Abstract

Bacteria of the genera *Rhodococcus* and *Corynebacterium* are biotechnologically important microorganisms. This dissertation thesis focuses on the role of sigma (σ) factors of RNA polymerase in the regulation of gene expression in these bacteria. The *C. glutamicum* genome harbors 7 genes encoding σ factors, namely σ^A , σ^B , σ^C , σ^D , σ^E , σ^H and σ^M . With the exception of σ^M , these factors and their functions have been well described. The *R. erythropolis* genome encodes 21 putative genes for σ factors, but none of them has been analyzed in detail. The same holds for another biotechnologically useful bacterium, *R. opacus*. A group of genes whose expression is mediated by a single σ factor is called σ regulon. Overlaps of σ regulons are mainly caused by overlaps of recognition specificity of σ factors, i.e. when two or more σ factors recognize the same promoter. This thesis is focused on σ factors of group 4 (ECF) and their regulons: σ^D , σ^E , σ^H (*C. glutamicum*, *R. erythropolis*, *R. opacus*) and σ^M (*C. glutamicum*).

We used RNA-sequencing, in vivo, in vitro and in silico methods (homology modeling and molecular dynamics simulations) to achieve the intended aims. The overlap of σ^{D} and σ^{H} regulons was demonstrated in the natural hybrid promoter Pcg0441. Using the combination of in vivo and in silico methods, we were able to find interactions with σ^{D} responsible for the recognition of -35 region of Pcg0441. We created mutant variants of σ^{M}/σ^{H} -dependent promoter Pcg0668 by site-directed mutagenesis of -35 (GGGAACC) and -10 (GTCAAA) region. We found the cause of the recognition specificity overlap of σ^{M}/σ^{H} factors for the Pcg0668 promoter (Y¹⁰¹ of the σ^{H} -G₋₂₁ promoter, robustness of the σ^{H} factor near the RNA polymerase active site). Using in vivo and in vitro methods we managed to determine the consensus sequences of o^D-dependent promoters (GTAAC for -35 region and GAT for -10 region), σ^{E} - and σ^{H} -dependent promoters (GGAA^A/_T for -35 region and GTT for -10 region) of *R. erythropolis* and *R. opacus*. The functions of σ^{D} (cell wall integrity, response to the presence of tellurium compounds) and σ^H/σ^E (oxidative stress response, response to the presence of tellurium compounds) were characterized. An overlap of σ^{H}/σ^{E} -regulons of *R. erythropolis* was demonstrated and described. The highly integrated regulatory network controlled by σ factors has been described in C. glutamicum and partially also in R. erythropolis and R. opacus.

Key words: *Rhodococcus erythropolis, Corynebacterium glutamicum*, sigma factor, promoter, regulon, RNA polymerase