-
tiated, featuring a metallic core, a silica mantle, and an outer layer of water,
see Figure 1.1. Magnetic measurements conducted by Khurana et al. (1998) and
Kivelson et al. (2000) revealed that the water layer consists of a global ocean
beneath an ice shell. This confirmation of liquid water made Europa one of the
first celestial bodies in space where the presence of such an ocean was verified.

The increasing knowledge about Europa continues to fuel our intrigue. The
presence of a young surface and recent observations of water plumes (Roth et al.
(2014), Sparks et al. (2016), Sparks et al. (2017), Jia et al. (2018)) strongly suggest
that Europa is a geologically active celestial body. The morphological evidence
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further indicates the possibility of near-surface meltwater, which could potentially
make Europa’s water, and a hypotetical life, more accessible compared to other
celestial bodies. These remarkable characteristics have positioned Europa as
a significant target for space missions with immense astrobiological potential.
Currently, there are two ongoing space missions dedicated to exploring Europa.

• Europa Clipper National Aeronautics and Space Administration’s mission
with a launch target on October 2024 (https://europa.nasa.gov)

• JUICE European Space Agency’s mission targeting Jupiter and three of
its icy moons in depth (Ganymede, Callisto and Europa) launched in 2023
(https://sci.esa.int/juice).

Europa’s ice shell

The thickness and thermal structure of Europa’s outer ice shell are still not well
constrained. Estimates of the shell’s thickness range from less than 10 kilome-
ters to more than 40 kilometers (Billings and Kattenhorn, 2005). Regarding the
thermal state, the circular features observed on the surface suggest the occur-
rence of convection during their formation (Pappalardo et al., 1998). However,
the current thermal state of the ice shell remains unclear (Barr et al., 2009).
Determining whether the shell is in a convective or conductive state depends on
the thickness and viscosity structure of the ice shell. Currently, no observations
provide a definitive assessment of its state.

Pappalardo et al. (1999) proposed a model combining a brittle layer at the
top with a ductile (possibly convecting) layer at the bottom. On the other hand,
Hussmann and Spohn (2004) demonstrated that the thickness and, consequently,
the thermal state of the ice shell could have varied by several tens of kilometers
over the course of Europa’s evolution.

1.1.2 Europa’s geomorphology
Europa has a relatively high geometric albedo of 0.67 (Buratti and Veverka, 1983)
caused by the presence of water ice. Pure ice lies on the leading hemisphere,
while on the trailing hemisphere, hydrated salts or hydrated sulfuric acid have
been suggested (McCord et al., 1998; Carlson et al., 1999), see the mosaic of the
leading hemisphere and real color image of the heading hemisphere on Figure 1.2.
On Europa’s geologically young surface (Bierhaus et al., 2009, 40 - 90 Myr) global
tension prevails while crustal convergence features are harder to spot (Kattenhorn
et al., 2009). While many fracture patterns can be correlated with diurnal tidal
forces and the long-term effects of non-synchronous rotation, these forces are not
sufficient to explain all patterns; additional stress sources are required, such as
orbital evolution, polar wander, finite obliquity, ice shell thickening, endogenic
forcing by convection and diapirism or secondary effects driven by strike-slip
faulting and plate flexure (Kattenhorn et al., 2009).

Extensional tectonics

Several lines of evidence support the extensional formation model suggested for
the majority of landforms on Europa’s surface:
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Figure 1.2: Left: trailing hemisphere of Europa taken by the Galileo spacecraft,
right: a mosaic of the leading hemisphere. Courtesy of NASA/JPL Caltech.

1. Ice is mechanically weak under tension at europan conditions.

2. Europa’s near-surface experiences tensional stresses on a daily basis due to
the oscillating tidal bulges caused by gravitational interactions with Jupiter
and other Jovian moons.

3. Some of the lineaments (linear features) on Europa’s surface appear in mul-
tiple parallel sets, resembling tension joints observed on Earth.

4. Most lineaments on Europa’s surface do not show lateral offsets, indicating
pure extensional deformation.

5. Clear evidence of complete dilational separation of parts of the ice shell can
be observed in images captured by the Galileo spacecraft; see “Dilational
bands” below.

Figure 1.3: Left: Double ridge (mosaic of two pictures taken by Galileo, image
courtesy of NASA/JPL-Caltech). Right: Several examples of features on Eu-
ropa’s surface (Kattenhorn et al., 2009).
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We now briefly describe the extensional features found on europan surface in
more detail.

Ridges
Ridges are a few to a thousand kilometers long, with topography up to hundreds
of meters and characteristic width of hundreds of meters (with a maximum of
five kilometers), see Figure 1.3. They can be found in the oldest ridged plains,
but they are also part of some of the youngest geological regions, making them
the most persistent feature on Europa.

Formation models include volcanism, tidal squeezing, diapirism, compression,
and shear heating. In addition, Dombard et al. (2013) proposed a cryovolcanic
sill model (see Chapter 2 for more information). Regardless of the precise forma-
tion mechanism, each individual ridge has been built in a relatively short period
of time, with estimates varying from ten thousand (Nimmo and Gaidos, 2002;
Melosh and Turtle, 2004) to up to thirty thousand years (Greenberg et al., 1998).

Cycloids
Since the cycloid’s lengths range from hundreds to thousands of kilometers, they
were first recognized even on Voyager images; see Figure 1.4. Each segment of
a cycloid, typically tens of kilometers long, is linked to the adjacent one by a cusp.
Except for one possibly analogous feature in the south pole of Enceladus, cycloids
are unique features in the whole Solar System.

Figure 1.4: Left: Cycloid from Kattenhorn et al. (2009). Right. Chaos terrain.
Image courtesy of NASA/JPL-Caltech.

Hoppa et al. (1999a,b) proposed that cycloids formed due to tensile cracking
in response to diurnally varying tidal stresses. As the orientations of the principal
stresses rotate, and the magnitudes oscillate at any location on the surface during
the orbital period, the cycloids develop perpendicular to the rotating direction of
maximum tensile stress with a substantial speed of three to five kilometers per
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hour, or even more (Lee et al., 2005).

Dilational bands
The dilational bands (see the right part of Figure 1.3) are composed of a new
crustal material that intruded between the progressively dilating walls of a ten-
sional fracture; hence they represent a proof of resurfacing process. They are
typically hundreds of kilometers long and less than thirty kilometers wide (com-
monly a few kilometers), with a topography elevated up to two hundred meters
with respect to the surrounding area.

Two categories of dilational bands can be found on Europa: smooth and lin-
eated. They have formed either by the dilatational cracks penetrating the shell
completely and exposing the water to freeze as a new smooth material (Tufts
et al., 2000) or through the brittle part of the shell dilating slowly enough for the
ductile ice to undergo buoyant upwelling.

Troughs
Troughs (see the right part of Figure 1.3) are the youngest extensional features
identified on Europa; they probably gave rise to most of the others. These tension
fractures assumably initiated at the surface and then propagated downwards up
to a certain depth which is dependent on the stress available to overcome the
overburden pressure.

Hoppa et al. (1999a) calculated that troughs would penetrate less than ap-
proximately sixty-five meters if formed by diurnal stresses; however, if crack-tip
stresses and porous ice are considered, the cracks can pierce even several kilome-
ters deep ice shell. Taking into account additional stresses due to the nonsyn-
chronous rotation, up to thirteen kilometers thick ice shell might be ruptured by
the throughs (Lee et al., 2005).

Normal faults
The last form of extensional tectonics observed on Europa is normal faulting,
evidenced by fault scarps showing a component of vertical motion for which a de-
viatoric tension is necessary. The majority of normal faults are present as fine
striations within lineated bands comparable to Earth‘s mid-ocean ridges. Nor-
mal faulting has also extended some of the dilational bands after their original
formation. Rarely a vertical displacement of approximately 300 meters is present
in ridged plains (Nimmo and Schenk, 2006).

Compressive tectonics

Even though Europa has probably experienced cooling and thickening of the ice
shell, which could partly explain the prevalence of extension, given the number
of extensional features, some contraction should be visible on the current surface.
Nevertheless, compressive tectonics is scarce.

On Earth, apart from subduction, which was suggested for Europa by Kat-
tenhorn and Prockter (2014), compression can occur along deformation bands,
and pressure-solution surfaces, by the development of thrust faults or through
elastic warping and folding.
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Folding
Folding is manifested via parallel folds within the dilational bands. Even though
folds may relax due to the presence of warm and thus ductile ice, according to
Dombard and McKinnon (2006), the relaxation is so slow that folds should be
visible in current images.

Convergence bands
Convergence bands are places where tectonic reconstruction reveals a zone of
missing crust. Two types are present, either those driven by the motion along
strike-slip faults or those along zones of pre-existing weakness. Another possibil-
ity lies in the misidentification of convergence bands as dilational bands.

Contraction across ridges
Some of the double ridges present evidence of lateral offset, which can be partially
driven by convergence. Nimmo and Gaidos (2002) suggested that heating may
result in a more mobile wedge of ice alongside a shearing lineament, causing lo-
calized weakness, where contraction may be accommodated. According to Vetter
(2005), ridges that also exhibit contraction show a larger amount of strike-slip. If
most of the contraction would be accommodated across ridges (Bader and Kat-
tenhorn, 2008), then a minimal amount of convergence would be needed elsewhere
since they are the most ubiquitous landform on the surface.

Lateral shearing

Figure 1.5: Examples of lateral offset from Hoppa et al. (1999a), on the left
examples of right-lateral motion in the wedges region, on the right both left- and
right-lateral motion in the Conamara Chaos region.

The lateral offset occurs on Europa, probably thanks to the reactivation of
existing faults; see Chapter 2 and Figure 1.5. Since troughs, ridges, and dilational
bands have originated from extension, they are all prone to reactivation by diurnal
stresses; however, in general, the offset can develop on any lineament and is
also observed on normal faults in the form of oblique-slip motions. Based on
the observations of cumulative offsets on Galileo images (more than hundreds of
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meters are needed for distinguishing the offset) Kattenhorn (2004) divides strike-
slip faults on Europa into ridge-like and band-like.

The ridge-like faults probably developed from throughs, and the offset was
formed later, possibly leading to the development of ridges (Nimmo and Gaidos,
2002; Kalousová et al., 2016). Concerning the band-like strike-slip faults, the
timing of the development of offset is much more difficult, as it is unclear whether
it developed prior, during, or after dilation. According to Kattenhorn (2004),
on examined band-like faults, the strike-slip offsets accumulated while dilatating.
Band-like faults have typical lateral offsets of tens of kilometers (e.g., 77 km along
Astypalaea Linea), whereas the offsets for ridge-like faults usually range from
hundreds of meters to several kilometers (Hoppa et al., 2000) with an extreme
case of 83 km (Sarid et al., 2002).

Since lateral offset is not visible on all ridges, two formation scenarios are
possible: either other processes are needed for the ridge production, and they
can produce ridges separately, or sometimes the shear motion is strong enough to
heat the ice to construct the ridge but results in zero or unresolvable cumulative
offset.

Chaotic terrain

One-quarter of Europa‘s surface is occupied by the chaotic terrains formed
through the disruption of the preexisting surface into isolated plates and lumpy
matrix material between these plates (Carr et al., 1998). Conamara chaos is
a prominent example of chaotic terrain, with approximately sixty percent of its
area taken by the matrix and the rest by the blocks (Spaun et al., 1998). Domes,
spots, and pits together called lenticulae (small features) can also host chaotic
terrains.

The disrupted terrain plates usually measure from one to twenty kilometers
across and are topographically elevated with respect to the surrounding matrix.
Many of them have moved from their original position, some rotated around their
vertical axes, and several have tilted (Spaun et al., 1998). The surrounding matrix
is formed by a collection of ice pieces sized from tens of meters up to a kilometer.

Several formation models have been proposed: melting through the ice shell
(Greenberg et al., 1999), thermally or compositionally buoyant diapirs, or even
a hybrid model of the previous two. Also, an exogenic impact was proposed by
Billings and Kattenhorn (2003). And finally, a lense collapse model, where water
lenses formed due to eutectic melting at three kilometers depth and have allowed
ice blocks to move and subsequently refreeze (Schmidt et al., 2011).

1.2 Enceladus

1.2.1 Exploration and interior structure
Enceladus is a small moon of Saturn with a radius of 252 kilometers and the
highest albedo (0.99) in the whole Solar System caused by fresh, clean ice covering
the surface. Enceladus was discovered by William Herschel in 1789 (Herschel,
1790) and named 60 years later by his son John after a Greek mythological giant.
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The understanding of Enceladus is tightly connected to the discovery (and
understanding) of the Saturn’s E ring, which is being fed by Enceladus’ cryovol-
canism (Postberg et al., 2008). The Pioneers 10’s and 11’s flybys of Saturn led
to the discovery of Saturn’s F ring, skipping the letter E in the naming of the
rings in anticipation of E ring discovery, later confirmed by Voyager 1’s images
(Showalter et al., 1991).

The first spacecraft images of Enceladus were provided by Voyager 1 in 1980,
followed by a closer look from the Voyager 2 mission in 1981, showing few craters
and numerous smooth areas together with extensive linear cracks (Dougherty
et al., 2018). The two Voyager missions brought the first direct indication of
current activity. The high albedo, together with the peak in the density of Sat-
urn’s E ring near the orbit of Enceladus (Showalter et al., 1991) and the expected
short lifetime of E ring particles, hinted at the possibility of geyser-like activity
on Enceladus (Haff et al., 1983; Pang et al., 1984).

A major breakthrough in understanding Enceladus came with the Cassini
mission, which entered Saturn’s orbit in 2004. The magnetometer observations
in the two first flybys revealed apparent perturbations near Enceladus, explained
by the MAG team as a diffuse extended atmosphere. Consequently, the MAG
team advocated for reducing the height of the third flyby to mere 173 km.

In July 2005, many Cassini instruments simultaneously discovered geysers
emanating water vapour and ice particles from the south pole of Enceladus re-
supplying the E ring (Dougherty et al., 2018). Thereupon, Enceladus became the
main focus of Cassini’s extended missions, namely the Cassini Equinox Mission
(2008 - 2010) and the Cassini Solstice Mission (2012 - 2017), providing us with
an enormous amount of information, which are being processed until today.

Figure 1.6: Left: Comparison of expected thermal profile of Enceladus and
an actual infrared (heat) radiation measured during the third flyby (courtesy
of NASA/JPL/GSFC). Right: A 3D map of all 98 jets emanating from the tiger
stripes (Porco et al., 2014).

In 2005, the temperature map of Enceladus showed large anomalies on the
south pole, see Figure 1.6 left, from where the active geysers are emanating. The
jets erupt from fractures near the south pole, informally called “tiger stripes”
(Porco et al., 2006), see Figures 1.6 and 1.7 right. The activity of the jet plumes
varies significantly depending on the position of Enceladus in its orbit, indicating
that it is related to periodic variations in tidal stress (Hurford et al., 2007; Hedman
et al., 2013; Nimmo et al., 2014; Ingersoll et al., 2020). However, until today the
temporal variations in the activity have not been completely explained by any
model.
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The plume samples collected by Cassini were shown to include molecular
hydrogen and silica nanoparticles hinting at a hydrothermal system connected
to the silicate-rich core (Hsu et al., 2015; Waite et al., 2017; Schoenfeld et al.,
2023), making Enceladus one of the top candidates for hosting extraterrestrial
life (Angelis et al., 2021). On Earth, the hydrothermal systems aspire for the
origin of life, and even today, they still are an active ecosystem. On the other
hand, if life requires surface environments for its origin and if panspermia has
not been effective on Enceladus, then its ocean might be habitable but unin-
habited. To resolve this enigma, near-term missions are being planned to search
for biomolecules in plume materials. Analogous environments to the subsurface
ocean on an icy moon include dark, anoxic water bodies virtually sealed by ice,
anaerobic chemoautotrophic microbial ecosystems, and low-temperature alkaline
hydrothermal vents.

Enceladus is differentiated into a silicate - possibly porous (Choblet et al.,
2017) - core and a water layer. The joint inversion of the gravity (Iess et al., 2014),
topography (Tajeddine et al., 2017), and libration data (Thomas et al., 2016)
points at the presence of a global ocean beneath a thin ice shell, see Figure 1.7.

Figure 1.7: Left: A sketch of the approximate inner structure of Enceladus. Right:
A visualization of our mathematical model of Enceladus with finite element mesh
refined in the vicinity of tiger stripes, the image is turned, “tiger stripes” and
their mesh representation are shown in the north pole. Image courtesy of Ondřej
Souček.

1.2.2 Enceladus’ geomorphology
Based on Voyager 2’s highest resolution coverage Smith et al. (1982) showed that
the surface of Enceladus has distinct provinces with different crater densities
confined by major tectonic contacts. The provinces were called cratered terrain,
cratered plains, ridged plains, and smooth plains. This diversity has been later
on specified with the usage of better-resolution data to cratered terrain, trail-
ing hemisphere terrain, leading hemisphere terrain, and south polar terrain, see
Figure 1.8 from Crow-Willard and Pappalardo (2015). The massive differences
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Figure 1.8: Simple cylindrical global image mosaic with superimposed map units
and structures from Crow-Willard and Pappalardo (2015). Crosses mark the
leading point (L) and trailing point (T).

between the tectonic terrains of leading and trailing hemispheres, cratered ter-
rain, and the geologically active south polar terrain imply complex history and
probably several different endogenic processes taking place in the ice shell.

South Polar Terrain (SPT)

The geologically youngest area of Enceladus - the South Polar Terrain (SPT) -
is characterized by a low topography surrounded by a tectonic belt (Patterson
et al., 2018). The SPT might have formed in the south pole, or it might have
migrated as a mass anomaly. The whole area is massively fractured with four
sub-parallel linear depressions (the tiger stripes) standing out, see Figure 1.9.
Damascus, Baghdad, Cairo, and Alexandria are approximately 2 kilometers wide
and 130 kilometers long features spaced 35 kilometers apart. The tiger stripes
correlate with the pattern of increased heat flux (e.g., Spencer et al., 2018) and
the positions of Enceladus’ jet plumes, see Figure 1.6 and Porco et al. (2006).

In addition to the major tiger stripes faults, there are other fractures in the
SPT region of Enceladus with different orientations (Patthoff and Kattenhorn,
2011). The origin of these fractures has been suggested to be the result of long-
term effects of non-synchronous rotation stresses or gravitational collapse along
a shallow detachment fault above a thermal anomaly (Patthoff and Kattenhorn,
2011; Yin and Pappalardo, 2015). The deformation of the polygonal tectonic belt
that encloses the SPT, the spoke-like chasmata that extend radially northward
from the SPT, and the tectonic dissection of relatively older terrains around
the SPT have probably been affected by the tectonic activity in SPT as well
(Patterson et al., 2018).
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Figure 1.9: Polar stereographic projection of Enceladus’ south polar region with
noted names of the tiger stripes (Goldstein et al., 2018).

Trailing and Leading Hemisphere Polar Terrains (THT and LHT)

The intermediate stage of Enceladus’s geological activity is recorded within older
(based on crater densities (Crow-Willard and Pappalardo, 2015; Kinczyk et al.,
2017)) Trailing Hemisphere Terrains (THT) and younger Leading Hemisphere
Terrains (LHT). As the SPT, both these areas are partially or fully enclosed by
the circumferential belts. In addition, two distinct areas (Cufa Dorsa and Ebony
Dorsum) lying in the THT, share structural characteristics with SPT and possibly
record tectonic deformation over multiple generations.

The LHT resembles the SPT even more with its complete belt and ridges
with throughs in the central region. The similarities between the three regions
also mirror the coronae of a uranian satellite Miranda which has a similar size as
Enceladus with a radius of approximately 235 kilometers. Since the tectonized
terrains of Enceladus (as in Miranda’s case) are placed along the principal inertia
axis, long-lived mass anomalies have been suggested as the formation mechanisms
for THT and LHT. However, the connection between the formation of these
terrains (SPT, THT, and LHT) is still feeble since features similar to the tiger
stripes, and the Y-shaped structural discontinuities have not yet been found in
the latter two.

Cratered plains

The earliest stages of geological activity can be observed in the cratered plains,
where crater density analysis suggests age of more than a billion years. The
presence of subsurface heat flows is indicated by the observation of topographic
basins and topographically relaxed craters. Subdued ridges and troughs in the
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equatorial regions, together with anomalously low small-crater densities, hint at
an ancient resurfacing event. Although pit chains orientation points at much
more recent activity, possibly produced due to nonsynchronous rotation stresses.

Summary

Altogether the geological evidence indicates that at least some of the tectonic
history of Enceladus is related to the global tidal deformation of the ice shell,
while other geological structures are consistent with a nonsynchronous rotation
of the ice shell above the global ocean on a timescale ranging from a hundred
thousand to million years.

1.3 Tides on icy moons
Tides represent a physical phenomenon resulting from a localized imbalance be-
tween the gravitational force exerted by the companion body and the centrifugal
force acting on the adjacent and distant sides of the moon, leading to its de-
formation. The measurement of tidal response serves as a universal method for
investigating the interior structure of moons. Similar to the tides experienced in
Earth’s oceans, the tides exerted on moons also exhibit variations on a diurnal
timescale, where the mechanical response of the body is primarily elastic. Al-
though relatively small, anelastic effects resulting from viscoelasticity, plasticity,
internal friction, and the dissipation of mechanical energy can contribute signif-
icantly to the internal energy budget over geological timescales. Consequently,
these processes gradually modify the internal structure of the moon, leading to
changes in its tidal response and facilitating feedback among its thermal, orbital,
and rotational evolution. Particularly on icy moons like Europa or Enceladus,
tidal forcing potentially acts as a substantial energy source, enabling the forma-
tion and long-term sustenance of internal oceans.

Figure 1.10: Figure from Dombard (2007) showing Enceladus‘ tidal bulge varying
in size (exaggerated) due to its eccentric orbit. Since the orbital and rotational
motions are out of phase, the position of Enceladus’s tidal bulge oscillates around
a fixed point (red crosses; pink cross indicates the point on the far side of the
planet).
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Let us now focus on Enceladus and examine the tidal forces acting upon it.
As depicted in Figure 1.10 from Dombard (2007), Enceladus follows a slightly
elliptical orbit around Saturn, characterized by a small but nonzero eccentricity
of e = 0.0047, which is maintained by a 2:1 orbital resonance with Dione. Ence-
ladus is in a state of synchronous rotation, meaning that its revolution around
Saturn takes the same time as its revolution around its own orbit. Under the
influence of tidal forces, Enceladus undergoes distortion, assuming an ellipsoidal
shape with its longest axis pointing toward Saturn. Due to its eccentric orbit,
the tidal bulge on Enceladus differs between the apocenter and the pericenter.
Additionally, according to Kepler’s second law, the orbital velocity also varies
throughout the orbit. As a result, the rotational and orbital motions of Ence-
ladus exhibit a slight phase difference. Consequently, the line connecting the
planet and the satellite oscillates around a fixed point on the moon’s surface,
as illustrated in Figure 1.10. The combined effect of these mechanisms leads to
a cyclic deformation of Enceladus’ shape, resulting in the dissipation of internal
energy on a diurnal timescale. This dissipation of energy, occurring over the long
term, drives geological activity on the moon.

In the case of Europa, a similar tidal mechanism operates, as its eccentricity
is excited by the Laplace resonance with Io and Ganymede, with a mean motion
ratio of 4:2:1. While Ganymede circles once around Jupiter, Europa orbits twice,
and Io passes around four times.

Figure 1.11: Saturn and its moon Enceladus with denoted m, a,Ψ and R
from tidal potential in eq. 1.1. Images of Saturn and Enceladus: courtesy of
NASA/JPL/Space Science Institute. The image is not to scale.

The dissipation of tidal energy can be quantified by precise astrometric obser-
vations of a moon’s orbit over time (e.g., Lainey et al., 2009). Since the magnitude
and phase of tidal deformation are influenced by the moon’s internal structure
and directly impact the amount of internal heating, understanding tidal defor-
mation is crucial for comprehending a moon’s energy budget and investigating
its internal structure (Kleer et al., 2019). Tidal forces can be best described and
examined in terms of the tidal potential characterizing the gravity influence of
the companion body. To the second order in eccentricity, the net tidal disturbing
potential can be expressed as (Hemingway et al., 2018):

Vtidal(Ψ) = GmR2

a3 P2(cos Ψ), (1.1)

where Ψ is the angle from the axis connecting the centers of the two bodies
at an arbitrary point on the satellite’s surface, G is the universal gravitational
constant, m is the mass of the parent body, R is the radius of the satellite, a is the
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distance between the centers of the two bodies, and P2 is the degree-2 Legendre
polynomial, see Figure 1.11.

Since Enceladus is roughly a million times less massive than Saturn and its
orbit is synchronous with its mean rotation rate, we can rewrite the potential
in terms of spin rate ω2 = Gm/a3. Moreover, Enceladus’s obliquity is close
to zero (<0.001, (Chen and Nimmo, 2011; Baland et al., 2016)), meaning that
Enceladus’s spin axis is nearly normal to its orbital plane, which allows us to
rewrite Ψ through colatitude ϑ and longitude ϕ as cosψ = cosϕ sinϑ. Hence
the tidal potential of Enceladus as a function of colatitude and longitude can be
expressed as follows:

Vtidal(ϑ, ϕ) = ω2R2
(︄

1
2Y20(ϑ, ϕ) − 1

4Y22(θ, ϕ)
)︄
, (1.2)

where Y20, Y22 are the spherical harmonic functions.
In Europa’s case, we can also use the spin rate since Jupiter is approximately

forty thousand times more massive than Europa. However, the usage of colatitude
and longitude would be more complicated since Europa’s obliquity is not well
constrained and is likely to be around 0.1◦ (Bills et al., 2009).
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2. Strike-slip faults on Europa -
generation of meltwater and tidal
walking
In this part of the thesis, we explore two phenomena related to strike-slip faults
on Europa by means of numerical modeling: the generation of near subsur-
face meltwater (Section 2.1) and the development of lateral offset through
a process called “tidal walking” (Section 2.2).

Figure 2.1: Figure from Pappalardo (2010) showing a set of double ridges on
Europa.

Two types of morphological terrains observed on the surface of Europa hint at
the presence of near-surface water. The first one is a double ridge, see Figure 2.1,
the most ubiquitous landform on Europa, consisting of a central crack or trough
flanked by two raised edifices, up to a few hundred meters high and less than
5 kilometers wide (Kattenhorn et al., 2009). Dombard et al. (2013) observed
fractures on the double ridge flanks and suggested a formation mechanism where
the ridge is grown due to underlain cryomagmatic sill, which locally heats and
thins the lithosphere, see Figure 2.2.

Figure 2.2: Figure from Dombard et al. (2013) presenting the formation of double
ridge through a cryomagmatic sill model.
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The second one is a chaotic terrain, which is a region of crustal disruption or
disaggregation. Schmidt et al. (2011) suppose the presence of subsurface meltwa-
ter when suggesting the formation of the chaotic terrain by the collapse of liquid
water lens. First, the rising thermal plume reaches the pressure-melting eutectic
point of the overlying ice while the surface subsides due to melting, and the hy-
draulic flow forms tensile cracks. The ice blocks are formed by the hydrofractures
from the melt lens and the matrix by the brine infiltration. In the end, the melt
lens and matrix refreeze, ascending the chaos feature above the surroundings.

To produce the subsurface meltwater, two major mechanisms have been pro-
posed: (i) increased tidal bulk dissipation in the top warm and low-viscosity parts
of rising hot plumes and (ii) melting through frictional heating and dissipation
in the surroundings of a strike-slip fault.

The possibility of generating larger water lenses associated with the first sce-
nario was ruled out by Kalousová et al. (2014), where the generated meltwater was
rapidly transported downwards by the porous flow. The second scenario, studied
numerically for the first time by Nimmo and Gaidos (2002), was in Kalousová
et al. (2014) considered as more plausible; however, later Kalousová et al. (2016)
showed that even in this case, the longevity of the subsurface water reservoirs
would be limited by a formation time of the Rayleigh-Taylor instabilities. In Sec-
tion 2.1, we will study the process of frictional heating associated with strike-slip
faults and related meltwater generation and its transport by means of numerical
modeling.

Figure 2.3: Examples of left-lateral offset from Hoppa et al. (1999a): from the
northern bright plains region (left), from the Tyre region (right).

A surface lateral offset of up to a few kilometers has been identified on a num-
ber of locations on Europa; see Figure 2.3 and Section 1.1.2 for more informa-
tion, indicating that strike-slip motion appeared on Europa’s surface. On Earth,
strike-slip motion occurs either through a primary shear failure if the intermediate
compressive principal stress is vertical and the horizontal differential stress ex-
ceeds the frictional strength or through reactivation of the pre-existing faults and
fractures due to temporal changes in the stress field (Anderson, 1905). While it is
not clear if the primary shear failure could produce lineaments on a global scale
(Kattenhorn et al., 2009), there is a convincing evidence for the shear fracture
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reactivation (Hoppa et al., 1999a; Sarid et al., 2002; Kattenhorn, 2004; Rhoden
et al., 2012). It was suggested that the reactivation might be induced by tidal
forcing through a process nicknamed “tidal walking” (Hoppa et al., 1999a), see
Section 2.2.

2.1 Heat and meltwater production
on strike-slip faults on Europa

To numerically test the hypothesis of producing meltwater on and in the vicinity
of Europa’s strike-slip fault through frictional heating and viscous dissipation, we
study the mechanical and thermal evolution of a part of Europa’s ice shell with
reactivated planar fault, see Figure 2.4. In Kalousová et al. (2016), the generation
of meltwater in the vicinity of strike-slip faults on Europa and its transport within
the ice crust was modeled with a parameterized heating source. Here, we test the
hypothesis of producing meltwater on strike-slip faults of Europa by including
a more realistic description of the strike-slip fault and the heating sources. By
computing strike-slip motions, we can numerically evaluate the friction at the
fault and mechanical dissipation in the neighboring bulk. With such a model, we
can assess whether the associated heating can be sustained long enough for the
development and sustenance of the meltwater (Schmidt et al., 2011; Dombard
et al., 2013). The model combines and improves the two mentioned approaches
(Kalousová et al., 2016; Nimmo and Gaidos, 2002) in order to produce a 2D
model of a thermal and mechanical evolution of europan strike-slip fault and its
surroundings, including water production.

2.1.1 Model components

Figure 2.4: The thermo-mechanical model is composed of the tidal model (diurnal
timescale) and the convective one (thousands of years timescale). The two parts
exchange data regularly; viscosity η is provided from convective to the tidal model,
whereas heatingQ is passed the other way; see Figure 2.5 for a detailed description
of the computational flow.

Since we consider the strike-slip fault to be activated by diurnal tides (Eu-
ropa’s orbit ∼ 3.55 days), and since it can take millions of years for thermal
convection to reach a (statistical) steady state (Kalousová et al., 2016), the me-
chanical and thermal evolution model needs to involve two different timescales.
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Figure 2.5: A flow chart describing the structure of the thermo-mechanical model
with the regular exchange of data between the two parts: the convective two-phase
model and the tidal model.

Hence, we decompose the thermo-mechanical problem into two: a tidal (mechan-
ical) one acting on the diurnal timescale and the convective (thermal) one acting
on geological timescale, while ensuring coupling between the two modules, see
Figures 2.4 and 2.5.

Let us describe the computational order as shown in the flowchart in Fig-
ure 2.5: First, the convective two-phase model, based on Kalousová et al. (2016),
is run for five thousand years, calculating the time evolution of velocity, pres-
sure, temperature, and porosity (water content). At the end of this period, the
viscosity η is exported (based on the state of the convective model) and used to
parameterize mechanical properties in the tidal model (a viscoelastic mechanical
model). The tidal model evolves slip velocity over five europan orbits to suppress
the influence of initial conditions. Then, based on the averages of stress and slip
velocity throughout the last calculated orbit, the shear and frictional heating are
computed and provided as energy sources to the convective model. Then, an-
other five thousand years of thermal convection is modeled, etc . . . The model
runs until a statistical steady state is reached. Both models are described in more
detail in the following sections.

2.1.2 Tidal model - viscoleastic tidal deformation
of the ice shell with an embedded strike-slip fault

The tidal part of our model resolves the mechanical response of part of Europa’s
ice shell with embedded strike-slip fault subjected to diurnal tides while providing
calculation of the heating production for the convective model.

We solve the equation of continuity (derived from the balance of mass) and
the equation of motion (derived from the balance of linear momentum). As
a step towards a more realistic model (compared to Nimmo and Gaidos (2002))
we impose an incompressible Maxwell rheology (in small-strain approximation)
in the whole domain. The model equations read

∇ · v = 0, (2.1a)
−∇p + ∇ · S + ϱif = 0, (2.1b)

Ṡ = 2µDd(v) − µ

η
S. (2.1c)
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Here v is the (tidal) velocity, p denotes the pressure, S is the deviatoric part of
the Cauchy stress tensor, ϱi is the density of the ice, f is the body force, µ is
the shear modulus of ice, Dd(v) is the deviatoric symmetric velocity gradient, η
is the viscosity specified below in the convection model part of the Section 2.1.3,
and dot denotes the partial time derivative. For the values of all parameters, see
Table 2.2.

We solve the system (2.1) in a part of Europa’s ice shell containing an em-
bedded strike-slip fault, cf. right part of Figure 2.4. In order to model the tidal
forcing, one should (i) take the body force f in (2.1b) of the form f=g+∇Vtidal,
where g is the gravity acceleration, and Vtidal is the tidal potential, and (ii) impose
suitable kinematic or dynamic boundary conditions.

For simplicity, and also led by simple scaling arguments, we neglect the tidal
contribution to the body force, i.e., we consider

f = g = (0, 0,−g), (2.2)

where g is the magnitude of gravity acceleration, and we mimic the effect of
tidal forcing entirely through the boundary conditions. In particular, we do so
by prescribing the surface velocity in the y-direction (along the fault) on the top
boundary; see section Boundary and Initial conditions below.

Time discretization

The only equation involving time is the rheology formula (2.1c). We approximate
it using a one-step implicit (Euler) method as follows

Sk+1 − Sk

dt = 2µDd(vk+1) − µ

η
Sk+1, (2.3)

where k + 1, k distinguish variables from the current and previous time steps,
respectively. Multiplying the equation by the time step dt and performing several
adjustments: (︄

1 + µ dt
η

)︄
Sk+1 = Sk + 2µ dtDd(vk+1),

and defining the Maxwell time as

τM = η/µ , (2.4)

we obtain the approximation

Sk+1 = 1
1 + dt

τM

Sk + 2µ dt
1 + dt

τM

Dd(vk+1). (2.5)

Alternatively, by extending the right-hand side by τM/τM , one arrives at

Sk+1 = τM

τM + dtS
k + 2η dt

τM + dtD
d(vk+1). (2.6)

The former expression is particularly useful for obtaining the elastic limit of the
model, corresponding to η → ∞, or, equivalently τM → ∞:

lim
η→∞

Sk+1 = lim
η→∞

{︄
1

1 + dt
τM

Sk + 2µ dt
1 + dt

τM

Dd(vk+1)
}︄

= Sk + 2µ dtDd(vk+1),
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which is equivalent to (Sk+1 − Sk)/ dt = 2µDd(vk+1). And that is the discretized
form of Ṡ = 2µD(v) = 2µḊ(u), i.e. time derivative of elastic rheology.

On the other hand, the second expression (eq. 2.6) is suitable for the applica-
tion of the viscous limit, defined as µ → ∞, or, equivalently, τM → 0:

lim
η→∞

Sk+1 = lim
η→∞

{︄
τM

τM + dtS
k + 2η dt

τM + dtD(vk+1)
}︄

= 0 + 2ηD(vk+1).

Hence,
Sk+1 = 2ηD(vk+1),

which is rheology for viscous material in the current k + 1 time step.
We rewrite the two formulas using a shorthand notation

Sk+1 = Kk+1Sk + 2 Lk+1Dd(vk+1), (2.7a)

where either (useful for viscous limit):

Kk+1 = τM

τM + dt , Lk+1 = η dt
τM + dt , (2.7b)

or, equivalently, (useful for the elastic limit):

Kk+1 = 1
1 + dt

τM

, Lk+1 = µ dt Kk+1. (2.7c)

Dimensional reduction

We present further assumptions that allow us to reduce the three dimensional
problem (modeling a part of Europa’s ice shell with a preexisting fault in the
middle, see Figure 2.4) into a two dimensional one, formulated in the cross-section
perpendicular to the fault. In particular, we shall assume that the variations of
velocity and physical properties along the fault (in the y-direction) are negligible
and that the velocity depends spatially on x and z coordinates only:

v = (0, v(t, x, z), 0), (2.8)

where t is time.
Such an assumption allows us to reduce the computational domain into a two-

dimensional cross-section perpendicular to the fault. Taking into account the
antisymmetry of the problem (assuming strike-slip motion), we can, therefore,
approximate the surroundings of the fault just by one half of the two-dimensional
cross-section; see square bounded by the white dashed line in Figure 2.4 and
the final computational domain on Figure 2.6. In such representation, the top
boundary of the computational domain represents the upper free surface, the
bottom boundary stands for the shell-ocean boundary, the left side represents
the fault plane, and the right side represents an interior surface within the ice
shell.

Let us now inspect the implications of the above dimensional reduction on
the governing equations 2.1. First, the symmetric velocity gradient for velocity
defined as 2.8 becomes:

D(v) = 1
2

⎡⎢⎣ 0 ∂v
∂x

0
∂v
∂x

0 ∂v
∂z

0 ∂v
∂z

0

⎤⎥⎦ .
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Figure 2.6: The computational domain for the numerical model of the vicinity of
a strike-slip fault on Europa.

Note that the matrix is traceless (tr D(v) = ∇ · v = 0), consequently the sym-
metric gradient of velocity is equal to its deviatoric part: Dd = D. In addition,
we have Dxx = Dyy = Dzz = Dxz = Dzx = 0. Hence (see (2.7a)), if the ini-
tial deviatoric Cauchy stress tensor’s diagonal elements S0

ii are zero, then all
the above-mentioned components of the deviatoric part of the stress tensor, i.e.,
the xx, yy, zz, xz and zx components, will remain zero throughout the whole
time evolution. Therefore, defining the initial complete Cauchy stress tensor
as T0 = −pI + S0 and assuming S0

xx = S0
yy = S0

zz = S0
xz = S0

zx = 0, we get
Sk

xx = Sk
yy = Sk

zz = Sk
xz = Sk

zx = 0 for all time steps k.
Now, the continuity equation 2.1a is satisfied automatically, and we express

the equation of motion 2.1b in index notation:

0 = −∂p
∂x

+ ∂Sxx

∂x
+ ∂Sxy

∂y
+ ∂Sxz

∂z
+ fx, (2.9a)

0 = −∂p
∂y

+ ∂Sxy

∂x
+ ∂Syy

∂y
+ ∂Syz

∂z
+ fy, (2.9b)

0 = −∂p
∂z

+ ∂Szx

∂x
+ ∂Szy

∂y
+ ∂Szz

∂z
+ fz, (2.9c)

We cross out the zero terms, i.e., Sxx = Syy = Szz = Sxz = Szx = 0 and also fx

and fy, since we assume only gravitational force; see equation 2.2. Hence, using
fz = −ϱigfz the system 2.1 reduces to

∂p
∂x

= 0, . (2.10a)
∂Sxy

∂x
+ ∂Syz

∂z
= 0, (2.10b)

∂p
∂z

= −ϱig. (2.10c)

Equations 2.10a and 2.10c can be integrated and yield a hydrostatic pressure
field. The only remaining non-trivial equation is 2.10b. Defining a stress vector
s = (sx, sz) := (Sxy,Syz), we rewrite the equation 2.10b in the following vector
form:

div(x,z)s = 0. (2.11)
Since all the components of the Cauchy stress tensor S except from xy, yz are
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zero, the Maxwell formula (eq. 2.1c) reduces to:

ṡ = µ∇(x,z)v − µ

η
s. (2.12)

Using the numerical approximation (eq. (2.7)) we get

sk+1 = Kk+1sk + Lk+1∇(x,z)vk+1 . (2.13)

Finally, we use the numerical approximation of vector s (eq. 2.13) to express the
stress vector in equation 2.11

0 = div(x,z)sk+1

= ∂

∂x

[︄
Kk+1sk

x + Lk+1∂vk+1

∂x

]︄
+ ∂

∂z

[︄
Kk+1sk

z + Lk+1∂vk+1

∂z

]︄
, (2.14)

and we omit the notation(x,z) assuming further on that all operators are in (x, z)
coordinates only. Therefore the momentum balance reduces to the following
scalar equation:

∇ ·
(︂
Kk+1sk

)︂
+ ∇ · (Lk+1∇vk+1) = 0. (2.15)

Fault description

We assume that the behavior of the fault (approximated through a boundary
condition on the left side of the computational domain, cf. Figure 2.6) is gov-
erned by a relatively simple Mohr-Coulomb-type “stick-slip” friction criterion.
However, ice-ice contact is known to exhibit more complex frictional properties,
e.g., rate and state friction law, where the friction coefficient depends on both
the slip velocity (rate) and an internal variable (state), that has its own evolution
dynamics, see for example Fortt and Schulson (2009), Lishman et al. (2011) or
Section 4.2.3 for a brief summary. In this part of the thesis, we use a constant
value of the friction coefficient (µf=0.4 as a reference value), and we test the
possible effect of a more complex description of fault behavior by considering the
limiting cases (µf=0.1 and 0.8), see Section 2.1.6.

The Mohr-Coulomb criterion discriminates between the locked state (stick),
which occurs in regions where the stress exerted on the fault is below the yield
stress σY , and the sliding regime (slip), which is activated when the friction force
reaches this threshold. We introduce the slip velocity vslip as the tidal velocity
(i.e., solution of eq. 2.15) at the fault:

vslip(t, z) = v(t, x=0, z). (2.16)

The Mohr-Coulomb stick-slip friction criterion at the fault then reads:

stick: vslip = 0 ⇔ |sx| < σY ,
slip: vslip ̸= 0 ⇔ |sx| = σY . (2.17)

We approximate this behavior by a Navier-slip condition of the form:

sx = βeff vslip, (2.18a)
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where βeff is the effective sliding coefficient defined as:

βeff = β∗[︂
1 +

(︂
β∗|vslip|

σY

)︂n]︂1/n
, (2.18b)

where β∗ and n are real and integer parameters, respectively. The effective sliding
coefficient βeff prevents the shear stress sx at the fault from exceeding the yield
stress σY and it corresponds to the stress-limiting viscosity in the fault zone
approach explained in detail in the next chapter (see Section 3.1 for benchmarks
and more details about the viscoelastic analogy for the contact problem).

Applying (2.18), the fault is always sliding even for an arbitrarily small ap-
plied stress. However, in regions with low applied stress with respect to σY , the
value of the effective sliding coefficient is βeff ≃β∗, where β∗≫1 Pa s m−1, which
implies that |vslip|≪1 and the fault in such locations is effectively locked. On
the other hand, the value of βeff can drop significantly whenever the yield stress
σY is approached. This, in turn, leads to a possibly very rapid sliding at the
fault to ensure a sufficient stress drop for maintaining the stress at (or below)
the threshold value σY . Parameter n governs how fast the effective sliding coef-
ficient switches from high friction below the yield stress to low friction when the
yield stress is approached. The Mohr-Coulomb criterion corresponds to the limit
β∗→∞ and n→ ∞, but in the simulations, we use β∗=1018 Pa s m−1 and n=2.

We prescribe a Mohr-Coulomb-type form of the yield stress, which is given
as a product of the coefficient of friction µf , the normal traction (positive for
compression) and the reduction term, which reduces the coefficient of friction
when meltwater is present on the fault (we suppose it works like a lubricant
(Oksanen and Keinonen, 1982) and follow the viscosity reduction formula):

σY = µfϱigd exp(−γfΦs) , (2.19)

where d is the depth measured from the surface downwards, γf is the yield stress
reduction coefficient, and Φs is the regularized water content (volume fraction of
water = porosity) defined in equation 2.25. Moreover, for numerical reasons, we
replace the Mohr-Coulomb friction criterion (eq. 2.17) by its regularized version
- the slip condition (eq. 2.18a) with an effective sliding coefficient (eq. 2.18b).

Boundary and Initial Conditions

We denote by Ω the computational domain and by ∂Ω its boundary, and we
describe the top, bottom, right, and left boundary by ΓS,ΓO,ΓR,ΓF, respectively,
see Figure 2.6. On the left boundary ΓF, we prescribe the slip condition 2.18
mimicking the stick-slip behavior of the fault. In addition, we apply the free-slip
condition on the bottom and the right boundary (ΓO and ΓR respectively), and
on the top boundary (ΓS), the loading velocity is prescribed through the Dirichlet
boundary condition:

sz = 0 on ΓO, (2.20a)
sx = 0 on ΓR, (2.20b)

v = vload = 1
2v0

load sin(ωt) on ΓS, (2.20c)
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where vload, v0
load is the loading velocity and its amplitude and ω is the orbital

frequency. Nimmo and Gaidos (2002) use the same approach for loading but
with a constant loading velocity.

The tidal model is run from an undeformed stress-free state. In order to
suppress the effect of initial conditions, five tidal periods are computed during
each run of the tidal model.

Frictional and shear heating

As an output of the tidal model (that is used for coupling with the convection
model), we need to evaluate the heating associated with the strike-slip motion
at the fault and the resulting deformation of the shell in the fault’s vicinity.
We follow the approach of Nimmo and Gaidos (2002) and define the heating as
composed of frictional heating Qfric on the left boundary and shear heating Qshear
in the domain, averaged over the tidal (orbital) period P :

Qfric = 1
P

∫︂ P

0
σY |vslip| dt, (2.21)

Qshear = 1
P

∫︂ P

0

s · s
η

dt. (2.22)

2.1.3 The Convective Two-Phase Model
The convective model solves thermal convection in the ice shell on a geological
timescale. Since it is taken from Kalousová et al. (2016), we do not go into details
here. For more information, see the articles or Ph.D. thesis by Dr. Kalousová
(http://geo.mff.cuni.cz/˜kalous/), here we only summarize the model equa-
tions and later on, comment on the coupling with the tidal model.

Governing Equations

We present the governing equations of two-phase (water, ice) thermal convection,
including the advection of water volume fraction (porosity), balances of mass, mo-
mentum, and energy. As in Kalousová et al. (2016), we consider a zero relative
velocity between the phases; hence the liquid water is locked within and advected
together with the deforming ice matrix (Tobie, 2003). Such an approach corre-
sponds to the impermeable limit of the two-phase equations. The dimensional
form of two-phase convection equations read as follows

∇ · v = 0, (2.23a)
0 = −∇p− Φ∆ϱg − (1 − Φ)ϱiα∆Tg

+ ∇

⎛⎝(1 − Φ)η
Φ (∇ · v)

⎞⎠
+ ∇ ·

⎛⎝(1 − Φ)η
[︃
∇v + (∇v)T − 2

3(∇ · v)I
]︃⎞⎠,

(2.23b)

ϱic

(︄
∂T

∂t
+ v · ∇T

)︄
+ Lhr = ∇ · (k(T )∇T ) +Q, (2.23c)
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∂Φ
∂t

− ∇ ·
(︂
(1 − Φ)v

)︂
= r

ϱi

. (2.23d)

Here Φ is the porosity (volume fraction of water in the ice-water mixture), v is the
ice matrix velocity, p is the excess water pressure with respect to the hydrostatic
equilibrium pressure of pure ice, ϱw is the density of water, △ϱ = ϱi − ϱw is the
density difference between the two phases, α is the ice thermal expansivity, T is
the temperature, ∆T = T − Tm is the temperature difference from the melting
temperature, η is the ice shear viscosity, c is the specific heat of ice, Lh is the latent
heat of melting of ice, r is the melt production rate (positive for melting), k(T )
is the temperature-dependent thermal conductivity (cf. below) and Q = Qshear is
the heating, taken as shear heating from the tidal model and defined in the tidal
model part of Section 2.1.2.

Ice properties

Ice deforms by different mechanisms, with the prevalent one depending on the
local thermo-mechanical conditions. In our model, we use a composite creep that
combines volume and grain boundary diffusion, dislocation, basal slip, and grain-
boundary sliding following Goldsby and Kohlstedt (2001). It can be characterized
by a single effective viscosity defined as:

η =
(︄

1
ηv

diff
+ 1
ηb

diff
+ 1
ηdisl

+ 1
ηbs + ηgbs

)︄−1

(2.24a)

where ηi denotes the viscosity of the particular mechanism that can, in general,
depend on temperature, stress, and grain size as:

ηi = 1
2
dmi

g T li

Aiσ
ni−1
II

exp
(︄
Ei

RT

)︄
, (2.24b)

with dg the grain size, σII the second invariant of the deviatoric stress tensor, and
R the universal gas constant. The exponents mi, ni, and li, activation energy
Ei and prefactor Ai are specific for each creep mechanism - we use values based
on Goldsby and Kohlstedt (2001), which are summarized in Table 2.1. For both
numerical and physical reasons, we impose a viscosity cut-off of at 1024Pa s, which
results in ten orders of magnitude viscosity contrast across the ice shell.

Table 2.1: Creep parameters of ice based on Goldsby and Kohlstedt (2001).

T [K] Ai [mmi Pa−ni Kli s−1] ni mi li Ei [kJ mol−1]
ηv

diff 9.1 × 10−8 1.0 2.0 1.0 59
ηb

diff 1.8 × 10−16 1.0 3.0 1.0 49
ηdisl ≤ 258 4.0 × 10−19 4.0 0.0 0.0 60

> 258 7.9 × 105 4.0 0.0 0.0 180
ηbs 2.2 × 10−7 2.4 0.0 0.0 60
ηgbs ≤ 258 6.2 × 10−14 1.8 1.4 0.0 49

> 258 5.6 × 1015 1.8 1.4 0.0 192

The presence of meltwater significantly reduces the viscosity of ice by atten-
uating the internal stress field in the ice crystals and thus promoting basal slip
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(De La Chapelle et al., 1999). Following Tobie (2003), we include this effect
by introducing a porosity-dependent factor into the formula for the effective ice
viscosity.

However, in our particular case (and in contrast to Kalousová et al. (2016)),
the porosity is concentrated in a relatively small area, and due to the represen-
tation by discontinuous elements (of zero degree, DG0), substantial discontinuity
can occur between the values on two adjacent elements. This leads to underes-
timating the viscosity reduction (and consequently of shear heating). Thus, we
replace porosity with its regularized counterpart Φs (in the viscosity reduction
term), obtained by the solution of:

−ϵΦ△Φs + Φs = Φ, (2.25)

where ϵΦ is a smoothing parameter equal to 0.01. The resulting function Φs is
represented by continuous Lagrange elements of the first degree (CG1) and is
used in the viscosity reduction as follows:

η = ηpure exp(−γΦs), (2.26)

with ηpure given by equation 2.24.
As in Kalousová et al. (2016), we choose γ = 45, which approximately corre-

sponds to a reduction of viscosity by one order of magnitude with a 5% porosity
increase, see De La Chapelle et al. (1999). The premelting effect, which results in
an increase of activation energy near the melting point, is also taken into account
(cf. Table 2.1).

The thermal conductivity of water ice is strongly dependent on temperature,
and we employ the parameterization from Hobbs and Hobbs (1974):

k(T ) = k1

T
+ k2 . (2.27)

The values of constants k1 and k2 are listed in Table 2.2 and lead to the conduc-
tivity of 2.28 W m−1 K−1 at the interface with the ocean and 5.35 W m−1 K−1 at
Europa’s surface.

Boundary and Initial Conditions

The governing equations (2.23) are supplemented with the following boundary
conditions. The porosity equation (2.23d) does not require any boundary condi-
tion being hyperbolic and considering the absence of inflow boundaries. For the
Stokes system (eqs. (2.23a), (2.23b)), free slip is applied on all boundaries, and
the value of pressure is fixed in one corner of the computational domain:

v · n = 0 , (2ηD(v)n)τ = 0 on ∂Ω, (2.28a)
p = p0 (top left corner), (2.28b)

where n is the outer normal vector and the subscript τ denotes the tangential
component of a vector. For the Laplace smoothening equation (2.25), we set the
regularized porosity to be equal to the original one on all boundaries:

Φs = Φ on ∂Ω. (2.28c)
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In the energy balance eq. (2.23c), we fix the temperature at the bottom (ice-
ocean interface) at the melting point, and at the surface, we prescribe the value
Ts:

T = Tm on ΓO, T = Ts on ΓS, (2.28d)
see Table 2.2 for used values. On the left boundary (fault), we prescribe the
normal heat flux corresponding to the frictional heating Qfric based on the output
of the tidal model (eq. 2.21):

−k∂T
∂x

= Qfric on ΓF. (2.28e)

Finally, the right boundary is considered thermally insulating:

k
∂T

∂x
= 0 on ΓR. (2.28f)

Since this boundary is an interior surface within the ice shell, such a condition is
somewhat artificial, albeit quite standard.

The convective model is initiated from a conductive/convective statistical
steady-state (depending on the thickness of the ice shell).

2.1.4 Numerical scheme
The numerical solution is carried out using the open-source finite element software
package FEniCS (http://fenicsproject.org; Logg et al., 2012; Alnaes et al.,
2015).

Tidal model

To present the complete numerical approximation of the tidal model, we derive
the weak form of model equations 2.15, multiplying it formally by a suitable test
function v′ and integrating over the computational domain Ω yields:∫︂

Ω
∇ · (Kk+1sk)v′ dx +

∫︂
Ω

∇ · (Lk+1∇vk+1)v′ dx = 0. (2.29)

Using the Gauss theorem, we get:

−
∫︂

Ω
Kk+1sk · ∇v′ dx +

∫︁
∂Ω Kk+1sk · (v′n) ds

−
∫︂

Ω
Lk+1∇vk+1 · ∇′v′ dx +

∫︁
∂Ω Lk+1∇vk+1 · (v′n) ds = 0, (2.30)

where n = (nx, nz). Using eq. 2.13 the terms underlined by blue color are equal
to: ∫︁

∂Ω sk+1 · (v′n) ds =
∫︂

∂Ω
(sk+1

x nx + sk+1
z nz)v′ ds. (2.31)

The surface integral on the right-hand side can be divided into four contribu-
tions over the four parts of the domain boundary. Due to the free slip conditions
and the definition of n (n = (1, 0) on ΓR and n = (0, 1) on ΓO) the integrals over
ΓR and ΓO are equal to zero. Since we prescribe the Dirichlet boundary condition
for velocity on the top boundary, the integral is also zero there. Thus, equation
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2.31 is reduced to the integral over the left boundary describing the fault, where
the outer normal is equal to n = (−1, 0):

∫︁
∂Ω sk+1 · (v′n) ds =

∫︂
ΓF

(sk+1
x nx + sk+1

z nz)v′ ds = −
∫︂

ΓF
sk+1

x v′ ds. (2.32)

Furthermore, we use the Navier slip boundary condition (eq. 2.18) and the
definition of slip velocity (eq. 2.16) to rewrite the integral over the left boundary
ΓF (x = 0):

−
∫︂

ΓF
sk+1

x v′ ds eq. 2.18= −
∫︂

ΓF
βeffvk+1

slip v′ ds

= −
∫︂

ΓF

β∗[︂
1 +

(︂
β∗vslip

σY

)︂n]︂1/n
vk+1

slip v′ ds. (2.33)

Thus, the weak form of the governing tidal equation 2.15 is:
∫︂

Ω
Lk+1∇vk+1 · ∇v′ dx +

∫︂
Ω

Kk+1sk · ∇v′ dx =

= −
∫︂

∂ΓF

β∗[︂
1 +

(︂β∗vk+1
slip

σY

)︂n]︂1/n
vk+1

slip v′ ds, (2.34)

where the stress vector is updated as:

sk = Kksk−1 + Lk∇vk. (2.35)

Equation 2.34 represents an elliptic problem in terms of the tidal velocity v
and is discretized in space by CG1 elements, i.e., piecewise continuous linear La-
grange elements. In each call of the tidal solver, five orbital periods with the time
resolution of fifty time steps per period are computed.

Heating
The numerical approximation of the frictional and shear heating is obtained by
averaging all the values calculated during the last run (orbital) period P as in
eqs. 2.21 and 2.22. Several numerical problems arose during the development of
the heating approximation.

First, to some extent, sliding always occurs on the fault, see Fault description
in Section 2.1.2, the frictional heating is always nonzero, even in the effectively
locked (inactive) parts of the fault. Hence, we define the fault activation depth
da as the depth, where the |vslip| drops below ϵk equal to 2% of its maximal value,
i.e., we compute

Qfric ∼ 1
K

K∑︂
k=1

Qk
fric, (2.36a)

Qk
fric =

⎧⎨⎩σk
Y |vk

slip| if |vk
slip| > ϵk,

0 elsewhere,
(2.36b)

ϵk = 0.02 max
l=1,...,k−1

|vl
slip|, (2.36c)
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where k denotes the current time step and K denotes the total number of time
steps (fifty).

Second, in some cases (typically in high-viscosity regions), evaluation of the
shear heating as defined in eq. 2.22 becomes numerically unstable due to the
multiplication of a very small number with a very large number (in situations
corresponding to η ≫ 1, hence 1

η
≪ 1, while s · s ≫ 1). Alternatively, one may

consider (a formally equivalent) formula for viscous dissipation:

Qshear = 1
P

∫︂ P

0
η
(︃

∇v − ṡ
µ

)︃
·
(︃

∇v − ṡ
µ

)︃
dt, (2.37)

where we subtract the elastic part of the deformation from the gradient of velocity
in order to include the viscous deformation, only.

We have numerically confirmed that each of the two formulas (eqs. 2.22 and
2.37) for Qshear leads to an overestimation of the value of shear heating in certain
(differing) situations. Thus, as a partial remedy, we evaluate both equations and
consider the minimum of these two values to be the correct one. Hence, shear
heating passed to the convective model is defined as:

Qshear = min
{︄
Q1

shear, Q
2
shear

}︄
(2.38a)

where Q1
shear = 1

P

∫︂ P

0

s · s
η

dt, (2.38b)

Q2
shear = 1

P

∫︂ P

0
η
(︃

∇v − ṡ
µ

)︃
·
(︃

∇v − ṡ
µ

)︃
dt , (2.38c)

which is numerically approximated as follows:

Qshear ∼ Qk
shear = min

{︄
Q1,k

shear, Q
2,k
shear

}︄
(2.38d)

Q1,k
shear = 1

ηl

1
K

K∑︂
k=1

sk · sk, (2.38e)

Q2,k
shear = ηl

K

K∑︂
k=1

(︃
∇vk − sk − sk−1

µ dt

)︃
·
(︃

∇vk − sk − sk−1

µ dt

)︃}︄
, (2.38f)

where indices k, k − 1 denote the approximations of variables in the current and
previous time step in the tidal model, respectively, whereas l denotes the current
time step in the convective model.

Finally, in the case of extensive heating, the usual frequency of running the
tidal model (once per five thousand years in the convective model, see the flow
chart on Figure 2.5), might not be sufficient. When the heating is high enough to
produce a quick increase in porosity, a lack of feedback between the viscosity and
porosity leads to an overestimation of the heating since the porosity reduces the
viscosity and is not updated often enough. As the calculation of the tidal model
in every time step of the convective model is impossible due to computational
reasons, we introduce a reduction of the heating production with porosity in
every convectional time step and recompute the tidal model every five thousand
years.
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The shear heating is lowered in a similar way as the viscosity, and the frictional
heating as the coefficient of friction, which is reasonable since both are linearly
dependent on these variables. We denote ∆Φs = Φl

s−Φlt
s the difference in porosity

in the current time step (denoted by l) and the time step, when the tidal model
was run for the last time (lt):

Ql+1
shear = exp[−γ(∆Φs)]Qlt

shear, (2.39)
Ql+1

fric = exp[−γf (∆Φs)]Qlt
fric. (2.40)

Summary of all discretized equations
We search for vk+1 in:∫︂

Ω
Lk+1∇vk+1 · ∇v′ dx +

∫︂
Ω

Kk+1sk · ∇v′ dx =

= −
∫︂

ΓF

β∗[︂
1 +

(︂β∗vk+1
slip

σY

)︂n]︂1/n
vk+1v′ ds, (2.41a)

where the yield stress and slip velocity are defined as follows:

σY = µfϱigd exp(−γfΦs), (2.41b)
vslip(t, z) = v(t, x=0, z). (2.41c)

The stress vector is updated as:

sk = Kksk−1 + Lk∇vk, (2.41d)

with the coefficients defined as either (useful for viscous limit):

Kk+1 = τM

τM + dt , Lk+1 = η dt
τM + dt , (2.41e)

or, equivalently, (useful for the elastic limit):

Kk+1 = 1
1 + dt

τM

, Lk+1 = µ dt Kk+1. (2.41f)

Convective model

The convective model is the two-phase convection model developed by Kalousová
et al. (2016). System (2.23) is the classical incompressible Stokes-Fourier sys-
tem: we use CG1-CG2 Taylor-Hood elements for the pressure p and velocity v,
CG2 elements for the temperature T and DG0 discontinuous Lagrange elements
for porosity (CG1 Lagrange elements for regularized porosity). The time dis-
cretization of the energy balance (2.23c) is carried out through the traditional
Crank-Nicolson scheme. The time step is constrained by a local CFL condition
and adaptively controlled such that the maximal temperature change between
two subsequent time steps does not exceed 0.5 K.
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2.1.5 Benchmarks
Here, we present benchmarks obtained by the model described in the previous
section.

Model of Nimmo and Gaidos (2002)

First, we briefly introduce the model of Nimmo and Gaidos (2002), which de-
scribes thermo-mechanical evolution of a strike-slip fault and its vicinity. The
model determines velocity and temperature field in a 2D cartesian domain -
a cross-section perpendicular to the fault plane. The model domain is divided
into an upper brittle part underlain by a ductile part; see Figure 2.7. The fault
plane intersects the model domain in half.

Figure 2.7: Sketch of the model of europan strike-slip fault and its vicinity ac-
cording to Nimmo and Gaidos (2002). The colored lines show a sketch of the
resulting steady-state distribution of temperature anomaly.

The left and right upper brittle blocks are mutually shearing in a strike-slip
manner as rigid bodies with a prescribed velocity, dragging the viscous ductile
material underneath. In the ductile part of the domain underlying the brittle
one, the velocity field is sought as the solution of the Stokes equation with the
imposed Dirichlet boundary condition at the top while being continuous across
the fault plane. The thickness of the brittle layer thus specifies the depth of the
strike-slip fault.

The temperature in the whole domain is searched for as the solution of the
heat conduction equation with two internal heating sources: viscous dissipation
(in the ductile domain) Qshear = S : D = 2ηD(v) : D(v), and frictional heating
at the fault (in the brittle zone) Qfric = µfϱigd|vslip|, where the notation is the
same as in the previous section with |vslip| denoting the magnitude of slip velocity
defined as the mutual movement of the fault’s side, i.e., in this case, 2vload. The
model seeks a steady state solution for temperature and velocity.

In a brief summary, from Nimmo and Gaidos (2002) we conclude that:

1. Since no strike-slip motion can (by definition) occur in the ductile part of
the model, the velocity at the fault plane drops from the prescribed value
vload to zero at the brittle-ductile boundary. Hence, the deformation rate
and thus also the heating rate and temperature anomaly are the biggest
there; see colored half circles sketched in Figure 2.7 simulating thermal and
heating distribution or actual heat production in Figure 2.8.

2. The maximum temperature anomaly is about 66 K.
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3. The highest heating rate is right below the fault, and it reaches peak values
of 10−4 W m−3 for the considered rheological and loading parameters.

4. Near surface melting, i.e., temperature exceeding the melting point, could
occur for loading velocities greater than 10−6m s−1.

Benchmark - reproducing the results by Nimmo and Gaidos (2002)

First, in order to check our code’s performance against the results of Nimmo
and Gaidos (2002), we made several adjustments to the model presented in Sec-
tions 2.1.1 - 2.1.4 in order to mimic the setting by Nimmo and Gaidos (2002):

1. We employ purely viscous ice rheology, i.e., we set K = 0 ∀k in eqs. 2.41a
and 2.41d;

2. We solve the Stokes equations 2.41a in the ductile part of the domain, only,
while prescribing the velocity (as a bulk Dirichlet boundary condition) in
the brittle part of the domain v = vload = 6 × 10−7m s−1;

3. We define the viscosity as

η = |T |
2BN

exp
(︄

E

R|T |

)︄
, (2.42)

where BN=1.88626 × 10−8 K Pa−1 s−1, E=20 kJ mol−1 is the activation en-
ergy (Nimmo and Gaidos, 2002).

4. We prescribe the motion at the fault plane as in Nimmo and Gaidos (2002),
i.e., strike-slip motion in the upper brittle part and zero slip in the bottom
ductile part.

5. The computational domain is prescribed consistently with Nimmo and Gai-
dos (2002): fifteen kilometers wide and twenty kilometers high (D = 20km).

The coefficient of friction (required only for the evaluation of frictional heat-
ing) is taken as µf=0.1. The density of ice is taken as ϱi=1000 kgm−3, the ampli-
tude of gravity acceleration g is equal to 1.3 m s−2 and the surface temperature
TS is 120K. The gas constant R, the melting (bottom) temperature Tm, and the
specific heat c remain the same as in Table 2.2.

The shear heating is computed in the ductile part of the domain only, and it
is set to zero in the brittle part. In contrast, the frictional heating is zero in the
ductile part since there is no slip, and it is effectively prescribed in the brittle
part as the velocity is defined there:

Qfric = 1
2vloadµfϱigd. (2.43)

We compute the steady states of velocity and temperature fields and show
the comparison of the velocity isolines (cf. Figure 2.8 a) and heat production
(cf. Figure 2.8 b) obtained by our code (the right half of each subfigure) and
published in Nimmo and Gaidos (2002) (the left half of each subfigure). The fit
of the results is satisfactory, giving us confidence that in this setting, our model
is working well.
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Figure 2.8: The comparison of steady state velocity (a) and heat production in
logarithmic scale (b). Our results are plotted in the right half of each plot, in the
left part we show the results of Nimmo and Gaidos (2002).

Benchmark with Comsol Multiphysics

In this benchmark, we test whether the tidal model works correctly with periodic
velocity loading by comparing our results with the results obtained by Comsol
Multiphysics®(COMSOL Multiphysics, 1998); specifically, we model the mechan-
ical part of the problem, only. We solve the viscoelastic tidal deformation with
a fault activating according to the Coulomb-type criterion with the deformation
induced by strike-slip motion prescribed through velocity on the top of the do-
main. In Comsol Multiphysics, the problem was implemented in the general PDE
module.

Figure 2.9: The slip velocity on the fault captured in every tenth of the period,
blue full line denotes results calculated by Comsol Multiphysics, red dashed line
stands for our calculations computed by Fenics Project.

On Figure 2.9, we compare the time evolution of slip velocity throughout one
tidal period, calculated by the two different softwares: results calculated by the
above-presented model in FEniCS Software are plotted by red dashed line while
results computed by Comsol Multiphysics are denoted by blue full line. Note that
the values of the slip velocity correspond well throughout the period. In addition,
we also concentrate on the development of the fault’s activation depth, which is
for this purpose defined as the depth, where the |vslip| drops to 2% of its maximal
value, so visually the minimal depth, where the slip velocity is approximately
zero. We observe that the penetration depth is the same for both codes in all
presented instants.

To summarize, in the viscoelastic regime, and with an evolving depth of the
active part of the fault according to the Coulomb-type activation criterion, the
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model performs well. As a consequence, we have confidence that the code provides
reliable estimates of the shear heating in bulk. The same holds for the slip velocity
and activation depth (i.e., sliding part of the fault), implying reliable estimates
of the frictional heating.

2.1.6 Results: Heat and meltwater production
on strike-slip faults of Europa

Several indications point at the possibility of the near-surface meltwater presence
on Europa, (Dombard et al., 2013; Schmidt et al., 2011), also the calculations of
Nimmo and Gaidos (2002) hinted at the prospect of near-surface melting at strike-
slip faults for high enough surface/loading velocities. In addition, the strike-slip
faults were also identified by Kalousová et al. (2016) as one of the most favorable
scenarios for producing water. Therefore, we have tried to overcome the main
limitations of the model published by Nimmo and Gaidos (2002) - simplified
viscous ice rheology and an a priori prescribed motion and depth of the active
fault - and, using our novel model, we have tried to evaluate the magnitude of
heating and meltwater production induced by strike-slip movements on the faults.
Below, we summarize the results obtained with our 2D thermo-mechanical model
of the strike-slip fault and its vicinity. The results turned out to be negative in
the sense that only a limited amount of subsurface stable melt can probably be
produced by such a mechanism. Consequently, these results turned out to have
low publication potential, and they were not published in dedicated manuscripts,
and were only presented at seminars and conference talks.

With the goal to address the question of heat and meltwater generation at
strike-slip faults, we have changed the setting compared to Nimmo and Gaidos
(2002) towards a more realistic description of the fault and its behavior:

• We simulate the diurnal tides (reactivating the old faults) by introducing
the periodic velocity loading on the top boundary, see eq. 2.20c.

• In our model, the depth of the fault can develop self-consistently since
we introduce the Mohr-Coulomb stick-slip friction criterion through the
effective sliding coefficient and yield stress (the stress on the fault must
exceed the friction force holding the fault together).

• We impose Maxwell viscoelastic rather than viscous rheology in the tidal
model, which is much more appropriate for the periodic tidal forcing. As
a consequence, we also do not need to define the brittle-ductile transition.

• In order to address the meltwater generation and transport on the convec-
tion timescale, we employ a two-phase convection model with a realistic
temperature and stress-dependent viscous rheology that involves all known
deformation mechanisms.

Results - setting analogous to Nimmo and Gaidos (2002)

First, we try to compare the results of our model in a setting analogous to that
of Nimmo and Gaidos (2002). In particular, we use the model presented in Sec-
tions 2.1.1 - 2.1.4 and we use the domain size and viscosity law (in our Maxwell vis-
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coelastic model for tidal deformation) as presented in Nimmo and Gaidos (2002).
We keep the periodic strike-slip loading.

Taking the amplitude of the periodic velocity forcing equal to the (constant)
loading velocity of Nimmo and Gaidos (2002), our results show that the fric-
tional heating is much bigger than the viscous dissipation; the values of viscous
dissipation presented in Nimmo and Gaidos (2002) has not been reached, and no
significant heating of the ice is observed, see Figure 2.10.

Figure 2.10: We plot the steady state variables on the fault (top three kilometers
of the ice shell) of a run calculated with our model and viscosity according to
Nimmo and Gaidos (2002). From the left, we show a) temperature, b) shear
heating, and c) frictional heating.

There are several reasons for which the heating does not reach the values
presented in Nimmo and Gaidos (2002), some of them might be manifested by
steady-state temperature fields obtained with different boundary conditions for
velocity, i.e., different velocity loading, see Figure 2.11:

1. As we are employing visco-elastic rheology of ice in the tidal model, most
of the deformation in the bulk is reversible and does not contribute to
dissipative shear heating (viscous dissipation). This contribution, on the
other hand, is a substantial source in Nimmo and Gaidos (2002), and we
argue that their estimate is, from this point of view, highly overestimated.

2. Since we consider a self-evolving fault by actually computing the activation
depth based on a Coulomb criterion, the fault in our simulations does not
propagate deep enough to produce substantial frictional heating (the acti-
vation depth is 2 km in Nimmo and Gaidos (2002)), in our model the typical
value is around 0.5 km), compare a) and b) thermal fields in Figure 2.11.

3. In our model, the slip velocity at the fault plane decreases to zero smoothly,
whereas in Nimmo and Gaidos (2002), abrupt drop is prescribed at the
brittle-ductile transition (from loading velocity to zero); thus, in our case,
the viscous dissipation is much smaller - compare b) and c) thermal fields
in Figure 2.11.

Results with revised parameters

In this subsection, we revise the parameters chosen by Nimmo and Gaidos (2002)
based on the observations of lateral offset on Europa; see Table 2.2. According to
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Figure 2.11: Steady state temperature fields for different velocity boundary con-
ditions: a) the velocity is prescribed on the top and on the left boundary up
to half kilometer depth, no visible effect on the thermal field, b) the velocity is
prescribed on the top and on the left boundary linearly decreasing up to three
kilometers depth, small effect on the thermal field, c) the velocity is prescribed
on the top and the left boundary up to three kilometers depth with an abrupt
drop from 1

2v0
load to zero in the three kilometers.

Table 2.2: Model parameters

Symbol Variable Value Unit
D ice shell thickness 30 km
g surface gravity magnitude 1.315 m s−2

ϱw density of water 1000 kg m−3

ϱi density of ice 920 kg m−3

Tidal model parameters
β∗ background value 1018 Pa s m−1

of the effective sliding coefficient
n sliding law exponent 2 -
µ shear modulus of ice 3.3 GPa
µf

• ice friction coefficient 0.1, 0.4, 0.8 -
v0

load
• amplitude of loading velocity 1 10−5m s−1

ω orbital frequency 2.05×10−5 s−1

P tidal period 3.55 day
Convective model parameters
α thermal expansivity 1.6×10−4 K−1

c specific heat of ice 2100 J kg−1 K−1

dg grain size 0.7 mm
γ viscosity reduction parameter 45 -
γf frictional heating reduction parameter 45 -
ηcut viscosity cut-off 1e24 Pa s
R universal gas constant 8.314 J K−1 mol−1

k1 constant in eq. 2.27 488.12 W m−1

k2 constant in eq. 2.27 0.4685 W m−1 K−1

Tm melting temperature 270 K
Ts surface temperature 100 K

The • symbol indicates the model parameters varied in the parametric study.

Greenberg et al. (1998) a displacement of roughly one meter per orbit is plausible
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on Astypalaea Linea, a 810 km strike-slip fault, located near the south pole of
Europa (Tufts et al., 1999). To produce a meter per orbit through a periodic
loading velocity, the amplitude of v0

load = π
P

∼ 10−5m s−1 is necessary, since:

δ =
∫︂ P/2

0

1
2v0

load sin(ωt) = v0
load

P

2π ,

where displacement δ∼0.5m (half a meter of displacement on one side of the
fault by half period). Therefore, we use the value of 10−5 ms−1 as a reference
one. Moreover, we choose the mean value from Fortt and Schulson (2009) for the
coefficient of friction: µf=0.4.

Figure 2.12: We plot the time evolution (colors) of reference run variables on the
fault (top three kilometers of the ice shell) until the steady state is reached (red
dashed line - 3100 kyr after the start of the calculation). From the top left to
the bottom right, we show: a) temperature, b) the average (over the period) of
the absolute slip velocity, c) viscosity (in logarithmic scale), d) porosity, e) shear
heating, and f) frictional heating.

First, we present the time evolution of the reference run, where we plot the
temperature, an average (over the tidal period) of the absolute value of slip
velocity, viscosity, porosity, and shear and frictional heating in the top three
kilometers of the fault (represented by the left boundary ΓF), see Figure 2.12. We
start the calculation from a thermal steady state (convection). Immediately after
the start of the calculation (purple line), the frictional heating (panel f) starts to
warm up the fault, thus reducing the viscosity (panel c). Since frictional heating is
a surface source, only the fault is substantially heated, while its vicinity is slowly
warmed up by thermal conduction. Once the viscosity drops enough (panel c,
160 kyr, turquoise color) the shear heating (panel e) starts to grow. Nevertheless,
it never reaches substantial values to promote significant heating of ice. Finally,
after approximately three thousand years (red dashed line), a (statistical) steady
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state is reached with a thermal anomaly of approximately 40 K (panel a) and no
porosity (volume fraction of water) present (panel d).

Let us now present the results of a simple parametric study to infer the influ-
ence of the main model parameters: the coefficient of friction and the amplitude
of the loading velocity.

Dependence on the coefficient of friction
Here, we present the steady state results for different values of the coefficient
of friction, see Figure 2.13, minimal (0.1) and maximal (0.8) values were chosen
according to Fortt and Schulson (2009).

Figure 2.13: The comparison of the steady state variables plotted in the top
five kilometers of the fault for three different values of the coefficient of friction
(colors).

The choice of coefficient of friction directly affects the activation depth of
the fault, see panel b, where the average of absolute slip velocity is plotted.
The activation depth of the fault (defined as the minimal depth, where |vslip| is
equal to 2% of its maximal value) is approximately proportional to the inverse
value of the coefficient of friction, e.g., the fault penetrates much deeper for the
coefficient of friction µf=0.1 (blue color) than for the reference run (µf=0.4,
orange color). Since the frictional heating (panel f) is linearly dependent on the
coefficient of friction, its maximal value is the smallest for the smallest coefficient
of friction; however, as the fault penetrates deeper, the nonzero frictional heating
covers a bigger surface. Thus surprisingly, the run with the smallest coefficient of
friction produces the highest thermal anomaly (blue line, panel a), even though
the shear heating (panel e) is not high enough to warm up the ice. The only
difference remains in the depth of the shear heating maxima, which depends on
the location of viscosity minimum (panel c), approximately one kilometer above
the activation depth of the fault.

To summarize, the coefficient of friction has a substantial influence on the acti-
vation depth, which in return affects other properties; however, even the smallest
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coefficient of friction is not small enough for the penetration depth to reach the
low viscosity zone; thus, the shear heating is negligible, and no porosity (panel
d) is produced.

Dependence on the loading velocity amplitude
Here, we present the steady state results for different loading velocity amplitudes,
varying the reference value by ± 50%.

Figure 2.14: The comparison of the steady state variables plotted in the top three
kilometers of the fault for three different values of the loading velocity amplitude
(colors).

The loading velocity amplitude has a substantial influence on the results;
increasing the reference loading velocity amplitude by 50% (green lines in Fig-
ure 2.14) results in more than 100K difference in the temperature on the fault
(panel a) and leads to the generation of a small amount of porosity (panel d).
With higher loading velocity the fault is activated deeper (panel b), enhancing
the frictional heating (panel f) on a bigger surface area (reaching up to the sur-
face), which in return leads to a substantial lowering of the viscosity (panel c,
down to ∼ 1014Pa s) producing extensive shear heating (with the amplitude of
10−3W m−3, panel e).

On the other hand, if we reduce the velocity loading by 50% (blue lines on
Figure 2.14), the temperature remains almost the same (panel a), making this
run essentially indistinguishable from the case without any strike slip fault.

To summarize the results, for increased velocity (green lines on Figure 2.14),
the fault activation depth reaches the depth of the brittle-ductile zone defined
by Nimmo and Gaidos (2002) and even though we reduce the values of both
shear and frictional heating by porosity (shear heating through viscosity and fric-
tional heating by reducing the coefficient of friction - the cut-off parts of the green
line on panels e and f corresponding to nonzero porosity), we obtain higher ampli-
tudes of the shear heating than Nimmo and Gaidos (2002). The choice of loading
velocity amplitude is thus a crucial one, and it is probably determining whether
some porosity can be produced on strike-slip faults on Europa or not. How-
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ever, even with our highest loading amplitudes, the reached melt volume fraction
(porosity) is less than 4% and is nonzero just precisely at the fault. Therefore,
no extensive subsurface water reservoirs seem to be produced by a mechanism of
strike-slip motion with loading in the investigated range of amplitudes.

More realistic boundary conditions for temperature at the surface
Based on the previous results, we know that velocity loading amplitude is a cru-
cial parameter, mainly because it directly affects the fault penetration depth.
If the fault is not deep enough, then the frictional heating is not high enough
to develop low viscosity zones. These, in turn, are required for magnifying the
shear heating to a substantial level necessary for meltwater generation. From this
perspective, a similarly important feature is the thermal structure within the ice
layer. In order to test the robustness of our results, we have thus tried to replace
the surface conditions used in our study with more realistic ones that take into
account (i) heat radiation and (ii) the possible insulating effect of a regolith layer.

First, we simulate the radiation from the surface instead of directly prescribing
the surface temperature:

q = −k∇T · n = ϵradσrad(T 4 − T 4
e ) on ΓS, (2.44)

where q is the normal conductive heat flux, n is the outer unit normal vector, ϵrad

is the emissivity of Europa set to 0.33 and σrad is the Stefan-Boltzman constant
equal to 5.670367 × 10−8kg s−3 K−4, T is the temperature (on the surface) and
Te is the external (insolation) temperature (for Europa we consider Te = 100K).
The introduction of this boundary condition does hardly influence the results,
since the maximum of the steady state thermal field is even lower than for the
reference run, reaching ∼ 153K, see Figure 2.15.

Second, according to Carlson et al. (2009) a layer of regolith might be present
on Europa’s surface, such a layer has a lowered thermal conductivity of krego=0.1
W m−1K−1, cf. Mellon et al. (2018). Thus we introduce an isolating boundary
condition by approximating a 100 meters thick layer of regolith on the surface.
We assume that the heat transfers by conduction in the regolith:

q = −k∇T · n ∼ −krego
Te − T

drego

on ΓS, (2.45)

where drego=100 m is the thickness of the regolith layer and T is the temperature
just below the regolith layer. In the numerical solution, we deal with the regolith
layer by the Neumann boundary condition on the surface.

Such a condition has a substantial influence - the isolating lid atop the ice layer
leads to an increase in temperature within the layer. This results in enhanced
heating on a larger portion of the fault plane (cf. Figure 2.15 panel a), reduc-
ing the viscosity (panel c) enough to allow for substantial shear heating (panel
e) and a small amount of porosity (almost 4% locally, panel d). Summarizing,
the regolith has a similar influence as the velocity loading amplitude; however,
it still does not create conditions favorable enough for substantial production of
meltwater.
Conclusions
To conclude, the reference run with parameters corresponding to a meter dis-
placement per period at the strike-slip fault does not result in any meltwater
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Figure 2.15: The comparison of steady states of the reference run (blue) and
two runs with different boundary conditions for temperature: a run with one
hundred meters of regolith on the top of the ice shell (orange) and radiation
boundary condition (green). Variables are plotted in the top three kilometers on
the fault.

generation. The velocity loading amplitude and the presence of the regolith layer
have a substantial influence on the results. Increasing the loading velocity by
50% produces a little more than 3% of porosity right at the fault; however, no
significant amount of melt is present in the fault’s vicinity. Introducing a hun-
dred meters thick layer of regolith at the surface of the ice shell produces 4% of
porosity right at the fault. The choice of coefficient of friction (in the range from
0.1 to 0.8) is not an important one, as it influences only the activation depth of
the fault.

We also tested changes in other parameters, such as the viscous contrast, given
by viscosity cut-off (no influence), the grain size (0.7mm - 3mm - no influence),
artificial softening of the material in the faults surroundings (due to repeated
straining, no influence). Thus, the main negative conclusion stands: producing
a substantial amount of meltwater is highly unlikely with the presented mecha-
nism - strike-slip motion - and associated frictional and shear heating.

The reasons for not producing more meltwater, and elsewhere than right at
the fault are the following: First and foremost, the main heating source (frictional
heating) is only a surface one. Furthermore, the second heating source (viscous
dissipation/shear heating) is not so intensive as the slip velocity drops to zero
continuously and since most of the deformation happens in an elastic regime. In
addition, the fault activation depth is usually relatively small compared to the
results in Nimmo and Gaidos (2002). Also, the latent heat used to change ice into
water consumes part of the produced heating. Finally, already produced porosity
has a negative feedback on successive water production, as the non-zero porosity
lowers both the coefficient of friction and viscosity, thus reducing both types of
heating.
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2.2 Tidal Walking on Europa’s Strike-Slip
Faults — Insight From Numerical
Modeling (Sládková et al., 2020)

On some europan landforms, lateral offset has been observed, see Sections 1.1.2
and 2.1, indicating that strike-slip motion has occurred. Hoppa et al. (1999a)
proposed a theoretical model (called “tidal walking”) for producing such a lateral
offset by reactivating existing faults via tidal stresses.

Figure 2.16: A simplistic sketch of tidal walking model in the most simple form
(with phase shift equal to π): the tension opens the existing fault during the first
quarter of the orbit, followed by the left-lateral shear producing an offset (enabled
by the opened fault). In the third quarter of the orbital period, the compression
closes the fault preventing or diminishing the right-lateral offset. In this case, all
processes result in a small left-lateral offset. The specific tidal forces and final (if
any) offset are dependent on the orientation and position of the fault on Europa’s
surface.

The “tidal walking” process is ought to work as follows: diurnal tides exert
periodic normal and shear forces on the fault plane with a phase shift depending
on the fault’s location and azimuth. In the simplest setting, if the phase shift
is π, the fault is opened by the tensional stresses during the first half of the tidal
period facilitating the left-lateral motion due to shear forcing, see two windows
on the left of Figure 2.16. During the second half of the period (two windows
on the right of Figure 2.16), compression closes the fault suppressing the right-
lateral motion in the reverse direction. Consequently, in this case, after each tidal
period, a small amount of left-lateral offset is accumulated along the fault. For
the phase shift equal to zero (shear and normal stress in phase), the situation
is antisymmetric, producing the same amplitude of the offset as for the previous
case but in the right-lateral direction. On the other hand, for phase shifts π/2
and 3π/2, no accumulated offset is expected. For other values of phase shift, the
process is more complex; however, the principle remains the same.

Hoppa et al. (1999a) considered a thin elastic ice shell overlying a liquid layer
and tested their model by comparing the patterns of the predicted tidal stresses
with the observed strike-slip offsets on Europa’s surface. Using the normal and
shear stresses corresponding to the fault’s location and azimuth, they calculated
the expected fraction of faults with right- and left- lateral offsets in the chosen
regions on Europa’s surface and compared the values with the data obtained
from Voyager and Galileo images. To correctly predict the number of faults with
a particular lateral offset, they concluded that most of the faults formed 60◦ to
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90◦ west of their current location, shifted by the nonsynchronous rotation of the
ice shell. However, Hoppa et al. (1999a) did not model the shear motions using
frictional failure criteria; thus, their tidal walking model is rather a conceptual
one.

A numerical study of the tidal walking mechanism was performed by Preblich
et al. (2007) with a finite element code Tekton. The model employed viscoelastic
ice rheology and simulated the evolution of an offset for different predefined tem-
perature fields and ice shell properties. They concluded that except for a very
special setting, penetration of the fault all the way to the underlying ocean is re-
quired to produce the strike-slip offset rates consistent with the observations. The
model produced such offset rates only for a very short period of time (several tens
of orbital cycles) before the stress that accumulated in the cold elastic part of the
domain slowed down the process significantly. An additional independent stress
release mechanism was suggested to be active, which was, however, not modeled
in the study. Dissipation and the associated thermal effects were claimed to be
unimportant for the tidal walking process.

Rhoden et al. (2012) studied Europa’s strike-slip faults by a numerical model
that extended the original approach of Smith-Konter and Pappalardo (2008) de-
veloped for Enceladus’ tiger stripes. In their purely mechanical model, they took
into account the effect of overburden pressure and employed the Mohr-Coulomb
failure criterion to determine the frictional response at the fault. With a simplified
treatment of viscoelasticity, the authors obtained the net offset for a large number
of fault positions and azimuths and reproduced the global pattern observed on
Europa’s surface.

Most of the numerical models of strike-slip faults on Europa did not consider
thermal effects to be important, with the exception of Nimmo and Gaidos (2002),
see Section 2.1.5 for a summary of the article. In their model, however, the fault
depth was fixed, and the strike-slip motion of the brittle layer was prescribed.

In this part of the thesis, we simplify the convective model from the previ-
ous section (Section 2.1.1) and extend the tidal model to test the tidal walking
hypothesis and quantify the surface offset by numerical modeling of the thermo-
mechanical evolution of a strike-slip fault and its vicinity. We also obtain esti-
mates of surface thermal signature produced by the processes at and nearby the
fault.

2.2.1 Numerical Model
We investigate the mechanical and thermal evolution of a part of Europa’s ice
shell in the fault’s vicinity subjected to forcing by diurnal tidal stresses. We
use the model defined in the previous section with several modifications, i.e., we
consider a pre-existing planar fault perpendicular to the surface which penetrates
the whole shell. We focus on the fault’s reactivation by tides, i.e., we compute the
evolution of the slip within the fault plane and the fault activation depth, but we
do not model the initiation of the fault, i.e., the process of ice shell fracturing. As
in the first section, the process of tidal walking involves two different timescales –
the forcing takes place on the tidal period (∼ 3.55 Earth’s days), while the overall
offset accumulates over the period of tens of thousands of years (Kattenhorn
et al., 2009); see Section 1.1.2. The two-scale nature of the problem is reflected
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in the design of the numerical model, cf. Figure 2.4. The main properties of the
model thus remain the same; however, there are important differences, which are
described further.

Convective Model

The convective model solves thermal convection in the ice shell on a geological
timescale. However, due to the more complex loading of the system, see Tidal
model section and equation 2.48b, and the necessity of calculating long runs, the
two-phase model of Kalousová et al. (2016), presented in the Section 2.1.1, had
to be reduced to one phase only and we shortly present it once more.

Governing Equations
We solve balances of mass, momentum, and energy for a viscous non-Newtonian
incompressible fluid in a two-dimensional Cartesian geometry using Boussinesq
approximation:

∇ · v = 0, (2.46a)
−∇p+ ∇ · η

(︂
∇v + (∇v)T

)︂
− ϱigα(T − T0) = 0, (2.46b)

ϱic

(︄
∂T

∂t
+ v · ∇T

)︄
= ∇ · (k(T )∇T ) +Q,

(2.46c)

where the notation remains the same as in Section 2.1.1, cf. also List of Symbols
on page 138 at the end of the thesis. The values of all parameters are summarized
in Tables 2.2 and 2.3. For the viscosity, we use a composite creep that combines
volume and grain boundary diffusion, dislocation, basal slip, and grain-boundary
sliding following Goldsby and Kohlstedt (2001), see formula 2.24. Since the poros-
ity is not included and is therefore considered zero, the equation 2.26 for viscosity
reduction is not used. For both numerical and physical reasons, we impose a vis-
cosity cut-off of at 1022 Pa s, which results in eight orders of magnitude viscosity
contrast across the ice shell.

The thermal conductivity of water ice is strongly dependent on temperature
and we employ the parameterization from Hobbs and Hobbs (1974), cf. equa-
tion 2.27.

Boundary and Initial Conditions
The governing equations (2.46) are supplemented with the same boundary condi-
tions as in the Section 2.1.1, cf. equation 2.28. Concerning the Stokes system, free
slip is applied on all boundaries, and the value of pressure is fixed in one corner
of the computational domain. As for the energy balance, we fix the temperature
at the bottom (ice-ocean interface) at the melting point, and at the surface, we
prescribe the value Ts. On the left boundary (fault), we prescribe the frictional
heating Qfric based on the output of the tidal model (eq. 2.36). Finally, the right
boundary is considered thermally insulating. The convective model is initiated
from a conductive/convective statistical steady-state (depending on the thickness
of the ice shell). In addition to these boundary conditions, and since the porosity
is not calculated, we cut the temperature at the melting value of Tm = 270K
everywhere in the domain.
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Tidal Model

On the tidal timescale, we solve for the slip along the fault and the associated
viscoelastic deformation of ice in the fault’s vicinity; see Figure 2.17. For a given
thermal and viscosity structure of the ice shell and for the particular regime and
amplitude of forcing, the tidal model predicts the offset development and also
provides the amplitudes of frictional heating at the fault plane and the shear
heating in the surrounding bulk. These quantities are then used as inputs for the
convective model; see Section 2.2.1.

Figure 2.17: The sketch of the tidal model part of the tidal walking model.

Governing Equations - Bulk
The governing equations in the bulk comprise the mass and momentum bal-
ances for an incompressible Maxwell viscoelastic continuum and follow the same
assumptions as in the Section 2.1.1; thus, they are reduced into a 2D form of
equation 2.15. However, here we mimic the diurnal tides by prescribing the sur-
face traction in the y-direction (along the fault) on the right boundary, and we
pick the position of the right boundary such that the height-length aspect ratio
is two for all simulations, see Figure 2.17 and also discussion in Section 2.2.3.
The fault is still represented by the left boundary of the computational domain,
the top boundary is Europa’s surface, and the bottom boundary is the interface
between the ice shell and the internal ocean. Note that since eq. 2.15 represents
only the y-component (along the fault) of the momentum balance, it does not
contain gravity. Consequently, the effect of overburden pressure only appears in
the boundary conditions via the yield stress; see eq. (2.47a) below.

Governing Equations - Fault
We use the same description of the fault’s behavior as above, see Section 2.1.1.
However, in the Mohr-Coulomb-type form of the yield stress, which is given as
a product of the coefficient of friction µf and the normal traction (taken positive
for compression), we add the normal part of the diurnal tides enabling opening
and closing of the fault by reducing and increasing the yield stress on the fault:

˜︂σY = µf (σn+ϱigd). (2.47a)

The normal traction is a sum of the overburden (hydrostatic) pressure ϱigd (as
before), and the normal part of the diurnal stress σn, which is changing in time
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as:
σn = σ0[sin(ωt−φ)]. (2.47b)

Here φ is the phase shift between the normal and shear stress, σ0 is the stress
magnitude, and ω denotes the tidal angular frequency. Finally, the coefficient of
friction µf is kept constant.

The yield stress σY is taken as the non-negative part of ˜︂σY , which may become
negative as a result of a negative σn in the tensional part of the loading cycle,
i.e., we set:

σY = max(0, ˜︂σY ) . (2.47c)

Boundary and Initial Conditions
On the left boundary, we prescribe the slip condition (2.18) mimicking the stick-
slip behavior of the fault. We apply the free-slip condition on the bottom and
the top boundary:

sz = 0 (top, bottom). (2.48a)
On the right boundary, we specify the tangential stress in the direction along the
fault - a condition that mimics the shear part of the diurnal tidal stress:

sx = σt, where σt = σ0 sin(ωt) (right) . (2.48b)

Note that for the sake of conciseness, we assume that the amplitudes of loading
shear and normal stresses are both equal to σ0, which may not hold in general. We
discuss the effect of differing shear and normal stress amplitudes in Section 2.2.3.
This type of forcing differs from both the one used by Preblich et al. (2007) or
Nimmo and Gaidos (2002). The former study prescribes the strain rate on the
right boundary, while the second study directly imposes displacement on the top.
The tidal model is initiated from an undeformed stress-free state.

Table 2.3: Model parameters differing from the parameters used in the previous
model, cf. Table 2.2. The • symbol indicates the model parameters varied in the
parametric study.

Symbol Variable Value Unit
D • ice shell thickness 1, 5, 10, 30 km
a′ domain aspect ratio 2 -
Tidal model parameters
σ0

• amplitude of forcing stresses 0.6, 2, 4, 6 105Pa
ω orbital frequency 2.05×10−5 s−1

φ • phase shift k π
4 , k=0, 1, . . . , 8 -

Convective model parameters
ηcut viscosity cut-off 1e22 Pa s

Coupling of the Models

The two models exchange information (viscosity and heating production) in the
same manner as explained in the previous section; see the flow chart in Figure 2.5.
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However, in this case, the exchange takes place every convectional time step. The
tidal model computes five periods except for the first run, where one hundred
periods are calculated to suppress the role of the initial conditions.

2.2.2 Results
We study the thermo-mechanical evolution of a tidally deformed viscoelastic ice
shell in the vicinity of Europa’s strike-slip fault. The main model parameters are
the amplitude of the shear and normal stresses σ0, their mutual phase shift φ, the
thickness of the ice shell D, and the coefficient of friction µf . We focus on two
potentially observable quantities: the accumulated surface offset δs at the fault,
i.e., the irreversible mutual displacement of the two sides of the fault, and the
heat flux anomaly ∆q on the surface in the fault’s vicinity.

The observed offset on the strike-slip faults on Europa is usually a few kilo-
meters (the measured maximum being 83 km, e.g. Kattenhorn, 2004) and the
time of formation considered by previous studies is several tens of thousands of
years (e.g. Greenberg et al., 1998; Kattenhorn et al., 2009; Preblich et al., 2007).
In this regard, we want to identify the range of parameters for which the offset
accumulated within less than 100 kyr would be of the order of 103–104 m.

Greenberg et al. (1998) and Hoppa et al. (1999a) computed the amplitudes
of diurnal tidal stresses (proportional to eccentricity, see e.g., Wahr et al., 2009;
Sotin et al., 2009) assuming a thin elastic ice shell overlying a fluid layer. They
chose an eccentricity of 0.01 and obtained the stress amplitudes of ∼105 Pa. Since
the eccentricity probably varied significantly during Europa’s history and could
have been up to one order of magnitude higher (e.g. Hussmann and Spohn, 2004),
we consider the amplitudes of forcing stresses from 6×104 Pa to 6×105 Pa. The
estimates of ice shell thickness vary between a few and a few tens of kilometers
(e.g. Billings and Kattenhorn, 2005). In this part of the thesis, we thus investigate
the values of 1, 5, 10, and 30 km (cf. Table 2.3). We consider the coefficient of
friction µf=0.4 as a reference value, which is a conservative mean value of the
published results, cf. Schulson and Fortt (2012).

In describing the results, we proceed in two steps. First, we investigate the
model response in a simplified purely mechanical setting in which we demonstrate
the basic characteristics of the tidal walking mechanism. Then, we present the
results of a more realistic thermo-mechanically coupled model where we also look
for the surface thermal signatures of Europa’s internal processes. For conciseness,
all results are plotted only in a part of the domain even though all computations
are done in a domain with aspect ratio two. This is in order to subdue the effect
of a somewhat artificial boundary condition on the right boundary.

Mechanical Model

In this section, we focus only on the mechanical part of the problem and do not
take into account the thermal coupling – therefore, only the tidal model is used
assuming constant (in time and space) viscosity. First, we describe in detail the
time evolution of processes that occur at the fault plane during one orbital period.
Then we evaluate the maximal depth at which sliding occurs and how it depends
on the model forcing and material parameters. We also provide an analytical
estimate for the maximal activation depth of the fault and compare it with the
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numerical results. Based on the fault activation depth, we then discuss two cases
that may occur: (i) a partially locked fault for which the maximal activation
depth does not reach the bottom of the shell, and (ii) the whole-fault sliding
when the activation depth equals the shell thickness. We conclude this section by
showing how the accumulated surface offset for these two cases depends on the
ice viscosity and the phase shift between the applied normal and shear stresses.
In particular, we demonstrate the critical effect of viscosity in the partially-locked
case.

Time Evolution at the Fault
For the reference simulation, we consider a 10 km thick shell forced by normal

Figure 2.18: Results of the reference simulation computed with constant viscosity
1014 Pa s, phase shift π, shell thickness 10 km, loading force amplitude 6×105 Pa
and friction coefficient 0.4. Top: Time evolution of the applied normal (dashed
line) stress on the left boundary and of the tangential (full line) stress on the
right boundary. Bottom: Time evolution of quantities at the fault, only top 5 km
are shown. The colors correspond to time instants highlighted by dots in the top
panel. Left: Shear stress amplitude |sx| (solid lines) and yield stress σY (dashed
lines). Middle: Slip velocity vslip. The dotted line denotes the activation depth
da (cf. text for more details). Right: Accumulated slip uslip.

and shear stresses with amplitude of 6×105 Pa and phase shift π. As we shall see
later, such phase shift results in the largest possible (left-lateral) offset. Viscos-
ity is constant equal to 1014 Pa s, and we use the reference value of the friction
coefficient (µf=0.4).

The top panel of Figure 2.18 shows the time evolution of loading normal
(dashed line) and tangential (full line) stresses. In the following text, we use
the colors corresponding to the selected time instants during one period (cf. the
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colored points). In the bottom row of Figure 2.18, we plot (from left to right):
the shear stress amplitude |sx| at the fault (left panel, solid line) together with
the yield stress σY (left panel, dashed line), the slip velocity vslip (middle panel),
and the total slip uslip (time-integrated slip velocity, right panel) that expresses
the displacement of the fault block with respect to the fault plain – the mutual
offset δ between the two blocks is then twice as much.

At the beginning of the period (t=0, violet), the fault is unloaded both in the
normal and tangential direction, and the slip velocity, as well as the accumulated
slip, are zero. During the first quarter of the period, the fault is gradually opening
which is caused by the applied negative σn that partially counteracts the overbur-
den hydrostatic pressure and thus decreases the yield stress. Simultaneously, the
applied tangential stress increases. At t=P

4 (blue), the applied tangential stress
σt is maximal and the yield stress is minimal due to maximal negative σn. Note
that in the top ∼2.5 km, |sx|=σY (blue line, bottom row, left panel) – this part
of the fault is sliding and at this time, slip velocity is maximal (blue line, bottom
middle panel). Consequently, a positive (left-lateral) slip appears on the fault
(blue line, bottom right panel). In the second quarter of the period, the ampli-
tudes of tangential and normal loading both decrease and after t=P

2 (green), the
fault starts to close because σn becomes positive thus increasing the yield stress.

In the second half of the period, σt changes sign (leading to right-lateral
movement) and reaches the negative maximum at t=3P

4 (yellow). Since the back-
ward motion is significantly suppressed by the build-up of positive normal stress,
which is closing the fault, the depth profiles of shear stress amplitude and slip
velocity are not symmetric – at t=3P

4 (yellow), the fault is only activated in
the top ∼1 km, and the maximal negative slip velocity is approximately 4 times
smaller compared to the maximal positive value at t=P

4 (blue). Consequently,
the accumulated negative (right-lateral) slip does not cancel out but only reduces
the accumulated positive slip. Therefore, at the end of the period (red), the total
accumulated slip uslip is positive, i.e., left-lateral – cf. the red line in the bottom
right panel.

The left bottom panel of Figure 2.18 shows how the depth of the activated
(sliding) part of the fault where the shear stress follows the yield stress changes
throughout the period. The activation depth da is defined as above, i.e., it is
the depth, where the average (over the period) of |vslip| drops to 2% of the max-
imal (over the period) value. This depth is denoted by the black dotted line
in the bottom middle panel of Figure 2.18. Note that it roughly corresponds to
the maximal depth of the activated part of the fault during one period (blue line).

Fault Activation Depth
We now investigate how the fault activation depth depends on the model param-
eters. In Figure 2.19, we plot the activation depth for three values of friction coef-
ficient, µf=0.1, 0.4, 0.8 (colors), as a function of the applied stress amplitude σ0.
We consider two ice shell thicknesses, D=10 and 30 km, and two values of ice
viscosity η=1014 and 1022 Pa s. The left panel illustrates the effect of ice shell
thickness D=10 km (dotted lines) and D=30 km (dashed lines) while viscosity is
fixed at 1014 Pa s. The right panel shows the effect of ice viscosity η=1014 Pa s
(dotted lines) and η=1022 Pa s (dashed lines) while the shell thickness is fixed at
30 km. The solid lines represent an analytical estimate of the fault activation
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depth:
dmax = σ0

ϱig

1+µf+√1+2µf

µf

, (2.49)

which corresponds to the considered setting (equal amplitudes of applied σn and
σt and phase shift φ=π). A more general estimate and derivation are presented
in the Appendix 2.2.5.

Figure 2.19 confirms the expected linear dependence of activation depth on
loading stresses amplitude with the slope increasing with decreasing coefficient of
friction. In the left panel, we see that for the middle (0.4) to large (0.8) value of
µf (yellow and red lines), the fault activation depth is significantly smaller than
the shell thickness, da≪D, in which case the dependence of the activation depth
on the ice shell thickness is insignificant. On the other hand, the small value
of friction coefficient (µf=0.1, green lines), significantly increases the activation
depth, which can then approach the shell thickness, da∼D, corresponding to the
whole-fault activation. In such a case, we observe that for the same values of σ0,
µf , and η, the fault activation depth becomes larger for shells with smaller thick-
nesses. Simultaneously, for the fully activated fault (green square), the analytical
estimate dmax (eq. 2.49) becomes more accurate, while for thicker shells, it only
provides an upper bound. Finally, in the right panel of Figure 2.19, we observe
that the role of viscosity is relatively minor for all considered cases, although it
increases for larger values of µf .

Partial Locking vs. Whole-fault Activation
We have seen that under favorable conditions, the fault activation depth da may

Figure 2.19: Fault activation depth da as a function of the loading stresses am-
plitude. Colors indicate different values of the friction coefficient µf . The full
lines show the analytical estimate dmax given by eq. 2.49. Left: Effect of the ice
shell thickness D for fixed viscosity 1014Pa s. Right: Effect of the ice viscosity η
for fixed ice shell thickness of 30 km. In both panels, the yellow star corresponds
to the reference simulation from Figure 2.18. In the left panel, the green square
indicates the setting in which the fault is activated across the whole shell: da=D.
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reach the base of the shell, in which case the whole fault becomes activated. Let
us investigate in more detail the differences between the partially locked case
and the whole-fault activation. For this purpose, we compare the results of the
reference simulation from Figure 2.18 (cf. also yellow star in Figure 2.19) with
the results of a simulation with a smaller friction coefficient that leads to the
whole-fault activation (cf. green square in Figure 2.19). Namely, we consider
a 10 km thick shell, constant viscosity 1014 Pa s, phase shift π, forcing amplitude
6 × 105 Pa and two values of friction coefficient: µf=0.4 (Case 1) and µf=0.1
(Case 2). We plot the amplitude of shear stress |sx| at the fault and the slip
velocity vslip during one tidal period for both cases in Figure 2.20 (Case 1 – the
top two rows, Case 2 – the bottom two rows).

Figure 2.20: Time evolution of shear stress and slip velocity during one tidal
period for Case 1 (µf=0.4, top two rows) and Case 2 (µf=0.1, bottom two rows).
In Case 2, the value of the stabilization parameter γs is 10 kg m−3 s−1 (cf. text
for more details). Odd rows: shear stress amplitude |sx| at the fault (blue line),
yield stress σY (red dashed line), loading stress amplitude at the right boundary
σt (grey line), and average (integral over whole fault) shear stress at the fault
(black dotted line). Even rows: slip velocity vslip at the fault (blue line). Note
that for Case 2 and t=P

4 , the vslip range is different from the other panels in the
same row (highlighted by the red line).

In Case 1, we can see that the shear stress at the fault (Figure 2.20, top row,
blue lines) remains below yield stress (red dashed lines) in a significant part of
the fault. Sliding takes place only in the uppermost ∼2.5 km (at t=P

4 ), but most
of the fault is locked throughout the tidal period. The combination of sliding
in the upper part of the fault and effective no-slip below the activation depth
results in the strain-rate maximum just below the tip of the activated part of
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the fault. Note that, locally, the shear stress at the fault (blue line) may exceed
the loading stress amplitude at the right boundary (grey line, cf. t=P

4 ), but
the average shear stress at the fault (black dotted lines) matches the loading
stress at each time step, which expresses the global (tangent) force equilibrium.
Indeed, by considering the free-slip boundary conditions both at the top and
bottom boundary (see eq. 2.48a), integration of the momentum balance (2.11)
over the whole domain yields equality between the tangent loading force on the
right boundary and integral of the shear stress at the fault (left boundary).

In Case 2, the yield stress is smaller due to the smaller value of µf and, at
some time during the opening phase of the period (σn<0), the stress at the fault
(blue lines) reaches the yield stress (red dashed lines) across the whole shell -
cf. Figure 2.20, third row, t=P

4 . Therefore, the fault activation depth reaches the
base of the shell, and the fault starts sliding rapidly as one block (bottom row,
t=P

4 ). This lasts until the stress drops below the yield stress again (third row,
t=3P

8 ), which leads to an abrupt decrease in the slip velocity (bottom row, t=3P
8 ).

In the second half of the period, the fault remains partially locked (da<D). Let
us note here that, as long as the whole domain slides (around t=P

4 ), the slip
velocity is effectively unconstrained. For numerical reasons, we add a stabilizing
term in the form of a volume force acting along the fault, which is negatively
proportional to the tidal velocity, i.e., we augment f in eq. (2.1b) by −γsv with
γs=10kg m−3 s−1, which transforms eq. (2.11) into

∇ · s = γsv. (2.50)

To some extent, one could try to interpret this term physically as a simple param-
eterization of the “far-field” effects due to the finiteness of the fault. Note that in
reality, the slip should be limited by the change in the shape of the equilibrium
tidal figure, which provides another constraint on the sliding in the case of whole-
fault activation. We restrain ourselves from any deeper physical interpretation
and consider the −γsv term solely as a stabilization. Note also that while this
stabilization has some effect on the slip velocities, the force balance is satisfied
for all times except t=P

4 where the average stress at the fault (black dotted line)
is smaller than the loading force (grey line) due to the stabilization.

Accumulated Surface Offset
We now compare the two cases introduced above in terms of the surface offset δs
(2×uslip at the surface) accumulated during one period. In Figure 2.21, we vary
the phase shift between the normal and the shear stress (so far taken as φ=π)
over the whole range from 0 to 2π with a step of π/4. We also study the ef-
fect of ice viscosity η. Since for Case 2, the results quantitatively depend on
the unconstrained value of stabilization parameter γs, we normalize the obtained
offsets by their maximal computed value (for each Case separately), and thus, in
Figure 2.21, we plot this normalized surface offset δ̃s. Consequently, these results
are insensitive to the choice of γs.

We can see that for both cases, the surface offset depends strongly on φ.
The maximum is reached around φ=0 (right-lateral offset), and φ=π (left-lateral
offset), the minima corresponding to zero offset are attained around φ=π

2 or
φ=3π

2 . This observation is in good agreement with the conceptual model of tidal
walking as proposed by Hoppa et al. (1999a): maximum offset is expected if
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Figure 2.21: The normalized surface offset per period δ̃s as a function of the phase
shift φ between the normal and shear loading stress and the viscosity η (colors).
For each Case, the results are normalized by the corresponding maximal value
(cf. text for details). Left: Case 1 – the fault is only partially activated. Right:
Case 2 – whole fault is activated.

the maximum of lateral stresses (left or right) occurs simultaneously with the
minimum of normal stress.

For Case 1, we observe a very strong dependence on the ice viscosity – the
surface offset is maximal for the lowermost considered value of ice viscosity
(η=1014Pa s) and rapidly decreases for higher values. The reason for this behav-
ior is that in this setting, the offset accumulates mainly due to the viscoelastic
relaxation of the strongly deformed ice in the fault’s vicinity, which becomes more
efficient with smaller viscosity. One can hypothesize that thermal effects might
facilitate weakening in some situations, see the part Thermal Activation of Tidal
walking lower on page 58. Note that the viscoelastic behavior is also responsible
for the slight asymmetry with respect to φ.

In contrast to Case 1, the offset in Case 2 is completely insensitive to the
viscosity value. This is due to the fact that when sliding, the parts of the shell
right and left of the fault move essentially as uniform blocks with negligible viscous
deformation (see bottom row of Figure 2.20, t=P

4 ). The surface offset then results
from the combination of the opening and locking of the fault and the “far-field”
response characterized by γs. For different values of γs, different values of the
offset would be obtained, but ice viscosity does not affect the process at all.

Thermo-mechanically Coupled Model

In this section, we take into account also thermal effects and present the results
of the thermo-mechanically coupled model as described in Section 2.2.1. We vary
the main model parameters: shell thickness D, forcing amplitude σ0, and the
coefficient of friction µf , in order to determine for which structural and loading
parameters could Europa’s fault produce observable offset by the process of tidal
walking. We again consider a fixed value of the phase shift φ=π, which is the
most favorable for producing observable offset (see Fig. 2.21 and discussion in the
previous section).
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We quantify the accumulated surface offset δs at the fault, and simultaneously,
we attempt to quantify the possible thermal signatures of the strike-slip motions
since these may serve as indicators of active faults for future missions to Europa.
Let us recall that these thermal signatures are due to the two heating sources
described in detail in the previous section 2.1.4 – the frictional heating at the
fault and the mechanical dissipation in the bulk.

Results of our parametric study for the reference value of µf=0.4 are sum-
marized in the left panel of Figure 2.22, where we vary the ice shell thickness
(columns) and the amplitude of the loading stress (rows). The presence or the
absence of an observable offset (defined as >100 m produced in 100 kyr) at the
fault is indicated by walking and standing figures, respectively. The magnitude of
the heat flux anomaly ∆q, defined as the difference between the produced surface
heat flux above the fault and the heat flux value at this point in the initial state,
i.e., before the fault activation, is coded by color: blue corresponds to a negligi-
ble anomaly (∆q≤10−2 W m−2) while red indicates values greater than 1 W m−2.
The grey color is used for cases where the stabilization had to be used due to
the fact, that the fault is activated across the whole shell. This makes the results
quantitatively biased by the choice of the stabilizing parameter γs.

Figure 2.22: Left: Table summarizing the results of the thermo-mechanical model
for various ice shell thicknesses (columns) and the loading stresses amplitudes
(rows). The walking/standing figure corresponds to the model that produces
visible offset or not respectively. Color from blue to red represents the value of
the heat flux anomaly ∆q on the fault, grey color describes the simulations for
which stabilization was used, and thus only qualitative results were obtained.
Right: Heat flux anomaly ∆q for different ice shell thicknesses D (colors) and
different loading stresses σ0 (x-axis). The error bars for σ0=2×105Pa denote the
variations of ∆q with the coefficient of friction (lower values obtained for µf=0.8,
higher values for µf=0.1).
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The high percentage of standing figures in Figure 2.22 reflects the fact that
in the applied setting and for the considered range of model parameters, it is
rather challenging to produce an observable offset. Except for the thermally
activated simulation (σ0=6 × 105 Pa and D=5 km, explained below), the shell
would have to be extremely thin (< 5 km). In addition, the forcing amplitudes
would have to exceed the present day amplitude of the diurnal stress (∼ 6×104 Pa,
Greenberg et al., 1998) to produce an observable offset within the considered time
span of 100 kyr. In these cases (i.e., for σ0>6×104 Pa and D=1 km), the loading
stress is high enough to facilitate fault activation across the whole shell. Then, in
accord with our findings from the purely mechanical case (part Mechanical Model
on page 50), we obtain extremely high slip velocities and accumulated surface
offsets per period. The frictional heating for these cases can be high enough to
induce partial melting across the whole fault. Consequently, the surface thermal
signature, in this case, can be very high. Quantitative prediction of both δs and
∆q is, however, biased by the use of the stabilization parameter γs.

The heat flux anomaly resulting from the strike-slip motions at the fault for
the subcritical cases (only partial fault activation) is plotted in the right panel of
Figure 2.22 as a function of the loading stresses amplitude σ0 for different ice shell
thicknesses (color). Note that in some cases (σ0≥2×105 Pa), a significant heat
flux anomaly can be produced while generated offset is negligible. The overall
trend is intuitive – the higher the loading force, the higher the heat flux anomaly.
The error bars (shown only for σ0=2×105 Pa) indicate the quantitative effect of
the friction coefficient µf on heat flux anomaly, the higher values corresponding
to µf=0.1 and the lower to µf=0.8. While the effect of the friction coefficient
is rather pronounced, the forcing amplitude σ0 is of greater importance. For
the lower values of σ0, the anomaly would be probably undetectable (units of
mWm−2), whereas for the higher loading stresses (σ0=6 × 105 Pa), we obtain the
heat flux anomaly of up to 1 Wm−2. Interestingly, the ice shell thickness D does
not significantly affect the heat flux anomaly. This is due to the fact that in
the regime of partial fault activation, the mechanical response of the fault (in
particular da and vslip) is rather insensitive to D.

Thermal Activation of Tidal Walking
Our parametric study has revealed an interesting case (corresponding to the

loading force σ0=6×105Pa and shell thickness D=5km), where a significant offset
accumulates even though the activation depth does not reach the bottom of the
shell. Let us demonstrate that this is, in fact, due to thermo-mechanical coupling.

In Figure 2.23, we plot snapshots from the time evolution over 100 kyr for
this simulation. In the top row, we show depth profiles of the absolute value
of the slip velocity at the fault averaged over one period (|vslip|, panel a), the
accumulated offset per period δ at the fault (panel b), and the temperature T at
the fault (panel c). In the bottom row, we depict the surface offset per period
(δs, panel d) and the heat flux anomaly (∆q, panel e) as functions of the distance
from the fault x. The initial state (violet) is characterized by a zero offset,
a conductive temperature profile, and a negligible heat flux anomaly. Throughout
the simulation, the activation depth da varies between 2 and 3 km; thus the active
part of the fault never penetrates the whole shell (panel a). The slip velocity is
high enough to produce significant frictional heating at the fault, which leads to
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Figure 2.23: Time evolution of the thermally activated simulation, where
the surface observable offset is obtained without the whole shell penetration
(σ0=6×105 Pa, D=5 km, φ=π, µf=0.4). Top: Depth profiles of quantities at
the fault: (a) absolute value of the slip velocity averaged over one period |vslip|,
(b) accumulated offset per period δ, (c) temperature T . Bottom: Surface quanti-
ties as a function of distance from the fault x: (d) accumulated surface offset per
period δs, (e) heat flux anomaly ∆q.

a gradual increase of the temperature at the fault (panel c) and in its vicinity. This
eventually leads to the development of a rising plume-like structure underneath
the fault, cf. Fig. 2.24, with a very high temperature and, consequently, the
viscosity as low as ∼ 1014 Pa s. At this time (approximately after 50 kyr since the
beginning of the simulation), the region of the shell underneath the active part of
the fault is mechanically so weak that the deformation regime switches effectively
to the low-viscosity Case 1 situation shown in Section 2.2.2 part Mechanical
Model (see Figures 2.20 top and 2.21 left). This leads to a production of surface
offset as high as ∼ 0.2 m per period (cf. Fig. 2.23 b, d), corresponding to the
accumulated offset δs ∼ 20 m in one year or 1 km within 100 kyr (including the
50 kyr “initiation” phase). Note that already after 30 kyr, part of the fault is at
the melting temperature (at the depth between ∼1 and 2 km, Fig. 2.23c), and
gradually, this zone grows until ∼50 kyr, when it reaches all the way to the bottom
of the shell. Consequently, a very strong temperature gradient is established in
the near subsurface (approximately the first 1 km), leading to the surface heat
flux anomaly reaching up to ∼ 1.5 W m−2 right above the fault, cf. Fig. 2.23e).
For numerical reasons, we do not solve for the production of melt and its transport
as in Kalousová et al. (2016) and Section 2.1, and thus the temperature field is
simply truncated at the melting temperature. According to results of Kalousová
et al. (2014), any melt above an ice column that is at the melting temperature
would be extracted into the ocean within a few to a few tens of kyr, depending
on the ice permeability.

Despite the fact that the considered conditions are probably irrelevant for
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Figure 2.24: Time evolution of the temperature field in the thermally activated
simulation (σ0=6×105Pa, D=5km, φ=π, µf=0.4), the contours indicate temper-
atures of 120, 190 and 260 K.

the current state of Europa’s shell (the stress amplitude is significantly smaller
and the shell probably thicker), this case clearly shows the importance of thermo-
mechanical coupling for the evolution of strike-slip faults on Europa. While earlier
studies have either neglected the thermal effects (e.g. Rhoden et al., 2012) or
considered them unimportant (e.g. Preblich et al., 2007), we have demonstrated
that the thermo-mechanical coupling may, under favorable conditions, govern the
deformation regime on the strike-slip faults and should, therefore, be taken into
account.

2.2.3 Discussion
In this section, we first describe another setting in which a visible offset can
be produced by the tidal walking model – partial flooding of the fault zone by
liquid water from the ocean. Then we investigate the possible effect of a more
general stress field than considered in this part of the thesis. We also discuss the
key assumptions adopted here; in particular, we address the description of the
fault behavior, the design of the tidal model in terms of the prescribed boundary
conditions (parameterization of the tidal forcing), and the effect of different near
subsurface material properties. We also consider the limitations of the convective
model in terms of the employed ice rheology and single-phase formalism or the
effect of the computational domain aspect ratio.

Water Filled Cracks

In the previous section, we assumed that yield stress at the fault increases grad-
ually with depth due to the increase of the overburden pressure. This is true if
the contact between the fault walls is dry. However, a water column rising from
the ocean can lubricate the contact and simultaneously counteract the overbur-
den pressure in the shell, as suggested by Greenberg et al. (1998). Let us now
briefly discuss the results for such a setting with which an observable offset can
be produced even for today’s diurnal stress amplitudes and range of ice shell
thicknesses.

The majority of Europa’s faults are assumed to be of extensional origin (Kat-
tenhorn et al., 2009). If the original crack forming the fault reached all the way
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to the internal ocean, the water column would rise to approximately nine-tenths
(∼ ϱi

ϱw
) of the shell thickness, thus, partially compensating the overburden pres-

sure within the shell. In order to take this possibility into account, we consider
the following extension of (2.47a):

˜︂σY =
⎧⎨⎩µf (σn+ϱig(D − z)) , if z ∈ ⟨ ϱi

ϱw
D,D⟩

µw
f (σn+(ϱw−ϱi)gz), if z ∈ ⟨0, ϱi

ϱw
D)

, (2.51)

where z is the vertical coordinate (z=0 at the ice-ocean interface). In this for-
mula, the static normal stress at the fault increases as before down to a depth of(︂
1− ϱi

ϱw

)︂
D ∼ 0.1D, where the water column starts to counteract the overburden

pressure in the ice, cf. panel (b) on Figure 2.25. At the bottom boundary (z=0),
the difference between the two competing pressures is zero, i.e., we assume that
the shell is in hydrostatic equilibrium. In the part of the fault, that is filled with
water, the friction coefficient changes to µw

f = 0.1µf to mimic the lubrication
effect of water (Oksanen and Keinonen, 1982).

For the parameterization of the yield stress given by (2.51), we calculate the
thermo-mechanical response as in the previous section - i.e., varying the shell
thickness and the stress forcing amplitude. The main difference is that now the
yield stress reaches the maximum value at d∼0.1D, cf. panel (b) on Figure 2.25,
which means that the effective mechanical strength of such fault zones is reduced
by order of magnitude compared to the case without water column filling the
crack.

As a result, we observe accumulation of a substantial surface offset and signifi-
cant heat generation also for D between 1 km and 10 km and σ0=6×104 Pa. Such
forcing corresponds to the activation depth of a few hundred meters (depending
on µf ), which is comparable or larger than one-tenth of the considered thickness.
In all these cases, we thus observe activation of the whole fault, and as before,
a stabilizing term had to be added (cf. Section 2.2.2), which makes our results
only qualitative. However, for the thickest assumed ice shell, the lowest loading
stress amplitude is not enough to penetrate the whole ice shell, see Figure 2.25
and the fault is activated in the lower part only, see panel (a) on Figure 2.25.
Substantial heating can be then produced to heat the fault up to melting point
(panel (c) on Figure 2.25). However, there is no observable offset on the surface,
cf. panel (d) on Figure 2.25.

In conclusion, we find that the presence of a water column in the fault zone
significantly changes the response of the fault. For the cracks that are filled with
water, tidal walking could be an efficient mechanism producing the surface offset
even for the present day estimates of the tidal stress and for moderate estimates
of the ice shell thickness (≤ 10 km).

Stresses in the Shell

In all simulations, the amplitudes of the loading tangential and normal stresses
were taken equal. We also considered their mutual phase shift to be φ = π (except
for results in Figure 2.21), which leads to the largest possible (left-lateral) offset.
In reality, both stresses consist of several modes on different timescales, and can
differ in amplitudes depending on the position and orientation of the fault. In

61



Figure 2.25: Time evolution of a simulation with water filled cracks
(σ0=6×104 Pa, D=30 km, φ = π, µf=0.4). Top: Depth profiles of quantities
at the fault: (a) absolute value of the slip velocity averaged over one period
|vslip|, (b) maximal yield stress (with σn = 6 × 104 Pa), Bottom: (c) temperature
T , (d) accumulated offset per period at the fault.

general, the tangential and normal loading stresses at a given point and for a given
orientation can be expressed as follows

σt(t) = σBG
t (t) + σ0,t sin(ωt) , (2.52a)

σn(t) = σBG
n (t) + σ0,n sin(ωt+ φ) , (2.52b)

where σ0,• are the amplitudes of stresses induced on diurnal timescale and σBG
• are

stresses induced on longer timescales. The diurnal stresses include eccentricity
tides and possibly also obliquity tides as well as the contribution from physi-
cal libration. Their magnitudes are probably comparable with values of about
100 kPa (e.g. Nimmo et al., 2009; Bills et al., 2009; Rhoden et al., 2010), which
are consistent with the range considered here. The other known stress-inducing
mechanisms comprise the non-synchronous rotation and polar wander (ampli-
tudes of up to several MPa), thermal and compositional convection (<1 MPa), or
tensile stress due to the ice shell thickening (several MPa) (Nimmo et al., 2009;
Sotin et al., 2009). These mechanisms act on considerably longer than diurnal pe-
riods and can thus be considered as a constant-in-time stress background within
each diurnal tidal period.

In this study, we did not consider any difference between the tangential and
normal diurnal stress amplitudes nor the presence of any long-period stress back-
ground. Their importance can be, in a simplified manner, assessed through the
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methodology for estimating the upper limit on fault activation depth dmax, de-
rived in Appendix 2.2.5. Investigating dmax can then be used as a guide for
assessing the impact of variables, which we were not able to investigate in detail
by the presented model due to computational consideration.

Figure 2.26: Maximum fault activation depth dmax during one cycle. Left: effect
of variations of the normal σ0,n (x-axis) and tangential σ0,t (color) stress ampli-
tudes with no background stress. Right: effect of the background stresses σBG

t

(color) and σBG
n (x-axis) for fixed diurnal amplitudes σ0,t=σ0,n=6×105 Pa. Fric-

tion coefficient µf=0.4 and phase shift φ=π were used in both cases.

Figure 2.26 (left) illustrates the effect of the normal and tangential stress
amplitudes on the maximum fault activation depth dmax, given by the following
formula assuming φ=π (see eq. 2.67):

dmax = σ0,t

ϱig

1+µf

(︂
σ0,n

σ0,t

)︂
+
√︃

1 + 2µf

(︂
σ0,n

σ0,t

)︂
µf

=
σ0,t+µfσ0,n + σ0,t

√︃
1+2µf

(︂
σ0,n

σ0,t

)︂
ϱigµf

.

(2.53)

The depth dmax is a monotone increasing function of both σ0,n and σ0,t. The
numerator in the second expression shows that the dependence (of the leading
order terms) differs by a factor µf (<1), and therefore, dmax is more sensitive to
variations of σ0,t than σ0,n. We can also see from the first expression in eq. (2.53)
that especially for lower values of µf , the ratio between the stresses σ0,n

σ0,t
can be

considered as a secondary parameter (compared to the magnitude of the tangen-
tial stress and the friction coefficient). This justifies the simplifying assumption
σ0,n∼σ0,t, that we use.

The amplitudes of long-period stresses can exceed those of diurnal stresses
by orders of magnitude and can be comparable to the hydrostatic pressure. In
Figure 2.26 (right), we show the behavior of dmax (computed in this case as a nu-
merical maximum of expressions 2.59 and 2.62 in the Appendix 2.2.5, see the
discussion at the end of the Appendix 2.2.5 for a range of background stresses).
We observe that large background tensile (negative in our notation) normal stress,
as well as large tangential stress, result in larger dmax, while large compressive
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normal stress reduces it. The latter effect can be, to some extent, compensated by
an increased tangential stress. Note also that the effect of normal stress is again
scaled by the friction coefficient: for µf<1, the effect of the tangential stress is
more pronounced than the effect of the normal stress. Unless the background
compressive normal stress is significantly larger than the tangential stress, the
magnitude of several MPa can help to increase the activation depth from a few
kilometers to ∼10 km even for the current value of eccentricity. As a consequence,
the background stress can help to facilitate the process of tidal walking or mod-
ulate it on the characteristic timescale of the associated long-period mechanism.

Fault Description

The description of the fault employed in this study is based on a relatively simple
Mohr-Coulomb-like criterion. However, ice-ice contact is known to exhibit more
complex frictional properties. It has been described, for instance, by the so-called
rate and state friction law (e.g., Fortt and Schulson, 2009; Lishman et al., 2011),
where the friction coefficient depends on both the slip velocity (rate) and an in-
ternal variable (state), that has its own evolution dynamics, see Section 4.2.3.
Even though we use a constant value of the friction coefficient (µf=0.4 as a ref-
erence value), we tested the possible effect of this more complex description of
fault behavior by considering the limiting cases (µf=0.1 and 0.8). The effect is
significant, both in terms of the activation depth and in terms of the produced
heat flux anomaly; see Figs. 2.19 and 2.22 right. Better estimates of the frictional
properties of ice-ice contact in icy-worlds conditions are therefore necessary for
constraining the quantitative predictions; however, all the qualitative results of
our study remain unaffected by the choice of µf .

Moreover, for numerical reasons, we replace the Mohr-Coulomb friction cri-
terion (2.17) by its regularized version, i.e., by the slip condition (2.18a) with
an effective sliding coefficient (2.18b). The parameterization contains two pa-
rameters, β∗ and n. The first parameter is the sliding coefficient in the “locked
case” (i.e., β∗≫1 Pa s m−1), the second parameter n governs how fast the effective
sliding law switches from high-friction below the yield stress to low-friction when
the yield stress is approached. The Mohr-Coulomb criterion corresponds to the
limit β∗→∞ and n→ ∞, but in the simulations, we used β∗=1018 Pa s m−1 and
n=2. The former value does not have any particular significance, and changing it
by orders of magnitude did not affect the results. The latter choice for parameter
n was motivated by numerical reasons - having lower n improved the convergence
of the Newton solver. We verified that using larger exponents did not have any
significant effect on the simulations.

In this part of the thesis, we do not consider the effect of melting at the fault
since our convective model does not allow us to quantify the amount of meltwater
(cf. discussion below) and simply cuts-off the temperature at the melting point.
The presence of liquid lubricant on a frictional contact may reduce the friction
coefficient by more than one order of magnitude (Oksanen and Keinonen, 1982);
hence it would probably affect the quantitative response of the model. Based on
numerical experiments with the model from the previous section (coupled tidal
and a two-phase convective model), we can hypothesize that after melt appears
at the fault, the sliding process becomes very complex. Namely, the reduction
of the friction coefficient with melt (exponential decrease in Kalousová et al.
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(2016) and in Section 2.1.1) leads to a very fast and localized switch-off of the
frictional heating followed by rapid melt refreezing, and consequently, the heat
production increases again. This feedback mechanism adds a lot of complexity
to the fault behavior, which can be resolved only under extreme spatial and
temporal resolutions. Since we are primarily interested in the depth- and time-
averaged quantities at the surface, all of which are quite insensitive to most of
these subtleties, we restrained ourselves to the simpler approach.

Forcing of the Tidal Model

Let us also comment on the delicate choice of the boundary conditions for the tidal
model, i.e., on its forcing. We prescribe the value of the shear stress (time-variable
but constant in space) on the right boundary and keep the top and bottom
boundaries frictionless. The latter assumption is quite natural since the bottom
boundary is an ice-ocean contact and the top boundary represents the surface.
The former assumption is, however, more questionable since the right boundary of
the computational domain is artificial – in reality, it is an internal surface within
the ice shell. Our aim was to prescribe such a forcing, which would result in
internal shear stresses compatible with the tidal stress amplitudes inferred from
an independent tidal deformation simulation by e.g., widely used SatStress code
(Crawford et al., 2007; Wahr et al., 2009; Kay and Kattenhorn, 2010). While
in reality, the internal stresses are induced by the global tidal deformation of
the three-dimensional planetary shell, in the simplified two-dimensional model,
this forcing could be reasonably reproduced through the adopted stress boundary
condition. An alternative forcing was used in Preblich et al. (2007), who imposed
the tidal strain rate instead of stress, which, however, prevented their model from
accumulating any irreversible offset at the right boundary. Nimmo and Gaidos
(2002) forced their model also kinematically by prescribing the displacement at
the surface. This choice again does not allow to obtain the surface offset as
a model output.

Near-subsurface Mechanical and Thermal Properties

Flexural model of fault-related topography in Nimmo and Schenk (2006) suggests
a reduction of the near-surface shear modulus of Europa’s ice shell by order of
magnitude as a consequence of large porosity or near-surface fracturing (Nimmo
et al., 2003). Similarly, either high porosity or the possible presence of clathrate
hydrates at the surface are expected to lead to a decrease of thermal conductivity
in the uppermost part of the shell (Nimmo and Giese, 2005). We attempted to
estimate the effect of both phenomena on our results numerically.

Reduction of the near-surface shear modulus, i.e., weakening of the uppermost
part of the shell, leads to a partial reduction of the stresses transmitted at the
fault. One order of magnitude reduction in shear modulus in the topmost one
kilometer of a 10km shell leads in the setting of Case 1 from Section 2.2.2 to
a reduction of the surface offset δs by 30-40% depending on the viscosity and
details of the shear modulus depth dependence.

A near-surface reduction of thermal conductivity as in Nimmo and Giese
(2005) (reduction of k by a factor of 20 near the surface) in the thermally coupled
models does not have a significant impact on the surface accumulated offset δs,
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but leads to a reduction of the thermal signature ∆q. For the thermally-activated
case described in Section 2.2.2, the amplitude of the surface heat flux anomaly
was reduced by approximately 20%.

Convective Model

The convective model used in this study is based on the two-phase model of
Kalousová et al. (2016), where we suppressed the two-phase formalism and re-
duced the system of governing equations to the standard single-component in-
compressible Stokes-Fourier system (2.46). The reason for this choice, that has
already been mentioned in the previous section, was the additional complexity.
When melting was included, it led to an extreme increase of resolution require-
ments both in space and time, while it did not seem to affect the main conclusions
of this study. Hence, we opted for the simpler choice, which allowed us to compute
more and longer coupled simulations.

The convective model describes the ice as a non-Newtonian viscous fluid with
viscosity given by (2.24). The temperature dependence of this empirical law leads
to unrealistically high viscosities larger than 1030 Pa s in the very low temperature
zone near the surface. Such high values of viscosity can lead to stresses incon-
sistent with the mechanical strength of ice. Ideally, this should be avoided by
replacing the viscous rheology with some form of visco-plastic law (e.g. Showman
and Han, 2005; Bland and McKinnon, 2012; Howell and Pappalardo, 2018), or,
one can circumvent the problem by adopting a viscosity cut-off which imposes
an upper bound on the viscosity value. In this study, we use the value of 1022Pa s,
and viscosity is thus reduced only in the coldest part of the shell that deforms
elastically. For that reason, the viscosity cut-off does not affect the viscous dis-
sipation. Similarly, also the frictional heating at the fault is insensitive to the
choice of viscosity cut-off.

Aspect Ratio

Since the right boundary of our computational domain is artificial (internal sur-
face within the shell), a natural question arises as to what amount are the results
affected by the chosen aspect ratio. Although we plot the results on a domain
with aspect ratio 1, the computations were done on a domain with aspect ratio 2.
We have investigated the effects of different aspect ratios (1 and 4) but found the
differences in the results insignificant.

2.2.4 Conclusions
In this part of the thesis, we have numerically tested the tidal walking hypoth-
esis proposed by Hoppa et al. (1999a) to explain the observed lateral offset on
some of the strike-slip faults on Europa’s surface. Our numerical model combines
two building blocks: (i) a viscoelastic tidal model that evaluates the slip on the
fault, which is characterized by the Mohr-Coulomb failure criterion, and the de-
formation of the surrounding ice, and (ii) a viscous convective model solving the
long-term thermal evolution of the shell.

We have modeled the thermo-mechanical evolution of a shell containing a pre-
defined fault zone considering the range of ice shell thickness between 1 km and
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30 km, and for the tidal stress amplitudes between the present-day estimate of
6×104 Pa and 6×105 Pa corresponding to a possible high eccentricity epoch in
Europa’s history. We studied the development of an offset between the two sides
of the strike-slip fault at the surface within a period of 100 kyr, estimated as
a time span for fault’s activity.

Our results confirm the conclusions of an earlier numerical study by Preblich
et al. (2007) that a significant lateral offset at the strike-slip faults can be pro-
duced if the active part of the fault reaches either the bottom of the shell or
penetrates to a very low viscosity zone. The whole-shell penetration appears to
be quite improbable since it requires the shell to be very thin (≤ 1 km) and, simul-
taneously, the acting tidal stresses to be larger than the present-day values. We
demonstrate, however, that the second scenario – i.e., penetration of the active
fault zone to a low-viscosity zone, could have been facilitated by a mechanism of
thermo-mechanical coupling. For ice shell thickness of 5 km and the tidal stress
amplitude of 6 × 105 Pa, the frictional heating at the fault and mechanical dissi-
pation in its vicinity lead to a sufficient thermal weakening of the ice near and
underneath the fault, that an offset of 1 km is produced within 100 kyr. Finally,
a third option, which allows producing a significant offset even for the present-
date estimates of the tidal forcing amplitudes and ice-shell thickness of less or
equal to ten kilometers, requires that the crack forming the fault is partially filled
with liquid water from the underlying ocean. The resulting compensation of the
ice overburden pressure by the water column reduces the effective strength of the
shell by an order of magnitude, thus promoting the slip and offset accumulation
even for the current tidal stress forcing. In this setting, the tidal walking mecha-
nism seems to be very efficient. Still, for this case, our model loses quantitative
predictability since stabilization of the motion along the fault must be added.

For all cases, we have also studied the corresponding thermal signatures of
the strike-slip motions at the fault. We show that moderate surface heat flux
anomaly ∆q between 10−2 and 10−1 W m−2 can be obtained even for cases when
the accumulated offset is negligible (D>1 km, σ0=2×105 Pa). From this point of
view, measuring heat flux anomalies could serve as a tool for identifying active
strike-slip faults on Europa even for faults without any significant offset. If the
fault activation depth reaches the bottom of the shell, the mechanical dissipa-
tion by frictional heating at the fault combined with the bulk dissipation in the
visco-elastically deforming ice is often enough to drive a significant temperature
increase, possibly accompanied by partial melting in the fault zone. In these
cases, the thermal signatures at the surface are expected to be very significant.
Since partial melting in the fault zone has been suggested to affect the surface
morphology (e.g., formation of double ridges, Nimmo and Gaidos, 2002), one
could hypothesize that the presence of such surface features could be interpreted
as the witness of a period of (earlier) vigorous strike-slip activity.

2.2.5 Appendix A: Analytical estimate of the fault
activation depth

We now derive the approximate formula for the fault activation depth (eq. 2.49).
Figure 2.27 shows an illustrative snapshot of the shear stress amplitude at the
fault |sx| at some instant during the opening phase, i.e., for σn(t)<0 (left), and
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during the closing phase, i.e., for σn(t)>0 (right).

Figure 2.27: Shear stress amplitude at the fault |sx| (blue line) as a function of
depth in the opening (σn<0, left panel) and closing (σn>0, right panel) phase.
The red dashed line represents the yield stress σY and the two vertical lines
represent the (absolute values of) the average tangential stress |F F

t (t)|/D at the
fault (green dashed line) and of the average tangential stress |FR

t (t)/D|=|σt| at
the right boundary (orange line), respectively.

During the opening phase (Figure 2.27 left), the fault is divided into three
parts: (i) top (d∈⟨0, d0(t)⟩), where the fault is stress free in the tangential direc-
tion due to negative σn exceeding the overburden pressure, i.e., sx=0, (ii) middle
(d∈⟨d0(t), dmax(t)⟩), where the amplitude of shear stress equals the yield stress,
|sx| = σY , and (iii) bottom (d∈⟨dmax(t), D⟩), where the shear stress is below the
yield stress, |sx|<σY . During the closing phase, the top part is missing, i.e., d0=0,
since σn is in the compressive regime, σn>0. For both cases, the bottom part is
absent if the fault is activated across the whole shell. Let us now investigate these
two cases separately.

Opening phase (σn(t)<0)

The total tangential force exerted at the fault in the opening phase reads

F F
t (t) = sgn(σt(t))

∫︂ dmax(t)

d0(t)
µf (σn(t) + ϱigξ)dξ +

∫︂ D

dmax(t)
sx(t, ξ) dξ, (2.54)

where d0(t)=− σn(t)
ϱig

is the depth at which the yield stress given by formula (2.47)
becomes positive and dmax(t) is the maximum activation depth at a given time.
In the following derivation, we will implicitly assume that dmax≤D. We obtain

F F
t (t) = µf

2ϱig
sgn(σt(t))

(︂
σn(t) + ϱigdmax(t)

)︂2
+
∫︂ D

dmax(t)
sx(t, ξ) dξ. (2.55)

In the absence of stabilization or any other body forces, cf. (2.11), and because
of free-slip boundary conditions at the top and bottom boundaries, this force must
be balanced by the tangent force acting on the right boundary:

FR
t (t) = σt(t)D, (2.56)
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where σt(t) is the shear stress prescribed at the right boundary (see eq. 2.48b)
which is constant in space. The tangential force balance FR

t (t) = F F
t (t) can be

recast into

µf

2ϱig

(︂
σn(t) +ϱigdmax(t)

)︂2
− |σt(t)|dmax(t) = sgn(σt(t))

∫︂ D

dmax(t)

(︂
σt(t) − sx(t, ξ)

)︂
dξ.

(2.57)
Based on the stress snapshot in Figure 2.27 (left), it appears that the right-

hand side of (2.57) is non-positive (in the picture it holds |sx(t, ξ)|≥|σt(t)|, for all
ξ≥dmax(t)), however, the non-positivity cannot be guaranteed in general. Taking
it as an assumption of the derivation (see discussion further) yields a quadratic
inequality for dmax(t):

µf

2ϱig

(︂
σn(t) + ϱigdmax(t)

)︂2
− |σt(t)|dmax(t) ≤ 0. (2.58)

Search for the maximum dmax(t) satisfying (2.58) yields

dmax(t) = |σt(t)| − σn(t)µf

µfϱig
+ 1
µfϱig

√︂
(σt(t))2 − 2µf |σt(t)|σn(t) . (2.59)

Closing phase (σn(t)>0)

Here, the situation is simpler since d0=0 during the closing phase. The total
tangential force exerted at the fault in the closing phase reads

F F
t (t) = sgn

(︂
σt(t)

)︂ ∫︂ dmax(t)

0
µf

(︂
σn(t) + ϱigξ

)︂
dξ +

∫︂ D

dmax(t)
sx(t, ξ) dξ,

= sgn
(︂
σt(t)

)︂(︄
µfσn(t)dmax(t) + µfϱig

d2
max
2

)︄
+
∫︂ D

dmax(t)
sx(t, ξ) dξ. (2.60)

Comparing this force again with the tangent force acting on the right bound-
ary (2.56), we obtain the following analogy of (2.58):

dmax(t)
(︄
dmax(t) − 2

µfϱig

(︂
|σt(t)| − µfσn(t)

)︂)︄
≤ 0, (2.61)

under the same assumptions on the term which appears on the right-hand side
of (2.57). Looking for maximum non-negative dmax(t) satisfying (2.61), we get

dmax(t) = max
(︄

0, 2
µfϱig

(︂
|σt(t)| − µfσn(t)

)︂)︄
. (2.62)

Special case φ=π

Considering now the special case used in the manuscript, i.e., taking the phase
shift between the normal and tangential applied stress to be φ=π:

σt(t) = σ0,t sin (ωt), (2.63)
σn(t) = −σ0,n sin (ωt), (2.64)
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we obtain

dmax(t) = σ0,t

ϱig

1+µf

(︂
σ0,n

σ0,t

)︂
+
√︃

1 + 2µf

(︂
σ0,n

σ0,t

)︂
µf

sin(ωt) if t ∈ ⟨0, P/2⟩ , (2.65)

dmax(t) = max
(︄

0, 2
µfϱig

(µfσn,0 − σt,0) sin (ωt)
)︄

if t ∈ ⟨P/2, P ⟩ , (2.66)

which has a global maximum at t= π
2ω

=P
4 :

dmax = σ0,t

ϱig

1+µf

(︂
σ0,n

σ0,t

)︂
+
√︃

1 + 2µf

(︂
σ0,n

σ0,t

)︂
µf

. (2.67)

Analogously, we would get the same expression if we took φ=0, i.e., for normal
and tangential loading stresses in phase, the maximum (2.67) would be attained
at t=3P

2 . Considering the same amplitudes of the forcing normal and tangential
stress, i.e., setting σ0,t = σ0,n=σ0, yields formula (2.49) from the main text.

During the derivation, we assumed the non-positivity of the term

sgn(σt(t))
∫︂ D

dmax(t)

(︂
σt(t) − sx(t, ξ)

)︂
dξ,

which cannot be guaranteed by analytical arguments for all times during the
period, but in numerical experiments, it holds at the instant corresponding to
the maximal depth of fault activation. The justification of the assumption is also
supported by the fact that the analytical estimate provides an upper bound for
numerically obtained values of fault activation depths – see Figure 2.19. Finally,
note that the validity of the assumption is ensured if the integral vanishes thanks
to dmax(t)=D, that is if the fault activation depth equals the thickness of the shell.
The estimate (2.67) is, therefore, most accurate in the regime when the fault
activation depth dmax approaches the shell thickness D and the sliding switches
from the partially-locked regime to the whole-fault sliding. This best corresponds
to the simulation with whole-fault activation (cf. the green square in the left panel
of Figure 2.19).

Let us note, that we derived the final formula (2.67) under the assumption
that φ=π (or φ=0). For other values of the phase shift, one would have to seek
a numerical maximum over the period of the function defined by expression (2.59)
for σn(t)<0 and by (2.62) for σn(t)>0.
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3. Modelling “tiger stripes” on
Enceladus
Despite its small size, Enceladus is one of the most active Solar System bod-
ies with a unique cryovolcanic activity feeding Saturn’s E-ring (Kempf et al.,
2010). Enceladus is differentiated into a (probably) porous core, global ocean,
and an ice shell with variable thickness reaching its minimum in the south polar
terrain (SPT); see Section 1.2 for more information. The most prominent features
in the SPT are the “tiger stripes” (Damascus, Baghdad, Cairo, and Alexandria)
correlating with the position of Enceladus’ jet plumes (Porco et al., 2006). The ac-
tivity of the jet plumes varies significantly depending on the position of Enceladus
in its orbit, indicating a relation to periodic variations in tidal stress (Hurford
et al., 2007; Hedman et al., 2013; Nimmo et al., 2014; Ingersoll et al., 2020).

The nature of the tiger stripes remains a subject of debate. Given their
appearance and ability to transfer heat and mass through the ice shell, the tiger
stripes are likely to be a combination of tectonic faults and fissures. Models of
tidal deformation usually assume that the displacement field is continuous and
that the stress in the SPT is not affected by the presence of faults (Hurford et al.,
2007; Smith-Konter and Pappalardo, 2008; Hurford et al., 2009, 2012; Nimmo
et al., 2014; Běhounková et al., 2015; Beuthe, 2018, 2019; Patthoff et al., 2019;
Rhoden et al., 2020). Then spatial and temporal changes in the normal stress on
the fault planes can be evaluated using spectral methods and compared with the
observed variations in the plume activity.

This approach was challenged by Souček et al. (2016), who developed a finite
element model in which the tiger stripes are treated as frictionless water-filled
cracks, cf. Kite and Rubin (2016). The model was later modified to include lat-
eral variations in ice shell thickness (Běhounková et al., 2017), and a viscoelastic
ice rheology (Souček et al., 2019). Although the model of Souček and co-workers
is undoubtedly a step towards a better understanding of the role played by the
tiger stripes in Enceladus thermal evolution, it has a major weakness: it does not
take into account the friction force acting on the fault planes. As a consequence,
the model overestimates the stress near the tips of the faults and predicts zero
dissipation between the fault walls.

In this chapter, we present a new 3D finite-element model of Enceladus’ ice
shell with the friction inside the fault zone of tiger stripes approximated by
a Mohr-Coulomb-type yield criterion similar to Chapter 2 and Sládková et al.
(2020).

3.1 Test case - planar fault zone geometry
In the second chapter, we modeled a behavior of a strike-slip fault and its sur-
roundings using a 2D model where the fault was represented by a boundary
condition using the Mohr-Coulomb type yield criterion. In this chapter, we want
to employ the same type of contact condition but represented by a specific stress-
dependent rheology within a narrow fault zone in order to be able to model the
tiger stripes (and not just one fault) within the 3D model of the Enceladus ice
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Figure 3.1: A computational domain Ω with a prescribed fault zone in the middle
(purple). The Dirichlet boundary conditions for velocity are depicted by arrows;
on the rest of the boundaries, periodic boundary conditions are used, providing
an effectively infinite domain in the x and z direction. The periodic boundary
conditions are illustrated by the blue color: darker color indicates the side from
which the velocity is copied, and lighter denotes the destination.

shell (Souček et al., 2019).
We start with a problem in simplified geometry - considering a box-shaped

ice domain with a preexisting “planar” fault zone in the center, see Figure 3.1,
and we subject it to velocity strike-slip forcing at the sides in order to test and
benchmark our approach and the employed approximations. The behavior of
the ice is simulated by viscoelastic Maxwell-type rheology, where the fault zone
is described as a weaker region with effectively plastic behavior (through effec-
tive stress-dependent viscosity), while the surrounding of the fault is set to be
effectively elastic (having high constant viscosity).

3.1.1 Governing equations
We solve the equation of motion for a compressible Maxwell viscoelastic body (in
the small displacement approximation) in a computational domain Ω, assuming
a quasi-static setting relevant for the tidal loading in planetary applications, i.e.,
we ignore the inertial forces:

divT = 0, (3.1a)

T = K(∇ · u)I + µ
[︃
∇u +

(︂
∇u

)︂T
− 2

3(∇ · u)I
]︃

− µ

η

∫︂ t

0
S(t′)dt′,(3.1b)

where T is the Cauchy stress tensor, K and µ are the bulk and shear moduli, u is
the displacement, I is the identity tensor, η is the viscosity, S is the deviatoric
part of the stress tensor and t is time.
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3.1.2 Finite-width fault zone analogue of a frictional con-
tact

In order to approximate the friction on a contact plane by deformation in a narrow
fault zone, see Figure 3.1, we need to translate the contact problem into the terms
of continuum mechanics. As in Section 2.1.2, we assume that the behavior of
the fault, which we wish to approximate, is governed by a Mohr-Coulomb-type
“stick-slip” friction criterion. This criterion discriminates between the locked
state (“stick”), which occurs in regions where the stress exerted on the fault is
below the yield stress σY , and the sliding regime (“slip”), which is activated when
the friction force reaches this threshold.

To approximate the stick-slip behavior in the fault zone, we will introduce
an approximation of plasticity through a stress-limiting viscosity; see Tosi et al.
(2015). The stress-limiting viscosity ηeff will allow us to mimic the effective sliding
coefficient in the fault zone in the sense of preventing the stress in the fault zone
from exceeding the yield stress σY . Since we want to describe the rest of the
domain elastically, we shall employ a visco-elastic Maxwell rheology in the whole
domain and distinguish between two regions - the fault and its surrounding -
by different viscosities. In the fault zone, we use the stress limiting viscosity
ηeff, while in the complement of the fault zone, we employ a very high constant
viscosity value ηMax, thus making the material there effectively elastic.

1D mechanical analogues

Figure 3.2: A mechanical analogue for a contact frictional problem: the spring
slider, where usp, usl denote the displacement of the spring and the slider, respec-
tively, ksp is the stiffness of the spring, and the frictional force τf is given by the
multiplication of the coefficient of friction µf and the normal stress σn applied on
the pad.

To better understand the correspondence between a contact frictional problem
and the visco-elastic model with stress-limiting viscosity, we first concentrate
on 1D mechanical analogues. The frictional contact can be simulated through
a spring slider, see Figure 3.2, where (in our case) the spring is pulled with
a constant velocity v0. Once the frictional force (given by the product of the
coefficient of friction and normal stress applied on the pad) between the slider
and the pad is overcome, the slider starts sliding.

The Maxwell rheology with stress-limiting viscosity, which we want to use to
mimic the spring-slider (see Figure 3.3), is represented by a spring with stiffness
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Figure 3.3: Mechanical analogue for the Maxwell model: a dashpot with viscosity
η1D

eff connected to a spring with stiffness ksp pulled by constant velocity v0.

ksp in series with a dashpot with effective viscosity η1D
eff defined as

η1D
eff = ηMax{︃

1 +
(︂

ηMaxvslip
σY

)︂n
}︃ 1

n

. (3.2)

When the spring is pulled by a constant velocity, the stress in the dashpot has to
overcome the yield stress σY in order for the dashpot to start deforming. Here
the symbol σY is a yield stress, characterizing the maximal force, ηMax is a large
auxiliary number, and n is an exponent characterizing the transition between the
“stick” and “slip” regimes. In Figure 3.4, we plot the characteristic behavior of
the Maxwell model with effective viscosity η1D

eff . On the x axis, we move the slip
velocity vslip corresponding to the rate of deformation of the dashpot and defined
here as the ratio of the stress magnitude and the viscosity. On the left y axis, we
have the effective viscosity (blue) expressed in fractions of background viscosity
(ηMax), and on the right y axis, we have the stress (purple) plotted in fractions
of the yield stress σY .

Figure 3.4: The dependence of the effective pseudoplastic stress-limiting viscosity
ηeff (blue line) and stress T (purple line) on the slip velocity vslip (logarithmic scale
is used).

In Figure 3.4, we can see how the response of such a system corresponds to the
spring slider. For low slip velocity vslip≪1, corresponding to the “stick” state (left
part of Figure 3.4), the viscosity is very high, η1D

eff ∼ηMax (making the “fault zone”
represented by the dashpot very stiff). For states with higher slip velocity (“slip”
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state), the viscosity is decreasing (effectively weakening the “fault zone”), so that
it ensures that the stress does not exceed the yield stress σY (|T| ∼ η1D

eff vslip ≤ σY ).
This is the reason why we talk about “stress-limiting viscosity”; see the right
y axis on Figure 3.4.

3D fault zone - approximating slip velocity

In contrast with the contact problem (as in Chapter 2), when considering the
finite fault zone, we must first deal with the fact that the very definition of
the slip velocity is not straightforward. In the contact problem (e.g., the spring
slider), the slip velocity is perfectly defined as the velocity of the slider. In the
1D Maxwell mechanical analogue, we can define it as the rate of deformation of
the dashpot. For a finite-width fault zone, we still wish to define slip velocity as
the mutual velocity of the opposite sides of the fault, see Figure 3.5 a); however,
for further calculations, and, in particular, for the numerical implementation,
an approximation of the slip velocity, which can be expressed locally in every
point of the fault zone, is necessary.

In the 3D test case, we assume a cuboidal viscoelastic fault zone, which is
loaded by velocity on the sides (transferred through the effectively elastic rest of
the domain); see purple zone on Figure 3.1. Since in the “slip state” (non-zero
velocity), the viscosity in the fault zone is small; the viscous regime prevails in
the Maxwell rheology; hence, let us consider for the moment just a purely viscous
deformation in the fault zone. In addition, assuming uniformity in the z-direction
(together with the imposed periodic boundary conditions), we can reduce the
problem into two dimensions (a xy cross-section of the box, see Figure 3.1).

Figure 3.5: a) Sketch of the fault zone with marked velocity loading v+ex, v−ex

and slip velocity vslip, b) derived displacement in the xy cut of the domain -
simple shear deformation.

We are left with the following setup: a two-dimensional infinite rectangular
viscous fault zone of height h loaded by velocities acting in opposite directions,
specifically by v+ex and v−ex, where v+>0 and v−<0 and ex is a unit vector in
the direction of axis x, see Figure 3.5 a). In this case, a simple shear deformation
develops in the fault zone; see the cross-section through the xy plain of the
computational domain on Figure 3.5 b). Since the velocity needs to change the
orientation (from positive v+ex to negative v−ex) through the fault zone (i.e.,
along the y axis) and since we push in the x-direction only, one can show that
for a wide class of viscosity functions, the resulting deformation is a simple shear,
i.e., deformation depends on y-direction only and linearly.

75



According to the assumption of viscous rheology, it holds S = 2ηD(v), and we
take the viscosity as a function of the symmetric velocity gradient η = η

(︂
D(v)

)︂
.

Now, we need to show that the deformation depends only on y and linearly, i.e.,
that v = (ay + b, 0), where a and b are constants. Due to the uniformity of the
domain and the loading in the direction of x, the y-coordinate of velocity is zero,
vy = 0. Since the domain is infinite in the x direction and the loading is equal
everywhere along the x axis, one can neglect all derivatives with respect to the
x coordinate, in particular, we assume ∂vx

∂x
= 0 and ∂Txx

∂x
= 0. The x-component

of the equation 3.1a yields

∂Txy

∂y
= 0. (3.3)

Since also ∂Txy

∂x
= 0, this implies that Txy is constant within the fault zone.

Plugging in the viscous rheology yields

const. = Txy = 2η(D)Dxy = η(D)∂vx

∂y
.

Now, it remains to show that ∂vx

∂y
is constant. Let’s consider the viscosity to

be either constant or depending on the symmetric velocity gradient:

1. η = const.
Then,

∂vx

∂y
= c
η

⇒ vx = vx(0) + c
η
y,

and we choose y = 0 to be in the middle of our domain, thus vx(0) = 0.
Therefore, v = ( c

η
y, 0) and, consequently

D =
⎡⎣ ∂vx

∂x
1
2

(︂
∂vx

∂y
+ ∂vy

∂x

)︂
1
2

(︂
∂vx

∂y
+ ∂vy

∂x

)︂
∂vy

∂y

⎤⎦ =
[︄

0 1
2

∂vx

∂y
1
2

∂vx

∂y
0

]︄
.

Hence ∥D∥ = 1
2

⃓⃓⃓
∂vx

∂y

⃓⃓⃓
.

2. η = η
(︂
D(v)

)︂
The only not zero coordinates of D are Dxy since vy and ∂vx

∂x
are zero,

thus η = η
(︂

∂vx

∂y

)︂
. Plus, we have const. = Txy = η

(︂
∂vx

∂y

)︂
∂vx

∂y
. If we, in

addition, assume that viscosity is a monotone function of its argument, we
get ∂vx

∂y
= ˜︂const., so again, v = ( c

η
y, 0) by the same argument as before.

To summarize, for viscosity, which is a monotone function of the symmetric
velocity gradient and with the considered symmetries, we have v = (ay + b, 0),
where b can be zero by the choice of the origin. Furthermore, we assume that the
velocities on the opposite sides of the fault zones are equal in size: |v+| = |v−| =
v0
2 , hence the velocity in the fault zone is v = v0

h
(y, 0, 0), see Figure 3.5 b). Thus

the symmetric gradient of velocity has a simple form:

D(v) = 1
2

[︄
0 v0

h
v0
h

0

]︄
. (3.4)
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Since we have defined the slip velocity as the mutual motion of the fault
boundaries (see Figure 3.5 a), we have vslip = |v+ − v−|. Therefore

vslip = |v+ex − v−ex| = v0

h

(︄
h

2 − −h
2

)︄
= v0

h
h = v0 (3.5)

Using equations 3.4 and 3.5, the slip velocity can be approximated by the
symmetric velocity gradient vslip = v0 = 2h|1

2
v0
h

| = 2h |Dxy(v)| = 2h ∥D(v)∥. The
same approximation can be made for arbitrary simple-shear configuration within
the fault zone.

It is, however, necessary to employ only the part of the deformation field that
corresponds to the irreversible slip since we are using Maxwell rheology for the
description of the ice shell. Thus, we replace D in the above formulas with the
viscous part of the symmetric gradient of velocity Dvisc(v) only, defined as the
difference between the total and the elastic deformation rate. In particular, we
employ the following approximation

vslip ∼ 2h∥Dvisc(v)∥ = 2h
⃦⃦⃦⃦
D(v) − Delast(v)

⃦⃦⃦⃦
(3.6)

= 2h
⃦⃦⃦⃦
D(v) − Ṡ

2µ

⃦⃦⃦⃦
, (3.7)

where Delast(v) denotes the elastic part of the symmetric gradient of velocity.

3D fault zone - effective viscosity

Going back to the 3D test case with finite fault zone, we define the viscosity of
the material as the effective viscosity ηeff in the fault zone (by generalizing the
above 1D analogy) and a background viscosity ηMax elsewhere as follows

η =
⎧⎨⎩ηeff in the fault zone,
ηMax elsewhere,

(3.8a)

ηeff = ηMax{︃
1 +

(︂
2ηMax∥Dvisc∥

σY

)︂n
}︃ 1

n

. (3.8b)

The effective viscosity defined in the above manner ensures that

∥T∥ = 2ηeff∥Dvisc∥ ≤ σY ,

which, in the simple shear setting of the test case problem (assuming, in addition,
Txx = 0), implies that |Txy| ≤ σY , showing the relationship between the maximal
tangent force and the yield stress.

Note that the correspondence between the 1D and 3D cases, i.e., between the
formulas for η1D

eff and ηeff is not perfect as it holds

|T1D| = η1D
eff vslip = 2hηMax∥Dvisc∥{︃

1 +
(︂

2hηMax∥Dvisc∥
σY

)︂n
}︃ 1

n

= 2ηMax∥Dvisc∥{︃(︂
1
h

)︂n
+
(︂

2ηMax∥Dvisc∥
σY

)︂n
}︃ 1

n

,
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where we replaced vslip by 2h∥Dvisc∥. On the other hand, in the 3D case, we get

∥T∥ = 2ηeff∥Dvisc∥ = 2ηMax∥Dvisc∥{︃
1 +

(︂
2ηMax∥Dvisc∥

σY

)︂n
}︃ 1

n

.

This means that the two formulas differ in the low-velocity (’stick’) regime, where
the effective (maximal) viscosity in the 1D analogue and the 3D analogue differ by
a factor related to the fault zone thickness 2h. As this value is auxiliary anyway,
we have decided to use the formula (3.8b) in the following.

Definition of the fault zone

Figure 3.6: Characteristic function χ used to define the fault zone.

A precise definition of the fault zone is necessary for the definition of the
viscosity, and for the box domain, the definition is straightforward:

η = η1−χ
Max η

χ
eff, (3.9)

where we define the characteristic function χ as:

χ = 1
2

{︄
tanh

[︄
y − yf + h

2
χϵ/6

]︄
− tanh

[︄
y − yf − h

2
χϵ/6

]︄}︄
, (3.10)

where tanh is a hyperbolical tangent, yf is a y coordinate of the center of the
fault zone, and χϵ is the thickness of the transient zone, which is a length over
which the characteristic function drops from one to zero, see Figure 3.6. In the
code, χϵ corresponds to the minimal diameter of the elements and yf = 0.5d.

3.1.3 Numerical scheme
The numerical solution is carried out using the open-source finite element software
package FEniCS (http://fenicsproject.org; Alnaes et al., 2015; Logg et al.,
2012).
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Cauchy stress tensor

To approximate the equation of motion (eq. 3.1a), we start with the approxima-
tion of the Cauchy stress tensor T (eq. 3.1b). Before presenting in detail the final
implementation, we first briefly summarize the unsuccessful attempts with the
reasons why there were unfit for use.

Displacement formulation - integral approach
First, we tested an approximation of the Maxwell rheology (in terms of displace-
ment) using its integral form as in (3.1b) - the integral was discretized in time
and split into two parts: the known part (until the current time step tk) and
the new part (from the current step tk to the next step tk+1). The new part
is estimated by the trapezoidal rule. Such an approach was able to reproduce
the fault’s behavior in the sense of mutual motion of two blocks with respect to
each other; however, it turned out to lead to a gradual accumulation of numerical
errors in the stress, leading to a loss of accuracy over time.

Displacement formulation - differential Euler scheme
As a second choice, we applied the time derivative to equation 3.1b, employing
a simple one-step Euler scheme. Since the viscosity is strongly dependent on the
slip velocity (see eq. 3.8), and a fully implicit approach would bring strong non-
linearity to the model, we used a fixed point iteration scheme instead. However,
even this approach was not fully satisfactory as the results developed spatial os-
cillations; in addition, it turned out that the slip velocity was relatively poorly
approximated. Moreover, the slip was concentrated just at the boundaries be-
tween the fault zone and the rest of the computational domain.

Displacement formulation - differential Euler scheme with auxiliary smoothing
We tried to regularize the previous method by attempting to defocus the slip zones
(boundaries of the fault zone). To smear out the velocity gradient, we introduced
an auxiliary variable evolving through a parabolic conduction-like problem with
the source term dependent on slip velocity - in our approximation, represented
by the symmetric velocity gradient, see Section 3.1.2. The time derivative was
also dealt with by the Euler scheme. Two parameters controlled the amount of
smoothing (in time and space) in the “conduction” equation, and we were not
able to tune the parameters to regularize the gradient sufficiently. Either the
slip velocity approximation was too “broad”, or it grew too much on the fault
boundary, and the slip of the fault was still focused there.

Velocity formulation
Finally, we use the time derivative of the equation 3.1b, but rewritten in velocity
defined as the time derivative of the displacement v := u̇ obtaining:

Ṫ = K(∇ · v)I + µ
[︃
∇v +

(︂
∇v

)︂T
− 2

3(∇ · v)I
]︃

− µ

η
S. (3.11)
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We apply the Euler scheme for the time derivative in stress:

Tk+1 − Tk

dt = K(∇ · vk+1)I + µ
[︃
∇vk+1 +

(︂
∇vk+1

)︂T

− 2
3(∇ · vk+1)I

]︃
− µ

ηk+1S
k+1, (3.12)

where k + 1 denotes the time step to be computed, k is the current one, and dt
is the time step.

To get the prescription for Tk+1, several adjustments are necessary. First, we
apply the trace operator on equation 3.12, and we express the deviatoric part of
the stress tensor in the current time step Sk+1:

trTk+1 − trTk

dt = K(∇ · vk+1)tr I, (3.13)

Sk+1 = Tk+1 − 1
3trTk+1I, (3.14)

from which:

trTk+1 = 3K(∇ · vk+1) dt + trTk. (3.15)

Applying eq. 3.15 in eq. 3.14 we get:

Sk+1 = Tk+1 − dtK(∇ · vk+1)I − 1
3trTkI. (3.16)

Furthermore, using eq. 3.16 in eq. 3.12 we obtain:

Tk+1 = Tk + dtK(∇ · vk+1)I + dtµ
[︂
∇vk+1 + (∇vk+1)T − 2

3(∇ · vk+1)I
]︂

− dtµ
ηk+1

(︂
Tk+1 − dtK(∇ · vk+1)I − 1

3trTkI
)︂
. (3.17)

From that:(︂
1 + dtµ

ηk+1

)︂
Tk+1 = Tk + dtK(∇ · vk+1)I

+ dtµ
[︂
∇vk+1 + (∇vk+1)T − 2

3(∇ · vk+1)I
]︂

+ dt2 µK

ηk+1 (∇ · vk+1)I + dtµ
3ηk+1 trTkI. (3.18)

By multiplying the equation 3.18 by Kk+1 := ηk+1

ηk+1+ dt µ
we get the final formula

for the approximation of the stress tensor:

Tk+1 = Kk+1Tk + Kk+1 dt
[︄
K + dtµK

ηk+1 − 2
3µ
]︄
(∇ · vk+1)I

+ dtµKk+1
[︂
∇vk+1 + (∇vk+1)T

]︂
+ 1 − Kk+1

3 trTkI. (3.19)

80



Weak solution of the governing equations

We derive the weak solution for the equation of motion by multiplying eq. 3.1a
by a test function v′ and integrating over the computational domain Ω:∫︂

Ω
divT · v′ dx = 0. (3.20)

Moreover, we use the Gauss theorem to obtain the following:

−
∫︂

Ω
T : ∇v′ dx +

∫︂
∂Ω

(T · n) · v′ ds = 0, (3.21)

where n is the outer normal vector. By using the Dirichlet (for setting the veloc-
ity) and periodic boundary conditions, we get:∫︂

Ω
T : ∇v′ dx = 0. (3.22)

Continuous Lagrange elements of the first degree (CG1) are used for the ve-
locity and discontinuous Galerkin elements (DG0) for the stress.

Summary of the numerical scheme

We solve the equation ∫︂
Ω
Tk+1 : ∇v′ dx = 0 (3.23a)

in a computational domain Ω: a box with the dimensions w × d × d and a fault
zone of thickness h depicted by purple color in Figure 3.1.

The Cauchy stress tensor and the viscosity are approximated as follows:

Tk+1 ≈ Kk+1Tk + Kk+1 dt
[︄
K + dtµK

ηk+1 − 2
3µ
]︄
(∇ · vk+1)I

+ dtµKk+1
[︂
∇vk+1 + (∇vk+1)T

]︂
+ 1 − Kk+1

3 trTkI, (3.23b)

Kk+1 = ηk+1

ηk+1 + dtµ, (3.23c)

ηk+1 = η1−χ
Max η

χ,k+1
eff , (3.23d)

χ = 1
2

{︄
tanh

[︄
y − yf + h

2
χϵ/6

]︄
− tanh

[︄
y − yf − h

2
χϵ/6

]︄}︄
, (3.23e)

ηk+1
eff ≈ ηMax{︃

1 +
(︃

2ηMax∥Dη
visc∥

σY

)︃2n}︃ 1
2n

, (3.23f)

∥Dη
visc∥ =

√︄
Dη

visc : Dη
visc

2 , (3.23g)

Dη
visc = D(vk

η) −
Tk

η − Tk−1

2µ dt , (3.23h)

D(vk
η) = 1

2
(︂
∇vk

η + (∇vk
η)T

)︂
, (3.23i)
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where Dη
visc,vk

η, D(vk
η), Tk

η are auxiliary variables defined for the fixed point iter-
ations. In the first step of the fixed point iterations loop, Tk−1 is updated as Tk

η,
Tk

η as Tk+1, vη
k as vk+1, where vk+1 is the solution of (3.23a). The rest of the

variables is calculated according to the above formulas. In the following steps of
the fixed point iterations, only Tk

η and vk
η are updated. The fixed point iteration

loop is run until convergence or maximum iterations (usually 20) are reached.
The Dirichlet boundary conditions for velocity are implied on the sides parallel

to the fault acting in opposite directions, which are supplemented with periodic
boundary conditions on the remaining boundaries to mimic the infiniteness of
the computational domain, see Figure 3.1. The periodic boundary conditions are
prescribed through the copy of the velocity from the top and forward sides to the
bottom and back sides, respectively; see Figure 3.1, i.e.,:

v(w, y, z) = v(0, y, z), (3.24)
v(x, y, d) = v(x, y, 0). (3.25)

v = v0

2 ex for y = d, (3.26)

v = −v0

2 ex for y = 0. (3.27)

The computation is started from zero initial boundary conditions for stress
and velocity.

3.2 Benchmark
Here, we test the viscoelastic analogy and the employed approximations through
a comparison of the results for the finite fault zone test case and two 1D models:
a spring-slider model and a 1D Maxwell model. The benchmark problem describes
a frictional contact with a constant coefficient of friction µf=1 loaded by constant
velocity v0=5 × 10−5 m s−1. The yield stress is set to σY =107 Pa.

For the 1D models, the constant velocity loading is translated into loading by
time-dependent displacement: u0=v0t. As for the 3D model, the results presented
for the test case are calculated by a 2D model produced as a xy cross-section
through the 3D model’s domain. Since no force depends on z and the model is
effectively infinite in the z direction, the xy cross-section corresponds perfectly to
the whole 3D model. The correspondence was, in fact, also verified by indepen-
dent, truly 3D numerical calculation. In order to perform the comparison with
the simplified 1D models, we first need to establish the correspondence.

3.2.1 Spring slider model
A straightforward benchmark model for the verification of the viscoelastic anal-
ogy is the original mechanical analogue used for the description of friction: the
spring slider - described in Section 3.1.2, see Figure 3.2, pulled by time-dependent
displacement v0t and with a constant coefficient of friction.

As mentioned earlier, the friction force τf=µfσn is greater or equal to the
pulling force τp=ksp(u0 − usl) (the equality holds when sliding occurs):

µfσn ≥ ksp(u0 − usl), (3.28)
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where µfσn corresponds to µfσY . Using u0 = v0t we get:

µfσY ≥ ksp(v0t− usl). (3.29)

Hence, the slider is still until the pulling force (increasing with time) reaches the
friction force, and then it starts to move. We approximate the stiffness of the
spring as the bulk modulus of the Maxwell rheology model scaled with the size
of the domain: ksp = K

d−h
= K

0.9 , where K = 3.3 GPa, h is the thickness of the
fault zone, and d is the height of the computational domain, see Figure 3.1.

The onset of the sliding can be calculated from the equality of forces as a point,
where the slider displacement usl reaches values above zero, i.e.,:

usl ≥ 0 ⇐⇒ v0t− µfσY

ksp

≥ 0 ⇐⇒ (3.30)

⇐⇒ t ≥ ts := µfσY

kspv0
= µfσY (d− h)

Kv0
= 54.54s (3.31)

Hence, the displacement is zero until the onset of sliding ts, and then it grows
linearly with the slider displacement (usl=v0t− µf σY (d−h)

K
), implying that velocity

is also zero until the onset of sliding and then constant equal to the loading
velocity v0. The pulling force is equal to K

d−h
v0t as long as it is smaller than the

yield stress σY (i.e., until ts), then it’s equal to σY , see the full turquoise line on
Figure 3.7 for results of the spring slider with a constant coefficient of friction.

3.2.2 1D Maxwell model
To verify the implementation of the viscoelastic analogy of the contact problem,
we also approximate the compressible Maxwell rheology by a 1D mechanical
analogue corresponding to a dashpot connected to a spring, see Figure 3.3.

The stress on the dashpot Tη is defined as Tη = η1D
eff u̇, whereas for the stress

on the spring Tsp it holds Tsp = kspusp. The displacement of the spring equals
the loading displacement subtracted by the dashpot displacement: usp = v0t−u.
Since the stress is equal everywhere in the mechanical analogue (Tη = Tsp), we
have:

η1D
eff u̇ = ksp(v0t− u) (3.32)

as the governing equation for the 1D Maxwell model with viscosity as in eq. 3.2
and the slip velocity defined as the velocity of the dashpot vslip = v = u̇.

Numerical model

To establish consistency between the 2D/3D models we approximate the equa-
tion 3.32 by the Euler method:

η1D,k+1
eff

uk+1 − uk

dt = ksp(v0t− uk+1), (3.33)

from which

uk+1 = ksp dt
η1D,k+1

eff + ksp dt
v0t+ η1D,k+1

eff

η1D,k+1
eff + ksp dt

uk, (3.34a)
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where ksp = K
d−h

= K
0.9 as in the spring slider model. Furthermore, we approximate

the slip velocity (i.e., the velocity of the dashpot v) in the viscosity through the
method of fixed point iterations:

η1D,k+1
eff = ηMax(︂

1 + (vkηMax
σY

)n
)︂1/n

, (3.34b)

vk =
uk

η − uk−1
η

dt . (3.34c)

The arbitrary displacement uk−1
η is updated as uk after the first step of internal

iterations, while uk
η is set to uk+1 every step of the internal iterations. The model

is coded in Fortran 90. In each time step, a fixed number of iterations (100 for
the blue dashed line in Figure 3.7) is calculated while updating the values of
displacement, velocity and viscosity.

3.2.3 Results
In Figure 3.7, we plot the time evolution of magnitude of stress, displacement,
and slip velocity for all three models with a constant coefficient of friction and
constant velocity loading. Apart from a little lag in the onset of slip in the
2D Maxwell model, all three models show a very reasonable fit with each other.
This demonstrates the basic viability of the effective rheology approach to mimic
a contact frictional problem via the deformation of a fault zone. This approach
is in the following section employed for extending an existing tidal deformation
model of Enceladus’s ice shell. In particular, we shall replace the previous imple-
mentation of the fault zones as effectively frictionless by zones corresponding to
a frictional Coulomb-type contact.

Figure 3.7: From left: time evolution of the stress magnitude/pulling force, dis-
placement and slip velocity for the three models with a constant coefficient of
friction and constant velocity loading. The full turquoise line denotes the ana-
lytical results of the spring slider model; the blue dashed line symbolizes the 1D
Maxwell model computed with a Fortran code using finite differences; the purple
cross-hatched line depicts the result of the 2D Maxwell model written in Fenics
Project (Alnaes et al., 2015) using finite element method.
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3.3 Enceladus’ tiger stripes as frictional faults:
Effect on stress and heat production
(Pleiner Sládková et al., 2021)

In this part of the thesis, we present a new 3D finite-element model of Enceladus’
ice shell where the friction is included in the approximation of the tiger stripes.
The friction inside the fault zone is described by a Mohr-Coulomb-type yield
criterion as presented in the previous part of this chapter, similar to Chapter 2
and Sládková et al. (2020). The model includes lateral variations in ice thick-
ness derived from Cassini’s gravity and shape data (Čadek et al., 2019) and the
observed geometry of the tiger stripes (Porco et al., 2014). The friction on the
fault is represented by a single parameter, which contains information about the
nature of the tiger stripes and can, in principle, be determined from observations
of the displacement field and temporal variations in gravity (Vance et al., 2021).
The model provides a first estimate of tidal heating produced on the faults and
brings a new perspective on the tidally induced stresses in the SPT. All presented
results were published in Pleiner Sládková et al. (2021).

3.3.1 Model description
We investigate the deformation of Enceladus’ ice shell caused by a periodic tidal
forcing. The basic equations and the numerical method are based on Souček et al.
(2019). The novelty of the present approach lies in the way the tiger stripes are
integrated into the model.

We assume that the tiger stripes represent fault zones of finite width, filled
with a mixture of water and broken ice. In the previous works (e.g., Souček
et al., 2016), these zones were treated as idealized frictionless cracks and mod-
eled as regions with significantly reduced elastic moduli. Here we present a more
realistic model in which friction in the fault zones is implemented using a visco-
elasto-plastic rheology, while the rest of the shell is modeled as an effectively
elastic medium (for discussion of the role of viscous deformation in Enceladus’
tidal deformation, see Souček et al. (2019)). Both regions are treated in a uni-
fied manner using a Maxwell viscoelastic material model, which is characterized
by a stress dependent viscosity, ηeff, in the fault zone and a constant viscosity,
ηMax=1020Pa s, in the rest of the ice shell. The viscosity ηeff is defined as follows
(using the approximation of slip velocity directly):

ηeff = ηMax(︃
1 +

(︂2ηMax∥Dd
visc∥2

σY

)︂2n
)︃ 1

2n

, (3.35)

where Dd
visc is the deviatoric part of the viscous strain rate tensor (in the case of

a deformation of an ice shell D does not have to be traceless), ∥ • ∥2 denotes the
second invariant of a tensor. Equation (3.35) ensures that the deviatoric stress
in the fault zone is below the yield stress, and the viscosity goes to ηMax when
the (deviatoric) stress is significantly smaller than σY , for more information see
Section 3.1.2. Note that similar (though not identical) constitutive equations were
used in modelling the deformation of the lithosphere on Earth (e.g., Trompert
and Hansen, 1998; Tosi et al., 2015; Herrendörfer et al., 2018).
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The yield stress σY is composed of a static part, corresponding to the mean
effective pressure, and a dynamic (time-dependent) part, related to tidal defor-
mation:

σY =
{︄
µf (peff − σnn) if peff ≥ σnn
0 otherwise , (3.36)

where peff is the effective pressure (ice overburden pressure minus liquid water
pressure) averaged over the depth, and σnn is the normal component of the trac-
tion vector acting on the fault surface; for details, see Section 3.4.1 in Supporting
information (further noted as SI, Section 3.4). Since the static part is relatively
small (peff∼104 Pa), the yield stress is mainly controlled by σnn. The coefficient
of friction depends on a number of factors, such as slip velocity, temperature, the
mechanical state of ice filling the fault zone, and the presence of a liquid phase
(for a review, see Section 4.2, or e.g., Oksanen and Keinonen (1982) and Schul-
son and Fortt (2012)). Its value can range between 0.01 and 0.8, with the lower
values corresponding to a fault zone lubricated by water. When µf=0, the fault
behaves as a frictionless water-filled crack (cf. Souček et al., 2019), while µf≫1
corresponds to a locked fracture with no impact on the stress field.

In the simulations, we look for periodic solutions for each given model setup.
Let us note, however, that the behavior of frictional systems subjected to periodic
loading is nontrivial, and the existence of a steady-state periodic solution that is
independent of the initial conditions cannot be guaranteed a priori (e.g., Ander-
sson et al., 2013). However, for the given set of physical parameters, the studied
system converged to a unique periodic steady state within four tidal periods; for
further details on the time discretization, see Section 3.4.2. The equations gov-
erning the tidal deformation have been expressed in an integral (so-called weak)
form (Souček et al., 2019), and the model was implemented in the finite element
software package FEniCS (http://fenicsproject.org; Logg et al., 2012; Al-
naes et al., 2015). For a more detailed description of the numerical method, see
Section 3.4.2.

3.3.2 Deformation of the ice shell
Figure 3.8 shows the surface displacement in the vicinity of the tiger stripes
obtained for the model with µf=0.2. During one tidal cycle, the fault zones are
compressed and stretched in the normal direction by tens of centimeters, and the
relative displacement parallel to the faults exceeds 1 m. The maximum radial
displacement between the fault zones is about 3 m, which is a factor of 2 less
than for the model with frictionless faults (µf=0), but significantly more than for
models where the faults are not included, or the relative motion across the faults
is negligible (µf≫1, see also Běhounková et al. (2017)). The differences between
models with different friction coefficients suggest that parameter µf could, in
principle, be determined from precise gravity and altimetry measurements (Vance
et al., 2021).

It is worth remembering that the periodic tidal potential Vtidal satisfies the
symmetry relation Vtidal(t)= − Vtidal(t + P/2), where t is the time, and P is the
rotation period. This implies that if µf=0 or µf≫1, the displacement vectors at
times t and t + P/2 have the same magnitude but opposite signs. Inspection of
Figure 3.8 shows that this symmetry is broken when friction is included – the
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Figure 3.8: Periodic variations of the displacement field at the surface obtained for
the model with µf=0.2. The displacement is shown for six different phases of the
tidal cycle. The symbol P denotes the orbital period. Colors show the magnitude
of the displacement while thin blue lines indicate the mesh used in the finite-
element solver. The displacement is exaggerated by a factor of 3000 to emphasize
the radial motion along the faults. For a video showing the displacement field
over the whole rotational period, see Supporting Information on the web page
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021GL094849.

displacement in the time interval (0, P/2) is considerably larger than that in the
time interval (P/2, P ), with the difference exceeding 1 m.

The motion along the faults is continuous in time, which may seem surprising
given that the deformation is controlled by a Coulomb-type yield criterion. The
term “Coulomb friction” usually evokes a fault which is locked, and the stress
builds up until it exceeds the strength threshold, resulting in motion along the
fault. As will be shown later, this behavior is only found for models with a rela-
tively high coefficient of friction. If µf≲0.5, the slip velocity varies in a continuous
manner because the tidal deformation of the ice shell is accommodated by plastic
flow in the fault zone. To get a more comprehensive picture of the surface defor-
mation in the SPT, see the video in the Supporting Information on the web page
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021GL094849.

The time variations of the deviatoric stress are shown in Figure 3.9. The
deviatoric stress changes on the length scale of a few tens of kilometers and reaches
a magnitude of up to 300 kPa. The distribution of stress differs significantly from
that obtained for the frictionless model (µf=0), which is characterized by stress
peaks (and also the maximum dissipation) at the fault tips (see Figure 3 in Souček
et al. (2016)). In contrast, the model including friction suggests that the stress
is maximum in the central parts of the faults, which is more consistent with
observation (Spencer et al., 2018).

The complex behavior of the fault system demonstrated in Figures 3.8 and
3.9 results from the interplay between the dynamic part of the normal stress,
σnn, controlling the yield stress (equation 3.36), and the viscous strain rate, Dd

visc.

87

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021GL094849
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021GL094849


Figure 3.9: Periodic variations of the deviatoric stress at the surface calculated
for the model with µf=0.2. The magnitude of the deviatoric stress, |S|=

√︂
SijSij,

is shown at the same times as in Figure 3.8.

Together, these two variables control the viscosity of the fault zones. In the course
of one tidal period, the fault system is subjected to compression (σnn<0) and
extension (σnn>0, see Figure 3.10 a). During the compression phase, the normal
stress increases the yield stress, and the slip rate reduces. In the extension phase,
the positive normal stress decreases the yield stress, thus facilitating the sliding
of the faults. Since the geometry of the faults is complex and the faults interact
with each other, the normal stress is not fully synchronized along faults, implying
that parts of the faults may be under compression while the rest is subjected to
extension. The resulting motion of the faults is continuous (Figures 3.10 b, c) and
modulated by the interplay of the above processes. Note that the compression
phase is significantly longer than the extension phase, and the average value of σnn
is about −50 kPa (and not zero as might be intuitively expected). This average
value represents a static (“background”) stress that occurs due to the asymmetry
in the frictional response to normal loading (see Section 3.4.3). The static stress
is not included in Figure 3.9 and will be discussed in the next section.

In Figures 3.10 b–e, we compare the kinematic characteristics of Enceladus’
fault system calculated for the model without friction (µf=0) with those ob-
tained for the models with µf=0.1, 0.2, 0.4, 0.8 and the model without any faults.
Note that, for simplicity, we plot the magnitude of the slip rate because the slip
vector has both horizontal and vertical components. The inclusion of friction
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Figure 3.10: Left: Time variations of quantities characterizing the behavior of
Enceladus fault system calculated for models with different µf and the no-fault
model. All quantities are averaged along the faults and over the depth. Symbol
σnn is the normal component of the traction vector acting on the fault surface (see
equation 3.36), vslip is the magnitude of the jump across the fault in the velocity
component parallel to the fault, ∆vn is the jump in the velocity component normal
to the fault (∆vn>0 corresponds to the opening phase), uslip is the magnitude of
the jump in the displacement component parallel to the fault, and ∆un is the jump
in the displacement component normal to the fault (∆un>0 when the faults are
open). We show only the periodic part of the displacement. Note that vslip and
uslip include both horizontal and vertical components. Right: The same as on the
left hand side but for models with only one fault (the main branch of Baghdad
Sulcus).

(Figure 3.10 b, g) leads to a decrease of the slip rate and breaking of symmetry –
the slip rate is larger in the extension than in the compression phase. A similar
behavior is found for the extension rate, ∆vn (Figure 3.10 c). The contraction
phase (∆vn<0) in the model with intermediate values of coefficient of friction
(e.g., µf=0.2) is significantly longer than the dilation phase (∆vn>0), and the
onset of the dilation phase is delayed by several hours compared to the frictionless
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model.
The average jump in displacement across the fault is shown in panels d and e.

The normal components of the displacement jump, ∆un, was used in the previ-
ous studies (Souček et al., 2016; Běhounková et al., 2017) to predict the temporal
variations in Enceladus’ plume activity. The choice of ∆un was motivated by
the assumption that the mass transfer across the ice shell is most efficient (the
plume is brightest) when the tiger stripes are open (i.e., when ∆un is maximum).
However, the results of the present study do not support this assumption. Fig-
ure 3.10 e shows that the maximum of un is delayed by up to 0.1P for the models
with friction compared to the frictionless model. However, the maxima of ∆un

for all the models are still several hours advanced with respect to the observed
brightness maximum (occurring at t≈0.55P , Ingersoll et al. (2020)). It is note-
worthy, however, that the brightness maximum coincides with the period when
∆un>0 (the faults are “open”) and occurs shortly before uslip attains its (sec-
ondary) local maximum. This might indicate that the permeability (and thus
activity) of the faults is related to the total strain experienced by the material
filling the faults rather than to ∆un.

The characteristics shown in panels a–e are affected by the interaction between
the faults. Therefore, in order to isolate the effect of µf on the fault motion, we
show the results obtained for a model containing only a single fault – the main
branch of Baghdad Sulcus (Figure 3.10 f–j). Note that the reduced magnitude
of all the variables for four-fault models is a consequence of the prominence of
Baghdad Sulcus (see Figure 3.11 b) and spatial averaging over all the faults.

Unlike the normal stress (panel f), which is only weakly sensitive to the value
of µf , the motion of the fault (panels g–j) is strongly influenced by the choice of
the friction coefficient. As µf is increased, the amplitude of the curves decreases,
and the phase lag increases. For µf=0.8 the results approach the no-fault model,
i.e., vslip≈0 for almost half of the time, and the maximum normal displacement
at the fault does not exceed a few centimeters.

3.3.3 Static stress and frictional heating
An elastic system with frictional interfaces subjected to periodic loading can pro-
duce a static stress field that forms a background on which oscillatory stress is
superposed (for a simple example, see Section 3.4.3 and Figure 3.15; for a re-
view, see Barber (2016)). The behavior of such a system and the distribution of
the static stress depend on the value of the friction coefficient and the coupling
between the relative tangential motion at the interface and the acting normal
traction. The static part of the stress field obtained for the model with µf=0.2
is shown in Figure 3.11 a while the results obtained for different values of µf are
presented in the Section 3.4.3 (see Figure 3.17).

Figure 3.11 a shows that the static stress field at the surface is character-
ized by horizontal compression in the direction perpendicular to the faults (cf.
Figure 3.10 a) and tension in the direction parallel to the faults (see also Sec-
tion 3.4.3 and Figure 3.11). This stress orientation is independent of the friction
coefficient (see Figure 3.17) and is primarily determined by the orientation of the
fault system relative to the tidal loading. Near the tips of the faults, the stress
field is more heterogeneous and has no dominant direction. The static stress has

90



Figure 3.11: Background static stress at the surface (a) and normalized heat
production along the faults (b) obtained for the model with µf=0.2. In panel a,
red and blue arrows correspond to compression and tension, respectively. Maps
showing the stress at different depths and illustrating the dependence of tidal
heating on the friction coefficient can be found in the Supporting Information,
see Section 3.4.

a magnitude of 10−100 kPa, which is comparable with the amplitude of the cyclic
stress shown in Figure 3.9. A detailed analysis of the static stress field and its
relationship to the tectonics of Enceladus’ SPT is beyond the scope of the present
study and will be pursued in a future paper.

The model developed here takes into account the dissipative nature of the fault
motions, allowing us, for the first time, to estimate the heat generated along the
tiger stripes. The heat production is evaluated by integrating the time-averaged
mechanical dissipation over the thickness of the ice shell. The relative variations
of the heat production along the faults are shown in Figure 3.11 b. Our model
suggests that most of the frictional heat is generated in the central parts of the
faults, the heat production decreases to zero near the fault tips.

While the relative variations in the frictional heating along the faults can be
determined with a high degree of confidence, the evaluation of the total heat
generated on the faults is challenging because it strongly depends on implemen-
tation details, in particular on the thickness of the fault zones. Considering the
uncertainties, we can conclude with a high degree of confidence that the total
heat production on the faults is less than 1 GW. This suggests that the fric-
tional heating represents only a small fraction of the heat power observed over
the SPT (13 − 19 GW, Howett et al. (2011)), emitted from the tiger stripes
(∼ 5 GW, Spencer et al. (2018)) or predicted in the SPT from heat transfer mod-
els (6 − 7 GW, Souček et al. (2019)). The dependence of the frictional heating
on the value of the friction coefficient is relatively weak and is shown in the SI
(see Figure 3.18 in Section 3.4.3). The largest frictional heating is found for
µf≈0.1−0.2. When the friction coefficient increases, the segment of the fault
where the frictional heating occurs is shortened, and the total heat production
decreases.
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3.3.4 Conclusions
In this part of the thesis, we evaluated the response of Enceladus to periodic tidal
loading, assuming that the tiger stripes are fault zones of finite thickness whose
strength depends on the normal stress acting on the fault planes. In contrast
to the previous studies, in which the tiger stripes were included as frictionless
fractures or were not included at all, the model provides a framework for under-
standing the role of contact friction in tidal deformation and for quantifying the
mechanical dissipation in the fault zones. We find that the diurnal tides pro-
duce a complex pattern of stress anomalies, characterized by a length scale of
∼10 km and the peak values exceeding 100 kPa (Figure 3.9). The stress reaches
a maximum in the central parts of the faults and decreases towards their tips.

The friction on the faults tends to slow down the response of the system to
tidal loading, leading to an asymmetry between the compression and extension
phases (Figure 3.9). This asymmetry results in additional stress, which is constant
in time and comparable in magnitude to the cyclic stress (Figure 3.11 a). The
static stress field is characterized by compression in the direction perpendicular
to the faults. This stress orientation is independent of the friction coefficient
and is likely to be controlled by the orientation of the faults relative to the tidal
loading.

The frictional heating is concentrated in the central parts of the faults (Fig-
ure 3.11 b). We estimate that the total heat flow generated on Enceladus’ faults
is 0.1 − 1 GW, accounting for only a small fraction of the heat power emitted
from the tiger stripes (Spencer et al., 2018). A comparison of the predicted fault
motion with the observed variations of Enceladus’ plume activity may indicate
that the permeability of the faults depends not only on whether the ice shell is in
extension or compression but also on the total strain experienced by the material
in the fault zones.

Since the mechanical properties of Enceladus’ fault zones are largely unknown,
we assume that the friction coefficient is constant. This is obviously a simplifi-
cation of reality, see Sections 4.2 and 4.2.3, but it allows us to gain insight into
the processes occurring in the SPT without performing an extensive parametric
study.

In the first approximation, the south polar region of Enceladus can be regarded
as an elastic system with frictional interfaces subjected to periodic loading. These
systems have received considerable attention from the engineering community
(e.g., Barber, 2016), but they have rarely been studied in the context of icy
moons. This study shows that such systems’ behavior may be surprising and
counterintuitive in many ways. The existence of a static stress field generated by
periodic tidal deformation is unexpected and has not been reported previously in
the literature. Future research should answer the question of whether this field
can influence the tectonic processes in the SPT and how much it is affected by
temporal variations of the friction coefficient.
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3.4 Supporting information for “Enceladus’
tiger stripes as frictional faults: Effect
on stress and heat production”
(Pleiner Sládková et al., 2021)

In this section, we provide additional details on the model formulation and its
numerical implementation. For the sake of completeness, we also show several
additional results that complement those presented in the main text of the article
(Pleiner Sládková et al., 2021) or shown in Section 3.3.

3.4.1 Model description
Here, we recapitulate the governing equations, and the boundary conditions.
Model parameters used in the simulations are summarized in Table 3.1.

Symbol Variable Value Unit
e eccentricity 0.0047
g surface gravity 0.113 m s−2

K bulk modulus of ice 8.8 GPa
n parameter controlling the onset 2 -

of yielding
∆ fault zone half-width 1 km
ηMax background value of the viscosity 1020 Pa s
µ shear modulus of ice 3.3 GPa
µf coefficient of friction of ice 0.1, 0.2, 0.4, 0.8 -
ϱi density of ice 926 kg m−3

ϱw density of water 1010 kg m−3

ω orbital frequency 5.3 × 10−5 s−1

Table 3.1: Model parameters

Governing equations

We solve tidal deformation of a compressible Maxwell viscoelastic continuum
in a hydrostatically pre-stressed state. A detailed derivation of the governing
equation is provided in Souček et al. (2019), in a more general setting also in-
volving temperature evolution. Here, we only recapitulate the model equations
and boundary conditions. In the actual (Eulerian) configuration, the system of
governing equations comprising the quasi-static force balance and the Maxwellian
rheology reads as follows

∇ · T − ϱi∇Vtidal = 0 , (3.37a)

Ṫ = K(∇ · u̇)I + µ
(︃

∇u̇ + (∇u̇)T − 2
3 (∇ · u̇) I

)︃
− µ

η
S. (3.37b)
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For synchronous eccentric orbit and to the first order in eccentricity, the time-
varying tidal potential is given by:

Vtidal(r, ϑ, ϕ, t) = r2ω2e×
(︃3

2P
0
2 (cosϑ) cosωt

−1
4P

2
2 (cosϑ)(3 cosωt cos 2ϕ+ 4 sinωt sin 2ϕ)

)︃
, (3.38)

where ω is the angular frequency, e is the eccentricity; (r, ϑ, ϕ) are the radius,
co-latitude and longitude, respectively; P 0

2 and P 2
2 are the associated Legendre

functions. See Table 3.1 for the values used.
In the above equations, we neglect the effects of self-gravitation, the inertial

force, and the body forces associated with density variations arising from the
deformation, all negligible in the considered application. Note that we do not
explicitly consider the balance of mass, assuming density to be constant. Also,
the Maxwell rheology is not written in a frame-indifferent form since we consider
only small deformations in our application, and the corresponding additional
terms in the time derivative operator have been dropped. Taking the trace and
the deviatoric part of (3.37b), we get, respectively,

1
3trṪ = K∇ · u̇ , Ṡ = 2µDd − µ

η
S . (3.39)

Thus, the isotropic part of the response is purely elastic (i.e., corresponding to
an infinite bulk viscosity), while the shear deformation is Maxwellian.

On the boundaries of the shell, characterized by position vectors (from the
origin), rs(ϑ, ϕ) (surface) and rb(ϑ, ϕ) (ice/water interface), the boundary condi-
tions linking the surface stress and the radial displacement ur are imposed. On
the upper surface, we prescribe

T(rs, t) · ns + ur(rs, t) ϱi gns = 0 , (3.40)

corresponding to the stress-free condition on the upper surface mapped to an un-
deformed shape of the shell and where ns is the outer normal to the surface. At
the ice-ocean interface, traction equals the pressure in the ocean, which (again
mapped on the undeformed surface) reads

T(rb, t) · nb − ur(rb, t) (ϱw−ϱi) gnb = ϱw V (rb, t) nb , (3.41)

where nb is the outer normal to the ice-ocean boundary. For a detailed derivation
of these boundary conditions, please see Souček et al. (2019), Appendix A.3.

Friction at the faults

For the description of how we approximate the friction at the fault, see Sec-
tion 3.1.2.

Note that we keep the elastic parameters in the fault zone unaltered with
respect to the rest of the shell in the current approach. This is in contrast with
the approach in our previous work (Souček et al., 2016; Běhounková et al., 2017;
Souček et al., 2019), where the elastic moduli were reduced in the fault zone to
mimic a frictionless contact. In the current model, elasticity is unaffected, and
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Figure 3.12: Sketch of the fault zone cross-section.

all the yield effects and mechanical weakening/strengthening are associated with
the (dynamic) drop/increase in viscosity. In reality, a combination of both the
viscosity and the elastic modulus reduction is plausible. Nevertheless, we chose
the adopted approach for numerical reasons, and it is consistent in the sense that
it provides a reasonable approximation of the Coulomb-type frictional contact.

Yield stress

In order to mimic the Coulomb-type friction, the yield stress σY is taken pro-
portional to the total compressive normal stress within the fault zone, i.e., we
prescribe:

σY = −µf

(︂
Ttot

nn

)︂−
where Ttot

nn = ñ · Ttotñ , and (•)− = min(•, 0). (3.42)

Here ñ is an approximation of the unit normal to the idealized fault surface,
defined everywhere within the fault zone, see also Section 3.4.2; Ttot is the total
Cauchy stress, composed of a static and a dynamic (time-dependent) part:

Ttot = Tstatic + T, (3.43)

where T stems from the solution of (3.37)-(3.41).
For the static part of the stress, we assume that the fault zone is composed

of a damaged porous ice matrix, partially flooded (to the hydrostatic height) by
water from the internal ocean, as in Figure 3.12. We adopt the simple Terzaghi
effective stress approach (Terzaghi, 1925), assuming that the static normal stress
Tstatic is given by the effective pressure peff , given by the ice overburden pressure
minus the water pore pressure pw:

Tstatic(d) = −peff(d)I , where peff(d) = ϱigd− pw(d). (3.44)

Assuming that the water table is in hydrostatic equilibrium (which need not to be
exactly true if the dynamic effects become significant, see, e.g., Kite and Rubin
(2016)), it holds

pw(d) =
{︄

0 d ≤ D0
ϱwg(d−D0) D0 ≤ d ≤ D

. (3.45)

In order to reduce the resolution requirements in the radial direction, we fur-
ther approximate the effective pressure by its depth-averaged form (denoted by
overbar), which, given (3.44) and (3.45) reads:

peff = ϱigD

2 − ϱwgDw

2
Dw

D
. (3.46)
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Employing the assumption of hydrostatically equilibrated water table:

ϱigD = ϱwgDw =⇒ Dw

D
= ϱi

ϱw

, (3.47)

we get

peff = gD

2 (ϱw − ϱi)
ϱi

ϱw

. (3.48)

This expression, applied in (3.43) gives

σY =
{︄
µf

(︂
peff − ñ · Tñ

)︂
if peff ≥ ñ · Tñ

0 otherwise
. (3.49)

For numerical reasons, we use a cut-off at 10 Pa instead of 0. Note that the
thickness of the shell is spatially variable. The above derivation holds locally,
and the average effective pressure peff depends on the co-latitude and longitude.

3.4.2 Numerical implementation
This section provides additional information on the model geometry and numer-
ical implementation.

Fault geometry and representation

The representation of the fault zones in our model is done via a smoothed indi-
cator function χ defined as

χ(ϑ, ϕ) = exp
(︄

−D2(ϑ, ϕ)
2∆2

)︄
, (3.50)

where D denotes the spherical distance to a curve approximating the fault –
processed from data by Porco et al. (2014), and ∆ denotes the half-width of χ.
The indicator function is shown in Figures 3.13 and 3.14.

In the formula for viscosity (3.35), we need to evaluate ñ · Tñ due to its
presence in the expression for the yield stress (see (3.49)), where ñ is the approx-
imation of the unit normal to the idealized fault surface. We approximate this
field as a normalized gradient of an oriented distance function

ñ = ∇ds

∥∇ds∥
, (3.51)

where ds is an oriented distance function. The unit normal field in the fault zones
is depicted by arrows in Figure 3.14 for one-fault model (top) and four-fault model
(bottom).

The indicator function is also used to interpolate the Maxwell viscosity η
between an external value ηMax outside the fault zones and an effective viscosity
ηeff in the fault zone:

log η(r, ϑ, ϕ) = (1 − χ(ϑ, ϕ)) log ηMax + χ(ϑ, ϕ) log ηeff . (3.52)

We interpolate logarithms of viscosity for numerical reasons.
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Figure 3.13: Indicator function χ defining the faults, for the one-fault model -
main branch of Baghdad Sulcus (top) and the four-fault model (bottom) together
with the mesh.

Figure 3.14: Indicator function χ together with the computational mesh and the
approximation of oriented normal function ñ (arrows).

Finite element model

The weak formulation of the problem (3.37)-(3.41), and the details on the tem-
poral and spatial discretization, together with specifics on the numerical imple-
mentation by finite element library FEniCS, can be found in Souček et al. (2019).
The only difference here (from the numerical point of view) lies in the dynamic
stress T entering the viscosity η through the effective viscosity formula (3.35) and
the yield stress expression (3.49).
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This implies that the problem (3.37)-(3.41) becomes strongly nonlinear. To
deal with the nonlinearity, we adopt a fixed point iteration scheme on each discrete
time level. For numerical reasons and due to technical problems with identifying
the optimal convergence measure for the fixed point iteration scheme, we adopt
a fixed number of 5 fixed point iterations for each time step, which has proven to
be sufficient in the investigated problem.

The initial computational mesh is generated using the open-source gmsh li-
brary (see www.gmsh.info) and then iteratively refined in the fault zone. Finally,
it is mapped to an approximation of the realistic shape based on the shape model
of Čadek et al. (2019). The resolution is the finest in the fault zone (approximately
500 m). However, far away from the faults, the average resolution is significantly
coarser (approximately 30 km). The computational mesh contains approximately
1.5 million tetrahedral elements. Each simulation (with a specific setup) was
run for 4 tidal periods, using 20 time steps per period. As the surrounding of
the fault zone behaves effectively elastic, convergence to a periodic solution is
sufficiently fast. We used the computational capabilities of a supercomputer at
IT4Innovations National Supercomputing Center, Czech Republic, running the
jobs typically on 16 or 24 nodes, each node composed of two twelve-core Intel
Xeon processors equipped with an 128 GB RAM. The average time required for
one simulation was between 20 and 30 hours.

3.4.3 Supplementary results
In this section, we first demonstrate, using a simple ordinary differential equation
(ODE) toy problem, that the development of background stress is natural for
periodically loaded systems with Coulomb-type friction. Next, we show how
frictional heating and the static background stresses depend on the coefficient of
friction.

Stationary pre-stress arising from friction asymmetry

Let us demonstrate that the compressive background stress observed in our simu-
lations (see Figures 3.11 a, 3.16, 3.17) is, in fact, a feature inherent to models with
asymmetry in the frictional response. The asymmetry can be either directional
(different friction coefficient in one direction than in the other) or related to the
forcing – friction coefficient depending on the load. The latter case corresponds
to the Coulomb-type friction used in Section 3.3, where we consider the yield
stress to be modulated by the normal stress at the fault.

We show that even for a perfectly symmetric periodic forcing, the above-
mentioned asymmetry in the dependence of friction coefficient necessarily leads
to the development of background stress that compensates it, thus allowing for
a periodic response. Consider a simplified problem in the form of one scalar ODE,
which captures the essential features of our three-dimensional continuum model:

• Model 1
β
(︂
y′(t)

)︂
y′(t) = −ky(t) + cos(ωt) , (3.53a)

• Model 2
β
(︂
cos(ωt)

)︂
y′(t) = −ky(t) + cos(ωt) , (3.53b)
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Figure 3.15: Numerical solution of equations 3.53a and 3.53b via Wolfram Math-
ematica.

solved for t>0, assuming y(0)=0 and considering k, and ω constant and

β(z) =
{︄
β1 if z < 0
β2 if z ≥ 0 . (3.54)

This model describes a stationary force balance between the frictional force on
the left-hand side, the elastic response (first term on the r.h.s), and the periodic
loading force (second term on the r.h.s.). In this regard, it corresponds well to
our model setting.

Solving numerically these two ODE’s in Wolfram Mathematica, for k=1, ω=3,
for two cases: symmetric case β1=β2=1, or asymmetric response β1=1

2 , β2=3
2 ,

yields the outputs presented in Figure 3.15.
The asymmetry in the frictional response leads to an offset of the periodic

solution with respect to the symmetric case for both considered models. This
behavior is rather intuitive since a periodic solution exists; it cannot be symmetric
due to the asymmetry of the frictional response. Consequently, an offset develops,
compensating the asymmetry, which allows for a periodic-in-time solution. This
static offset in the displacement then contributes to the stress field, representing
a static background stress.

Depth-dependence of the background stress

To complement the result in the main text, Figure 3.16 shows the background
stress for a four-fault model in three different depths (at the surface, mid-shell,
and bottom of the shell). While the stress is for any depth compressional in the
direction perpendicular to the faults compensating for the response asymmetry,
the stress regime in the direction parallel to the faults changes with depth. In the
inter-faults region, the stress parallel with the faults changes from extensional (at
the surface) to compressional (at the bottom) as a consequence of the bending
stress (cf., Souček et al., 2019).
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Figure 3.16: The background stress for the four-fault model (with µf = 0.2), at
three different depths.

Figure 3.17: Dependence of the background stress on the friction coefficient µf

for the four-fault model.

Parametric study for friction coefficient

Figure 3.17 depicts the static background stress field on the surface as a function
of the friction coefficient µf ranging between µf=0.1 and µf=0.8. The stress
orientation is consistent for all cases. With an increasing friction coefficient, the
magnitude of background stress increases as expected. Remarkably, the largest
background stress develops for µf=0.8 model, whereas the periodic part of the
solution is similar to the solution without the faults.

Figure 3.18 shows the normalized heat production along the faults for models
with different coefficients of friction. The largest dissipation is observed along the
Baghdad sulcus for all values of the friction coefficient. Moreover, with the in-
creasing friction coefficient, the heat production is getting more localized near the
south pole, where the thickness also reaches its minimum. The dominance of the
heating along the Baghdad sulcus further increases with the friction coefficient.

Figure 3.18: Dependence of the normalized heat production on the friction coef-
ficient µf for the four-fault model.
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4. Outlooks for a more realistic
description of ice-ice contact
In this chapter, we present an outlook towards a more realistic description of
the ice-ice contact in the visco-elasto-plastic framework presented in Chapter 3.
We begin by introducing the concept known as the ”rate-and-state friction law”,
which was developed by the seismological community in the 1970s and 1980s as
a means of describing the frictional behavior of rocks. Subsequently, we provide
a concise overview of experimental research conducted on ice-ice friction. We
conclude the theoretical section by presenting a rate and state friction model
specifically designed for ice-ice contact, and we discuss some of its fundamental
characteristics. Following the theoretical discussion, we present two benchmark
tests that assess the performance of the more realistic friction models integrated
into the test case described in Chapter 3, with a focus on planar fault zone
geometry (please refer to Section 3.1 for further details).

4.1 The historical development of rate and state
friction model

From 1978 to 1982, a deeper understanding of the rock-rock contact was pro-
vided by the pioneering works of James H. Dieterich, Ernest Rabinowicz, and
Andy Ruina, who developed a general class of friction laws using so-called inter-
nal state variables. These variables characterize changes in the properties of the
faults during the dynamical contact and allow one to describe many of the exper-
imentally observed characteristics of real-world frictional contacts (Dieterich and
Kilgore, 1994). In this section, we summarize the articles of J. H. Dieterich and
A. Ruina (Dieterich (1978, 1979); Ruina (1983)) developing the rate and state
friction model.

4.1.1 Friction model by James H. Dieterich (Dieterich,
1978, 1979)

In 1979 Dieterich presented a study based on shear experiments on ground sur-
faces of granodiorite from Raymond, California (Dieterich, 1979) in which he de-
scribed how time, displacement, and velocity affect the friction on the rock-rock
contact in laboratory conditions. He also pointed out a resemblance between lab-
oratory friction experiments and natural faults that allows for extrapolation of
the laboratory results onto natural faults even though the laboratory experiments
cannot capture the complexity of real-world conditions.

First, the stick-slip instability observed in the laboratory can be related to
the mechanism of the crustal earthquake caused by an unstable slip. Second,
the stable frictional slip in laboratory measurements exhibits similarities with
the aseismic fault creep. Finally, the insensitivity of laboratory friction measure-
ments to rock type, test conditions, and the character of the surface suggests that
laboratory measurements can be relevant to the natural faults subjected to more
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complex conditions.
Observations arising from the experiments in Dieterich’s paper (Dieterich,

1979) can be summarized into a few points, which are more thoroughly discussed
in the following lines and which laid grounds to a novel frictional model, see
Figure 4.2 (top curve for experimental results and the lowermost for the new
model):

1. Including a healing mechanism in the frictional model is necessary to explain
the data.

2. Certain finite slip is required for the friction coefficient to stabilize after
an abrupt change in sliding velocity.

3. Such a slip does not depend on the amplitude of the slip velocity change.

4. A transient rise in friction develops after the increase of velocity, followed
by a subsequent decrease.

5. After an abrupt change of velocity, the coefficient of friction decreases with
increasing velocity.

6. Static friction increases with a growing loading rate in the experiments,
where the contact is held still and then loaded with different velocities.

Now, let us concentrate more thoroughly on the above points. Since all the
existing theories for frictional contact adopted a displacement or strain weaken-
ing mechanism, without an additional healing mechanism, repeated earthquakes
on a particular fault would entail repeated weakening, eventually leading to zero
strength of the fault. Since this is not observed, the inclusion of healing mecha-
nisms in the frictional models seemed inevitable. In 1978, Dieterich introduced
the following temporal dependence of the coefficient of static friction representing
such a healing mechanism (Dieterich, 1978):

τ

σn

=: µf = µ0
f + A log(Btc + 1). (4.1)

Here τ represents the shear stress, σn is the normal stress, and tc is the time
of contact. Based on the observations, the constants A, B and µ0

f (the static
coefficient of friction) have values of 0.01 − 0.02, 1 − 2 and 0.6 − 0.8, respectively
(Dieterich, 1978).

After performing measurements of sliding friction at different slip velocities,
the time of contact has been replaced by

tc = dc

vslip
, (4.2)

where vslip is the slip velocity and dc is an experimental displacement parameter
- the critical displacement characterizing the slip necessary for the coefficient of
friction to stabilize after the change of slip velocity vslip. Measured values for dc

were of the order of 10−4cm.
Apart from the velocity weakening resulting from combining (4.2) with (4.1),

the critical displacement dc also introduces the displacement (slip) dependence to
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the friction law. According to the experiments, dc corresponds to surface rough-
ness and does not depend on the amplitude of slip velocity change. Dieterich
(1979) interprets the values of tc as the average lifetime of a population of con-
tacts, and dc as the displacement required to change the population of contact
points completely. Thus, according to Dieterich (1979), two processes compete
on the frictional contact: first, the population of contacts ages, thus increasing
the coefficient of friction as in equation 4.1; second, the displacement destroys
the existing population of contacts and creates new, weaker ones, thus reducing
the coefficient of friction.

Figure 4.1: The instability model from Dieterich (1979).

Based on this interpretation, a simple spring-slider model of mechanically
loaded frictional contact has been proposed to explain the experimental results,
showing the transition from stable sliding to stick-slip (Dieterich, 1978), see Fig-
ure 4.1 or Section 3.1.2 for more information about the spring slider model. How-
ever, such a model was not able to capture the preseismic slip; hence, the pursuit
of a more suitable model continued in the article Dieterich (1979).

From an abrupt change of loading velocity experiment, Dieterich (1979) in-
ferred that the friction coefficient decreases with increasing velocity. On the other
hand, a second type of experiment, in which the contact is held still for some time
and then is loaded with different velocities, revealed that static friction increases
with increasing loading velocity. Dieterich (1979) assumed that the adhesion at
the actual points of contact (between the sliding surfaces directly or between the
gouge particles separating the surfaces) controls the friction of rocks. According
to Bowden and Tabor (1964), the actual contact of two surfaces is limited to
asperities. Thus, when the normal stress rises, the contact area increases. The
measure of contact area per unit surface A may be approximated as

A = Cσn, (4.3)

where σn is the average normal stress applied over the entire surface assuming
perfect (100%) contact, C is a material constant inversely proportional to inden-
tation hardness or yield stress.
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Furthermore, Bowden and Tabor (1964) assert that the resistance to the slip
is controlled by the adhesive strength of the junctions. Therefore, the average
shear stress τ is proportional to the real area of contact: τ = FA, where F is the
adhesive strength per unit area of contact. Then the friction coefficient is given
as the shear stress divided by the normal stress; thus:

µf = τ

σn

= FA
A/C

= CF. (4.4)

Figure 4.2: Figure 3 from Dieterich (1979): Comparison of experimental results
(top curve) with empirical friction laws (the three bottom curves). Curve A
employs (4.2) and (4.5), curve B uses (4.5) and (4.6). Curve C is based on (4.8)
with dc = 2 × 10−3cm, c1 = 0.68, c2 = 0.01, c3 = 0.5, f1 = 1.0, f2 = 25, and f3 =
2 × 10−3.

The time dependence in eq. (4.1) is related to an increase in the area of contact,
or sometimes the depth of penetration of asperities (Dieterich, 1978). In response
to the stress concentration at the contact points, creep deformation occurs, caus-
ing an increase in the contact area. Consequently, in view of (4.3), C should be
time-dependent. The application of the following empirical relationship

C = c1 + c2 log(c3t+ 1)

leads to the following time-dependent formula for the friction coefficient

µf =
[︂
c1 + c2 log(c3t+ 1)

]︂
F, (4.5)

which corresponds to equation (4.1) with c1F = µ0
f , c2F = A, c3 = B. Conse-

quently, the last equation describes either the static friction if t is the time of
stationary contact tc or the sliding coefficient if t is the average time of contact.

To account for the observation that the displacement dc is necessary for the
coefficient of friction to change and stabilize after the velocity change, Dieterich
(1979) presents an updated formula for t:

t = dc

vslip

(︄
vslip

dc

t0

)︄exp
(︂

δ0−δ
dc

)︂
, (4.6)

where t0 and δ0 are the average contact time and displacement needed for the
stabilization of µf after the velocity change.
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Moreover, Dieterich (1979) observed a transient rise in friction after the in-
crease of velocity, probably not related to the variation of surface area with dis-
placement and hence interpreted it as an effect of a loading rate dependence of
the strength term F , cf. Dieterich (1979):

F = f1 + 1
f2 log

(︂
dc

vslip
+ 10

)︂ , (4.7)

where f1, f2 are constants. This equation states that for a constant area of con-
tact, the strength of contact increases as the velocity of loading rises. Combining
the formulae for C and F :

µf =
[︂
c1 + c2 log(c3t+ 1)

]︂[︄
f1 + 1

f2 log
(︂

dc

vslip
+ 10

)︂]︄, (4.8a)

where t = dc

vslip

(︃vslip

dc

t0

)︃exp
(︂

δ0−δ

dc

)︂
(4.8b)

gives us an equation for the coefficient of friction representing adequately the
static, transient, and steady state sliding friction observations presented in the
article of Dieterich (1979), see Figure 4.2 for comparison with experiments.

Summarizing Dieterich (1979): the coefficient of friction can be expressed as
the product of parameters C and F , where C depends on the time of contact, and
F depends on slip velocity. During the slip t ∼ v−1

slip and in the case of velocity
change, t relaxes to the new value after the displacement dc. Hence two effects can
be described: i) transient increase of µf for rising velocity, ii) indirect decrease in
contact time (hence µf ) with increasing velocity, which becomes apparent only
after the displacement dc.

Unstable slip in Dieterich’s friction model

Dieterich (1979) discusses the possibility of an unstable slip for the proposed
friction model and its implications for modeling earthquakes. For this purpose,
he employs a simple mechanical analogue to the gradually loaded mechanical
contact - a spring slider with a spring stiffness ksp and coefficient of friction that
depends on time and velocity as in (4.8), see Figure 4.1 with K = ksp.

In this setting, an unstable slip occurs when the decrease of frictional strength
∆τ over the critical displacement dc has a slope that exceeds the slope of the
unloading curve of the spring −ksp, see Figure 4.1. Then the stress applied to the
slider by the string is bigger than the frictional resistance, and an acceleration
of the slider and consequently an instability follows; hence ksp ≤ ∆τ

dc
leads to

unstable behavior.
For stable sliding, the opposite inequality holds. The transition between the

two states occurs for kcrit
sp = ∆τ

dc
. Since ∆τ = ∆µfσn, where ∆µf is the change

of the coefficient of friction depending on changes in time of contact and slip
velocity, we have:

kcrit
sp = ∆µfσn

dc

(4.9)

for the transition from stable sliding to stick-slip.
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For a real fault, the stiffness of the spring ksp needs to be replaced by the
fault’s slip stiffness, Dieterich (1978) proposed the following formula for confined
slip on a fault segment:

kcrit
sp = ∆τ

df

= µ

ν

1
Ls

, (4.10)

where Ls is the length of the slipped zone as given by the fault dislocation rela-
tionship, ∆τ is the change of stress caused by the average slip displacement df

on a fault length Ls, µ is the shear modulus and ν ≃ 1 is a geometric constant.
Combining the instability inequality together with the last equation for fault’s
slip stiffness we obtain:

µ

ν

1
Ls

<
∆µfσn

dc

(4.11)

for the unstable slip on a fault.

4.1.2 Friction model by Andy Ruina (Ruina, 1980, 1983)
The research of Dieterich was followed by Andy Ruina, whose work relies mostly
on Dieterich’s experiments at the turn of the seventies and eighties of the last
century. Ruina synthesized the experiments based mainly on the change of loading
velocity to several observations:

1. A steady state friction stress τss is associated with every slip rate vslip.

2. Frictional stress has a positive instantaneous slip rate dependence, i.e., ex-
hibits a positive jump in τ for increasing vslip and negative for decreasing
vslip.

3. There is a long term increase/decrease in τ following the negative/positive
jump in vslip, which may/may not be larger than the instantaneous increase
in τ .

4. A decay of stress value after the step change in vslip has a characteristic
length independent of vslip.

Ruina also mentioned two specific observations concerning the slip rates
around 1µms−1:

5. The instantaneous rate dependence of the friction force is proportional to
the logarithm of the ratio of velocities before and after the velocity change,
i.e., △τ ∼ log

(︂v1
slip

v2
slip

)︂
.

6. A steady state frictional stress τss ∼ C log(vslip) + const., C can be positive
or negative depending on the material and environment.

The aim of Ruina (1983) was to identify a mathematical description capable of
reproducing these observations, especially the first three (fading memory, steady
state, positive instantaneous slip rate dependence, and subsequent negative long-
term dependence on slip rate). In order to do so, he developed a frictional model
involving the state of the fault, for which several assumptions had to be made:
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1. The surface (or its region) has at any instant in time a specific state.

2. The stress due to friction depends exclusively on the normal stress, slip
velocity, and the state of the contact, i.e.,

τ = F(σn, vslip, state).

3. The state varies as a continuous function of time for finite vslip (i.e., con-
tinuous displacement).

4. The state’s rate of change depends only on the normal stress, slip rate, and
the instantaneous state at the points, i.e., it holds

d(state)
dt = G(σn, vslip, state).

A particular finite-dimensional representation of the state was proposed by (Ru-
ina, 1983), who assumed that it can be characterized by a collection of state
variables θi, or collectively Θ. Thus:

τ = F(σn, vslip, θ1, θ2, θ3, . . .) (4.12)
dθi

dt
= Gi(σn, vslip, θ1, θ2, θ3, . . .). (4.13)

Let us note that the applicability of the model does not require a clear physical
interpretation of the state variables, they can be treated formally as so-called
“internal” variables.

Since the observations often indicate that the frictional stress τ is proportional
to the normal stress σn the above sliding law can often be simplified as:

τ = σnF(Θ, vslip). (4.14)

Since, in a geological context, one can often assume a constant normal loading
history, the state equation reduces to:

dθi

dt = Gi(Θ, vslip), where Θ = θ1, θ2, θ3, . . . (4.15)

Here the state variables θi characterize the surface’s memory of the previous
sliding.

The extensive experiments of Dieterich and Ruina have revealed that for every
slip velocity vslip, there exists a steady state represented by the steady state values
of stress and state (τ ss(vslip), θss

i (vslip)). The stress and state at a specific constant
slip rate approach the steady state values after sufficient time or displacement,
i.e., θss

i solve Gi(θss
1 , θ

ss
2 , . . . , vslip) = 0 for i = 1, 2, . . .. In addition, according to

experiments of Ruina (1980) θi can be chosen in such a way that they evolve
independently of each other, i.e.,:

θi̇ = Gi(θi, vslip).

Ruina further assumes:

∞ >
Gi(θi, vslip)
θss

i (vslip) − θi

> 0 ∀θi,
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ensuring that θi has a unique steady state for a constant slip rate imposed after
an arbitrary slip history. Moreover, according to Ruina (1983), the asymptotic
convergence to the steady state is exponential.

Based on previous assumptions, Ruina (1983) proposes a new version of the
friction law with just one internal state variable:

τ = σnF(θ, vslip), (4.16a)
θ̇ = G(θ, vslip). (4.16b)

The difficulty in precisely defining F and G lies in the fact that the state variable
cannot be measured. Thus, Ruina (1983) first defined sets of test conditions to
confirm the one state friction law (4.16) and then sets of experiments to find the
functions F and G.

Consequently, he presented a couple of laws based on the early work of other
authors, e.g., “Simplified Dieterich’s Law”:

τ = σn

[︃
µ0

f + θ + A log
(︃vslip

vref

)︃]︃
, (4.17a)

θ̇ = −vslip

dc

[︃
θ +B log

(︃vslip

vref

)︃]︃
, (4.17b)

where vref is a reference value of the slip velocity and whose apparent deficiency
is the singularity for zero sliding velocity (static contact).

Alternatively, a “Two state variable friction law” has been proposed by
Ruina (1983) to explain some of the experiments performed on quartzite which
cannot be described by the one-state law above:

τ = σn

[︃
µ0

f + θ1 + θ2 + A log
(︃vslip

vref

)︃]︃
, (4.18a)

θ̇1 = −vslip

d1
c

[︃
θ1 +B1 log

(︃vslip

vref

)︃]︃
, (4.18b)

θ̇2 = −vslip

d2
c

[︃
θ2 +B2 log

(︃vslip

vref

)︃]︃
. (4.18c)

The two-state variable friction law used in a spring slider model with a very stiff
spring is able to reproduce the quartzite results nicely; see Figure 4.3. However,
such a model still has the same problematic property as the “Simplified Dieterich’s
Law”.

Unstable slip for Ruina’s friction model

Similarly, as in the case of Dieterich’s model, the frictional model by Ruina also
admits unstable slip in a certain range of model parameters and thus is capable of
reproducing earthquake-like response. Ruina (1983) presents a study of stability
for constant force loading and the one state variable law, i.e., eqs. 4.17. He shows
that for B < A, the solution converges to the steady-state solution. However,
for B > A, the friction stress τ decreases with steady-state slip speed, and the
steady sliding is extremely unstable.

The second stability study in Ruina (1983) concerns a steady sliding with
a spring slider model. The model is unstable for the stiffness of the spring lower
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Figure 4.3: Figure 2 from Ruina (1983): Friction force variation due to step
change in slip rate: (a) Quartzite polished with # 90 grit abrasive and about
30 bars normal stress. Experimental results from two tests in which the slip rate
was changed from 0.01 µm s−1 to 1µm s−1; (b) numerical simulation of the two
tests using equation 4.18.

.

than the critical value: ksp < kcrit
sp , where kcrit

sp = −vslip
dc

dτss

dvslip
. If we apply this

condition to the simplified Dieterich law, cf. eqs. 4.17, we obtain:

kcrit
sp = σn

B − A

dc

. (4.19)

The formula (4.19) can be derived through the theory of asymptotic linear stabil-
ity for ordinary differential equations. We present this approach in Section 4.2.3.

4.2 Experimental data for the ice-ice frictional
contact

The study of ice friction was in the early days motivated by understanding the
behavior of skis, skates, etc.; hence most of the published papers considered the
friction between ice and other materials, e.g., Joly (1899). The ice-ice frictional
contact has been studied more extensively in the last forty years: including the
theoretical/experimental work of Oksanen and Keinonen (1982), continuing with
several articles around the group of Fortt and Schulson (Kennedy et al. (2000);
Montagnat and Schulson (2003); Fortt et al. (2003); Fortt and Schulson (2007,
2009); Schulson and Fortt (2012); Schulson (2018)) and the group of Maeno and
Arakawa (Maeno et al. (2003); Maeno and Arakawa (2004)). This section com-
piles the (primarily experimental) studies of ice-ice frictional contact.

Most of the research concentrated on the behavior of ice at moderate temper-
ature, usually −10◦C, sometimes expanding down to −40◦C, except for Schulson
and Fortt (2012), who tested the behavior of ice at temperatures as low as −175◦C
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Figure 4.4: Figure 10 from Maeno et al. (2003) comprising measured friction
coefficients’ dependency on sliding velocity.

and Beeman et al. (1988) measuring at −183◦C, cf. Figure 4.4 from Maeno et al.
(2003). Consequently, the friction measurements relevant for the near-surface re-
gions of icy moons such as Europa and Enceladus, where the temperature drops
down to -223◦C and -198◦C, respectively, are lacking.

4.2.1 Slip rate regimes

Figure 4.5: Slip rate dependence of ice friction coefficient (Figure taken from
Fortt and Schulson (2009)).

The coefficient of friction primarily depends on the slip rate, but the na-
ture of this dependence varies, with most studies distinguishing between two
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regimes: velocity-weakening and velocity-strengthening, see Figure 4.5. Schulson
(2018) explains the shift from velocity-strengthening to velocity-weakening by the
amount of meltwater present on the contact; see Figure 4.6.

Figure 4.6: Figure taken from Schulson (2018) explaining that the coefficient of
friction is driven by the development of a liquid layer on the contact surface. Thus,
three regions are defined by the magnitude of slip velocity: The first boundary is
at Vt1 , where the smallest contacts melt. The second is set by Vt2 , where all (even
the largest) contacts melt, leaving the friction to be ruled by hydrodynamics.

As for the rock friction, see Section 4.1, the interaction between the asperities
drives the frictional behavior (Schulson, 2018); however, due to lower melting
temperature of ice compared to rocks, such interaction changes with velocity.
For a low slip rate, one asperity passes over another one slowly enough for the
frictional heating to be conducted away (no meltwater is produced); see the up-
permost image on Figure 4.6 b), the friction follows velocity-strengthening regime,
see left part of Figure 4.6 a). At the speed Vt1, the time of passage is not slow
enough for sufficient conductive cooling; hence some meltwater is created, and
the resistance to sliding decreases, see the middle parts of Figures 4.6 a) and
b). For the velocity of Vt2 and greater, the amount of produced meltwater is big
enough to cover all the contact points. Hence hydrodynamics starts to govern the
process while sliding resistance increases with velocity again; see the right part
of Figure 4.6 a) and the lowermost part of Figure 4.6 b).

Fortt et al. (2003) and Schulson and Fortt (2012) agree that the transition
happens at approximately vtrans ∼ 10−5 − 10−4m s−1, while the latter study sug-
gests that temperature dependence is also involved, see below. This statement is
also supported by Oksanen and Keinonen (1982), who divide the slip-rate regions
mainly based on temperature; however, their measurements involve only temper-
atures higher than -15◦C. As a point of interest, the slip rate in the Enceladus
model, see Chapter 3, reaches values up to ∼5 × 10−5 ms−1.

Velocity-weakening

Oksanen and Keinonen (1982) proposed that the coefficient of friction decreases
with the square root of the slip rate for ice at -15◦C and that it exhibits velocity-
weakening also for temperatures between -10◦C up to −2◦C and velocities ≲
1 m s−1. According to Schulson (2018), this region is probably operated by brittle-
like behavior and local melting, see middle parts of Figures 4.6 a) and b), and it
operates for elevated temperatures above -50◦C and velocities higher than vtrans.
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Velocity-strengthening

In the velocity-strengthening region coefficient of friction grows as the square root
of slip rate according to Oksanen and Keinonen (1982) at temperatures around
the melting point (0◦C). It also exhibits velocity strengthening from -10◦C up
to -2◦C for a higher slip rate (≳ 1m s−1). Here, friction is driven by ductile-
like behavior, dislocation creep, and fault healing. Schulson and Fortt (2012)
distinguish this region for temperatures higher than -50◦C and velocities lower
than vtrans or for the lowermost temperature measured T=−175◦C and velocities
below 10−6 m s−1 or higher than 10−4 m s−1. At this temperature and in between
these velocity values, the friction is indifferent to the slip rate (Schulson and
Fortt, 2012).

4.2.2 Other dependencies
As mentioned, the temperature of the ice may determine the mode in which fric-
tion depends on the slip rate, but there might be other effects. According to Fortt
and Schulson (2007), the friction coefficient grows by 20 - 40 % with temperature
decreasing from values around 0◦C to −40◦C. Schulson (2018) later specified,
that the friction coefficient grows (by 20 - 40 %) for temperature decreasing from
−10◦C to −40◦C and decreases (by 10 - 20 %) for temperature increasing from
−10◦C to 0◦C.

In addition, a couple of studies confirm that ice type and grain size do not
affect the coefficient of friction, e.g., Schulson and Fortt (2012), while roughness
and salinity have a weak effect, see Schulson (2018).

Figure 4.7: Figure taken from Fortt and Schulson (2007) showing a comparison
of stress-time curves for different temperatures and velocities.

Displacement dependence

Fortt and Schulson (2007) present a behavior similar to rock-rock friction exper-
iments when they include displacement dependence, see Figure 4.7. Except for
the two top cases with slip velocity equal to 8 × 10−7m s−1 velocity-weakening
evolution of the stress-time curves is very similar to the rate and state model
of Ruina (1983): a transient increase of stress is followed by a decay (mostly
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slower), sometimes followed by a statistical steady-state value. While for the
velocity-strengthening regime (slip velocity equal to 8 × 10−7m s−1 and tempera-
ture of −3◦C and −10◦C), the displacement dependence can be described as high
transient growth followed by a slower logarithmic-type growth.

The recent observations by Fortt and Schulson (2009) reporting that ice fric-
tion exhibits memory, as well as the results of Schulson and Fortt (2012) with
Fortt et al. (2003) who observe that the coefficient of friction exhibits power-law
dependence for a subcritical displacement (with the threshold value of 2 mm) and
then obeys Coulomb’s law, seem to support the thesis of Lishman et al. (2011),
that ice on ice friction can be described by the rate and state friction law.

4.2.3 Rate and state friction model for ice-ice contact
Lishman et al. (2011) presented the rate and state model for ice-ice contact similar
to the simplified Dieterich model in eqs. 4.17, see Section 4.1:

µf = µ0
f + θ + A log

(︃vslip

vref

)︃
, (4.20a)

θ̇ = −vslip

dc

(︄
θ +B log

(︃vslip

vref

)︃)︄
, (4.20b)

where the values of constants for saline ice are A = 0.310, B = 0.382, µ0
f = 0.872,

and dc varies with scale (dc = 0.2 mm in the lab measurements - 0.1 m scale - and
dc = 5 mm for the ice tank measurements - 1 m scale). Since here B > A, the
ice-ice frictional contact lies in the unstable velocity-weakening regime; see the
section below. Lishman et al. (2011) measured ice response for temperature equal
to -10◦C and velocities from 10−5 to 10−1m s−1, hence, their results correspond
to the findings of others, see Section 4.2.1.

The asymptotic linear stability of the rate and state friction model

In this section, we derive the conditions for the asymptotic linear stability of the
rate and state friction model given by (4.20) in the setting of the spring-slider
experiment in order to understand the behavior of such a system. We consider
the sliding regime corresponding to equality in equation 3.28 and vref=v0. Using
u0 = v0t, we obtain:

µfσn = ksp(v0t− usl), (4.21)
To simplify the system into a system of two ordinary differential equations of

the form da
dt

= f(a, t), we differentiate the equation (4.21) with respect to time
( d

dt
) while setting vslip = dusl

dt
and vref = v0:

dµf

dt
σn = ksp(v0 − vslip). (4.22)

We express the time derivative of the coefficient of friction from (4.20a), and
further on, we denote the time derivative by dot, i.e., ȧ := da

dt
:(︃

θ̇ + A
v0

vslip

1
v0

vsliṗ
)︃
σn = ksp(v0 − vslip) (4.23)
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Now we substitute the time derivative of the state variable by the right side of
(4.20b): [︄

− vslip

dc

(︄
θ +B log vslip

v0

)︄
+ A

vsliṗ
vslip

]︄
σn = ksp(v0 − vslip). (4.24)

As a last step, we express the above equation in the required form, obtaining the
following system:

vsliṗ = fV := kspvslip

Aσn

(v0 − vslip) +
v2

slip

Adc

(︄
θ +B log vslip

v0

)︄
, (4.25a)

θ̇ = fθ := −vslip

dc

(︄
θ +B log vslip

v0

)︄
. (4.25b)

In order to investigate the asymptotic linear stability for a system of ordi-
nary differential equations (ODEs) in the form (4.25), one has to investigate the
eigenvalues of the matrix of first derivatives (Jacobian) of the system around
the steady state. If all the eigenvalues have a negative real part, the system is
asymptotically stable, while if some eigenvalue has a positive real part, the sys-
tem is unstable (Lyapunov theorem, Lyapunov (1992)). Thus, we first evaluate
the derivatives of the right-hand sides:

∂fV

∂vslip
= ksp

Aσn

(v0 − vslip) − kspvslip

Aσn

+ 2vslip

Adc

(︄
θ +B log vslip

v0

)︄
+

v2
slip

Adc

B
1

vslip

= ksp

Aσn

v0 − 2kspvslip

Aσn

+ 2vslip

Adc

(︄
θ +B log vslip

v0

)︄
+ Bvslip

Adc

, (4.26a)

∂fθ

∂vslip
= − 1

dc

(︄
θ +B log vslip

v0

)︄
− vslip

dc

B
1

vslip

= − 1
dc

(︄
θ +B log vslip

v0

)︄
− B

dc

, (4.26b)

∂fV

∂θ
=

v2
slip

Adc

, (4.26c)

∂fθ

∂θ
= −vslip

dc

. (4.26d)

The steady state of equations (4.25a) and (4.25b) corresponds to vslip = v0, θ =
−B log vslip

v0
= 0, thus the Jacobian of the system in the steady state ∇f |ss is:

∇f |ss =
⎡⎣ −kspv0

Aσn
+ Bv0

Adc

v2
0

Adc

− B
dc

−v0
dc

⎤⎦ .
Second, we compute the eigenvalues of the steady state Jacobian:

det(∇f |ss − λI) = det
⎡⎣ −kspv0

Aσn
+ Bv0

Adc
− λ

v2
0

Adc

− B
dc

−v0
dc

− λ

⎤⎦ (4.27)

= λ2 +
(︃v0

dc

− Bv0

Adc

+ kspv0

Aσn

)︃
λ+ kspv2

0
Aσndc

. (4.28)
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Finally, we find its root solution:

λ1,2 =
−v0

(︂
ksp
Aσn

+ 1
dc

− B
Adc

)︂
±v0

√︃(︂
ksp
Aσn

+ 1
dc

− B
Adc

)︂2
−4 ksp

Aσndc

2 (4.29)

= −v0
2

⎛⎝ ksp

Aσn
+ 1

dc
− B

Adc

⎞⎠⎛⎝1 ±
√︃

1 − 4kspAdcσn

(kspdc+Aσn−Bσn)2

⎞⎠. (4.30)

It holds: 4kspAdcσn

(kspdc+Aσn−Bσn)2 > 0, hence 1 − 4kspAdcσn

(kspdc+Aσn−Bσn)2 ≤ 1, thus the square
root is either real and smaller than one or purely imaginary; therefore, the last
bracket always has a positive real part.

Thus, we concern ourselves only with the first part of the expression (4.30).
We can derive that the real part of λ1,2 < 0 if and only if v0

2

(︂
ksp

Aσn
+ 1

dc
− B

Adc

)︂
> 0,

which corresponds to ksp >
σn(B−A)

dc
. Thus, we denote the critical stiffness as:

kcrit
sp = σn(B − A)

dc

. (4.31)

The system is linearly asymptotically stable if the real part of all its eigenvalues
in the steady state is negative, i.e., if ksp > kcrit

sp and it is unstable otherwise.

Figure 4.8: Several time evolutions (colored lines, from different initial states -
corresponding colored dots) of the system describing the behavior of a rate and
state model when applied to the friction in the spring slider are shown in the space
of state variable and slip velocity for (a) a sub-critical ksp leading to unstable
(diverging) evolution and (b) a super-critical ksp leading to linearly asymptotic
stable evolution. Any time evolution can be traced by following the direction of
the arrows.

In Figure 4.8, several trajectories for the spring slider model with the friction
described via rate and state model (4.20) are plotted in the space of slip velocity
and state variable, see Section 4.3.2 for information about the details of the
numerical calculations. On the left, a sub-critical spring stiffness has been chosen.
Each of the runs starts from different initial conditions (denoted by a colored dot);
however, all diverge away from the plotted area. Whereas in Figure 4.8 b) run
with a super-critical spring stiffness converges to the steady state from any chosen
initial state.
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Figure 4.9: We display two possible time evolutions of the spring-slider model
where the friction coefficient is described by the rate and state model. Both
evolutions start from the same initial conditions (black dot): the first model
has a super-critical spring stiffness ksp = 1.01kcrit

sp leading to the stable solution
(circling towards the center of the ellipse - yellow to green color), whereas in
the second case, the model with a sub-critical stiffness ksp = 0.99kcrit

sp diverges
(spiraling out of the ellipse - yellow to orange to red color).

Even more illustrative are the results shown in Figure 4.9: two runs are started
from the same initial state (black dot) with slightly different spring stiffnesses.
Again, time evolutions in the space of slip velocity and state variable are shown.
The sub-critical spring stiffness (ksp = 0.99kcrit

sp ) spirals away from the starting
point. While the run with slightly super-critical spring stiffness (ksp = 1.01kcrit

sp )
converges.

Regularization of Lishman’s rate and state friction model

As mentioned in Section 4.1.2, the rate and state friction model suffers from
singularity for zero sliding velocity. Since non-sliding fault is a viable option in
our model, we need to prevent the cases where the slip velocity (argument of the
logarithm function in the Lishman’s rate and state friction model, see equations
4.20) is zero. Therefore, we add a small positive regularizing velocity vreg to the
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actual slip velocity vslip in the logarithm, obtaining:

µf = µ0
f + θ + A log vslip + vreg

v0
, (4.32)

θ̇ = −vslip

dc

(︄
θ +B log vslip + vreg

v0

)︄
. (4.33)

To avoid a nonphysical negative coefficient of friction, we choose vreg = 0.06
assuring for µf to be positive for θ = 0 and v0 = 1 and other parameters set as
in Lishman et al. (2011) 1.

Further on, we use the following regularized system for the spring slider with
the friction described by the rate and state model:

vsliṗ = kspvslip

Aσn

(v0 − vslip) +
v2

slip

AL

(︃
θ +B log vslip + vreg

v0

)︃
(4.34a)

θ̇ = −vslip

L

(︃
θ +B log vslip + vreg

v0

)︃
. (4.34b)

4.3 Benchmarks
In this section, we use the benchmark settings as defined in Section 3.2 to test
the variable friction coefficient for the 3D model with planar fault zone geometry,
see Section 3.1.

4.3.1 Velocity-dependent friction coefficient:
velocity-strengthening regime

First, we aim to incorporate the velocity dependence into the model. Since
the ice-ice contact probably exhibits both velocity-strengthening and velocity-
weakening behavior (Lishman et al., 2011; Fortt and Schulson, 2009), and since
the velocity-weakening dependence can lead to infinite velocity in finite time (see
the asymptotic stability section in 4.2.3), we were not able to benchmark such
a setting, and we opted for a simple velocity-strengthening model to benchmark
the velocity dependence:

µf = c vslip, (4.35)
where c = 0.1 and the model is loaded with v0 = 1m s−1.

We compare three approaches in this setting - the spring slider model, the
1D Maxwell model with suitable effective viscosity, and, finally, the 2D Mawell
model representative of the 3D finite-element approach that has been applied
in the planetary applications discussed before. In the case of Maxwell models
(1D and 2D/3D), the relationship for the coefficient of friction translates into the
formula for the yield stress:

σY = σ0
Y c vslip, (4.36)

where σ0
Y is the background yield stress equal to σ0

Y = 5 × 107Pa.
1(0 < 0.872 + 0 + 0.31 log (vreg) ⇔ −2.81 < log (vreg))
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Spring slider

For the spring slider model, see Section 3.2.1, and the velocity-strengthening
coefficient of friction, we are interested in the sliding regime only; thus, we take
into account the equality in equation 3.29 with µf = cvslip, and we derive obtained
equation in time getting:

c vsliṗ σY = ksp(v0 − vslip). (4.37)

From which we have:
vsliṗ = ksp

cσn

(v0 − vslip), (4.38)

We solve equation 4.38 by a Runge-Kutta’s solver written in Fortran 90 using
subroutines from Numerical Recipes (Press et al., 1993). For results, see the full
turquoise line in Figure 4.10.

1D Maxwell model

In the case of velocity strengthening for the 1D Maxwell model, we aim at ap-
proximating the equation 3.32 as similar as possible to the 2D/3D test case with
planar fault zone geometry, see Section 3.1. Hence, we derive equation 3.32 in
time with v := u̇ and vslip := v:

η1D
eff vsliṗ = ksp(v0 − vslip). (4.39)

We apply the Euler method:

vk+1
slip − vk

slip

dt = ksp

η1D
eff

(v0 − vk+1
slip ). (4.40)

Furthermore, we do several fittings:

vk+1
slip

(︄
1 + dt ksp

η1D,k+1
eff

)︄
= dt ksp

η1D,k+1
eff

v0 + vk
slip, (4.41)

from which we obtain the expression for slip velocity in the next step:

vk+1
slip = dt ksp

η1D,k+1
eff + dt ksp

v0 + η1D,k+1
eff

η1D,k+1
eff + dt ksp

vk
slip, (4.42a)

Since nonlinearity is present through the dependence of viscosity and yield stress
on velocity, fixed point iterations are employed:

η1D,k+1
eff = ηMax[︂

1 +
(︂ηMaxvk,η

slip

σk,η
Y

)︂2n]︂1/(2n) , (4.42b)

σk,η
Y = σ0

Y c vk,η
slip, (4.42c)

where vk,η
slip denotes the auxiliary velocity for fixed point iteration, which is updated

as vk+1
slip every step of the iteration, together with the viscosity and the yield stress.

For the results see blue dashed line on Figure 4.10.
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2D Maxwell model

As in Section 3.2, the 2D model is used to substitute for the results of the complete
3D model; see Section 3.1 for model description. For the 2D Maxwell model with
velocity strengthening, equations (3.23) are supplemented with:

σY = σ0
Y (2 ch∥Dη

visc∥). (4.43)
For the results, see the purple cross-hatched line in Figure 4.10.

Results

Figure 4.10: We display the time evolution of the stress magnitude/friction force
(on the left) and slip velocity (on the right) for the three models with a velocity-
strengthening coefficient of friction and constant velocity loading. The turquoise
full line denotes the results of the spring slider model solved with Runge-Kutta’s
solver in a Fortran code, the blue dashed line symbolizes the 1D Maxwell model
computed with a Fortran code using finite differences, the purple cross-hatched
line depicts the result of 2D Maxwell model written in Fenics Project (Alnaes
et al., 2015) using finite element method.

In the velocity-strengthening benchmark setting, the comparison of slip veloc-
ities for the models of spring slider, 1D and 2D Maxwell displayed on Figure 4.10
shows a nice fit, although really fine mesh was needed for the 2D model (481 per
241 elements). Another possibility to obtain precise results for the 2D model is to
use a sharp interface, i.e., a step function, instead of the characteristic function.
The stress from the 2D Maxwell model differs a little from the other two models;
however, it has only a mild impact on the slip velocity.

4.3.2 The rate and state friction model according to Lish-
man et al. (2011)

Second, we benchmark the regularized form of Lishman’s rate and state friction
model (4.34). For the Maxwell model, the first equation transforms into a relation
for the yield stress:

σY = σ0
Y

(︃
µ0

f + θ + A log |vslip+vreg|
v0

)︃
, (4.44)

where σ0
Y is the background/stick state yield stress and following values for the

parameters are used: µ0
f = 0.862, A = 0.31, B = 0.382, dc = 0.005 m, σ0

Y =
104 Pa, v0 = 1 m s−1.
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Spring slider

In the spring slider model with friction described by the rate and state friction,
we solve equations 4.34 by accordingly adjusted Runge-Kutta’s solver mentioned
in the previous Section 4.3.1. For results, see the full turquoise line in Figure 4.11.

1D Maxwell model

In the 1D Maxwell model with rate and state friction, we keep the expression
for velocity from the previous case, see eq. 4.42a, and we change the formulas for
viscosity (4.42b) and yield stress (4.42c) to:

η1D,k+1
eff = ηMax[︂

1 +
(︂ηMax(vk,η

slip+vreg)
σY

)︂2n]︂1/(2n) (4.45a)

σk,η
Y = σ0

Y

(︃
µ0

f + θk+1 + A log
vk,η

slip + vreg

v0

)︃
. (4.45b)

We supplement these equations with the evolution equation for state variable
approximated via the Euler method:

θk+1 = −
dt vk+1

slip

dc

(︃
θk +B log

vk+1
slip + vreg

v0

)︃
+ θk. (4.46)

See the blue dashed line in Figure 4.11 for results.

2D Maxwell model

As in the 1D version of the Maxwell model, the yield stress follows the rate and
state formula:

σY = σ0
Y

(︄
µ0

f + θk+1 + A log 2h∥Dη
visc∥ + vreg

v0

)︄
, (4.47)

where we use the approximation of slip velocity through the symmetric gradient
of velocities as in Section 3.1.2. The rest of the equations (3.23) remains the
same, and we supplement them with the state variable’s evolution. To obtain
the weak formulation of equation 4.34b we multiply it by a test function θ′ and
integrate over the computational domain Ω:∫︂

Ω
θ̇ θ′ dx +

∫︂
Ω

vslip

dc

(︄
θ +B log |vslip| + vreg

v0

)︄
θ′ dx = 0. (4.48)

We approximate the time derivative by the Euler method:∫︂
Ω

θk+1 − θk

dt θ′ dx +
∫︂

Ω

vk+1
slip

dc

(︄
θ +B log

|vk+1
slip | + vreg

v0

)︄
θ′ dx = 0. (4.49)

Furthermore, the slip velocity is approximated as vslip ∼ 2h∥Dvisc∥; thus, the final
version for the evolution of the state variable is:∫︂

Ω

θk+1 − θk

dt θ′ dx +
∫︂

Ω

2h∥Dη
visc∥

dc

(︄
θ +B log 2h∥Dvisc∥ + vreg

v0

)︄
θ′ dx = 0.(4.50)

We use the discontinuous Galerkin elements of zero degree DG0 for the state
function. For the results, see the purple cross-hatched line in Figure 4.11.
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Results

The rate and state friction results, see Figure 4.11 fit reasonably well: All the
models provide similar evolution of the stress/friction force. The slip velocity is
slightly overestimated in the Maxwell models’ results; however, the difference in
the steady state value corresponds to the regularization velocity vreg=0.06 m s−1.
Thus, after the correction, all the models converge to the same slip velocity value
(the loading velocity). The state variable evolution and steady-state value differ
the most among all the models; nevertheless, since the stress and the limit of slip
velocity correspond well and since we use the state variable only to compute the
slip velocity, this difference is not a critical one.

Figure 4.11: From left: time evolution of the friction force/stress, the slip velocity,
and the state variable for the three models with a rate and state friction coefficient
and constant velocity loading. The turquoise full line denotes the results of spring
slider model solved with Runge-Kutta’s solver in a Fortran code, the blue dashed
line symbolizes the one-dimensional Maxwell model computed with a Fortran
code using finite differences, the purple cross-hatched line depicts the result of
two-dimensional Maxwell model written in Fenics Project (Alnaes et al., 2015)
using finite element method.

This benchmark demonstrated that the inclusion of the rate and state friction
model in a 3D model of the Enceladus’s ice shell is a viable option; however,
a complete reformulation of the tidal deformation model in terms of velocity
instead of displacement would be necessary.
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Conclusion
This thesis, titled “Tidally induced deformation of icy moons,” aims to enhance
existing models of the tidal response of icy moons. In particular, our focus is
directed towards Europa and Enceladus, two moons currently believed to harbor
global liquid water oceans maintained by dissipative processes driven by tidal
forces. Both these moons emanate vapor plumes, whose properties and compo-
sition might lead to information about their internal dynamics and conditions.
Consequently, Europa and Enceladus are subjects of significant geophysical and
astrobiological interest. The general idea behind this Ph.D. project was to focus
primarily on incorporating the description of friction into existing models of these
moons, such as Kalousová et al. (2016) and Souček et al. (2019).

As a first step, we have concentrated on strike-slip faults on Europa. The
dissipative effects of the strike-slip motion driven by tidal forces might produce
near-surface meltwater on these faults. By integrating and enhancing the stud-
ies conducted by Nimmo and Gaidos (2002) and Kalousová et al. (2016), we
have successfully developed a model that simulates the reactivation of a planar
fault in the ice shell of Europa. The model involves the thermal and mechanical
evolution of its two-phase surroundings (ice, water). Furthermore, it enables the
calculation of the associated dissipative heating, encompassing both the frictional
heating occurring along the fault and the viscous dissipation in the surrounding
bulk. Even though we have conducted a thorough parametric study comprising
diverse boundary conditions, forcing scenarios, and varying rheological assump-
tions, our findings indicate that meltwater generation at strike-slip faults is rela-
tively limited. Specifically, our simulations demonstrate that only a small amount
of meltwater, ≲ 4% porosity localized at the fault plane, can be generated under
these conditions. As a consequence, our simulations seem to discredit the strike-
slip fault heating scenario as a viable mechanism for producing a substantial
near-surface water source on Europa. As to the reasoning, several lines of evi-
dence come together: The primary heating source (frictional heating) is a surface
one (creating water only at the fault); moreover, the additional heating source
(viscous dissipation) is relatively feeble since most of the deformation is elastic.
Also, the slip velocity drops to zero with depth in a continuous manner; hence,
there is no shear singularity below the fault as in Nimmo and Gaidos (2002).
Several more reasons further contribute: The simulated depth of the fault is
smaller than in Nimmo and Gaidos (2002), decreasing the total frictional power.
The phase change consumes part of the dissipated heat since we calculate the
two-phase evolution of the fault’s surroundings. Finally, the produced porosity
gives negative feedback on the two heating sources by lowering the ice viscosity
and frictional coefficient. Our findings might prove relevant in the context of the
recently launched JUwICE mission’s search for subsurface water reservoirs.

In the second step, we have developed a numerical model to validate or dis-
prove the mechanism of “tidal walking” - a theoretical concept for producing
observable lateral offset on strike-slip faults of Europa. The model is based on
the numerical tool described above with the following specific adjustments: We
have simplified the material model to a one-phase setting while adding normal
and shear loading of the fault’s neighborhood, mimicking the tides. Unlike pre-
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vious purely mechanical studies (Preblich et al., 2007), we have also investigated
the role of thermal effects. In particular, we identified thermo-mechanical cou-
pling as a possible key mechanism that may trigger the development of a visible
offset. Notably, dissipative heating promoted the creation of a low-viscosity zone
near the fault, which appears to be critical for producing an observable lateral
offset. Our simulations indicate that apart from this thermally triggered case, it
seems unlikely to produce a visible offset under current europan conditions. In
particular, without a low viscosity zone, the penetration of the whole ice shell
would be required. Although this seems unlikely with the present-day ampli-
tude of tidal forcing and with the current estimates of the shell thickness, it may
have been possible in Europa’s geological past. Additionally, we have studied
the thermal signature on the surface for reactivated faults, and we observed that
moderate surface heat flux anomalies could be obtained even for cases where the
accumulated offset is negligible. Therefore, surface temperature measurements
by future missions could represent one possible way to distinguish between active
and inactive faults.

In the third step, our focus shifted to Enceladus, where the measured activity
of the jets in the south-polar region remains unexplained by existing models. De-
spite the precise localization of the source of these jets, known as tiger stripes, and
the strong indication of a link to tidal forces due to observed temporal variations
in activity, a comprehensive explanation has yet to be found. We have enhanced
the recent numerical model by Souček et al. (2019) by incorporating friction on
the tiger stripes; up to now, the physical description of the tiger stripes has been
limited to the model of frictionless water-filled cracks. By adopting friction mim-
icked through a specific stress-dependent viscosity in the fault zones, we hoped to
explain the activity timing better. While this specific goal was not achieved, our
results suggested an intriguing connection between the plume’s brightness’ and
tangential displacement’s maxima. Our enhanced model uncovers that due to
the friction on the faults, the symmetry in the mechanical response with respect
to the closing and opening phases of the tidal period may be disrupted. In our
model, this leads to a specific redistribution of the stress in the south polar region
of Enceladus with possible geomorphological consequences. In addition, we have
shown that the overall mechanical response of Enceladus’s shell strongly depends
on the choice of the effective friction coefficient, making this parameter accessible
to future missions’ measurements.

In the final chapter, we have provided an outlook toward models with more
realistic frictional laws. In particular, experimental studies indicate that ice-ice
friction strongly depends on the slip rate, exhibiting both velocity-weakening
and velocity-strengthening, depending on local conditions and, very likely, on
temperature. Lishman et al. (2011) even suggested that ice-ice friction can behave
according to the so-called rate and state friction model presented originally to
describe friction experiments with rocks. In this case, the friction coefficient
depends on the slip rate but also shows a memory of the contact zone’s history
by including state variable(s). Even though no measurements of ice-ice friction
at icy moons’ surface temperatures are available, we have attempted to test the
concept and to implement the rate and state model into a test case presented
in the third chapter. We have successfully benchmarked the results against two
1D models, providing a proof-of-concept for including the rate and state frictional

123



model in the future 3D models of Enceladus’ ice shell.
Lastly, we note that although our results and models focused explicitly on Eu-

ropa and Enceladus, the developed methodology holds potential for application to
other intriguing ocean worlds. Celestial bodies such as Ganymede or Triton, and
potentially many others, share similar scientific interests. The insights gained
from our research can serve as a foundation for investigating and understand-
ing the geological processes and phenomena within these bodies, expanding our
knowledge and opening paths for further exploration and discoveries.
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List of Symbols

̇ = d
dt

time derivative
| • | magnitude
∥ • ∥2 second invariant of a tensor
• average
(•)− minimum from • and zero
O zero vector
a the distance between the centers of the two bodies
a constant in the simple shear velocity
A constant parameter in friction models
A real area of contact
a′ aspect ratio
Ai prefactor in viscosity formula (2.24b)
b constant in the simple shear velocity
B constant parameter in friction models
B1, B2 constant parameters in friction models
BN parameter in equation 2.42
c the specific heat of ice
c constant
C material constant denoting the dependence of steady state stress

on slip velocity
C material constant for computing the real area of contact
c1, c2, c3 parameters in coefficient of friction formula
d depth (of the Cartesian domain)
D ice shell thickness
D spherical distance to a curve approximating the fault
D symmetric part of the velocity gradient
d0 depth, where the fault stops being stress free in the tangential

direction
da activation depth
dc critical displacement
d1

c , d
2
c critical displacements in the “Two state variable friction law”

df the average slip displacement on a fault length Ls

dg grain size
ds oriented distance function
dmax analytical estimate of activation depth
dmax(t) the maximum activation depth at a given time
drego depth of the regolith layer
D0 depth of the unwatered part of the fault zone
Dw depth of water in the fault zone
Dd deviatoric part of D
Delast elastic part of D
Dvisc viscous part of D
Dd

visc deviatoric part of the viscous strain rate tensor
dt time step
e eccentricity
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ex unit vector in the direction of axis x
E,Ei activation energy
f body force
F strength per unit area of contact
F function describing the friction stress dependence on other variables
f1, f2 parameters in coefficient of friction formula
fV , fθ right hand sides of the rate and state spring slider model ODE
|F F

t (t)|/D absolute value of the average tangential stress at the fault
|FR

t (t)/D| absolute value of the average tangential stress at the right boundary
∇f |ss gradient of the rate and state spring slider system in the steady state
g magnitude of gravity acceleration
g gravity acceleration
G universal gravitational constant
G function describing the state’s rate of change
h height of the narrow fault zone
I identity matrix
k parameter in ODE toy problem
k,k+1 current and previous time step
K total number of time steps
K bulk modulus
K coefficient in the numerical approximation of stress tensor/vector
k1, k2 constant parameters in eq. 2.27
ksp spring stiffness
kcrit

sp critical stiffness
krego thermal conductivity of the regolith
k(T ) temperature-dependent thermal conductivity
l current time step in the convection model
lt time step when the tidal model was run for the last time
L characteristic length
L coefficient in the numerical approximation of stress tensor/vector
li exponent in viscosity formula (2.24b)
Lh latent heat of melting of ice
Ls length of the slipped zone
m mass of the parent body
mi exponent in viscosity formula (2.24b)
n parameter in the formula for βeff and ηeff
n outer normal vector
ñ approximation of the unit normal to the idealized fault surface
ni exponent in viscosity formula (2.24b)
nb outer normal to the ice-ocean boundary
ns outer normal to the surface
p excess water pressure with respect to the hydrostatic

equilibrium pressure of pure ice
p pressure in tidal model
P orbital period
p0 constant parameter for fixating pressure
pw water pore pressure
peff effective pressure
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P2 degree-2 Legendre polynomial
P 0

2 , P
2
2 associated Legendre functions

q heat flux
∆q heat flux anomaly
Q heating
Qfric frictional heating
Qshear shear heating
r melt production rate (positive for melting)
r radius
R universal gas constant
R radius of the satellite
rb position vector for ice/water interface
rs position vector for surface
s stress vector
S deviatoric part of Cauchy stress tensor
t time
T temperature
T Cauchy stress tensor
∆T = T − Tm - temperature difference from the melting temperature
t0 average contact time
tc time of contact
ts time of the start of the sliding
T1D Cauchy stress tensor in 1D formulation
Te external (insolation) temperature
Tm melting temperature
Ts surface temperature
Tη stress on the dashpot
Tsp stress on the spring
Tstatic static part of Cauchy stress
Ttot total Cauchy stress
Ttot

nn ñ · Ttotñ
u displacement of the dashpot
u (tidal) displacement
u0 forcing displacement in the spring-slider and Maxwell model
∆un jump in the displacement component normal to the fault
ur radial displacement
usl displacement of the slider
uslip total slip
uslip the magnitude of the jump in the displacement

component parallel to the fault
usp displacement of the spring
v velocity in the model of Nimmo and Gaidos (2002)
v 1D velocity in mechanical analogues
v ice matrix velocity
v tidal velocity
v′ test function for the tidal velocity
v+, v− loading velocities for the fault zone
v0 forcing velocity in the spring slider and Maxwell model
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vload loading velocity
v0

load loading velocity amplitude
vref reference value of slip velocity
vreg regularizing slip velocity
vslip slip velocity
vslip magnitude of the jump across the fault in the velocity component

parallel to the fault
vtrans velocity at which velocity-strenghtening regime changes to

velocity-weakening regime for ice-ice friction
vsp velocity of the spring
|vslip| slip velocity averaged over one period
∆vn jump in the velocity component normal to the fault
Vt1, Vt2 velocities at which velocity-strenghtening regime changes to

velocity-weakening regime and back for ice-ice friction
Vtidal tidal potential
w width of the Cartesian domain
x horizontal coordinate, distance from the fault
x unit vector in direction of axis x
y horizontal coordinate
yf y coordinate of the center of the fault zone
Y20, Y22 spherical harmonics functions
z vertical coordinate
α ice thermal expansivity
β parameter in ODE toy problem
β∗ parameter in the formula for βeff
β1, β2 parameters in ODE toy problem
βeff effective sliding coefficient
γ viscosity reduction parameter
γf yield stress reduction coefficient
γs stabilization parameter in the case of fully activated fault
ΓO,ΓR,ΓS,ΓF bottom, right, top, left boundary
δ displacement; mutual offset
∆ the half-width of χ/fault zone
δ0 average displacement
δs accumulated surface offset
δ̃s normalized surface offset per period
ϵ numerical zero
ϵk 2% of maximal slip velocity over the previous time steps
ϵΦ smoothening parameter for porosity
ϵrad emissivity of Europa
η viscosity
η,

η auxiliary variables defined for the fixed point iterations
ηi viscosity of particular mechanism
ηeff effective viscosity
ηcut viscosity cut-off
ηMax background viscosity in the Maxwell rheology
ηpure unreduced viscosity
η1D

eff effective viscosity in the 1D Maxwell model
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θ state variable
ϑ colatitude
Θ collection of state variables
θi state variables
θss

i steady state of the state variable
µ shear modulus
µf coefficient of friction
µ0

f static coefficient of friction
µw

f lubricated coefficient of friction
∆µf change in µf

∆µk,ss
f change in the steady state coefficient of friction

ν geometric constant
△ϱ = ϱi − ϱw - density difference between the phases
ϱi ice density
ϱw water density
σ0 loading stresses amplitude
σn normal stress
σt tangential stress
σY yield stress˜︂σY yield stress with the normal part of the diurnal tides included
σ0

Y background yield stress
σ0,n amplitudes of normal stresses induced on diurnal time scale
σ0,t amplitudes of tangential stresses induced on diurnal time scale
σBG

n normal stresses induced on longer time scales
σBG

t tangential stresses induced on longer time scales
σnn normal component of the traction vector acting on the fault surface
σrad Stefan-Boltzman constant
τ shear stress
τ tangential component of a vector
τ0 internal cohesion along the sliding surface
τf frictional force
τM Maxwell time
τp pulling force
τss steady state friction stress
∆τ decrease of friction strength
φ phase shift
ϕ longitude
Φ porosity
Φs regularized porosity
∆Φs difference in current time step porosity and the porosity

from the time when the tidal model was run for the last time
χ characteristic function / smoothened indicator function
χϵ thickness of the transient zone
Ψ angle from the axis connecting the centers of the two bodies

at an arbitrary point on the satellite’s surface
ω orbital frequency
Ω computational domain
∂Ω boundary of the computational domain
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