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Abstract
This thesis consists of three papers investigating asymmetric risk, especially
downside risk, in empirical asset pricing. The first paper introduces quantile
spectral beta, a measure of risk that quantifies the dependence between stock
return and a risk factor in a particular part of the joint distribution over a given
horizon. We apply the new measure to study the pricing of tail market risk
and extreme volatility risk across asset classes. The second paper proposes a
new factor pricing model. Instead of focusing on common factors that explain
the cross-sectional mean or variance of stock returns, we propose a model that
captures the common structure of cross-sectional quantiles. We show that the
downside factors possess information relevant to predicting market returns.
Moreover, exposure to the downside factors is compensated for in the cross-
section of stock returns for U.S. firms. The third paper examines whether
di�erent measures of systematic asymmetric risk lead to risk premia because
they represent linear exposure to the common factor structure or because of
their nonlinear properties. Using instrumented principal component analysis,
we show that these measures can be e�ciently combined to generate abnormal
returns that other factors cannot explain. However, some measures can also be
used to capture linear exposures better.
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Abstrakt
Tato diserta�ní práce se skládá ze t�í �lánk�, které zkoumají asymetrické, ze-
jména downside, riziko v kontextu empirického oce�ování aktiv. První �lánek
p�edstavuje kvantilovou spektrální betu, coû je míra rizika, která kvantifikuje
závislost mezi v˝nosem akcií a rizikov˝m faktorem v konkrétní �ásti spole�né
distribuce v daném horizontu. Tuto novou míru pouûíváme ke studiu ocen�ní
chvostového trûního rizika a extrémního rizika volatility nap�í� t�ídami aktiv.
Druh˝ �lánek navrhuje nov˝ oce�ovací faktorov˝ model. Místo zam��ení se na
b�ûné faktory, které vysv�tlují pr��ezov˝ pr�m�r nebo rozptyl v˝nos� akcií, my
navrhujeme model, kter˝ zachycuje spole�nou strukturu pr��ezov˝ch kvantil�.
Ukazujeme, ûe dolní faktory obsahují relevantní informace pro predikci v˝nos�
trhu. Navíc je expozice v��i dolním faktor�m kompenzována v pr��ezu v˝nos�
akcií u firem z amerického trhu. T�etí �lánek zkoumá, zda r�zné míry systemat-
ického asymetrického rizika vedou k rizikov˝m prémiímm, protoûe p�edstavují
lineární expozici k b�ûné struktu�e faktor� nebo kv�li jejich nelineárním vlast-
nostem. Pomocí instrumentuované anal˝zy hlavních komponent ukazujeme, ûe
tyto míry lze efektivn� kombinovat ke generování abnormálních v˝nos�, které
nelze vysv�tlit jin˝mi faktory. Nicmén� n�které míry lze také vyuûít ke zlepöení
zachycení lineárních expozic.

Klasifikace JEL C21, C23, C58, G11, G12
Klí�ová slova Pr��ez v˝nos� aktiv, asymetrické riziko,

riziko poklesu, chvostové riziko, frekvence,
kvantil

Název práce Studie o chvostov˝ch rizicích, asymetriích
a v˝nosech aktiv

E-mail autora matej.nevrla@gmail.com
E-mail vedoucího práce barunik@fsv.cuni.cz

http://ideas.repec.org/j/C21.html
http://ideas.repec.org/j/C23.html
http://ideas.repec.org/j/C58.html
http://ideas.repec.org/j/G11.html
http://ideas.repec.org/j/G12.html
mailto:matej.nevrla@gmail.com
mailto:barunik@fsv.cuni.cz


Acknowledgments
I am incredibly grateful to my supervisor, doc. PhDr. Jozef Baruník, Ph.D. It
is impossible to overstate the value of his guidance for my academic evolution.
Without his extraordinary expertise and attention to detail, the results would
not be close to their current level.

I am also grateful to my partner, Jana. She showed great patience, support,
and love that pushed me to completion of the thesis. I also thank my family,
who always encouraged and supported me in pursuing knowledge.

Throughout my studies, I presented the research at various conferences and
seminars. I thank all the participants who discussed the results with me and
directed my future endeavors. I am also thankful to my colleagues who provided
suggestions during and outside the doctoral seminars.

Let me also acknowledge the support from the Charles University Grant
Agency (GAUK) project No. 846217, the Czech Science Foundation under
EXPRO GX19-28231X and GA16-14151S projects, and the UNCE Fellowship.

All errors are solely the author’s responsibility.

Typeset in modified FSV LATEX Thesis Template.

Bibliographic Record
Nevrla, Mat�j: Essays on Tail Risks, Asymmetries, and Cross-Section of Asset
Returns. Dissertation thesis. Charles University, Faculty of Social Sciences,
Institute of Economic Studies, Prague. 2024, pages 211. Advisor: doc. PhDr.
Jozef Baruník, Ph.D.



Contents

List of Tables x

List of Figures xiii

1 Introduction 1
1.1 Asset Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Paper Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Quantile Spectral Beta: A Tale of Tail Risks, Investment Hori-
zons, and Asset Prices 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Motivation: Why Should We Care About Tail Risks across Hori-

zons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Measuring the Tail Risks across Horizons: A Quantile Spectral

Beta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Tail Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Tail Risks across Horizons: A Quantile Spectral Beta . . 23
2.3.3 Asymptotic properties of the Quantile Spectral beta . . . 25

2.4 Pricing Model for Extreme Risks across the Frequency Domain . 29
2.4.1 Tail Market Risk . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Extreme Volatility Risk . . . . . . . . . . . . . . . . . . 33
2.4.3 Full model . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.4 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.5 Finite Sample Size Properties of the Testing Approach . 37

2.5 Quantile Spectral Risk and the Cross-Sections of Expected Returns 38
2.5.1 Individual Stocks . . . . . . . . . . . . . . . . . . . . . . 39
2.5.2 Other Portfolios . . . . . . . . . . . . . . . . . . . . . . . 43



Contents vii

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Appendix 53
2.A Technical Appendix . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.A.1 Proof of the Theorem 2 . . . . . . . . . . . . . . . . . . . 54
2.A.2 Construction of pointwise confidence bands for Quantile

Spectral Beta . . . . . . . . . . . . . . . . . . . . . . . . 56
2.B Rare Disaster Risk Model and QS Betas . . . . . . . . . . . . . 59
2.C Features of QS Betas . . . . . . . . . . . . . . . . . . . . . . . . 61

2.C.1 Summary Statistics about Quantile Spectral Betas . . . . 61
2.C.2 Robustness Checks: Tail Risk across Horizons and Other

Risk Factors . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.D Di�erent Definition of Long horizon - 1.5 years . . . . . . . . . . 66
2.E Specification of the Related Models . . . . . . . . . . . . . . . . 71

2.E.1 Downside Risk Models . . . . . . . . . . . . . . . . . . . 71
2.E.2 Generalized Disappointment Aversion Models . . . . . . 71
2.E.3 Coskewness and Cokurtosis . . . . . . . . . . . . . . . . 72
2.E.4 Fama-French Three-Factor Model . . . . . . . . . . . . . 73

2.F Detailed Description of the Portfolio Results . . . . . . . . . . . 74
2.F.1 Fama-French Portfolios . . . . . . . . . . . . . . . . . . . 74
2.F.2 Other Portfolios . . . . . . . . . . . . . . . . . . . . . . . 74

3 Common Idiosyncratic Quantile Risk 79
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.2 Common Idiosyncratic Quantile Factors . . . . . . . . . . . . . 84

3.2.1 Quantile Factor Model . . . . . . . . . . . . . . . . . . . 86
3.2.2 Relation to Common Factors in Volatility . . . . . . . . 88
3.2.3 Common Idiosyncratic Quantile Factor and the US Firms 89

3.3 Time-series Predictability of Market Return . . . . . . . . . . . 92
3.3.1 Prediction using many CIQ(·) Factors . . . . . . . . . . 96

3.4 Pricing the CIQ(·) Risks in the Cross-Section . . . . . . . . . . 99
3.4.1 Cross-sectional Regressions . . . . . . . . . . . . . . . . . 100
3.4.2 Portfolio Sorts . . . . . . . . . . . . . . . . . . . . . . . . 107
3.4.3 Beyond CIQ(·) Betas . . . . . . . . . . . . . . . . . . . . 112

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



Contents viii

Appendix 120
3.A Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.B Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4 Asymmetric Risks: Alphas or Betas? 126
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.1.1 Theoretical Motivation . . . . . . . . . . . . . . . . . . . 129
4.2 Asymmetric Risk Measures . . . . . . . . . . . . . . . . . . . . . 131

4.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.2.2 Correlation Structure . . . . . . . . . . . . . . . . . . . . 133
4.2.3 Fama-MacBeth Regressions . . . . . . . . . . . . . . . . 134
4.2.4 Portfolio Sorts . . . . . . . . . . . . . . . . . . . . . . . . 135
4.2.5 Naive Combination Approach . . . . . . . . . . . . . . . 138

4.3 Combining Asymmetric Risk Measures . . . . . . . . . . . . . . 140
4.3.1 IPCA Model . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.3.2 Pure-Alpha Portfolios . . . . . . . . . . . . . . . . . . . 142
4.3.3 Risk-Adjusted Returns . . . . . . . . . . . . . . . . . . . 144
4.3.4 Variable Importance . . . . . . . . . . . . . . . . . . . . 146

4.4 ARM Latent Factors . . . . . . . . . . . . . . . . . . . . . . . . 148
4.4.1 Model Fit and Tests . . . . . . . . . . . . . . . . . . . . 149
4.4.2 IPCA Estimation Results . . . . . . . . . . . . . . . . . 151
4.4.3 Factors and Characteristic Importance . . . . . . . . . . 154
4.4.4 ARMs and other Characteristics . . . . . . . . . . . . . . 155
4.4.5 Model with All Characteristics . . . . . . . . . . . . . . . 156

4.5 Robustness Checks . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.5.1 Excluding Penny Stocks . . . . . . . . . . . . . . . . . . 159
4.5.2 Volatility Targeting of the Pure-Alpha Portfolios . . . . . 159
4.5.3 Annual Returns . . . . . . . . . . . . . . . . . . . . . . . 160

4.6 Time-Varying Risk Premium . . . . . . . . . . . . . . . . . . . . 160
4.6.1 PPCA Model . . . . . . . . . . . . . . . . . . . . . . . . 162
4.6.2 Arbitrage Portfolios . . . . . . . . . . . . . . . . . . . . . 163

4.7 Momentum Relation . . . . . . . . . . . . . . . . . . . . . . . . 167
4.7.1 Momentum Factor . . . . . . . . . . . . . . . . . . . . . 168
4.7.2 Momentum Characteristic . . . . . . . . . . . . . . . . . 169

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171



Contents ix

Appendix 176
4.A Definitions of the ARMs . . . . . . . . . . . . . . . . . . . . . . 176

4.A.1 Coskewness . . . . . . . . . . . . . . . . . . . . . . . . . 177
4.A.2 Cokurtosis . . . . . . . . . . . . . . . . . . . . . . . . . . 177
4.A.3 Downside Beta . . . . . . . . . . . . . . . . . . . . . . . 177
4.A.4 Downside Correlation . . . . . . . . . . . . . . . . . . . . 177
4.A.5 Hybrid Tail Covariance Risk . . . . . . . . . . . . . . . . 178
4.A.6 Tail Risk Beta . . . . . . . . . . . . . . . . . . . . . . . . 178
4.A.7 Exceedance Coentropy . . . . . . . . . . . . . . . . . . . 178
4.A.8 Predicted Systematic Coskewness . . . . . . . . . . . . . 179
4.A.9 Semibeta . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
4.A.10 Multivariate Crash Risk . . . . . . . . . . . . . . . . . . 180
4.A.11 Downside CIQ Beta . . . . . . . . . . . . . . . . . . . . . 180

4.B Appendix B – ARM Portfolio Returns . . . . . . . . . . . . . . 181
4.C Appendix: IPCA Estimation Results . . . . . . . . . . . . . . . 185

5 Conclusion 189

6 Responses to Opponents’ Reports 191
6.1 Dr. Mattia Bevilacqua . . . . . . . . . . . . . . . . . . . . . . . 191

6.1.1 General Comments . . . . . . . . . . . . . . . . . . . . . 191
6.1.2 Comments regarding Chapter 4 . . . . . . . . . . . . . . 193
6.1.3 Minor Comments . . . . . . . . . . . . . . . . . . . . . . 194

6.2 Prof. Jeroen Rombouts . . . . . . . . . . . . . . . . . . . . . . . 194
6.2.1 The First Paper . . . . . . . . . . . . . . . . . . . . . . . 194
6.2.2 The Second Paper . . . . . . . . . . . . . . . . . . . . . 196
6.2.3 The Third Paper . . . . . . . . . . . . . . . . . . . . . . 196

6.3 Dr. Deniz Erdemlioglu . . . . . . . . . . . . . . . . . . . . . . . 198



List of Tables

2.1 Finite Sample Size Properties of the Testing Approach. . . . . . 38
2.2 Individual stocks. . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3 Descriptive Statistics. . . . . . . . . . . . . . . . . . . . . . . . . 61
4 Estimated Coe�cients of the TR and EVR Models Controlled

for GDA5 Measures. . . . . . . . . . . . . . . . . . . . . . . . . 64
5 Estimated Coe�cients of the Full Models Controlled for Coskew-

ness and Cokurtosis. . . . . . . . . . . . . . . . . . . . . . . . . 67
6 Estimated Coe�cients of the Full Models controlled for Down-

side Risk Betas. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7 Estimated Coe�cients of the Full Models Controlled for Fama

and French (1993) Factors. . . . . . . . . . . . . . . . . . . . . 69
8 Estimated Coe�cients of the TR, EVR and Full Models. . . . . 70
9 Fama-French Long History Portfolios. . . . . . . . . . . . . . . . 75
10 Fama-French Portfolios. . . . . . . . . . . . . . . . . . . . . . . 76
11 Various Portfolios. . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.1 Correlations between CIQ(·) and other factors. . . . . . . . . . 91
3.2 Correlations between CIQ(·) factors. . . . . . . . . . . . . . . . 92
3.3 Predictive power of the �CIQ(·) factors. . . . . . . . . . . . . . 94
3.4 Bivariate predictive regressions. . . . . . . . . . . . . . . . . . . 96
3.5 Controlled predictive significance of the �CIQ(·) factors using

Welch and Goyal (2007) variables. . . . . . . . . . . . . . . . . . 97
3.6 Out-of-sample performance of the forecast combinations. . . . . 99
3.7 Fama-MacBeth regressions using �CIQ(·) factors and general

risk measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.8 Fama-MacBeth regressions using CIQ(·) factors and asymmet-

ric risk measures. . . . . . . . . . . . . . . . . . . . . . . . . . . 104



List of Tables xi

3.9 Fama-MacBeth regressions using CIQ(·) factors and stock char-
acteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.10 Fama-MacBeth regressions using �CIQ(·) factors and momentum-
type characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.11 Portfolios sorted on the exposure to the �CIQ(·) factors. . . . . 108
3.12 Portfolio results with 1-year holding period. . . . . . . . . . . . . 110
3.13 Dependent bivariate sorts on CIQ(·) and PCA-SQ exposures. . 111
3.14 Portfolios sorted on relative CIQ(·) betas. . . . . . . . . . . . . 112
3.15 Ten univariate sorted portfolios on combination CIQ betas. . . . 114
16 Correlations between CIQ(·) and other factors. . . . . . . . . . 120
17 Portfolios sorted on the exposure to the �CIQ(·) factors. . . . . 121
18 Dependent bivariate sorts on CIQ(·) and PCA-SQ exposures. . 122
19 Portfolio results with 1-year holding period. . . . . . . . . . . . . 122
20 Simulated risk premiums. . . . . . . . . . . . . . . . . . . . . . . 125

4.1 Average correlations of ARMs. . . . . . . . . . . . . . . . . . . . 134
4.2 Fama-MacBeth regressions. . . . . . . . . . . . . . . . . . . . . 135
4.3 Managed portfolio returns. . . . . . . . . . . . . . . . . . . . . . 137
4.4 Regression portfolio returns. . . . . . . . . . . . . . . . . . . . . 139
4.5 Pure-alpha portfolio returns. . . . . . . . . . . . . . . . . . . . . 143
4.6 Fama-French risk-adjusted returns of the pure-alpha portfolios. . 145
4.7 Exposures of the ARM-IPCA pure-alpha portfolios. . . . . . . . 145
4.8 Q-model risk-adjusted returns of the pure-alpha portfolios. . . . . 146
4.9 IPCA risk-adjusted returns of the pure-alpha portfolios. . . . . . 147
4.10 Estimated coe�cients of �– vector. . . . . . . . . . . . . . . . . 147
4.11 Variable Importance of the ARMs for the pure-alpha portfolios. . 149
4.12 ARM-IPCA results. . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.13 Summary statistics of the ARM-IPCA factors. . . . . . . . . . . 154
4.14 Variable importance of the ARMs. . . . . . . . . . . . . . . . . . 155
4.15 Correlations between original IPCA and ARM-IPCA factors. . . 158
4.16 Variable importance results from the All-IPCA models. . . . . . 158
4.17 Pure-alpha portfolio returns without penny stocks. . . . . . . . . 159
4.18 Volatility-targeted pure-alpha portfolio returns. . . . . . . . . . . 160
4.19 Pure-alpha portfolio annual returns. . . . . . . . . . . . . . . . . 161
4.20 Summary of the arbitrage portfolio returns. . . . . . . . . . . . . 164
4.21 Fama-French risk-adjusted returns of the arbitrage portfolios. . . 166
4.22 Exposures of the arbitrage portfolios. . . . . . . . . . . . . . . . 166



List of Tables xii

4.23 Coe�cients from the model that includes momentum. . . . . . . 168
4.24 Pure-alpha portfolio returns with the momentum factor. . . . . . 169
4.25 Pure-alpha portfolio returns with momentum characteristic. . . . 169
26 Quintile portfolio sorts. . . . . . . . . . . . . . . . . . . . . . . . 181
27 Decile portfolio sorts. . . . . . . . . . . . . . . . . . . . . . . . . 182
28 Out-of-sample ARM-IPCA results using all stocks and split sam-

ples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
29 All-IPCA results. . . . . . . . . . . . . . . . . . . . . . . . . . . 188



List of Figures

2.1 Dependence Structure between the Market and SMB and MOM Factor Port-

folios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Estimated t-statistics of quantile spectral risk for various portfolios. . . . . 44
3 QS Betas between Consumption Growth and Equity Return. . . . . . . . 60
4 Distribution of TR and EVR betas at di�erent tails. . . . . . . . 62
5 Correlations with Other Risk Measures. . . . . . . . . . . . . . . . . . 65

3.1 �CIQ(·) betas – bivariate cross-sectional regressions. . . . . . . 103
3.2 Performance of the CIQ(·) portfolios. . . . . . . . . . . . . . . . 109

4.1 Correlation structure across ARMs. . . . . . . . . . . . . . . . . 133
4.2 Performance of the ARM-IPCA portfolios. . . . . . . . . . . . . 144
4.3 �– estimates from the out-of-sample estimation. . . . . . . . . . 148
4.4 Correlations between ARMs and other characteristics. . . . . . . 157
4.5 Cumulative return of the arbitrage portfolios. . . . . . . . . . . . 165
6 Correlation structure across ARMs over di�erent periods. . . . . 183
7 Correlation structure across ARM-managed portfolios. . . . . . . 184
8 Correlation structure across ARM managed portfolios over dif-

ferent periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
9 Factor loadings of the restricted ARM-IPCA(6) model. . . . . . 187
10 Alphas of the ARM-IPCA models. . . . . . . . . . . . . . . . . . 188



Chapter 1

Introduction

This dissertation thesis consists of three papers focusing on asset pricing ques-
tions with a particular focus on non-linear risks. The first paper introduces a
new risk measure that simultaneously captures two important dimensions of
dependence risks between a stock return and a risk factor–part of their joint
distribution and the horizon over which the dependence manifests itself. The
second paper investigates the pricing implications of a quantile factor model
that captures the dynamics of the cross-sectional quantiles of stock returns.
The last paper regards systematic asymmetric risk measures and their relation
to the linear factor models. The first two papers are an outcome of the collabo-
ration with my supervisor, Jozef Baruník, who is also co-author of these papers.
The third paper is solo-authored by me. Therefore, in these two papers, I stick
to “we” when referring to the authors. On the other hand, in the third paper,
I use “I” when referring to the author.

In this chapter, I will proceed as follows: Firstly, I position the presented
investigations within the asset pricing setting. Secondly, I provide a short
summary of each paper. Finally, I conclude with a brief review of the related
literature.

1.1 Asset Prices
Asset pricing aims to clarify why certain assets generate greater returns than
others. The basic concept states that assets with higher risk demand higher ex-
pected returns and thus possess lower prices for investors to hold them. While
this relationship theoretically encompasses a basic model linking risk to the
covariance of consumption growth and asset returns, the empirical results do
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not support this prediction. Many e�orts are exercised to reconcile this obser-
vation.

A significant portion of asset pricing research is based on two simplifying
assumptions. The first assumption states that the representative economic
agent maximizes her expected utility. This notion is compelling for various
reasons, such as the analytic tractability of model solutions. This assumption
yields an intuitive prediction that the price of an asset is equal to its expected
discounted payo� using the stochastic discount factor. On the other hand, such
restriction may understate the significant aversion to losses compared to gains
across investors.

The second assumption builds on the first by stating that some set of trad-
able risk factors can linearly approximate the stochastic discount factor. This
statement is very convenient because it predicts that the cross-section of returns
can be fully explained by assets’ betas – regression coe�cients from time-series
regression of stock returns on the set of selected pricing factors, such as value-
weighted market portfolio in the case of Capital asset pricing model.

Although these assumptions yield valuable insights into the asset prices,
they open new related questions. For example, over which horizon should we
measure the risk captured by the betas? This question has to be answered em-
pirically. We may ask whether maximization of the expected utility adequately
captures market risk preferences. Alternatively, we may question the linearity
assumption of the stochastic discount factor and argue that higher-order mo-
ments and interactions play an essential role in determining the marginal utility
growth that underlies the notion of the stochastic discount factor. Finally, we
may investigate whether we should fully exploit potential pricing information
in the traditional common factors instead of focusing on finding new pricing
factors corresponding to various stock characteristics.

We aim to address these questions in various degrees throughout the the-
sis. A unifying thread in the presented research is that we try to understand
multiple deviations from traditional asset pricing models that impose these sim-
plifying assumptions that the data do not support. Generally, we improve the
risk quantification associated with priced information in the included papers,
emphasizing asymmetric and non-linear risks.

We tackle these tasks using various non-standard tools. We employ ap-
proaches from machine learning, such as dimension reduction techniques. We
utilize the current quantile regression-based apparatus for factor modeling and
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dependence measurement. We even implement instruments from frequency-
domain econometrics.

1.2 Paper Summaries
In Chapter 2 – Quantile Spectral Beta: A Tale of Tail Risks, Investment Hori-
zons, and Asset Prices1 – we propose a novel measure of risk capturing two
essential features that were not previously investigated in their joint setting.
The quantile-spectral (QS) beta determines the dependence between asset re-
turn and a risk factor in a specific part of their joint distribution over a specific
horizon. Our main objective is to measure extremely negative market and stock
behavior over short and long horizons. We motivate the investigation by ex-
amining the dependence structure between the market factor and two anomaly
portfolios over their lead/lag structure. We show that the dependence is es-
pecially significant in the joint left tail. We would miss such a complex joint
behavior by looking at the usual covariance.

We utilize the QS betas to analyze two risks: tail market risk and extreme
market volatility risk. When investigating the tail market risk, we especially
focus on capturing additional information over the assumptions that lead to
the classical CAPM beta. Based on that, we work with the relative version of
the QS beta that is defined as a di�erence between freely estimated QS beta
and QS beta estimated by imposing the assumption of jointly correlated white
noises.

When pricing the cross-section of individual stocks, we show that investors
price the short-term component of the tail risk and the long-term component
of the extreme volatility risk. Additionally, when pricing various portfolios or
asset classes, the results indicate that these risks are priced heterogeneously,
providing investors with suggestions for optimal investment decisions based on
their risk preferences. Moreover, we show that the pricing implications of the
QS betas are robust to the inclusion of other related measures of risk.

We also provide an asymptotic theory for the proposed measure. In simu-
lations, we show estimation properties of the cross-sectional relationship with
expected returns. In addition, we relate the QS betas to the model of Nakamura
et al. (2013) and argue that QS betas can uncover complex dynamics present
in financial markets and thus help decide which model best aligns with reality.

1This paper was published in the Journal of Financial Econometrics (Baruník and Nevrla
2022).
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We conclude that solely focusing on contemporary dependence averaged over
the whole distribution when assessing risk leaves out important information
regarding asset prices.

In Chapter 3 – Common Idiosyncratic Quantile Risk2 – we introduce com-
mon factors that capture quantiles of the cross-sectional distribution of asset
returns. We show that these factors, estimated using the Quantile factor anal-
ysis of Chen et al. (2021), possess vital implications for expected returns. More
specifically, we find that the stock market prices the exposures to the common
quantile factors aligning with the cross-sectional left-tail of stock returns. These
findings expand upon prior research that establishes a connection between as-
set prices and the exposure to common factors representing the average of
cross-sectional stock return distributions.

We provide a battery of robustness checks and control for vast risk charac-
teristics previously discovered to predict the cross-section of stock returns. We
account for various general risk measures, such as market beta, idiosyncratic
volatility, skewness, etc. We control for the e�ect of state-of-the-art competing
systematic asymmetric risk measures, including tail risk beta of Kelly and Jiang
(2014), multivariate crash risk of Chabi-Yo et al. (2022), or predicted coskew-
ness of Langlois (2020). We also include various other stock characteristics,
e.g., size, book-to-price, illiquidity, and turnover.

We also relate the quantile factors to the predictability of the market return.
We show that the left-tail quantile factors are associated with the marginal util-
ity growth in the economy as these factors reliably predict the equity premium.
We provide vast evidence that these results cannot be attributed to other previ-
ously discovered phenomenona claiming time-series predictability of the market
return. Overall, we show that there are factors that capture common downside
risk with robust asset pricing information.

We provide approaches to aggregating information from downside or up-
side factors in both time-series and cross-sectional predictability cases. The
corresponding results provide additional evidence that only the downside fac-
tors yield valuable information for asset prices. These findings show that the
economic agents especially value their aversion to common adverse events that
occur on the market and do not especially care for the common upside potential.

When investigating downside and tail risk in financial markets, it is rea-
sonable to ask whether extreme events cannot be attributed to time-varying
volatility. Both papers aim to mitigate this possibility. In Chapter 2, we mea-

2This paper is currently in the revise & resubmit phase in the Review of Finance.
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sure the extreme volatility risk in addition to the tail market risk and show that
they provide distinct pricing information. Moreover, we show that regarding
the volatility risk, the long-horizon component is priced in the cross-section of
stock returns. On the other hand, tail risk possess pricing information for stock
returns in its short-term component, only.

In Chapter 3, we demonstrate that the factors that capture cross-sectional
variance do not produce a significant risk premium. In addition, we conclude
that the upside quantile factors lack any pricing implications, either cross-
sectional or time-series. In a simulation study, we show that if it were the
case that the common volatility drives the asset prices, both downside and
upside quantile factors would deliver symmetrical conclusions. Because in the
empirical application we show that this is not the case, we conclude that the
volatility does not drive our results.

In Chapter 4 – Asymmetric Risks: Alphas or Betas? – I examine how sys-
tematic asymmetric risk measures (ARMs) relate to linear factor models that
are ubiquitous in the empirical asset pricing literature. I investigate whether a
set of systematic risk measures that capture various non-linear features of stock
return behavior can be e�ciently exploited to yield abnormal risk-adjusted re-
turns. I motivate the task by showing that the significance of the risk premiums
associated with these measures vary sizable across research settings.

I propose using the instrumented principal component analysis of Kelly
et al. (2019) to focus on the risk premium associated with these measures
beyond exposures to common risk factors. I let the model decide whether each
risk measure helps capture systematic risk relation or anomaly premium. I
form pure-alpha portfolios based on the relation between risk measures and
anomaly returns. The resulting portfolios generate an improved performance
that cannot be achieved using single measures. Moreover, these portfolios enjoy
abnormal returns that other factor models cannot span.

Results also suggest that the pure-alpha returns are related to the momen-
tum factor. This e�ect does not subsume the corresponding abnormal premium
when we use the instrumented principal component analysis to form the port-
folios. When employing an alternative approach based on a short estimation
window that allows for time-varying risk relations, the loss of e�ciency leads to
the momentum factor taking over. I show that this fact is related to the obser-
vation that the ARMs significantly proxy for the exposure to the momentum
factor.

I also provide evidence that some of the investigated ARMs can significantly
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proxy for the exposure to the common factors in a model that assumes linear
factor structure without mispricing. This relationship remains significant even
when including 32 variables investigated in Kelly et al. (2019).

1.3 Literature Review
The presented research aligns with multiple strands of the empirical asset pric-
ing literature. Below, I present a brief summary of their current developments.
As these streams are currently highly researched, the presented review does not
aim to be fully exhaustive. Instead, I highlight just a few essential references
that constitute significant results.

The first related research agenda aims to capture investors’ preference het-
erogeneity regarding upside and downside risks and their respective e�ects on
expected returns. From a theoretical point of view, an essential step outside
the expected utility paradigm is de Castro and Galvao (2019), who propose a
dynamic model of an economic agent that maximizes the stream of quantile of
future utilities instead of their expected value.

Based on an intertemporal asset pricing model with disappointment aver-
sion, Farago and Tédongap (2018) show that, besides market return and mar-
ket volatility, three additional factors related to downside risk are priced in the
cross-section of asset returns. Moreover, they show that their model success-
fully jointly prices various asset classes and provides significant improvements
over nested specifications previously discussed in the literature. Bollerslev et al.
(2022) decompose the traditional market beta into four semibetas based on the
signed covariation. They show that only semibeta measuring dependence be-
tween a negative asset and a negative market return predicts higher future
returns.

The second stream investigates horizon-specific features of risk with rela-
tion to asset prices. Many of these endeavors utilize spectral analysis to explore
this task. Dew-Becker and Giglio (2016) investigate frequency-specific prices
of risk for various leading theoretical models and provide empirical support for
investors’ aversion to low-frequency fluctuations present in the equity markets.
Neuhierl and Varneskov (2021) employ frequency domain techniques to intro-
duce a model-free framework to decompose the stochastic discount factor into
transitory and permanent components to infer their contributions to risk pre-
mium. Moreover, their results provide suggestions on how to improve existing
asset pricing models in terms of their specification and estimation.
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Bandi et al. (2021) utilize tools from frequency-domain econometrics to
introduce spectral factor models and show that spectral beta, measuring de-
pendence across business-cycle frequencies, is able to explain some of the cross-
sectional anomalies. Thus, they suggest that while focusing on frequencies, we
may reduce the dimensionality of the factor space.

The third strand of literature relates asset returns to exposures to common
factor structure that a�ects all assets in the market. Lettau and Pelger (2020)
generalize principal component analysis by identifying latent factors that not
only explain the time variation of assets but also their risk premium. Daniel
et al. (2020) propose a better way how to construct characteristic-based factors
by hedging out the unrelated sources of risk. Furthermore, there is still an
ongoing debate whether the characteristics predict the cross-sectional returns
because they capture linear exposure to the factor structure (Kelly et al. 2019)
or whether they represent anomalies in terms of factor literature (Kim et al.
2020).

The fourth related approach utilizes machine learning techniques to under-
stand asset prices better. In recent years, there has been a noticeable increase
in the usage of these techniques for multiple reasons, such as their theoretical
developments, a better understanding of how to implement them in a setting
typical for finance, or an increased computation power required. Critical was
the observation that economically motivated restrictions must be introduced
to exploit these techniques e�ectively, as illustrated by Avramov et al. (2023).

Gu et al. (2020) illustrate significant investment benefits related to these
methods compared to traditional regression-based approaches. Kozak et al.
(2020) introduce dimension reduction techniques to identify critical informa-
tion that shapes the cross-section of asset returns. Chen et al. (2023) estimate
a complex asset pricing model using deep neural networks that take advan-
tage of non-arbitrage condition to construct the most informative test assets.
Moreover, Kelly et al. (2024) provide a theoretical justification for using large
datasets and machine learning tools to understand and predict asset prices.

Many successful e�orts fall into two or more of these categories simulta-
neously. For example, Daniel et al. (2019) propose a theoretically based fac-
tor model that contains long- and short-horizon mispricing factors. Jin et al.
(2022) investigate coskewness across investment horizons and propose a theo-
retical model to estimate long-horizon coskewness from data with the highest
frequency of observations. Massacci et al. (2021) introduce a conditional factor
model in the presence of downside risk that allows for di�erent factor structures
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in the good and bad states.
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Chapter 2

Quantile Spectral Beta: A Tale of
Tail Risks, Investment Horizons,
and Asset Prices1

This paper investigates how two important sources of risk – market tail risk
and extreme market volatility risk – are priced into the cross-section of asset
returns across various investment horizons. To identify such risks, we propose
a quantile spectral beta representation of risk based on the decomposition of
covariance between indicator functions that capture fluctuations over various
frequencies. We study the asymptotic behavior of the proposed estimators
of such risk. Empirically, we find that tail risk is a short-term phenomenon,
whereas extreme volatility risk is priced by investors in the long term when
pricing a cross-section of individual stocks. In addition, we study popular in-
dustry, size and value, profit, investment or book-to-market portfolios, as well
as portfolios constructed from various asset classes, portfolios sorted on cash
flow duration and other strategies. These results reveal that tail-dependent
and horizon-specific risks are priced heterogeneously across datasets and are

1This chapter was co-authored with Jozef Baruník and published in the Journal of Fi-

nancial Econometrics. We appreciate helpful comments from Allan Timmermann, Tobias
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putational Economics and Finance (Paris), the 2018 SoFiE Summer School (Brussels), the
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important sources of risk for investors.

2.1 Introduction
The classical conclusion of the asset pricing literature states that the price of
an asset should be equal to its expected discounted payo�. In the capital asset
pricing model (CAPM) introduced by Sharpe (1964), Lintner (1965), Black
(1972), we assume that the stochastic discount factor can be approximated by
return on market portfolio; thus, expected excess returns can be fully described
by their market betas based on covariance between asset return and market
return. While early empirical evidence validated this prediction, decades of
consequent research have called the ability of the traditional market beta to
explain cross-sectional variation in returns into question. We aim to show that
to understand the formation of expected returns, one has to look deeper into
the features of asset returns that are crucial in terms of the preferences of a
representative investor. We argue that two important, risk related features are
tail events and frequency-specific (spectral) risk capturing behavior at di�er-
ent investment horizons. To characterize such general risks, we derive a novel
quantile spectral representation of beta that captures covariation between indi-
cator functions capturing fluctuations of di�erent parts of joint risky asset and
market return distributions over various frequencies. Nesting the traditional
beta as well as recently introduced spectral beta (Bandi et al. 2021), the new
representation captures tail-specific as well as horizon- or frequency-specific
spectral risks.

Intuitively, covariation stemming from (extremely) negative returns of risky
assets and (extremely) negative returns of the market that are known as down-
side risk in the literature should be positively compensated. While early liter-
ature (Ang et al. 2006) empirically confirms the premium for bearing downside
risk, Levi and Welch (2019) concludes that estimated downside betas do not
provide superior predictions compared to standard betas. More recently, Boller-
slev et al. (2020) argue that we need to look at finer representations allowing
combinations of positive and negative assets and market returns and suggest
how such semibetas are priced.

The aim of this paper is to show that there is heterogeneity in the weights
that investors assign to the risk for di�erent investment horizons and di�erent
parts of the distribution of their future wealth. We argue that previous at-
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tempts have failed to fully account for more subtle implications arising from
these heterogeneities. An asset drop that covaries with a drop in the mar-
ket and, at the same time, is a low-frequency event with large persistence
should be priced by investors di�erently than such extreme situations due to
high-frequency, transitory events. While in the first situation investors will be
pricing a persistent crash resulting in long-term fluctuations in the quantiles of
the market’s and risky asset’s joint distribution, in the latter case the investor
cares about the transitory crash resulting in short-run fluctuations. This essen-
tially means that a covariance between the risky asset and discount factor will
not only be di�erent across all parts of the joint distribution but will also be
di�erent across various investment horizons. Intuitively, these co-occurrences
of tail events will have either short-term or long-term e�ects on the marginal
utility of investors. Looking at the beta representation that will capture such
information empirically will also be informative for the rare disaster literature
(Barro 2006).

Economists have long recognized that decisions under risk are more sensitive
to changes in the probability of possible extreme events compared to the prob-
ability of a typical event. The expected utility might not reflect this behavior
since it weighs the probability of outcomes linearly. Consequently, CAPM beta
as an aggregate measure of risk may fail to explain the cross-section of asset
returns. Several alternative notions have emerged in the literature. Mao (1970)
presents survey evidence showing that decision-makers tend to think of risk in
terms of the possibility of outcomes below some target. For an expected utility-
maximizing investor, Bawa and Lindenberg (1977) has provided a theoretical
rationale for using a lower partial moment as a measure of portfolio risk. Based
on the rank-dependent expected utility due to Yaari (1987), Polkovnichenko
and Zhao (2013) introduce utility with probability weights and derive the cor-
responding pricing kernel. As mentioned earlier, Ang et al. (2006); Lettau et al.
(2014) argue that downside risk – the risk of negative returns – is priced across
asset classes and is not captured by CAPM betas. Furthermore, Farago and
Tédongap (2018) extend the results using a general equilibrium model based
on generalized disappointment aversion and show that downside risks in terms
of market return and market volatility are priced in the cross-section of asset
returns.2

2In addition, it is interesting to note that equity and variance risk premiums are also
associated with compensation for jump tail risk (Bollerslev and Todorov 2011). A more
general exploration of the asymmetry of stock returns is provided by Ghysels et al. (2016),
who propose a quantile-based measure of conditional asymmetry and show that stock returns
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The results described above lead us to question the role of expected utility
maximizers in asset pricing. A recent strand of literature solves the problem
by considering the quantile of utility instead of its expectation. This strand of
literature complements the previously described empirical findings focusing on
downside risk, as it highlights the notion of economic agents particularly averse
to outcomes below some threshold compared to outcomes above this threshold.
The concept of a quantile maximizer and its features was pioneered by Man-
ski (1988), and later axiomatized by Rostek (2010). Most recently, de Castro
and Galvao (2019) developed a quantile optimizer model in a dynamic setting.
A di�erent approach to emphasizing investors’ aversion toward less favorable
outcomes defines the theory based on Choquet expectations. This approach is
based on a distortion function that alters the probability distribution of future
outcomes by accentuating probabilities associated with the least desirable out-
comes. This approach was utilized in finance, for example, by Bassett Jr et al.
(2004).

Whereas aggregating linearly weighted outcomes may not reflect the sen-
sitivity of investors to tail risk, aggregating linearly weighted outcomes over
various frequencies or economic cycles also may not reflect risk specific to dif-
ferent investment horizons. One may suspect that an investor cares di�erently
about short-term and long-term risk according to their preferred investment
horizon. Distinguishing between long-term and short-term dependence between
economic variables has proven to be insightful since the introduction of cointe-
gration (Engle and Granger 1987). The frequency decomposition of risk thus
uncovers another important feature of risk that cannot be captured solely by
market beta, which captures risk averaged over all frequencies. This recent
approach to asset pricing enables us to shed light on asset returns and investor
behavior from a di�erent point of view, highlighting heterogeneous preferences.
Empirical justification is brought by Boons and Tamoni (2015) and Bandi and
Tamoni (2021), who show that exposure in long-term returns to innovations in
macroeconomic growth and volatility of the matching half-life is significantly
priced in a variety of asset classes. The results are based on the decomposition
of time series into components of di�erent persistence proposed by Ortu et al.

from emerging markets are positively skewed. Conrad et al. (2013) use option price data and
find a relation between stock returns and their skewness. Another notable approach uses
high-frequency data to define realized semivariance as a measure of downside risk (Barndor�-
Nielsen et al. 2008). From a risk-measure standpoint, handling negative events, especially
rare events, is a highly relevant theme in both practice and academia. The most prominent
example is value-at-risk (Adrian and Brunnermeier 2016; Engle and Manganelli 2004).
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(2013).
From an empirical asset pricing standpoint, our approach is closely related

to Bandi et al. (2021) who introduce spectral beta that measures systematic
risk over specific economic cycle. Bandi et al. (2021) show that a single busi-
ness cycle component of market returns is successful in pricing many anoma-
lous portfolios. Piccotti (2016) further sets the portfolio optimization problem
into the frequency domain using matching of the utility frequency structure
and portfolio frequency structure, and Chaudhuri and Lo (2016) present an
approach to constructing a mean-variance-frequency optimal portfolio. This
optimization yields the mean-variance optimal portfolio for a given frequency
band, and thus it optimizes the portfolio for a given investment horizon.

From a theoretical point of view, preferences derived by Epstein and Zin
(1989) enable the study of frequency aspects of investor preferences and this has
quickly become a standard in the asset pricing literature. With the important
results of Bansal and Yaron (2004), long-run risk started to enter asset pricing
discussions. Dew-Becker and Giglio (2016) investigate frequency-specific prices
of risk for various models and conclude that cycles longer than the business cycle
are significantly priced in the market. Other papers utilize the frequency do-
main and Fourier transform to facilitate estimation procedures for parameters
hard to estimate using conventional approaches. Berkowitz (2001) generalizes
band spectrum regression and enables the estimation of dynamic rational ex-
pectation models matching data only in particular ways, for example, forcing
estimated residuals to be close to white noise. Dew-Becker (2016) proposes
a spectral density estimator of the long-run standard deviation of consump-
tion growth, which is a key component for determining risk premiums under
Epstein-Zin preferences and shows superior performance compared to the pre-
vious approaches. Crouzet et al. (2017) developed a model of a multifrequency
trade set in the frequency domain and showed that restricting trading frequen-
cies reduces price informativeness at those frequencies, reduces liquidity and
increases return volatility. One of the rare exceptions that entertains the idea
of combining horizon-specific risk with tail events is Barro and Jin (2021), who
show that most of the risk premium is attributable to rare event risk, but the
long-run risk component contributes to fitting the Sharpe ratio as well.

The debate clearly indicates that the standard assumptions leading to clas-
sical asset pricing models do not correspond with reality. In this paper, we
suggest that more general pricing models have to be defined and should take
into consideration both the asymmetry of the dependence structure among the
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stock market and the relation of asymmetry to di�erent investor behaviors at
various investment horizons.

The main contribution of this paper is threefold. First, based on the fre-
quency decomposition of covariance between indicator functions, we define the
quantile spectral beta of an asset capturing frequency-specific tail risks and cor-
responding ways of measuring the beta. The newly defined notion of a beta can
be viewed as a disaggregation of a classical beta to a frequency- and tail-specific
beta. With this notion, we describe how extreme market risks are priced in the
cross-section of asset returns at various horizons. We define frequency-specific
tail market risk that captures dependence between extremely low market and
asset returns, as well as extreme market volatility risk that is characterized
by dependence between extremely high increments of market volatility and ex-
tremely low asset returns. Second, we empirically motivate the emergence of
such types of risks in the cross-section of asset returns. Third, we estimate mod-
els and document these types of risks on a wide number of popular datasets,
including Fama-French industry, size and value, profit, investment and book-
to-market portfolio, as well as portfolios constructed from various asset classes
and sorted on cash flow durations.

The results of this paper suggest that tail risk is consistently priced in the
cross-section of asset returns in the short term, while extreme market volatility
risk is priced mainly in the long term. The result also holds when we control for
popular factors, including moment-based factors that are designed to capture
asymmetric features and popular downside risk models (Ang et al. 2006; Lettau
et al. 2014; Farago and Tédongap 2018). We also discuss how our new beta
representation relates to other risk measures. Finally, we document that the
final model capturing tail-specific risks across horizons significantly outperforms
the other related models that capture downside risks.

The rest of the paper is structured as follows. Section 2.2 motivates the
importance of tail risks across horizons. Section 2.3 introduces the estimation
of quantile spectral betas and discusses the asymptotic theory for the estima-
tors, Section 2.4 defines the empirical models used for testing the significance
of extreme risks, and Section 2.5 conducts the empirical analysis on individ-
ual stocks as well as on various portfolios. Section 2.6 then concludes. In the
Appendix, we detail the main technical results regarding the quantile spectral
betas, their relation to the rare disaster model, specifications of the related
measures of risk, and detailed results from the portfolio estimations. For esti-
mation of quantile spectral betas, we provide package QSbeta in R available at



2. Quantile Spectral Beta: A Tale of Tail Risks, Investment Horizons, and Asset
Prices 17

https://github.com/barunik/QSbeta. Quantile spectral and cross-spectral
densities as well as other quantities can be estimated using package quantspec
in R available at https://github.com/tobiaskley/quantspec introduced by
Kley (2016).

2.2 Motivation: Why Should We Care About Tail
Risks across Horizons

The empirical search for an explanation of why di�erent assets earn di�erent
average returns centers around the use of return factor models arising from
the Euler equation. With only the assumption of ‘no arbitrage’, a stochas-
tic discount factor mt+1 exists, and under the expected utility maximization
framework, for the ith excess return, ri,t+1 satisfies E[mt+1ri,t+1] = 0, hence

E[ri,t+1] = Cov(mt+1, ri,t+1)
Var(mt+1)

A

≠ Var(mt+1)
E[mt+1]

B

= —i⁄ (2.1)

where loading —i can be interpreted as exposure to systematic risk factors and
⁄ as the risk price associated with factors. Equation 2.1 assumes that the risk
premium of an asset or a portfolio can be explained by its covariance with some
reference economic or financial variable such as consumption growth or return
on market portfolio. This simple pricing relation also assumes that independent
common sources of systematic risk exist in the economy, and exposure to them
can explain the cross-section of asset returns.3 This leads to the so-called factor
fishing phenomenon, which tries to identify other risk factors in addition to the
traditional market factors assumed by CAPM using a linear combination of
factors that are assumed to have nonzero covariance with a risky asset, and to
be independent of each other.

Covariance between the two variables of interest,

“k

i,j
= Cov

1
rj,t+k, ri,t

2
© E[(rj,t+k ≠ r̄j)(ri,t ≠ r̄i)], (2.2)

which is central to the asset pricing literature, may not be su�cient in cases in
which the investor cares about di�erent parts of the distribution of her future
wealth di�erently or in cases in which an investor cares about specific invest-
ment horizons. The empirical literature silently assumes that the risk factors

3For example, this is the cornerstone of arbitrage pricing theory (APT) of Ross (1976).

https://github.com/barunik/QSbeta
https://github.com/tobiaskley/quantspec
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aggregate information over the distribution of returns as well as investment
horizons. Part of the literature tracing back to early work by Roy (1952);
Markowitz (1952); Hogan and Warren (1974); Bawa and Lindenberg (1977) ar-
gues that the reason we do not empirically find support for the above thinking
is that the pricing relationship is fundamentally too simplistic. If investors are
averse to volatility only when it leads to losses, not gains, the total variance as
a relevant measure of risk should be disaggregated.

Later work by Ang et al. (2006); Lettau et al. (2014); Farago and Tédongap
(2018) shows that investors require an additional premium as compensation
for exposures to disappointment-related risk factors called downside risk. Re-
cently, Lu and Murray (2019) argued that bear risk capturing the left tail
outcomes is even more important, and Bollerslev et al. (2020) introduced be-
tas based on semicovariances. In contrast to the promising results, Levi and
Welch (2019) conclude that estimated downside betas do not provide superior
predictions compared to standard aggregated betas, partially due to the dif-
ficulties of accurately determining downside betas from daily returns. With
a similar argument of an overly simplistic pricing relation, another strand of
the literature looks at frequency decomposition and explores the fact that risk
factors of claims on the consumption risk should be frequency dependent since
consumption has strong cyclical components (Dew-Becker and Giglio 2016).

More recently, a new stream of literature led by de Castro and Galvao (2019)
assumes agents have quantile preferences. In asset pricing, such an investor
prefers future streams of quantiles of utilities leading to qt,·

1
m·,t+1(1+ri,t+1)≠

1
2

= 0. Assuming quantile preferences, our focus shifts from the search for the
best proxy for a discount factor toward the capturing of the general dependence
structures that reveal such flexible preferences. Measures we introduce in this
paper allow us to identify risks associated with this type of preference.

Recognizing departures from overly simplistic assumptions in the data, we
need to examine more general dependence measures since a simple covariance
aggregating dependence across distributions as well as investment horizons will
not be a su�cient measure of (in)dependence.

To illustrate this discussion, we consider dependence between market re-
turns and a popular small-minus-big portfolio (SMB) as well as momentum
portfolio (MOM). While the literature assumes that these factors represent two
independent sources of risk with contemporaneous correlation between them
and the market being rather small, investigating the dependence in various
parts of their joint distribution across di�erent lags and leads reveals interest-
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Figure 2.1: Dependence Structure between the Market and SMB and MOM Fac-

tor Portfolios.
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Note: Plots display covariance in the tail and across horizons defined by Eq. 2.3 that measures the general
dependence between the market return and the SMB and MOM factors, respectively. Dashed lines
represent 95% confidence intervals under the null hypothesis that the two series are jointly normally
distributed correlated random variables. Data are sampled with monthly frequency.

ing relations. Instead of aggregate covariance between the market return and a
factor portfolio, Figure 2.1 depicts tail- and lead/lag-specific covariation for a
threshold value given by · -quantile of the market return and a given lead/lag
k of the following form:

Cov
1
I{rm,t≠k Æ qrm

(·))}, I{ri,t Æ qrm
(·)}

2
, (2.3)

where rm,t is the return of the market factor, ri,t is the return of either the
SMB or the MOM portfolio, I{.} is an indicator function and qrm

is the quan-
tile function of the market return. This simple measure captures the proba-
bility of both returns being below some threshold value in some time interval
given by lead/lag k. This can be seen from the fact that Cov

1
I{rm,t≠k Æ

qrm
(·))}, I{ri,t Æ qrm

(·)}
2

= Pr
Ó
rm,t≠k Æ qm(·), ri,t Æ qm(·)

Ô
≠ ··i. There-

fore, this dependence essentially measures additional probability over the inde-
pendence copula of both variables being below some threshold value.

Looking at the median dependence of market return on SMB or MOM port-
folio returns (right column of plots for · = 0.5), we observe that dependence
can be fully characterized by rather weak contemporaneous covariation between
the market and the SMB and MOM portfolio returns, since no significant rela-
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tion exists at any lead or lag in the relationship.4 Moving our attention toward
the left tail of the joint distribution, more complicated dependence structures
emerge. The departure from the joint Gaussian distribution is strongest in the
left tail (left column of plots for · = 0.05). The co-occurrences of large neg-
ative market returns with large negative SMB or MOM portfolio returns are
significant and exist at various leads/lags.

For example, if we look at the dependence between the market and SMB
in the 5% tail, we can observe that if the market is below this threshold,
there is also a significant probability that the SMB portfolio will be below this
threshold, with some delay. Similarly, the SMB downturn precedes the market
downturn with significant probability.5 Therefore, instead of arguing that the
SMB factor proxies for an independent economic risk, the results suggest that
the SMB portfolio captures more complicated market tail risk at some specific
horizons.

In other words, the left tail dependence shows that extreme market drop
is correlated with extreme negative returns of SMB. This illustrates that large
negative market returns are correlated with the situation in which large com-
panies largely outperform small companies in the SMB portfolio. Hence, we
document a joint probability of co-occurrence of the market extreme left tail
event, and large companies outperform small companies, leading to an increase
in default risk in the economy (Chan et al. 1985). An important feature of
the dependence not documented by earlier studies is its persistence structure
shown by autocorrelations and the same strength for leading one another. At
the same time, while momentum is negatively correlated with the market, the
second row of Figure 2.1 shows a significant lead-lag relationship of the mo-
mentum factor and stock market, pointing us to the intuition that extremely
low market returns are cross-correlated with companies with low momentum
outperforming those with high momentum.

Note that these observations are closely related to the literature on market
frictions, price delays and aggregations and their asset pricing implications.6

In that sense, we follow a similar vein of thought as Bandi et al. (2021), with
the important di�erence that we focus on the downside risk specifically.

This line of thinking may lead us to the conclusion that such general de-
4Note that the dashed lines in the figure represent confidence intervals under the null

hypothesis that the two series are jointly normally distributed correlated random variables.
5A similar lead/lag investigation regarding business cycle indicators is performed in

Backus et al. (2010).
6See, e.g., Kamara et al. (2016); Hou and Moskowitz (2005)
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pendence structures can hardly be described by traditional contemporaneous
correlation-based measures. The illustration suggests that there is no need for
many factors to explain the average asset return, as carefully measured ex-
posure to market risk can capture the risk investors care about. A natural
way to summarize the dependence across these lead/lag relationships is to em-
ploy frequency analysis and precisely summarize this joint structure for specific
horizons.

From an economic perspective, it is reasonable to assume that future marginal
utility is a�ected by the realization of low quantile returns today, as this event
may lead, for example, to bankruptcy or in other ways significantly shape the
behavior of economic agents in the future. In other words, extreme market
events can have either short-run or long-run e�ects on the marginal utility of
investors. Previous studies, however, fail to fully account for horizon-specific
information in tails, while one of the main reasons turns to the inability to
measure such risks. Here, we propose robust methods for the measurement of
such risks, and we argue that exploring the risk related to tail events as well
as frequency-specific risk is crucial.

To see how tail-specific risks are priced across horizons by investors, we pro-
ceed as follows. First, we define a quantile risk measure based on the covariance
between indicator functions, which has a natural economic interpretation in
terms of probabilities. Second, we introduce its frequency decomposition and
combine these two frameworks into the quantile spectral risk measure, which
is the building block of our empirical model. This measure enables us to ro-
bustly test for the presence of extreme market risks over various horizons in
asset prices. The aim is not to convince the reader that the functional form of
the preferences precisely follows our model but to show that there is hetero-
geneity in the weights that investors assign to the risk for di�erent investment
horizons and di�erent parts of the distribution of their future wealth. By esti-
mating prices of risk for short- and long-term parts, we are able to identify the
horizon that the investor cares most about. Moreover, by estimating prices of
risk for various threshold values, we are able to identify the part of the joint
distribution toward which the investor is the most risk averse.7 This is done by
controlling for CAPM beta, and the influence of these new measures is mea-

7Our investigation complements the work of Delikouras (2017) and Delikouras and
Kostakis (2019). These studies investigate the position of the reference point of consumption
growth and show that its correct location is crucial for fitting the model based on generalized
disappointment aversion.
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sured as incremental information over simplifying assumptions that lead to the
CAPM beta asset pricing models.

2.3 Measuring the Tail Risks across Horizons: A
Quantile Spectral Beta

Here, we formalize the discussion and provide more general measures that will
provide a tool for inferring the discussed types of risks from data.

2.3.1 Tail Risk

Let us consider a bivariate, strictly stationary process xt = (mt, rt)Õ holding
some reference economic or financial variable mt proxying risk and asset returns
rt. The marginal distribution functions of mt and rt will be denoted by Fm and
Fr respectively, and by qm(·m) := F ≠1

m
(·m) := inf{q œ R : ·m Æ Fm(q)}, and

qr(·r) := F ≠1
r

(·r) := inf{q œ R : ·r Æ Fr(q)}, where ·m, ·r œ [0, 1] denote the
corresponding quantile functions.

Since we are interested in pricing extreme negative events, we want to mea-
sure dependence and risk in lower quantiles of the joint distribution that can
be evaluated by quantile cross-covariance (Kley et al. 2016; Baruník and Kley
2019)

“m,r

k
(·m, ·r) © Cov

3
I{mt+k Æ qm(·m)}, I{rt Æ qr(·r)}

4
, (2.4)

k œ Z, and I{A} denotes the indicator function of event A. The measure is
given by the covariance between two indicator functions and, together with Fm

and Fr, can fully describe the joint distribution of the pair of random variables
mt and rt, that is, provide a measure for their serial and cross-dependency
structure. If the distribution functions of the variables are continuous, the
quantity is essentially the di�erence between the copula of the pair mt and rt

and the independent copula, i.e., Pr
Ó
mt+k Æ qm(·m), rt Æ qr(·r)

Ô
≠·m·r. Thus,

covariance between indicators measures additional information from the copula
over an independent copula about how likely it is that the series are jointly
less than or equal to a given quantile of the variable mt. It enables flexible
measurement of both the cross-sectional structure and time-series structure of
the pair of random variables.
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Comparing these new quantities with their traditional counterparts, it can
be observed that the covariance and means are essentially replaced by copulas
and quantiles. A market beta associated with the tail risk can then be defined
using Eq. 2.4. This quantity would be similar to the tail risk measure of
Schreindorfer (2019), which is also a function of the · quantile threshold of
consumption growth. The correlation between asset returns and consumption
growth is then computed conditional on realizations of consumption growth
below the threshold. It is also related to the negative semibetas of Bollerslev
et al. (2020), which estimates the dependence between market return and asset
return conditional on the co-occurrence of negative events for both market and
asset.

2.3.2 Tail Risks across Horizons: A Quantile Spectral Beta

It is natural to further assume that economic agents care not only about di�er-
ent parts of the wealth distribution but also di�erently about long- and short-
term investment horizons in terms of expected returns and associated risks.
Investors may be interested in the long-term profitability of their portfolio and
may not be concerned with short-term fluctuations. Frequency-dependent fea-
tures of an asset return then play an important role for an investor. Bandi and
Tamoni (2021) argue that covariance between two returns can be decomposed
into covariance between disaggregated components evolving over di�erent time
scales, and thus the risk on these components can vary. Hence, market beta
can be decomposed into a linear combination of betas measuring dependence
at various scales, i.e., dependence between fluctuations with various half-lives.
Frequency-specific risk at a given time plays an important role in the deter-
mination of asset prices, and the price of risk in various frequency bands may
di�er, which means that the expected return can be decomposed into a linear
combination of risks in various frequency bands.

A natural way to decompose covariance between two assets into dependen-
cies over di�erent horizons is in the frequency domain. A frequency domain
counterpart of cross-covariance “k is obtained as the Fourier transform of the
cross-covariance functions Sm,r(Ê) = 1

2fi

qŒ
k=≠Œ “m,r

k
e≠ikÊ. Conversely, cross-

covariance can be obtained from the inverse Fourier transform of its cross-
spectrum as “m,r

k
=

s
fi

≠fi
Sm,r(Ê)eikÊdÊ, where Sm,r(Ê) is the cross-spectral den-

sity of random variables mt and rt and i =
Ô

≠1.
This representation of covariation allows us to decompose the covariance
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and variance into frequency components and disentangle the short-term depen-
dence from the long-term dependence. Using a similar approach, Bandi and
Tamoni (2021) estimate the price of risk for di�erent investment horizons and
show that investors possess heterogeneous preferences over various economic
cycles instead of looking only at averaged quantities over the whole frequency
spectrum.

To uncover more general dependence structures, we propose to study the
Fourier transform of the covariance of indicator functions “m,r

k
(·m, ·r) instead.

In this way, one can quantify the horizon-specific risk premium across the
joint distribution. To define the new beta representation that will allow us
to characterize such general risks, we use the so-called quantile cross-spectral
densities introduced by Baruník and Kley (2019) as a generalization of quantile
spectral densities of Dette et al. (2015).

The cornerstone of this new beta representation lies in quantile cross-spectral
density defined as

fm,r(Ê; ·m, ·r) © 1
2fi

Œÿ

k=≠Œ
“m,r

k
(·m, ·r)e≠ikÊ (2.5)

© 1
2fi

Œÿ

k=≠Œ
Cov

3
I{mt+k Æ qm(·m)}, I{rt Æ qr(·r)}

4
e≠ikÊ(2.6)

with Ê œ R and ·m, ·r œ [0, 1]. A quantile cross-spectral density is obtained as
a Fourier transform of covariances of indicator functions defined in Equation
2.4, and will allow us to define beta that will capture the tail risks as well as
spectral risks.

The quantile spectral (QS) betas that characterize horizon- and tail-specific
market risk at a given Ê, ·m and ·r are then defined as

—m,r(Ê; ·m, ·r) © fm,r(Ê; ·m, ·r)
fm,m(Ê; ·m, ·m) , (2.7)

and will be the key quantity in our analysis. To estimate the quantile spectral
beta, we use the rank-based copula cross-periodogram introduced by Baruník
and Kley (2019)

Im,r

n,R
(Ê; ·m, ·r) := 1

2fin
dm

n,R
(Ê; ·m)dr

n,R
(≠Ê; ·r), (2.8)

where dm

n,R
(Ê; ·m) := q

n≠1
t=0 I{ ‚Fn,m(mt) Æ ·m}e≠iÊt, and dr

n,R
(Ê; ·r) := q

n≠1
t=0 I{ ‚Fn,r(rt) Æ

·r}e≠iÊt with ‚Fn,m(mt) and ‚Fn,r(rt) being empirical distribution functions of mt
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and rt, respectively. A consistent estimator of the quantile cross-spectral den-
sity is then

‚Gm,r

n,R
(Ê; ·m, ·r) := 2fi

n

n≠1ÿ

s=1
Wn

1
Ê ≠ 2fis/n

2
Im,r

n,R
(2fis/n, ·m, ·r), (2.9)

where Wn denotes a sequence of weight functions, precisely to be defined in the
next section studying the asymptotic properties of the proposed estimators.
The estimator of the quantile spectral beta is then given by

‚—m,r

n,R
(Ê; ·m, ·r) :=

‚Gm,r

n,R
(Ê; ·m, ·r)

‚Gm,m

n,R
(Ê; ·m, ·m)

. (2.10)

Before we prove that ‚—m,r

n,R
(Ê; ·m, ·r) is a legitimate estimate of —m,r(Ê; ·m, ·r),

we note that for serially uncorrelated variables (regardless of their joint or
marginal distributions), the FreÊhet/Hoe�ding bounds give the limits that QS
beta can attain in the case of a serially independent process as max{·m+·r≠1,0}≠·m·r

·m(1≠·m) Æ
—m,r(Ê; ·m, ·r) Æ min{·m,·r}≠·m·r

·m(1≠·m) .

2.3.3 Asymptotic properties of the Quantile Spectral beta

To derive the asymptotic properties of the quantile spectral beta, some assump-
tions need to be made. Recall (cf. Brillinger (1975), p. 19) that the rth order
joint cumulant cum(Z1, . . . , Zr) of the random vector (Z1, . . . , Zr) is defined as

cum(Z1, . . . , Zr) :=
ÿ

{‹1,...,‹p}
(≠1)p≠1(p ≠ 1)!E

5 Ÿ

jœ‹1

Zj

6
· · · E

5 Ÿ

jœ‹p

Zj

6
,

with summation extending over all partitions {‹1, . . . , ‹p}, p = 1, . . . , r, of {1, . . . , r}.
Regarding the range of dependence of xt œ (mt, rt)Õ, we make the following
assumption:

Assumption 1. The processes (xt)tœZ are strictly stationary and exponentially
–-mixing, that is, there exist constants K < Œ and Ÿ œ (0, 1), such that

–(n) := sup
Aœ‡(x0,x≠1,...)

Bœ‡(xn,xn+1,...)

---P(A fl B) ≠ P(A)P(B)
--- Æ KŸn, n œ N. (2.11)

Note that the Assumption 1 is a bivariate extension of assumptions made
in Kley et al. (2016) and used in Baruník and Kley (2019) to study quantile
spectral quantities. It is important to observe that this assumption does not
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require the existence of any moments, which is in sharp contrast to classical
assumptions, where moments up to the order of the respective cumulants must
exist, and sets Aj are not required to be general Borel sets, as in classical mix-
ing assumptions. As noted in Baruník and Kley (2019), this assumption holds
for a wide range of popular, linear and nonlinear, multivariate and univari-
ate processes that are –-mixing at an exponential rate, including traditional
VARMA or vector-ARCH models.

To establish the consistency of the estimates, we further need to consider
sequences of weights that asymptotically concentrate around multiples of 2fi.

Assumption 2. The weights are defined as Wn(u) := qŒ
j=≠Œ b≠1

n
W (b≠1

n
[u +

2fij]), where bn > 0, n = 1, 2, . . ., is a sequence of scaling parameters satisfy-
ing bn æ 0 and nbn æ Œ, as n æ Œ. The weight function W is real-valued,
even has support [≠fi, fi], bounded variation, and satisfies

s
fi

≠fi
W (u)du = 1.

The main result of this section will legitimize ‚—m,r

n,R
(Ê; ·m, ·r) as an estimator

of the quantile spectral (QS) beta —m,r(Ê; ·m, ·r). The legitimacy of the esti-
mates follows from the fact that the estimators converge weakly in the sense of
Ho�man-Jørgensen (cf. Chapter 1 of van der Vaart and Wellner (1996)). We
denote this mode of convergence by ∆. The estimators under consideration
take values in the space of (elementwise) bounded functions [0, 1]2 æ C

d◊d,
which we denote by ¸Œ

Cd◊d([0, 1]2) (Kley et al. 2016). While the results of em-
pirical process theory are typically stated for spaces of real-valued, bounded
functions, these results transfer immediately by identifying ¸Œ

Cd◊d([0, 1]2) with
¸Œ([0, 1]2)2d

2 .
Using Proposition 1 in Appendix 3.A and following Kley et al. (2016) and

Baruník and Kley (2019), we quantify uncertainty in estimating fm,r(Ê; ·m, ·r)
by ‚Gm,r

n,R
(Ê; ·m, ·r) asymptotically in the following theorem.

Theorem 1. (Baruník and Kley (2019)) Let Assumptions 1 and 2 hold. As-
sume that the marginal distribution functions Fm and Fr are continuous and
that constants Ÿ > 0 and k œ N exist, such that bn = o(n≠1/(2k+1)) and
bnn1≠Ÿ æ Œ. Then, for any fixed Ê œ R,
Ò

nbn

3
‚Gm,r

n,R
(Ê; ·m, ·r)≠fm,r(Ê; ·m, ·r)≠Bm,r,(k)

n
(Ê; ·m, ·r)

4

·m,·rœ[0,1]
∆ H

m,r(Ê; ·, ·),

(2.12)
where the bias is given by Bm,r,(k)

n
(Ê; ·m, ·r) := q

k

¸=2
b

¸
n

¸!
s

fi

≠fi
v¸W (v)dv d¸

dÊ¸ fm,r(Ê; ·m, ·r).
The process H

m,r(Ê; ·, ·) is a centered, C-valued Gaussian process characterized
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by

Cov
1
H

j1,j2(Ê; u1, v1
2
,Hk1,k2(⁄; u2, v2)

2

= 2fi
3 ⁄

fi

≠fi

W 2(–)d–
43

fj1,k1(Ê; u1, u2)fj2,k2(≠Ê; v1, v2)÷(Ê ≠ ⁄)

+ fj1,k2(Ê; u1, v2)fj2,k1(≠Ê; v1, u2)÷(Ê + ⁄)
4

, (2.13)

where ÷(x) := I{x = 0( mod 2fi)} [cf. (Brillinger 1975, p. 148)] is the 2fi-
periodic extension of Kronecker’s delta function. The family {H(Ê; ·, ·), Ê œ
[0, fi]} is a collection of independent processes.

It is important to note that in sharp contrast to classical spectral analysis,
where higher-order moments are required to obtain smoothness of the spectral
density [cf. Brillinger (1975), p. 27], Assumption 1 guarantees that the quantile
cross-spectral density is an analytical function of Ê. Assume that W is a kernel
of order p; i. e., for some p, that satisfies

s
fi

≠fi
vjW (v)dv = 0, for all j < p, and

0 <
s

fi

≠fi
vpW (v)dv < Œ; e. g., the Epanechnikov kernel is a kernel of order

p = 2. Then, the bias is of order bp

n
. As the variance is of order (nbn)≠1,

the mean squared error is minimal if bn ® n≠1/(2p+1). This optimal bandwidth
fulfills the assumptions of Theorem 1. A detailed discussion of how Theorem 1
can be used to construct asymptotically valid confidence intervals can be found
in Baruník and Kley (2019).

The independence of the limit {H(Ê; ·, ·), Ê œ [0, fi]} has two important im-
plications. On the one hand, the weak convergence (2.12) holds jointly for any
finite fixed collection of frequencies Ê. Furthermore, fixing j1, j2 and ·1, ·2, the
CCR periodogram ‚Gj1,j2

n,R
(Ê; ·1, ·2) and traditional smoothed cross-periodogram

determined from the unobservable, bivariate time series

1
I{Fj1

(Xt,j1
) Æ ·1}, I{Fj1

(Xt,j2
) Æ ·2}

2
, t = 0, . . . , n ≠ 1, (2.14)

are asymptotically equivalent. Theorem 1 thus reveals that in the context
of the estimation of the quantile cross-spectral density, the estimation of the
marginal distribution has no impact on the limit distribution (cf. comment
after Remark 3.5 in Kley et al. (2016)).

We are now ready to state the main result of this section.

Theorem 2. Let Assumptions 1 and 2 hold. Assume that the marginal distri-
bution functions Fm and Fr are continuous and that constants Ÿ > 0 and k œ N

exist, such that bn = o(n≠1/(2k+1)) and bnn1≠Ÿ æ Œ. Assume that for some Á œ
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(0, 1/2), we have inf·œ[Á,1≠Á] fm,m(Ê; ·m, ·m) > 0, and inf·œ[Á,1≠Á] fr,r(Ê; ·r, ·r) >

0. Then, for any fixed Ê œ R,

Ò
nbn

3
‚—m,r

n,R
(Ê; ·m, ·r)≠—m,r(Ê; ·m, ·r)≠Bm,r,(k)

n
(Ê; ·m, ·r)

4

(·m,·r)œ[Á,1≠Á]2
∆ 1

fm,m

3
Hm,m≠ fm,r

fm,m

Hm,r

4
,

(2.15)
where

Bm,r,(k)
n

(Ê; ·m, ·r) := 1
fm,m

3
Bm,m ≠ fm,r

fm,m

Bm,r

4
(2.16)

and we have written fa,b for the quantile cross-spectral density fa,b(Ê; ·a, ·b) as
defined in (2.5), Ba,b := q

k

¸=2
b

¸
n

¸!
s

fi

≠fi
v¸W (v)dv d¸

dÊ¸ fa,b(Ê; ·a, ·b), and Ha,b for
H

a,b(Ê; ·a, ·b

2
defined as a centered, C-valued Gaussian process characterized

by

Cov
1
H

j1,j2(Ê; u1, v1
2
,Hk1,k2(⁄; u2, v2)

2

= 2fi
3 ⁄

fi

≠fi

W 2(–)d–
43

fj1,k1(Ê; u1, u2)fj2,k2(≠Ê; v1, v2)÷(Ê ≠ ⁄)

+ fj1,k2(Ê; u1, v2)fj2,k1(≠Ê; v1, u2)÷(Ê + ⁄)
4

, (2.17)

where ÷(x) := I{x = 0( mod 2fi)} [cf. (Brillinger 1975, p. 148)] is the 2fi-
periodic extension of Kronecker’s delta function. The family {H(Ê; ·, ·), Ê œ
[0, fi]} is a collection of independent processes.

Proof. The proof is lengthy and technical, and it is therefore deferred to Ap-
pendix 2.A.1.

Convergence to a Gaussian process can be employed to obtain asymptoti-
cally valid pointwise confidence bands. A more detailed discussion on how to
conduct inference is given in Appendix 2.A.2.

If W is a kernel of order p Ø 1, we have that the bias is of order bp

n
. Thus,

if we choose the mean square error minimizing bandwidth bn ® n≠1/(2p+1), the
bias will be of order n≠p/(2p+1).

Regarding the restriction Á > 0, note that the convergence (2.15) cannot
hold if (·1, ·2) is on the border of the unit square, as the quantile coherency
—(Ê; ·1, ·2) is not defined if ·j œ {0, 1}, as this implies that Var(I{Fj(Xt,j) Æ
·j}) = 0.
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2.4 Pricing Model for Extreme Risks across the
Frequency Domain

Quantile spectral betas defined in the previous sections will be the cornerstone
of our empirical models. We assume that QS betas for low threshold values
will be significant determinants of risk priced heterogeneously across invest-
ment horizons. We will employ QS betas to study two kinds of risk related
to the market return. First, we will investigate tail market risk (TR), a risk
representing dependence between extreme negative events of both market and
asset returns at a given horizon. In case the stochastic discount factor is linear
in factors and we consider the market return as a risk factor, we further look
at the dependence between asset returns and market returns and the threshold
values are based on quantiles of market returns.

It is useful to connect our notion of risks to a well-established rare disas-
ter model of Nakamura et al. (2013). QS betas between consumption growth
and equity returns can be directly connected to permanent and transitory dis-
asters that moreover unfold over multiple years or just one period. QS beta
can be used to clearly distinguish between the dependence structures of these
types that are otherwise invisible to investors. The detailed discussion with
simulations is relegated to Appendix 2.B due to the limited space of the paper.

Our notion of tail risk also relates to the downside risk of Ang et al. (2006);
Lettau et al. (2014). While downside risk stems from covariation of asset re-
turns and market return under some threshold, our notion stems from joint
probability of the co-occurrence of extreme negative returns in both asset and
market returns. This is more in line with the approach of semibetas (Bollerslev
et al. 2020) but with an important feature of the persistence structure of such
risks across investment horizons.

Second, we will examine extreme market volatility risk (EVR), a risk captur-
ing unpleasant situations in which extremely high levels of market volatility are
linked with extremely low asset returns, again with respect to the investment
horizon. We argue that both of these concepts capture important features of
risk of an asset faced by the investor and thus should be priced in a cross-section
of asset returns.

In each of the models defined in the paper, we control for CAPM beta as
a baseline measure of risk. This ensures that if the QS betas are proven to
be significant determinants of risk premium, they do not simply duplicate the
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information contained in the CAPM beta. Moreover, in the case of tail market
risk, we define relative betas that explicitly capture the additional information
over the CAPM beta only.

2.4.1 Tail Market Risk

For better interpretability, we construct a quantile spectral beta for a given
frequency band corresponding to reasonable economic cycles. This definition
is important since it allows us to define short-run or long-run bands covering
corresponding frequencies and hence disaggregate beta based on the specific
demands of a researcher.

We expect the dependence between market return and asset return dur-
ing extreme negative joint events to be positively priced across assets. The
stronger the relationship is, the higher the risk premium required by investors.
In addition, we expect this risk to be priced heterogeneously across di�erent
investment horizons.

To capture the tail market risk measuring the probability of co-occurrence
between (extreme) negative events of both market and asset returns at a given
horizon, we define

—rm,ri

TR (�; ·) ©
ÿ

�©[Ê1,Ê2)

Q

cca

qŒ
k=≠Œ Cov

3
I{rm,t+k Æ qrm

(·)}, I{ri,t Æ qrm
(·)}

4
e≠ikÊ

qŒ
k=≠Œ Cov

3
I{rm,t+k Æ qrm

(·), I{rm,t Æ qrm
(·)}

4
e≠ikÊ

R

ddb .

(2.18)

The numerator of Eq. (2.18) captures the probability of co-occurrence of the
negative events at a given horizon, and the denominator captures information
related to the probability of market tail events at a given horizon, which is
related to the variation in market returns.

Similar to Ang et al. (2006) and Lettau et al. (2014), we define relative betas
that capture additional information not contained in the classical CAPM beta.
In this way, we can test the significance of tail market risk decomposed into
the long- and short-term components to obtain their prices of risk separately.
Because we want to quantify risk that is not captured by the CAPM beta, we
propose to test the significance of tail market risk via di�erences in the QS
beta and QS beta implied by the Gaussian white noise assumption. We call
this relative QS beta, and we compute it for a given frequency band �j and
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given market · -quantile level as

—rm,ri

rel (�j; ·) © —rm,ri

TR (�j; ·) ≠ —ri

Gauss(�j, ·), (2.19)

where —ri

Gauss(�j, ·) = CGauss(·,·i;fl)≠··i

·(1≠·) with CGauss being a Gaussian copula with
correlation fl between market return and an asset’s return.8

Assuming that all the relevant pricing information is contained in the CAPM
beta, contemporaneous covariance between two time series should capture all
the priced information. Moreover, if the series are jointly normally distributed
and independent through time, the CAPM beta contains all the available in-
formation regarding the dependence. Hence, under the hypothesis that market
and asset returns are correlated Gaussian noise, —rm,ri

rel (�j; ·) will not carry
any additional information, and CAPM characterizes the risks well. Note that
—ri

Gauss(�j, ·) is constant across frequencies and depends only on the chosen
quantile and correlation coe�cient. On the other hand, if investors price infor-
mation not captured by the CAPM beta, the QS beta estimated without any
restriction may identify an additional dimension of risk not contained in the
CAPM beta. More specifically, we can identify whether dependence in a spe-
cific part of the joint distribution and/or over a specific horizon is significantly
priced.

If the CAPM beta captures all the risk information priced in the cross-
section, the risk premium corresponding to the relative QS beta will be in-
significant. Moreover, if the returns are Gaussian, the relative QS beta will be
zero at all frequencies and quantiles.9

Our first model is hence a tail market risk (TR) model, which is defined as

E[re

i,t+1] =
2ÿ

j=1
—rm,ri

rel (�j; ·)⁄TR(�j; ·) + —rm,ri

CAPM⁄CAPM, (2.20)

8This stems from the fact that quantile cross-spectral density corresponds to a di�erence
of probabilities Pr

)
ri,t Ærm (·), rm,t Æ qrm(·)

*
≠ ··i, where · and ·i are probability levels

under a Gaussian distribution, and ·i is obtained as ·i = Fri{qm(·)}.
9Here, we briefly note that we set the threshold values in the covariance between indi-

cators’ measure of dependence as a · quantile of market return. In the case of TR betas,
the thresholds for market and asset returns are the same and are given by the · quantile of
market return. In the case of EVR betas, the threshold for increments of market volatility is
given by the · quantile of the series of increments of market volatility, and the threshold for
asset return is given by the · quantile of market return. Note that one could flexibly choose
the thresholds based on the best model fit specific to our datasets. For example, we may
choose the threshold value to be asset specific by corresponding to the · quantile of the asset
return. We do not follow this approach because we do not explicitly care about dependence
between quantiles in the cross-section. Rather, we care about dependence in extreme market
situations.
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where re

i,t+1 is the excess return of asset i,10 —rm,ri

CAPM is an aggregate CAPM beta,
⁄CAPM is the price of aggregate risk of the market captured by the classical beta,
and ⁄TR(�j, ·) is the price of tail risk (TR) for a given quantile and horizon
(frequency band). We specify our models to include the disaggregation of risk
into two horizons – long and short. Long horizon is defined by corresponding
frequencies of cycles of 3 years and longer, and short horizon by frequencies
of cycles shorter than 3 years.11 The procedure for obtaining these betas is
explained below.

The intuition behind the TR model defined in 2.20 is that the relative TR
betas will be zero in the case of Gaussian data, and no association between
tail risk and the risk premium should be documented since risk is perfectly
described by variance. On the other hand, if the data distribution is not Gaus-
sian, the relative TR betas will be significantly di�erent from zero, and the
significance of the estimated price of risk captures the pricing e�ect of the TR
over the conventional measure of dependence based on the contemporaneous
correlation. We explicitly wish to investigate whether the dependence infor-
mation over the classical assumptions is a significant determinant of the excess
returns, so it is not important whether the CAPM model is true or not.

This specification also relates to the models recently proposed in the liter-
ature.12 First, model of Bandi and Tamoni (2021) builds on the consumption
CAPM model and thus use consumption as their proxy for risk when evaluat-
ing pricing implications of the frequency-dependent risk. Second, Bandi et al.
(2021) use the market factor for their analysis of the cross section of asset
returns using spectral decomposed factors. In contrast to these attempts, we
consider horizon-specific risk in in tails.

From the TR perspective, the proposed model also relates to the model
of Bollerslev et al. (2020), who investigate the pricing implications of the co-
occurrence of the downside events of both market and asset returns. In contrast
to our model, Bollerslev et al. (2020) does not consider the horizon over which
these risks unfold.

10Note that all the risk measures (in line with the literature) present in the paper are
calculated using excess returns.

11In Appendix 2.D, we perform a robustness check by defining the horizons using 1.5 years
as a threshold and the results do not qualitatively di�er. Di�erent specifications are available
upon request.

12Baruník and Kley (2019) features a toy example of TR risk estimated on asset returns
as well, but they do not investigate any asset pricing implications of the estimated risk.
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2.4.2 Extreme Volatility Risk

Assets with high sensitivities to innovations in aggregate volatility have low av-
erage returns (Ang et al. 2006). We further focus on extreme events in volatility
and investigate whether dependence between extreme market volatility and tail
events of assets is priced across assets. Because time of high volatility within
the economy is perceived as time with high uncertainty, investors are willing to
pay more for the assets that yield high returns during these tumultuous periods
and thus positively covary with innovations in market volatility. This drives
the prices of these assets up and decreases expected returns. This notion is
formally anchored in the intertemporal pricing model, such as the intertempo-
ral CAPM model of Merton (1973) or Campbell (1993). According to these
models, market volatility is stochastic and causes changes in the investment
opportunity set by changing the expected market returns or by changing the
risk-return trade-o�. Market volatility thus determines systematic risk and
should determine the expected returns of individual assets or portfolios. More-
over, we assume that extreme events in market volatility play a significant role
in the perception of systematic risk and that exposure to them a�ects the risk
premium of assets.

In addition, decomposition of volatility into the short run and long run when
determining asset premiums was proven to be useful (Adrian and Rosenberg
2008). Moreover, Bollerslev et al. (2020) incorporated the notion of downside
risk into the concept of volatility risk and showed that stocks with high negative
realized semivariance yield higher returns. Farago and Tédongap (2018) exam-
ine downside volatility risk in their five-factor model and obtain a model with
negative prices of risk of the volatility downside factor, yielding low returns
for assets that positively covary with innovations of market volatility during
disappointing events. Thus, we want to investigate which horizon and part
of the joint distribution of market volatility and asset returns generate these
findings.

We assume that assets that yield highly negative returns during times of
large innovations of volatility are less desirable for investors, and thus, holding
these assets should be rewarded by higher risk premiums. In addition, we as-
sume that such risk will be horizon specific. To measure the extreme volatility
risk, we define the beta that will capture the joint probability of co-occurrences
of negative asset returns and the extreme increment of market volatility across
horizons. Because of the nature of covariance between indicator functions, we



2. Quantile Spectral Beta: A Tale of Tail Risks, Investment Horizons, and Asset
Prices 34

work with negative market volatility innovations ≠�‡2
t

= ≠(‡2
t

≠ ‡2
t≠1), where

we estimate ‡t with a popular GARCH(1,1). Then, the high volatility incre-
ments correspond to low quantiles of the distribution of the negative di�erences.
If an asset positively covaries with increments of market volatility, the extreme
volatility risk beta will be small, and vice versa. This is in contrast to most of
the measures employed in similar analyses. We define the beta that captures
extreme volatility risk across horizons as

—ri
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(2.21)

Threshold values for asset returns are obtained in the same manner as for tail
market risk and are derived from the distribution of the market returns, which
means that qrm

(·) is used as an asset threshold value. For example, for model
with · = 0.05, when computing extreme market volatility beta, as a threshold
for negative innovations of market squared volatility, we use the 5% quantile of
its distribution (corresponding to the 95% quantile of the original distribution),
and the threshold for asset return is set to the 5% quantile of the distribution
of market returns.

Our second model, the extreme volatility risk (EVR) model, will test the
significance of EVR betas and is defined as

E[re

i,t+1] =
2ÿ

j=1
—ri

�‡2(�j; ·)⁄EV(�j; ·) + —ri

CAPM⁄CAPM, (2.22)

where, as in the case of the TR model, we include the CAPM beta to control
for the corresponding risk premium. In line with the results of the current
literature (e.g., Boons and Tamoni (2015), Boguth and Kuehn (2013), or Adrian
and Rosenberg (2008)), we expect positive prices of risk corresponding to EVR
betas. This is because EVR betas measure the dependence between extremely
high increments of market volatility (i.e., low values of negative innovations
of market volatility) and low values of asset returns. Therefore, if an asset
yields low returns in times of high market volatility, investors will require high
premiums to hold it. Note that our EVR model closely relates to the model of
Farago and Tédongap (2018), who introduces downside volatility betas without
the frequency aspect of the risk.
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Unlike the TR model, the EVR model does not take into consideration the
Gaussianity of the data. The estimated price of EVR will directly measure
the pricing implication of extreme dependence between market increments of
volatility and asset returns.

2.4.3 Full model

Finally, to show the independence of the two horizon-specific tail risks, we
also combine them into the third model that includes both tail market risk
and extreme market volatility risk for both short- and long-run horizons, again
controlling for a traditional CAPM beta. The model possesses the following
form

E[re

i,t+1] =
2ÿ

j=1
—rm,ri

rel
(�j; ·)⁄TR(�j; ·) +

2ÿ

j=1
—ri

�‡2(�j; ·)⁄EV(�j; ·) + —rm,ri

CAPM⁄CAPM.

(2.23)

We denote this model as the full model. Assuming that TR and EVR are
priced, using this model, we will investigate whether these risks are subsumed
by each other or whether they describe independent dimensions of priced risk.

Throughout the paper, we focus on results for · equal to 1%, 5%, 10%, 15%,
20%, and 25%. The choice of 1%, 5% and 10% quantiles is natural and arises
in many economic and finance applications. Most likely, the most prominent
example is value-at-risk, which is a benchmark measure of risk widely used in
practice and studied among academics. Remaining values of · , i.e., 15%, 20%,
and 25% capture general downside risk and thus more probable negative joint
events.

2.4.4 Estimation

To test our models, we use the standard Fama and MacBeth (1973) cross-
sectional regressions. In the first stage, we estimate all required QS betas,
relative QS betas, and CAPM betas for all assets. We define two nonover-
lapping horizons: short and long. Horizon is specified by the corresponding
frequency band. We specify the long horizon by frequencies with correspond-
ing cycles of 3 years and longer, whereas short horizon indicate frequencies with
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corresponding cycles below 3 years.13. QS betas for these horizons are obtained
by averaging QS betas over corresponding frequency bands.

In the second stage, we use these betas as explanatory variables and regress
average asset returns on them and obtain the model fit. We assess the signif-
icance of a given risk by the significance of its corresponding estimated price
14. In the case of the full model, we obtain the statistical inference on the
estimated prices of risk by repeating cross-sectional regression at every time
point, i.e., in every month t = 1, . . . , T , we estimate the model of the following
form:

re

i,t
=

2ÿ

j=1

‚—rm,ri

rel
(�j; ·)⁄t,TR(�j; ·) +

2ÿ

j=1

‚—ri

�‡2(�j; ·)⁄t,EV(�j; ·) + ‚—rm,ri

CAPM⁄t,CAPM.

(2.24)
We obtain T cross-sectional estimates of lambdas for each of the correspond-

ing betas. Then, we estimate the prices of risk by time-series averages of the
lambdas over the whole period

‚⁄k(�j; ·) = 1
T

Tÿ

t=1

‚⁄t,k(�j; ·), j = 1, 2, k = TR, EVR. (2.25)

Standard errors and corresponding t-statistics are computed from ‡2
3

‚⁄k(�j; ·)
4

=

1
T 2

q
T

t=1

3
⁄̂t,k�j; ·) ≠ ‚⁄k(�j; ·)

42
for both horizons j = {1, 2} and risks k =

{TR, EVR}.
The same estimation logic applies to other studied models. To take into

account multiple hypothesis testing, we follow Harvey et al. (2016) and report
t -statistics of estimated parameters (below the actual estimates). The overall
fit of the model is measured from the OLS regression of the average returns of
the assets on their betas. Throughout the paper, we use the root mean squared
pricing error (RMSPE) metric, which is a widely used metric for assessing model
fit in the asset pricing literature, to assess the overall model performance.

As mentioned earlier, we estimate our models for various threshold values
given by the · quantile of market return. Furthermore, in Appendix 2.C.2,
we compare our newly proposed measures with i) classical CAPM ii) down-
side risk model of Ang et al. (2006) (DR1), iii) downside risk model of Lettau
et al. (2014) (DR2), iv) 3-factor model of Fama and French (1993), v) GDA3

13For a robustness check using 1.5 years as a threshold value, see Appendix 2.D
14As shown in Shanken (1992), if the betas are estimated over the whole period, the

second-stage regression is T -consistent.
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and GDA5 models of Farago and Tédongap (2018), and vi) coskewness and
cokurtosis measures. Details regarding the estimation of the risk measures of
the related models are summarized in Appendix 2.E. All the models are esti-
mated for comparison purposes without any restrictions in two stages, similar
to our three- and five-factor models. Thus, GDA3 and GDA5 are, despite
their theoretical background, estimated without setting any restriction to their
coe�cients and are also estimated in two stages.

2.4.5 Finite Sample Size Properties of the Testing Approach

Naturally, there is a question of how the 2-stage procedure with estimates
on frequency bands performs in typical (small) samples, which we encounter in
finance. To give the reader a notion of these properties, we present a simulation
exercise to investigate the statistical size of our testing approach. In each run,
we simulate returns on either 300 or 30 assets to mirror the settings of our
empirical investigation of individual stocks and portfolio returns. Each asset
possesses a length of 720 observations using either the classical CAPM model
or white noise as a data generating process. First, we simulate time series of
returns on the market from the normal distribution N(µ, ‡) with µ = 0.06/12
and ‡ = 0.2/

Ô
12. Second, in the case of the CAPM model, we generate time

series of asset returns by randomly drawing the CAPM beta from the normal
distribution N(—̄, ‡—), where —̄ = 1 and ‡— = 0.5, and then create the return
as

Rit = —iRmt + ‘it, i = 1, . . . , N, t = 1, . . . , T. (2.26)

In the case of the white noise model, we set all the CAPM betas equal to 0.
In the third stage, for every stock, using the simulated data, we estimate their
CAPM betas and QS betas (both TR and EVR) and regress the average returns
on them using specifications of the TR model, EVR model and full model. We
determine the number of cases where we incorrectly reject the null hypothesis
that a given QS beta in a given model is a significant determinant of average
returns. We set the significance level at – = 0.05. Ideally, we would like to
observe the rejection rates of approximately 5%. The results are summarized
in Table 2.1, which show that the rejection rates typically correspond to the
chosen significance level –. This shows the validity of our approach; even for
low values of · and long horizons, there is no significant bias in the rejection
rates.
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Table 2.1: Finite Sample Size Properties of the Testing Approach.

DGP # of assets · Tail market risk Extreme volatility risk Full model

⁄
TR

long
⁄

TR

short
⁄

EV

long
⁄

EV

short
⁄

TR

long
⁄

TR

short
⁄

EV

long
⁄

EV

short

CAPM

N = 300

0.01 0.052 0.046 0.062 0.072 0.060 0.048 0.070 0.080
0.05 0.066 0.062 0.072 0.058 0.066 0.062 0.072 0.058
0.10 0.056 0.046 0.048 0.088 0.068 0.048 0.066 0.088
0.15 0.056 0.046 0.050 0.042 0.048 0.046 0.048 0.038
0.25 0.046 0.054 0.068 0.032 0.056 0.054 0.064 0.030

N = 30

0.010 0.054 0.040 0.056 0.066 0.074 0.052 0.062 0.060
0.05 0.028 0.060 0.042 0.048 0.026 0.054 0.042 0.060
0.10 0.044 0.058 0.048 0.058 0.050 0.058 0.044 0.052
0.15 0.044 0.044 0.048 0.058 0.044 0.038 0.048 0.048
0.25 0.062 0.054 0.068 0.044 0.056 0.060 0.058 0.054

White noise

N = 300

0.01 0.058 0.050 0.064 0.058 0.054 0.056 0.062 0.056
0.05 0.040 0.064 0.068 0.040 0.036 0.064 0.064 0.042
0.10 0.044 0.044 0.054 0.046 0.042 0.042 0.066 0.054
0.15 0.044 0.042 0.060 0.054 0.046 0.046 0.072 0.050
0.25 0.066 0.040 0.040 0.068 0.062 0.038 0.050 0.064

N = 30

0.01 0.054 0.038 0.074 0.060 0.040 0.040 0.066 0.058
0.05 0.050 0.060 0.036 0.038 0.048 0.064 0.038 0.040
0.10 0.046 0.048 0.032 0.048 0.048 0.040 0.034 0.048
0.15 0.052 0.048 0.042 0.060 0.048 0.040 0.038 0.052
0.25 0.044 0.072 0.052 0.050 0.036 0.066 0.060 0.036

Note: Here we report rejection rates of the 2-stage estimation procedure when the assets are generated
using either the CAPM model or white noise. The significance level is set to – = 0.05. The number of
simulations is 500.

2.5 Quantile Spectral Risk and the Cross-Sections
of Expected Returns

Here, we discuss how extreme risks are priced in the cross-section of asset
returns across horizons. We focus on the results from the standard Fama and
MacBeth (1973) cross-sectional predictive regressions of the three main models
and use various cross-sections of asset returns. We show that the quantile
spectral risks are priced heterogeneously across various asset classes. This
provides a great opportunity for investors who prefer to avoid certain risks. By
choosing a specific asset class in which a specific risk is not associated with a
risk premium (i.e., assets with high exposure to this risk do not yield an extra
premium and vice versa), investors can avoid this risk without paying extra
money for it.

First, we investigate returns on individual stocks from the U.S. market.
Next, we use standard Fama-French portfolios sorted on various characteristics.
More specifically, we use 30 industry portfolios, 25 portfolios sorted on size
and value and decile portfolios sorted either on operating profit, investment or
book-to-market. Finally, we use three datasets previously introduced in the
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literature to illustrate some specific phenomena. First, we analyze the dataset
of Lettau et al. (2014), which contains portfolios constructed from various asset
classes. Second, we analyze equity portfolios sorted by cash flow duration of
Weber (2018). Third, we investigate data on investment strategies constructed
across various asset classes from Ilmanen et al. (2021).

We report models estimated for various threshold values given by the ·

quantile of the market return. We report models estimated for the 1%, 5%,
10%, 15%, 20% and 25% quantiles.15 Throughout the paper, market return
is computed using the value-weight average return on all CRSP stocks. As a
risk-free rate, we use the Treasury bill rate from Ibbotson Associates.16

2.5.1 Individual Stocks

We collect our data from the Center for Research in Securities Prices (CRSP)
database on a monthly basis. The sample spans from July 1926 to December
2015; we select stocks with a long enough history to obtain precise estimates
of our measures of risk. While the main results are presented with a sample
of stocks with an available history of 60 years, to study the robustness of our
results on a larger cross-section of data, we also report results based on stocks
with a shorter history of 50 years. On the other hand, one can argue that the
precision of the estimated measures of risk relies on the number of observations
available in the tail; hence, we also report results based on stocks with 70 years
of available history. We report estimation results in Table 2.2.

Models are estimated for di�erent values of the threshold value given by the
· market quantile to capture the di�erent probabilities of event co-occurrences.
The results of the TR model show that the relative TR beta for short horizons
is more significant for low values of · , corresponding to 0.01, 0.05 and 0.10,
while for · Ø 0.15, the relative TR beta becomes significant for long horizons.
This pattern is observed across all three samples, but it is weaker among stocks
with a history of 50 years, especially regarding the prices of risk corresponding
to the long relative TR betas. This result may be caused by the fact that long
relative TR betas require a longer history of data to obtain precise estimates
in comparison to the short TR betas.

Signs of the estimated prices of risk are intuitive. More extreme dependence
between market and asset returns in both horizons leads to a higher risk pre-

15We had to rescale the data of Lettau et al. (2014) and Weber (2018) to be comparable
to the market return.

16All the data were obtained from Kenneth French’s online data library.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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mium, as we may expect. If an asset is likely to deliver poor performance when
the market is in a downturn, this asset is not desirable from the point of view
of an investor, and to decide to hold such asset, she would require a significant
risk premium. From the magnitude of the coe�cients, we infer that investors
price tail risk in the short term more than in the long term. Moreover, it is
important to note that these features are not subsumed by the CAPM beta, as
we explicitly control for it in the model, and report TR betas relative to the
CAPM beta, as discussed above.

Estimation results for the EVR model are captured in the middle panel
of Table 2.2. In this case, parameters are not significant for low values of · ,
but starting with · Ø 0.1, long EVR becomes significantly priced in the cross-
section. On the other hand, short-horizon EVR risk is not significantly priced
for any values of · .

Significant prices of risk corresponding to long-horizon EVR betas for · Ø
0.10 possess intuitive positive signs, as we expected. The EVR betas capture
dependence between extremely high increments of market volatility17 and ex-
tremely low asset returns, and the results are consistent with the current litera-
ture (Boons and Tamoni 2015; Boguth and Kuehn 2013; Adrian and Rosenberg
2008). Moreover, these results are in line with the conclusions of long-run risk
models. We observe few instances of unintuitive negative signs of prices of risk,
but these coe�cients are insignificant and observed mostly for low values of
· , which may be caused by the measurement error for the corresponding be-
tas. We may conclude that EVR betas, especially their long-term component,
provide priced information regarding risk, which is moreover orthogonal to the
information featured in the CAPM beta.

In terms of the RMSPE, the TR model delivers better results than the EVR
model for low values of · , as short TR betas are significantly priced for these
values of · . On the other hand, for higher values of · , the EVR model delivers
improved values of RMSPE, as the long EVR betas for these · values deliver a
significant dimension of risk priced in the cross-section and TR betas possess
higher explanatory power for lower values of · .

Moreover, we identify the fact that there is a complex interplay between
the horizons and parts of the joint distribution priced in the cross-section.
Extreme TR is mostly a short-run phenomenon, and TR associated with more
probable joint events (higher values of ·) is priced with respect to long-term

17Note that we work with negative increments of market volatility when we estimate the
QS betas.
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dependence between the market and assets. On the other hand, EVR is not
significantly priced in cases of extreme joint events, but as unpleasant events
become more probable, the joint dependence between increments of market
volatility and asset return in the long run becomes a significant determinant
of risk premiums. In Table 8 in Appendix 2.D, we present the results for 1.5-
years being the threshold in the definition of the long horizon. The results are
qualitatively very similar, and all the findings from the 3-year horizon hold for
this case.

From the results above, we can conclude that tail market and extreme mar-
ket volatility risks are priced in the cross-section of stock returns across di�erent
horizons. A natural question arises whether these risks capture di�erent infor-
mation or whether one measure can subsume the other. For this purpose, we
test the full model, which contains both risks for a given · level at the same
time. Estimated parameters can be found in the right panel of Table 2.2. We
observe results mostly consistent with the outcomes of the separate TR and
EVR models. Significantly priced determinants of the risk are short-term TR
for low values of · and long-term EVR for the higher values of · , both priced
across assets with expected positive signs. Tail risk is more significant for lower
values of · , meaning that dependence between market return and asset return
during extremely negative events is a significant determinant of the risk pre-
mium. On the other hand, long-term extreme volatility risk is significant for
higher values of · - approximately 0.2. This finding suggests that investors price
downside dependence between asset returns and market volatility but focus on
more probable market situations. We can deduce that the price of long-run
risk mentioned by Bansal and Yaron (2004) is hidden in this coe�cient.

The main deviation of the full model from the results of the separate TR
and EVR models is that the long TR betas for higher values of · become in-
significant, in contrast with the conclusions from the TR model. One potential
explanation for this result is that only a small fraction of the market return fluc-
tuations are due to its long-term component in comparison to the short-term
component, and thus, the risk premium for this risk is only small. Another
explanation is that the long-term aspect of the market tail risk may be fully
captured by the extreme volatility risk, namely, the long TR betas are sub-
sumed by the long EVR betas. This makes sense since variance is much more
persistent than the market return (high portion of variance due to the long-
term component) and thus investors fear the fluctuation in long-term variance
much more than the variance in the short term.
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In Appendix 2.C, we use this data sample and show various features of
the estimated QS betas. We present distributions of the estimated QS betas
to give a notion of their estimated values. Next, we investigate the relation
between QS betas and other risk measures previously proposed in the litera-
ture. Although the QS measures are correlated with some of the other variables
discussed previously in the literature, they do not drive out the QS measures
of risk. Moreover, these variables are, in most cases, subsumed by the vari-
ables from the full model. Our results are in agreement with recent results
of Bollerslev et al. (2020), which show that the dependence characterized by
the co-occurrence of negative asset and negative market returns possesses the
highest explanatory power on the formation of asset returns among all speci-
fications of disaggregated conventional beta. Importantly, we explicitly show
that the premium for this risk is generated by the dependence in the extreme
left tail and by its short-term component. In addition, we extend the analysis
to extreme volatility risk and show that investors focus on more probable joint
negative outcomes that unfold over the long horizon.

2.5.2 Other Portfolios

Finally, we investigate the pricing implication across multiple datasets, includ-
ing popular Fama-French portfolios sorted on various characteristics. We use
30 industry portfolios, 25 portfolios sorted by size and value and decile port-
folios sorted by operating profit, investment or book-to-market portfolios of
Lettau et al. (2014) constructed from various asset classes, equity portfolios
sorted on cash flow duration of Weber (2018) and finally investment strategies
constructed across various asset classes from Ilmanen et al. (2021).

Figure 2.2 summarizes the estimation results for all these data. We report
t≠ statistics of estimated prices of QR risks over all portfolios and across tails,
which gives a general overview of how tail- and horizon-specific risks are priced
across a wide number of portfolios. Appendix 2.F then provides a detailed
summary of all results as well as a data description.
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We conclude that a phenomenon of short-term tail risk (TR) is universally
priced (although with varying magnitude) across most of the datasets. The
results of EVR are slightly more mixed. In the case of individual stocks, it is
mostly the long-term part of the EVR that is priced in the cross-section of the
expected returns. The same is also true for the aggregated dataset of Lettau
et al. (2014). On the other hand, in the case of 25 portfolios sorted on size
and value, the short-term part of EVR is priced. There are also datasets in
which both components of the EVR risk are priced. These include equity port-
folios sorted on cash flow duration of Weber (2018) and investment strategies
constructed using various asset classes of Ilmanen et al. (2021). This hetero-
geneity gives investors the opportunity to follow certain investment strategies
according to their aversion to certain risk in a given horizon.

2.6 Conclusion
We introduce a novel approach for isolating the e�ects of various risk dimen-
sions on the formation of expected returns. Until now, studies have focused
either on exploring downside features of risk or on investigating its horizon-
specific properties. We define novel measures that estimate risk in a specific
part of the joint distribution over a specific horizon, and we show that extreme
risks are priced in a cross-section of asset returns heterogeneously across hori-
zons. Furthermore, we argue that it is important to distinguish between tail
market risk and extreme volatility risk. Tail market risk is characterized by
the dependence between a highly negative market and asset events. Extreme
volatility risk is defined as the co-occurrence of extremely high increases in
market volatility and highly negative asset returns. Negative events are de-
rived from the distribution of market returns, and their respective quantiles
are used to determine threshold values for computing quantile spectral betas.

To consistently estimate the models, data with a su�ciently long history
must be employed. However, if these data are available, our measures of risk
are able to outperform related measures, and their performance is best for low
threshold values, suggesting that investors require a risk premium for holding
assets susceptible to extreme risks. Moreover, we show that the state-of-the-art
downside risk measures do not capture the information contained in our newly
proposed measures. Our results have important implications for asset pricing
models. We show that only taking into account contemporaneous dependence
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averaged over the whole distribution when measuring risk exposure leads to
the omitting of important information regarding the risk.

Future work may explore origins of the quantile spectral risk with a par-
ticular emphasis on the tail risk. From a data generating process perspective,
these attempts could be based on the delayed price adjustment in the spirit of
Bandi et al. (2021). From a preference standpoint, one could relate the quantile
spectral risk to utility models such as power utility, habits, or non-separable
utility specifications and investigate their pricing implications.
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Appendix

2.A Technical Appendix
In this section the proof of the results in Section 2.3.3 is given. Before we
begin, note that by a trivial generalisation of Proposition 3.1 in Kley et al.
(2016) we have that Assumption 1 implies that there exist constants fl œ (0, 1)
and K < Œ such that, for arbitrary intervals Am, Ar µ R, arbitrary times
tm, tr œ Z,

| cum(I{mtm
œ Am}, I{rtr

œ Ar})| Æ Kfl|tm≠tr|. (27)

In addition, we will use the following lemma

Lemma .1. (Baruník and Kley (2019)) Under the assumptions of Theorem 1,
the derivative

(·m, ·r) ‘æ dk

dÊk
fm,r(Ê; ·m, ·r)

exists and satisfies, for any k œ N0 and some constants C, d that are indepen-
dent of a = (am, ar), b = (bm, br), but may depend on k,

sup
ÊœR

----
dk

dÊk
fm,r(Ê; am, ar) ≠ dk

dÊk
fm,r(Ê; bm, br)

---- Æ CÎa ≠ bÎ1(1 + | log Îa ≠ bÎ1|)D.

Following proposition further provides asymptotic properties of Im,r

n,R
(Ê; ·m, ·r)

Proposition 1. (Baruník and Kley (2019)) Assume that (xt)tœZ is strictly
stationary and satisfies Assumption 1. Further assume that the marginal dis-
tribution functions Fm, and Fr are continuous. Then, for every fixed Ê ”= 0
mod 2fi,

3
Im,r

n,R
(Ê; ·m, ·r)

4

(·m,·r)œ[0,1]2
∆

3 1
2fi

D
m(Ê; ·m)Dr(≠Ê; ·r)

4

(·m,·r)œ[0,1]2
, (28)

where D
m(Ê; ·m) and D

r(Ê; ·r), · œ [0, 1], Ê œ R are centered, C-valued Gaus-
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sian processes with covariance structure of the following form

Cov(Dm(Ê; ·m),Dr(Ê; ·r)) = 2fifm,r(Ê; ·m, ·r).

Moreover, the family {Dm(Ê; ·),Dr(Ê; ·) : Ê œ [0, fi]} is a collection of in-
dependent processes. In particular, the weak convergence (28) holds jointly for
any finite fixed collection of frequencies Ê.

For Ê = 0 mod 2fi the asymptotic behaviour of the rank-based copula
cross-periodogram is as follows: we have dj

n,R
(0; ·) = n· + op(n1/2), where the

exact form of the remainder term depends on the number of ties in the process.
Therefore, under the assumptions of Proposition 1, we have Im,r

n,R
(0; ·m, ·r) =

n(2fi)≠1·m·r11Õ + op(1), where 1 := (1, 1)Õ œ R
2.

2.A.1 Proof of the Theorem 2

Proof. By a Taylor expansion we have, for every y, y0 > 0,

1
y

≠ 1
y0

= ≠ 1
y2

0
(y ≠ y0) + 2›≠3

y,y0
(y ≠ y0)2,

where ›y,y0
is between y and y0. Let Rn(y, y0) := 2›≠3

y,y0
(y ≠ y0)2, then

x

y
≠ x0

y0
= x

y
≠ x

y0
+ x

y0
≠ x0

y0
= 1

y0
(y ≠ y0) ≠ x0

y2
0
(x ≠ x0) + rn, (29)

where rn = xRn(y, y0) + (x ≠ x0)2/y2
0

Write fa,b for fa,b(Ê; ·a, ·b), Ga,b for ‚Ga,b

n,R
(Ê; ·a, ·b), and Ba,b for Ba,b,(k)

n
(Ê; ·a, ·b)

and let

x := Ga,b y := Ga,a

x0 := fa,b + Ba,b y0 := fa,a + Ba,a

By Theorem 1 di�erences x≠x0 and y≠y0 are in Op((nbn)≠1/2), uniformly with
respect to ·m, ·r. Under the assumption that nbn æ Œ, as n æ Œ, this entails
Ga,a ≠ Ba,a æ fa,a, in probability. For Á Æ ·1, ·2 Æ 1 ≠ Á, we have fa,a > 0, such
that, by the Continuous Mapping Theorem we have (Ga,a ≠ Ba,a)≠3 æ f≠3

a,a
, in

probability. As Ba,a = o(1), we have y≠3 ≠ y≠3
0 = op(1). Finally, due to

›≠3
y,y0

Æ y≠3
n

‚ y≠3
0 Æ (y≠3

n
≠ y≠3

0 ) ‚ 0 + y≠3
0 = op(1) + O(1) = Op(1),
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we have that Rn(y, y0) = Op((nbn)≠1).
So we have shown that

‚—m,r

n,R
(Ê; ·m, ·r)≠

fa,b + Ba,b

fa,a + Ba,a

= 1
fm,m

3
[Gm,m≠fm,m≠Bm,m]≠ fm,r

fm,m

[Gm,r≠fm,r≠Bm,r]
4

+Op

1
1/(nbn)

2
,

with the Op holding uniformly with respect to ·m, ·r.Furthermore, note that
setting

x := fa,b + Ba,b y := fa,a + Ba,a

x0 := fa,b y0 := fa,a

we have

fa,b + Ba,b

fa,a + Ba,a

≠ fa,b

fa,a

= 1
fa,a

3
Ba,a ≠ fa,b

fa,a

Ba,b

4
+ O(|Ba,a|2 + |Ba,b|2).

By Lemma .1 we have that

sup
·m,·rœ[Á,1≠Á]

----
d¸

dÊ¸
fm,r(Ê; ·m, ·r)

---- Æ CÁ,¸.

Therefore, Bm,r satisfies

sup
·m,·rœ[Á,1≠Á]

----
kÿ

¸=2

b¸

n

¸!

⁄
fi

≠fi

v¸W (v)dv
d¸

dÊ¸
fm,r(Ê; ·m, ·r)

---- = o
1
(nbn)≠1/4

2
,

which implies that

|Ba,a|2 + |Ba,b|2 = o
1
(nbn)≠1/2

2
.

Therefore,

Ò
nbn

Q

a ‚—m,r

n,R
(Ê; ·m, ·r) ≠ fa,b

fa,a¸˚˙˝
=:—m,r(Ê;·m,·r)

≠ 1
fa,a

3
Ba,a ≠ fa,b

fa,a

Ba,b

4

¸ ˚˙ ˝
=:Bm,r,(k)

n (Ê;·m,·r)

R

b

and
Ò

nbn

1
fm,m

3
[Gm,r ≠ fm,r ≠ Bm,r] ≠ fm,r

fm,m

[Gm,m ≠ fm,m ≠ Bm,m]
4

are asymptotically equivalent in the sense that if one of the two converges
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weakly, then so does the other. The assertion then follows by Theorem 1,
Slutzky’s lemma and the Continuous Mapping Theorem.

2.A.2 Construction of pointwise confidence bands for Quan-
tile Spectral Beta

Following Baruník and Kley (2019) and Theorem 2, we construct pointwise
asymptotic (1 ≠ –) level confidence bands for the real and imaginary parts of
—m,r

n,R
(Ê; ·m, ·r) as follows:

C(2)
r,n (Êkn; ·m, ·r) := Ÿ ‚—m,r

n,R
(Êkn; ·m, ·r) ± Ÿ‡m,r

(2) (Êkn; ·m, ·r)�≠1(1 ≠ –/2),

for the real part, and

C(2)
i,n (Êkn; ·,·r) := ⁄ ‚—m,r

n,R
(Êkn; ·m, ·r) ± ⁄‡m,r

(2) (Êkn; ·m, ·r)�≠1(1 ≠ –/2),

for the imaginary part of the quantile spectral beta. Here, � stands for the cdf
of the standard normal distribution,

1
Ÿ‡m,r

(2) (Êkn; ·m, ·r)
22

:= 0‚

Y
____]

____[

0 if m = r

and ·m = ·r,
1
2

1
Cov(Lm,r,Lm,r) + ŸCov(Lm,r,Lr,m)

2
otherwise,

and

1
⁄‡m,r

(2) (Êkn; ·m, ·r)
22

:= 0‚

Y
____]

____[

0 if m = r

and ·m = ·r,
1
2

1
Cov(Lm,r,Lm,r) ≠ ŸCov(Lm,r,Lr,m)

2
otherwise.

where La,b = 1
fa,a

3
Ha,a ≠ fa,b

fa,a

Ha,b

4
. The definition of ‡m,r

(2) (Êkn; ·m, ·r) is moti-
vated by noting that for any complex-valued random variable Z, with complex
conjugate Z̄,

Var(ŸZ) = 1
2

1
Var(Z) + ŸCov(Z, Z̄)

2
; Var(⁄Z) = 1

2
1

Var(Z) ≠ ŸCov(Z, Z̄)
2
,

(30)
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and we have Lm,r = Lr,m. Furthermore, note that ‚—m,r

n,R
(Êkn; ·m, ·r) = 1, if

m = r and ·m = ·r. We have used Cov(La,b,Lc,d) to denote an estimator for

Cov
1
L

a,b(Êkn; ·a, ·b

2
,Lc,d(Êkn; ·c, ·d)

2
.

Recalling the definition of the limit process in Theorem 2 we derive the following
expression:

Cov(La,b,Lc,d) = 1
fa,afc,c

Cov
3
Ha,a ≠ fa,b

fa,a

Ha,b,Hc,c ≠ fc,d

fc,c

Hc,d

4

= Cov(Ha,a,Hc,c)
fa,afc,c

≠ fc,dCov(Ha,a,Hc,d)
fa,af2c,c

≠ fa,bCov(Ha,b,Hc,c)
f2
a,a
fc,c

+ fa,bfc,dCov(Ha,b,Hc,d)
f2
a,a
f2
c,c

,

where we have written fi,j for the quantile spectral density fi,j(Êkn; ·i, ·j), and
Hi,j for the limit distribution H

i,j(Êkn; ·i, ·j

2
for any i, j = a, b, c, d.

Thus, considering the special case where a = c = m and b = d = r, we have

Cov(Lm,r,Lm,r) = 1
f2
m,m

Cov(Hm,m,Hm,m) ≠ fr,m

f3
m,m

Cov(Hm,m,Hm,r)

≠ fm,r

f3
m,m

Cov(Hm,r,Hm,m) + |fm,r|2

f4
m,m

Cov(Hm,r,Hm,r).

and for the special case where a = d = m and c = b = r we have

Cov(Lm,r,Lr,m) = 1
fm,mfr,r

Cov(Hm,m,Hr,r) ≠ fm,r

fm,mf2r,r

Cov(Hm,m,Hr,m)

≠ fm,r

f2
m,m

fr,r

Cov(Hm,r,Hr,r) +
f2
m,r

f2
m,m

f2
r,r

Cov(Hm,r,Hr,m).

Finally, we substitute consistent estimators for the unknown quantities. To do
so we abuse notation using fa,b to denote G̃a,b

n,R
(Êkn; ·a, ·b) and motivated by

Theorem 7.4.3 in Brillinger (1975), we use

3 2fi

n · W k
n

4
◊

S

U
n≠1ÿ

s=1
Wn

1
2fi(k≠s)/n

2
Wn

1
2fi(k≠s)/n

2
G̃a,c

n,R
(·a, ·c; 2fis/n)G̃b,d

n,R
(·b, ·d; ≠2fis/n)

+
n≠1ÿ

s=1
Wn

1
2fi(k≠s)/n

2
Wn

1
2fi(k+s)/n

2
G̃a,d

n,R
(·a, ·d; 2fis/n)G̃b,c

n,R
(·b, ·c; ≠2fis/n)

T

V

(31)
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to estimate Cov(Ha,b,Hc,d).
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2.B Rare Disaster Risk Model and QS Betas
We show how the QS betas relate to the asset pricing model of Nakamura
et al. (2013). Their extension of disaster risk model originally proposed by
Rietz (1988) and Barro (2006) enables disasters to unfold over multiple periods
and partially recover after the disaster. We argue that the QS betas can capture
the complex joint dynamics between consumption growth and equity return.
To do that, we simulate consumption growth and solve for equity return from
three specification of the rare disaster model: 1) Model in which a disaster
unfolds over multiple periods, and then a partial recovery occurs. 2) Model
with unfolding disaster over multiple periods, but the disaster is permanent.
3) Model with one period disaster which is permanent. We assume preferences
of Epstein and Zin (1989) and Weil (1990) and follow Nakamura et al. (2013)
in the estimation procedure using their dataset, solution procedure and values
of preference parameters.18 Namely, we set the CRRA, “ = 6.5, the IES, Â = 2
and the discount factor, — = exp(≠0.034).

Figure 3 presents the main results. The first row of the figure contains
courses of typical disasters with respect to the detrended consumption and
equity return (return on unleveraged consumption claim). We observe that
at the onset of the disaster (first drop of the consumption), there is a visible
contemporaneous drop at equity return, as well. In case of unfolding disasters,
after the end of the disaster period, there is a noticeable positive jump in
the equity return. The lower panel of the figure contains QS betas and their
90% confidence intervals simulated from the respective models. Each model
is simulated 100 times and each simulation produces a time series of length
50,000 years (we simulate yearly observations).

We can see that the dependence in the median (given by the line corre-
sponding to · = 0.50) does not dramatically di�er across the specifications and
is constant over horizons. This implies that using a simple covariance based
measure, we cannot distinguish between joint dynamics across di�erent spec-
ifications. The most important part of the joint structure contain the tails of
the joint distribution over specific horizons. We may think of one period and
permanent specification as a benchmark specification. In this case, on average,
the extreme events occur contemporaneously and thus the beta across horizons
is flat. If we look at the cases with unfolding disasters, the QS betas for the

18The code supplementing Nakamura et al. (2013) can be downloaded from https://eml.
berkeley.edu/~enakamura/papers.html

https://eml.berkeley.edu/~enakamura/papers.html
https://eml.berkeley.edu/~enakamura/papers.html
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Figure 3: QS Betas between Consumption Growth and Equity Return.
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Note: First row depicts typical disasters for various specifications of rare disaster risk model as specified in
Nakamura et al. (2013). Second row captures QS betas and their 90% confidence intervals for those
specifications. For each specification, QS betas are estimated using 100 simulations of consumption growth
series and equity return of length 50,000. Models and parameter values follow Nakamura et al. (2013).

left tail due to the persistency of the disaster posses its peak at the longer hori-
zons. For the case of multiperiod and transitory disaster, the QS betas for the
upper tail are very similar to the QS betas for the lower tail, because after the
end of the disaster, consumption partially recovers over multiple periods, which
mirrors the joint dynamics at the onset of the disaster. On the other hand, in
case of multiperiod permanent disaster, at the end of the disaster, there is a
positive jump in equity return, but there is no recovery in the consumption.
This makes the QS betas peaking at the longer horizons, as there is typically
no contemporaneous positive jump in consumption growth and equity return
at the end of the disaster.
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2.C Features of QS Betas

2.C.1 Summary Statistics about Quantile Spectral Betas

Table 3: Descriptive Statistics.

· = 0.05 · = 0.10

—
CAP M

—
rel

long
—

rel

short
—

EV R

long
—

EV R

short
—

CAP M
—

rel

long
—

rel

short
—

EV R

long
—

EV R

short

Mean 1.068 0.310 0.098 0.726 0.016 1.068 0.197 0.051 0.632 0.015
Median 1.084 0.324 0.096 0.715 0.016 1.084 0.191 0.048 0.634 0.016
St. Dev. 0.372 0.208 0.083 0.296 0.065 0.372 0.164 0.064 0.212 0.051

—
CAP M 1.000 0.234 -0.188 0.595 0.041 1.000 -0.040 -0.100 0.435 0.066
—

rel

long
0.234 1.000 0.147 0.688 0.032 -0.040 1.000 0.275 0.595 0.055

—
rel

short
-0.188 0.147 1.000 -0.062 -0.053 -0.100 0.275 1.000 0.104 -0.073

—
EV

long
0.595 0.688 -0.062 1.000 0.025 0.435 0.595 0.104 1.000 0.112

—
EV

short
0.041 0.032 -0.053 0.025 1.000 0.066 0.055 -0.073 0.112 1.000

Note: Table summarizes basic descriptive statistics and correlation structure for all betas from our Full
model for the two choices of the quantile levels. Betas are computed using CRSP database sampled between
July 1926 and December 2015. Presented results are computed on our largest sample, i.e., using stocks with
at least 50 years of history. Long horizon is given by frequencies corresponding to 3-year cycle and longer.

We are interested to see what distributions of estimated quantile spectral
betas reveal, and so we display the unconditional distribution of the estimated
betas used in the TR, EVR and Full models. Table 3 summarizes descriptive
statistics for all estimated betas. We focus on two values of · - 0.05, and 0.10,
and present cross-sectional means, medians and standard deviations of the es-
timated parameters in the top panel. We observe that all the betas are on
average positive. This is particularly interesting for relative TR betas, which
means that, roughly speaking, average stock posses higher tail dependence with
market than suggested by the simple covariance based measures. Bottom panel
of Table 3 presents correlation structure of TR, EVR and CAPM betas. We
observe higher values of correlation between long-term betas, and also between
long-term EVR and CAPM betas. Nevertheless, all these correlation are far
below 1, which suggests that all the variables may posses di�erent and po-
tentially important information regarding the risk associated with the assets.
Another interesting observations is that the relative TR betas, both long- and
short-term, are almost uncorrelated with the CAPM betas, which is exactly
what we want to see given their definition.

To further visualize the distributional features, Figure 4 presents uncondi-
tional distributions of the betas for four di�erent threshold value for quantile
levels. We observe the highest dispersion of betas for the lowest values of ·

corresponding the the most extreme case. As we move to higher values of · ,
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the distributions exhibit less and less variance. Moreover, the distribution of
long-term betas is wider than the distribution of the short-term betas for the
respective risks.

Figure 4: Distribution of TR and EVR betas at di�erent tails.
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Note: Plots display kernel density estimates of the unconditional distribution of the short-term and
long-term TR and EVR betas. Presented results are computed on our largest cross-section, i.e., using
stocks with at least 50 years of history. Long horizon is given by frequencies corresponding to 3-year cycle
and longer.

2.C.2 Robustness Checks: Tail Risk across Horizons and
Other Risk Factors

Large number of other risk factors and firm characteristics have been docu-
mented by the literature as significant drivers of the cross-sectional variation
in equity returns (Harvey et al. 2016). While we do not attempt to include the
whole exhaustive set of all controls, we would like to see if our newly defined
risk factors are not subsumed by a subset of prominent variables, as well as
variables related to the tails and moments of the return distribution. Hence we
naturally focus on the downside measures and we use downside risks proposed
by Ang et al. (2006), downside risk beta specification of Lettau et al. (2014)
as well as recently proposed five factor generalized disappointment aversion
(GDA5) model by Farago and Tédongap (2018). Further we use coskewness
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and cokurtotis measures, as well as size, book-to-market and momentum factors
used by Fama and French (1993).

To investigate whether our newly proposed measures of risk can be driven
out by other determinants of risk proposed earlier in the literature, we include
these risks as control variables in the previous regressions. First, we focus on
the GDA5 model proposed by Farago and Tédongap (2018) as these are the
risks most closely related to ours. It contains two measures of tail market
risk as well as two measures of extreme volatility risk, but focuses on various
specifications of downside dependence and does not take into consideration
frequency aspect of the risks. Based on these related measures, we compare
risk measures associated with market return, and market volatility increments
separately. The aim of this analysis is to decide which measures of risk better
capture the notion of extreme risks associated with risk premium. The detailed
specification of the corresponding betas can be found in Appendix 2.E.

Table 4 reports the risk premium of our quantile spectral risks controlled
for the GDA5 risks. In case of tail market risk presented in left panel, we see
that GDA5 measures of risk (⁄D and ⁄W D) do not drive out our measures for
any value of · and remain insignificant when we include our TR measures.
Moreover, the pattern of prices of risk corresponding to TR betas remain the
same as in the TR and Full model specifications. This clearly suggests that our
measures captures the asymmetric features of risk priced in the cross-section
of assets.

In case of extreme volatility risk, we see from the right panel of Table 4 that
the situation is similar. Especially, the price of risk for long-term EVR betas
stays significantly strong for higher values of quantile. In addition, short-term
EVR betas emerge as a significant predictors for the lower values of · . On the
other hand, GDA5 measures of volatility risk remain insignificant in all of the
cases. All the results suggest that our model brings an improvement in terms
of identifying form of asymmetric risk which is priced in the cross-section of
asset returns.

From these results, we can infer that our QS measures may potentially
provide an additional information not captured by other risk measures. To
further investigate this hypothesis, we present correlation structure of our QS
measures with all other highly discussed asset pricing risk measures in Figure
5. Details regarding their specifications are contained in the Applendix 2.E.
We plot dependence between them and the QS measures with respect to the
value of quantile of the threshold value. Generally, our measures posses the
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Figure 5: Correlations with Other Risk Measures.
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Note: Plots display correlations between the QS betas and various other risk measures widely used in the
asset pricing literature using CRSP database between July 1926 and December 2015. Presented results are
computed on our largest sample, i.e., using stocks with at least 50 years of history. Long horizon is given by
frequencies corresponding to 3-year cycle and longer.

highest correlation with coskewness and cokurtosis and market beta (computed
using FF3 specification) in the extreme left tail and long horizon, while they
show high correlation with downside risk measures in extreme left tail at short
horizon. This suggests that downside risk measures capture short-term risk
while moment-based risk measures are more related to the extreme volatility
in the long-term. Although the correlations in few cases exceed 0.5 in absolute
value, all the values are well below 1 suggesting potentially important additional
information regarding the risk.

Next, we check whether these measures can drive out our QS measures in the
cross-sectional estimation. Table 5 reports the results of risk prices controlled
for coskewness and cokurtosis risks. We first include coskewness into our Full
model and check whether it can drive out our risk measures. We can see that
although the coskewness is significant, it does not drive out our QS measures,
which follow the same pattern as in the case of previous specifications of the
models. Table 5 also reports in the right panel horse race regression including
cokurtosis. We observe that cokurtosis does not bring any new explanatory
information when included in our full model, as the corresponding estimated
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coe�cients for cokurtosis are insignificant for all specifications.
In addition, Table 6 reports the results controlled for the two specification

of relative downside betas. In the left panel, we report results with downside
risk specification of Ang et al. (2006). We observe that the downside risk beta
does not capture any additional important dimension of risk when included in
our full model specification. The same is true for the downside risk model of
Lettau et al. (2014), which is captured in the right panel.

Finally, Table 7 reports regressions including additional betas from the
three-factor model of Fama and French (1993).19 This model is not explic-
itly related to the asymmetric features of market or volatility risk, but as we
show in the Section 2.3, these factors may be just capturing market risk in
di�erent horizons in specific parts of the joint distribution of market and asset
returns, so we should check whether they are not superior in describing these
kind of risks. As in the case of other horse race regressions, the additional risk
factors do not drive out the QS measures, which repeat the same pattern as in
the cases without the additional variables.

2.D Di�erent Definition of Long horizon - 1.5 years

19We have to include only 2 additional betas as the market beta is already included in our
full model.
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Appendix 69

Table 7: Estimated Coe�cients of the Full Models Controlled for
Fama and French (1993) Factors.

· ⁄
SMB

⁄
HML

⁄
TR

long
⁄

TR

short
⁄

EV

long
⁄

EV

short
⁄

CAPM RMSPE

70 years
(142 assets)

0.01 0.035 -0.050 0.133 0.636 -0.217 -0.174 0.838 26.281
0.266 -0.280 0.960 3.276 -1.558 -0.569 4.206

0.05 -0.073 -0.181 0.401 1.108 -0.238 0.093 0.893 26.349
-0.550 -1.034 1.238 3.072 -0.989 0.186 4.007

0.1 -0.009 -0.200 0.187 0.888 0.276 0.076 0.674 26.119
-0.066 -1.188 0.562 1.777 1.101 0.112 3.093

0.15 0.001 -0.165 0.376 0.612 0.231 0.289 0.702 25.969
0.010 -0.949 1.232 1.068 1.044 0.416 3.504

0.2 0.090 -0.150 0.016 0.535 0.712 -0.259 0.609 25.052
0.685 -0.869 0.050 0.827 2.965 -0.341 3.107

0.25 0.067 -0.150 0.118 0.171 0.753 -0.731 0.691 25.349
0.517 -0.873 0.359 0.251 2.759 -0.962 3.604

60 years
(267 assets)

0.01 -0.149 0.040 0.198 0.389 -0.233 0.281 0.851 29.218
-1.184 0.252 1.657 2.622 -1.979 1.053 4.481

0.05 -0.175 -0.016 0.291 1.216 -0.204 0.552 0.827 28.377
-1.434 -0.101 1.035 3.859 -1.018 1.410 3.858

0.1 -0.121 -0.051 0.063 0.996 0.255 0.341 0.650 28.578
-0.978 -0.333 0.216 2.589 1.152 0.676 3.045

0.15 -0.143 -0.052 0.414 0.837 0.025 0.442 0.751 28.833
-1.182 -0.340 1.561 1.831 0.137 0.821 3.926

0.2 -0.060 -0.054 -0.151 0.709 0.640 -0.261 0.618 28.464
-0.492 -0.359 -0.559 1.550 3.120 -0.448 3.258

0.25 -0.102 -0.059 0.014 0.623 0.505 -0.534 0.726 29.051
-0.850 -0.388 0.055 1.243 2.506 -0.940 4.000

50 years
(528 assets)

0.01 -0.087 0.006 -0.005 0.457 -0.081 0.493 0.874 29.354
-0.761 0.041 -0.063 3.577 -0.921 2.582 4.805

0.05 -0.088 -0.051 0.135 1.172 -0.213 0.708 0.905 28.909
-0.806 -0.361 0.604 4.502 -1.349 2.251 4.504

0.1 -0.044 -0.096 0.022 0.791 0.137 0.120 0.774 29.182
-0.394 -0.697 0.092 2.507 0.781 0.289 3.917

0.15 -0.095 -0.126 0.612 0.730 -0.347 0.153 0.950 29.086
-0.854 -0.919 2.645 1.926 -2.262 0.344 5.144

0.2 -0.042 -0.084 0.091 0.682 0.201 -0.306 0.804 29.402
-0.376 -0.613 0.422 1.710 1.202 -0.652 4.429

0.25 -0.055 -0.090 0.101 0.914 0.163 -0.166 0.835 29.519
-0.499 -0.662 0.476 2.004 1.033 -0.354 4.793

Note: Displayed are prices of risk of full models also including either HML and SMB betas of Fama and
French (1993). We use CRSP database between July 1926 and December 2015. Models are estimated for
various values of thresholds given by · . We employ 3 samples with varying number of minimum years.
Long horizon is given by frequencies corresponding to 3-year cycle and longer. Below the coe�cients, we
include Fama-MacBeth t-statistics.
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2.E Specification of the Related Models
In this section, we briefly describe the specification of the models we use in
the Appendix 2.C.2. We denote market excess return as rm and its mean and
variance as µm and ‡2

m
, respectively. Excess return of an asset is denoted as ri

with mean µi and variance ‡2
i
.

We present how we estimate betas in the first-stage regression. The second-
stage regression is the same for all the models and is performed via OLS by
regressing the average asset returns on their betas. This then leads to the
estimated values of RMSPE.

2.E.1 Downside Risk Models

We follow two specifications of the downside risk models. First, we use spec-
ification of Ang et al. (2006) and estimate their relative downside risk betas
as

—DR1
i

© —≠
i,µm

≠ —i = Cov(ri, rm|rm < µm)
Var(rm|rm < µm) ≠ Cov(ri, rm)

Var(rm) . (32)

Downside risk beta specification of Lettau et al. (2014) is then obtained as

—DR2
i

© —≠
i,”

≠ —i = Cov(ri, rm|rm < ”)
Var(rm|rm < ”) ≠ Cov(ri, rm)

Var(rm) (33)

where we define the threshold value as ” © µm ≠ ‡m.

2.E.2 Generalized Disappointment Aversion Models

We employ specification of Generalized Disappointment Aversion (GDA) mod-
els of Farago and Tédongap (2018) and estimate two main versions of their
cross-sectional models. Their models are based on disappointment events Dt.
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GDA3

First model is their three-factor model, which does not contain volatility-related
factors. The betas posses the following form

—i,m © Cov(ri, rm)
Var(rm) (34)

—i,D © Cov(ri, I(D))
Var(I(D)) (35)

—i,mD © Cov(ri, rmI(D))
Var(rmI(D)) (36)

where we follow the specification and set Dt = {rm,t < b} where b = ≠0.03 and
I is an indicator function.

GDA5

Five-factor specification of the GDA model contains, in addition to the betas
from the three-factor model, the following betas

—i,X © Cov(ri, �‡2
m

)
Var(�‡2

m
) (37)

—i,XD © Cov(ri, �‡2
m

I(D))
Var(�‡2

m
I(D)) (38)

where the disappointment events are given by Dt =
;

rm,t ≠ a‡m

‡X

�‡2
m,t

< b
<

where �‡2
m,t

are increments of market volatility, ‡2
X

= Var(�‡2
m

), a = 0.5 and
b = ≠0.03.

2.E.3 Coskewness and Cokurtosis

Following work of Kraus and Litzenberger (1976); Harvey and Siddique (2000);
Dittmar (2002); Ang et al. (2006), we estimate the coskewness and cokurtosis
as

CSKi © E[(ri ≠ µi)(rm ≠ µm)2]
Ò
E[(ri ≠ µi)2]E[(rm ≠ µm)2]

, (39)

CKTi © E[(ri ≠ µi)(rm ≠ µm)3]
Ò
E[(ri ≠ µi)2]E[(rm ≠ µm)3/2]

. (40)
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2.E.4 Fama-French Three-Factor Model

Betas of the three-factor model of Fama and French (1993) are estimated via
time-series regression of excess asset return on three factors: SMB (obtained
by sorting stocks based on their size), HML (obtained by sorting stocks based
on their book-to-market vale) and MKT (market factor)

ri,t = –i + —SMB

i
SMBt + —HML

i
HMLt + —MKT

i
MKTt + ei,t. (41)

Factor data were obtained from Kenneth French’s online data library.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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2.F Detailed Description of the Portfolio Results

2.F.1 Fama-French Portfolios

In this section, we employ two sets of Fama-French portfolios. First set con-
tains two samples: 25 portfolios double-sorted on size and value and 30 industry
portfolios. These two datasets were chosen because they posses the longest his-
tory available across all the Fama-French portfolios. Their time span ranges
between July 1926 and April 2020. Second set contains three datasets of port-
folios sorted on the following characteristics: operating profit, investment and
book-to-market. Portfolios sorted on operating profit and investment posses
significantly shorter history of observations between July 1963 and March 2020.

Regarding the first dataset, the results are summarized in Table 9. In
the case of portfolios double sorted on size and value, the short component
of QS and short component of EVR risks are priced. Regarding the industry
sorted portfolios, only the short term TR is consistently priced across the model
specifications. For those investors who fear the high volatility states, these
results suggest that the more appropriate strategy involves investing based on
the industries rather than size and value, as you do not have to pay a premium
for portfolios that posses low EVR betas - portfolios whose extreme negative
returns are less probable to co-occur with extreme positive increments of market
volatility.

The second set of portfolios include equities sorted on operating profit,
investments and book-to-market. The results are given in the Table 10. Gen-
erally, short TR is priced across these portfolios with the expected sign. On the
other hand, using the portfolios sorted on investment, there is a strong nega-
tive relation between long TR and asset returns, which may seem unintuitive.
Regarding the EVR, its short term part is priced across investment portfolios
and book-to-market portfolios.

2.F.2 Other Portfolios

In this section, we provide analysis of QS risk performed on other widely used
datasets. The estimated models are reported in Table 11. First, we focus on
portfolios employed in Lettau et al. (2014). This dataset contains portfolios
formed across multiple asset classes. First, the dataset contains 6 currency
portfolios sorted on interest rate di�erential (we exclude high inflation cur-
rencies similar to the approach of Lettau et al. (2014)). Second, we have 5
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commodity futures portfolios sorted on basis. Third, we include returns on 5
corporate bond portfolios sorted on credit spread. And fourth, we have equity
portfolios sorted on various characteristics (6 double sorted on size and value,
5 on CAPM beta, 5 on industry, 6 double sorted on momentum and size).20

Here, we present results for the aggregated dataset. This dataset was intro-
duced to show the usefulness of downside risk beta for pricing. From the results
we can conclude that the short component of TR for most · threshold values is
priced using the aggregated dataset. Its long component is significant for some
medium values of · . Regarding the EVR, its short term component for lower
values of · is priced as well.

Second, we look at the equity portfolios sorted on cash flow duration pro-
posed in Weber (2018). The results can be found in the second section of Table
11. Similarly as in the previous case, short term part of TR is priced across
these portfolios. On the other hand, its long term part is negatively priced
across these assets, which may be counterintuitive. The EVR is priced using
its both components.

Finally, we use returns on factors constructed from various asset classes from
Ilmanen et al. (2021). This dataset was chosen because of its long history and
because it spans many asset classes including U.S. and international equities,
fixed income assets, currencies and commodities using value, momentum, carry,
defensive and multi-style type of investment strategy. We report the results in
the third panel of Table 11. We can see that using the TR model, the long term
TR is priced, and both parts of EVR are priced. But if we look at the results
of the Full model, only the EVR coe�cients remain consistently significant.

20We do not include option portfolios because they have short history starting in 1986,
which is not suitable for our analysis.
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Chapter 3

Common Idiosyncratic Quantile
Risk1

We identify a new type of risk that is characterised by commonalities in the
quantiles of the cross-sectional distribution of asset returns. Our newly pro-
posed quantile risk factor is associated with a quantile-specific risk premium
and provides new insights into how upside and downside risks are priced by in-
vestors. In contrast to the previous literature, we recover the common structure
in cross-sectional quantiles without making confounding assumptions or aggre-
gating potentially non-linear information. We discuss how the new quantile-
based risk factor di�ers from popular volatility and downside risk factors, and
we identify where the quantile-dependent risks deserve greater compensation.
Quantile factors also have predictive power for aggregate market returns.

3.1 Introduction
The question of how relevant the information contained in di�erent parts of
the return distribution is to an investor has received considerable attention in
the recent empirical asset pricing literature (Ang et al. 2006; Van Oordt and
Zhou 2016; Chabi-Yo et al. 2018; Lu and Murray 2019), with number of stud-
ies focusing on the tails or extremes in the cross-section of returns (Kelly and
Jiang 2014; Chabi-Yo et al. 2022). These studies typically rely on assumptions

1This chapter was co-authored with Jozef Baruník and is currently R&R in the Review of

Finance. We appreciate helpful comments from participants at the 2023 Financial Economet-
rics Conference (Lancaster), the 2022 Haindorf Seminar (Hejnice, Humboldt U. & Charles
U. joint seminar), the 2022 STAT of ML (Prague), and University of Sussex (Brighton) sem-
inar. Support from the Czech Science Foundation under the 19-28231X (EXPRO) project is
gratefully acknowledged.
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about moment conditions as well as the existence of a model that generates
returns. In contrast to the literature, our aim is to use conditional quantiles
of observed returns to capture set of nonlinear factors that provide finer char-
acterization of risk. In particular, we want to explore the common, possibly
non-linear movements in the panel of the firm’s idiosyncratic quantiles. In do-
ing so, we remain agnostic about the data generating process. We believe that
such structures provide richer information for investors than the information
that can be obtained by making assumptions about the moments. In partic-
ular, we will identify where quantile-dependent risk exposures deserve greater
compensation. Both volatility and downside risk measures hide such details
while aggregating information about risk.

The information captured by quantile-dependent factors can be related to
the behaviour of investors with quantile preferences (de Castro and Galvao
2019). Quantiles contain rich information because they capture heterogeneity
in risk and allow the separation of risk aversion and elasticity of intertemporal
substitution. Our main interest is to show that there are strong common factors
across quantiles of the cross-sectional distribution of asset returns that are more
informative about investors’ compensation requirements. We argue that such
risk is distinct from other types of risk associated with the distribution of
returns, such as downside risk or volatility risk. The quantile-dependent risk
premia associated with such factors are then used to generalise notion of upside
risk and downside risk.

Just as quantile regression extends classical linear regression, our quantile
factor model of asset returns extends the approximate factor models used in
the empirical asset pricing literature. In the spirit of the popular Principal
Component Analysis, which recovers the conditional mean, we work with more
general quantile factor models (QFMs). These are flexible enough to capture
quantile-dependent objects that cannot be captured by standard tools. Un-
like standard principal component analysis, quantile factor models are able to
capture hidden factors that shift distributional properties such as moments or
quantiles. Moreover, these factors can vary across the distribution of each unit
in the panel, allowing the factors to be properly inferred when the idiosyncratic
error distributions have heavy tails. Importantly, such factors di�er from the
usual mean and volatility factors when we abandon the traditional location
and scale shift model structure and allow for more general, possibly unknown,
data generating processes. In e�ect, quantile-dependent risk is treated as con-
stant in factor models based on such assumptions. Downside risk models then
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aggregate the quantiles, usually under some distributional assumption.
Our main contribution is to investigate the pricing implications of common

non-linear factors that are quantile specific for the predictability of aggregate
market returns and the cross-section of stock returns. We are interested in
factors that identify the risk premium associated with di�erent quantiles of
the return distribution in terms of both downside (or tail) risk and upside
potential. Our approach will identify new information about risk beyond the
usual moments associated with tail risks. To this end, we use the quantile
factor model of Chen et al. (2021) and investigate the pricing implications
of quantile-dependent factors while controlling for various linear factors and
exposures to them. Our objective is also motivated by the increasing evidence
of non-linearities in equity markets.2 We aim to show that the common quantile
risk present in the stock return data carries di�erent information from the
common volatility and downside risks. Our quantile dependent factors also
carry strong information for both the cross-section of asset returns and the
time series predictability of the equity premium.

We begin by identifying common factor structures in the idiosyncratic quan-
tiles of stocks in the Center for Research in Security Prices (CRSP) over a
sample spanning 1960 to 2018. We discuss the relationship with volatility and
downside risk factors and show that quantile factors have predictive power for
aggregate market returns. Predictive regressions show that a one standard de-
viation increase in quantile risk predicts a statistically significant increase in
annualised excess market returns of up to 7.05% in the case of the left tail.
These results hold out-of-sample, are stronger for the left tail, and are robust
to controlling for a wide range of popular predictors studied by Welch and
Goyal (2007), as well as tail risk (Kelly and Jiang 2014), common volatility
risk (Herskovic et al. 2016), and variance risk premium (Bollerslev et al. 2009).
We also document the predictive power of the upper tail factor with a smaller
e�ect of up to 3.50% increase in annualised returns, hence the e�ect is asym-
metric. Moreover, the predictive power of the upper tail factors disappears
when looking at the out-of-sample performance.

We also find that idiosyncratic quantile risk has significant predictive power
for the cross-section of average returns. We show that stocks with high loadings
of past quantile risk in the left tail earn up to an annual six-factor alpha of

2E.g., Amengual and Sentana (2020) report a non-linear dependence structure in short-
term reversals and momentum. Ma et al. (2021) show that many firm-level characteristics
have a complex relationship with returns in terms of quantiles.
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8.57% higher than stocks with low tail risk loadings for 0.2 quantiles. This risk
premium is not subsumed by other commonly priced factors such as common
volatility, tail and downside risk, and other popular risk factors. Investors thus
have a strong aversion to tail risk with respect to the common movements in
idiosyncratic returns. On the other hand, the absence of the risk premium
associated with the factors for the upper quantiles suggests that investors are
not upside potential seekers. Both results are consistent with the literature on
the impact of asymmetric dependencies on asset prices.

Our work is related to several strands of the literature. The first relates
to the factor-based asset pricing models that are very popular in the empir-
ical pricing literature (Ross 1976; Fama and French 1993; Kelly et al. 2019).
In sharp contrast to this literature, our approach remains agnostic about the
nature of the true data generating process and uses the conditional quantiles
of observed returns without imposing moment conditions.

The second strand to which we contribute is the study of idiosyncratic
risk that co-moves across assets, thus exploring common trends that are not
captured by first moment factors. The bulk of this research is motivated by
the introduction of the idiosyncratic volatility puzzle proposed by Ang et al.
(2006a). Unfortunately, all existing explanations of the anomaly are based on
lottery preferences, market frictions or other factors3 only for 29-54% of the
puzzle using individual stocks Hou and Loh (2016).

The third line of thought that we take into account deals with asymmetric
properties of systematic risk and how they are incorporated into asset prices.
Interest in this type of model was reignited by Ang et al. (2006) and their in-
troduction of downside beta, which captures the covariance between asset and
market returns conditional on the market being below some threshold. Boller-
slev et al. (2021) further decompose traditional market beta into semibetas,
which are characterised by the signed covariation between market and asset
returns. They show that only the semibetas associated with negative market
and asset returns predict significantly higher future returns. More recently,
Bollerslev et al. (2022) argue that betas are granular and associated with a risk
premium that depends on the relevant part of the return distributions.

3For a comprehensive list of references belonging to each of these categories, see Hou and
Loh (2016). The only exception to this observation is the lottery-based explanation using the
highest realised return from the previous month, proposed by Bali et al. (2011) and confirmed
in European markets by Annaert et al. (2013). However, Hou and Loh (2016) argue that
this explanation is not valid as it is an almost perfect collinear range-based measure of
idiosyncratic volatility.
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From a theoretical point of view, there are many justifications for the de-
parture from classical common factor pricing theory to the asymmetric forms
of the utility function. Probably the most relevant for our work is the dynamic
quantile decision maker of de Castro and Galvao (2019), who decides based on
quantile dependent preferences. Barro (2006), building on Rietz (1988), intro-
duced the rare disaster model and showed that tail events may have significant
ability to explain various asset pricing puzzles, such as the equity premium puz-
zle. The other popular model that considers asymmetric features of risk is the
generalised disappointment aversion model of Routledge and Zin (2010), which
inherently assumes that investors are downside averse. Based on these prefer-
ences, Farago and Tédongap (2018) introduced an intertemporal equilibrium
asset pricing model and showed that the disappointment-related factors should
be priced in the cross-section. Moreover, they prove that their model performs
well empirically by jointly pricing di�erent asset classes with significant prices
for the risk associated with the disappointment factors.

There are also attempts to combine the two or three of these research agen-
das. Herskovic et al. (2016) introduced a risk factor based on the common
volatility of firm-level idiosyncratic returns, and showed its pricing capabilities
for the cross section of di�erent asset classes. For example, Kelly and Jiang
(2014); Allen et al. (2012); Jondeau et al. (2019) explore the risks associated
with skewness, tails and extremes. Giglio et al. (2016) estimate quantile-specific
latent factors using systemic risk and financial market distress variables to pre-
dict macroeconomic activity. Much of the research investigating common tail
risk and its implications for asset pricing relies on options data. They argue
that the tail factor identifies additional information beyond the volatility fac-
tor. Andersen et al. (2020) show strong predictive power for future equity risk
premia in US and European equity index derivatives. Bollerslev and Todorov
(2011) combine high-frequency and options data and use a non-parametric ap-
proach to conclude that a large part of the equity and variance risk premia is
related to jump tail risk.

The rest of the paper is structured as follows. Section 3.2 proposes the
quantile factor model for asset returns, discusses the methodology of estimat-
ing the quantile-specific factors and the data we use, and provides the link
to the volatility factors. Section 3.3 presents the results on the time series
predictability of the aggregate market return using the common idiosyncratic
quantile factors. Section 3.4 examines the cross-sectional asset pricing impli-
cations of the proposed factors. Section 3.5 concludes.



3. Common Idiosyncratic Quantile Risk 84

3.2 Common Idiosyncratic Quantile Factors
Researchers usually assume that time variation in equity returns can be cap-
tured by relatively small number of common factors with following structure4

ri,t = –i + —€
i

ft + ‘i,t (3.1)

where ri,t is excess return of an asset i = 1, . . . , N at time t = 1, . . . , T , ft is a
k◊1 vector of common factors and —i is a k◊1 vector of the asset’s i exposures
to the common factors. Such time-series regressions as the one in (3.1) yielding
high R2 are used to identify factors serving as good proxies for aggregate risks
present in the economy. Exposures to the relevant factors captured by —i

coe�cients should be compensated in the equilibrium and explain the risk
premium of the assets

Et[ri,t+1] = —€
i

⁄t (3.2)

where the ⁄t is a k ◊ 1 vector of prices of risk associated with factor exposures.
Importantly, while the arbitrage pricing theory (APT) of Ross (1976) suggests
that any common return factors ft are valid candidate asset pricing factors,
the idiosyncratic return residuals ‘i,t are assumed not to be priced. This impli-
cation is due to many simplifying assumptions, such that an average investor
can perfectly diversify her portfolio or that the linear model (3.1) is correctly
specified.

In these models, only common return factors are valid candidate pricing fac-
tors, and sensitivities to those factors determine the risk premium associated
with an asset (Ross 1976). This strand of literature yields highly successful and
popular results focusing on the parsimonious models (Fama and French 1993),
as well as exploration of statistically motivated latent factors.5 Recently, Kelly
et al. (2019) introduced instrumented principal component analysis, which en-
ables to flexibly model the latent factors with time-varying loadings using the

4Recently, Lettau and Pelger (2020) introduce Risk-Premium Principal Component Anal-
ysis that allows for systematic time-series factors incorporating information from the first and
second moment.

5This approach dates back to Chamberlain and Rothschild (1983) and Connor and Ko-
rajczyk (1986). For a comprehensive overview of machine learning methods applied to asset
pricing problems such as measuring expected returns, estimating factors, risk premia, or
stochastic discount factor, model selection, and corresponding asymptotic theory, see Giglio
et al. (2022).
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observable characteristics.6 In addition, Ma et al. (2021) introduced a semi-
parametric quantile factor panel model that considers stock-specific character-
istics, which may non-linearly a�ect stock returns in a time-varying manner.
They find that many characteristics possess a non-linear e�ect on stock returns.
In contrast to these authors, the approach used in our paper is more general
since it allows not only loadings but also factors to be quantile-dependent.
Moreover, our approach does not require the loadings to depend on observables
and has direct relation of the approximate factor models that are ubiquitous
in the finance literature.

While large literature have focused mainly on the diversification assump-
tion, we aim to question linear nature of the factor model, and our focus is on
exposure to parts of idiosyncratic return’s distribution instead. Recently, Her-
skovic et al. (2016) documents strong comovement in idiosyncratic volatility
that does not arise from omitted factors, and even after saturating the factor
regression with up to ten principal components, residuals that are virtually
uncorrelated display same co-movement seen in raw returns.

While the exposure to common movements in volatility seem to carry strong
pricing implications, we ask if there exist additional structure insu�ciently
captured by volatilities especially in a non-linear and heavy tailed financial
data. In other words, we ask if various parts of the return distributions may
have pricing implications for the cross-section of stock returns.7

In parallel to simple factor structure in idiosyncratic volatility of a panel
of returns recovered commonly by researchers (Ang et al. 2006b; Herskovic
et al. 2016), we aim to recover genuine unobserved structure in idiosyncratic
quantiles. These quantities will be more informative for investors in case of
the heavy-tailed nonlinear data in which the second moment is not su�cient
quantity for capturing risk. We will show the relation of quantile factors to
volatility under some specific model assumptions, relate the proposed factor
model to existing approaches recovering various factor structures from data
and also provide a first look at the quantile factor structures in cross-section of

6Other notable recent contributions to the factor literature are, e.g., Kozak et al. (2018)
and Giglio et al. (2021). The recent availability of high-frequency return data also motivated
the development of continuous-time factor models.Aït-Sahalia et al. (2020) proposed a gener-
alization of the classical two-pass Fama-MacBeth regression from the classical discrete-time
factor setting to a continuous-time factor model and enables uncovering complex dynamics
such as jump risk and its role in the expected returns.

7Ando and Bai (2020) document that the common factor structures explaining the upper
and lower tails of the asset return distributions in global financial markets have become
di�erent since the subprime crisis.
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the U.S. stocks. Importantly, we will show that our quantile dependent factors
carry di�erent information from the structure recovered using volatility or some
popular downside risk measures that require certain moment conditions to be
met.

3.2.1 Quantile Factor Model

To formalize the discussion, we assume the panel of returns of length T and
width N after elimination of common mean factors from the time-series regres-
sion

ri,t = –i + —€
i

ft + ‘i,t (3.3)

to have · -dependent structure ft(·) in idiosyncratic errors that we coin common
idiosyncratic quantile – CIQ(·) – factors, ft(·)

Q‘i,t

5
· |ft(·)

6
= “€

i
(·)ft(·), (3.4)

that implies

‘i,t = “€
i

(·)ft(·) + ui,t(·), (3.5)

where ft(·) is an r(·) ◊ 1 vector of random common factors, and “i(·) is
r(·)◊1 vector of non-random factor loadings with r(·) π N and the quantile-
dependent idiosyncratic error ui,t(·) satisfies the quantile restriction P [ui,t(·) <

0|ft(·)] = · almost surely for all · œ (0, 1).
To estimate the common factors that capture co-movement of quantile-

specific features of distributions of the idiosyncratic parts of the stock returns,
we use Quantile Factor Analysis (QFA) introduced by Chen et al. (2021). In
contrast to the principal component analysis (PCA), QFA allows to capture
hidden factors that may shift more general characteristics such as moments
or quantiles of the distribution of returns other than mean. The methodology
is also suitable for large panels and requires less strict assumptions about the
data generating process as we will discuss in detail here.

The quantile-dependent factors and its loadings can be estimated as

argmin
(“1,...,“N ,f1,...,fT )

1
NT

Nÿ

i=1

Tÿ

t=1
fl·

1
‘it ≠ “€

i
ft

2
(3.6)
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where fl· (u) = (· ≠ 1{u Æ 0})u is the check function while imposing the
following normalizations 1

T

q
T

t=1 ftf€
t

= Ir, and 1
N

q
N

i=1 “i“€
i

is diagonal with
non-increasing diagonal elements. A potential problem that may arise in small
samples is the so-called quantile crossing, that is, the estimated quantiles are
not guaranteed to be monotonic in · . If this occurs, the approach due to Cher-
nozhukov et al. (2010) can be employed to establish monotonicity of the esti-
mated quantiles. In our empirical applications reported later, quantile crossing
never arises.

As discussed in Chen et al. (2021), this estimator is related to the prin-
cipal component analysis (PCA) estimator studied in Bai and Ng (2002) and
Bai (2003) similarly as quantile regression is related to classical least-square
regression. Unlike the PCA estimator of Bai (2003), the estimator does not
yield an analytical closed form solution. To solve for the stationary points of
the objective function, Chen et al. (2021) proposed a computational algorithm
called iterative quantile regression. Moreover, they show that the estimator
possess same convergence rate as the PCA estimators for approximate factor
model. We follow their approach when estimating the quantile factors.8

It is important here to make relation to the recent literature that attempts to
recover possibly non-linear commonalities and dependence structures in cross-
section of returns. For example Pelger and Xiong (2022) allowed factors to be
state-dependent, Chen et al. (2009) provided theory for nonlinear factors and
Gorodnichenko and Ng (2017) estimated joint level and volatility factors simul-
taneously. Important strand of the literature is using copulas and documents
nonlinear tail dependence, co-skewness, and co-kurtosis in cross-sectional de-
pendence among monthly returns on individual U.S. stocks (Amengual and
Sentana 2020) or provides flexible copula factor model (Oh and Patton 2017) .

Di�erent from these studies, our model remains agnostic about the nature
of the true data generating process, and use the conditional quantiles of the
observed data to capture nonlinearities in factor models. In contrast to the
literature, we also do not require the idiosyncratic errors to satisfy certain mo-
ment conditions. Hence our approach is more flexible as it estimates factors
shifting relevant parts of the return distributions without restricting assump-
tions, relying on the properties of the density. The approach also departs from
existing factor literature in not requiring the loadings to depend on observables
and considers the factors to be quantile-dependent objects.

8We employ the authors’ Matlab codes provided on the Econometrica webpage.
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3.2.2 Relation to Common Factors in Volatility

Quantiles of stock returns can be related to variety of quantities as well as dis-
tributional characteristics in specific cases. A specifically important quantity
in finance that can relate to quantiles of the return distribution for a typically
assumed location-scale model is volatility. As discussed by ample literature
started by Ang et al. (2006b), there exists genuine factor structure in the id-
iosyncratic volatility of panel of asset returns. Applying PCA (or cross-sectional
averages) to squared residuals, once mean factors have been removed from the
returns (a procedure labeled PCA-SQ hereafter) will recover that structure.
We will use this approach to study the relation to quantile specific factors on
data, but before we do so, let’s discuss the relation theoretically.

It is important to note that the volatility structure will be recovered only
if the data-generating process were to be known, and well characterized by the
first two moments of the distribution. Yet in case of more general, or even
unknown data generating processes that will not be well characterized by the
first two moments, such approaches will fail to characterize the risks precisely,
and quantile factor models will estimate more useful information.

To illustrate the discussion and provide the link between volatility and
quantiles in such restrictive models, let’s consider the data generating process
to be a typical location-scale model with two unrelated factors in the first and
second moments. Idiosyncratic returns ‘i,t of such model will be zero mean i.i.d.
process independent of both factors with cumulative distribution function F‘i,t

.
Further let Q‘i,t

(·) = F ≠1
‘i,t

(·) = inf{s : F‘i,t
(s) Æ ·} be a quantile function of

‘i,t and assume the median is zero. Then the following model that is typical
for finance

ri,t = —if1,t + (‡€
i,t

f2,t)‘i,t, (3.7)

where ‡i,t is time-varying volatility of an ith stock and ‡i,tf2,t > 0 can be
assumed to generate returns. When f1,t and f2,t do not share common elements,
then

Qri,t

5
· |ft(·)

6
= —if1,t + ‡€

i,t
f2,tQ‘i,t

(·) (3.8)

for · ”= 0.5 and Qri,t

5
· |ft(·)

6
= —if1,t for · = 0.5. Note that here loadings on

the factor are the only quantile-dependent objects and structure in the mean
and volatility describes well the structure in quantiles. While this is already
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restrictive example that operates with the assumption on first two moments,
even in such case standard PCA will not provide consistent estimates if the
distribution of ‘i,t is heavy-tailed (Chen et al. 2021).

But what if the data follows more complicated models than the one implied
by location-shift models? Consider adding asymmetric dependence such as

ri,t = —if1,t + f2,t‘i,t + f3,t‘
3
i,t

, (3.9)

where ‘i,t is standard normal random variable with cumulative distribution
function �(.). The quantiles of the returns will then follow

Qri,t

5
· |ft(·)

6
= —if1,t + �≠1(·)

Ë
f2,t + f3,t�≠1(·)2], (3.10)

for · ”= 0.5 and we can clearly see that second factor in f(·) = [f1,t, f2,t +
f3,t�≠1(·)2]€ is quantile dependent.

The main benefit of the model proposed is that being agnostic about data
generating process and moment conditions, we use conditional quantiles of the
observed returns to capture nonlinearities in factor models. In case these factors
are di�erent from those obtained on first and second moments, they will also be
more informative for investors. In the next section we estimate these quantities
and compare them to volatility as well as other downside risk factors to find
support that data show such a rich structures.

3.2.3 Common Idiosyncratic Quantile Factor and the US
Firms

To estimate the common idiosyncratic quantile – CIQ(·) – factors, we use
returns on stocks from the Center for Research in Securities Prices (CRSP)
database sampled between January 1963 and December 2018. We include all
stocks with codes 10 and 11 in estimating the CIQ(·) factors. We adjust the
returns for delisting as described in Bali et al. (2016). We follow the standard
practice in the literature and exclude all “penny stocks" with prices less than
one dollar to avoid biases related to these stocks.9 We performed the analysis
using all the stocks, and the results did not qualitatively change. When not
stated otherwise, we use monthly data for both factor estimation and beta
calculations.

9See, e.g., Amihud (2002).
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In the process of the factor estimation, we proceed in a few steps. First,
we use a moving window of 60 months of monthly sampled observations. We
select the stocks that have all the observations in this window. For all these
stocks, we run time-series regression to eliminate the influence of the common
(linear) factors

’i : ri,t = –i + —€
i

ft + ei,t, t = 1, . . . , T (3.11)

and save the residuals ei,t. For the common factors ft, which we eliminate from
the stock returns, we resort to the three factors of Fama and French (1993).10

Second, we use the residuals from the first step and, for every · , estimate
common idiosyncratic quantile factors, ft(·)

’· : ei,t = “i(·)ft(·) + ui,t(·) (3.12)

where the quantile-dependent idiosyncratic error ui,t(·) satisfies the quantile
restriction following the methodology discussed in the previous subsection. We
use only the first – the most informative – estimated factor for our purposes.
In the overwhelming majority of the cases, the algorithms proposed in Chen
et al. (2021) select exactly one factor to be the correct number of factors that
explain the panels of idiosyncratic returns.

Since we are interested to see how the quantile dependent factors relate
to volatility, we estimate an approximate factor model on squared residuals
that captures the common volatility factor. More specifically, we use residu-
als obtained from the Equation 3.11, square them and estimate on them first
principal component using PCA. Such factor denoted as PCA-SQ will fail to
capture the full factor structure if the distribution of the idiosyncratic returns
possess non-normal features (Chen et al. 2021).

While it is one of our main questions to study if quantile dependent risk is
present in the markets, and is not subsumed by volatility and downside risk,
we first look at the correlations between these risks. Consistent with common
volatility factor literature, we also focus on the changes in the CIQ(·), and we
work with �CIQ(·) factors.11 Intuitively, we will look at how investors price
the innovations of these risks rather then levels.

10As discussed in Herskovic et al. (2016), there is a little di�erence between the results
obtained using factors of Fama and French (1993) and purely statistically motivated ones
estimated using the PCA framework.

11If not stated otherwise, in the rest of the paper, we perform all the analyses using
�CIQ(·) factors.
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Table 3.1: Correlations between CIQ(·) and other factors.

variable / · 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9

Panel A: Levels of factors

PCA-SQ -0.76 -0.73 -0.69 -0.56 -0.24 0.15 0.23 0.53 0.70 0.75 0.78
CIV -0.45 -0.43 -0.39 -0.31 -0.06 -0.05 0.15 0.27 0.36 0.39 0.40
TR 0.13 0.12 0.12 0.07 0.01 -0.11 -0.11 -0.26 -0.27 -0.24 -0.23
VRP -0.05 -0.04 -0.05 -0.02 0.04 -0.09 -0.03 0.07 0.08 0.08 0.09
VIX -0.37 -0.34 -0.30 -0.20 0.12 0.11 0.20 0.36 0.40 0.39 0.39

Panel B: Di�erences of factors

PCA-SQ -0.53 -0.47 -0.43 -0.30 -0.09 0.21 0.22 0.37 0.53 0.59 0.65
CIV -0.21 -0.20 -0.18 -0.15 -0.09 0.04 0.07 0.09 0.10 0.11 0.08
TR 0.04 0.03 0.03 -0.01 -0.08 -0.10 -0.15 -0.26 -0.29 -0.27 -0.25
VRP 0.12 0.11 0.11 0.06 0.08 -0.02 -0.04 -0.06 -0.08 -0.09 -0.10
VIX 0.24 0.25 0.27 0.27 0.26 0.04 0.07 0.10 0.02 -0.04 -0.11

Note: The table reports correlations between CIQ(·) factors and factors related to the asymmetric and
variance risk. Data contain the period between January 1963 and December 2018.

Table 3.1 reports correlations between CIQ(·) factors and factors related to
the variance and asymmetric risk. In Panel A, we work with levels of CIQ(·)
factors and other factors, in Panel B, we focus on di�erences of the factors.
First, we look at the dependence between CIQ(·) factors and PCA-SQ factor.
We can see that the correlation is the strongest if we move to the tails with
the correlation for CIQ(0.1) and PCA-SQ being equal to -0.76 for the level of
the factors but it decreases substantially if we look at the di�erences with the
correlation being equal to -0.53. Moreover, the correlation is stronger for the
CIQ(·) factors with · above the median.

Next, we look at the correlations with the common idiosyncratic variance
factor of Herskovic et al. (2016). In this case, the correlations are slightly higher
for ·s below the median, with peak correlation at · = 0.1 being equal to -0.45
for the levels of the factors. On the other hand, if we move to the di�erences,
the correlation decreases to -0.21. Correlations with the tail risk factor (TR) are
relatively small with the peak at · = 0.8 with a -0.29 correlation. Especially low
are the correlations between TR factor and CIQ(·) factors for downside values
of · . Correlations with the variance risk premium (VRP) factor of Bollerslev
et al. (2009) are very low as well, with values no higher than 0.12 in absolute
value for both levels and di�erences of the factors. Finally, correlations with
the VIX index are symmetrical around the median · with a peak of 0.39 at
· = 0.9 while there is a stronger correlation between downside ·s and the VIX
with values around 0.26 in di�erences.

This preliminary analysis suggests that behavior of idiosyncratic quantiles
shocks is in non-negligible part distinct from shocks to volatility and downside
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risk measures.
In addition, Table 3.2 provides correlations between CIQ(·) factors at dif-

ferent quantiles. Correlation between CIQ(·) in levels for the upper and lower
part of the distribution are far from perfect, e.g., the correlation between the
lower tail factor CIQ(0.1) and upper tail CIQ(0.9) is -0.69. This observation
suggests that the factors do not simply duplicate information and are hence not
likely to be rescaled information contained in common volatility factor (cap-
tured by e.g., PCA-SQ). Moreover, this dependence decreases substantially if
we look at the increments of the CIQ(·) factors – dependence between lower
and upper tail factors reduces to -0.32. These results suggest that there is a
potential for di�erent pricing information across quantiles and that this infor-
mation does not simply mirror information contained in the common volatility.

Table 3.2: Correlations between CIQ(·) factors.

· 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9

0.1 . 0.98 0.95 0.86 0.55 -0.03 -0.05 -0.32 -0.56 -0.63 -0.69
0.15 0.97 . 0.98 0.91 0.63 0.00 0.01 -0.24 -0.50 -0.58 -0.65
0.2 0.93 0.97 . 0.95 0.71 0.05 0.05 -0.16 -0.42 -0.52 -0.60
0.3 0.85 0.91 0.95 . 0.82 0.13 0.15 0.06 -0.22 -0.33 -0.43
0.4 0.68 0.77 0.83 0.93 . 0.23 0.28 0.36 0.12 0.02 -0.08
0.5 0.07 0.12 0.17 0.25 0.34 . 0.75 0.41 0.34 0.30 0.26
0.6 0.12 0.17 0.21 0.29 0.40 0.78 . 0.47 0.40 0.37 0.32
0.7 0.14 0.24 0.31 0.49 0.66 0.47 0.54 . 0.93 0.87 0.79
0.8 -0.10 -0.01 0.07 0.25 0.46 0.41 0.48 0.92 . 0.98 0.94
0.85 -0.21 -0.13 -0.05 0.13 0.35 0.39 0.46 0.85 0.96 . 0.97
0.9 -0.32 -0.25 -0.18 -0.01 0.22 0.33 0.39 0.75 0.90 0.95 .

Note: The table presents unconditional correlations between CIQ(·) factors in levels (above diagonal) and
di�erences (below diagonal). We estimate the factors using FF3 residuals of the monthly CRSP stocks’
returns. Data contain the period between January 1963 and December 2018.

Overall, we can see that the correlations between CIQ(·) factors and other
related factors are far from perfect. The highest degree of comovement is, not
surprisingly, seen for levels of CIQ(·) factors and PCA-SQ factor, which is
substantially reduced if we look at the di�erences of those factors. Moreover,
a strong asymmetry in the correlations across · suggests that the information
contained in the downside and upside CIQ factors di�er.

3.3 Time-series Predictability of Market Return
We start examining the information content of the CIQ(·) factors for subse-
quent short-term market returns. Here we aim to predict the monthly excess
return on the market that we approximate by the value-weighted return of all
CRSP firms. In the regressions, we also control for popular predictive vari-
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ables used in Welch and Goyal (2007) as well as three closely related factors
– TR factor of Kelly and Jiang (2014), the innovations of common idiosyn-
cratic volatility (�CIV) factor of Herskovic et al. (2016), and the VRP factor
of Bollerslev et al. (2009).12 Moreover, we construct the PCA-SQ factor and
use its increments to control for the e�ect of the common volatility. Because
the CIQ(·) factors are estimated using a rolling window, we use the last value
of the factors estimated from each rolling window to construct a single series
of the CIQ(·) factors.

First, we report the results from the univariate regressions of the market
return on the di�erences of the CIQ(·) factors at various · quantile levels of
the form

rm,t+1 = “0 + “1 ◊ �ft(·) + ‘t+1 (3.13)

in Table 3.3. We report estimated scaled coe�cients to capture the e�ect of
one standard deviation increase of the independent variable on the subsequent
annualized market return. The corresponding t-statistics are computed using
Newey-West robust standard errors using six lags.

The results in Table 3.3 document strong predictive power using the �CIQ(·)
factors for the left part of the distribution, with the peak for · = 0.3, where the
increase (decrease) of one standard deviation in the factor predicts subsequent
decrease (increase) of 7.05 percents in annualized market return.13 There is also
some predictive power for the upper tail factor when CIQ(0.9), but the e�ect
is much smaller with only 3.50 percent increase in annualized market return
accompanied with only less than one-third of the R2 from the lower tail. From
a perspective of an investor, in times of high risk – captured by large negative
increments of the left-tail CIQ(·) factor, she requires a premium for investing.
And thus, these risky periods correlate with the high marginal utility states of
the investors.

Together with in-sample (IS) R2, we also report the out-of-sample (OOS)
R2 from expanding window scheme. We use data up to time t to estimate the
prediction model and then forecast the t + 1 return (the first window contains
120 monthly periods to obtain su�ciently reasonable estimates). Then, the

12We replicated tail risk factor construction of Kelly and Jiang (2014) by ourself; we
acquired data of Herskovic et al. (2016) from Bernard Herskovic’s webpage and data of
Bollerslev et al. (2009) from Hao Zhou’s webpage.

13Note that the lower tail factors are on average negative. Increase (decrease) of these
factors corresponds to the decrease (increase) of risk, which leads to a decrease (increase) of
the required risk premium.
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Table 3.3: Predictive power of the �CIQ(·) factors.

· Coe�. t-stat R
2 IS R

2 OOS R
2 IS CT R

2 OOS CT
0.1 -6.31 -2.77 1.40 1.09 1.21 1.42
0.15 -6.49 -2.74 1.48 1.17 1.20 1.45
0.2 -6.38 -2.63 1.43 1.13 1.14 1.33
0.3 -7.05 -2.98 1.75 1.21 1.21 1.41
0.4 -6.59 -2.92 1.53 0.58 0.83 0.76
0.5 0.15 0.07 0.00 -0.37 0.00 -0.19
0.6 0.29 0.13 0.00 -0.30 0.00 -0.23
0.7 -0.88 -0.48 0.03 -0.67 0.03 -0.37
0.8 2.09 1.13 0.15 -0.26 0.10 -0.08
0.85 3.05 1.67 0.33 -0.03 0.21 0.31
0.9 3.50 1.88 0.43 0.06 0.29 0.31

Note: The table reports results from the univariate predictive regressions of the value-weighted return of all
CRSP firms on the �CIQ(·) factors for various · œ (0, 1). Coe�cients are scaled to capture the e�ect of
one standard deviation increase in the factor on the annualized market return in percent. The
corresponding t-statistics are computed using the Newey-West robust standard errors using six lags. We
report both in-sample (IS) and out-of-sample (OOS) R

2s. We also truncate the predictions at zero
following Campbell and Thompson (2007) (CT) and report corresponding IS and OOS R

2s. The time span
covers the period between January 1960 and December 2018.

window is extended by one observation, the prediction model is re-estimated
and a new forecast is obtained. We repeat this procedure until the whole sample
is exhausted. The corresponding R2 is computed by comparing conditional
forecast and historical mean computed using the available data up to time t,
i.e., 1 ≠ q

t(rm,t+1 ≠ ‚rm,t+1|t)2/
q

t(rm,t+1 ≠ r̄m,t)2 where ‚rm,t+1|t is out-of-sample
forecast of the t + 1 return using data up to time t, and r̄m,t is the historical
mean of the market return computed up to date t. Unlike the case of the IS
R2, the OOS R2 can attain negative values if the conditional forecasts perform
worse than the historical mean forecast. The positive values of the OOS R2 for
· between 0.1 and 0.4 provide strong evidence for the benefits of the �CIQ(·)
factors for predicting the market return in the real-world setting. On the other
hand, the predictability vanishes for the higher values of · .

To assess the economic usefulness for the investors, we further follow sug-
gestions from Campbell and Thompson (2007) (hence CT). They propose to
truncate the predictions from the estimated model at 0, as the investor would
not have used a model to predict a negative premium. This non-linear modi-
fication of the model should introduce caution into the models. Based on this
modification, we report both IS and OOS R2s. Naturally, using this transfor-
mation, the IS R2 does not improve for any of the models, but the performance
rises for the OOS analysis. Results suggest that the common fluctuations in the
lower part of the excess returns distributions robustly predict the subsequent
market movement.

Next, we run bivariate regressions to assess whether the proposed quantile
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factors contain additional information not included in the relevant previously
proposed variables

rm,t+1 = “0 + “1 ◊ �ft(·) + “2 ◊ fControl

t
+ ‘t+1 (3.14)

where we separately control for variables that may contain duplicate infor-
mation. First, in Table 3.4, we report coe�cients and their t-statistics while
controlling for di�erences of the PCA-SQ factor, the �CIV of Herskovic et al.
(2016), the TR factor of Kelly and Jiang (2014), and the VRP factor of Boller-
slev et al. (2009), respectively. For better comparability, we also include results
from the univariate predictions using the �CIQ(·) factors only. In the case
of PCA-SQ factor, we can see that neither the significance nor the magnitude
of the predictive power of the downside CIQ factors is diminished. Moreover,
the borderline significance of the upside CIQ factors vanishes. This suggests
that the common volatility element is not the driving force of the predictive
performance of the quantile factors. In the second case, while controlling for
the �CIV, the results regarding the �CIQ(·) factors remain the same, and
�CIV proves not to predict future market returns. In the case of the TR fac-
tor, the �CIQ(·) factors mirror the results from the univariate regressions in
terms of coe�cients and their significance. TR factor is significant across all
the specifications, although its e�ect is smaller and less significant than in the
case of �CIQ(·) for the lower tail values of · . In the third case, the VRP factor
appears to be the most closely related in terms of predictability to the �CIQ(·)
factors.14 The VRP is highly significant, and at the same time, it diminishes
the e�ect of the �CIQ(·) factors – the scaled coe�cients decreases around 1.7
percentage points, and the corresponding t-statistics are now approximately
1.5. This decrease in significance may be also caused by substantial decrease
of the available time period as the VRP starts in 1990.

As a next step, we control for variables discussed in Welch and Goyal
(2007).15 Instead of a large table of coe�cients and t-statistics through all
variables and quantiles, we summarize the results in the Table 3.5, in which

14We acknowledge that there is no clear theoretical link between VRP and �CIQ(·) fac-
tors. The VRP is associated with the aggregate S&P 500 composite index (rather than
the value-weighted return of all CRSP stocks), which it only significantly predicts over a
medium-term horizon. However, we have included it for informational purposes and to po-
tentially stimulate a discussion regarding the relationship between these two phenomena in
the future.

15For the information regarding the specification of the variables, see Welch and Goyal
(2007). We obtained the data from the Iwo Welch’s webpage.
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Table 3.4: Bivariate predictive regressions.

control / · 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9

CIQ -6.31 -6.49 -6.38 -7.05 -6.59 0.15 0.29 -0.88 2.09 3.05 3.50

(-2.77) (-2.74) (-2.63) (-2.98) (-2.92) (0.07) (0.13) (-0.48) (1.13) (1.67) (1.88)

R
2

1.40 1.48 1.43 1.75 1.53 0.00 0.00 0.03 0.15 0.33 0.43

CIQ -6.05 -6.12 -5.89 -6.54 -6.33 -0.62 -0.52 -2.56 0.22 1.35 1.93

(-2.45) (-2.43) (-2.35) (-2.83) (-2.83) (-0.31) (-0.24) (-1.21) (0.10) (0.56) (0.78)

PCA-SQ 0.48 0.77 1.14 1.74 3.14 3.79 3.77 4.59 3.54 2.86 2.40

(0.22) (0.36) (0.56) (0.91) (1.59) (1.96) (1.90) (2.00) (1.40) (1.05) (0.86)

R
2

1.40 1.50 1.47 1.85 1.87 0.48 0.48 0.67 0.47 0.51 0.55

CIQ -6.72 -6.89 -6.71 -7.29 -6.71 0.18 0.33 -0.84 2.17 3.15 3.56

(-2.82) (-2.77) (-2.66) (-2.98) (-2.87) (0.08) (0.15) (-0.47) (1.14) (1.68) (1.87)

�CIV -1.96 -1.96 -1.78 -1.61 -1.19 -0.57 -0.58 -0.49 -0.77 -0.92 -0.84

(-0.59) (-0.59) (-0.54) (-0.49) (-0.36) (-0.16) (-0.17) (-0.14) (-0.22) (-0.26) (-0.24)

R
2

1.53 1.61 1.54 1.84 1.58 0.01 0.01 0.04 0.17 0.36 0.45

CIQ -6.28 -6.44 -6.36 -6.99 -6.52 0.31 0.35 -0.76 2.27 3.12 3.58

(-2.76) (-2.72) (-2.63) (-2.96) (-2.88) (0.15) (0.16) (-0.41) (1.22) (1.72) (1.93)

TR 4.67 4.64 4.69 4.62 4.60 4.72 4.71 4.69 4.80 4.76 4.77

(2.33) (2.32) (2.35) (2.31) (2.31) (2.33) (2.33) (2.32) (2.35) (2.34) (2.34)

R
2

2.17 2.24 2.20 2.50 2.27 0.78 0.78 0.80 0.96 1.12 1.23

CIQ -4.63 -4.80 -4.60 -4.67 -4.54 0.41 0.43 -0.92 0.85 2.31 1.67

(-1.39) (-1.38) (-1.38) (-1.46) (-1.47) (0.15) (0.14) (-0.35) (0.33) (0.87) (0.67)

VRP 11.83 11.79 11.62 11.55 11.44 11.58 11.56 11.52 11.64 11.73 11.67

(5.62) (5.60) (5.38) (5.31) (5.22) (5.35) (5.32) (5.33) (5.45) (5.54) (5.50)

R
2

6.06 6.12 6.05 6.07 6.03 5.23 5.23 5.25 5.25 5.43 5.33

Note: The table reports results from the bivariate predictive regressions of the value-weighted return of all
CRSP firms on �CIQ(·) factors for various · œ (0, 1) and other control variables. We employ the PCA-SQ
factor, innovations of CIV factor of Herskovic et al. (2016), TR factor of Kelly and Jiang (2014), and the
VRP factor of Bollerslev et al. (2009), respectively. Coe�cients are scaled to capture the e�ect of
one-standard-deviation increase in the factor on the annualized market return in percent. The
corresponding t-statistics are computed using the Newey-West robust standard errors using six lags. The
time span covers the period between January 1960 and December 2018 except the VRP that starts in
January 1990.

we include t-statistics of the �CIQ(·) factors from the bivariate regressions
of the form 3.14 while controlling for said variables. We observe that none of
the variables drives out the significance of the �CIQ(·) factors. Moreover, the
magnitude of the significance remains very close to the ones from the univariate
regressions.

3.3.1 Prediction using many CIQ(·) Factors

Because it is ex-ante not clear on which quantile the investor should base her
investment strategy on, we perform an out-of-sample prediction exercise which
utilizes information from more than one �CIQ(·) factor when constructing a
forecast. The results are summarized in Table 3.6. We use either all of the
factors when predicting the market return or we use two disjunct subsets of
them. Using the first subset, we employ a prior assumption that only the
downside factors (· < 0.5) are significant predictors of the market return.
Second subset imposes the premise that the upside factors (· > 0.5) possess
the forecasting power for the aggregate return. To do that, we use various
models to exploit the information from the �CIQ(·) factors. We train the
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Table 3.5: Controlled predictive significance of the �CIQ(·) factors
using Welch and Goyal (2007) variables.

control/ · 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9

dp -2.78 -2.75 -2.65 -3.01 -2.94 0.04 0.11 -0.51 1.11 1.65 1.88
dy -2.75 -2.72 -2.63 -2.98 -2.92 0.04 0.11 -0.52 1.09 1.61 1.84
ep -2.77 -2.74 -2.64 -2.99 -2.93 0.06 0.13 -0.52 1.11 1.66 1.87
de -2.77 -2.74 -2.63 -2.98 -2.91 0.07 0.12 -0.46 1.16 1.71 1.90
svar -2.81 -2.75 -2.64 -2.96 -2.87 0.10 0.21 -0.23 1.39 1.87 2.06
bm -2.77 -2.74 -2.63 -2.98 -2.92 0.07 0.13 -0.49 1.12 1.67 1.88
ntis -2.72 -2.69 -2.59 -2.93 -2.89 0.07 0.13 -0.47 1.12 1.67 1.87
tbl -2.75 -2.74 -2.62 -2.95 -2.89 0.08 0.16 -0.44 1.15 1.71 1.88
lty -2.75 -2.73 -2.61 -2.96 -2.89 0.07 0.15 -0.46 1.13 1.68 1.88
ltr -2.52 -2.52 -2.44 -2.82 -2.79 -0.03 0.08 -0.50 0.94 1.47 1.63
tms -2.82 -2.79 -2.68 -3.03 -2.97 0.09 0.14 -0.46 1.19 1.71 1.91
dfy -2.72 -2.69 -2.59 -2.95 -2.92 0.09 0.13 -0.47 1.11 1.62 1.82
infl -2.63 -2.61 -2.50 -2.85 -2.84 0.14 0.17 -0.45 1.08 1.62 1.79

Note: The table summarizes t-statistics associated with the �CIQ(·) factors from bivariate regressions
when controlling for macroeconomic variables discussed in Welch and Goyal (2007). The dependent variable
is the value-weighted return of all CRSP firms. The t-statistics are computed using the Newey-West robust
standard errors using six lags. The time span covers the period between January 1960 and December 2018.

models on the first 120 monthly observations and then expand the estimation
window as discussed before. We report both simple OOS R2 and OOS R2 CT to
asses the fit. When performing regularization in the coe�cient estimation, one
has to choose so called tuning parameters. We choose the tuning parameters
based on the in-sample leave-one-out full cross-validation procedure. We chose
the forecast construction methods following Dong et al. (2022).

The first models that we employ is an OLS model which uses a OLS fit-
ted multivariate regression model (estimated in-sample) to predict one-month-
ahead return of the market. We can see that using all the �CIQ(·) factors to
predict OOS return yields a negative R2. This is caused by the overfitting prob-
lem when we use many correlated variables and do not impose any parameter
regularization. Using only either downside or upside factors and truncating the
prediction at zero, yield some marginal gains for the investor.

The LASSO (least absolute shrinkage and selection operator, Tibshirani
(1996)) model (estimator) introduces a regularization in the estimation proce-
dure of the predictive coe�cients. In the case of LASSO, only a subset of the
predictors is chosen to have non-zero coe�cients. As we can see, the perfor-
mances for all · and downside · models substantially improve. On the other
hand, prediction based on the upside ·s do not yield a good fit even after the
introduction of a regularization.

Next, we generalize the previous LASSO model and report results based on
the elastic net (ENET) estimator (Zou and Hastie 2005). The estimator em-
ploys ¸1 (LASSO) and ¸2 (ridge regression, Hoerl and Kennard (1970)) penalty
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terms. For simplicity reasons, we chose the penalty weights to be both equal
to 0.5 without any tuning procedure. As we can see, the results closely mirror
the results from the LASSO estimation.

As a next model, we perform a simple combination forecast. We first ob-
tain univariate forecasts for each �CIQ(·) factor separately and then the final
forecast is obtained as a simple average of the univariate forecasts. We can see
that the model performs very well for selection of all ·s and downside ·s, with
R2 being up to 1.26% for downside ·s and R2 CT of 1.39%. On the other hand,
upside ·s do not lead to any valuable forecasts.

C-LASSO and C-NET follow the same idea as the Combination model but
instead of averaging all the univariate forecasts, they run multivariate penalized
regression (LASSO and ENET, respectively) of the future market return on
the univariate forecasts to select the best combination of them. The resulting
forecast is then obtained by plugging the last value of �CIQ(·) from a window
into the fitted models. Once again, all · and downside · subsets perform both
very well, with R2 of 0.93% and R2 CT of 1.29% for downside · C-LASSO.
But the models using upside · yield even negative R2. This is the case for all
the remaining models which use upside · factors.

PCA model aggregates information and creates the first principal compo-
nent from all the �CIQ(·) factors and uses it as the prediction variable in the
univariate prediction regression. We observe that the downside · PCA model
performs the best across all the specifications.

Finally, the OLS selection model fits univariate prediction models for each
�CIQ(·) factor and uses the univariate model 3.13 with the best in-sample
fit to predict the future market return. This simple approach yields very solid
performance of 0.87% for R2 and 1.28% for R2 CT.

To summarize this section, we observed that using the downside �CIQ(·)
factors in various multivariate models, we obtain significant positive perfor-
mance. On the contrary, the upside �CIQ(·) factors do not result into eco-
nomic gains because they do not outperform the forecasts based on the histor-
ical mean. All the results thus suggest that the driving force behind the down-
side quantile factors’ performance is not the common volatility component but
the information contained in the left part of the common factor structure.
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Table 3.6: Out-of-sample performance of the forecast combinations.

All · Downside · Upside ·

model R
2

R
2 CT R

2
R

2 CT R
2

R
2 CT

OLS -1.53 -0.40 -0.44 0.53 -0.31 0.39
LASSO 0.94 0.95 0.21 0.80 -0.25 0.14
ENET 0.92 1.03 0.07 0.71 -0.11 0.27
Combination 1.10 1.06 1.26 1.39 -0.07 0.07
C-LASSO 0.79 0.92 0.93 1.29 -0.61 -0.23
C-NET 0.86 0.78 0.85 1.22 -0.65 -0.19
PCA 1.17 1.22 1.21 1.46 -0.31 -0.10
OLS selection 0.87 1.28 0.87 1.28 -0.73 -0.10

Note: The table reports performance of various specifications of multivariate predictive models using all
�CIQ(·) factors, · below median �CIQ factors (downside), or above median �CIQ factors (upside). The
time span covers the period between January 1960 and December 2018.

3.4 Pricing the CIQ(·) Risks in the Cross-Section
In this section, we investigate the pricing implications of the presented com-
mon idiosyncratic quantile factors for the cross-section of stock returns. We
hypothesize that the stochastic discount factor increases in the CIQ(·) risk, as
the risk-averse investor’s marginal utility is high in the states of high CIQ(·)
risk. Based on that hypothesis, we assume that the assets that perform poorly
in the states of high CIQ(·) risk will require a higher risk premium for holding
by the investors. On the other hand, assets that perform well during these
states serve as a hedging tool and will be traded with higher prices and thus
lower expected returns. The stock’s sensitivities to the factors capture betas
estimated by the linear regression of stocks’ returns on the factors. If not explic-
itly stated otherwise, we use as our predicted variable monthly out-of-sample
returns following the estimation window. We also try to predict one-year re-
turns using portfolios to assess the persistence of the CIQ(·) betas and thus
indirectly investigate the transaction costs related to the trading of these fac-
tors. Data that we employ cover the usual asset pricing period between January
1963 and December 2018. We exclude “penny stocks" with prices less than one
dollar to avoid related biases.

To alleviate the concerns that the quantile factors simply mirror the dy-
namics of the idiosyncratic volatilities of the single-stock returns, in the case of
pricing the cross-section, we perform the estimation of the factors using stan-
dardized idiosyncratic returns.16 Specifically, we estimate time-varying volatil-
ity using exponentially weighted moving average model. Then, we use the

16In Appendix in Table 16, we report correlations between the CIQ(·) factors estimated
using standardized data. The correlations are generally smaller.
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�ft(·) estimates as our risk factors. For all available stocks and and for all · ,
we estimate quantile-specific betas

ri,t = –i + —i(·)�ft(·) + vi,t(·),

using the least-square estimator. These betas will be used in the following
asset pricing tests as a measure of the exposure to the CIQ(·) factors. Same
as the factors, betas are also estimated using the 60-month rolling window.
We include the stocks that possess at least 48 monthly observations. Betas
computed up to time t are used to predict returns at time t + 1 or further – no
overlap between estimation and prediction periods. The control variables are
estimated using the same procedure as originally proposed.

Later in the analysis, we also control for the e�ect of the increments of the
PCA-SQ factor, �CIV factor and many other related variables to show that
the e�ect of the newly proposed quantile factors is not subsumed by the e�ect
of any related factor or stock-specific variable.

3.4.1 Cross-sectional Regressions

As a first step in the investigation of the cross-sectional implications of expo-
sures to the common idiosyncratic quantile risks, we perform two-stage Fama
and MacBeth (1973) predictive regressions. We explore the hypothesis that
the exposures to the �CIQ(·) factors align with the future excess returns of
the stocks. This type of asset pricing test moreover conveniently allows for
simultaneous estimation of many risk premiums associated with various risk
measures. That means that we can estimate the risk premium associated with
the CIQ(·) risks while controlling for other risk measures previously proposed
in the literature. More specifically, for each time t = 1, . . . , T ≠1 using all of the
stocks i = 1, . . . , N available at time t and t + 1,17 we cross-sectionally regress
all the returns at time t + 1 on the betas estimated using only the information
available up to time t. This procedure yields estimates of prices of risk ⁄t+1(·)
while controlling for the most widely used competing measure of risk

ri,t+1 = –+—CIQ(·)
i,t

(·)⁄CIQ(·)
t+1 (·) + —€Control

i,t
⁄Control

t+1 + ei,t+1 (3.15)

17A stock is identified as available, if it possess at least 48 monthly return observations
during the last 60-month window up to time t and also an observation at time t + 1.
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where —Control

i,t
is vector of control betas or other stock characteristics and

⁄Control

t+1 is vector of corresponding prices of risk. Using T ≠ 1 cross-sectional
estimates of the prices of risk, we compute the average price of risk associated
with each ⁄CIQ(·) as

‚⁄CIQ(·)(·) = 1
T ≠ 1

Tÿ

t=2

‚⁄CIQ(·)
t (·) (3.16)

and report them along with their t-statistics based on the Newey-West robust
standard errors.

We summarize the first set of results in Table 3.7 where we report estimation
outcomes of controlling the e�ect of �CIQ(·) factors by general risk measures.
But first, we report results from the univariate regressions on CIQ(·) betas.
We observe similar results to those obtained from the market predictions – the
exposure to the common idiosyncratic downside events is significantly compen-
sated in the cross-section of stock returns. For example, CIQ(·) for · = 0.2
possess a coe�cient of 1.11 (t-stat = 2.57), on the other hand, for · = 0.8, the
estimated coe�cient is equal to -0.14 (t-stat = -0.30). This suggests that the
exposure to the common idiosyncratic downside events is significantly compen-
sated in the cross-section. On the contrary, to hold assets with high exposure
to the upside common movements the investors have to pay a small discount
for those stock, although not statistically significant one.

As those results suggest, there is a strong asymmetry in the pricing impli-
cations of the �CIQ(·) factors. To further assess it, we perform the following
set of bivariate regressions

ri,t+1 = –t+1 + —CIQ

i,t
(·down)⁄t+1(·down)CIQ + —CIQ

i,t
(·up)⁄t+1(·up)CIQ + ei,t+1,

·down = {0.1, 0.15, 0.2, 0.3, 0.4}, ·up = {0.6, 0.7, 0.8, 0.85, 0.9}
(3.17)

where we assess the joint e�ect of downside and upside CIQ(·) factors. We
report t-statistics for each pair of ⁄(·down)CIQ and ⁄(·up)CIQ in the Figure 3.1.
We observe that the prices of risk associated with downside risk remain statis-
tically significant using every combination of downside and upside CIQ factors.
On the other hand, the risk prices for the upside potential are in agreement
with the previous results – insignificant but negative when controlling for higher
values of ·down.

Next, in the rest of the Table 3.7, we present results from bivariate regres-
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Table 3.7: Fama-MacBeth regressions using �CIQ(·) factors and
general risk measures.

0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9

CIQ(·) 0.90 0.94 1.11 1.52 2.50 0.55 1.01 0.71 -0.14 -0.22 -0.27
(2.52) (2.42) (2.57) (2.88) (2.80) (0.20) (0.41) (1.13) (-0.30) (-0.49) (-0.60)

CIQ(·) 0.41 0.46 0.59 0.95 1.78 0.55 0.91 1.02 0.39 0.30 0.22
(1.43) (1.53) (1.76) (2.18) (2.25) (0.21) (0.39) (1.74) (0.97) (0.80) (0.59)

Mkt -0.23 -0.23 -0.23 -0.22 -0.23 -0.25 -0.25 -0.24 -0.25 -0.25 -0.24
(-1.70) (-1.72) (-1.71) (-1.68) (-1.69) (-1.88) (-1.87) (-1.77) (-1.83) (-1.85) (-1.84)

CIQ(·) 0.72 0.75 0.87 1.19 2.03 -0.37 -1.11 0.41 -0.08 -0.11 -0.14
(2.56) (2.47) (2.54) (2.64) (2.65) (-0.17) (-0.52) (0.80) (-0.22) (-0.34) (-0.42)

Idiosyncratic volatility -14.12 -14.14 -14.15 -14.17 -14.40 -14.57 -14.61 -14.64 -14.58 -14.24 -13.86
(-2.18) (-2.18) (-2.17) (-2.20) (-2.17) (-2.20) (-2.20) (-2.19) (-2.21) (-2.18) (-2.12)

CIQ(·) 0.87 0.91 1.08 1.47 2.43 0.42 0.91 0.72 -0.13 -0.22 -0.28
(2.47) (2.38) (2.53) (2.76) (2.74) (0.15) (0.38) (1.17) (-0.29) (-0.50) (-0.63)

Idiosyncratic skewness 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02
(0.26) (0.29) (0.28) (0.31) (0.33) (0.37) (0.41) (0.47) (0.47) (0.53) (0.57)

CIQ(·) 0.86 0.90 1.07 1.47 2.43 0.43 0.91 0.73 -0.12 -0.21 -0.27
(2.46) (2.37) (2.52) (2.76) (2.75) (0.16) (0.38) (1.18) (-0.27) (-0.48) (-0.61)

Skewness -0.38 -0.30 -0.34 -0.25 -0.17 -0.13 -0.03 0.17 0.15 0.32 0.46
(-0.13) (-0.10) (-0.12) (-0.09) (-0.06) (-0.04) (-0.01) (0.06) (0.05) (0.11) (0.17)

Note: The table contains estimated prices of risk and t-statistics from the Fama-MacBeth predictive
regressions. Each segment contains prices of risk of CIQ(·) betas while controlling for various risk
measures. Data contain period between January 1963 and December 2018. In each window, we use all the
CRSP stocks that have at least 48 monthly observations, and we exclude penny stocks with prices less than
1$. Note the coe�cients are multiplied by 100 for clarity of presentation.

sions when controlling for the e�ect of general risk measures. We report the
results of including CAPM betas by regressing the returns on the market re-
turn (Mkt). Interestingly, the e�ect of the CAPM beta diminishes the pricing
relationship for the extreme left · CIQ factors but the price of risk related to
the linear exposure to the market factor possess counterintuitive negative sign
– consistent with previous empirical evidence. Next, we control for the e�ect of
the idiosyncratic volatility computed from the residuals of the 3-factor model of
Fama and French (1993). The e�ect of the CIQ exposures remain very close to
the one from the univariate regressions. Besides that, we confirm the presence
of the idiosyncratic volatility puzzle. Next, we present results when controlling
for idiosyncratic and total skewness. Those variables do not possess a signifi-
cant pricing information for the cross-section, on the other hand, the e�ect of
the CIQ factors remain consistent with the previous results.

Second, we report results from the bivariate18 regressions in which we in-
clude as a control various risk measures based on common volatility or asym-
metric dependence. Those measures were previously in the literature proven
to be significant predictors of expected returns. We summarize the estimation
outcomes in Table 3.8.

To investigate whether the quantile factors provide di�erent priced informa-
18Except for the coskewness and cokurtosis, which we include both at the same time in

the regression.
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Figure 3.1: �CIQ(·) betas – bivariate cross-sectional regressions.
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Note: The figure reports t-statistics of prices of risks from bivariate regressions from the Equation 3.17 of
CIQ(·) betas for downside and upside ·s. Data contain period between January 1963 and December 2018.
In each window, we use all the CRSP stocks that have at least 48 monthly observations, and we exclude
penny stocks with prices less than 1$.

tion beyond conventional approximate factor models, we construct and control
for the following factor related to the common volatility. To do that, we proceed
similarly as in the case of market prediction and construct a factor based on
principal component analysis that captures dynamics in the common volatility.
More specifically, as in the construction of the quantile factors – using the 60-
month moving window, we extract the standardized idiosyncratic returns and
square them. Then, we perform principal component analysis on those squared
residuals and take the first principal component that explains the most com-
mon time variation across the squared residuals, and we denote it as PCA-SQ.
We then di�erence the factor and use its increments as a control factor. From
the results, we can conclude that the quantile factors extract very di�erent
information regarding the expected returns, as the specification based on the
factor extracted from the squared residuals turn out not to be a significant
predictor in the cross-section of stock returns. One has to look deeper into the
common distribution if he wants to identify priced information regarding the
common distributional movements.

Next, we employ volatility betas computed on di�erences of the CIV factor
of Herskovic et al. (2016). We see that the results regarding CIQ(·) betas
still hold both qualitatively and quantitatively similar to the case of univariate



3. Common Idiosyncratic Quantile Risk 104

Table 3.8: Fama-MacBeth regressions using CIQ(·) factors and
asymmetric risk measures.

0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9

CIQ(·) 0.87 0.93 1.01 1.31 2.21 0.40 0.79 1.09 0.20 0.20 -0.12
(2.45) (2.52) (2.53) (2.69) (2.42) (0.14) (0.30) (1.55) (0.43) (0.43) (-0.26)

PCA-SQ 8.56 8.97 2.57 -9.04 -22.35 -23.82 -26.22 -39.26 -29.58 -30.30 -14.48
(0.35) (0.37) (0.11) (-0.38) (-0.92) (-0.93) (-1.01) (-1.38) (-1.04) (-1.07) (-0.54)

CIQ(·) 0.77 0.81 0.99 1.38 2.34 1.26 2.14 0.89 -0.04 -0.13 -0.18
(2.09) (2.10) (2.38) (2.66) (2.68) (0.49) (0.91) (1.61) (-0.10) (-0.30) (-0.41)

CIV -0.39 -0.40 -0.43 -0.46 -0.50 -0.57 -0.55 -0.55 -0.53 -0.53 -0.51
(-1.58) (-1.64) (-1.75) (-1.91) (-2.08) (-2.46) (-2.35) (-2.34) (-2.21) (-2.23) (-2.16)

CIQ(·) 0.86 0.88 1.03 1.37 2.16 -0.77 -0.24 0.24 -0.43 -0.44 -0.44
(2.45) (2.28) (2.42) (2.64) (2.53) (-0.29) (-0.10) (0.41) (-0.91) (-1.00) (-1.00)

TR 0.11 0.11 0.11 0.12 0.12 0.12 0.11 0.12 0.12 0.12 0.12
(1.33) (1.30) (1.32) (1.40) (1.41) (1.47) (1.42) (1.38) (1.43) (1.42) (1.36)

CIQ(·) 0.82 0.87 1.03 1.41 2.25 0.28 0.89 0.82 -0.03 -0.12 -0.18
(2.40) (2.39) (2.47) (2.83) (2.76) (0.11) (0.39) (1.38) (-0.07) (-0.27) (-0.41)

Coskew -0.12 -0.13 -0.14 -0.16 -0.16 -0.16 -0.15 -0.17 -0.17 -0.17 -0.17
(-0.44) (-0.46) (-0.51) (-0.57) (-0.57) (-0.58) (-0.57) (-0.61) (-0.61) (-0.62) (-0.60)

Cokurt -0.11 -0.11 -0.11 -0.11 -0.13 -0.16 -0.16 -0.15 -0.14 -0.14 -0.14
(-1.50) (-1.48) (-1.45) (-1.51) (-1.72) (-2.06) (-2.07) (-2.01) (-1.90) (-1.88) (-1.78)

CIQ(·) 0.68 0.73 0.89 1.30 2.26 0.55 0.88 0.87 0.13 0.03 -0.05
(2.19) (2.20) (2.39) (2.72) (2.74) (0.21) (0.39) (1.51) (0.33) (0.07) (-0.13)

—
DR -0.12 -0.12 -0.12 -0.11 -0.12 -0.14 -0.14 -0.13 -0.13 -0.13 -0.12

(-1.17) (-1.17) (-1.15) (-1.11) (-1.18) (-1.40) (-1.41) (-1.27) (-1.29) (-1.28) (-1.25)

CIQ(·) 0.96 1.01 1.18 1.63 2.69 0.51 0.69 0.68 -0.15 -0.24 -0.28
(2.76) (2.60) (2.88) (3.19) (3.15) (0.20) (0.29) (1.10) (-0.34) (-0.56) (-0.64)

HTCR 119.53 118.76 118.64 119.47 118.91 111.84 113.06 118.60 118.29 116.58 114.63
(3.00) (2.98) (2.97) (2.97) (2.91) (2.75) (2.77) (2.88) (2.92) (2.96) (2.94)

CIQ(·) 0.80 0.80 0.84 1.06 1.68 -0.75 -0.73 0.15 -0.27 -0.32 -0.38
(2.41) (2.43) (2.32) (2.22) (2.00) (-0.28) (-0.28) (0.21) (-0.55) (-0.70) (-0.80)

—
≠ 0.15 0.14 0.13 0.12 0.12 0.11 0.12 0.10 0.11 0.12 0.14

(0.69) (0.64) (0.62) (0.60) (0.55) (0.51) (0.55) (0.47) (0.49) (0.54) (0.63)

CIQ(·) 0.86 0.89 1.05 1.44 2.34 0.33 0.78 0.66 -0.15 -0.22 -0.27
(2.45) (2.26) (2.46) (2.73) (2.61) (0.12) (0.32) (1.09) (-0.33) (-0.51) (-0.63)

DOWN ASY -0.46 -0.46 -0.55 -0.56 -0.54 -0.58 -0.50 -0.43 -0.40 -0.27 -0.20
(-0.23) (-0.23) (-0.26) (-0.27) (-0.26) (-0.27) (-0.24) (-0.21) (-0.19) (-0.13) (-0.10)

CIQ(·) 1.07 1.10 1.26 1.58 2.65 1.26 1.03 1.13 0.13 -0.01 -0.15
(2.70) (2.56) (2.68) (2.61) (2.54) (0.40) (0.37) (1.55) (0.25) (-0.03) (-0.32)

MCRASH 2.31 2.27 2.26 2.19 2.17 2.20 2.22 2.12 2.00 1.99 2.01
(2.59) (2.57) (2.55) (2.48) (2.43) (2.41) (2.46) (2.25) (2.07) (2.05) (2.08)

CIQ(·) 0.92 0.96 1.09 1.45 2.19 1.01 1.58 0.83 -0.12 -0.24 -0.33
(2.70) (2.62) (2.66) (2.72) (2.40) (0.39) (0.66) (1.40) (-0.31) (-0.64) (-0.89)

COS PRED -2.19 -2.26 -2.29 -2.40 -2.51 -2.53 -2.57 -2.50 -2.37 -2.40 -2.42
(-1.30) (-1.34) (-1.34) (-1.40) (-1.47) (-1.49) (-1.52) (-1.46) (-1.39) (-1.43) (-1.44)

Note: The table contains estimated prices of risk and t-statistics from the Fama-MacBeth predictive
regressions. Each segment contains prices of risk of �CIQ(·) betas while controlling for various asymmetric
risk measures. Data contain period between January 1963 and December 2018. In each window, we use all
the CRSP stocks that have at least 48 monthly observations, and we exclude penny stocks with prices less
than 1$. Note the coe�cients are multiplied by 100 for clarity of presentation.

regressions. Moreover, CIV risk is priced as well; especially strong is the rela-
tionship when we control for CIQ(·) betas with · from the right part of the
distribution. These results suggest that both common idiosyncratic volatility
and quantile risk are priced and do not convey the same pricing information.

As another related control, we use the tail risk (TR) factor of Kelly and
Jiang (2014). As we can see, TR betas do not drive out the CIQ(·) betas’
e�ect, which remains significant, similarly to the univariate specification. Next,
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we control for related group of risk measures which consider the non-linear
relationship between asset and market returns. By following the specifications
of Harvey and Siddique (2000) and Ang et al. (2006), respectively, we control
simultaneously for coskewness and cokurtosis. Once again, those measures
do not drive out the significance of the CIQ(·) betas. Coskewness possess
the expected sign but it is not statistically significant. On the other hand,
cokurtosis is borderline significant for · Ø 0.5 but with opposite sign than
expected.

Another approach to capture non-linear dependence is via downside risk
(DR) beta, which describes conditional covariance below some threshold level.
We entertain the specification of Ang et al. (2006), which sets the threshold
value equal to the average market return. As we can see, downside beta do not
subsume the e�ect of the �CIQ(·) factors, neither it is a significant predictor
of future returns.

Another related left-tail risk measure is hybrid tail covariance risk (HTCR)
measure proposed by Bali et al. (2014). Although, it is highly significant pre-
dictor of expected returns, it does not drive the e�ect of the CIQ(·) risks out.
Next, we include negative semibeta (—≠) of Bollerslev et al. (2021) in our bivari-
ate regression. Similarly as in the previous cases, the exposure to the quantile
factors yields a significant risk premium.

Then, to control for the e�ect of comovement asymmetry between left
and right parts of the joint distribution of stock and market return, we in-
clude downside asymmetric comovement (DOWN ASY) measure of Jiang et al.
(2018). This measure does not a�ect the relationship between expected returns
and CIQ(·) betas either.

To control for the e�ect of crashes in many risk factors, we control for mul-
tivariate crash risk (MCRASH) of Chabi-Yo et al. (2022).19 MCRASH possess
significant predictive power for the cross-section, which does not erase the ef-
fect of common idiosyncratic risk on the expected returns. Especially strong is
the relationship between MCRASH and expected returns when controlling for
CIQ(·) risk in the left part of the joint distribution.

To control for the expectations of the coskewness, we also include stock-
level predicted systematic skewness (COS PRED) of Langlois (2020) in the
regressions. We can see that neither this variable drive out the e�ect of CIQ(·)
factors.

We also investigate whether the pricing information of the �CIQ(·) factors
19We employ the baseline seven-factor version of their measure.
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Table 3.9: Fama-MacBeth regressions using CIQ(·) factors and stock
characteristics.

0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9

CIQ(·) 0.68 0.72 0.83 1.14 1.91 0.63 0.11 0.67 0.03 -0.04 -0.08
(2.20) (2.13) (2.28) (2.47) (2.42) (0.25) (0.05) (1.19) (0.07) (-0.11) (-0.20)

Size -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02
(-1.74) (-1.75) (-1.74) (-1.76) (-1.79) (-1.89) (-1.89) (-1.73) (-1.73) (-1.76) (-1.84)

Book-to-price 0.11 0.11 0.11 0.11 0.11 0.12 0.12 0.12 0.12 0.12 0.12
(1.76) (1.75) (1.71) (1.71) (1.79) (1.90) (1.92) (1.94) (1.94) (1.93) (1.90)

Net payout yield 0.95 0.88 0.91 0.93 1.05 1.23 1.26 1.27 1.26 1.17 1.03
(1.19) (1.12) (1.13) (1.07) (1.11) (1.21) (1.24) (1.26) (1.35) (1.33) (1.33)

Turnover -0.10 -0.10 -0.10 -0.10 -0.11 -0.11 -0.11 -0.11 -0.10 -0.10 -0.10
(-2.05) (-2.13) (-2.16) (-2.21) (-2.23) (-2.07) (-2.08) (-2.13) (-2.09) (-2.13) (-2.10)

Illiquidity 1.86 1.86 1.86 1.85 1.85 1.95 1.95 1.97 1.97 1.96 2.00
(1.08) (1.09) (1.09) (1.08) (1.10) (1.18) (1.17) (1.14) (1.13) (1.13) (1.13)

Profit 0.47 0.46 0.47 0.47 0.47 0.47 0.47 0.48 0.48 0.48 0.48
(3.60) (3.59) (3.61) (3.61) (3.56) (3.56) (3.57) (3.68) (3.71) (3.71) (3.68)

Investment -0.39 -0.39 -0.38 -0.38 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39
(-7.13) (-7.09) (-7.07) (-7.16) (-7.08) (-7.20) (-7.18) (-7.22) (-7.24) (-7.26) (-7.28)

Note: The table contains estimated prices of risk and t-statistics from the Fama-MacBeth predictive
regressions. Each segment contains prices of risk of �CIQ(·) betas while controlling for various stock
characteristics. Data contain period between January 1963 and December 2018. In each window, we use all
the CRSP stocks that have at least 48 monthly observations, and we exclude penny stocks with prices less
than 1$. Note the coe�cients are multiplied by 100 for clarity of presentation.

is not subsumed by stock characteristics based on accounting and trading infor-
mation.20 To that end, we provide the results of the multivariate cross-sectional
regressions, in which we simultaneously control stock-level characteristics such
as size, book-to-price, net payout yield, turnover, illiquidity, profit, and in-
vestment. We report the results in Table 3.9. We can see that the additional
variables do not erase the pricing e�ect of the CIQ(·) risks. The downside
factors are significant determinants of the risk premium peaking at · = 0.3
with t-statistics of 2.47. On the other hand, exposure to the upside factors do
not carry any significant pricing information.

Table 3.10 summarizes the results of controlling for the e�ect of past returns
on the cross-section. Same as in the case of previous set of variables, we report
estimation results from multivariate regression including variables maximum
return, momentum, intermediate return, and lagged return. We observe that
the additional variables slightly diminish the e�ect of the �CIQ(·) factors for
extreme left tail (· between 0.1 and 0.2) but the e�ect for non-extreme downside
risk remain strong. The e�ect of upside quantile factors remain insignificant
even in this setting.

To summarize this subsection, we have shown that the CIQ(·) results from
the Fama-MacBeth regressions suggest that the exposure to the idiosyncratic
downside common events is significantly priced in the cross-section of stock
returns, and that none of the discussed risks drives out the significance of these

20We construct the variables in the same vein as in Langlois (2020).
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Table 3.10: Fama-MacBeth regressions using �CIQ(·) factors and
momentum-type characteristics.

0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9

CIQ(·) 0.49 0.52 0.63 0.88 1.79 0.83 0.13 0.72 0.13 0.10 0.08
(1.66) (1.69) (1.90) (2.11) (2.49) (0.37) (0.06) (1.31) (0.34) (0.29) (0.25)

Maximum return -11.17 -11.13 -11.12 -11.12 -11.12 -11.17 -11.22 -11.40 -11.49 -11.41 -11.24
(-3.16) (-3.15) (-3.14) (-3.05) (-3.00) (-2.99) (-2.99) (-3.09) (-3.17) (-3.21) (-3.22)

Momentum 0.59 0.59 0.59 0.60 0.58 0.57 0.57 0.58 0.58 0.58 0.58
(3.68) (3.65) (3.68) (3.69) (3.63) (3.61) (3.61) (3.59) (3.63) (3.58) (3.57)

Intermediate return 0.06 0.05 0.04 0.04 0.06 0.08 0.08 0.07 0.07 0.07 0.07
(0.32) (0.31) (0.26) (0.26) (0.35) (0.46) (0.45) (0.40) (0.38) (0.41) (0.42)

Lagged return -3.72 -3.73 -3.76 -3.75 -3.69 -3.64 -3.62 -3.60 -3.63 -3.65 -3.70
(-7.05) (-7.09) (-7.12) (-7.06) (-6.89) (-6.79) (-6.73) (-6.73) (-6.84) (-6.91) (-7.07)

Note: The table contains estimated prices of risk and t-statistics from the Fama-MacBeth predictive
regressions. Each segment contains prices of risk of CIQ(·) betas while controlling for various
momentum-type characteristics. Data contain period between January 1963 and December 2018. In each
window, we use all the CRSP stocks that have at least 48 monthly observations, and we exclude penny
stocks with prices less than 1$. Note the coe�cients are multiplied by 100 for clarity of presentation.

results. On the other hand, the exposure to the idiosyncratic upside potential
captured by the quantile factors for · Ø 0.5 do not possess significant pricing
implications for the cross-section of stock returns. This asymmetry further
favors the hypothesis that the common volatility is not the reason behind the
significant pricing consequences of the downside quantile factors.

3.4.2 Portfolio Sorts

Next, we asses performance of the �CIQ(·) factors in terms of investment
opportunities. To this end, we look at the returns of the portfolios sorted
on the CIQ(·) betas. Every month, we estimate CIQ(·) betas for all stocks
that possess 48 return observations during the last 60 months using data up
to time t. We sort the stocks into ten portfolios based on their betas for every
· separately. We then record the portfolios’ performances at time t + 1 using
either an equal-weighted or value-weighted scheme. Then we move one month
ahead, re-estimate all the betas, and create new portfolios. We expect that, for
· < 0.5, there will be an increasing pattern of returns from the low exposure to
the high exposure portfolios, and vice versa for · > 0.5. The results for sorts
based on ten portfolios summarizes Table 27. We observe an increasing return
pattern for the portfolios with · up to 0.4 for both equal-weighted and value-
weighted schemes. This pattern practically disappears when we look at the
portfolios formed on higher · CIQ(·) betas. This observation is in agreement
with the results from the Fama-MacBeth regressions and suggests that only the
exposure to the lower tail common movements is priced in the cross-section.

Moreover, to formally assess whether there is a compensation for bearing a
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Table 3.11: Portfolios sorted on the exposure to the �CIQ(·) factors.

· Low 2 3 4 5 6 7 8 9 High H - L t-stat – t-stat

Equal-weighted
0.10 4.88 7.89 8.20 9.19 8.75 9.47 9.99 10.65 10.71 9.63 4.74 2.76 4.80 2.55
0.15 4.41 7.78 8.88 8.95 9.59 9.39 10.11 10.36 10.10 9.79 5.38 3.07 5.60 3.04
0.20 4.37 7.43 8.82 9.33 9.10 10.14 10.11 10.06 9.86 10.12 5.74 3.18 6.36 3.28
0.30 4.41 7.54 8.49 9.15 9.87 9.71 10.15 10.28 10.16 9.59 5.19 3.10 5.76 3.37
0.40 4.65 8.11 8.82 9.39 9.05 9.64 10.22 10.35 9.90 9.22 4.57 2.95 4.79 3.01
0.50 6.77 9.01 9.95 9.38 9.29 9.48 9.61 9.73 9.11 7.02 0.25 0.14 -0.84 -0.41
0.60 6.35 9.25 9.77 9.16 9.66 9.75 9.84 9.20 8.96 7.42 1.07 0.63 -0.80 -0.43
0.70 6.28 8.84 9.86 9.11 9.19 9.01 9.54 9.40 9.57 8.55 2.27 1.61 0.15 0.09
0.80 8.05 9.34 9.43 9.02 8.84 9.39 9.23 8.91 8.78 8.36 0.32 0.20 -1.67 -0.96
0.85 8.19 9.13 9.54 8.97 9.02 9.40 9.61 8.88 8.57 8.03 -0.16 -0.10 -1.83 -0.99
0.90 8.14 9.69 9.40 8.89 9.11 9.58 9.32 8.89 8.87 7.45 -0.69 -0.38 -2.17 -1.13

Value-weighted
0.10 4.08 5.07 5.98 6.17 6.47 7.02 6.83 8.60 9.46 8.18 4.10 1.75 3.28 1.41
0.15 3.77 4.63 6.82 5.60 7.36 6.15 7.69 7.18 9.17 8.99 5.22 2.05 5.47 2.20
0.20 2.87 6.31 6.63 5.65 6.48 7.12 7.15 7.40 8.91 10.14 7.27 2.78 8.57 3.13
0.30 3.17 6.40 5.73 6.15 6.67 7.35 6.92 6.97 7.78 9.39 6.22 2.33 7.53 2.67
0.40 3.41 6.43 5.44 6.78 6.47 7.24 6.76 6.74 7.28 8.27 4.86 2.03 7.17 3.02
0.50 3.89 5.44 5.37 5.45 6.36 7.28 7.65 6.36 4.89 7.08 3.19 1.42 3.72 1.42
0.60 3.32 6.45 5.28 4.68 7.43 6.09 8.63 6.79 6.14 6.09 2.77 1.21 1.47 0.61
0.70 3.90 5.65 7.58 7.48 6.94 6.47 6.29 6.20 5.94 8.40 4.51 1.92 3.50 1.34
0.80 4.29 7.17 6.46 5.84 6.88 6.77 6.39 6.18 5.17 6.96 2.68 1.09 2.31 0.93
0.85 5.09 6.80 6.19 6.61 6.54 6.77 6.75 6.14 5.54 6.33 1.24 0.50 1.41 0.57
0.90 4.62 6.71 6.47 5.90 6.42 7.27 6.19 5.69 6.07 5.05 0.43 0.16 0.49 0.18

Note: The table contains annualized out-of-sample excess returns of ten portfolios sorted on the exposure to
the �CIQ(·) factors. We use all the CRSP stocks that have at least 48 monthly observations in each
60-month window. We report returns of the high minus low (H - L) portfolios, their t-statistics, and
annualized 6-factor alphas with respect to the four factors of Carhart (1997), CIV shocks of Herskovic et al.
(2016), and BAB factor of Frazzini and Pedersen (2014). We also report t-statistics for these alphas. Data
contain period between January 1963 and December 2018. In each window, we use all the CRSP stocks
that have at least 48 monthly observations, and we exclude penny stocks with prices less than 1$.

risk of high exposure to the common movements in various parts of distribu-
tions of idiosyncratic returns, we present returns of high minus low portfolios.
We obtain these returns as a di�erence between returns of portfolios with the
highest CIQ(·) betas and portfolios with the lowest CIQ(·) betas. These port-
folios are zero-cost portfolios and capture the risk premium associated with
specific · joint movements of idiosyncratic returns. As expected, we observe a
significant positive premium for the di�erence portfolios only for · being less
or equal to 0.4. These premiums are both economically and statistically signif-
icant. In the case of the equal-weighted portfolios, the premium for CIQ(0.2)
factors is 5.74% on the annual basis with a t-statistic of 3.18. The premiums
are very similar in the case of the value-weighted portfolios – e.g., for · = 0.2
the premium is 7.27 with t-statistic of 2.78. This slightly lower significance in
the case of the value-weighted portfolios may be partially caused by the fact
that the value-weighted portfolios possess a higher concentration, which leads
to more volatile returns.

To make sure that the estimated premiums cannot be explained by exposure
to other risks previously proposed in the literature, we regress the returns of
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Figure 3.2: Performance of the CIQ(·) portfolios.
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Note: The figure depicts cumulative log-return of high minus low portfolios obtained from sorting the
stocks into decile portfolios based on their exposure to the CIQ(·) factors and buying the portfolio with
high exposure and selling the portfolio with low exposure. Returns of the portfolios are value-weighted.

the high minus low portfolios on four factors of Carhart (1997) and CIV shocks
of Herskovic et al. (2016) and BAB factor of Frazzini and Pedersen (2014) and
report corresponding annualized 6-factor alphas. From the results, we can see
that the proposed factors do not capture the positive premium associated with
the zero-cost portfolios. For the equal-weighted portfolio with · = 0.2, the
estimated annualized alpha is 6.36% with t-statistic of 3.28, for value-weighted
portfolios it is 8.57% premium with t-statistics being equal to 3.13.

To visually inspect the performance of the value-weighted CIQ(·) portfolios,
we present in Figure 3.2 cumulative log-return of the value-weighted high minus
low portfolios for every · . Consistent with the numerical results, only the
portfolios based on CIQ factors for · Æ 0.4 provide strong performance during
the sample period.

Next, in Table 3.12, we look at the performance of the CIQ(·) sorted port-
folios captured by the following twelve-month value-weighted returns. Each
month, we construct portfolios as in the previous case. Instead of saving the
next one-month return of the sorted portfolios, we record a twelve-month re-
turn, which follows after the formation period. Due to the passive approach for
the following 12-month period, we focus on the value-weighted performance of
the portfolios. We observe returns consistent with the results obtained using
one-month returns. The high minus low portfolios with · = 0.2 yield 6.62%
(t = 2.43). The other risk factors cannot explain these premiums as the 6-factor
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Table 3.12: Portfolio results with 1-year holding period.

· Low 2 3 4 5 6 7 8 9 High H - L t-stat – t-stat

0.10 2.83 4.37 6.01 6.25 5.91 5.77 6.74 9.18 9.42 9.17 6.35 2.64 5.49 1.82
0.15 2.78 4.72 6.09 5.81 6.54 5.92 7.87 8.70 9.10 8.95 6.17 2.05 5.49 1.43
0.20 2.60 5.23 6.04 7.08 6.29 5.56 7.58 8.73 8.88 9.22 6.62 2.43 6.44 2.29
0.30 2.93 5.00 5.90 6.95 6.48 6.22 7.10 7.18 8.73 8.30 5.37 1.87 7.35 2.43
0.40 3.34 4.53 6.37 6.43 6.03 6.69 6.43 7.86 7.46 6.33 2.99 0.87 5.31 1.60
0.50 4.82 4.61 5.06 5.46 6.18 8.64 7.42 6.47 5.58 6.72 1.90 0.78 0.75 0.25
0.60 4.68 5.12 5.22 5.96 5.85 7.05 8.00 6.65 6.26 6.11 1.43 0.73 -0.79 -0.29
0.70 2.88 6.04 5.82 6.56 7.25 6.80 6.95 6.48 6.56 6.48 3.60 2.31 3.67 1.16
0.80 4.02 6.53 5.12 6.71 7.15 6.93 7.26 6.59 5.89 4.22 0.20 0.09 -0.36 -0.09
0.85 4.27 5.78 5.46 6.63 7.58 7.08 6.99 6.91 5.65 4.92 0.65 0.24 -0.96 -0.24
0.90 5.06 6.13 5.10 6.33 6.99 7.12 6.60 6.74 5.78 4.63 -0.43 -0.18 -2.78 -0.74

Note: The table summarizes annualized out-of-sample returns of the CIQ(·) portfolios which are held for
one year after their formation. The returns are value-weighted.

alphas stay economically and statistically significant.
Due to the fact that only the exposures to the lower tail common movements

are priced, the previous results suggest that the CIQ(·) risks are not driven
by the e�ect of the common volatility. If it were the case that the volatility is
the main driver of the obtained results, we would observe that both exposures
to the lower and upper parts of the joint movements are priced, which is not
the case. But to explicitly control for the e�ect of the common idiosyncratic
volatility, we perform dependent bivariate sorts by double sorting on betas for
PCA-SQ factor and betas for the �CIQ(·) factors. Every month, we first
sort the stocks into ten portfolios based on their PCA-SQ betas. Then, within
each of the PCA-SQ-sorted portfolios, we sort the stocks into ten portfolios
based on their CIQ(·) betas. Finally, for each CIQ(·) portfolio, we collapse
all the corresponding CIV portfolios into one CIQ(·) portfolio. This procedure
yields single-sorted portfolios which vary in their CIQ(·) betas but possess
approximately equal PCA-SQ betas. The obtained results summarizes Table
3.13. For the equal-weighted portfolios, we see that the risk premium captured
by the returns of the high minus low portfolios for · Æ 0.4 remains significant
with an annualized return of 4.48% (t = 3.14) for · = 0.2. In case of the
value-weighted portfolios, the return remain close to the equal-weighted case
with return of 4.51% for · = 0.2 (t = 2.21.). These observations suggest that
the CIQ(·) risk premium captures risk that is not explained to the common
volatility as described by the PCA-SQ model.

The portfolio results show that holding risk associated with the common
idiosyncratic downside risk is rewarded by a significant premium. On the other
hand, exposure to the common idiosyncratic upside potential is not related to
robust pricing consequences. In Appendix 3.A in Tables 26, 19, and 18, we



3. Common Idiosyncratic Quantile Risk 111

Table 3.13: Dependent bivariate sorts on CIQ(·) and PCA-SQ expo-
sures.

· Low 2 3 4 5 6 7 8 9 High H - L t-stat – t-stat

Equal-weighted
0.10 6.09 7.97 7.92 9.28 9.06 9.71 9.37 9.51 10.35 10.13 4.05 3.01 4.04 2.71
0.15 6.09 7.76 8.73 8.87 9.03 8.93 10.16 9.51 10.28 10.02 3.92 2.75 3.85 2.52
0.20 5.63 8.49 8.14 9.01 9.46 9.27 9.53 9.70 10.08 10.11 4.48 3.14 4.60 2.83
0.30 5.43 8.40 8.30 8.95 9.18 9.92 9.26 9.76 10.30 9.94 4.51 3.19 4.34 2.83
0.40 5.57 8.76 8.64 8.94 9.10 9.40 9.22 10.10 10.09 9.60 4.03 2.70 3.60 2.26
0.50 6.77 9.69 9.26 9.66 9.37 9.56 9.20 9.31 9.09 7.48 0.71 0.44 -0.10 -0.05
0.60 6.16 10.00 9.56 9.35 9.63 9.11 9.93 8.70 9.32 7.66 1.49 0.96 0.14 0.09
0.70 6.52 8.93 9.40 9.65 8.81 9.07 9.34 9.37 9.19 9.13 2.61 2.05 1.44 1.06
0.80 7.74 9.21 9.36 9.34 8.94 8.93 8.47 9.11 9.41 8.87 1.14 0.89 -0.20 -0.14
0.85 7.68 9.10 9.06 8.86 9.16 9.03 8.99 9.61 9.02 8.86 1.18 0.87 0.11 0.07
0.90 7.89 9.45 8.89 9.14 9.10 9.15 9.25 8.81 9.17 8.54 0.65 0.45 -0.67 -0.42

Value-weighted
0.10 5.29 5.82 5.55 6.07 5.99 5.53 6.95 8.12 8.23 9.80 4.52 2.19 4.13 2.05
0.15 4.67 6.12 6.37 5.26 5.85 6.43 7.30 7.18 8.11 9.39 4.72 2.25 4.68 2.34
0.20 5.07 7.21 4.98 6.92 5.44 6.08 6.68 7.12 8.12 9.58 4.51 2.21 4.86 2.24
0.30 5.02 7.02 5.90 6.50 5.69 6.38 6.73 5.82 8.31 9.39 4.37 2.07 4.59 2.07
0.40 4.30 7.02 5.77 7.04 5.49 6.64 6.44 6.80 8.11 8.12 3.82 1.79 4.36 2.14
0.50 5.68 4.80 5.62 6.10 6.48 5.73 7.78 6.83 7.39 5.35 -0.33 -0.15 -0.85 -0.36
0.60 4.58 5.94 5.69 5.02 6.87 5.48 7.78 7.26 7.93 6.09 1.51 0.72 -0.18 -0.09
0.70 6.06 6.11 6.97 6.68 5.82 7.08 5.77 5.94 7.03 7.59 1.52 0.72 1.24 0.59
0.80 4.64 7.20 6.13 5.54 6.63 7.16 5.28 5.47 6.90 7.14 2.50 1.21 1.56 0.71
0.85 4.62 6.71 6.46 6.13 6.58 5.48 6.22 6.78 6.82 6.36 1.74 0.89 0.56 0.27
0.90 3.65 8.45 6.12 5.74 5.33 6.92 6.01 7.41 5.90 7.13 3.48 1.59 1.64 0.74

Note: The table contains annualized out-of-sample excess returns of ten portfolios sorted on the exposure to
the �CIQ(·) and PCA-SQ factor. Exposure to the PCA-SQ factor are approximately same across the
portfolios. We use all the CRSP stocks that have at least 48 monthly observations in each 60-month
window. We report returns of the high minus low (H - L) portfolios, their t-statistics, and annualized
6-factor alphas with respect to the four factors of Carhart (1997), CIV shocks of Herskovic et al. (2016),
and BAB factor of Frazzini and Pedersen (2014). We also report t-statistics for these alphas. Data contain
period between January 1963 and December 2018. In each window, we use all the CRSP stocks that have
at least 48 monthly observations, and we exclude penny stocks with prices less than 1$.

provide results of the same analysis using five portfolios instead of ten. The
results are qualitatively very similar to the results from the above, confirming
the robustness of our claim that the exposure to the common left tail events is
priced in the cross-section of returns.

Finally, we also repeat the exercise on the simulated universe of stocks. We
simulate stocks from location-scale model in order to see that risk factors will
not be quantile dependent, and will all be coming from the volatility. At the
same time the exercise will show that choice of small sample in the moving
window does not bias the results. Detailed discussion in Appendix 3.B shows
that the premium associated with exposures to the di�erent quantile levels
on simulated data are the same to the exposures on the PCA-SQ factors in
magnitude. The risk premiums have identical significance, and is constant
(with opposite sign for downside and upside) over the quantiles. Hence if the
returns were generated from the location-scale model, then quantile risk would
be equivalent across quantiles, and it would be captured by the volatility risk.
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Table 3.14: Portfolios sorted on relative CIQ(·) betas.

· Low 2 3 4 5 6 7 8 9 High H - L t-stat – t-stat

Equal-weighted
0.10 5.00 7.68 8.41 8.97 8.83 9.55 9.80 10.73 10.56 9.81 4.81 2.71 4.66 2.37
0.15 4.32 7.89 8.76 9.13 9.55 9.19 10.33 10.08 10.05 10.04 5.73 3.16 5.75 2.93
0.20 4.37 7.54 8.73 9.19 8.93 9.85 10.63 10.09 9.71 10.31 5.94 3.22 6.45 3.17
0.30 4.51 7.01 8.43 9.31 10.06 9.66 10.19 10.11 10.00 10.08 5.57 3.17 5.96 3.28
0.40 4.57 8.03 8.52 9.22 9.75 9.85 9.33 9.96 10.43 9.69 5.11 3.22 5.14 3.20
0.50 6.77 9.01 9.95 9.38 9.29 9.48 9.61 9.73 9.11 7.02 0.25 0.14 -0.84 -0.41
0.60 7.52 8.96 8.37 9.53 9.18 10.06 8.89 9.76 9.45 7.64 0.13 0.09 -1.27 -0.84
0.70 6.55 9.44 9.47 8.58 9.33 8.87 9.52 9.19 9.76 8.63 2.09 1.56 0.18 0.12
0.80 8.25 9.09 9.40 8.99 8.68 9.41 9.39 8.89 9.09 8.15 -0.10 -0.07 -1.94 -1.17
0.85 8.30 9.37 9.20 9.32 9.10 8.81 9.46 9.30 8.65 7.82 -0.48 -0.29 -1.88 -1.03
0.90 8.38 9.19 9.54 9.13 9.18 9.53 9.10 9.07 9.00 7.23 -1.15 -0.63 -2.45 -1.31

Value-weighted
0.10 3.83 4.53 6.11 6.53 6.49 6.33 6.95 8.51 9.70 8.48 4.66 1.97 2.96 1.29
0.15 4.00 4.72 6.40 6.60 7.20 6.30 7.03 7.39 9.33 9.12 5.11 2.04 4.75 1.94
0.20 2.79 6.25 6.36 6.38 6.61 7.11 7.12 7.23 8.59 9.68 6.89 2.72 7.12 2.74
0.30 3.47 6.24 5.64 6.02 7.85 6.96 6.89 6.53 8.18 9.66 6.19 2.33 6.83 2.50
0.40 3.69 6.37 6.24 6.53 7.16 6.83 6.09 6.27 7.96 8.99 5.30 2.06 7.35 2.87
0.50 3.89 5.44 5.37 5.45 6.36 7.28 7.65 6.36 4.89 7.08 3.19 1.42 3.72 1.42
0.60 5.93 5.56 5.97 5.30 5.70 5.80 6.53 7.13 7.77 6.82 0.89 0.39 0.23 0.08
0.70 4.40 6.63 5.92 7.42 6.85 7.24 5.54 5.88 6.68 7.34 2.94 1.26 2.02 0.77
0.80 5.38 7.48 5.50 6.67 6.78 6.74 6.51 6.12 5.01 6.45 1.07 0.43 0.65 0.25
0.85 5.07 7.05 6.70 6.34 6.51 6.51 6.75 6.29 5.63 5.54 0.48 0.18 0.75 0.29
0.90 4.96 6.84 6.30 6.58 6.26 6.76 6.87 5.37 5.72 5.57 0.62 0.22 1.53 0.55

Note: The table contains annualized out-of-sample excess returns of ten portfolios sorted on relative CIQ(·)
betas. We report returns of the high minus low (H - L) portfolios, their t-statistics, and annualized 6-factor
alphas with respect to the four factors of Carhart (1997), CIV shocks of Herskovic et al. (2016), and BAB
factor of Frazzini and Pedersen (2014). We also report t-statistics for these alphas. Data contain period
between January 1963 and December 2018. In each window, we use all the CRSP stocks that have at least
48 monthly observations, and we exclude penny stocks with prices less than 1$.

3.4.3 Beyond CIQ(·) Betas

To specifically capture additional information beyond median dependence from
the lower and upper parts of the distribution, respectively, we define relative
CIQ betas as

—rel

i
(·) := —i(·) ≠ —i(0.5).

The results of the portfolio sorts based on relative betas are summarized in
Table 3.14. These results are in the spirit of the CIQ betas’ results presented
above. The high minus low portfolio sorted on —rel(0.2) yields annual 5.94%
excess return (t = 3.22) with 6-factor – = 6.45 (t = 3.17) for the equal-weighted
portfolio. In case of the value-weighted portfolios, we obtain annual return of
6.89% (t = 2.72) and – = 7.12 (t = 2.74).

Because there is a little theory on which · to choose when investing based
on the exposure to the CIQ(·) factors, we aim to aggregate the information
from downside and upside factors into compressed measures. To summarize
the dependence in the whole lower or upper part of the factor structure, we
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define downside and upside CIQ betas as

—down

i
:=

ÿ

·œ·down

F
1
—i(·)

2

—up

i
:=

ÿ

·œ·up

F
1
—i(·)

2

where F
1
—i(·)

2
= Rank(—i(·))

Nt+1 . We obtain the downside and upside CIQ betas
as an average cross-sectional rank of the CIQ betas for downside and upside ·s,
respectively. Results of the portfolio sorts based on those betas are summarized
in Table 3.15. We can see that the long-short portfolios sorted on downside
CIQ betas provide significant excess returns of 5.19% (t = 3.02) and 6.44%
(t = 2.48) annual returns using equal- and value-weighted schemes, respectively.
On the other hand, an investment strategy based on upside beta does not yield
significant abnormal returns using either weighting approach.

To summarize the relative betas through the whole downside or upside parts
of the joint structure, we introduce downside and upside relative betas

—down,rel

i
:=

ÿ

·œ·down

F
1
—rel

i
(·)

2
,

—up,rel

i
:=

ÿ

·œ·up

F
1
—rel

i
(·)

2
,

which are obtained as a mean cross-sectional rank of the relative betas associ-
ated with the exposure to the downside or upside CIQ(·) factors, respectively.
The associated returns are also summarized in Table 3.15. Similarly as in the
case of the relative betas, downside relative betas provide investment strategy
with significant abnormal returns of 6.02% (t = 3.25) and 7.40% (t = 2.90)
on an annual basis using equal- or value-weighted returns, respectively. The
returns of the portfolios based on relative upside betas remain insignificant.

3.5 Conclusion
We investigate the pricing implications of the exposures to the common idiosyn-
cratic quantile factors. These factors capture non-linear common movements
in various parts of the distributions across a large panel of stocks. Similarly,
as the quantile regression extends the classical linear regression, our quantile
factor model of asset returns extends the approximate factor models used in
empirical asset pricing literature. We show that the downside quantile factors
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Table 3.15: Ten univariate sorted portfolios on combination CIQ be-
tas.

Weighting Variable Low 2 3 4 5 6 7 8 9 High H - L t-stat – t-stat

Equal

—
down 4.71 7.20 8.54 9.23 9.48 10.20 9.26 10.49 10.34 9.90 5.19 3.02 5.66 3.19
—

up 7.73 9.45 9.54 8.73 9.23 9.08 9.43 9.30 8.56 8.30 0.57 0.36 -1.43 -0.79
—

down,rel 4.33 7.68 8.47 8.97 9.71 9.78 10.10 9.90 10.07 10.34 6.02 3.25 6.43 3.26
—

up,rel 8.58 9.04 8.89 8.87 9.26 9.05 9.07 9.03 9.24 8.31 -0.27 -0.18 -2.00 -1.23

Value

—
down 3.08 6.41 5.90 5.85 5.72 8.06 6.96 7.59 8.31 9.52 6.44 2.48 7.15 2.88
—

up 4.72 6.57 5.02 6.59 7.11 7.21 6.53 5.57 5.50 7.51 2.79 1.17 2.38 0.96
—

down,rel 2.97 6.35 5.79 6.47 6.85 6.73 7.53 6.61 8.38 10.37 7.40 2.90 7.52 2.91
—

up,rel 5.60 7.08 6.71 5.39 7.38 6.51 6.58 6.10 5.36 6.64 1.04 0.43 0.32 0.13

Note: The table contains annualized out-of-sample excess returns of ten portfolios sorted on downside
(upside) and relative downside (upside) CIQ betas. We use all the CRSP stocks that have at least 48
monthly observations in each 60-month window. We report returns of the high minus low (H - L) portfolios,
their t-statistics, and annualized 6-factor alphas with respect to the four factors of Carhart (1997), CIV
shocks of Herskovic et al. (2016), and BAB factor of Frazzini and Pedersen (2014). We also report
t-statistics for these alphas. Data contain period between January 1963 and December 2018. In each
window, we use all the CRSP stocks that have at least 48 monthly observations, and we exclude penny
stocks with prices less than 1$.

can robustly predict the market return out-of-sample. We also provide evidence
that the expected returns are associated with the exposures to the downside
common movements in contrast to the upside movements. Importantly, the
quantile dependent factors provides richer information to investors in compari-
son to other downside risk or volatility factors. We perform various robustness
checks to show that these results are not attributable to other previously pro-
posed risk factors. Most notably, we aim to prove that the common volatility
does not drive the results.

Future research may focus on better interpretability of the quantile factor
models using the characteristics-based quantile factor model proposed by Chen
et al. (2023). This investigation may identify which stock characteristics are
related to exposure to common extreme events. From a theoretical perspec-
tive, future endeavors could explore the link between theoretical quantile asset
pricing models, such as the model of Ramos et al. (2020), and quantile factor
models. Furthermore, an important direction may extend the arbitrage pricing
theory into the quantile domain in the spirit of Renault et al. (2022).
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Appendix

3.A Additional Results

Table 16: Correlations between CIQ(·) and other factors.

variable / · 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9

Panel A: Levels of factors

PCA-SQ -0.68 -0.66 -0.59 -0.47 -0.23 0.06 0.12 0.44 0.61 0.65 0.70
CIV -0.29 -0.26 -0.24 -0.16 -0.03 0.04 0.07 0.19 0.28 0.28 0.30
TR 0.07 0.07 0.06 0.02 -0.04 -0.02 -0.04 -0.19 -0.19 -0.19 -0.17
VRP 0.04 0.05 0.06 0.07 0.10 -0.08 -0.03 0.03 0.03 0.00 0.01
VIX -0.17 -0.15 -0.11 -0.01 0.16 0.08 0.13 0.30 0.33 0.30 0.28

Panel B: Di�erences of factors

PCA-SQ -0.54 -0.50 -0.44 -0.32 -0.11 0.17 0.17 0.35 0.51 0.55 0.60
CIV -0.20 -0.17 -0.17 -0.12 -0.06 0.06 0.07 0.11 0.15 0.15 0.13
TR 0.11 0.09 0.09 0.04 -0.03 -0.03 -0.03 -0.24 -0.26 -0.27 -0.25
VRP 0.14 0.12 0.10 0.07 0.02 -0.05 -0.03 -0.06 -0.07 -0.11 -0.10
VIX 0.20 0.23 0.23 0.22 0.22 0.07 0.10 0.10 0.05 0.01 -0.06

Note: The table reports correlations between CIQ(·) factors and factors related to the asymmetric and
variance risk. Data contain the period between January 1963 and December 2018.
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Table 17: Portfolios sorted on the exposure to the �CIQ(·) factors.

· Low 2 3 4 High H - L t-stat – t-stat

Equal-weighted
0.10 6.38 8.69 9.11 10.32 10.17 3.78 2.59 4.36 2.79
0.15 6.10 8.91 9.49 10.23 9.94 3.85 2.58 4.65 3.05
0.20 5.90 9.08 9.62 10.09 9.99 4.08 2.78 5.20 3.47
0.30 5.97 8.82 9.79 10.21 9.88 3.90 2.81 4.89 3.56
0.40 6.38 9.11 9.34 10.29 9.56 3.19 2.55 4.00 3.22
0.50 7.89 9.67 9.38 9.67 8.07 0.18 0.14 -0.04 -0.03
0.60 7.80 9.46 9.70 9.52 8.19 0.39 0.30 -0.55 -0.42
0.70 7.56 9.49 9.10 9.47 9.06 1.50 1.31 0.29 0.22
0.80 8.69 9.23 9.11 9.07 8.57 -0.12 -0.10 -1.37 -0.98
0.85 8.66 9.26 9.21 9.24 8.30 -0.36 -0.26 -1.59 -1.07
0.90 8.91 9.14 9.35 9.11 8.16 -0.75 -0.48 -1.83 -1.22

Value-weighted
0.10 4.74 6.10 6.63 7.58 9.16 4.42 2.20 4.26 2.24
0.15 4.36 6.13 6.71 7.38 9.08 4.72 2.39 5.40 2.90
0.20 4.98 6.07 6.75 7.15 9.07 4.09 2.09 5.39 3.05
0.30 5.06 5.87 7.00 6.82 8.03 2.97 1.57 4.43 2.59
0.40 5.14 5.96 6.83 6.71 7.57 2.42 1.36 4.40 2.53
0.50 4.67 5.44 6.80 7.07 5.43 0.77 0.46 0.90 0.45
0.60 5.24 4.85 6.51 7.64 6.11 0.87 0.50 -0.16 -0.09
0.70 4.96 7.37 6.52 6.08 6.75 1.79 1.06 1.48 0.84
0.80 6.11 6.13 6.69 6.28 5.99 -0.11 -0.06 -0.49 -0.28
0.85 6.12 6.31 6.58 6.50 5.92 -0.20 -0.11 -0.39 -0.22
0.90 5.92 6.18 6.91 5.90 5.86 -0.06 -0.03 -0.20 -0.11

Note: The table contains annualized out-of-sample excess returns of five portfolios sorted on the exposure
to the �CIQ(·) factors. We use all the CRSP stocks that have at least 48 monthly observations in each
60-month window. We report returns of the high minus low (H - L) portfolios, their t-statistics, and
annualized 6-factor alphas with respect to the four factors of Carhart (1997), CIV shocks of Herskovic et al.
(2016), and BAB factor of Frazzini and Pedersen (2014). We also report t-statistics for these alphas. Data
contain period between January 1963 and December 2018. In each window, we use all the CRSP stocks
that have at least 48 monthly observations, and we exclude penny stocks with prices less than 1$.
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Table 18: Dependent bivariate sorts on CIQ(·) and PCA-SQ expo-
sures.

· Low 2 3 4 High H - L t-stat – t-stat

Equal-weighted
0.10 6.91 8.58 9.39 9.77 10.02 3.11 2.78 3.22 2.57
0.15 7.03 8.64 9.39 9.68 9.93 2.90 2.57 2.97 2.44
0.20 6.84 8.65 9.61 9.46 10.12 3.28 2.91 3.63 2.91
0.30 6.84 8.55 9.81 9.43 10.04 3.20 2.86 3.42 2.84
0.40 7.03 8.98 9.19 9.85 9.63 2.60 2.29 2.69 2.22
0.50 8.07 9.61 9.35 9.37 8.27 0.20 0.16 -0.33 -0.25
0.60 8.07 9.59 9.35 9.30 8.36 0.30 0.24 -0.75 -0.60
0.70 7.59 9.68 8.90 9.31 9.19 1.59 1.59 0.93 0.86
0.80 8.28 9.58 8.81 8.95 9.06 0.78 0.80 -0.03 -0.03
0.85 8.36 9.05 8.97 9.63 8.67 0.30 0.31 -0.50 -0.44
0.90 8.49 9.10 9.27 9.23 8.59 0.11 0.09 -0.85 -0.70

Value-weighted
0.10 5.43 5.79 6.05 6.96 8.58 3.15 2.07 2.20 1.68
0.15 5.58 6.15 5.90 7.25 7.77 2.19 1.43 1.76 1.24
0.20 6.08 5.88 5.97 6.80 7.91 1.83 1.30 1.95 1.42
0.30 6.21 6.09 6.25 6.22 8.04 1.83 1.23 2.11 1.50
0.40 5.56 6.56 6.15 6.75 7.08 1.51 0.96 1.99 1.30
0.50 5.15 5.58 6.25 7.02 6.42 1.27 0.80 0.28 0.16
0.60 5.55 5.27 6.08 7.41 7.22 1.67 0.99 0.19 0.11
0.70 6.01 6.41 6.58 5.68 7.56 1.55 0.98 0.55 0.39
0.80 5.77 6.12 6.28 6.15 6.65 0.88 0.59 -0.56 -0.37
0.85 5.81 6.12 6.53 6.29 6.48 0.67 0.49 -0.59 -0.40
0.90 5.15 6.63 6.36 6.49 6.71 1.56 0.97 0.05 0.03

Note: The table contains annualized out-of-sample excess returns of five portfolios sorted on the exposure
to the �CIQ(·) and PCA-SQ factor. Exposure to the PCA-SQ factor are approximately same across the
portfolios. We use all the CRSP stocks that have at least 48 monthly observations in each 60-month
window. We report returns of the high minus low (H - L) portfolios, their t-statistics, and annualized
6-factor alphas with respect to the four factors of Carhart (1997), CIV shocks of Herskovic et al. (2016),
and BAB factor of Frazzini and Pedersen (2014). We also report t-statistics for these alphas. Data contain
period between January 1963 and December 2018. In each window, we use all the CRSP stocks that have
at least 48 monthly observations, and we exclude penny stocks with prices less than 1$.

Table 19: Portfolio results with 1-year holding period.

· Low 2 3 4 High H - L t-stat – t-stat

0.10 3.71 6.13 5.82 8.00 9.41 5.70 2.56 6.49 1.70
0.15 4.01 5.79 6.15 8.21 9.12 5.11 2.28 6.69 1.88
0.20 4.15 6.48 5.80 8.10 8.98 4.83 2.25 7.00 1.93
0.30 4.14 6.40 6.34 7.25 8.40 4.26 2.06 5.14 1.33
0.40 3.97 6.44 6.18 7.10 7.11 3.15 1.73 2.81 0.91
0.50 4.43 5.19 7.40 6.90 5.94 1.51 1.13 -1.32 -0.75
0.60 4.80 5.33 6.37 7.21 6.26 1.46 1.12 -2.38 -1.47
0.70 5.17 6.11 6.94 6.57 6.37 1.20 0.91 -0.81 -0.60
0.80 5.82 5.86 6.85 6.92 5.21 -0.61 -0.38 -2.45 -1.92
0.85 5.45 6.14 7.11 6.83 5.21 -0.25 -0.13 -2.49 -1.84
0.90 5.82 5.94 6.99 6.46 5.32 -0.50 -0.27 -2.36 -1.52

Note: The table summarizes returns of the CIQ(·) portfolios which are held for one year after their
formation. The returns are value-weighted.
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3.B Simulation Study
We present a simulation exercise to illustrate how the CIQ(·) premiums would
look like if the driving force behind them were simply common volatility. We
simulate the returns from the following model

ri,t = –i + —irm,t + “i(Vt ≠ V̄ ) ≠ “i⁄
V + ei,t (18)

where Vt is the common variance factor, and the variance of the idiosyncratic
error follows the factor structure proposed by Ding et al. (2022)

ei,t =
Ò

Vi,tzi,t,

Vi,t = Vt exp(µi + ‡iui,t) = VtṼi,t,

zi,t, ui,t ≥ i.i.d. N(0, 1).

(19)

Time-series variation of the returns drive two common factors – market factor,
rm,t, and variance factor Vt. The expected return of a stock is then equal to

E[ri] = –i + —iE[rm] + “i⁄
V . (20)

We assume that the market factor follows a simple GARCH(1,1) process of
Bollerslev (1986), which we fit on the market return from the empirical analysis.
We assume that the log of the variance factor follows a modified HAR model
of Corsi (2009)

log Vt+1 = ◊0 + ◊mxm

t
+ ◊yxy

t + vt+1

vt+1 ≥ i.i.d. N(0, ‡2
v
)

(21)

where xm

t
and xy

t are the previous month’s log-variance and average log-variance
over the last 12-month period, respectively. The common variance process is
approximated by the cross-sectional average of the squared residuals from the
time series regression of stock returns on the market factor. We fit the model
from equation 21 on this time series. When simulating this time series, we
initialize the process by randomly selecting 12 consequent observations of the
common variance process estimated from the data and using those observations
for iterating forward.

We calibrate the simulation setting to match the CRSP data sample we
employ in the empirical investigation. We estimate stock-level market beta, —i,
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using time-series regression of stock return on the market return. Exposure to
the common variance, “i, is estimated by regressing the stock return on the
estimate of the common variance process. Price of risk associated with the
variance exposure, ⁄V is chosen to be equal to 3 ◊ 10≠3.21 We estimate stock-
level parameters of the idiosyncratic error variance–µi, ‡i–as the sample mean
and standard deviation of log Ṽi,t. To approximate the Ṽi,t, we use squared
residuals from the time-series regression of the stock return on the market
return. Then, to simulate these parameters, we approximate their distribution
by normal distribution, with the mean equal to the estimates’ cross-sectional
average and the variance equal to the cross-sectional variance of the estimates.

We simulate the panel of 2,500 stocks with 120 observations. We repeat
the simulation 1,000 times. Each time, we simulate stock returns by randomly
choosing parameters for the stock-level process from the normal distribution
with mean and variance corresponding to their sample counterparts. We re-
move the common time variation in stock returns by first forming the common
linear factor

ft = 1
N

Nÿ

i=1
ri,t, t = 1, . . . , T (22)

and then regressing the returns on this factor

ri,t = –i + —̂ift + êi,t, (23)

which yields the residuals êi,t. Those residuals are then used to form the com-
mon volatility and quantile factors. We construct the volatility factor as the
first principal component of those squared residuals. �CIQ(·) factors are esti-
mated as discussed in Section 3.2. Exposures to those factors are then estimated
using univariate time-series regressions of stock returns on the increments of
the volatility or quantile factors, respectively.

Similarly, as in the empirical investigation, we sort stocks into decile port-
folios based on their estimated exposure to the factors to infer the associated
risk premiums. We proxy the premiums by computing high minus low returns
of the portfolios. Table 20 reports the average premiums for all the CIQ(·)
factors. We observe that the premium is positive for the downside values of · ,
negative for the upside ones and insignificant for the median. The magnitude

21This value corresponds to approximately 6% annual high minus low premium obtained
from ten portfolios portfolios sorted on the exposure to the common variance. The choice of
this value is not essential for the results that we present here.
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Table 20: Simulated risk premiums.

· Premium t-stat Rejections

0.10 9.34 2.62 0.96
0.15 9.37 2.56 0.96
0.20 9.38 2.51 0.96
0.30 9.50 2.54 0.97
0.40 9.37 2.26 0.96
0.50 0.35 0.03 0.96
0.60 -9.61 -2.70 0.96
0.70 -9.60 -2.72 0.96
0.80 -9.52 -2.67 0.96
0.85 -9.42 -2.58 0.96
0.90 -9.35 -2.56 0.96

Note: The table contains average risk premiums computed from high minus low returns of decile portfolios
sorted on exposure to the CIQ(·) risks. We simulate the returns using common variance factor model
proposed by Ding et al. (2022). We simulate panel of 2,500 stocks with 120 monthly observations. We
perform the simulation 1,000 times. t-statistics are obtained by dividing the average premium by its
standard deviation. We also report proportion of rejections of non-significance of CIQ(·) betas from
multivariate cross-sectional regressions of average returns on those betas and market betas.

of the premiums is comparable across all · and, on average, in absolute value
equal to 9.44%. The premium associated with the exposure to the PCA-SQ
factor is -6.09%. We also compute associated t-statistics as a ratio between
average premium and its standard deviation across all the simulations. All the
premiums except for the median value are significant, with values around 2.6 in
absolute value. The t-value associated with the PCA-SQ factor is -2.33. Next,
we present the proportion of rejections of non-significance of CIQ(·) betas at
a 5% significance level from multivariate cross-sectional regressions of average
returns on those betas and market betas. We can see that the proportions are
virtually identical for both upside and downside betas of around 96%. The
ratio for the PCA-SQ betas is 90%.

As we can see from the results, if there was a common volatility element
present in the return, which is compensated in the cross-section, the CIQ(·) risk
premium would be symmetrical around the median. Moreover, the exposure
to the PCA-SQ factor would be priced in this case. Overall, the evidence from
the simulation exercise suggests that the CIQ(·) risk premiums we observe in
the data are not attributable to the common volatility compensation.



Chapter 4

Asymmetric Risks: Alphas or
Betas?1

I show that systematic asymmetric risk measures, such as coskewness or tail risk
beta, can complement each other when implementing an investment strategy
based on them. I propose a simple approach to combining these measures and
obtaining anomalous returns above the premiums associated with each measure
separately. I show that various multivariate regression setups that combine the
asymmetric risk measures perform poorly. Instead, I use instrumented principal
component analysis and construct portfolios that are neutral with respect to
the common sources of risk associated with these measures. The resulting
portfolios enjoy abnormal returns that no other factor model can fully explain,
although there is a clear relation between asymmetric risk measures and the
momentum factor. I also show that some measures can contribute significantly
to the performance of a model with a linear factor structure.

4.1 Introduction
The nonlinear systematic behavior of stock returns has been a fruitful area of
research in the empirical asset pricing literature. Many statistical measures that
capture the essence of these features have been proposed as significant cross-
sectional predictors. They all attempt to capture the natural human aversion
to extreme adverse events, especially in bad times. However, the definition of
these extreme events and bad times tends to di�er across specifications. There

1I appreciate helpful comments from participants at the 2023 STAT of ML (Prague). Sup-
port from the Czech Science Foundation under the 19-28231X (EXPRO) project is gratefully
acknowledged.
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is no theoretical answer as to which specification is the right one. I propose an
approach that combines these measures into a portfolio that e�ciently exploits
the associated premiums.

Many of the studied systematic asymmetric risk measures produce di�ering
significance levels for their risk premium. This variability is contingent upon
the research environment in which they are assessed. I intend to enhance
their performance by merging these measures and averaging out the associated
noise. Unfortunately, regression models based on Lewellen (2015) exhibit poor
performance, even when I utilize regularization techniques like lasso or ridge
regression.

Instead, I propose to use the instrumented principal component analysis
(IPCA) by Kelly et al. (2019). Using the unrestricted version of their model, I
am able to di�erentiate between risk compensation for bearing the risk related
to the common factors and the risk associated with the non-linear features of
the measures. I construct a portfolio that is conditionally neutral with respect
to the exposures to the associated latent factors. Nevertheless, it yields an
annualized Sharpe ratio of up to 0.97. This result shows that the employed
asymmetric measures can be successfully used to yield significant alphas.

Furthermore, the abnormal returns cannot be explained by any other fac-
tor model, including IPCA factors estimated using the original dataset of 32
characteristics. However, the returns of this arbitrage portfolios are generally
exposed to the momentum factor. Assuming a constant relationship between
asymmetric risk measures and arbitrage portfolio formation, accounting for this
exposure only partially diminishes the abnormal returns. When I allow for time
variation in the relationship, the decline in e�ciency causes momentum to fully
capture the abnormal returns.

I also examine the alignment of asymmetric risk measures with exposures to
common linear factors. A six-factor model using asymmetric risk measures as
proxies for exposures to these latent factors is required to capture the anomaly
returns associated with eleven measures. This result suggests that these vari-
ables have little redundancy for asset prices. In addition, a portfolio that is
mean-variance e�cient and has asymmetric risks explaining the factor loadings
can result in a Sharpe ratio of approximately 1.15.

When evaluating the asymmetric risk measures in a controlled environment
of 32 characteristics from Kelly et al. (2019), three measures significantly im-
pact the fit of the latent factor model: downside beta, hybrid tail covariance
risk, and negative semibeta. Additionally, when evaluated together, asymmet-
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ric risk measures generate mildly significant p-values of approximately 7% in
this setting. These results show that some measures are related to the betas
with respect to common factors.

The present analysis is related to several strands of the literature. The
first deals with the emergence of the so-called factor zoo–many factors that are
supposed to price the cross-section of stock returns. However, there is no clear
consensus on what researchers should think about this claim. Some results
suggest that a substantial fraction of the factors is a proxy for underlying
common risks, and by including them, we can average out the noise associated
with each factor and identify the driving force behind the formation of expected
returns (Kozak et al. 2020).

Another ongoing discussion in empirical asset pricing regards characteris-
tics vs. covariances. A risk-based explanation of expected returns claims that
only exposures to common movements should constitute price determinants for
the cross-section of asset returns. If a characteristic predicts future returns, it
should be because this characteristic is a good proxy of systematic risk ex-
posure. Similarly, as in the factor zoo discussion, there is still no obvious
conclusion. Some results claim that we can form an arbitrage portfolio that
enjoys abnormal returns without exposure to systematic risk (Kim et al. 2020;
Lopez-Lira and Roussanov 2020), while others suggest that exposures capture
all the essential pricing information (Kelly et al. 2019; 2023). Moreover, those
exposures to the common fluctuations should be fully described by the betas,
which are based on a simple covariance measure of dependence.

Much of the progress in recent years has been made in both strands of
the literature, separately and simultaneously. Unfortunately, these research
e�orts tend to focus only on accounting variables and simple market friction
characteristics, neglecting various measures of nonlinear systematic dependence
between stocks and common factors. I relate to these studies by investigating
a number of systematic asymmetric risk measures in a multivariate setting in
the factor context.

Related studies have tended to shy away from this type of risk, probably due
to the relatively greater di�culty in estimating them compared to conventional
accounting variables. Nonetheless, investigating these risks is compelling in
terms of revealing the factor structure of asset returns since they hold a distinct
position among characteristics. In particular, they represent the joint behavior
of stock returns and a general measure of risk that cannot be captured by
the standard covariances with tradable factors. Due to their relationship to
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conventional measures based on covariance, it is challenging to determine the
portion of the risk premium connected to the non-linear dependence versus the
overall linear dependence for the asymmetric risk measures.

In response, I create arbitrage portfolios that are neutral with respect to
the factors associated with these measures. I use asymmetric risk measures
as proxies for exposure to common linear factors. I construct portfolios that
exploit the premiums associated with their non-systematic components. My
findings show significant e�ciency and performance of the resulting portfolios
using this method. Furthermore, I assess the added value of these measures for
explaining the exposures to the common factors, controlling for conventional
characteristics traditionally utilized in related studies. I show that some mea-
sures are suitable proxies for the exposures to the common factors. So, are the
asymmetric measures of risk alphas or betas? I show that they can act as both.

4.1.1 Theoretical Motivation

The empirical research, centered around the expected utility assumption, fo-
cuses on the implementation of the equation

Et[mt+1ri,t+1] = 0, (4.1)

which can be interpreted in terms of (co)variances as

Et[ri,t+1] = Covt(mt+1, ri,t+1)
Vart(mt+1)¸ ˚˙ ˝

—
m

i,t

A

≠Vart(mt+1)
Et[mt+1]

B

¸ ˚˙ ˝
⁄t

. (4.2)

This statement implies that the priced exposure to the risk is adequately mea-
sured by the regression coe�cient, —m

i,t
, obtained from regressing excess stock

return on the stochastic discount factor, mt+1. Further, if we assume linearity
of the discount factor in some set of factors f , which proxy for the growth of
marginal substitution, i.e., mt+1 = ” u

Õ(ct+1)
uÕ(ct) ¥ a + bÕft+1, this leads to

Et[ri,t+1] = –i,t + ⁄Õ—i,t (4.3)

ri,t+1 = –i,t + —Õ
i,t

ft+1 + ‘i,t+1 (4.4)

where —i,t are the multiple regression coe�cients of ri,t on ft, and ⁄ is vector
of risk prices associated with factors f . In the case of tradable factors, ⁄ is
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equal to the expected value of f . This line of reasoning constitutes a base
for the empirical factor literature such as the arbitrage pricing theory of Ross
(1976), the three-factor model of Fama and French (1993), etc. One of the
main implications of the theory is that the non-systematic part of the risk, –i,t,
should be equal to zero. Statistical tests such as Gibbons et al. (1989) provide
inference on goodness of fit by testing this restriction.

On the other hand, there are models that deviate from the expected utility
framework and/or linearity assumption of the stochastic discount factor. Ex-
amples of the former are models that introduce some form of behavioral bias,
such as the disappointment aversion utility of Gul (1991). Based on that frame-
work, Ang et al. (2006) introduced a cross-sectional relation between expected
returns and downside beta, dependence between market and stock return con-
ditional on the market being below its mean. A pioneer of the later violation
is the work of Harvey and Siddique (2000), which assumes that the stochastic
discount factor is quadratic in the market return, which introduces conditional
systematic skewness as a priced risk characteristic. More recently, based on
the recursive utility with disappointment aversion of Routledge and Zin (2010),
Farago and Tédongap (2018) argue that betas with various asymmetric spec-
ifications of market return and volatility should be significantly priced in the
cross-section.

Based on those arguments, risk exposure cannot be su�ciently captured by
the simple betas with tradable factors. The cross-sectional relation between
stock returns and risk changes to

Et[ri,t+1] = ”Õg(ri,t+1, fú
t+1) + ⁄Õ—i,t (4.5)

ri,t+1 = ”Õg(ri,t+1, fú
t+1) + —Õ

i,t
ft+1 + ‘i,t+1 (4.6)

where g is a function of asset return and some factor–asymmetric risk measure
(ARM) where ” is a vector of related prices of risk. We can see that this
specification leads to the rejection of the non-significant alpha assumption from
above.

The uniqueness of an ARM can lie either in the choice of the dependence
function g or in the choice of the factor f ú. In this study, I utilize two types of
asymmetric risk measures. The first one captures systematic exposure using an
asymmetric non-linear type of dependence with some conventional factor, such
as the market return. These measures are typically related to the theoretical
deviation from the expected utility theory. An example of this type of measure
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is the aforementioned downside beta of Ang et al. (2006) that measures covari-
ance between market and stock return conditional on the market performing
poorly.

The second one is defined by utilizing an asymmetric non-linear type of
aggregate risk factor. This type is usually related to the violation of the linear-
ity assumption regarding the stochastic discount factor. An example of such
a factor would be the common time-varying component of return tails in the
case of tail risk beta of Kelly and Jiang (2014).

In recent years, researchers have proposed many asymmetric risk measures
to possess the ability to explain and predict stock returns. However, their
ability to complement each other when implementing an investment strategy
has yet to be researched. Related to that, there has yet to be an e�ort to
investigate whether there is some small number of latent factors that would
explain the abnormal returns related to these measures. Studies usually control
for some pre-specified set of factors and conclude that abnormal returns cannot
be explained by exposure to those factors. Because the choice of the factors will
always be somewhat arbitrary, I will entertain the question of whether there is
any set of factors that can eliminate significant alphas related to asymmetric
risk measures. I investigate these questions using a representative set of eleven
asymmetric risk measures in their multivariate setting.

The rest of the paper is structured as follows. Section 4.2 introduces data
and asymmetric risk measures that I use in the further analysis. Section 4.3
investigates the arbitrage returns related to the asymmetric risk measures. Sec-
tion 4.4 discusses the factor structure that the IPCA model yields. Section 4.5
verifies the results regarding the asymmetric risk measures and arbitrage re-
turns. Section 4.6 entertains the possibility that the compensation for bearing
asymmetric risk is time-varying. Section 4.7 inspects relation between the arbi-
trage returns and the momentum factor and characteristic. And finally, Section
4.8 concludes the whole investigation.

4.2 Asymmetric Risk Measures
In this section, I provide a first look at the asymmetric risk measures that are
employed in the main analysis. I show they possess a sizable variation of the
significance of the related anomaly premiums based on the research setting in
which I estimate them. This observation supports the intention to evaluate the
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asymmetric risk measures jointly to extract the important component for the
asset prices.

4.2.1 Data

In the empirical investigation, I employ a representative set of eleven asym-
metric risk measures. Those measures are coskewness (coskew) of Harvey
and Siddique (2000), cokurtosis (cokurt) of Dittmar (2002), downside beta
(beta_down) of Ang et al. (2006), downside correlation (down_corr) based on
Hong et al. (2006) and Jiang et al. (2018), hybrid tail covariance risk (htcr)
of Bali et al. (2014), tail risk beta (beta_tr) of Kelly and Jiang (2014), ex-
ceedance coentropy measure (coentropy) based on Backus et al. (2018) and
Jiang et al. (2018), predicted systematic coskewness (cos_pred) of Langlois
(2020), negative semibeta (beta_neg) of Bollerslev et al. (2021), multivariate
crash risk (mcrash) of Chabi-Yo et al. (2022), and downside common idiosyn-
cratic quantile risk (CIQ) beta (ciq_down) of Barunik and Nevrla (2022). The
choice of the variables corresponds to the fact that they capture di�erent as-
pects of the return dependence in terms of non-linearity and asymmetry. I
provide an overview of how the measures are estimated in Appendix 4.A. I
estimate those measures using either daily or monthly return data from the
CRSP database that starts in January 1963 and ends in December 2018.

In the further analysis, I also use a set of 32 characteristics from Freyberger
et al. (2020), which is an intersection of data used by Freyberger et al. (2020)
and Kelly et al. (2019). These characteristics are employed to estimate the
baseline specification of the model of Kelly et al. (2019). I merge the dataset
of ARMs with the characteristics dataset and include only observations that
possess information about all the characteristics. Therefore, I work with a stock
universe that is fully transparent for investors and eligible for trading based on
a wide variety of strategies. The full merged dataset contains 1,519,754 stock-
month observations of 12,505 unique stocks. To show the variability of the
risk premiums significance related to the ARMs, I also employ a dataset that
strips down penny stocks, which I define as stocks with a price less than $5 or
capitalization below 10% quantile of the NYSE-traded stocks each month. The
dataset that excludes penny stocks yields 947,897 stock-month observations of
8,477 unique stocks.

I use an initial window of 5 years to estimate the ARMs; because of that,
the first prediction period constitutes January 1968 in the case of in-sample
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Figure 4.1: Correlation structure across ARMs.
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Note: The figure captures time-series averages of cross-sectional correlations between asymmetric risk
measures. Data include the period between January 1968 and December 2018.

analysis. When performing out-of-sample exercises, I set the initial estimation
period to be 60 months, so the out-of-sample prediction starts in January 1973.

4.2.2 Correlation Structure

First, to gain some intuition regarding the common variation of the ARMs, I
investigate their correlation structure. Figure 4.1 contains correlations between
ARMs themselves. Correlations are obtained as time-series averages of the
cross-sectional correlations. We can see that the highest absolute values of
correlations are between coentropy and downside correlation with a value of
0.94, downside beta and negative semibeta with a value of 0.70, and coskewness
and downside correlation with a value of -0.61. The rest of the correlations vary
quite a lot, with some being close to zero and some relatively high. Figure 6
shows that these correlations are relatively stable during distinct time periods
and during non-recession and recession periods as defined by NBER.

The first column of Table 4.1 summarizes how each measure is generally
related to the others by reporting average absolute correlations across all mea-
sures. We observe that the downside beta possesses the highest level of similar-
ity with other measures, with the average absolute correlation equal to 0.29. On
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Table 4.1: Average correlations of ARMs.

Variables

with ARMs with others

coskew 0.24 0.02
cokurt 0.24 0.11
beta_down 0.29 0.08
down_corr 0.27 0.02
htcr 0.19 0.11
beta_tr 0.02 0.02
coentropy 0.25 0.02
cos_pred 0.20 0.12
beta_neg 0.19 0.13
mcrash 0.16 0.05
ciq_down 0.08 0.04

Managed portfolios

with ARMs with others

0.32 0.16
0.30 0.35
0.40 0.36
0.39 0.22
0.29 0.48
0.07 0.08
0.39 0.24
0.39 0.43
0.36 0.47
0.32 0.25
0.21 0.18

Note: Panel A of the table reports time-series averages of cross-sectional correlations for each ARM
averaged across all other ARMs or 32 characteristics employed in Kelly et al. (2019). Panel B reports
average correlations between managed portfolios. The average correlation for each ARM is obtained by
averaging correlations across all other ARM portfolios or 32 characteristic managed portfolios. Data cover
the period between January 1968 and December 2018.

the other hand, the least correlated measure is tail risk beta, with an average
value of only 0.02.

The findings reveal potential variables associated with the common varia-
tion seen in ARMs. Conversely, some variables remain independent. In general,
higher average correlations indicate ARMs that rely on non-linear measures of
dependence with the market factor, like downside beta or downside correlation.
The measures that capture non-linear factors unrelated to the market factor,
specifically tail risk beta or downside CIQ beta, display lower correlations with
the other measures and thus are expected to o�er more pricing information
when accounting for exposure to common factors.

4.2.3 Fama-MacBeth Regressions

Next, I present the first results on how ARMs align with the cross-section of
asset returns. To do that, I run Fama and MacBeth (1973) cross-sectional re-
gressions and report the results in Table 4.2 in Panel A. I report both univariate
estimates and estimates obtained by controlling for four characteristics widely
employed in the literature: market beta, size, book-to-market, and momentum.
Below the estimated coe�cients, I include t-statistics based on the Newey-West
robust standard errors using the procedure of Newey and West (1994) to select
the number of lags.

From the univariate results, it is evident that the cross-sectional pricing
implications of ARMs vary considerably in their significance. Looking at the
all-stock results, the highest significance possesses the downside CIQ beta with
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Table 4.2: Fama-MacBeth regressions.

Panel A: All stocks

multivariate

ARM ARM — Size BM MOM

coskew -0.57 -0.39 -0.13 -0.15 0.22 0.49

(-2.17) (-1.62) (-0.75) (-1.72) (3.23) (3.23)

cokurt -0.21 -0.12 -0.10 -0.14 0.21 0.51

(-3.15) (-1.28) (-0.47) (-1.95) (3.39) (3.51)

beta_down -0.12 -0.14 -0.02 -0.15 0.21 0.50

(-1.29) (-2.43) (-0.14) (-1.58) (3.08) (3.26)

down_corr 0.18 -0.03 -0.13 -0.16 0.22 0.50

(1.47) (-0.32) (-0.76) (-1.66) (3.20) (3.19)

htcr 34.30 -1.55 -0.13 -0.16 0.19 0.53

(0.76) (-0.05) (-0.75) (-1.91) (3.00) (3.84)

beta_tr 0.16 0.15 -0.13 -0.14 0.21 0.51

(1.89) (2.10) (-0.78) (-1.52) (3.06) (3.31)

coentropy 0.13 -0.08 -0.13 -0.16 0.22 0.50

(0.82) (-0.64) (-0.75) (-1.72) (3.21) (3.22)

cos_pred -3.05 -0.20 -0.15 -0.18 0.21 0.49

(-1.78) (-0.11) (-0.88) (-2.69) (3.33) (3.17)

beta_neg -0.12 0.30 -0.26 -0.14 0.20 0.51

(-0.29) (0.78) (-2.12) (-1.65) (2.92) (3.48)

mcrash 0.24 0.29 -0.14 -0.17 0.23 0.49

(0.29) (0.50) (-0.80) (-1.78) (3.34) (3.18)

ciq_down 0.09 0.05 -0.12 -0.15 0.21 0.49

(2.69) (2.05) (-0.72) (-1.64) (3.17) (3.14)

Panel B: No penny stocks

multivariate

ARM ARM — Size BM MOM

-0.62 -0.36 -0.26 -0.12 0.12 0.53

(-2.21) (-1.56) (-1.41) (-1.63) (1.41) (3.41)

-0.08 0.04 -0.27 -0.18 0.13 0.53

(-1.24) (0.60) (-1.39) (-2.58) (1.45) (3.35)

-0.07 -0.05 -0.20 -0.12 0.12 0.53

(-0.52) (-0.63) (-1.24) (-1.55) (1.36) (3.43)

0.35 0.08 -0.25 -0.12 0.13 0.52

(2.38) (0.83) (-1.40) (-1.57) (1.51) (3.31)

201.36 140.20 -0.24 -0.17 0.12 0.51

(4.57) (4.28) (-1.35) (-2.37) (1.40) (3.29)

0.28 0.25 -0.24 -0.11 0.12 0.51

(2.77) (3.52) (-1.37) (-1.52) (1.38) (3.29)

0.35 0.03 -0.25 -0.12 0.13 0.53

(1.76) (0.21) (-1.39) (-1.64) (1.52) (3.36)

-1.97 1.29 -0.29 -0.19 0.14 0.56

(-1.16) (0.91) (-1.68) (-3.00) (1.64) (3.52)

-0.53 -0.45 -0.06 -0.13 0.11 0.54

(-1.33) (-1.39) (-0.42) (-1.81) (1.25) (3.51)

1.55 1.19 -0.26 -0.14 0.13 0.52

(1.85) (2.04) (-1.45) (-1.78) (1.54) (3.30)

0.09 0.04 -0.25 -0.12 0.13 0.52

(2.24) (1.58) (-1.43) (-1.62) (1.50) (3.31)

Note: The table reports the risk premiums of the ARMs estimated using Fama-MacBeth regressions. Below
the coe�cients, I include their HAC t-statistics based on Newey and West (1987) using lag auto-selection of
Newey and West (1994). I report results from univariate regressions and multivariate regressions while
controlling for four characteristics from Carhart (1997). Panel A reports results using all stocks, Panel B
excludes stocks with a price less than $5 or market cap below 10% quantile of NYSE stocks. Data cover the
period between January 1968 and December 2018.

t-statistics of 2.69. Cokurtosis yields t-statistics of -3.15. Unfortunately, the
sign of the coe�cient is counterintuitive. Coskewness is, on the other side,
significant with an expected sign. Tail risk beta is borderline significant with a
t-stat of 1.89. The rest of the variables are deemed insignificant in the presented
setting. When we move to the controlled setting, most variables become slightly
less significant with few exceptions, such as tail risk beta, which becomes sig-
nificant (t-stat=2.10), or downside beta, which becomes also significant, but
with a negative sign.

Panel B of Table 4.2 reports the results using the dataset that excludes
penny stocks. Generally, coe�cients become more significant (or less significant
if they possess a counterintuitive sign in the all-stock sample). For example,
hybrid tail covariance risk (t-stat=4.57) or downside correlation (t-stat=2.38)
become highly significant. Some variables become even more significant when
controlling for other risk measures, such as multivariate crash risk (t-stat=2.04)
or tail risk beta (t-stat=3.52).

4.2.4 Portfolio Sorts

Next, to briefly inspect the tradability of the ARMs, I perform simple univariate
portfolio sorts. I focus here on a portfolio formation based on the following



4. Asymmetric Risks: Alphas or Betas? 136

scheme

xt+1 = Z Õ
t
rt+1

Nt+1
(4.7)

where Zt is a vector of an ARM observed at time t, rt+1 represents a vector of
excess returns of the stocks in the next period, and Nt+1 denotes the number
of stock observations in a given month. I will refer to this type of portfolio as a
managed portfolio with a corresponding return xt+1. The managed portfolio’s
return is derived as a weighted average of stock returns, using the values of the
ARM as weights, and normalized by the number of stock observations.

To calculate the weights for a given ARM, every month, I cross-sectionally
rank their values, divide them by the number of observations in the month, and
subtract 0.5. This procedure transforms the ARM into the interval [≠0.5, 0.5].
By doing so, I eliminate the e�ect of outliers and the resulting return can be
interpreted as a zero-cost portfolio return associated with the ARM.

Table 4.3 summarizes the annualized returns of these managed portfolios.
In the case of all stocks, the highest absolute Sharpe ratio possesses the down-
side CIQ beta with a value of 0.42. In the case of non-penny stocks, the highest
Sharpe ratio attains hybrid tail covariance risk with the same value of 0.42. As
hinted from the Fama-MacBeth regressions, some variables possess a counter-
intuitive negative premium, e.g., cokurtosis yields a significantly negative risk
premium in the universe of all stocks. Another notable example is downside
beta, which attains negative risk premiums in both samples, but the associated
average returns are not significantly di�erent from zero.

Table 4.3 also reports annualized 6-factor alphas and their t-statistics with
respect to six commonly used risk factors. As a general benchmark of risk, I
employ four factors of Carhart (1997): market, size, value, and momentum.
To control for the e�ect of the common volatility, which may be a driver of
many tail events, I use the common idiosyncratic volatility (CIV) shocks of
Herskovic et al. (2016). The betting-against-beta (BAB) factor of Frazzini and
Pedersen (2014) aims at controlling the e�ect of the well-known beta mispricing
anomaly. When I control for the exposures to those six factors, the significance
of some of the ARM premiums deteriorates, such as in the case of tail risk beta
in both samples. On the other hand, some of the premiums do not su�er any
decrease in significance if we control for the exposure to these common factors.
For example, controlled risk premiums associated with the downside CIQ betas
deliver significant t-stats of 3.58 and 3.24 in the all-stock and no-penny datasets,
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Table 4.3: Managed portfolio returns.

Panel A: All stocks Panel B: No penny stocks

Mean t-stat SR – t-stat Mean t-stat SR – t-stat
coskew -0.30 -2.51 -0.32 -0.23 -1.52 -0.28 -2.34 -0.30 -0.10 -0.66
cokurt -0.39 -2.29 -0.29 -0.10 -0.57 -0.07 -0.48 -0.06 0.23 1.73
beta_down -0.27 -1.27 -0.16 0.09 0.63 -0.13 -0.53 -0.07 0.11 0.84
down_corr 0.15 1.80 0.22 0.09 0.84 0.24 2.64 0.33 0.04 0.39
htcr 0.00 0.01 0.00 -0.14 -0.66 0.37 2.86 0.42 0.32 2.63
beta_tr 0.32 2.28 0.32 0.31 1.44 0.35 2.56 0.36 0.18 1.12
coentropy 0.11 1.37 0.16 0.07 0.61 0.18 2.03 0.25 -0.01 -0.08
cos_pred -0.46 -1.76 -0.26 -0.50 -1.85 -0.22 -0.97 -0.14 -0.11 -0.56
beta_neg -0.13 -0.38 -0.05 0.34 1.83 -0.35 -1.18 -0.16 -0.03 -0.26
mcrash 0.03 0.36 0.05 0.06 0.63 0.16 1.74 0.25 0.14 1.52
ciq_down 0.41 2.83 0.42 0.52 3.58 0.36 2.29 0.34 0.44 3.24

Note: The table contains annualized out-of-sample returns of the managed portfolios sorted on various
asymmetric risk measures. It reports corresponding t-statistics, Sharpe ratio (SR), and annualized 6-factor
alphas and their t-statistics with respect to the four factors of Carhart (1997), CIV shocks of Herskovic
et al. (2016), and BAB factor of Frazzini and Pedersen (2014). I use the HAC t-statistics of Newey and
West (1987) with six lags. Panel A reports results using all stocks. Panel B excludes stocks with a price less
than $5 or market cap below 10% quantile of NYSE stocks. Data cover the period between January 1968
and December 2018.

respectively.
In Appendix 4.B, I employ a more conventional approach to the portfolio

sorts. Tables 26 and 27 summarize portfolio returns from sorting the stocks
into five and ten portfolios, respectively, with monthly rebalancing. Tables
contain results using equal- and value-weighted schemes for both data samples.
In the case of all stocks, the highest risk premium carries predicted coskewness
using both equal- and value-weighted returns and sorting into either quintile
or decile portfolios, although with varying significance levels.

These results show that there is a sizable variation in the magnitude and
significance of the risk premiums associated with the ARMs. Those variations
can be caused by selecting the weighting scheme, universe of stocks, number
of portfolios, research design, or their combinations. Surprisingly, most of the
ARMs perform better in the no-penny dataset. This may be caused by the
fact that the penny stocks are less liquid and thus the ARMs are measured
with higher noise. Consequently, the less precise measurement of the ARMs
may obscure the true impact that they have on the asset prices. This e�ect is
especially evident in the cases of downside correlation, hybrid tail covariance
risk, and multivariate crash risk.

Moreover, common factors can explain some of the premiums related to the
ARMs. Therefore, an e�ort to combine the ARMs to extract the important
information for the expected returns makes sense. In addition, the resulting
portfolio should aim at minimizing the exposure to the common factors to yield
significant risk-adjusted returns.
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Figure 7 in Appendix 4.B depicts the time-series correlations between man-
aged portfolios sorted on ARMs. Similarly as in the case of values of ARMs,
these correlations are quite stable across times and recession and non-recession
periods as reported in Figure 8. This result supports the value of combining the
asymmetric risk measures into an investment strategy, as correlations of these
strategies do not peak during the bad times. Moreover, Table 4.1 also contains
averages of those correlations for each ARM. Correlations are noticeably higher
than in the case of the values of the characteristics, which we might expect.
The most correlated with other ARMs is downside beta, closely followed by
downside correlation, coentropy, and predicted coskewness. There is clearly
some common structure, but the question remains whether the exposures to
that structure represent priced determinants of risk. In addition, there are also
ARMs that capture unrelated residual risk.

4.2.5 Naive Combination Approach

In this section, I investigate whether combining information from all ARMs
using an approach based on multivariate regression can produce a portfolio that
outperforms those arranged individually for each ARM. I form the portfolios
based on the multivariate Fama-MacBeth regressions in the spirit of Lewellen
(2015). Using the set of 11 ARMs, I estimate expanding- and moving-window
regressions where on the left-hand side are stock returns at time t + 1 and on
the right-hand side are the ARMs at time t. I use an out-of-sample setting with
a 60-month initial or moving period.2 I estimate the model up to time T and
use the model to predict the return at time T + 1. I use the predicted values
of the out-of-sample return to construct the portfolio and observe its realized
return. Then, I expand the estimation window and repeat the procedure until
the sample is exhausted. I use either the managed portfolio approach or the
di�erence between high and low portfolios based on quintile or decile sorts.
I weight the di�erence portfolios using an equal- or value-weighted scheme.
These portfolios are referred to as regression portfolios in the text.

Table 4.4 summarizes the results. I use three approaches to estimate the
Fama-MacBeth multivariate regressions. I utilize OLS estimation as the sim-
plest benchmark and report the results in Panel A. To deal with potential
problems related to the OLS estimator, such as overfitting in presence of corre-

2The results are not qualitatively altered by changing the size of the window. Extending
its length only slightly improves the results.
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Table 4.4: Regression portfolio returns.

Window Sorting Weighting Mean t-stat SR – t-stat Skewness Kurtosis Maximum
drawdown

Worst
month

Best
month

Panel A: OLS estimation

Expanding Managed 0.44 2.02 0.31 0.33 1.35 -0.59 12.87 66.28 -39.35 44.30
Quintile Equal 4.18 1.93 0.30 3.20 1.31 -0.61 12.35 66.88 -38.81 44.01

Value 4.65 1.77 0.27 3.41 1.09 -0.81 11.37 65.68 -38.56 41.61
Decile Equal 2.66 1.12 0.17 1.02 0.41 0.16 7.45 68.59 -28.74 41.83

Value 4.54 1.65 0.25 1.91 0.64 0.20 6.37 58.47 -25.81 42.59
Moving Managed 0.51 1.88 0.28 0.16 0.59 -0.38 9.35 66.11 -31.16 42.61

Quintile Equal 4.87 1.78 0.27 1.31 0.48 -0.48 9.01 66.57 -33.13 41.36
Value 4.70 1.41 0.22 -0.12 -0.03 -0.60 8.28 66.20 -32.49 39.58

Decile Equal 4.63 1.62 0.23 1.78 0.65 0.49 10.84 74.02 -24.74 49.35
Value 5.61 1.61 0.24 1.89 0.55 0.09 6.99 77.69 -26.95 43.38

Panel B: Ridge estimation

Expanding Managed 0.43 1.98 0.31 0.32 1.29 -0.56 12.41 65.28 -38.82 44.09
Quintile Equal 4.13 1.91 0.30 3.04 1.24 -0.58 11.71 65.91 -38.04 43.67

Value 4.38 1.66 0.25 3.03 0.97 -0.84 11.37 67.02 -39.56 41.39
Decile Equal 2.77 1.19 0.18 0.96 0.39 0.25 7.43 67.95 -28.72 42.40

Value 4.42 1.56 0.24 1.79 0.59 0.18 6.74 57.64 -26.87 42.85
Moving Managed 0.51 1.84 0.27 0.15 0.54 -0.33 8.95 66.25 -30.64 42.26

Quintile Equal 4.60 1.67 0.25 0.91 0.33 -0.38 8.77 69.00 -32.51 41.73
Value 5.08 1.51 0.23 0.26 0.08 -0.58 7.53 66.33 -31.44 38.30

Decile Equal 3.75 1.28 0.19 0.76 0.27 0.45 10.27 76.75 -24.67 48.55
Value 7.29 2.09 0.31 3.86 1.06 0.21 6.62 71.25 -25.03 42.95

Panel C: Lasso estimation

Expanding Managed 0.43 1.98 0.31 0.32 1.30 -0.55 12.44 65.53 -38.31 44.25
Quintile Equal 4.02 1.85 0.29 3.04 1.25 -0.55 11.84 66.89 -37.48 43.82

Value 4.45 1.69 0.26 3.13 1.00 -0.79 11.30 65.21 -37.86 41.94
Decile Equal 3.08 1.32 0.20 1.47 0.60 0.24 7.58 68.34 -29.14 42.67

Value 4.87 1.72 0.26 2.39 0.78 0.22 6.65 59.41 -27.30 42.71
Moving Managed 0.50 1.77 0.27 0.14 0.49 -0.34 8.85 66.08 -30.71 42.10

Quintile Equal 4.48 1.59 0.25 0.78 0.28 -0.45 8.42 68.73 -33.09 40.58
Value 4.68 1.36 0.21 -0.10 -0.03 -0.57 7.91 67.36 -31.77 39.23

Decile Equal 3.96 1.37 0.20 1.23 0.43 0.47 9.98 78.57 -24.95 48.54
Value 6.86 1.89 0.29 3.25 0.90 0.17 6.25 67.60 -25.18 41.99

Note: The table contains out-of-sample results for the regression portfolios estimated using Fama-MacBeth
regressions and various weighting schemes. Predicted returns are estimated using either OLS, Ridge or
Lasso regression. It reports annualized mean, corresponding HAC t-statistics of Newey and West (1987)
with 6 lags, Sharpe ratio (SR), alpha and its t-statistic with respect to the four factors of Carhart (1997),
CIV shocks of Herskovic et al. (2016), and BAB factor of Frazzini and Pedersen (2014), skewness, kurtosis,
the maximum drawdown, and best- and worst-month returns. Values are in percentages. I use expanding
(moving) window estimation with a 60-month initial (moving) period. Data cover the period between
January 1968 and December 2018.

lated variables, I also estimate the models with ridge and lasso regressions and
report the results in Panel B and C, respectively.3 Notably, we observe that
the returns of these portfolios are only somewhat significant. The above obser-
vation is further confirmed by the insignificant t-statistics with respect to the
six-factor model previously applied in single-sorted portfolios. Additionally,
returns exhibit leptokurtic behavior with slightly negative skewness in most
instances. The last three columns employ rescaled returns so that the uncon-
ditional yearly volatility is 20%, and report maximum drawdown and worst-
and best-month returns.

These results show that the simple portfolio formation based on multivariate
regression cannot e�ciently combine the information from the ARMs to yield

3I set the tuning parameters based on the best fit obtained from the three-fold cross-
validation using the data up to time T . Extending the number of folds does not have any
significant e�ect on the results.
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abnormal returns beyond premiums associated with single sorts. In addition,
the regression portfolios are highly exposed to the common factors and thus
do not yield any significant risk-adjusted premium. High correlations between
some ARMs may cause high estimation errors, which may be more attenuated
in the out-of-sample setting with shorter estimation periods. The fact that
the moving-window estimation approach yields lower significance of the results
further supports this claim.

4.3 Combining Asymmetric Risk Measures
In this section, I present an approach to portfolio construction that enjoys
the abnormal returns associated with the ARMs without being exposed to
common sources of risk. I estimate a latent factor model that utilizes the
ARMs to account for the maximal possible explanation of the factor loadings
to the common factors. Then, I form a portfolio that is factor neutral and
show that it still possess a significant risk premium not explained by any other
factor model.

4.3.1 IPCA Model

To exploit the risk premium associated with the ARMs, I use the instrumented
principal component analysis (IPCA) model of Kelly et al. (2019; 2020), which
can be written as

ri,t+1 = –i,t + —i,tft+1 + ‘i,t+1,

–i,t = zÕ
i,t

�– + ‹–,i,t, —i,t = zÕ
i,t

�— + ‹—,i,t

(4.8)

where ri,t+1 is an excess return and —i,t contains dynamic loadings on (K ◊ 1)
vector of latent factors ft+1. The vector of factor loadings may depend on
the instrument (L ◊ 1) vector zi,t of observable asset characteristics (which
includes a constant) through the matrix �—. I use the set of eleven ARMs as the
characteristics that may proxy for the exposure to the common factors (hence
ARM-IPCA).4 Mapping between characteristics and factor loadings serves two
purposes. First, it enables the exploitation of other information than just
simply return data for the estimation of latent factor loadings and thus makes

4Same as in the case of managed portfolios, I standardize the variables to have zero mean
and range between -0.5 and 0.5.
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the estimation more e�cient. Second, it naturally makes the loadings time-
varying as they are a function of the characteristics and thus makes it valuable
tool for estimation of conditional risk premium. Moreover, the model admits
the possibility that the characteristics align with the returns in addition to
their relation to systematic risk through the (L ◊ 1) vector of coe�cients �–

that maps the characteristics into their anomaly intercepts.
This feature can be used to investigate how well the ARMs proxy for the

exposure to the systematic risk and to test whether they contain some impor-
tant information beyond that and yield some anomaly (mispricing) returns. To
do that, I can examine features of the �– estimate and test the null hypothesis
that the ARMs do not proxy for the anomaly alpha. Throughout the text, I
use the fit of two specifications of the Model 4.8. First, the restricted model
is estimated by setting the �– vector to zero. Second, the unrestricted model
is obtained by allowing expected returns to align with the ARMs beyond their
relation with the systematic risk exposure, and thus �– is estimated freely.

To construct the portfolio that combines the information from all ARMs
and exploits their abnormal returns, I use the estimates of the unrestricted
model. I estimate the unrestricted model and form corresponding arbitrage
portfolio with weights set equal to

wt≠1 = Zt≠1(Z Õ
t≠1Zt≠1)≠1�–, (4.9)

which yields conditional factor neutrality. This portfolio e�ciently combines
assets in proportion to their conditional expected returns beyond the exposure
to the common factors. I denote this portfolio as pure-alpha portfolio.

The proposed approach is particularly suitable for combining ARMs for var-
ious reasons. First, by using ARMs to approximate the exposures to common
factors, I can extract the risk premium associated solely with the non-linear
features related to the measures. Moreover, the algorithm minimizes the risk
that other risk factors will span the resulting abnormal returns. This is espe-
cially critical for the market factor. From the previous literature, see, e.g., Hou
et al. (2018), it is a well-documented fact that the exposure to the market factor
is negatively priced across stock returns, even though it represents a counter-
intuitive observation. It is reasonable to expect that the linear relation with
the overall market will dilute some asymmetric risk measures. As the market
return usually explains the most time-series variation of stock returns, IPCA
considers this fact, and the e�ect of this puzzle is mitigated for the pure-alpha
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portfolios.
Second, this procedure also alleviates potential issues of multicollinearity

among the ARMs. If some variables proxy for the exposure to the common
factors, IPCA controls these associations when setting the weights for the pure-
alpha portfolio by letting them to explain the systematic risk.

The performance of the pure-alpha portfolio provides a straightforward test
for abnormal returns connected to ARMs beyond exposure to common factors.
The pure-alpha portfolio o�ers investors a chance to avoid systematic risk asso-
ciated with common linear factors and enjoy the premium related to the ARMs.
A factor model that captures risk compensation appropriately should not o�er
such an opportunity. Naturally, the performance of the pure-alpha portfolio
provides an alternate approach for merging information from ARMs, resulting
in abnormal returns beyond single-variable sorts.

Following Kelly et al. (2019), estimation of the restricted model with �– = 0
is performed using alternating least squares and iterating between the first-order
conditions for �— and ft+1

ft+1 =
1
�̂Õ

—
Z Õ

t
Zt�̂—

2≠1
�̂Õ

—
Z Õ

t
rt+1, ’t (4.10)

and

vec(�̂Õ
—
) =

A
T ≠1ÿ

t=1
Z Õ

t
Zt ¢ f̂t+1f̂

Õ
t+1

B≠1 A
T ≠1ÿ

t=1

Ë
Zt ¢ f̂ Õ

t+1

ÈÕ
rt+1

B

(4.11)

where rt+1 is the N ◊ 1 vector of stock returns and Zt is the N ◊ L matrix
of stock characteristics. The identifying restrictions are that �̂Õ

—
�̂— = IK , the

unconditional second moment matrix of ft is diagonal with descending diagonal
entries, and the mean of ft is non-negative.5 In the case of the unrestricted
version of the model with �– ”= 0, the estimation proceeds similarly, the only
di�erence is that we augment the vector of factors to include a constant.6

4.3.2 Pure-Alpha Portfolios

To combine the ARMs while hedging exposure to common factors, I form the
pure-alpha portfolios and investigate their out-of-sample performance. The
models are estimated using an expanding window. First, I estimate the ARM-
IPCA model with the first 60 observations of the sample and use the estimate

5Those restrictions do not possess any economic implications for the model.
6I thank Seth Pruitt for making the code for the IPCA estimation publicly available.
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Table 4.5: Pure-alpha portfolio returns.

K factors Mean t-stat SR Skewness Kurtosis Maximum
drawdown

Worst
month

Best
month

1 14.36 4.73 0.72 0.09 3.59 41.40 -31.14 25.53
2 19.36 6.27 0.97 0.15 2.87 31.17 -25.47 27.23
3 16.78 5.35 0.84 -0.00 6.59 43.45 -39.64 25.67
4 8.20 3.04 0.41 -0.12 5.41 45.88 -40.07 24.14
5 8.06 2.86 0.40 0.34 3.69 38.36 -32.42 27.70
6 5.97 2.05 0.30 0.79 3.20 51.45 -17.98 27.29
7 1.07 0.34 0.05 0.48 2.25 73.12 -20.19 26.80
8 -2.53 -0.81 -0.13 -0.40 2.76 89.97 -31.47 21.61

Note: The table contains out-of-sample results for the pure-alpha portfolios estimated using the
ARM-IPCA model ranging between one and eight latent factors. It reports annualized mean, corresponding
HAC t-statistics of Newey and West (1987) with six lags, Sharpe ratio (SR), skewness, kurtosis, the
maximum drawdown, and best- and worst-month returns. Values are in percentages. I use expanding
window estimation with a 60-month initial period. Data cover the period between January 1968 and
December 2018.

of �̂– to form the pure-alpha portfolio and record the out-of-sample return in
the next period. Then, I expand the estimation period by one observation
and predict the next. I repeat the procedure until the dataset is exhausted.
The first out-of-sample prediction period corresponds to January 1973. For
comparability reasons, I scale the portfolio returns to have an unconditional
standard deviation of 20% p.a. over the whole sample, which does not a�ect
the significance of the results. Later in the text, I also report results of a
volatility-targeted weights, which yield the same qualitative and quantitative
conclusions.

Table 4.5 summarizes the basic features of the pure-alpha portfolios for the
ARM-IPCA model with one to eight common latent factors. Results show that
portfolios estimated using one to five factors yield highly significant returns
with the HAC t-statistic of Newey and West (1987) with 6 lags of up to 6.27,
corresponding to the ARM-IPCA(2) specification. Sharpe ratio achieves a value
of up to 0.97. I also report skewness and kurtosis of the pure-alpha portfolios.
These values do not indicate any extreme behavior of the portfolios as the
return distributions are close to symmetric and without signs of heavy tails.

In comparison to the results obtained using the regression portfolios based
on Fama-MacBeth regression, returns of the pure-alpha portfolios exhibit fea-
tures much closer to the normal distribution. Moreover, I include the maxi-
mum drawdowns that every portfolio yielded and their best and worst months.
In Appendix 4.C in Table 28, I include summary results for the pure-alpha
portfolios estimated separately in two disjoint sub-intervals. I show that the
implications hold similarly over these periods.

To further assess the performance of the pure-alpha portfolios, the left panel
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Figure 4.2: Performance of the ARM-IPCA portfolios.
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Note: The figure shows out-of-sample performance results of the pure-alpha and tangency portfolios
estimated using IPCA models with the ARMs as instruments. Models are estimated with an expanding
window and a 60-month initial period. Tangency portfolios are based on the restricted ARM-IPCA model,
and pure-alpha portfolios on the unrestricted model. Data cover the period between January 1973 and
December 2018.

of Figure 4.2 captures the cumulative log return of those portfolios. We see
that the pure-alpha portfolios based on up to five latent factors grow constantly
over the whole period without a noticeable sign of slowing down. These results
suggest that it is possible to strip the ARMs down from their exposures to
the common linear factors and combine them into a highly profitable strategy.
This strategy provides a Sharpe ratio more than twice as big as the best strat-
egy based on a single-variable sort. Moreover, the features of the pure-alpha
portfolios suggest that the resulting returns do not exhibit extreme behavior
that may be expected due to the nature of the ARMs.

4.3.3 Risk-Adjusted Returns

Next, I investigate whether the arbitrage returns associated with the pure-
alpha portfolios are not driven by exposures to other known factors. I regress
returns of the pure-alpha portfolios on various sets of factors that were proven
successful in capturing the risk premium. I report the annualized alphas and
their HAC t-statistics of Newey and West (1987) with six lags. Table 4.6
reports risk-adjusted returns when controlling for the exposures to the three-
and five-factor models of Fama and French (1993) and Fama and French (2015),
while also using the specification of Carhart (1997) and combining it with the
CIV shocks of Herskovic et al. (2016), and the BAB factor of Frazzini and
Pedersen (2014). We can see that the returns of the pure-alpha portfolios are
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Table 4.6: Fama-French risk-adjusted returns of the pure-alpha port-
folios.

K factors CAPM FF3 FF3+MOM FF3+MOM
+CIV

FF3+MOM
+CIV+BAB FF5 FF5+MOM FF5+MOM

+CIV
FF5+MOM
+CIV+BAB

1 14.31 13.58 9.12 9.16 6.27 12.38 8.77 8.79 6.87
(4.75) (4.54) (2.71) (2.74) (1.85) (3.69) (2.53) (2.54) (2.00)

2 19.65 18.70 13.28 13.31 10.63 17.39 13.00 13.02 11.18
(6.54) (6.19) (3.95) (3.98) (3.15) (5.02) (3.73) (3.73) (3.23)

3 17.04 16.88 11.49 11.50 10.03 15.97 11.59 11.60 10.34
(5.68) (5.41) (4.23) (4.22) (3.46) (4.65) (4.06) (4.03) (3.51)

4 8.44 6.68 5.87 5.90 5.22 6.67 6.02 6.03 5.37
(3.27) (2.55) (2.27) (2.28) (1.88) (2.67) (2.32) (2.32) (1.91)

5 7.89 6.57 5.59 5.60 5.61 7.41 6.54 6.55 6.14
(2.94) (2.32) (1.94) (1.94) (1.94) (2.76) (2.33) (2.33) (2.13)

6 6.07 4.14 4.51 4.52 4.57 5.90 6.07 6.07 5.61
(2.13) (1.47) (1.48) (1.48) (1.52) (2.13) (2.01) (2.01) (1.88)

Note: The table reports annualized alphas and their HAC t-statistics of Newey and West (1987) with six
lags obtained by regressing the pure-alpha portfolio returns on various factor models and their
combinations: Fama and French (1993), Carhart (1997), Fama and French (2015), CIV shocks of Herskovic
et al. (2016), and BAB factor of Frazzini and Pedersen (2014). Data cover the period between January 1973
and December 2018.

Table 4.7: Exposures of the ARM-IPCA pure-alpha portfolios.

K – Mkt SMB HML RMW CMA MOM CIV BAB

1 6.87 0.05 0.06 0.06 -0.21 -0.06 0.33 -0.02 0.48
(2.00) (0.69) (0.38) (0.39) (-0.97) (-0.30) (2.73) (-0.47) (3.63)

2 11.18 0.02 0.08 0.10 -0.27 0.02 0.42 -0.02 0.46
(3.23) (0.26) (0.53) (0.57) (-1.39) (0.12) (3.35) (-0.62) (3.88)

3 10.34 0.04 -0.03 -0.05 -0.42 0.27 0.44 0.01 0.31
(3.51) (0.57) (-0.21) (-0.24) (-2.19) (1.12) (4.50) (0.33) (2.76)

4 5.37 0.04 -0.21 0.27 -0.27 0.16 0.06 -0.04 0.17
(1.91) (0.59) (-1.12) (1.13) (-1.61) (0.60) (0.67) (-1.14) (1.37)

5 6.14 0.09 -0.23 0.26 -0.40 0.11 0.09 -0.01 0.10
(2.13) (1.24) (-1.38) (1.16) (-2.75) (0.48) (0.88) (-0.37) (0.98)

6 5.61 -0.01 -0.05 0.35 -0.46 -0.07 -0.04 0.00 0.11
(1.88) (-0.17) (-0.55) (2.50) (-3.20) (-0.37) (-0.45) (-0.10) (1.09)

Note: The table reports estimated coe�cients and their t-statistics from regressing returns of the
pure-alpha ARM-IPCA(K) portfolios on five factors of Fama and French (2015), augmented by momentum
factor of Carhart (1997), CIV shocks of Herskovic et al. (2016), and BAB factor of Frazzini and Pedersen
(2014). Data cover the period between January 1973 and December 2018.

not subsumed by those other specifications. However, it is evident that the
momentum factor and betting-against-beta factor capture a non-trivial part of
the returns of the pure-alpha portfolios.

Table 4.7 summarizes the exposures of the pure-alpha arbitrage portfolios
to eight factors based on the five-factor model of Fama and French (2015),
augmented by the momentum factor of Carhart (1997), CIV shocks of Her-
skovic et al. (2016), and the BAB factor of Frazzini and Pedersen (2014). The
pure-alpha portfolios of the ARM-IPCA models possess significant exposures
to the momentum and betting-against-beta factors. Although these exposures
diminish the abnormal returns, the remaining risk premium remains significant.

Next, I control for the exposure to the q-factor models of Hou et al. (2014)
and Hou et al. (2020), augmented by the momentum factor, CIV shocks, and
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Table 4.8: Q-model risk-adjusted returns of the pure-alpha portfolios.

K factors Q4 Q5 Q5+MOM Q5+MOM
+CIV

Q5+MOM
+CIV+BAB

1 8.03 7.40 7.81 7.64 6.29
(2.23) (2.15) (2.42) (2.37) (1.95)

2 12.22 11.05 11.58 11.41 10.16
(3.27) (3.13) (3.60) (3.51) (3.17)

3 11.39 8.69 9.29 9.24 8.54
(2.98) (2.57) (3.06) (3.00) (2.74)

4 5.98 6.00 6.04 5.91 5.37
(2.01) (1.93) (1.96) (1.89) (1.69)

5 6.11 6.50 6.63 6.59 6.39
(1.97) (2.03) (2.11) (2.08) (2.04)

6 6.33 6.81 6.83 6.81 6.40
(2.16) (2.16) (2.18) (2.18) (2.08)

Note: The table reports annualized alphas and their HAC t-statistics of Newey and West (1987) with six
lags obtained by regressing the pure-alpha portfolio returns on factor models of Hou et al. (2014) and Hou
et al. (2020), augmented by momentum factor, CIV shocks, and BAB factor. Data cover the period
between January 1973 and December 2018.

BAB factor.Table 4.8 summarizes the results. The abnormal returns of the
pure-alpha portfolios cannot be erased by those combinations, either. Espe-
cially strong remain the abnormal returns for portfolios constructed from two-
or three-factor specifications of the ARM-IPCA model.

Finally, I put the anomaly returns of the pure-alpha portfolios against their
closest competitor. I investigate whether the out-of-sample IPCA factors es-
timated using the original set of 32 characteristics from Kelly et al. (2019)
can explain the abnormal returns related to the pure-alpha portfolios from the
ARM-IPCA model. The results of this analysis are in Table 4.9. We observe
that returns of the pure-alpha portfolios of the ARM-IPCA models with one
to five latent factors cannot be explained by the original IPCA factors. Using
even five- or six-factor versions of the original IPCA model cannot span the
highly significant performance of the pure-alpha portfolios.

4.3.4 Variable Importance

This section investigates which ARMs contribute the most to the performance
of the pure-alpha portfolios. Table 4.10 reports estimates of the �– vector from
the out-of-sample procedure in the last prediction period. Because the ARM
variables are standardized, their magnitudes are comparable. We can observe
that the coe�cients of some variables change considerably across the range of
common latent factors. This fact is caused by using more ARMs as proxies
for exposures to common factors as the number of latent factors goes up, and
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Table 4.9: IPCA risk-adjusted returns of the pure-alpha portfolios.

K factors IPCA1 IPCA2 IPCA3 IPCA4 IPCA5 IPCA6

1 14.12 14.60 12.95 8.60 10.62 12.07
(4.77) (4.99) (2.71) (2.01) (2.34) (2.69)

2 18.85 19.50 18.83 12.15 13.65 18.33
(6.30) (6.89) (3.57) (2.54) (2.74) (3.62)

3 16.40 16.95 21.09 16.29 16.42 18.87
(5.26) (6.07) (4.12) (3.21) (3.03) (3.25)

4 7.12 7.47 3.29 3.04 7.94 10.61
(2.62) (2.94) (0.88) (0.81) (2.03) (2.16)

5 7.25 7.40 4.44 3.82 7.96 11.83
(2.58) (2.76) (1.24) (1.05) (2.12) (2.58)

6 5.47 4.52 1.90 3.12 2.12 4.50
(1.92) (1.65) (0.65) (0.98) (0.64) (1.22)

Note: The table reports annualized alphas and their HAC t-statistics of Newey and West (1987) with six
lags obtained by regressing the pure-alpha portfolio returns on out-of-sample IPCA factors with one to six
latent factors and 32 characteristics from Kelly et al. (2019) as instruments. Data cover the period between
January 1973 and December 2018.

Table 4.10: Estimated coe�cients of �– vector.

K factors

1 2 3 4 5 6

coskew -5.50 -4.11 0.08 -0.78 -0.54 -1.57
cokurt 2.61 1.72 2.70 1.88 2.03 2.55
beta_down -9.10 -7.71 -1.82 -2.76 -3.32 -3.00
down_corr 2.62 1.84 0.18 1.04 0.42 -0.13
htcr 2.92 3.10 5.87 4.89 4.56 2.73
beta_tr 2.43 1.71 0.71 2.71 -1.19 0.81
coentropy -4.18 -3.12 -1.72 -2.40 -1.66 -0.71
cos_pred -4.23 -4.85 -4.92 -1.45 -0.36 -0.40
beta_neg -2.53 -2.32 0.11 0.92 1.14 1.11
mcrash 0.95 0.95 1.52 1.34 1.77 1.14
ciq_down 3.82 3.30 2.98 3.52 1.21 -1.32

Note: The table summarizes the estimated coe�cients of �– vector of the ARM-IPCA model. This vector
is used for the construction of the pure-alpha portfolios. Reported are coe�cients estimated using the last
prediction window before exhausting the entire dataset. Coe�cients are multiplied by 1,000 for better
readability. Data cover the period between January 1973 and December 2018.

potentially losing some predictive ability for anomaly returns of the pure-alpha
portfolio.

Moreover, in Figure 4.3, I capture the estimates of �– from the expanding
window estimation of the ARM-IPCA(2) model. We can see that the coe�-
cients are relatively stable across time, and the variables possess the same sign
during most of the period.

Next, I assess the variable importance for the out-of-sample results based
on setting the e�ect of a variable on the formation of the pure-alpha portfolio
to zero. More specifically, I estimate the unrestricted IPCA model using all
ARMs for a given number of latent factors. Then, when forming the arbitrage
portfolio, I set the element of �– corresponding to the investigated ARM to zero
and record the out-of-sample return next period. I exhaust the entire dataset
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Figure 4.3: �– estimates from the out-of-sample estimation.
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Note: The figure shows estimates of the �– vector from the unrestricted ARM-IPCA(2) model using
expanding window estimation and a 60-month initial period. Data cover the period between January 1973
and December 2018.

and compute the realized out-of-sample Sharpe ratio. I repeat this procedure
for each ARM and range between one and six factors.7

Table 4.11 reports these e�ects. We can see three variables with highly
negative omission impact across all six specifications of the pure-alpha portfo-
lios: downside correlation, coentropy, and downside CIQ beta. These variables
noticeably improve the performance of the pure-alpha portfolios. Hybrid tail
covariance risk contributes positively to the first three specifications of the
pure-alpha portfolios, which possess the highest Sharpe ratios among the spec-
ifications.

4.4 ARM Latent Factors
Although we can exploit arbitrage returns related to the ARMs, I also investi-
gate how the ARMs can be used as an approximation for the exposures to the

7I avoid the analysis based on entirely leaving a variable out from the whole estimation
procedure of an unrestricted model because, in this case, the e�ect on the Sharpe ratio
combines two forces. First, there is less information that can be used for the formation of
the arbitrage portfolio. This e�ect should generally lead to a decrease in the out-of-sample
Sharpe ratio. Second, leaving one variable out restricts the information that can be used
for the exploitation of the common factor structure of the returns. Consequently, this e�ect
saves more potential pricing information for the construction of the arbitrage portfolio, which
should generally lead to an increase in the Sharpe ratio.
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Table 4.11: Variable Importance of the ARMs for the pure-alpha port-
folios.

IPCA1 IPCA2 IPCA3 IPCA4 IPCA5 IPCA6

Sharpe ratio 0.72 0.97 0.84 0.41 0.40 0.30

Decrease of Sharpe ratio in %

coskew 15.17 9.19 7.21 26.12 14.21 34.82
cokurt 11.24 -1.56 -14.72 4.65 -6.52 26.40
beta_down 5.96 0.48 -10.53 -40.93 -47.86 -71.74
down_corr -15.21 -4.98 -13.34 -26.57 -29.53 -57.84
htcr -5.44 -6.91 -22.21 3.71 15.90 21.43
beta_tr 0.09 2.27 3.97 -3.61 -66.96 -142.62
coentropy -39.70 -32.00 -25.15 -2.26 -16.14 -41.76
cos_pred 1.35 -21.29 -7.45 25.48 11.38 32.18
beta_neg -1.99 0.64 7.24 -12.51 -61.93 -51.72
mcrash 1.27 -1.63 -1.61 -0.07 0.03 -10.14
ciq_down -31.39 -25.61 -15.85 -22.89 -15.85 -74.26

Note: The table reports decreases of the out-of-sample Sharpe ratios in the pure-alpha portfolios from the
leave-one-out procedure. For each ARM, I report the di�erence (in % points) between the Sharpe ratio
obtained without the ARM and the Sharpe ratio obtained from the model with all ARMs. Data cover the
period between January 1968 and December 2018.

common factors. In this section, I dissect the IPCA model fit using mainly the
restricted specification of the ARM-IPCA model. I investigate which variables
proxy for the exposures to the common factors and how they relate to the
original IPCA model results using the set of 32 variables.

4.4.1 Model Fit and Tests

I evaluate the performance of the IPCA models in terms of two metrics. The
first one, total R2, describes how the model is able to capture time variation of
the realized returns using conditional loadings and factor realizations

Total R2 = 1 ≠

q
i,t

3
ri,t+1 ≠ zÕ

i,t
(�̂– + �̂— f̂t+1)

42

q
i,t r2

i,t+1
. (4.12)

The total R2 aims to quantify the model’s success at capturing the riskiness of
the assets. Total R2 is related to the estimation procedure. Similarly, as in the
case of principal component analysis, the estimation targets to maximize the
model’s explanatory power of the time variation of returns. In the case of the
out-of-sample fits, the model parameters are estimated using the information
up to time t, the same as the factors that are formed using the information up
to time t, and the out-of-sample realized factor returns are then recorded.

The second metric, predictive R2, captures how the model is capable of



4. Asymmetric Risks: Alphas or Betas? 150

explaining the conditional expected returns

Predictive R2 = 1 ≠
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where ⁄̂ is a vector of factor means. In the case of out-of-sample analysis, ⁄̂ is
estimated up to time t. The predictive R2 captures how much the model is able
to describe the risk-return trade-o� of the assets. We can use the restriction
of �– = 0 to compare the performance with the unrestricted model. When we
impose the restriction, the predictive R2 tells us how much the risk compensa-
tion can be explained by the systematic risk with the exposures approximated
by the ARMs. When we do not impose this restriction, the predictive R2 sum-
marizes how much of the variation of the expected returns can be explained
through the characteristics via their relation to either systematic risk exposure
or anomaly intercepts.

Moreover, the IPCA model has a natural interpretation in terms of man-
aged portfolios. Using managed portfolio interpretation is important for esti-
mation (e.g., for initial guess of the numerical optimization), its relation to the
classical PCA estimator, and for various bootstrap testing procedures. More
importantly for the presented analysis, I will use both single stock and managed
portfolio returns to evaluate the performance of the IPCA models. Asset pric-
ing literature frequently prefers to use portfolios because of their lower levels
of unrelated idiosyncratic risk. The corresponding metrics are defined as

Total R2 = 1 ≠

q
t

3
xt+1 ≠ Z Õ

t
Zt(�̂– + �̂— f̂t+1)

4Õ3
xt+1 ≠ Z Õ

t
Zt(�̂– + �̂— f̂t+1)

4

q
t xÕ

t+1xt+1

(4.14)

and

Predictive R2 = 1 ≠

q
t

3
xt+1 ≠ Z Õ

t
Zt(�̂– + �̂—⁄̂)

4Õ3
xt+1 ≠ Z Õ

t
Zt(�̂– + �̂—⁄̂)

4

q
t xÕ

t+1xt+1
.

(4.15)

To formally decide between restricted or unrestricted model specification
for given number of latent factors in-sample, I follow Kelly et al. (2019). Using
Model 4.8, I test a null hypothesis of H0 : �– = 0L◊1 against an alternative
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hypothesis H1 : �– ”= 0t◊1. Under the null hypothesis, the characteristics do not
yield significant alphas after controlling for their explanatory power regarding
the loadings on latent factors. The procedure follows three steps.

First, the unrestricted IPCA model is estimated and the parameters and
the residuals are saved. I compute a Wald-type test statistic that measures the
distance between the restricted and unrestricted model, W– = �̂Õ

–
�̂–. Second,

the inference regarding the test statistic is performed using residual bootstrap.
In each bootstrap replication, I generate a sample of new managed portfolio
returns using the estimated residuals, estimate �̂— (both from the original un-
restricted model) and the restricted model’s specification (setting �– = 0).
Then, the generated sample is used to estimate the unrestricted model and the
simulated test statistic is saved. Third, the resulting inference is obtained from
the simulated distribution of bootstrapped test statistics. A resulting p-value
of the test is calculated as a proportion of bootstrapped test statistics that
exceed the value of the test statistic from the actual data.

The choice of using the bootstrap to draw an inference regarding the IPCA
fits throughout the investigation is mainly driven by its robustness features. I
exploit the fact that bootstrap enjoys favorable statistical properties in finite
samples. Furthermore, I can perform statistical testing without making strong
distributional assumptions regarding the model residuals.

To assess the fit of the restricted and unrestricted model out-of-sample, I
investigate the performances of two portfolios. Beside the pure-alpha portfolio
studied in Section 4.3, I use the restricted model to form a factor tangency
portfolio. Each time t, I estimate the restricted model and set weights of the
factor portfolios proportional to �≠1

t µt, where �t and µt are a covariance matrix
and vector of average returns of the IPCA factors, respectively, both estimated
using information up to time t. The portfolio weights are re-scaled to target 1%
monthly volatility based on the historical estimate. The performance of this
portfolio indicates how well the ARMs align with the exposures to the common
factors and whether those exposures are priced.

4.4.2 IPCA Estimation Results

Panel A of Table 4.12 summarizes the in-sample results of both restricted and
unrestricted versions of the IPCA models with varying numbers of latent fac-
tors. The models are estimated over the whole sample. The first segment of
each panel captures the results using individual stocks. The second segment
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Table 4.12: ARM-IPCA results.

IPCA(K)

1 2 3 4 5 6 7 8

Panel A: In-sample results

Individual stocks
Total R

2 �– = 0 15.95 17.30 17.99 18.46 18.70 18.83 18.94 19.02
�– ”= 0 16.02 17.36 18.00 18.47 18.71 18.83 18.94 19.02

Predictive R
2 �– = 0 0.29 0.31 0.35 0.35 0.36 0.36 0.35 0.36

�– ”= 0 0.37 0.37 0.36 0.36 0.36 0.36 0.36 0.36
Managed portfolios
Total R

2 �– = 0 96.28 98.35 99.45 99.66 99.79 99.85 99.90 99.94
�– ”= 0 96.35 98.41 99.46 99.67 99.79 99.85 99.90 99.94

Predictive R
2 �– = 0 1.85 1.88 1.95 1.94 1.95 1.95 1.94 1.95

�– ”= 0 1.97 1.96 1.96 1.96 1.96 1.96 1.96 1.95
Asset pricing test
W– p-value 0.00 0.00 4.70 0.80 2.50 16.40 7.60 77.60

Panel B: Out-of-sample results

Individual stocks
Total R

2 �– = 0 15.49 16.81 17.47 17.99 18.25 18.38 18.49 18.57
�– ”= 0 15.47 16.80 17.37 17.98 18.24 18.36 18.48 18.57

Predictive R
2 �– = 0 0.23 0.23 0.26 0.26 0.27 0.28 0.28 0.28

�– ”= 0 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
Managed portfolios
Total R

2 �– = 0 96.30 98.35 99.28 99.63 99.77 99.83 99.89 99.93
�– ”= 0 95.91 98.04 99.08 99.56 99.74 99.81 99.88 99.92

Predictive R
2 �– = 0 1.55 1.56 1.64 1.67 1.69 1.69 1.69 1.69

�– ”= 0 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.70
Tangency portfolios
Mean 9.74 6.64 16.36 19.11 21.37 22.37 22.93 23.68
t-stat 3.10 2.27 4.45 6.00 6.06 6.66 7.10 7.43
Sharpe 0.49 0.33 0.82 0.96 1.07 1.12 1.15 1.18

Note: The table reports in-sample and out-of-sample results of the ARM-IPCA models with varying
numbers of latent factors. The asset pricing test reports p-values of the null hypothesis that �– = 0. Data
cover the period between January 1968 and December 2018.

describes the results using the managed portfolios. The third segment then
reports the test results regarding the zero alpha assumption.

The test rejects the null hypothesis of non-significant alphas for the first
five IPCA specifications. The predictive R2s suggest little di�erence between
the restricted and non-restricted models for the IPCA(3) models. However, it
is di�cult to assess the importance of those di�erences as only a tiny increase
of R2 may lead to large investment gains. They may play even more significant
role if we look at the out-of-sample results, which the results of the pure-alpha
portfolios confirm.

Generally, the results are similar to the results obtained by Kelly et al.
(2019) or Kelly et al. (2023) in the sense that only a few instrumented latent
factors are needed to explain the asset returns. These results suggest that
if we let the ARMs explain the exposures into latent factors, their residual
abnormal alpha returns vanish. The main di�erence between the results here
and the results obtained by Kelly et al. (2019) is that their dataset contains 36
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characteristics and needs six latent factors to not reject the null hypothesis of
�– = 0. In the present case, I use only 11 characteristics and need the same
number of factors to not reject the hypothesis.

The out-of-sample estimation proceeds the same as in the case of the forma-
tion of the arbitrage portfolios. The models are estimated using an expanding
window with the 60-month initial period. Results regarding total and predic-
tive R2 hold similarly as in the case of the in-sample analysis. The results
of the pure-alpha portfolios from Section 4.3 show that we have to include
around six factors to eliminate statistically significant arbitrage returns. Those
observations enable us to understand better the small di�erences between the
predictive R2s for the restricted and unrestricted models. Predictive R2s for
the restricted and unrestricted IPCA(5) models are 0.27 and 0.28, respectively,
but the pure-alpha portfolio of the unrestricted model still delivers abnormal
returns of 8.06% p.a. with significant t-statistics of 2.86. However, once we get
to seven latent factors, those arbitrage opportunities vanish.

These out-of-sample results are similar to the results of the bootstrap tests
obtained from the in-sample analysis. We see a need to include multiple latent
factors to erase the significant e�ect of the ARM characteristics. This observa-
tion suggests there is less duplicity in the information regarding the expected
returns among the ARMs than one might expect. The proportion of the num-
ber of factors needed to eliminate arbitrage opportunity and the number of
ARMs is more than half.

Based on the performances of the tangency portfolios, the results also sug-
gest that ARMs successfully proxy for the exposures to the common factors.
Tangency portfolio yields up to around 1.15 Sharpe ratio. The right panel
of Figure 4.2 captures the cumulative log return of those portfolios. We see
tangency portfolios grow over the whole period without a noticeable sign of
slowing down.

I also perform the out-of-sample analysis over two sub-intervals as a sim-
ple robustness check. Table 28 in Appendix 4.C summarizes the out-of-sample
results of the ARM-IPCA models using all stocks estimated separately in two
disjoint periods. The first period covers the range between January 1968 and
December 1993, and the second spans time between January 1994 and Decem-
ber 2018. Results regarding the tangency and arbitrage portfolios agree with
those obtained over the entire period. Generally, the results are stable over dis-
joint periods, as the number of latent factors needed to eliminate the arbitrage
opportunities is around six.
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Table 4.13: Summary statistics of the ARM-IPCA factors.

In-sample Out-of-sample

Factor Mean Std. Dev. Sharpe Mean Std. Dev. Sharpe

1 4.10 33.72 0.12 2.02 34.24 0.06
2 6.94 18.35 0.38 3.69 18.04 0.20
3 3.84 13.80 0.28 5.76 13.53 0.43
4 0.37 9.72 0.04 5.70 10.91 0.52
5 8.92 8.58 1.04 8.35 9.32 0.90
6 3.56 7.06 0.50 -0.06 8.22 -0.01

Note: The table reports summary statistics of the instrumented principal components from the IPCA(6)
model. The factors are standardized to have an unconditional standard deviation of 20% p.a.

4.4.3 Factors and Characteristic Importance

This section delves further into the features of the latent factors of the ARM-
IPCA model. Table 4.13 summarizes the latent factors from the ARM-IPCA(6)
model. The higher Sharpe ratios, both in-sample and out-of-sample, possess
mainly higher-order (third and higher) factors. The first instrumented principal
component, which explains the most time variation of the returns, leaves the
predictive power to the other factors. This observation is similar to the result
obtained by Lettau and Pelger (2020), which also reports high Sharpe ratios
for higher-order factors.

Figure 10 from Appendix 4.C shows loadings of the ARMs on the latent
factors from the restricted IPCA(6). The first two factors are clearly related to
the negative semibeta and predicted coskewness, respectively. The fifth factor,
which possesses the highest Sharpe ratio both in- and out-of-sample, noticeably
loads on tail risk beta and downside CIQ betas.

To formally assess the importance of each variable for the performance of
the restricted IPCA model, I perform a bootstrap test proposed by Kelly et al.
(2019). For the given IPCA model with K latent factors, let the lth row in the
matrix �— = [“—,1, . . . , “—,L] maps the lth characteristic to the loadings on the K

latent factors. The null hypothesis assumes that the lth row is equal to zero, i.e.,
this characteristic does not proxy for the dynamics of the factor loadings. To
test the hypothesis, I estimate the alternative model that admits the possibility
of the contribution of the lth characteristic and form a Wald-type characteristic
of the form W—,l = “̂Õ

—,l
“̂—,l. I save the estimated model parameters, factors, and

managed portfolio residuals. Then, I simulate a new bootstrap sample under
the null hypothesis of “—,l being equal to zero by resampling the returns of the
characteristic-managed portfolios using the wild bootstrap procedure and the
estimated parameters. Using the new sample, I estimate the alternative model



4. Asymmetric Risks: Alphas or Betas? 155

Table 4.14: Variable importance of the ARMs.

IPCA1 IPCA2 IPCA3 IPCA4 IPCA5 IPCA6 IPCA7 IPCA8

coskew 22.60 16.90 9.10 2.30 3.30 59.90 46.90 0.00
cokurt 17.70 18.30 9.80 4.80 7.10 55.60 1.90 0.50
beta_down 9.90 4.90 0.20 0.30 0.10 0.80 0.00 0.00
down_corr 0.00 3.00 18.40 7.30 9.20 13.80 33.30 64.90
htcr 0.00 4.20 0.10 0.80 0.40 0.00 0.30 0.00
beta_tr 97.80 8.60 18.80 21.70 0.00 0.00 0.00 0.00
coentropy 2.50 2.90 25.70 17.10 18.10 18.20 40.40 51.40
cos_pred 0.10 26.60 46.30 0.00 0.00 0.00 0.00 0.00
beta_neg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mcrash 49.40 6.40 2.80 3.60 2.90 1.40 4.70 8.90
ciq_down 75.40 8.90 13.30 4.00 0.00 0.00 0.00 0.00

Note: The table reports p-values (in %) of the bootstrap tests that given ARM does not significantly
contribute to the restricted ARM-IPCA model’s fit in-sample. Data cover the period between January 1968
and December 2018.

and form test statistic W̃ b

—,l
. The resulting p-value of the test is calculated as

the proportion of W̃ b

—,l
that exceeds W—,l.

Table 4.14 reports simulated p-values for each variable and each specifica-
tion of the IPCA model. We know that around six latent factors are needed
to eliminate the arbitrage opportunity, so I focus on the IPCA(6) specification
here. In this case, seven variables are highly significant and drive the explana-
tory power of the model – downside beta, hybrid tail covariance risk, predicted
coskewness, negative semibeta, MCRASH, and downside CIQ beta.

4.4.4 ARMs and other Characteristics

In this section, I investigate how the ARMs relate to other characteristics
that have been proven to be significant proxies for factor exposures. To do
that, I use data from Freyberger et al. (2020) and Kim et al. (2020) and se-
lect 32 variables that were employed in Kelly et al. (2019). Those variables
are: market beta (beta), assets-to-market (a2me), total assets (at), sales-to-
assets (ato), book-to-market (beme), cash-to-short-term-investment (c), capital
turnover (cto), ratio of change in property, plants and equipment to the change
in total assets (dpi2a), earnings-to-price (e2p), cash flow-to-book (freecf),
idiosyncratic volatility with respect to the FF3 model (idiovol), investment
(invest), market capitalization (lme), turnover (lturnover), net operating
assets (noa), operating accruals (oa), operating leverage (ol), price-to-cost
margin (pcm), profit margin (pm), gross profitability (prof), Tobin’s Q (q),
price relative to its 52-week high (rel_to_high_price), return on net oper-
ating assets (rna), return on assets (roa), return on equity (roe), momentum
(cum_return_12_2), intermediate momentum (cum_return_12_7), short-term
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reversal (cum_return_1_0), long-term reversal (cum_return_36_13), sales-to-
price (s2p), bid-ask spread (spread_mean), and unexplained volume (suv).8

Figure 4.4 contains correlations between ARMs and characteristics used in
Kelly et al. (2019). The highest correlation is between market beta and negative
semibeta with an average value of 0.75, and market beta and downside beta
with a value of 0.58. Both these correlations are expected to be quite high as
their definitions are closely related. Negative semibeta is also highly correlated
with idiosyncratic volatility with an average correlation of 0.49. Table 4.1
summarizes the average absolute correlations between each ARM and all other
characteristics. We observe that the average values are noticeably lower than
in the case of correlations with other ARMs. The lowest correlated ARMs
are coskewness, downside correlation, tail risk beta and coentropy with value
around 0.02. The highest average correlation possesses negative semibeta with
a value of 0.13.

Right panel of Table 4.1 reports average correlations between returns of
the ARM-managed portfolios and managed portfolios sorted on other char-
acteristics. Naturally, we observe higher correlations than in the case of the
raw variables. The highest correlations possess hybrid tail covariance risk and
negative semibeta, the lowest average correlations possess tail risk beta.

Table 4.15 reports correlations between out-of-sample latent factors esti-
mated using the original dataset of 32 variables and latent factors estimated
using 11 ARMs. Generally speaking, there is only a little commonality between
those two sets of factors. Only the first IPCs from the all-stock dataset are
noticeably correlated with a value of a 0.43. This observation suggests that the
ARMs possess a specific common factor structure without a clear link to the
structure obtained from the original dataset.

4.4.5 Model with All Characteristics

Next, I investigate whether the ARMs possess additional information for the
factor exposures over the variables that were previously employed. To do so,
I estimate the restricted and unrestricted IPCA models that utilize both the
original set of 32 variables of Kelly et al. (2019) and 11 additional ARM vari-
ables, hence All-IPCA. Table 29 from Appendix 4.C reports the in-sample

8Due to availability in the updated sample, I have omitted four variables relative to the
original IPCA specification from Kelly et al. (2019). Those variables are: capital intensity
(d2a) fixed costs-to-sales (fc2y) leverage (lev), the ratio of sales and price (s2p). None of
the variables was shown to be significant in the baseline IPCA(5) specification.
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Figure 4.4: Correlations between ARMs and other characteristics.
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Note: The figure captures time-series averages of cross-sectional correlations between asymmetric risk
measures and characteristics used in Kelly et al. (2019). Data include all available stocks and the period
between January 1968 and December 2018.

IPCA results. Based on the p-values of a test that �– = 0, similarly as in the
case ARM-IPCA, around six factors are needed to obtain an appropriate model
that provides an adequate description of the behavior of stock returns.

Table 4.16 reports the p-values of the variable importance tests for each
ARM. I focus on specifications with five and six latent factors due to their best
fit. We can see that three ARM variables significantly contribute to the model
performance: downside beta, hybrid tail covariance risk, and negative semi-
beta. These non-linear systematic measures of risk can significantly improve
the description of the stock exposures to the common linear factors.

To assess how the ARMs contribute to the fit of the model as a whole,
I test whether ARMs jointly possess coe�cients significantly di�erent from
zero. This is a generalization of the test discussed earlier, which inspects the
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Table 4.15: Correlations between original IPCA and ARM-IPCA fac-
tors.

ARM-IPC1 ARM-IPC2 ARM-IPC3 ARM-IPC4 ARM-IPC5 ARM-IPC6

IPC1 0.43 -0.38 -0.38 0.05 -0.12 -0.11
IPC2 0.30 0.15 -0.13 -0.13 0.04 0.05
IPC3 -0.08 0.32 -0.03 0.02 -0.12 -0.10
IPC4 -0.28 -0.32 0.16 0.03 0.00 -0.11
IPC5 -0.23 0.22 0.26 -0.05 0.41 0.08
IPC6 -0.03 0.07 0.18 0.01 0.21 0.10

Note: The table reports correlations between IPCA latent factors estimated using set of original 32
variables and IPCA latent factors estimated using 11 ARMs.

Table 4.16: Variable importance results from the All-IPCA models.

coskew cokurt beta_down down_corr htcr beta_tr coentropy cos_pred beta_neg mcrash ciq_down Joint test

All-IPCA(5) 6.8 28.7 0.6 28.6 1.8 8 22.5 16.9 2.2 58.6 26.1 6.7
All-IPCA(6) 24.2 37.3 2.5 23.9 2.4 11.7 26.2 8.2 1.2 94.9 17 6.8

Note: The table reports p-values (in %) of the significance tests regarding the importance of the ARMs in
relation to the restricted All-IPCA model fit. It also contains results regarding the joint importance of the
ARMs for the model fit. The All-IPCA model is estimated using set of original 32 variables from Kelly
et al. (2019) and 11 ARMs.

importance of each variable separately. The testing procedure follows the same
logic based on wild bootstrap. One di�erence is the definition of the Wald-
type test statistic. In this case, we test whether a subset of J characteristics
contributes significantly to the performance, so the statistic is W—,l1,...,lJ

=
“̂Õ

—,l1
“̂—,l1

+ . . . + “̂Õ
—,lJ

“̂—,lJ
. In the resampling procedure, restricted model then

sets contribution to all J tested characteristics to zero. The logic behind the
rest of the test is the same.

The resulting tests for the All-IPCA models with five and six latent factors
possess mildly significant p-values of 6.7% and 6.8%, respectively. This result
suggests that the ARMs can contribute to the explanation of the stock returns
based on a common factor structure.

4.5 Robustness Checks
In this section, I provide some robustness checks regarding the pure-alpha port-
folio results. First, I show that the results are not significantly altered by focus-
ing purely on universe of highly-liquid stocks. Second, I show that the results
are not driven by time-varying volatility nature of the portfolios. Thirdly, I
show that the results remain strong even if we rebalance the pure-alpha port-
folios annually instead of monthly.
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Table 4.17: Pure-alpha portfolio returns without penny stocks.

K factors Mean t-stat SR Skewness Kurtosis Maximum
drawdown

Worst
month

Best
month

1 13.91 4.32 0.70 0.59 8.89 49.48 -33.90 42.04
2 15.95 4.58 0.80 0.59 5.57 42.30 -25.85 32.85
3 11.64 3.49 0.58 -0.06 8.66 57.62 -42.35 31.94
4 2.61 0.96 0.13 1.00 15.62 71.64 -37.15 52.39
5 0.68 0.25 0.03 1.58 21.83 76.26 -35.92 58.40
6 1.26 0.49 0.06 2.03 28.57 70.85 -35.95 63.04

Note: The table contains out-of-sample results for the pure-alpha portfolios estimated using the
ARM-IPCA model ranging between one and six latent factors. It reports annualized mean, corresponding
HAC t-statistics of Newey and West (1987) with six lags, Sharpe ratio (SR), skewness, kurtosis, the
maximum drawdown, and best- and worst-month returns. Values are in percentages. I use expanding
window estimation with a 60-month initial period. I exclude stocks with a price less than $5 or market cap
below 10% quantile of NYSE stocks. Data cover the period between January 1968 and December 2018.

4.5.1 Excluding Penny Stocks

Here, I provide a simple check regarding the universe of stocks that I exploit
in the estimation of the IPCA model and formation process of the pure-alpha
portfolios. I employ no-penny dataset discussed earlier. This dataset is charac-
terized by exclusion of stocks with price less than $5 or market capitalization
below 10% quantile of NYSE stocks. I estimate the IPCA models and form the
pure-alpha portfolios using this dataset in the same way as in the case of all
stocks.

The results are summarized in Table 4.17. We see that the portfolio returns
are highly significant with Sharpe ratios of up to 0.8. Statistical features of
the portfolios are quite similar to the results obtained for all stocks. The
main di�erence can be seen in the number of factors for which we can control
to obtain significant abnormal results. In the case of all stocks, we obtain
significant returns for up to five latent factors, in the case of no-penny dataset,
this number reduces to three.

4.5.2 Volatility Targeting of the Pure-Alpha Portfolios

In this section, I provide results regarding the pure-alpha portfolios, which tar-
get in-sample volatility. More specifically, each time during the out-of-sample
procedure, I scale the weights of the pure-alpha portfolio given by equation 4.9
so that the in-sample volatility of the portfolio is 20% p.a. This is a simple
approach how one may proceed when setting up a portfolio.

The results for both all-stock and no-penny datasets are summarized in
Table 4.18. We observe very similar results as in the case of the pure-alpha
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Table 4.18: Volatility-targeted pure-alpha portfolio returns.

K factors Mean t-stat SR Skewness Kurtosis Maximum
drawdown

Worst
month

Best
month

Panel A: All stocks

1 15.21 4.80 0.72 0.13 2.62 36.25 -23.74 24.61
2 20.11 6.22 0.94 0.06 3.26 34.38 -27.49 26.32
3 17.36 5.49 0.85 0.46 3.62 32.09 -23.40 30.99
4 9.69 3.37 0.46 0.48 2.05 33.41 -24.09 26.54
5 9.38 3.08 0.45 0.67 1.67 45.53 -16.03 24.57
6 7.04 2.15 0.33 0.65 1.94 57.02 -15.24 28.09

Panel B: No penny stocks

1 13.72 4.43 0.69 0.17 4.10 53.10 -25.69 27.86
2 15.41 4.52 0.77 0.11 3.79 56.86 -24.08 30.69
3 10.03 3.07 0.52 0.33 3.82 77.03 -23.57 30.69
4 2.63 0.84 0.13 -0.02 2.83 83.24 -26.12 28.75
5 0.24 0.08 0.01 0.16 3.43 87.09 -27.85 30.62
6 0.24 0.08 0.01 0.05 3.62 90.78 -29.78 29.16

Note: The table contains out-of-sample results for the pure-alpha portfolios estimated using the
ARM-IPCA model ranging between one and six latent factors. Weights of the portfolios target in-sample
volatility od 20% p.a. Table reports annualized mean, corresponding HAC t-statistics of Newey and West
(1987) with six lags, Sharpe ratio (SR), skewness, kurtosis, the maximum drawdown, and best- and
worst-month returns. Values are in percentages. I use expanding window estimation with a 60-month initial
period. No-penny dataset excludes stocks with a price less than $5 or market cap below 10% quantile of
NYSE stocks. Data cover the period between January 1968 and December 2018.

portfolios standardized over the whole period. We can conclude that the success
of the pure-alpha portfolios is not driven by the time-varying volatility.

4.5.3 Annual Returns

I also investigate how the pure-alpha portfolios align with annual returns.
Monthly rebalancing of the portfolios may be costly for investors and the annual
frequency may mirror their investment horizon better. To inspect the relation,
I take the weights of the pure-alpha portfolios employed in the previous sec-
tions and use them to weight average stock returns from month t + 1 to t + 12.
I report results for both all-stock and no-penny universes in Table 4.19. The
results are qualitatively very similar to the results using monthly rebalancing.
Returns and their t-stats even increase for both datasets. We can see that the
returns are not driven by short-lived features present among illiquid stocks.

4.6 Time-Varying Risk Premium
The IPCA framework may only fully capture the arbitrage opportunities if
the compensation for bearing risk associated with the ARMs is stable across
time. To investigate and potentially exploit the time-varying nature of the
risk premium associated with the ARMs, I employ the projected principal
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Table 4.19: Pure-alpha portfolio annual returns.

K factors Mean t-stat SR Skewness Kurtosis Worst
month

Best
month

Panel A: All stocks

1 30.69 5.06 1.53 0.37 0.11 -14.37 22.79
2 39.70 6.41 1.99 0.25 0.27 -14.85 25.42
3 38.55 6.34 1.93 0.62 0.59 -13.01 26.19
4 21.12 3.73 1.06 0.39 0.47 -17.39 21.51
5 14.10 2.41 0.71 0.68 1.29 -15.00 23.45
6 9.93 1.73 0.50 1.08 3.85 -16.62 32.38

Panel B: No penny stocks

1 27.61 4.38 1.38 0.25 0.55 -15.40 19.78
2 35.45 5.65 1.77 0.28 0.39 -12.75 21.12
3 24.06 3.89 1.20 0.27 0.85 -21.53 22.39
4 9.40 1.69 0.47 0.15 1.63 -20.39 22.31
5 3.74 0.67 0.19 0.22 2.20 -20.77 23.23
6 5.91 1.05 0.30 0.26 3.08 -22.60 24.81

Note: The table contains out-of-sample results for the pure-alpha portfolios estimated using the
ARM-IPCA model ranging between one and six latent factors. Portfolios are annually rebalanced. Table
reports annualized mean, corresponding HAC t-statistics of Newey and West (1987) with six lags, Sharpe
ratio (SR), skewness, kurtosis, the maximum drawdown, and best- and worst-month returns. Values are in
percentages. I use expanding window estimation with a 60-month initial period. No-penny dataset excludes
stocks with a price less than $5 or market cap below 10% quantile of NYSE stocks. Data cover the period
between January 1968 and December 2018.

component analysis (PPCA) framework proposed by Fan et al. (2016) and
extended by Kim et al. (2020). Compared to the IPCA framework, PPCA
enables changes in cross-sectional relations between alphas/betas and charac-
teristics. This variation may be potentially important if the relation between
ARMs and risk/mispricing changes over time due to various reasons, such as
being arbitraged away or beta-ARM relation changes.

An example of the former constitutes the results of Mclean and Ponti�
(2016), which state that the relation changes due to the investors’ usage of
academic publications to learn about mispricing and forming their investment
decisions based on that. An example of the latter represents Cho (2020), who
argues that financial intermediaries turn alphas into betas through their arbi-
trage process and exposure to funding liquidity and arbitrageur wealth portfolio
shocks.

The PPCA framework first assigns maximal explanatory power of the char-
acteristics to the systematic risk exposures before relating the characteristics
to their alphas. The resulting arbitrage portfolio thus aims to hedge sources of
systematic risk related to the characteristics while enjoying the residual returns
associated with the ARMs. Moreover, it enables the arbitrage portfolios to re-
flect the time variation in compensation for the ARMs by being consistently
estimated over short samples. This feature comes at the cost of less e�ciency
if the relationship between characteristics and model parameters are constant
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because we use less data to estimate the model and form the arbitrage portfolio.

4.6.1 PPCA Model

Similarly, as in the case of the IPCA model, I assume that the excess return of
stock follows the structure

ri,t = –i + —ift + ‘i,t (4.16)

where the main di�erence in comparison to IPCA is that now I assume that
the return-generating process for individual stocks (characterized by –i and
—i) is stable over short time periods (12 months in the empirical investigation)
t = 1, . . . , T . In a matrix format for N assets over T periods, this can be
rewritten as

R = –1Õ
T

+ BF Õ + E (4.17)

where R is the (N ◊T ) matrix of returns, – is the (N ◊1) mispricing vector, B

is the (N◊K) matrix with i-th row corresponding to factor exposure —Õ
i
, F is the

(T ◊ K) matrix of latent factors with t-th row being f Õ
t

= [f1,t, . . . , fK,t]. This
specification allows the systematic exposure matrix B and vector of mispricing
being nonparametric functions of the asset-specific characteristics. I stack each
of the L characteristics into the (N ◊ L) matrix Z and impose the following
structure

– = G–(Z) + �– (4.18)

B = G—(Z) + �— (4.19)

where the mis-pricing function is defined as G–(Z) : R
N◊L æ R

N , and the
factor loading function is G—(Z) : RN◊L æ R

N◊K , and the (N ◊ 1) vector �–

and the (N ◊ K) matrix �— are cross-sectionally orthogonal to the character-
istics Z. To estimate this model, I follow the projected principal component
analysis (PPCA) proposed by Fan et al. (2016) and generalized by Kim et al.
(2020) to allow for the presence of the mispricing contained in –.

The formation of the arbitrage portfolio proceeds in three steps. First, I
demean the returns and apply PCA to obtain an estimate of G—(Z). Second, I
cross-sectionally regress the average returns on the characteristics space which
is orthogonal to the estimate G—(Z) from the first step to obtain the estimate
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of G–(Z). Third, I use the estimate of G–(Z) to form the portfolio, which is
held for the next period. I denote this portfolio as arbitrage portfolio.

The main advantage of this methodology over the IPCA framework is that
it is suited for the estimation over short time periods and thus enables to exploit
the dynamics of the compensation for the ARMs. The model is estimated on a
rolling-window basis, setting T to a short time period. This freedom allows for
a change in cross-sectional relation between ARMs and returns either in terms
of systematic risk or mispricing. Moreover, the model does not require to have
all relevant characteristics for risk and mispricing, as the missing information
may be contained in �– and �—. The aim of this model is to exploit mispricing
captured by – while hedging the systematic risk characterized by the ARMs
and captured by B.9

This greater flexibility comes at a cost, however. The methodology does not
exploit the time-variation of the characteristics during the estimation window.
It employs only the values of characteristics at the first estimation period and
assumes that these values proxy su�ciently for characteristics in the subsequent
periods during the window. If the true relationship between characteristics and
the model is constant, this will lead to a loss of estimation e�ciency.

Following the original empirical PPCA implementation, I cross-sectionally
demean the characteristics so that the resulting arbitrage portfolio costs zero
dollars. Moreover, I target the in-sample volatility of the portfolio at 20% per
year. I report the results for a range between one and ten latent factors. All
the results are purely out-of-sample as the model is fitted using 12 months of
data, the arbitrage portfolio is formed at the end of this period using the value
of the characteristic at the beginning of the holding period, and then the return
in the next month is recorded.

4.6.2 Arbitrage Portfolios

Table 4.20 summarizes the performances of the arbitrage portfolios that exploit
the ARMs. We can see that when we use between two and ten factors in the
model, we can obtain significant abnormal returns that are hedged against the
exposure to common risks. The annual risk premium that we can obtain con-
stitutes around 7.5% per year with a Sharpe ratio of around 0.45 and highly
significant t-statistics of the average return of around three. Although the arbi-

9I thank Andreas Neuhierl for making the code for the extended PPCA estimation publicly
available.
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Table 4.20: Summary of the arbitrage portfolio returns.

K factors Mean t-stat SR Skewness Kurtosis Maximum
drawdown

Worst
month

Best
month

1 3.29 1.30 0.20 0.79 8.13 60.81 -28.64 32.97
2 8.63 3.07 0.47 0.10 5.03 60.14 -31.22 30.56
3 7.73 2.99 0.49 0.40 6.92 55.43 -29.57 30.11
4 7.76 2.83 0.43 -0.00 4.61 56.98 -30.22 28.39
5 7.66 2.92 0.45 0.15 5.89 61.76 -28.80 30.67
6 7.84 2.96 0.46 -0.08 6.19 50.07 -31.86 27.03
7 7.71 3.01 0.46 -0.49 8.05 46.79 -34.48 26.16
8 8.90 3.35 0.53 -0.30 8.81 47.13 -33.95 30.00
9 6.32 2.35 0.39 -0.06 7.05 60.23 -29.87 28.11
10 5.68 2.26 0.35 -0.52 18.54 52.76 -44.09 32.44

Note: The table contains out-of-sample results for the arbitrage portfolios estimated using the extended
PPCA framework of Kim et al. (2020) using a rolling window estimation of 12 months and various numbers
of latent factors. It reports the annualized mean return, corresponding HAC t-statistics of Newey and West
(1987) with six lags, Sharpe ratio (SR), skewness, kurtosis, the maximum drawdown, and best- and
worst-month returns. Data cover the period between January 1968 and December 2018.

trage portfolios yield significant hedged returns, they do not result in noticeably
better performance than single-sorted portfolios with the Sharpe ratio being at
a maximum equal to 0.53 compared to the Sharpe ratio of downside CIQ beta
with a value of 0.42 in the case of its managed portfolio.

Regarding the distributional features of the returns, we see that they are
close to symmetrically distributed. On the other hand, the estimated kurto-
sis values suggest that the returns are more heavy-tailed than the pure-alpha
portfolios estimated using the ARM-IPCA model. This fact also a�ects the
maximum drawdowns of the portfolios, which are also higher in the case of the
arbitrage portfolios than in the case of pure-alpha portfolios. Figure 4.5 plots
the cumulative returns of the arbitrage portfolios. We see that the portfolios
constantly grow up until around the financial crisis. Around that time, returns
sizably deteriorate and have not recovered since then.

Table 4.21 summarizes the risk-adjusted returns of the arbitrage portfolios
with respect to various factor models based on three-factor model of Fama and
French (1993). While three- and five-factor models of Fama and French (1993)
and Fama and French (2015) are not able to explain the associated anomaly
returns, results that include momentum factor erase their significance.

To further investigate the relationship between arbitrage returns and other
factors, I report in Table 4.22 exposures to the six-factor model based on four
factors of Carhart (1997) augmented by CIV shocks of Herskovic et al. (2016),
and the BAB factor of Frazzini and Pedersen (2014). We observe that the
six-factor alpha significantly shrinks to around 4% per annum, and the corre-
sponding t-statistic falls below two in all models. Similarly, as in the case of
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Figure 4.5: Cumulative return of the arbitrage portfolios.
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Note: The figure depicts the cumulative logarithm price of the arbitrage portfolios based on the PPCA
framework of Kim et al. (2020), with the number of latent factors between one and ten. Arbitrage returns
are purely out-of-sample. Data cover the period between January 1968 and December 2018.

pure-alpha portfolios, the arbitrage portfolio possess a significant exposure to
the momentum factor. In this case, however, the momentum strategy, along
with other factors, explains the whole significant part of the arbitrage returns.
Well-documented momentum crashes may partially explain the leptokurtic fea-
tures of the portfolio, similarly they may be related to the high drawdowns that
the portfolios experienced.

We observe that the arbitrage returns of ARMs do not benefit from con-
sidering the time-varying nature of the model setting. The claim is apparent
since the arbitrage portfolios do not produce abnormal returns beyond common
factor exposures, particularly when factoring in relation to the momentum fac-
tor. These observations indicate that the loss of e�ciency from short-window
estimation outweighs any potential benefits from time-varying risk prices for
ARMs. This conclusion was already suggested by the regression portfolios that
performed better when estimated using the expanding window versus the mov-
ing window. Likewise, the alphas of those portfolios were much less impacted
when estimated using the expanding window.

In comparison, the pure-alpha portfolio returns obtained from the IPCA
procedure using up to five factors yield a significant premium after controlling
for those six common factors. Moreover, the Sharpe ratios that attain the pure-
alpha portfolios are considerably higher than those of the arbitrage portfolios
based on the PPCA. All these results suggest that the relationship between
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Table 4.21: Fama-French risk-adjusted returns of the arbitrage port-
folios.

K factors CAPM FF3 FF3+MOM FF3+MOM
+CIV

FF3+MOM
+CIV+BAB FF5 FF5+MOM FF5+MOM

+CIV
FF5+MOM
+CIV+BAB

1 2.38 1.85 1.36 1.36 3.44 2.81 2.40 2.40 3.38
(0.90) (0.70) (0.46) (0.46) (1.06) (0.91) (0.71) (0.71) (0.99)

2 8.31 7.80 3.02 3.02 4.74 7.53 3.71 3.71 4.51
(2.78) (2.51) (1.07) (1.07) (1.57) (2.20) (1.22) (1.22) (1.47)

3 7.04 6.55 2.73 2.73 4.21 6.64 3.57 3.57 4.20
(2.61) (2.43) (1.09) (1.09) (1.53) (2.18) (1.27) (1.27) (1.47)

4 7.31 7.00 2.12 2.12 3.42 6.88 2.95 2.94 3.47
(2.57) (2.43) (0.82) (0.82) (1.20) (2.10) (1.03) (1.03) (1.18)

5 7.04 6.71 2.49 2.48 3.72 6.68 3.28 3.28 3.77
(2.57) (2.42) (0.95) (0.96) (1.29) (2.11) (1.14) (1.15) (1.27)

6 7.37 7.04 2.73 2.73 3.84 7.27 3.77 3.77 4.14
(2.66) (2.51) (1.05) (1.05) (1.33) (2.29) (1.33) (1.33) (1.41)

7 7.24 7.11 2.72 2.72 3.83 7.30 3.73 3.73 4.09
(2.68) (2.59) (1.05) (1.05) (1.33) (2.31) (1.30) (1.30) (1.38)

8 8.44 8.65 4.38 4.38 5.19 8.44 5.02 5.02 5.23
(3.06) (3.09) (1.60) (1.60) (1.72) (2.62) (1.66) (1.66) (1.68)

9 6.02 5.78 1.92 1.92 2.58 5.40 2.33 2.33 2.50
(2.17) (2.09) (0.74) (0.74) (0.94) (1.74) (0.84) (0.84) (0.90)

10 5.05 4.69 0.58 0.58 1.28 4.51 1.21 1.20 1.43
(1.93) (1.75) (0.23) (0.23) (0.46) (1.40) (0.43) (0.43) (0.50)

Note: The table reports annualized alphas and their HAC t-statistics of Newey and West (1987) with six
lags obtained by regressing the arbitrage portfolio returns on various factor models and their combinations:
Fama and French (1993), Carhart (1997), Fama and French (2015), CIV shocks of Herskovic et al. (2016),
and BAB factor of Frazzini and Pedersen (2014). Data cover the period between January 1973 and
December 2018.

Table 4.22: Exposures of the arbitrage portfolios.

N factors – Mkt SMB HML CIV BAB MOM

1 3.44 0.11 0.34 0.27 -0.05 -0.31 0.14
(1.06) (1.58) (2.31) (2.73) (-1.72) (-2.88) (1.32)

2 4.74 0.11 0.30 0.40 -0.02 -0.26 0.53
(1.57) (1.47) (2.19) (3.23) (-0.97) (-2.68) (5.84)

3 4.21 0.15 0.30 0.34 -0.03 -0.22 0.43
(1.53) (2.44) (2.27) (3.37) (-1.50) (-2.38) (5.03)

4 3.42 0.13 0.26 0.33 -0.03 -0.19 0.53
(1.20) (1.94) (1.88) (2.81) (-1.07) (-2.07) (5.95)

5 3.72 0.14 0.27 0.30 -0.03 -0.19 0.46
(1.29) (2.35) (1.96) (2.99) (-1.19) (-1.96) (5.12)

6 3.84 0.12 0.28 0.30 -0.02 -0.17 0.46
(1.33) (1.86) (2.12) (2.92) (-0.71) (-1.82) (5.49)

7 3.83 0.13 0.19 0.26 -0.02 -0.17 0.47
(1.33) (2.01) (1.48) (2.58) (-0.72) (-1.95) (5.40)

8 5.19 0.11 0.21 0.16 -0.02 -0.12 0.45
(1.72) (1.59) (1.60) (1.61) (-0.87) (-1.27) (4.79)

9 2.58 0.08 0.26 0.23 -0.01 -0.10 0.40
(0.94) (1.25) (2.17) (2.30) (-0.32) (-1.10) (4.57)

10 1.28 0.13 0.35 0.27 -0.02 -0.11 0.43
(0.46) (2.07) (2.82) (3.46) (-0.84) (-1.20) (5.05)

Note: The table reports estimated coe�cients and their t-statistics from regressing returns of the arbitrage
portfolios on four factors of Carhart (1997), CIV shocks of Herskovic et al. (2016), and the BAB factor of
Frazzini and Pedersen (2014). The formation of the arbitrage portfolios is based on the extended PPCA
framework of Kim et al. (2020) using a rolling window estimation of 12 months. Arbitrage returns are
purely out-of-sample. Data cover the period between January 1968 and December 2018.

ARMs and anomalous returns is quite stable over time.
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4.7 Momentum Relation
The fact that the pure-alpha portfolios are exposed to the momentum risk re-
lates to recent results in the literature. Much work has been done investigating
the relationship between momentum returns and tail risk. More specifically,
some studies investigate momentum crashes and propose methods to avoid
them. Barroso and Santa-Clara (2015) propose a volatility-managed approach
to solving the problem of extreme drawdowns and excess kurtosis related to
the momentum strategy. Daniel and Moskowitz (2016) propose an alternative
approach that maximizes the Sharpe ratio based on predicting both risk and
return of the momentum strategy.

Min and Kim (2016) investigate the momentum strategy in relation to
the economic states. They find that the strategy performs poorly when the
marginal utility of wealth is the highest captured by the expectation of the
market risk premium. They conclude that the momentum premium is substan-
tially related to the downside risk. Atilgan et al. (2020) report the presence of
left-tail momentum that is characterized by the continuation of extreme left-tail
events of stocks that experienced such events in the past. Unlike their results,
my pure-alpha portfolios that invest in stocks with high systematic left-tail
risk report economically intuitive positive returns and positive exposure to the
momentum factor.

Although the pure-alpha portfolios are significantly exposed to the momen-
tum factor, they do not possess such extreme behavior. During the investigated
period, momentum possesses a negative skewness of -1.35. On the other hand,
the lowest value of skewness that a pure-alpha portfolio yields is -0.12, obtained
from the IPCA model with four latent factors. On top of that, unlike the distri-
bution of the momentum returns that exhibit highly leptokurtic features with
a value of kurtosis equal to 10.92, the pure alpha portfolio attains a value of
6.59 at the highest.

Kelly et al. (2021) investigate momentum in relation to the IPCA model.
They conclude that the momentum premium is explainable since it significantly
proxies for the exposure to the common factors. Even though the original set
of IPCA factors can erase the abnormal returns of the momentum factor, pure-
alpha portfolios cannot be explainable by this set of factors.

I investigate consequences of including the momentum factor into the ARM-
IPCA model. By doing this, I can infer whether the ARMs proxy for the
exposure to the momentum factor. The answer to this question may help to
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Table 4.23: Coe�cients from the model that includes momentum.

coskew cokurt beta_down down_corr htcr beta_tr coentropy cos_pred beta_neg mcrash ciq_down

�– -5.17 -1.83 -8.51 0.81 0.06 3.69 -2.80 -0.58 9.70 1.13 4.48
(-8.11) (-2.20) (-6.78) (0.61) (0.09) (6.99) (-2.10) (-0.86) (9.44) (2.22) (8.77)

�” -0.05 0.28 -0.19 0.15 0.38 -0.09 -0.14 -0.57 -0.67 0.04 -0.11
(-2.18) (9.04) (-4.06) (2.98) (15.57) (-4.58) (-2.72) (-23.94) (-18.36) (2.41) (-6.04)

Note: The table reports coe�cients estimated in-sample of the model in which ARMs explain anomaly
alphas (�–) and betas with respect to the momentum factor (�”). Below the coe�cients, I include HAC
t-statistics of Newey and West (1987) with six lags. Model is estimated using OLS. Data cover the period
between January 1968 and December 2018.

better understand why the pure-alpha portfolios are partly diminished by the
momentum factor. I also investigate pure-alpha portfolios that uses not only
ARMs but also momentum characteristic to see its e�ect on the returns.

4.7.1 Momentum Factor

In this section, I augment the IPCA model to not only contain latent factors,
but also include the momentum factor. The model changes to

ri,t+1 = –i,t + —i,tft+1 + ”i,tgt+1 + ‘i,t+1,

”i,t = zÕ
i,t

�” + ‹”,i,t

(4.20)

where gt+1 is the momentum factor, �” is the mapping from ARMs to loadings
on the momentum factor, and the rest follows the same specification as model
4.8. I investigate how ARMs relate to the exposures to the momentum factor.

First, I present in-sample results of a model that does not include any latent
factors. The model is in the form

ri,t+1 = zÕ
i,t

�– + zÕ
i,t

�”gt+1 + ‘i,t+1 (4.21)

Because the factor gt+1 is observable, I can estimate �– and �” using OLS by
setting the right-hand variables to zi,t and gi,t ¢zi,t. By inspecting the estimate
of �”, we can see how ARMs explain the exposures into the momentum factor.
Table 4.23 summarizes the result. We can see that many of the variables proxy
significantly not only for the abnormal returns but also for the exposures to the
momentum factor. The highest significance of the explanatory power possesses
the predicted coskewness.

Out-of-sample results with one to six latent factors of the Model 4.20 sum-
marizes Table 4.24. We can see that when the ARMs are allowed to explain
the exposures to the momentum factor, the corresponding pure-alpha portfo-
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Table 4.24: Pure-alpha portfolio returns with the momentum factor.

K factors Mean t-stat SR Skewness Kurtosis Maximum
drawdown

Worst
month

Best
month

1 7.20 2.26 0.36 0.31 3.67 74.30 -32.84 28.88
2 9.28 2.77 0.46 1.05 5.40 47.94 -21.50 39.17
3 4.58 1.64 0.23 0.33 4.71 49.12 -34.36 29.27
4 3.85 1.46 0.19 0.07 4.40 66.11 -35.66 28.05
5 8.41 3.09 0.42 -0.19 6.26 44.60 -40.07 28.08
6 4.72 1.69 0.24 0.77 4.12 52.72 -19.42 27.96

Note: The table contains out-of-sample results for the pure-alpha portfolios estimated using the
ARM-IPCA model ranging between one and six latent factors. Model also includes momentum factor and
ARMs are allowed to proxy for the corresponding exposure. It reports annualized mean, corresponding
HAC t-statistics of Newey and West (1987) with six lags, Sharpe ratio (SR), skewness, kurtosis, the
maximum drawdown, and best- and worst-month returns. Values are in percentages. I use expanding
window estimation with a 60-month initial period. Data cover the period between January 1968 and
December 2018.

Table 4.25: Pure-alpha portfolio returns with momentum characteris-
tic.

K factors Mean t-stat SR Skewness Kurtosis Maximum
drawdown

Worst
month

Best
month

1 11.51 4.25 0.58 -1.44 11.59 55.51 -48.58 22.36
2 14.88 4.83 0.74 -0.49 7.81 58.79 -42.96 25.29
3 9.98 3.04 0.50 0.55 4.38 64.70 -25.04 30.12
4 7.65 2.52 0.38 0.29 3.59 68.88 -23.70 27.50
5 5.01 1.61 0.25 0.25 4.18 80.58 -29.16 29.03
6 6.84 2.30 0.34 0.05 3.40 50.96 -30.18 24.13

Note: The table contains out-of-sample results for the pure-alpha portfolios estimated using the
ARM-IPCA model ranging between one and six latent factors. Model also includes momentum
characteristic for each stock as an instrument. It reports annualized mean, corresponding HAC t-statistics
of Newey and West (1987) with six lags, Sharpe ratio (SR), skewness, kurtosis, the maximum drawdown,
and best- and worst-month returns. Values are in percentages. I use expanding window estimation with a
60-month initial period. Data cover the period between January 1968 and December 2018.

lios are noticeably lower than what can be achieved without controlling for the
exposure. This partly explains why the pure-alpha portfolios from the previous
section are related to the momentum factor.

4.7.2 Momentum Characteristic

Next, I include the momentum characteristic into the ARM-IPCA model. I
investigate whether the momentum characteristic can alter the latent factor
structure of the model and diminish the significance of the pure-alpha portfo-
lios. Results in Table 4.25 are very similar to the results obtained from the
models that do not include momentum characteristic. This observation sug-
gests that the pure-alpha portfolios are not noticeably a�ected by the inclusion
of the momentum characteristic into the set of instrumental variables.
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4.8 Conclusion
I investigate asymmetric risk measures that capture the non-linear systematic
behavior of stock returns. I present an approach to combining their pricing
information to form corresponding portfolios. This approach is based on the
instrumented principal component analysis that enables to model anomaly in-
tercepts and factor loadings as functions of stock characteristics. I use asym-
metric risk measures as these characteristics and let the model decide whether
they yield risk premium because they proxy for the exposure to the common
factor structure or because they constitute anomalies in terms of latent linear
pricing factors. I form so-called pure-alpha portfolios based on the estimated
relation between asymmetric risk measures and anomaly returns.

I show that these portfolios enjoy abnormal returns without being sub-
sumed by exposures to other common sources of risk. Various factor pricing
models, such as the model of Fama and French (1993), Carhart (1997), Fama
and French (2015), Hou et al. (2014), Hou et al. (2020), or Kelly et al. (2019),
cannot explain the premium. These results hold strong even after accounting
for exposure to CIV shocks of Herskovic et al. (2016) or the BAB factor of
Frazzini and Pedersen (2014). Thus, I show that some of the asymmetric risk
measures can be successfully exploited as alphas. I also investigate features of
the pure-alpha portfolios concerning various robustness checks, such as split
samples and the exclusion of penny stocks, among others. These results have
significant implications for fund managers who try outperforming benchmarks
and are evaluated based on exposures to various factor models. Investing that
utilizes the pricing information of ARMs can significantly improve the man-
ager’s risk-adjusted returns.

On the other hand, I show that various alternative approaches to comb-
ing the pricing information of the asymmetric risk measures do not yield good
results. I employ portfolio formations based on ordinary least square regres-
sion, ridge regression, and lasso regression predictions. These approaches yield
insignificant results, regardless of the type of estimation window or sorting
strategy. Furthermore, projected principal component analysis that allows for
a time-varying nature of the relation between pricing and asymmetric risk mea-
sures cannot fully exploit the abnormal returns related to the asymmetric risk
measures.

I also investigate how asymmetric risk measures relate to the joint factor
structure. First, I report a strong relation between the asymmetric risk mea-
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sures and the momentum factor. I show that the asymmetric risk measures
significantly explain the exposure to this factor. Second, while controlling for
previously researched characteristics, I demonstrate that some measures pos-
sess significant information explaining the stock return behavior concerning
common latent sources of risk. This observation suggests that some of the
researched measures can be employed to capture betas of the stocks better.

Further research may focus on generalizing the underlying factor model to
allow for non-linearities. For example, by employing the autoencoder asset
pricing model of Gu et al. (2021), we can relax the restriction of the linear
relationship between asymmetric risk measures and factor loadings. Moreover,
their framework also enables a non-linear approach to constructing the latent
factor structure. In the presented results, I have shown that the linear factor
structure in betas and factors cannot erase significant abnormal returns of
the asymmetric risk measures with a reasonable number of latent factors. By
allowing for non-linearities, we may better infer the dimensionality of pricing
information regarding the asymmetric risk measures.
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Appendix

4.A Definitions of the ARMs
This Appendix provides a brief exposition of the estimation process of each of
the asymmetric risk measures employed in the main text. For further details
regarding the nuances of the related computations, consult the original papers.

I use two sources of data to compute the asymmetric risk measures. First,
I use either daily or monthly data of stock returns from the CRSP database.
Second, I use the value-weighted return of the CRSP stocks from Kenneth
French’s online library to approximate the overall market return.

Variables are estimated using moving windows of various lengths following
the procedures proposed in their original papers. In the case of measures esti-
mated from the daily stock returns, I use mostly a moving window of one year.
I require at least 200 daily observations during the window to be included. I
estimate measures based on monthly return data using a window of at least 60
months and demand at least 36 monthly observations.

The measures are estimated following the definition proposed in the litera-
ture. In some cases, I slightly change the requirements regarding the minimal
history of stocks to be included in the analysis. This modification aims at the
precision of the estimates as well as the broadest possible dataset.

Throughout the section, I use ri,t and re

i,t
to denote a raw and excess return

of an asset i at time t, respectively. The raw and excess market return is
denoted by ft and f e

t
. Corresponding variables with a bar denote their time-

series averages computed in a given window.
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4.A.1 Coskewness

Coskewness (coskew) of Harvey and Siddique (2000) is estimated using daily
excess returns and is defined as

CSKi =
1
T

q
T

t=1(re

i,t
≠ r̄e

i
)(f e
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Ò
1
T

q
T

t=1(re

i,t
≠ r̄e

i
)2 1

T

q
T

t=1(f e
t ≠ f̄ e)2

. (22)

Estimation window is set to 1 year, at least 200 daily observations are required.

4.A.2 Cokurtosis

Cokurtosis (cokurt) of Dittmar (2002) is estimated using daily data and is
defined as

CKTi =
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Estimation window is set to 1 year, at least 200 daily observations are required.

4.A.3 Downside Beta

Downside (beta_down) beta of Ang et al. (2006) is estimated using daily data
and is defined as

—DR
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ÿ
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≠ f̄ e)2 . (24)

Estimation window is set to 1 year, at least 200 daily observations are required.

4.A.4 Downside Correlation

Downside correlation (down_corr) based on Hong et al. (2006) and Jiang et al.
(2018) is estimated using daily data and is defined as

Cor≠
i

= Cor(ri, f |ri < 0, f < 0) ≠ Cor(ri, f |ri > 0, f > 0) (25)

using empirical counterpart of the correlation. Minimum of 200 observations
in the 1-year window is demanded.
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4.A.5 Hybrid Tail Covariance Risk

Hybrid tail covariance risk (htcr) of Bali et al. (2014) is estimated using daily
data using 6-month window with at least 80 daily observations as

HTCRi =
ÿ

ri,t<hi

(ri,t ≠ hi)(ft ≠ hf ) (26)

where hi and hf are the 10% empirical quantiles of stock and market return,
respectively.

4.A.6 Tail Risk Beta

Tail risk beta (beta_tr) of Kelly and Jiang (2014) is estimated using monthly
return data using 120-month window with requirement of at least 36 monthly
observations. Beta is computed by means of least-square estimator from the
predictive regression of the form

ri,t+1 = µi + —T R

i
⁄t + ‘t+1,i (27)

where the tail risk factor is obtained as

⁄t = 1
Kt

Ktÿ

k=1
lnek,t

ut

(28)

where ek,t is the kth daily idiosyncratic return that falls below an extreme value
threshold ut during month t, and Kt is the total number of such exceedences
within month t. Idiosyncratic return is computed relative to 3-factor model of
Fama and French (1993), and the threshold value is taken to be 5% quantile
from the monthly cross-section of daily returns.

4.A.7 Exceedance Coentropy

Exceedance coentropy (coentropy) measure based on Backus et al. (2018) and
Jiang et al. (2018) using daily data and 1-year estimation window with at least
200 observations is based on

C+(0, ri, f) = L(rif) ≠ L(ri) ≠ L(f)
L(ri) + L(f)

----(ri > 0, y > 0) (29)

C≠(0, ri, f) = L(rif) ≠ L(ri) ≠ L(f)
L(ri) + L(f)

----(ri < 0, y < 0) (30)
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where L(x) = lnE(x) ≠ E(lnx). The measure is then defined as

Coentropy = C≠(0, ri, f) ≠ C+(0, ri, f). (31)

4.A.8 Predicted Systematic Coskewness

Predicted systematic coskewness (cos_pred) of Langlois (2020) is based on

Cosi,t = Covt≠1
1
ri,t, f2

t

2
, (32)

then, each month I run the panel regression using all available stocks and
history of data

F
1
Cosi,k≠12æk≠1

2
= Ÿ + F

1
Yi,k≠24æk≠13

2
◊ + F

1
Xi,k≠13

2
„ + ‘i,k≠12æk≠1 (33)

where Cosi,k≠12æk≠1 is the coskewness from Equation 32 computed using daily
returns from month k ≠ 12 to month k ≠ 1, Yi,k≠24æk≠13 are risk measures
(volatility, market beta, etc.) estimated using daily data from month k ≠ 24 to
month k≠13, and Xi,k≠13 are characteristics (size, book-to-price, etc.) observed
at the end of month k ≠ 13. The function F (xi,t) = Rank(xi,t)

Nt+1 transforms the
original variable into its normalized rank in the cross-section of variable xt,
which possess Nt observations.

The predicted systematic coskewness for each stock is then obtained using
the estimated coe�cients of Ÿ̂, ◊̂, „̂ as

F
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\Cosi,tæt+11
2
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2
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The choice of risk measures and characteristics employed in the prediction of
systematic skewness follows closely Langlois (2020).

4.A.9 Semibeta

Negative semibeta (beta_neg) of Bollerslev et al. (2021) is estimated using
daily data with 1-year moving window as

—N

i
=

ÿ

ri,t<0,ft<0
ri,tfi,t
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t

f 2
t

(35)
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with the requirement of at least 200 daily observations.

4.A.10 Multivariate Crash Risk

Multivariate crash risk (mcrash) of Chabi-Yo et al. (2022) is estimated using
daily data with 1-year window and minimum of 200 observations in the follow-
ing steps. First, for each stock separately, using stock and N factor returns, I
estimate N + 1 GARCH(1,1) models of Bollerslev (1986) to obtain a series of
conditional distribution functions Fi,t(h) = Pt≠1[ri,t Æ h] and use it to compute
probability integral transforms as ûi,t = Fi,t(ri,t). Second, I estimate MCRASH
as

MCRASHi,t =
q

t I({û1,t Æ p}) · I(fiN+1
j=2 {ûj,t Æ p})

q
t I(fiN+1

j=2 {ûj,t Æ p})
(36)

where I denotes the indicator function and p is set to 0.05. I follow the baseline
specification of Chabi-Yo et al. (2022) and use the five factors of Fama and
French (2015), momentum factor of Carhart (1997) and betting-against-beta
factor of Frazzini and Pedersen (2014).

4.A.11 Downside CIQ Beta

Downside common idiosyncratic quantile risk beta (ciq_down) of Barunik and
Nevrla (2022) is estimated using monthly data with 60-month window and
requirement of at least 48 observations as

—down

i
=

ÿ

·œ·down

F
1
—i(·)

2
(37)

which gives the average cross-sectional rank of the common idiosyncratic quan-
tile (CIQ) betas for downside · CIQ factors. CIQ betas are estimated from
time-series regression of stock returns on the increments of CIQ factors. The
CIQ factors are estimated using residuals from Fama and French (1993) factors
and following the quantile factor model of Chen et al. (2021).
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4.B Appendix B – ARM Portfolio Returns

Table 26: Quintile portfolio sorts.

Variable Low 2 3 4 High H-L t-stat – t-stat

Panel A: All stocks
Equal-weighted
coskew 11.08 10.61 9.68 8.84 8.43 -2.65 -2.24 -1.69 -1.12
cokurt 11.69 10.44 9.84 8.90 7.78 -3.91 -2.40 -1.10 -0.63
beta_down 11.08 9.88 9.76 9.91 8.01 -3.07 -1.44 0.64 0.47
down_corr 8.73 9.51 10.14 9.96 10.31 1.57 1.98 0.99 0.97
htcr 9.99 9.00 9.98 9.93 9.75 -0.24 -0.12 -1.63 -0.74
beta_tr 8.20 9.07 9.44 10.48 11.47 3.27 2.36 3.10 1.47
coentropy 9.11 9.35 9.77 10.01 10.40 1.29 1.61 0.87 0.83
cos_pred 12.43 10.60 9.16 8.51 7.95 -4.48 -1.78 -4.69 -1.79
beta_neg 9.67 10.40 10.38 10.02 8.17 -1.50 -0.43 3.30 1.84
mcrash 10.03 9.84 9.47 10.00 9.91 -0.13 -0.13 0.18 0.19
ciq_down 7.16 9.51 10.22 10.22 11.54 4.38 2.98 5.51 3.67

Value-weighted
coskew 6.93 7.57 7.66 6.18 4.47 -2.46 -1.60 1.39 0.71
cokurt 5.30 7.26 6.89 6.62 5.74 0.45 0.24 4.34 2.57
beta_down 5.92 7.05 6.69 6.34 5.18 -0.74 -0.27 1.51 0.70
down_corr 5.70 5.10 6.97 7.41 7.91 2.21 1.84 -1.35 -0.93
htcr 5.79 5.66 6.37 6.57 5.92 0.13 0.06 1.10 0.65
beta_tr 4.34 5.98 7.11 7.72 8.88 4.54 2.59 5.85 2.58
coentropy 4.73 6.05 6.62 7.25 7.71 2.98 2.18 -0.64 -0.42
cos_pred 11.66 8.56 8.10 6.43 5.57 -6.09 -2.31 -3.42 -1.44
beta_neg 7.06 6.56 6.60 5.94 2.85 -4.21 -1.17 -0.65 -0.31
mcrash 4.99 7.04 6.64 6.02 6.42 1.43 1.05 -0.07 -0.04
ciq_down 5.18 5.68 7.07 7.07 8.08 2.90 1.52 4.27 2.49

Pabel B: No penny stocks
Equal-weighted
coskew 9.30 9.06 8.83 7.98 6.59 -2.71 -2.24 -0.84 -0.56
cokurt 8.07 9.08 8.53 8.49 7.58 -0.48 -0.34 2.36 1.76
beta_down 8.26 8.64 9.09 9.14 6.62 -1.63 -0.66 0.96 0.69
down_corr 6.83 7.97 8.97 8.73 9.25 2.42 2.76 0.48 0.51
htcr 5.65 8.12 8.90 9.89 9.19 3.54 2.82 3.24 2.72
beta_tr 6.10 8.38 8.26 9.26 9.75 3.64 2.62 1.70 1.07
coentropy 7.12 8.07 8.94 8.77 8.85 1.73 1.98 0.05 0.05
cos_pred 9.68 8.58 8.16 7.75 7.59 -2.09 -0.94 -1.03 -0.56
beta_neg 8.82 9.38 9.39 9.03 5.15 -3.67 -1.21 -0.21 -0.16
mcrash 7.47 7.75 8.64 8.62 9.13 1.66 1.71 1.49 1.54
ciq_down 5.31 8.85 9.09 8.91 9.59 4.28 2.64 5.17 3.71

Value-weighted
coskew 6.68 6.99 7.42 7.14 4.23 -2.44 -1.64 1.25 0.70
cokurt 5.93 6.73 5.97 7.16 5.53 -0.40 -0.25 3.51 2.31
beta_down 6.01 7.09 7.02 5.57 5.31 -0.71 -0.27 1.30 0.69
down_corr 5.49 5.31 6.69 7.47 7.72 2.23 1.92 -1.37 -0.96
htcr 4.92 6.42 6.82 6.11 6.00 1.09 0.71 1.89 1.20
beta_tr 4.86 6.24 6.48 7.48 8.21 3.36 2.10 3.61 1.77
coentropy 4.99 5.99 6.34 7.40 7.43 2.44 1.93 -1.13 -0.80
cos_pred 9.76 7.75 7.03 5.47 5.86 -3.90 -1.65 -0.66 -0.31
beta_neg 6.52 6.54 6.69 5.42 3.60 -2.92 -0.92 0.37 0.20
mcrash 5.98 6.20 6.32 5.81 6.34 0.35 0.28 -1.00 -0.63
ciq_down 4.74 5.66 6.45 6.96 7.67 2.93 1.54 3.58 2.34

Note: The table contains annualized out-of-sample returns of five monthly rebalanced portfolios sorted on
various asymmetric risk measures. It also reports returns of the high minus low (H - L) portfolios, HAC
t-statistics of Newey and West (1987) with six lags, and annualized six-factor alphas and their t-statistics
with respect to the four factors of Carhart (1997), CIV shocks of Herskovic et al. (2016), and BAB factor of
Frazzini and Pedersen (2014). Panel A reports results using all stocks. Panel B excludes stocks with a price
less than $5 or market cap below 10% quantile of NYSE stocks. Data cover the period between January
1968 and December 2018.
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Table 27: Decile portfolio sorts.

Variable Low 2 3 4 5 6 7 8 9 High H-L t-stat – t-stat

Panel A: All stocks
Equal-weighted
coskew 11.46 10.70 10.58 10.64 10.08 9.29 9.21 8.47 9.40 7.46 -4.00 -2.86 -2.62 -1.44
cokurt 12.34 11.04 10.69 10.19 9.60 10.08 8.97 8.82 8.33 7.23 -5.11 -2.65 -2.14 -1.06
beta_down 11.82 10.35 9.85 9.91 10.08 9.44 9.78 10.04 8.79 7.24 -4.58 -1.79 0.17 0.11
down_corr 9.26 8.21 9.49 9.52 9.46 10.81 9.65 10.27 10.45 10.16 0.90 0.91 0.25 0.20
htcr 10.90 9.07 9.25 8.76 9.96 9.99 9.51 10.35 10.10 9.40 -1.51 -0.61 -3.06 -1.13
beta_tr 8.40 7.99 9.03 9.10 9.69 9.18 10.17 10.79 11.40 11.53 3.13 1.71 3.25 1.19
coentropy 9.56 8.66 9.40 9.29 10.00 9.54 10.46 9.56 10.92 9.89 0.33 0.35 -0.24 -0.19
cos_pred 13.10 11.75 11.17 10.04 8.95 9.37 8.22 8.80 8.31 7.59 -5.52 -1.77 -5.71 -1.80
beta_neg 9.18 10.15 10.27 10.53 10.03 10.74 10.54 9.51 8.90 7.44 -1.74 -0.41 4.30 1.84
mcrash 9.86 8.71 10.48 9.85 8.22 9.38 11.47 9.77 9.06 10.55 0.68 0.53 0.61 0.50
ciq_down 6.33 7.99 9.03 10.00 9.90 10.55 10.03 10.40 11.51 11.57 5.24 2.97 5.71 3.14

Value-weighted
coskew 8.06 6.67 7.66 7.66 8.21 6.97 6.31 6.20 5.75 2.78 -5.28 -2.92 -0.93 -0.39
cokurt 6.94 4.52 8.07 7.03 6.33 7.36 6.32 6.80 7.04 5.35 -1.59 -0.72 3.44 1.65
beta_down 6.75 6.37 7.02 7.23 6.96 6.36 6.20 6.85 5.83 4.42 -2.33 -0.64 0.23 0.08
down_corr 5.01 6.02 5.42 4.86 6.05 8.34 7.16 7.83 8.74 6.73 1.72 1.13 -2.67 -1.80
htcr 5.94 5.47 6.20 5.35 6.39 6.39 6.18 6.89 7.20 5.08 -0.86 -0.31 0.35 0.15
beta_tr 5.01 3.94 5.50 6.56 7.10 7.32 8.03 7.55 8.66 8.75 3.75 1.63 4.43 1.54
coentropy 4.60 4.95 5.86 6.29 6.07 7.04 7.13 7.66 8.44 6.83 2.23 1.41 -2.33 -1.40
cos_pred 12.52 11.04 9.85 7.50 8.67 7.85 7.15 6.14 5.24 5.81 -6.70 -2.05 -4.53 -1.44
beta_neg 7.03 7.59 7.04 6.34 6.46 6.92 6.01 6.02 4.67 -0.62 -7.65 -1.77 -4.11 -1.58
mcrash 5.00 4.62 9.77 5.85 6.65 6.32 5.74 7.07 6.22 7.02 2.02 0.97 -0.28 -0.12
ciq_down 3.05 6.65 5.36 5.85 6.04 7.90 6.50 7.68 7.84 9.75 6.70 2.55 7.60 2.94

Panel B: No penny stocks
Equal-weighted
coskew 9.51 9.09 9.25 8.87 8.78 8.87 8.25 7.71 7.38 5.80 -3.72 -2.52 -1.32 -0.70
cokurt 8.07 8.07 8.65 9.51 8.71 8.34 8.66 8.33 8.27 6.90 -1.16 -0.67 2.11 1.32
beta_down 7.97 8.55 8.26 9.01 9.35 8.82 8.82 9.47 7.78 5.46 -2.50 -0.80 0.73 0.42
down_corr 6.64 7.02 7.38 8.55 8.15 9.78 8.64 8.83 9.29 9.22 2.57 2.28 0.27 0.23
htcr 4.74 6.57 7.98 8.25 9.12 8.68 9.10 10.68 9.46 8.93 4.18 2.73 3.98 2.65
beta_tr 4.73 7.48 8.05 8.72 8.32 8.19 9.22 9.30 9.39 10.10 5.37 3.04 3.52 1.71
coentropy 7.10 7.14 7.68 8.46 8.49 9.38 8.90 8.64 8.75 8.95 1.85 1.64 -0.16 -0.14
cos_pred 10.47 8.88 8.48 8.68 8.16 8.15 8.18 7.32 8.42 6.76 -3.71 -1.36 -2.61 -1.14
beta_neg 9.01 8.62 9.44 9.32 9.10 9.67 9.69 8.37 7.78 2.52 -6.50 -1.74 -2.14 -1.31
mcrash 7.35 7.06 9.28 8.12 7.68 12.10 7.38 12.21 8.37 9.30 1.95 1.62 1.60 1.36
ciq_down 4.24 6.38 8.86 8.85 8.84 9.34 9.42 8.40 9.40 9.77 5.53 2.77 5.91 3.27

Value-weighted
coskew 6.85 6.99 6.99 7.34 6.59 8.00 7.29 7.00 4.36 4.36 -2.49 -1.37 2.47 1.15
cokurt 6.35 5.56 6.88 6.71 6.46 5.62 7.49 7.03 6.12 5.25 -1.10 -0.56 2.87 1.64
beta_down 5.41 6.88 6.38 7.54 6.66 7.40 6.24 5.52 6.13 4.29 -1.12 -0.32 1.51 0.62
down_corr 5.94 5.20 5.29 5.21 6.01 7.48 7.93 6.92 8.42 6.88 0.94 0.66 -3.22 -2.16
htcr 4.14 5.49 6.15 6.72 6.29 7.05 6.28 6.36 7.12 4.98 0.84 0.39 2.11 1.14
beta_tr 4.02 5.23 5.32 7.17 6.69 6.50 7.13 7.77 8.37 8.95 4.94 2.39 5.21 1.99
coentropy 5.43 4.89 5.65 6.26 5.59 7.03 7.81 7.47 8.10 6.69 1.25 0.79 -3.11 -1.84
cos_pred 11.30 9.00 6.74 8.29 7.43 6.62 6.30 4.86 5.93 5.88 -5.43 -1.92 -2.24 -0.79
beta_neg 7.40 6.11 6.86 6.47 6.97 6.52 6.35 4.97 4.34 1.93 -5.46 -1.31 -2.17 -0.90
mcrash 4.94 7.09 6.40 7.63 6.04 9.35 3.51 9.83 6.12 6.48 1.54 0.91 -0.50 -0.25
ciq_down 3.20 5.75 5.85 5.79 6.88 6.57 7.16 7.07 7.33 8.70 5.50 2.37 5.09 2.44

Note: The table contains annualized out-of-sample returns of ten monthly rebalanced portfolios sorted on
various asymmetric risk measures. It also reports returns of the high minus low (H - L) portfolios, HAC
t-statistics of Newey and West (1987) with six lags, and annualized six-factor alphas and their t-statistics
with respect to the four factors of Carhart (1997), CIV shocks of Herskovic et al. (2016), and BAB factor of
Frazzini and Pedersen (2014). Panel A reports results using all stocks. Panel B excludes stocks with a price
less than $5 or market cap below 10% quantile of NYSE stocks. Data cover the period between January
1968 and December 2018.
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Figure 6: Correlation structure across ARMs over di�erent periods.
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Recesion

Note: The figure captures time-series averages of cross-sectional correlations between asymmetric risk
measures during distinct time periods and recession and non-recession times as defined by NBER. Data
include the period between January 1968 and December 2018.
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Figure 7: Correlation structure across ARM-managed portfolios.
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Note: The figure captures the time-series correlations between managed portfolios sorted on various
asymmetric risk measures. Data cover the period between January 1968 and December 2018.
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Figure 8: Correlation structure across ARM managed portfolios over
di�erent periods.
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Note: The figure captures time-series averages of cross-sectional correlations between managed portfolio
returns sorted on asymmetric risk measures. Data include the period between January 1968 and December
2018.

4.C Appendix: IPCA Estimation Results
This Appendix provides some estimation results of the ARM-IPCA models.
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Table 28: Out-of-sample ARM-IPCA results using all stocks and split
samples.

IPCA(K)

1 2 3 4 5 6 7 8

Panel A: Period 1/1968-12/1993
Individual stocks
Total R

2 �– = 0 19.09 20.43 20.87 21.30 21.51 21.61 21.72 21.81
�– ”= 0 18.99 20.42 20.87 21.29 21.51 21.60 21.71 21.80

Predictive R
2 �– = 0 0.11 0.10 0.11 0.15 0.16 0.16 0.16 0.16

�– ”= 0 0.16 0.17 0.16 0.17 0.17 0.17 0.17 0.16
Managed portfolios
Total R

2 �– = 0 97.49 98.99 99.43 99.74 99.82 99.86 99.91 99.94
�– ”= 0 96.87 98.76 99.39 99.68 99.79 99.84 99.90 99.93

Predictive R
2 �– = 0 0.59 0.57 0.60 0.68 0.69 0.70 0.70 0.69

�– ”= 0 0.68 0.69 0.69 0.70 0.70 0.70 0.70 0.70
Tangency portfolios
Mean 8.34 3.62 13.45 21.59 21.28 21.43 24.19 23.68
t-stat 1.85 0.83 2.92 4.15 3.90 4.37 5.31 5.07
Sharpe 0.42 0.18 0.67 1.08 1.06 1.07 1.21 1.18
Pure-alpha portfolios
Mean 16.89 25.17 20.85 8.98 9.99 9.12 3.63 -1.54
t-stat 3.87 5.83 4.72 2.31 2.54 2.26 0.78 -0.38
Sharpe 0.84 1.26 1.04 0.45 0.50 0.46 0.18 -0.08

Panel B: Period 1/1994-12/2018
Individual stocks
Total R

2 �– = 0 14.71 16.06 16.81 17.49 17.73 17.86 17.98 18.08
�– ”= 0 14.72 15.94 16.62 17.48 17.72 17.86 17.98 18.08

Predictive R
2 �– = 0 0.19 0.19 0.19 0.25 0.24 0.25 0.25 0.25

�– ”= 0 0.25 0.25 0.24 0.24 0.24 0.24 0.24 0.24
Managed portfolios
Total R

2 �– = 0 94.47 97.52 98.79 99.54 99.69 99.79 99.86 99.90
�– ”= 0 94.24 96.29 97.27 99.51 99.66 99.76 99.85 99.89

Predictive R
2 �– = 0 2.25 2.21 2.22 2.24 2.24 2.25 2.24 2.24

�– ”= 0 2.26 2.25 2.24 2.24 2.23 2.24 2.24 2.24
Tangency portfolios
Mean 9.72 9.65 13.06 21.65 22.42 23.47 21.82 23.28
t-stat 2.00 2.17 2.27 3.64 3.70 3.69 3.45 3.79
Sharpe 0.49 0.48 0.65 1.08 1.12 1.17 1.09 1.16
Pure-alpha portfolios
Mean 13.38 15.61 17.70 11.71 10.72 9.30 2.56 0.40
t-stat 2.67 3.01 3.74 2.49 2.23 1.93 0.59 0.09
Sharpe 0.67 0.78 0.88 0.59 0.54 0.47 0.13 0.02

Note: The table reports out-of-sample results of the IPCA models with varying numbers of latent factors
and using ARMs as the instruments. Models are estimated with an expanding window and a 60-month
initial period. Tangency portfolios are based on the restricted IPCA model, the pure-alpha portfolios are
based on the unrestricted model. I include all available stocks. The first period covers the interval between
January 1968 and December 1993, and the second spans January 1994 and December 2018.
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Figure 9: Factor loadings of the restricted ARM-IPCA(6) model.
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Note: The figure reports columns of the estimated �— IPCA matrix with six latent factors and ARMs as
instruments. Results are based on the in-sample analysis. Data cover the period between January 1968 and
December 2018.
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Figure 10: Alphas of the ARM-IPCA models.
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Note: The figure reports estimated �– vectors for unrestricted IPCA models with numbers of latent factors
between one and six and ARMs as instruments. Results are based on the in-sample analysis. Data cover
the period between January 1968 and December 2018.

Table 29: All-IPCA results.

IPCA(K)

1 2 3 4 5 6 7 8

Panel A: All stocks
Individual stocks
Total R

2 �– = 0 16.54 18.28 19.46 20.13 20.66 21.01 21.28 21.48
�– ”= 0 16.94 18.65 19.77 20.42 20.79 21.05 21.32 21.51

Predictive R
2 �– = 0 0.35 0.35 0.41 0.42 0.65 0.67 0.66 0.67

�– ”= 0 0.73 0.72 0.71 0.71 0.70 0.70 0.69 0.69
Managed portfolios
Total R

2 �– = 0 89.35 94.89 96.74 97.95 98.29 98.77 99.07 99.22
�– ”= 0 89.90 95.29 96.89 98.08 98.57 98.79 99.10 99.24

Predictive R
2 �– = 0 1.61 1.63 1.77 1.82 2.02 2.03 2.02 2.04

�– ”= 0 2.21 2.15 2.13 2.12 2.10 2.08 2.07 2.07
Asset pricing test
W– p-value 0.10 0.00 0.00 0.00 3.90 71.80 27.70 61.90

Note: The table reports in-sample estimation results of the IPCA models with varying numbers of latent
factors and using 11 ARMs and 32 characteristics from Kelly et al. (2019) as the instruments. The asset
pricing test reports p-values of the null hypothesis that �– = 0. Data cover the period between January
1968 and December 2018.



Chapter 5

Conclusion

The thesis comprises three main chapters that contribute to the empirical asset
pricing literature by introducing new approaches to assessing risks that tradi-
tional models do not encompass. The chapters demonstrate that non-linear and
horizon-specific dimensions of risks capture important features of risk priced
across assets.

Chapter 2 demonstrates that quantifying risk solely through contempora-
neous dependence averaged over the entire joint distribution of asset and risk
factors omits crucial information about risk. Additionally, we report that the
short-term component of market tail risk is priced consistently across all asset
classes. On the other hand, horizon-specific components of extreme volatility
risk are priced heterogeneously. This fact yields significant implications for
investors who wish to avoid certain risks and exploit others given their risk
tastes.

Chapter 3 introduces a factor pricing model that captures common move-
ments of cross-sectional quantiles instead of focusing on factors that explain
common average movements of stock returns. By identifying quantile-specific
factors, we conclude that only those capturing downside risk have significant
implications for asset prices. We show that the downside common idiosyn-
cratic quantile factors robustly predict the market return in the out-of-sample
setting. This observation provides a good option for investors to time their
market portfolio strategy to obtain significant gains. Moreover, we show that
exposure to these downside factors is robustly priced in the cross-section of
stock returns. We also provide possibilities for aggregating information across
factors for various quantiles. We conclude that the reported premium cannot
be fully attributed to any other previously discovered return anomaly.
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Chapter 4 discusses eleven systematic asymmetric risk measures that relax
the assumption of expected utility maximizing representative investor or the
assumption that some tradable factors can linearly approximate the stochastic
discount factor. An e�cient investment strategy based on instrumented prin-
cipal component analysis provides a Sharpe ratio that is more than twice as
large as the best strategy based on any systematic asymmetric risk measure. In
addition, the pure-alpha portfolio returns do not display any extreme behavior,
such as fat tails or negative skewness. Furthermore, none of the investigated
factor pricing models fully account for the resulting premium.

Asset prices exhibit complex behavior. This thesis aims to improve under-
standing of their dynamics by using non-standard tools to measure risk. The
results may help investors identify previously hidden risks and either avoid or
embrace them to enjoy related premiums. Each chapter has the potential for
extensions. Future research could explore theoretical models that encompass
the presented risk-return tradeo�s or empirically investigate sources of horizon-
specific and non-linear risks.



Chapter 6

Responses to Opponents’ Reports

I am very grateful to all three referees for taking the time to review the the-
sis. Their discussions, suggestions, and points raised certainly have improved
the thesis. Below, I summarize my responses to each of their questions and
suggestions.

6.1 Dr. Mattia Bevilacqua

6.1.1 General Comments

• Motivation and linkage: “The introduction could be enhanced by a
discussion about the main motivation behind the chosen topic in general
and of how the candidate developed these three exemplary ideas. Some
“glue” between the chapters would strengthen the overall discussion and
contribution of the thesis. The author mentioned that a unifying thread
in the presented research is the understanding of various deviations from
traditional asset pricing models that impose simplifying assumptions that
are not met in the data. Expanding upon this statement would help the
reader to draw clearer connections between each chapter.”
Answer: Based on this suggestion, I have significantly expanded the
introductory chapter. I motivate the analyses presented by linking them
to the shortcomings of traditional asset pricing models. In addition, I
provide general unifying ideas that link all three chapters together.

• Literature review: “The candidate states that the thesis focuses on as-
set pricing questions, with a special emphasis on non-linear risks. Specifi-
cally, the first paper focuses on the link between stock return and a (down-
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side) risk factor. The second paper investigates the pricing implications
of a quantile factor model applied to the dynamics of the cross-sectional
quantiles of stock returns, that is relating asset returns to exposures to
common movements that a�ect all assets in the market. The last pa-
per regards systematic asymmetric risk measures and their relation to the
linear factor models, applying dimension reduction techniques from the
machine learning toolbox. Including a concise and brief general literature
review section that presents key articles from each of these areas would
be highly beneficial. Some of the main literature strands to include span
the relationship between stock returns and (downside) risk, tail risks and
asymmetric risk measures, the use of machine learning in asset pricing,
common risk and common factors in asset pricing, characteristics and
(non-linear) factors, etc. This suggestion aims to elaborate and com-
pile what the author briefly mentions in each chapter. This section could
either be integrated into the introduction or presented as a standalone
section.”
Answer: I have incorporated this comment by adding a concise litera-
ture review to the introduction chapter. I focus there on significant recent
developments in the related strands of literature.

• Conclusion: “Given that the conclusions of the individual chapters are
relatively brief, the author could consider adding a final Conclusion chap-
ter. This chapter could concisely summarize the results of the papers,
discuss how they interconnect, and briefly propose potential direction for
further research. For instance, building on the insights from the last chap-
ter, an possible extension could involve exploring the ARM-IPCA results
when the relationship between ARMs and stock returns is conditional on
whether the market (or stocks variance/tail risk) is below or above its
mean. Some implications of the thesis findings for portfolio and risk
managers can also be briefly discussed in this section.”
Answer: I have extended the conclusions of Chapters 3 and 4 by in-
cluding suggestions for future research. In Chapter 4, I also provide a
more detailed discussion regarding the main results. Furthermore, I have
added a conclusion chapter summarizing the main ideas and results of
the thesis.
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6.1.2 Comments regarding Chapter 4

1. “A brief explanation to interpret the varying patterns of significance in
the coe�cients of measures when comparing the results from using the
entire universe of stocks against the results obtained by excluding penny
stocks, as shown in Tables 4.2 and 4.3 can be added. Are some of these
measures more sensitive to penny stocks/volatile returns? This discussion
could encompass also subsection 4.3.5.”
Answer: In Subsection 4.2.4, I have included a brief explanation of
the varying significances of the ARMs with relation to their risk premia
across all- and no-penny-stock datasets. The main observation is that
many ARMs have higher and more significant risk premiums in the no-
penny dataset, which may be caused by higher estimation uncertainty
related to ARMs across less liquid penny stocks. This explanation may
also be applied to high-volatility stocks.

2. “How do we interpret htcr’s coe�cients compared to the others in Table
4.2?”
Answer: The magnitude of this coe�cient is a�ected by the fact that
the hybrid tail covariance risk (htcr) is defined by conditional covariance
and is not standardized by any measure of variance (unlike, e.g., various
versions of downsisde beta). Thus, the average value of htcr is smaller
than other measures, so the corresponding regression coe�cient is larger.

3. “Any relevant reference you are following for the managed portfolio scheme
in subsection 4.2.4?”
Answer: Kelly et al. (2019) proposed the managed portfolio weight-
ing scheme, as it naturally emerges in interpreting the IPCA estimation
procedure.

4. “A few lines/footnote to discuss some robustness checks to validate that
the naive combination approach is not a�ected by di�erent initial (mov-
ing) periods or lasso/ridge parameters estimation.”
Answer: I have added/extended short footnotes that state that these
results are not significantly altered by changing the settings employed in
the presented research.

5. “The subsequent implementation of the ARM-IPCA, along with all the
validating tests, particularly in relation to momentum and other factors,
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is, in my opinion, robust and convincing. Consequently, this chapter could
represent a highly significant contribution to the literature on ARMs and
asset pricing.”
Answer: Thank you.

6.1.3 Minor Comments

• “Thinking of treating the papers as chapters by moving all the references,
some repeating, and appendices at the end of the thesis. This approach
could streamline the thesis and improve its readability and coherence.
Please disregard this point if the candidates’ guidelines for thesis writ-
ing state otherwise.”
Answer: I have decided to keep the chapter-specific lists of references
and appendices in the thesis as it is a standard among theses defended
at our Institution.

• “The author has detailed the publication status and journal submissions
of some of the chapters. It would also be beneficial to include information
about the conferences, workshops, and seminar presentations in parts of
the thesis. This is particularly relevant given the author’s proactive en-
gagement in presenting this work at prestigious international events, as I
previously mentioned.”
Answer: For each chapter, I have included a list of conferences, work-
shops, and seminars where the work was presented and discussed.

6.2 Prof. Jeroen Rombouts

6.2.1 The First Paper

1. “To compute t-test statistics and interpret them, we need some asymp-
totic normality. Hence, don’t we need some existence of moments of the
underlying process?”
Answer: I believe that we do not need to assume the normality of the
underlying processes when interpreting t-statistics in the cross-sectional
regressions. We only need an assumption of normality regarding the error
term in the second-stage regression. This is a standard assumption that
is exploited when evaluating asset pricing models and does not directly
a�ect the robustness related to the QS betas.
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Because we use the estimates of the quantile spectral betas over the whole
period, the need to correct t-statistics for the fact that the quantile spec-
tral betas are estimated becomes also of less importance.

2. “The section 2.4.5. Size of the 2-Stage Estimation Procedure is better
called “Finite sample size properties of the testing approach” or something
like that.”
Answer: I agree and have changed the section’s title and corresponding
table accordingly.

3. “Regarding the empirical application with 70 years of data, is the station-
arity assumption you make a reasonable one? I would like to see more
motivation for this. Is there empirical work that also considers higher
frequency data?”
Answer: I agree that the stationarity assumption regarding the history
of 70 years for single stock returns is strong. Because we focus on ex-
treme risks over investment horizons, it is di�cult to estimate the QS
risks accurately with shorter data samples. To show that the results are
not specifically driven by the choice of 70 years, we also include results for
50- and 60-year histories of the stocks. These choices do not significantly
alter the results.

Moreover, the statistical features of the stock returns are related to their
characteristics, such as size, book-to-market, investment, or other. We
investigate the pricing of the QS risks among portfolios sorted on these
characteristics. The stationarity assumption among these portfolios is a
much weaker one. Thus, the combination of single-stock and portfolio
results provides a comprehensive look at the pricing of the QS risks.

Regarding the results using higher frequency data, at this moment, I do
not possess any significant relevant outcomes. However, I may investigate
the QS risks in this direction in the future.

4. “I would not call the other models “competing” models, since they are just
less general as yours.”
Answer: I fully agree, and based on that, I have changed the wording
from “competing” to “related”.
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6.2.2 The Second Paper

1. “I didn’t see the link with Bollerslev et. al (2009) VRP results. More
generally, the previous chapter focused on di�erent horizons. This chap-
ter seems to ignore this, while in general return predictability changes
over horizons but not necessarily in a decreasing way as shown in the
Bollerslev paper. In the latter paper, they find no predictability at short
horizons, some predictability at medium term horizons, and again less
predictability at longer horizons (i.e. inverse U-shaped pattern).”
Answer: I agree that there is no clear theoretical link between CIQ fac-
tors and VRP. This fact is particularly true because the VRP is related
to the aggregate S&P 500 composite index (rather than to the value-
weighted return of all CRSP stocks), which it significantly predicts only
over a medium-term horizon. We have included it in the investigation
based on a reference report that suggested it. Moreover, the observa-
tion that the VRP and CIQ factors share predictive information for the
market return may lead to establishing a relationship between these two
phenomena in the future.

A clarifying footnote has been added to the main text to explain this
rationale.

2. “The conclusion should ideally conclude some directions for future re-
search, similarly as what is done in the first chapter.”
Answer: As suggested, I have included a paragraph of suggestions for
future research in the Conclusion subsection.

6.2.3 The Third Paper

1. “My question stationarity question is recurrent throughout the di�erent
chapters, and here I wonder how Figure 4.1 correlation structure across
ARMs di�ers over time, and business cycles.”
Answer: I plot the correlations between values of asymmetric risk mea-
sures over distinct times in Figure 6. The first row reports these correla-
tions over two separate periods – the figure on the left captures the years
between 1968 and 1993, and the figure on the right period covers 1994
to 2018. No clear pattern would suggest that this splitting should lead
to a di�erent conclusion than the conclusion obtained over the whole pe-
riod. Moreover, in the second row, I plot these correlations separately for
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non-recession and recession periods as identified by NBER. The results
do not suggest a significant di�erence between these two regimes.

To further investigate the stability of the dependence structure, in Figure
8, I plot the correlation between the returns of the managed portfolios
corresponding to the asymmetric risk measures. The first row shows that
the correlations exhibit relative stability across two time periods with
one noticeable exception – the managed portfolio corresponding to the
downside common idiosyncratic quantile beta (ciq_down) became much
less correlated with other portfolios in the second period. The second row
reports similar results for recession and non-recession splits.

Overall, these results support the value of combining the asymmetric risk
measures into an investment strategy, as correlations of these strategies
do not peak during the bad times. This fact contributes to the statistical
features of the pure-alpha portfolios that do not exhibit heavy tails and
negative skewness. Moreover, the stability of the dependence structure
is evidenced by the fact that the investment strategies work better with
expanding-window estimation.

2. “When Kelly et al (2019) is used, I missed the motivation for the boot-
strap. Is it because of sample size or complex limiting distributions? It
seems to me that the same procedure is reexplained on page 161.”
Answer: Using the bootstrap to draw the inference is mainly driven by
its robustness features. I exploit the fact that bootstrap enjoys favorable
statistical properties in finite samples. Furthermore, I can perform statis-
tical testing without making strong distributional assumptions regarding
the model residuals. I have included this reasoning in the main text to
make it clear.

I perform two major bootstrap tests. The first one tests whether there is a
significant improvement in the model fit if we use the unrestricted version
of the model compared to the restricted version. The second one tests
whether a specific variable significantly improves the fit of the restricted
model if we include it in the model. These procedures share a similar
rationale, but I have decided to include a thorough explanation of both
for completeness.

3. “The sections contain long lists of subsections which are all very interest-
ing but it is a lot of information to digest. Is it possible to focus first on
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the key findings?”
Answer: I have reorganized the chapter so that the sections on robust-
ness checks, the time-varying nature of risk compensation, and the rela-
tion to the momentum factor follow after the two main sections regarding
pure-alpha portfolios and the relation between asymmetric risk measures
and latent factor structure.

4. “The conclusion should explain in more details the main findings of the
paper. It also ideally conclude some directions for future research, simi-
larly as what is done in the first chapter.”
Answer: I have extended the Conclusion to provide more details regard-
ing the results obtained. I have also proposed a potential trajectory for
generalizing the ARM-IPCA model there.

Furthermore, I have adjusted the tables across the thesis so that the paren-
theses and number of decimal places are consistent throughout each chapter. I
also tried to erase typos that emerged in the text.

6.3 Dr. Deniz Erdemlioglu
There were no additional questions or comments raised that I should incorpo-
rate in the final version of the thesis.
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