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Abstract

Single-cell transcriptomics represents an innovative technique that allows for the examination of

gene expression of individual cells in tissues or other complex biological samples. The data gen-

erated through this approach offer crucial insights into various biological domains, such as em-

bryology, oncology, and immunology. Understanding the functioning and mutual interactions of

individual cells within tissues indeed requires knowledge of their individual expression profiles.

Given the novelty of this method and technical challenges faced during data generation, com-

parison of different samples may be difficult and affected by various batch effects. Effectively

reconciling the information obtained regarding gene expression in distinct biological replicates or

technical replicates generated by different methodologies may be onerous. The development of

bioinformatics approaches to address this challenge is an ongoing process. The objective of this

thesis is to:

1. survey the existing solutions for integration of single-cell transcriptomic data,

2. benchmark these solutions using publicly available datasets, specifically peripheral blood

mononuclear cells, and

3. select the most suitable integration method to apply to a tumour microenvironment dataset

generated by our laboratory.

This bachelor project encompasses the aforementioned steps, ultimately aiming to enhance our

understanding of single-cell transcriptomics data integration.

Keywords: single-cell RNA sequencing, integration algorithms, batch correction, peripheral

blood mononuclear cells, vestibular schwannoma



Abstrakt

Transkriptomika jednotlivých buněk je inovativńı technika, která umožňuje zkoumat genovou

expresi jednotlivých buněk v tkáńıch či jiných komplexńıch biologických vzorćıch. Data źıskaná

t́ımto př́ıstupem přinášej́ı zásadńı poznatky v r̊uzných biologických oblastech, jako jsou např́ıklad

embryologie, onkologie či imunologie. Skutečné pochopeńı fungováńı a vzájemných interakćı

jednotlivých buněk v rámci tkáńı vyžaduje znalost jejich individuálńıch expresńıch profil̊u.

Vzhledem k novosti této metodiky a technickým výzvám při generováńı dat může být porovnáńı

r̊uzných vzork̊u obt́ıžné a ovlivněno r̊uznými dávkovými efekty. Efektivńı srovnáńı informaćı

źıskaných ohledně genové exprese v odlǐsných biologických replikátech nebo v technických rep-

likátech generovaných r̊uznými metodami může být náročné. Vývoj bioinformatických př́ıstup̊u k

vyřešeńı tohoto problému stále prob́ıhá.

Ćılem této práce je:

1. Provést pr̊uzkum stávaj́ıćıch řešeńı pro integraci dat z transkriptomiky jednotlivých buněk,

2. porovnat tato řešeńı s použit́ım veřejně dostupných soubor̊u dat, konkrétně mononukleárńıch

buněk periferńı krve, a

3. vybrat nejvhodněǰśı metodu integrace, která bude použita pro soubor dat z nádorového

mikroprostřed́ı vytvořený naš́ı laboratoř́ı.

Tato bakalářská práce zahrnuje výše uvedené kroky a v konečném d̊usledku má za ćıl zlepšit

naše postupy při integraci dat z transkriptomiky jednotlivých buněk.

Kĺıčová slova: sekvenovanáńı RNA jednotlivých buněk, integračńı algoritmy, dávková korekce,

mononukleárńı buňky periferńı krve, vestibulárńı schwannom
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1 Introduction

The advent of single-cell RNA sequencing (scRNA-seq) heralded a significant breakthrough in

2009 with the publication demonstrating the sequencing of mRNA at the individual cellular level

[1], just two years after the application of RNA sequencing techniques for bulk cell population

analysis [2]. While bulk RNA sequencing provides insights into average expression levels across

cell populations, the emergence of scRNA-seq enables exploration of gene expression variations

among individual cells, uncovering rare populations that might otherwise go unnoticed in pooled

cell analyses.

Experimental design employing scRNA-seq may involve sequencing of multiple distinct batches.

Whether these batches are technical replicates or comparisons of samples from different conditions

(e.g. from a healthy or diseased conditions, samples with different time intervals after exposure to a

particular agens etc.). Analysing separate datasets independently poses the risk of misinterpreting

results, as unintended technical and biological variations may confound the analysis. Given the high

sensitivity of scRNA-seq technology, the integration of scRNA-seq datasets ensures more robust

and reliable results, facilitating downstream analysis and the evaluation of meaningful outcomes.

Differences between datasets may stem not only from biological factors, such as tissue type

and cell state, but also from sequencing protocols, including sample preservation methods, single-

cell suspension preparation, cell sorting, number of captured and successfully sequenced cells,

and library preparation methods. The stochasticity of gene expression values is induced by the

success of cell capture or the success of subsequent PCR amplification. These variations introduce

unwanted batch effects to the datasets, arising from both technical and biological differences,

which should be addressed before drawing any conclusions. Therefore, it is essential to develop

and compare mathematical statistical models tailored to tackle this challenge.

In this thesis, we focus on benchmarking the integration algorithms such as Seurat [3], Har-

mony [4], FastMNN [5], Stacas [6], Scanorama [7], scVI [8] and CanSig [9], on publicly avail-

able scRNA-seq datasets, specifically peripheral blood mononuclear cells. After evaluation of se-

lected approaches, we will integrate four distinct datasets originating from scRNA-seq of vestibular

schwannomas. Application of scRNA-seq in investigation of the tumour microenviroment enables

characterisation of the cellular compartments of tumours as well as identification of the expression

heterogeneity within tumour microenvirment.

Through this thesis, we aim to contribute to the comparison of scRNA-seq integration methods

and its application in understanding complex biological systems.
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2 Vestibular schwannoma

Vestibular schwannomas (VSs), also known as acoustic neuromas, are benign brain tumours origi-

nating from the Schwann cells 1 of the vestibulocochlear nerve. VSs are the most prevalent benign

tumours found in the cerebellopontine angle and internal auditory canal [10]. These tumours

exhibit slow but progressive growth and are typically well-circumscribed and encapsulated.

VSs characteristically arise within the internal auditory canal and affects vestibular portion

of the vestibulocochlear nerve [11]. The vestibulocochlear nerve, also known as cranial nerve

eight (CN VIII), comprises the vestibular and cochlear nerves. These nerve roots originate in

the brainstem and extend to the inner ear through the internal auditory canal. Upon reaching

the inner ear, the vestibulocochlear nerve splits into the vestibular and cochlear branches. The

vestibular nerve innervates the vestibular system of the inner ear and relays information related

to motion and body position, while the cochlear nerve extends to the cochlea, forming the spiral

ganglia that facilitate the sense of hearing [12].

In the context of the surrounding microanatomy of the posterior cranial fossa, VSs present a

wide spectrum of symptoms. Approximately 90% of patients experience ipsilateral sensorineural

hearing loss [13], while 61% report dizziness or imbalance [13], [14]. Additionally, asymmetric

tinnitus affects 55% of patients. In the initial stages, the prevalence of tinnitus is very low, affecting

less than 1% of patients. In the later stages of the disease, especially after the onset of asymmetric

hearing loss, the incidence of asymmetric tinnitus increases [15]. The loss of binaural hearing in

these cases can lead to increasing difficulties with sound localisation and speech comprehension,

particularly in the presence of background noise.

VSs are categorised based on their cause of their occurrence. They are divided into sporadic and

familial VS. Familial VS typically arise in individuals with tumour predisposing genetic disorders,

such as neurofibromatosis type 2 [16]. Biallelic mutations in the neurofibromin 2 (NF2), which

acts as a tumour suppressor, can lead to the development of bilateral vestibular schwannomas.

Typically, the biallelic deactivation of the NF2 gene is a result of a combination of a point mutation

or a multiexon deletion [17]. NF2 exhibits an autosomal dominant inheritance pattern, with

approximately half of cases inherited from affected parents and slightly over 45% resulting from

de novo mutations [18]. In contrast, sporadic VS occurs independently of genetic predispositions,

often arising from spontaneous mutations in genes, and in most cases gives rise to unilateral VS.

Sporadic unilateral VSs are the most prevalent, constituting the majority of cases, while bilateral

tumours are rarer, accounting for only 5% of cases [18].

One characteristic of VS is their slow progression and indolent tumour growth. Remarkably,

up to 75% of cases exhibit no growth during the 3.6 years of observation. In cases where tumour

growth is observed, the average growth rate of sporadic VS is approximately 1.1 mm per year in

diameter [19].

1Schwann cells, which are a type of glial cells, are responsible for creating the myelin sheath around axons in
the peripheral nervous system. Each Schwann cell wraps around a segment of the axon, forming multiple layers of
myelin sheath. These cells are named in honour of Theodore Schwann (1810–1882), who proposed the cell theory
stating that all living organisms are made up of cells.

2



There are three primary therapeutic approaches for the treatment of vestibular schwannomas.

In cases where the tumour does not exhibit signs of progressive growth and its diameter remains

under 2 cm, a ”wait-and-scan” approach is typically employed. However, for growing VS tumours,

treatment options include stereotactic radiotherapy or microsurgical resection, both of which carry

risks of increased mortality or facial nerve damage [20].

2.1 Molecular biomarker of VSs

Extensively researched molecular biomarker for VSs is the mutation of the neurofibromin 2 gene

(NF2). As previously stated, around 5% of VS cases are attributed to a genetic predisposition

involving a tumour suppressor mutation in the NF2 gene, while approximately 50% of sporadic

VSs cases result from a spontaneous mutation in the NF2 gene. Loss-of-function mutations in the

NF2 gene are recognised as pivotal drivers of VS formation.

Situated on chromosome 22q12, the NF2 gene encodes product merlin, also referred to as the

moesin-ezrin-radixin-like protein [21]. NF2 consists of 17 exons that are alternatively splices to

form variety of isoforms. Two common isoforms are isoform 1 and 2, which differ in exon 16

retention [22], [23]. Merlin shares significant sequence homology (about 64%) with members of the

ERM protein family. These proteins are vital for connecting cytoskeletal elements with membrane

proteins. The N-terminal domain contains a highly conserved FERM domain (residues 1 - 335),

an α-helical domain (residues 336 - 505), and a C-terminal tail domain (residues 506 - 595) [24].

The merlin is regulated through post-translational modifications. Phosphorylation, mediated

by p21-activated kinase or PKA, at the critical regulatory residue Ser518 converts protein from its

active to inactive state. When merlin is dephosphorylated, it functions as a growth suppressor [25].

Interestingly, studies on the product of the mutant NF2 gene have revealed a correlation between

protein degree of closure and functionality. It has been observed that the dephosphorylated mutant

protein usually tends to adopt a more closed conformation, impairing its proper functioning [26].

Tumourigenic Schwann cells are unable to monitor the cell count in their surroundings and

continue to proliferate. Merlin inhibits cell growth after interacting with the hylauronic acid

transmembrane receptor CD44, which monitors cell density in the surrounding area [27]. By

the process of contact mediated inhibition of proliferation, activated merlin regulates intracellular

signalling cascades associated with tumour formation, such as the Ras/Raf/MEK/ERK pathway

[28], the PI3K/Akt pathway [29], the Rac/p21-PAK/c-Jun Kinase pathway [30], and the Hippo

signaling pathway [31].

In 1986, Dvorak proposed a theory: tumours are wounds that never heal [32]. This concept also

applies for VSs, where cells lacking the NF2 gene trigger a perpetual cascade of wound response

signals. VS adopt transcriptional states similar to repair type Schwann cells by upregulating

genes crucial for acute nerve repair and immune cell recruitment. This observation indicates a

significant involvement of immune cells in tumour progression, underscoring the importance of

further exploring the tumour microenvironment of VS [33].
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2.2 Tumour microenviroment (TME)

TME usually consists of immune cells, fibroblasts, platelets, stem cells, and other types of cells.

The non-cellular components are cytokines, chemokines and growth factors that effect tumour

progression [34]. The main challenge in determining the most suitable treatment strategy lies

in the understanding of variability observed in the growth rates of these tumours. Given the

diverse disease progression observed in VS patients, it is essential to investigate the intratumoural

composition at the molecular level.

Employing scRNA-seq technology enables the study of molecular patterns in VSs, facilitates

investigation of the TME, and offers new insights into this complex issue. Understanding these

will allow development of new treatment modalities to arrest or reverse tumour growth. It is one

of the most widespread theories that future tumour growth is induced by its microenviroment [34].

VSs are characteristic for the presence of tumour-associated macrophages (TAMs), pivotal in

regulating tumour progression. TAMs contribute significantly to various facets of tumour devel-

opment, including supporting angiogenesis, tumour cell proliferation, invasion, metastasis, and

mechanisms of resistance to treatment. TAMs are typically categorised into two main types: M1-

type macrophages, also known as classically activated macrophages, and M2-type macrophages,

referred to as alternatively activated macrophages [35].

M1-type macrophages are primarily responsible for producing pro-inflammatory cytokines like

IFN-γ, TNF-α, and IL-18, which are crucial for initiating and maintaining host defence mech-

anisms. On the contrary, M2-type macrophages dampen anti-tumour inflammatory responses

in order to protect surrounding healthy tissue from the collateral damage often caused by M1

macrophages. They are typically encountered during later stages of the inflammatory response

[36].

Within the TME, M2-type macrophages exert various effects, including the suppression of

anti-tumour immunity, facilitation of tumour matrix remodelling, and stimulation of angiogenesis.

The polarisation of macrophages into M2-type within the TME is predominantly driven by the

production of cytokines such as IL-4, IL-13, IL-33 or macrophage colony-stimulating factor (M-

CSF1, produced by TH1 lymphocytes, basophils, and innate lymphoid cells [37], [38].

One of the possible indicators of future tumour growth is a increase in the expression of CSF1

(colony stimulating factor 1) by VS Schwann cells. Via CSF1-CSFlR signaling, VS promote myeloid

cells to migrate and proliferate [38].

Research focusing on TAMs has revealed that M2-type macrophages are more prevalent in

rapidly growing VS tumours. Specifically, analyses of CD163 (the hemoglobin scavenger receptor)

expression, a specific marker for M2-type macrophages, which is involved in anti-inflammatory

pathways to protect oxidative stress and tissue damage, have shown significantly higher levels in

fast-growing VS tumours [36].

Another marker of M2-type macrophages, whose role is not fully understood, is the upregulation

of MS4A4A. Expression of MS4A4A is not directly responsible for tumour growth but rather plays

role in enhancing NK cell mediated resistance to metastasis [39].

4



3 Summary of data analysis

In this study, our focus was on benchmarking integration strategies on scRNA-seq datasets from

various conditions and then perform integration on four datasets from scRNA-seq of VSs.

For comparative analysis, we selected eight distinct datasets obtained from single-cell RNA

sequencing of peripheral blood mononuclear cells (PBMCs). These datasets encompass a diverse

array of immune system cell types, such as monocytes, dendritic cells, T cells, B cells, and natural

killer cells. PBMCs are frequently used in comparative studies due to their well-defined character-

ization and annotation, rendering them an ideal model for such analyses [40].

Our selection criteria for choosing datasets aimed to encompass variations in three primary

aspects: the number of cells sequenced, the preservation method employed, and whether the

sequencing was performed on whole cells or isolated nuclei, see Table 1.

Datasets Cell or
Nuclei

Cell
count

Preservation
method Year

1
10k human PBMCs stained with TotalSeq™-B
human universal cocktail, singleplex sample scRNA-seq 8958 Fixed 2022

2 20k human PBMCs, 3’ HT v3.1, Chromium X scRNA-seq 23837 Fresh 2021

3 Human PBMC from a healthy donor, 10k cells -
multi (v2) scRNA-seq 10548 Fresh 2020

4 Human PBMC from a healthy donor, 1k cells (v2) scRNA-seq 972 Fresh 2020

5
Integrated GEX, TotalSeq™-C, and BCR analysis
of Chromium Connect generated library from 10k

human PBMCs
scRNA-seq 11075 Fresh 2022

6 PBMC from a healthy donor - granulocytes
removed through cell sorting snRNA-seq 2711 Cryopreserved 2021

7 PBMC from a healthy donor - no cell sorting snRNA-seq 3009 Cryopreserved 2021

8 Peripheral blood mononuclear cells from a
healthy donor - Chromium Connect

scRNA-seq 3363 Cryopreserved 2020

Table 1: Datasets used for comparative analysis of integration algorithms. All are publicly available on the 10×
Genomics portal, see https://www.10xgenomics.com/datasets.

3.1 Dataset variations

The preservation method ScRNA-seq is a highly sensitive technique, and improper sample

handling can invalidate the results. While working with fresh cells is optimal, it’s not always

feasible. This has led to a pressing need for developing methods for cell fixations without altering

their transcriptional profile. Therefore, researchers have explored various cell preservation meth-

ods, such as dimethyl sulfoxide (DMSO)-based cryopreservation, methanol, or glyoxal fixations

for scRNA-seq. These approaches have gained popularity for their ability to preserve cells while

enabling downstream analysis.

DMSO cryopreservation, methanol or glyoxal fixation have been found to have minimal impact

on the transcriptional profile of cells, with only a slight increase in mitochondrial transcript abun-
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dance, which may reflect cell permeabilization. Despite this, the overall results are encouraging, as

fixed samples maintain a high-quality transcriptome with impressive purity and library complexity

[41], [42].

Cells vs. Nucleus ScRNA-seq can be performed using either whole cells or isolated nuclei,

and the choice between the two methods depends on the research objectives and the biological

questions being addressed. Both options can be used for cell type identification.

The concept of single-nucleus RNA sequencing (snRNA-seq) is to assess the transcriptome of

individual nuclei instead of individual cells. This is a significant approach that is applicable to

tissues that cannot be easily broken down into single-cell suspensions and preserved samples (such

as in the cells of central and peripheral nervous system), and also reduces the potential alteration

of gene expression that may be caused by disintegration. SnRNA-seq has been shown to perform

well for sensitivity and classification of cell types [43], [44].

The main advantage of snRNA-seq is the ability to avoid the presence of artificial gene expres-

sion. Through a simple freezing process, it is possible to gain access to the nucleus for sequencing.

This is a capability that is lacking in scRNA-seq because usually it requires the use of enzymes that

enable dissociation of cells, which can induce transcriptome changes [45]. However, a disadvantage

of snRNA-seq is the limited amount of RNA accessible in the nucleus for sequencing compared to

the amount obtained by sequencing the whole cell.

The number of cells sequenced Integrating multiple datasets can offer a potent means of

identifying distinct cell populations and shedding light on the inherent heterogeneity within these

populations. However, different numbers of cells in individual datasets may pose a challenge,

unlike larger datasets, smaller datasets might not encompass all cell types. It’s crucial to preserve

the heterogeneity between datasets during integration. Therefore, algorithms must be carefully

designed to avoid over-integrating of the datasets with various sizes.

Cell sorting To initiate scRNA-seq, cells should be broken down into a single cell solution.

Certain procedures exist that can selectively isolate specific cell subpopulations from a single cell

solutions. FACS (fluorescence-activated cell sorting) [46] is one such protocol, which was also

employed in the preparation of 6th sample (PBMC 6 3k Nuclei).

FACS, a specialised type of flow cytometry, operates by utilising fluorescent markers. Designed

monoclonal antibodies marked with fluorescent tags attach to surface proteins on the cells of

interest. The cell mixture is then oscillated at an ideal frequency to create droplets, with attention

paid to dilution preparation to reduce the possibility of doublet creation within each droplet.

As these droplets traverse a laser and a detector, those with labelled cells are recognised, and

the computer selectively redirects them using charge application. Electric pulses, called sorting

triggers, charge fluid exactly when desired cell is forming. This technique allows for the targeted

sorting of specific cells from a heterogeneous population, determined by the expression of their cell

surface markers [47].
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However, this method necessitates a substantial sample volume, and it relies on prior knowledge

of the protein structure of interest for the design of the monoclonal antibodies.

This technique was used to selectively remove granulocytes from the PBMC 6 3k Nuclei dataset.

The absence of granulocytes were confirmed by expression analysis. The absence of a subpopu-

lation of cells could present challenge for integration algorithms. It’s essential that no method

attempts to align datasets forcefully, and preserve this difference instead.

3.2 Data analysis

Preprocessing of data ScRNA-seq technologies generate vast amounts of raw data, often rang-

ing from 106 to 1010 reads obtained from 103 to 106 cells in a single experiment [48]. To prepare

this data for downstream analysis, such as normalisation, clustering, trajectory analysis, cell type

identification, and data integration, it must undergo several preprocessing steps.

For UMI (unique molecular identifier) [49] based scRNA-seq protocols these preprocessing steps

typically include cell barcode detection, alignment of cDNA reads to reference genomes, and UMI

correction (deduplication). These processes result in the generation of cell-by-gene count matrices.

Once these matrices are obtained, the data must undergo quality control steps to filter out low-

quality cells. In the following, we describe the 10× Genomics technology, which has been employed

for the generation of all respective datasets.

Each cDNA read obtained from scRNA-seq carries two crucial sequences incorporated during

library preparation. First, there are cell barcodes [50], consisting of unique 12nt sequences that aid

in assigning sequence reads to their respective cell. Reads sharing identical barcodes are grouped

together, representing transcriptomes of individual cells. Second, UMIs are employed to mitigate

possible bias caused by PCR amplification during library construction. This ensures that each

transcript is quantified only once during the process[51].

Depending on the selected preprocessing software, each read is aligned to a reference genome

to generate information about expressed genes. In our study, we choose eight different datasets

published between 2020 and 2022 that were preprocessed using the Cell Ranger software [52],

specifically designed for the 10× Genomics Chromium platform. Cell Ranger provides pre-built

GENCODE reference packages used for gene mapping in the Ensembl project [53]. Ensembl offers

an annotated and continuously updated database of human genome. The pre-built packages are

occasionally updated to ensure accurate annotation of genes. The outcome of preprocessing steps

are cell-by-gene count matrices.

Quality control and selecting cells for further analysis While scRNA-seq technology is

experiencing a surge in popularity, it still presents several limitations that must be addressed during

data analysis. The inherent challenges include the low levels of transcripts within individual cells,

inefficient mRNA capture, and technical losses during reverse transcription (RT). These factors

contribute to the creation of noisy, high-dimensional, and sparse gene expression matrices. In fact,

scRNA-seq data are known for their characteristic sparsity and noise.

Raw preprocessed data still contain many empty droplets or low-quality cells, which can cause
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numerous problems during downstream analysis. One of them is the risk of forming similar patterns

between cells with low expression values and forming misleading clusters of low-quality cells that

may resemble novel cell types [54]. For these reasons, applying thresholds for filtering low-quality

cells is essential for further analysis.

For quality control, we evaluated the following three parameters to determine the quality of

the cells in the datasets and set thresholds for data filtering: Count Depth (The number of UMI

counts per barcode) and The number of genes per barcode: These parameters reflect the number

of transcripts sequenced within a single cell. Low values might signify subpar sequencing, empty

droplets or nonviable cells, while an unusually high count could indicate doublets. The fraction

of mitochondrial genes (number of mitochondrial genes per barcode): Often presented as the

proportion of transcripts assigned to mitochondrial genes. A high mitochondrial fraction suggests

apoptotic cells or cells with membrane damage during sample preparation.

Thresholds for these three parameters should be set with consideration for the biological vari-

ability of cell types and the specific tissue being sequenced. For instance, cells with a high fraction

of mitochondrial counts may be associated with respiratory processes, while cells with higher counts

may simply be larger or actively proliferating.

Data normalisation and variance stabilisation As mentioned earlier, due to the different

transcripts capture efficiency and PCR amplifications, data obtained from scRNA-seq contains

technical bias across all cells. The sequencing depth (the number of genes or molecules detected

per cell) may exhibit considerable variation among individual cells within a single experiment.

For purposes of our analysis, we applied standard normalisation method found in popular

scRNA-seq packages such as Seurat [3] and Scanpy [55]. This is a two step method, referred

as log-normalisation, which belongs to a group of global-scaling normalisation methods. Feature

counts for each cell are divided by the total counts for that cell and multiplied by the scale.factor,

which is by default set to 10 000 and represent expected number of all transcripts in a cell. This is

then natural-log transformed [3]. Transformation of the expression value matrix ensure accurate

comparison of gene expression levels among cells and obtain correct relative gene expression values

for further analysis [56].

Feature selection ScRNA-seq provides invaluable insights into the transcriptional profiles of

thousands of cells. However, the high-dimensional data generated poses a significant challenge for

downstream analysis, known as the curse of dimensionality. To address this challenge, researchers

often turn to the selection of highly variable features.

Each tissue has its own gene activity profile. While some genes show consistent expression

across all cells (like housekeeping genes), others exhibit distinct expression patterns that differ-

entiate tissues and cell types from each other. In order to understand cellular heterogeneity, it’s

essential to identify these highly variable features that carry the most informative content for

downstream analysis.

By retaining only a chosen number of highly variable features, the computation time for subse-
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quent calculations of large-scale scRNA-seq data is significantly accelerated [57], [58]. Depending

on the task and complexity of the dataset, typically are selected 1000 - 5000 highly variable genes

(HVGs). The method for choosing highly variable features, a key component of the well-known

Seurat, operates under the presumption that genes (features) exhibiting high relative variance com-

pared to the average expression are influenced by biological factors rather than being a product of

technical noise [59].

Dimension reduction As previously stated, the information obtained from sequencing the

transcriptome of single cells is multi-dimensional. Each dataset comprises thousands of genes and

thousands of cells (after quality control and feature selection). Visualisation aims to represent

scRNA-seq data in two or three dimensions while preserving the biological structure as accurately

as possible. The most commonly used techniques for reducing the dimensionality of the expression

matrix include linear and nonlinear methods.

Principal Component Analysis (PCA) [60] belongs to linear approaches used to visualise high-

dimensional data to low-dimensional space and forms the foundation for certain nonlinear ap-

proaches. This method first examines the expression matrix of a dataset to identify a combination

of genes that are significant for capturing the variability of gene expression. This gene expression

vector called a principal component (PC) is derived from the gene covariance matrix. PCs are

weighted based on their importance in capturing the variability of gene expression [61].

PCs serve as latent variables that capture the largest variance within a dataset. Typically, the

first PCs capture the most variance. A specific number of PCs can often adequately represent the

variation in the data. The optimal number of selected PCs can be determined through methods

such as the Elbow plot or Jack Straw plot.

Since PCs are derived from features that capture the largest variance within the dataset,

analysing the genes associated with these components allows us to identify the significance of

feature variability in the datasets.

This straightforward linear method offers numerous benefits. The distances among cells are

uniform and accurately represent the actual distances. However, a drawback is that PCA does not

portray the dataset structure as effectively as non-linear methods.

t-distributed Stochastic Neighbour Embedding (t-SNE) [62] is a non-linear technique for reducing

dimensionality, derived from SNE (stochastic neighbour embedding). It was developed to address

a limitation of the original SNE method, which had a tendency to cluster points towards the map’s

centre [63].

t-SNE prioritise preserving local relationships over global ones. t-SNE is proficient at main-

taining proximity among similar cell populations, although the cluster-cluster distances may not

accurately reflect actual distances. So using t-SNE for identifying connections between cell popula-

tions is not recommended. Another limitation is the significant computational time. So researchers

are now opting for alternatives like UMAP.

Uniform Manifold Approximation and Projection (UMAP) [64] is a non-linear technique for

reducing dimensionality. UMAP, introduced in 2018, revolutionised the landscape of data visu-
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alisation methods by offering a unique blend of efficiency and accuracy. Unlike other non-linear

approaches, like t-SNE, UMAP ensures the preservation of both local and global structures while

significantly reducing computation time. This innovation addresses a critical limitation in previ-

ous non-linear techniques, where cluster-cluster distances may not accurately reflect true distances,

hampering the identification of connections between cell populations. UMAP has emerged as the

go-to tool for visualising scRNA-seq data, empowering researchers with unparalleled insights into

cellular dynamics and interactions [65].

Clustering ScRNA-seq datasets consist of groups of cells of different types. Cell groups should

be determined by the similarity of their transcriptomes (based on their expression values) using

various algorithms including unsupervised clustering.

The k-means clustering algorithm [66] is used to group cells into clusters using projection of

the dataset into a low-dimensional space. Each cluster is associated with a centroid, which helps

assign other cells to clusters by minimising their distances from the centroid. The centroids are

located in dense areas where cell clusters are expected, and their selection is adjusted iteratively

until a stable state is reached.

The widely-used Seurat package employs the Louvain algorithm [67] on single-cell k-nearest

neighbours graphs, which identifies cell groups with stronger connections among themselves than

with other cells. Louvain community detection algorithm is an unsupervised algorithm that does

not require number of expected communities before running. Advantage of the Louvain algorithm

is its resolution parameter, which enables the specification of the clustering scale for the cells [3].

It has been shown, that Louvain algorithm performed optimally for gene expression single cell data

with high accuracy and fast performance [68].

Another prominent approach is the Leiden clustering method, predominantly implemented in

Python programming language packages, such as Scanpy [55]. The Leiden clustering algorithm

can be conceptualised as an enhancement of the Louvain algorithm. The Leiden surpasses the

Louvain algorithm in both speed and the quality of outcomes [69].

We must note that efficiency and accuracy of clustering algorithm strongly depends on method

and number of selected variable features.
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4 Tools for scRNA-seq data integration

To compare algorithms for integration of single-cell transcriptomic data, we selected seven pipelines

from R and Python programming languages. This comparison aims to highlight the disparities

and advantages of each pipeline within their respective environments.

The R environment’s packages include Seurat v5 [3], Harmony [4], STACAS [6] and FastMNN

[5]. The Python programming language is represented by packages scVI [8], Scanorama [7], and

CanSig [9].

Seurat, within the R programming language, and Scanpy, within Python, stand out as the

predominant platforms for general analysing scRNA-seq data. Across various integration algo-

rithms, these two platforms play pivotal roles in data preprocessing and comprehensive analysis.

It’s important to note that Seurat and Scanpy employ distinct formats for storing scRNA-seq data.

Seurat generates the Seurat Object, while Scanpy utilizes the AnnData object format. Transferring

data between these platforms demands a deep understanding of their respective object structures,

in order to transfer data from Python to R and reverse.

To analyse all eight chosen datasets, we applied methods that we described earlier. The datasets

were already processed by the submitters using Cell Ranger software [52] and been made publicly

available on 10× Genomics portal. We applied quality control thresholds for each dataset sepa-

rately, to filter out low quality cells (Table 2). Then we log normalised, scaled the count matrices

and run PCA on the 2 000 selected highly variable features. After that we could construct the

k-nearest neighbour graph using 30 principal components to cluster cells. All datasets were merged

into one single object and projected in 2 dimensions using PCA and UMAP.

Figure 1: Violin plot showing the distribution of the cells on the preprocessed data. The first plot illustrates
the distribution of expressed number of genes (features) detected in each cell. The second plot shows the number
of detected molecules per cell. The third and fourth plots displays fraction of mitochondrial and ribosomal reads.
Notably, datasets 6 and 7 from snRNA-seq exhibit higher fraction of mitochondrial transcripts.

On Figure 1, it is evident that the datasets exhibit a high degree of similarity. However,

datasets PBMC 6 3k Nuclei and PBMC 7 3k Nuclei stands out due to their higher proportions

of mitochondrial transcripts. This anomaly can be attributed to the origin of these datasets, as

they were obtained from the snRNA-seq. In such cases, the proportion of mitochondrial genes to

the total number of captured genes may be higher. When sequencing nuclei, read counts tend to

be lower compared to scRNA-seq, resulting in a heightened representation of mitochondrial genes

within the datasets.
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Variations in the datasets also exist in the percentages of ribosomal genes. The dataset

PBMC 1 10k Cells had removed ribosomal transcripts prior to being published in the reposi-

tory. Notably PBMC 6 3k Nuclei and PBMC 7 3k Nuclei datasets have smaller proportions of

ribosomal genes, since they originate from snRNA-seq.

Original data QC Thresholds Filtered data

Dataset local ID Genes Cells
Genes
per cell

% mito % ribo Genes Cells

1 PBMC 10k Cells 14 912 9 078 >300 <10 xxx 14 773 8 982

2 PBMC 20k Cells 24 019 23 972 >300 <12 >7 23 274 22 939

3 PBMC 10k Cells 20 233 10 691 >200 <10 >7 19 543 10 096

4 PBMC 1k Cells 14 854 975 >200 <10 >7 14 205 902

5 PBMC 10k Cells 20 985 11 318 >200 <10 >7 20 164 9 303

6 PBMC 3k Nuclei 21 296 2 801 >200 <20 >5 20 259 1 983

7 PBMC 3k Nuclei 21 524 3 047 >200 <25 >2 20 406 2 232

8 PBMC 3k Cells 17 614 3 335 >200 <12 >7 16 986 2 904

Table 2: Table of quality control thresholds for preprocessing of PBMC scRNA-seq datasets.

Mutual nearest neighbours A mutual nearest neighbours (MNNs) search method [5], provides

a solution for removing batch effects between related datasets. This approach is incorporated into

a number of integration algorithms, such as Seurat, FastMNN, STACAS and others, that will be

discussed subsequently.

The algorithm for finding MNNs between datasets first scales the data globally via cosine

normalisation. Subsequently, the Euclidean distance between the normalised batches is computed.

The results represent the cosine distances of the actual distances between the batches. Cosine

distances are a more appropriate approach for algorithms because they are not dependent on

scaling i.e. on technical variations between batches.

After computing the Euclidean distances are identified MNNs cell pairs. These pairs indicate

cells with comparable expression values, with the discrepancy being attributed to the batch effect.

A specific batch correction vector is then calculated for each MNN pair. The overall batch correc-

tion vector is determined by weighted average of the pair-specific vectors, which is then employed

to correct the batch effect across all cells.

It is reasonable to expect that pairs of MMNs should match the same cell type, even if they are

produced in separate batches. Variations in the levels of expression of MMNs pairs are attributed

to batch effects. The primary requirement for MNN correction across datasets is the presence of

at least one shared cell population to calculate a batch correction vector [5].
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4.1 Seurat R

Package Seurat is designed for the analysis and integration of scRNA-seq datasets in the program-

ming language R [3]. The most recent version of Seurat, version 5 [70], has been available since

November 2023. In contrast to its predecessor [71], Seurat v5 provides an enhanced and simplified

framework for executing various integration algorithms.

As mentioned earlier, Seurat uses a data storage format known as Seurat Object, which belongs

to R’s S4 object-oriented system. The architecture condense single-cell genomics data (metadata)

with additional information such as dimensionality reduction embeddings. Within the Seurat

Object, layers are maintained to retain the original dataset’s identity information. Raw counts

are stored in the layer counts, normalised data are stored in the layer data, or z-scored/variance

stabilised data are stored in layer scale.data [72].

Introducing new layers offers the benefit of integrating individual datasets within a single

object, allowing for the execution of integration analysis within it. Unlike the previous version of

Seurat v4, where datasets had to be kept in distinct objects. The ability to split and merge layers

as required simplifies the analysis process considerably.

Anchor-based Canonical correlation analysis (CCA) integration Seurat’s approach to

data integration uses Canonical correlation analysis [73], which enables the condensation of rela-

tionships into a reduced dimensional space while retaining the key aspects across datasets. Initially,

the aim is to identify linear combinations of genes that exhibit the highest correlation between

the datasets. Through the application of nonlinear warping, these vectors are adjusted to account

for variations in population density. The nonlinear warping locally compresses or elongates the

vectors during the alignment process, resulting in a reduced-dimensional subspace encompassing

all input data [3].

Next Seurat identifies MNN in created subspace, referred to as anchors by Seurat. By using the

identified anchors, it becomes possible to align two datasets and correct the differences between

them. The process of finding anchors is carried out in pairs of datasets until all datasets are aligned.

The order is established by Seurat based on the similarities between the datasets, although it is

possible to determine own order.

In Seurat v5 is possible to integrate datasets with a single command.

1 Int <- IntegrateLayers(

2 object = merged_seurat , method = CCAIntegration ,

3 orig.reduction = "pca", new.reduction = "integrated.cca",

4 verbose = FALSE)

Seurat has been demonstrated to possess one of the most effective algorithms for integrating

datasets with diverse disparities. It excels in integrating large datasets, datasets with non-identical

cell types or datasets with technical variations. Seurat demonstrates efficient integration across all

these scenarios with a small number of incorrect matches [74].
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4.2 Harmony R

Harmony was first introduced in 2019 as a new, fast and sensitive technique for integrating scRNA-

seq datasets [4]. Its unique algorithm allows for quick and easy exploration of multiple datasets

integration.

The first step of integration using Harmony, is to reduce the dimensionality of all datasets using

PCA. This step is also known as identifying low-dimensional embeddings of the cells. Harmony

receives the coordinates of each cell, which it then uses in further analysis.

Each cell is assigned a potential cluster using the soft k-means clustering technique created by

Harmony. Then, a centroid is chosen from each cluster that is created. The coordinates of this

centroid are used to correct the coordinates of the remaining cells within the clusters. Harmony

iterates through these steps until the cell clusters reach convergence. During each iteration, it

clusters together similar cells from different batches, aiming to enhance the variety of batches

within each cluster [4].

The Harmony integration algorithm can be executed within Seurat enviroment by utilising the

RunHarmony function from the Harmony library on Seurat Object. By default, harmony will access

the PCA cell embeddings, which have done earlier, and utilise them to run harmony integration

algorithm. Hence, it is necessary to normalise the datasets in advance. This enables the creation

of a combination of highly variable features that are used for generating principal components. By

enabling the plot convergence argument, harmony will produce a convergence plot that illustrates

the integration process, see Figure 2.

1 Int <- RunHarmony(merged_harmony , group.by.vars ="orig.ident",

plot_convergence = TRUE , nclust = 50, max_iter = 10, early_stop = T)

Figure 2: Integration process of harmony. Colours represent different iterations.

It is important to mention that Harmony removes the expression matrix at the initial stage,

unlike Seurat, which retains these values. Harmony takes as input a matrix of coordinates and

covariate labels for each cell. It outputs a matrix of modified coordinates that maintains the same

dimensions as the original input matrix. Consequently, the integrated outcome will not contain

the expression values of the individual genes.

By the fact that the integration algorithm does not need to compute corrected expression

values, the time required for the analysis is shorter. The Harmony’s low runtime also makes it
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well-suited for the initial exploration of large datasets. [74]. However, we might lose biologically

relevant data that might be required in the downstream analysis.

4.3 FastMNN R

One commonly used method in various approaches is finding MNNs. As mentioned earlier on page

12, the algorithm starts by detecting MNNs pairs of cells between datasets to create links between

them. The list of MNNs obtained is then used to calculate translation vectors for aligning the

datasets in a common space.

FastMNN presents a more efficient computational method in relation to CPU runtime and

memory consumption than MNNs. It employs the strategy of identifying MNNs within a subspace

generated through PCA. This technique has significantly improved both the speed of execution

and the precision of aligning datasets [5].

To run FastMNN integration algorithm on Seurat Object within Seurat interface, we can func-

tion RunFastMNN.

1 Int <- RunFastMNN(object.list = SplitObject(merged_pbmc , split.by =

"orig.ident"))

4.4 STACAS R

STACAS is a package that can be also incorporated into Seurat enviroment. It is specifically

designed to compete with the powerful Seurat algorithms. Its uniqueness lies in new methods that

seek to reduce the risks of over-clustering.

The STACAS algorithm belongs to linear embedding models, where a MNN search method

is used to find anchors across all datasets. In contrast to the Seurat CCA algorithm, STACAS

does not inherently rescale expression values to zero mean and unit variance as a default setting.

Such rescaling could impact the preservation of biological variability across datasets [6]. Initially,

the algorithm computes the level of similarities between datasets and return a cluster dendrogram

(Figure 3). Based on this information, the alignment starts with datasets exhibiting the highest

similarity score.

After identifying cell types, STACAS provides the option to incorporate cell type annotations

for alignment guidance. In the cases where there are some inconsistency in cell types among

anchors, STACAS imposes penalties, operating on the assumption that cell clusters should exhibit

uniform cell type composition.

However, research has indicated that semi-supervised integration with STACAS using cell type

annotations does not always provide a significant advantage. In scenarios where datasets exhibit

increasing levels of cell type imbalance, unsupervised STACAS demonstrated comparable perfor-

mance to semi-supervised integration. Conversely, when integrating datasets with similar cell

types but significant batch effects, the semi-supervised STACAS integration algorithm outper-

formed the unsupervised approach. Additionally, when compared with Seurat CCA integrations,
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semi-supervised STACAS integration outperformed Seurat, which intend to overcorrect batch ef-

fects [75].

The STACAS integration algorithm can be implemented in the Seurat interface by utilising the

FindAnchors.STACAS and IntegrateData.STACAS functions from the STACAS library on Seurat

Object.

1 anchors <- FindAnchors.STACAS(obj.list , anchor.features = 2000, dims =

1:ndim)

2 st1 <- SampleTree.STACAS(anchorset = stacas_anchors , obj.names =

names(obj.list))

1 Int <- IntegrateData.STACAS(stacas_anchors , sample.tree = st1 ,

dims =1: ndim)

Figure 3: The dendrogram provides visual information on how datasets are grouped based on their similarity
levels. This information is utilised in dataset integration, where datasets exhibiting the highest similarity levels are
integrated first.

4.5 Scanorama Python

Scanorama‘s algorithm [7] for integration of scRNA-seq datasets is inspired from techniques used

in image processing to stitch together overlapping images into a single panoramic view. Developed

to address the challenge of integrating multiple scRNA-seq datasets with distinct transcriptional

profiles, Scanorama stands out for its ability to integrate datasets without requiring shared cell

populations across all samples [7].

Unlike other integration methods, Scanorama is agnostic to the order in which datasets are

integrated, as it performs alignment among all pairs of datasets.

The Scanorama integration algorithm can be executed within Scanpy interference by utilising

the scanorama.correct scanpy function from the Scanorama library on divided AnnData object.

1 Int = scanorama.correct_scanpy(adata , return_dimred = True , knn = 40)

In comparison to Seurat, Harmony, fastMNN, and scVI, the Scanorama algorithm falls short

in performance, when integrating un-annotated homogeneous datasets. Studies have revealed that

Scanorama often overlooks homologous cell pairs and struggles to effectively integrate data [76].

However, Scanorama was specifically designed to compete with these robust tools in situations
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where datasets display significant compositional differences, demonstrating better performance in

such scenarios [7].

4.6 scVI Python

Single cell variational interference (scVI) [8] belongs to a deep learning model that uses a proba-

bilistic framework to integrate single-cell transcriptomics data.

Deep Learning (DL) models [77] form a subset of machine learning (ML) models renowned for

their utilisation of deep neural networks to analyse large and complex datasets. Inspired by the

human brain’s learning mechanisms, deep neural networks consist of multiple preprocessing layers,

referred to as artificial neurons. These models excel at extracting biologically significant features

from scRNA-seq data.

ScVI, grounded in a hierarchical Bayesian model, employs deep neural networks to define

conditional distributions, presuming a zero-inflated negative binomial distribution [8].

In comparison to prior methodologies, scVI stands out for its ability to effectively integrate

datasets, particularly those characterised by their size and complexity. Notably, scVI achieves this

integration while faithfully preserving biological variations across multiple datasets, all without

introducing any spurious artefacts or false signals [78].

The scVI integration algorithm can be performed on AnnData format preprocessed with pack-

age Scanpy. To run scVI integration, we design model and then execute function model.train().

1 scvi.model.SCVI.setup_anndata(

2 adata , layer="counts", batch_key = "batch",

3 categorical_covariate_keys=["orig.ident"],

4 continuous_covariate_keys=["percent_mito", "nCount_RNA"])

5 model = scvi.model.SCVI(adata , n_layers=2, n_latent =40,

6 gene_likelihood="zinb", dispersion = "gene -batch")

1 model.train()

4.7 CanSig Python

CanSig, a novel integration method tailored for the analysis of tumour scRNA-seq data, was intro-

duced in 2022 [9]. This innovative approach offers a fully automated computational solution for

analysing transcriptional states across different scRNA-seq data obtained from multiple samples,

especially on tumour scRNA-seq samples.

CanSig consists of four distinct modules for data analysis. The initial module focuses on data

preprocessing, during which individual cells are categorised as either malignant or non-malignant.

This step sets the foundation for subsequent data analysis. The second module is responsible

for integrating the data in a manner that preserves the distinctions between malignant and non-

malignant cells. CanSig employs a deep probabilistic generative model from scVI to implement

cell integration. In the third module, the integrated data is clustered in a latent space using the

Leiden clustering method. This is followed by differential gene expression analysis for each cluster
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versus the rest of the cells. And in the fourth and last module are identified shared transcriptional

states in the cells of interest [9].

Since the CanSig integration algorithm implement scVI cell integration, the commands are

similar. Firstly is created model configuration and than is performed integration using function

integrate adata() .

1 integration_config = cansig.models.scvi.SCVIConfig(

2 batch="batch", n_latent =40, random_seed=0,

3 train=cansig.models.scvi.TrainConfig(max_epochs =135) ,

4 discrete_covariates=None)

1 representations = integrate_adata(data=data , config=integration_config)

4.7.1 Comparison of integration algorithms on eight PBMCs datasets

Figure 5 presents the results of integration analysis conducted on eight scRNA-seq dataset of

PBMCs. The top row displays the structure of the unintegrated datasets. Then, each integration

algorithm is depicted in subsequent rows, using PCA and UMAP dimensional reductions (only

scVI does not use PCA and instead employs MDE (Minimum-distortion embedding) [79], an

alternative method that offers a faster solution to conventional dimensional reduction techniques).

The third column illustrates cell type annotation on UMAP, utilising the Single R package [80].

After performing integration analysis, AnnData objects were converted into Seurat Objects. A

technical challenge arose with CanSig integration results, as conversion was not feasible, resulting

in a visualisation through Python.

Integration outcome from Scanorama is subject to discussion, as it leaves parts of dataset

PBMC 2 20k Cells unaligned. Based on visual comparison, it is unclear whether this effect is

beneficial or detrimental, yet it is evident that the different sizes of the batches plays a role in

Scanorama’s performance. On the other hand, the cell type annotation verifies that this particular

subset of cells is classified as monocytes as well as the neighbourhood of unaligned cells from

dataset 2.

The dataset PBMC 6 3k Nuclei had removed granulocytes by FACS cell sorting, which was

confirmed by evaluation of typical markers of granulocytes. The integration analysis showed that

each integration algorithm dispersed cells in a way preserving this difference.

Despite variations among the datasets, including differences in the number of sequenced cells,

the sequencing method employed, cell sorting techniques, and whether whole cells or only nuclei

were sequenced, each algorithm adeptly handled batch effects and achieved optimal alignment

across all datasets. These findings undoubtedly underscore the effectiveness and widespread adop-

tion of these tools. All algorithms demonstrate their suitability for integrating high-quality data,

such as scRNA-seq PBMC data.
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4.7.2 Visual comparison of integration algorithms
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Figure 5: Evaluation of integration results of eight PBMCs scRNA-seq datasets. Each row represents an outcome
from a one integration algorithm using PCA, UMAP visualisation (only scVI employs MDE instead of PCA).
Integration algorithms are arranged in order: Seurat v5.0.0, Harmony v1.1.1, FastMNN v1.12.3, STACAS v1.12.3,
Scanorama v2.2.2, scVI v0.20.3, CanSig v0.3.1. Cell type annotation was made by SingleR.
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5 Integration of VSs scRNA-seq datasets

5.1 Samples

We obtained four datasets (local ID: VS 39, VS 40, VS 58, VS 59) derived from VSs scRNA-seq

from the Laboratory of genomics and bioinformatics from Institute of Molecular Genetics of the

Czech Academy of Sciences. These datasets exhibit high variations among themselves, making

them ideally suited for benchmarking integration algorithms.

All samples were prepared from freshly collected tumours by enzymatic digestion of the tissues

and sorted on FACS to remove nonviable cells and extracellular matrix debris. The samples VS 58

and VS 59 were also depleted of CD45−/NCAM1− cells, retaining immune and neuron cells.

5.2 VSs scRNA-seq data

Raw data stored in FASTQ formats must undergo preprocessing using Cell Ranger to obtain

gene expression matrices. One notable variation was seen in the sample VS 59 barcode rank plot

(Figure 6), generated by plotting the number of UMIs associated with the barcodes. In these

plots, blue colour represents captures where the number of detected UMIs is high enough to

consider them as cells. The first three samples exhibit a typical ”cliff and knee” structure. This

structure is expected in high quality samples, where the barcodes linked to cells are more distinctly

differentiated from empty droplets. However, the fourth sample, VS 59, displays a round curve,

indicating compromised sample quality. This round curve suggests low sample viability during

preparation, leading to a less single-cell behaviour [52].

Figure 6: Bacode rank plots of VS 39, VS 40, VS 58, VS 59, showing the number of assigned reads to specific
barcode. Barcodes are plotted against decreased number of UMIs linked with particular barcode. The blue colour
indicates barcodes with a reasonable count of associated UMIs to signify cells.

Using Cell Ranger v6, datasets were aligned to the reference genome, resulting in raw feature

matrices saved in the Matrix Market Exchange format (.mtx). These formats are divided into three

files: Barcodes.tsv.gz and Features.tsv.gz containing cell identifiers, and Matrix.mtx.gz containing

expression levels of cell features. The .mtx efficiently stores sparse matrices, common for scRNA-

seq data.

Each dataset was preprocessed separately using Seurat to preserve relevant biological insights.

Our strategy was to eliminate low quality cells, that bring technical noise rather than biological

meaning. The selected thresholds are in the Table 3 where the last two columns represent the

number of retained cells and the number of genes.
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Original data QC Thresholds Filtered data

Dataset local ID Genes Cells
Genes
per cell

% mito % ribo Genes Cells

VS 39 14 786 2 204 >200 <55 >5 14 466 1 971

VS 40 14 390 2 140 >200 <60 >5 14 039 1 853

VS 58 13 110 197 >200 <40 >5 12 255 189

VS 59 18 014 3 033 >200 <40 >5 17 070 2 966

Table 3: Table of quality control thresholds for scRNA-seq data derived from four vestibular schwannomas samples.

Figure 7: Violin plot showing the distribution of the cells on the preprocessed scRNA-seq data from VSs. Despite
the VS 59 dataset having a substantial quantity of captured cells, its quality is compromised, exhibiting a notably
low assigned genes and molecules per cell.

Several differences are apparent among the datasets illustrated in Table 3 and Figure 7. No-

tably, dataset VS 58 is relatively small with 189 cells after quality control and filtering, and it

exhibits the highest fraction of mitochondrial transcripts, indicating potential cellular stress. The

table also highlights VS 59 with high number of detected genes, but has a lower average gene count

per cell (Figure 7), consistent with Cell Ranger results (Figure 6), suggesting poor input sample

quality only for VS 59.

With the processing steps the data undergoes, it acquires several technical variances. Hence

before starting with integration analysis, we should also take a look into biological variances within

the datasets. The biological variances can be attributed to the unique characteristics of the tissue

from which they are derived. VSs, situated in the peripheral nervous system, present challenges

in preparation of single-cell dilutions due to tissue complexity. It is clear from the morphology of

Schwann cells that the success rate of obtaining a separate viable Schwann cell is very low, leading

to predominantly TME cells in our datasets (Figure 8). However, as discussed earlier, the TME

plays a crucial role in the future growth characteristics of a tumour, highlighting the importance

of molecular-level analysis of TME.
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Figure 8: Structure of datasets before integration analysis. Four dimensional reduction UMAP plots represent the
expression values of each cell. The datasets exhibit considerable heterogeneity, with variations in the representation
of cell types. The same legend applies to all four plots.

Since we were not able to capture either Schwann cells or M2-type macrophages using SingleR

cell annotation (Figure 8), we decided to analyse marker genes in individual datasets using dot

plot (Figure 9) and feature plot (Figure 10), to depict their average expression. Moreover, analysis

revealed cell heterogeneity after FACS sorting, suggesting effective preservation of immune cells in

the TME. Viable neuron cells were possibly forming a rare subpopulation prior to FACS sorting,

leading to noise confusion and subsequent removal from samples [81].

As discussed in Chapter 2.2, key factors driving tumour growth are TME elements. Marker

genes important for myeloid cell proliferation and infiltration into the TME include CD163 and

MS4A4 (associated with M2-type TAMs), and CSF1R (myeloid cell receptor for VSs ligands).

Furthermore, CD68 expression indicates M1-type macrophages [33]. Schwann cell presence is

suggested by EGR2, with increased ERB2 expression noted in Schwann cells undergoing changes

due to nerve damage and need of myeloid formation [82]. However, the common VSs marker,

S100B [83], was not significantly detected in any dataset.

Figure 9: The dot plot illustrates the mean expression of selected marker genes identified in VSs scRNA-seq.
CDF1R, MS4A4A, CD163 are indicative of myeloid cells that contribute to tumour progression. CD68 is a marker
for M1-type macrophages. EGR2 is markers for myelinating Schwann cells. S100B is expressed in VSs.
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Figure 10: The feature plots illustrate the expression of selected marker genes identified in TME and VSs on
dimensional reduction UMAP plot of unintegrated datasets. Most of the VS 59 dataset creates a large cluster of
cells that do not show a TME or VSs transcriptional profile.

Upon assessing the outcomes from Figures 9 and 10, it’s necessary to mention that VS 58 and

VS 59 aren’t particularly effective for making definitive conclusions. The extremely low expression

levels of our marker genes of interest suggested an inconclusive result. On the other hand, the

datasets VS 39 and VS 40 exhibit encouraging outcomes from the initial data processing and

analysis, encouraging further exploration of TME.

Datasets exhibiting such high biological and technical variability could present challenges for

integration algorithms, thus making them perfect for comparative study of statistical models de-

veloped for integration of scRNA-seq data.

5.2.1 Algorithms

The eight algorithms described in Chapter 4 were tested on the preprocessed sample from vestibular

schwannomas single-cell RNA sequencing. All commands were run with default parameters.

Evaluation of runtime and maximum memory consumption All the analyses was per-

formed using in-house server of IMG CAS named ORCA, equiped with Intel(R) Xeon(R) CPU

E7-8890 v4 @ 2.20GHz processor (24 CPU cores and 250.8 GB total memory).

Figure 11 presents a comparison of system CPU runtime (s) and peak memory usage (MB)

of integration of PBMCs and VSs scRNA-seq datasets. Following the combining of PBMCs, the

resulting dataset comprises 59 335 cells (red), while the VSs dataset includes 6 979 cells (blue).

According to the measurements, Harmony exhibits the minimal memory usage and runtime in

both scenarious. The STACAS algorithm allocates anchors to a distinct object, resulting in the

greatest memory consumption. ScVI and CanSig, being deep generative models, require extended

runtime relative to other approaches.
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Figure 11: Benchmark of the system CPU runtime and maximum memory usage of integration algorithms. Blue
corresponds to the integration of VSs scRNA-seq data comprising 6 979 cells. Red represents the integration of
PBMC scRNA-seq involving 59 335 cells in the combined dataset. Harmony achieves the quickest integration time
and the minimal memory usage. Scanorama, Seurat CCA, and FastMNN display similar performance. STACAS
records the greatest memory consumption. ScVI and CanSig are observed to have the longest runtime.

5.2.2 Comparison of integration algorithms on four VSs datasets

Integration of diverse data, such as scRNA-seq samples from VSs, has provided valuable insights

into comparison algorithms. Our primary focus was on ensuring that integration do not overesti-

mate the differences between datasets but rather preserve the true disparities (Figure 13).

Seurat, employing its canonical correlation analysis method, is among the most widely used

approaches. However, our data suggests that it tends to overestimate the dataset differences. Our

findings agree with other comparative studies [75], indicating a substantial risk of over-integration

and misinterpretation of results with the Seurat algorithm. However, the results are promising.

It can be seen in our, but also in other comparative studies, that Scanorama’s integration

algorithm might be influenced by batches [84]. It requires separate datasets labelled with batch

IDs and utilises this information during alignment [7]. While Scanorama under-performed with

our datasets, we anticipate better performance in a more heterogeneous samples.

The common use of the scVI algorithm leads to comparable results of scVI and CanSig and

distinguishes it from other methods. ScVI reveals distinct clusters of cells originating from single

dataset, whereas CanSig shows a tendency to heavily mix datasets. These findings suggest that

neither of these approaches may be the most optimal choice for our specific datasets.

In terms of system runtime and memory usage, Harmony emerged as the top performer. Its

straightforward and intuitive approach removes batch effects without excessive strain on the GPU.

Harmony shows promise for initial analysis, but more robust integration algorithms are needed to

complement its capabilities.

For our scRNA-seq VS datasets, FastMNN proved to be an optimal choice. It effectively

preserved biologically relevant differences between datasets without forcibly merging individual cell

clusters, thereby revealing differences in cellular heterogeneity. Similarly to FastMNN, STACAS

emerged as the optimal method for batch effect removal in our data, preserving true differences

and aligning with our expectations.
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5.2.3 Visual comparison of integration algorithms
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Figure 13: Evaluation of integration results of four VS scRNA-seq datasets. Each row represents an outcome from
a one integration algorithm using PCA, UMAP visualisation (only scVI employs MDE instead of PCA). Integration
algorithms are arranged in order: Seurat v5.0.0, Harmony v1.1.1, FastMNN v1.12.3, STACAS v1.12.3, Scanorama
v2.2.2, scVI v0.20.3, CanSig v0.3.1. Cell type annotation was made by SingleR.
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6 Discussion

The integration of peripheral blood mononuclear cell and vestibular schwannomas single-cell RNA

sequencing data unquestionably underscores the capabilities of each compared method for inte-

grating transcriptomics data. Every statistical approach successfully eliminates unwanted batch

effects while preserving the true differences between datasets. Factors such as missing cell sub-

populations, sample heterogeneity, preservation methods, or the number of sequenced cells do not

impact the results.

In two out of four samples from the scRNA-seq of vestibular schwannomas, we identified marker

genes representing the myeloid lineage of immune cells within the tumour microenvironment. Our

findings mirror those of previous studies [38], which reported the upregulation of CD163 in fast-

growing tumours, suggesting the potential involvement of M2 tumour associates macrophages in

tumour progression. Additionally, we also observed the expression of MS4A4A, which has been

linked to NK cell-mediated resistance to metastasis [39].

Our comparative study of integration algorithms yielded results similar to other benchmarking

studies [78]. We confirm that Harmony is suitable for initial analysis but needs to be complemented

with other methods. Consistent with previous research, we found a balance between dataset

mixing and biological conservation in the scVI integration result [76]. Our observations align with

statements made in a recent cancer study [85], where authors compared the integration of several

methods on tumour-associated samples and concluded that FastMNN and STACAS were the best

performers.

Integrating the aforementioned scRNA-seq datasets from vestibular schwannomas with sam-

ples from healthy tissue may reveal intriguing results, shedding light on different transcriptional

profiles in the tumour microenvironment. The use of batch correction techniques may uncover

therapeutically significant cell types and states within vestibular schwannomas. We foresee the

future continuation of this comparative study.
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7 Conclusion

This thesis undertook a comprehensive comparison of seven statistical approaches for the batch

effects removal and the integration of single-cell RNA sequencing datasets. We assessed the per-

formance of Seurat, Harmony, FastMNN, STACAS, Scanorama, scVI, and CanSig, specifically

designed for handling transcriptomic data, in two scenarious. First scenario encompassed inte-

gration of scRNA-seq of peripheral blood mononuclear cells from 10× dataset repositories. These

datasets are widely used in comparative studies due their good annotation and high sample qual-

ity. In the second scenario we introduced our own datasets of scRNA-seq derived from vestibular

schwannomas of individual patients, which exhibit large variations and poses challenge for integra-

tion methods. Before integration we summarised the molecular patterns in vestibular schwannomas

and analysed the scRNA-seq data. The findings from the summary were taken into account in the

subsequent analysis.

The comparison analysis began with integration of eight distinct PBMCs scRNA-seq datasets,

which varied in several key aspects including the number of sequenced cells, the preservation

method utilised, and whether the sequencing was conducted on whole cells or isolated nuclei.

Results revealed that each method integrated all datasets and effectively eliminate batch effects

while preserving biological variability.

Next we evaluated the computational capabilities of these methods by integrating datasets

characterised by substantial technical and biological variances. Preprocessing of the scRNA-seq

datasets derived from VSs highlighted significant differences between batches. Through the analysis

of reported marker genes associated with VSs and components of the TME, we meticulously

examined and assessed each dataset individually. Even when considering samples as technological

and biological replicates, disparities in sample viability, capture efficiency, and library preparation

were observed. However, such variations between scRNA-seq results are not unusual, and there is

a need for modern computational methods to be built to work with such data.

The capabilities of each integration algorithm on VS datasets revealed that FastMNN yielded

the most promising results. However, it cannot be definitively stated that this method is the best

fit for all samples, as the structure of the data must always be taken into account.

We anticipate further enhancements in each method compared, given the crucial role of data

integration in future scRNA-seq data analysis. Integration facilitates a systematic comparison of

samples under varying conditions, thereby enabling a comprehensive understanding of the func-

tional roles of different cell types and states. This approach is applicable across a wide range

of research fields, including developmental biology, immunology, and cancer research. We believe

that our review has aided in understanding the fundamentals of scRNA-seq data analysis and has

contributed to the comparison of integration algorithms for future applications.
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