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1. Introduction 

Lexical knowledge is a crucial pillar of linguistic competence, upon which all other linguistic 

functions depend. Decades of psycholinguistic research have explored the cognitive 

representations of words in our minds and their internal organization, the so-called mental 

lexicon. Of particular interest, here, have been the pathways of word acquisition and retrieval, 

the functional components of the mental vocabulary, and the interrelations between words 

encoded in the vocabulary. Research of the mental lexicon is voluminous and has significantly 

advanced our understanding of how the human mind processes words in its first and other 

learned languages.  

The primary method of investigation to understand the inner workings of the mental lexicon 

has been the reconstruction of linguistic processes through psycholinguistic tasks, such as word 

recognition, or the charting of developmental trajectories of word learning by focussing on sub-

groups of words and their formal and functional neighborhoods (i.e., semantic or phonological 

neighborhoods). This “bottom-up” approach to word processing has significantly shaped our 

current knowledge in the field and built a solid theoretical foundation to capture phenomena 

observed in experimental tests over the decades. Recent advances in the mathematical domain 

of network sciences have now offered promising new scientific avenues to investigate a “top-

down” approach to the mental lexicon. By studying words as belonging to a large and largely 

interconnected network, a new understanding of word processing can be gained from a more 

holistic perspective of word memory and learning. Novel insights into functional and 

developmental patterns can come from viewing the mental lexicon as a complex system beyond 

the sum of its parts: performance of one part may depend on that of another to achieve a relevant 

outcome, creating an interrelated web. This bird’s-eye view of the mental lexicon as a complex 
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system can facilitate the study of the grander structure of word connections, from which new 

patterns of hierarchical relationships and lexical access dynamics can be inferred, leading to 

more predictive models of the factors influencing lexical processing.  

The research field of lexical network science is relatively new and researchers working within 

this theoretical framework have investigated a small number of languages involving first-

language users. Second and foreign languages are underrepresented, with no study charting the 

whole lexicon of language learners from the network perspective. This book will attempt to fill 

the knowledge gap by providing an overview of lexical word form networks of learners of 

English as a second language1. For contrast, a lexical word form network of British English 

first-language users will be presented, in order to be able to draw comparisons between first 

and second languages. A specific focus of this book will be on mathematical modelling of 

network-theoretical concepts in relation to their psycholinguistic realities and the question of 

what network science can contribute to theories of word learning and lexical access. Central 

insights into the dynamics of word learning at various proficiency levels arise by placing them 

in the wider context of growth algorithms governing evolving (=growing) networks. The core 

chapters include computations of network-relevant measures and mathematical descriptions of 

word form networks, which are intended to provide a first glimpse at second-language-learner 

networks and serve as reference points for future studies focussing on word memory and 

learning from the network viewpoint. The goal of this book is a network-theoretical description 

of lexical knowledge and its growth in learners of English as a second language (ESL). The 

structure of the book is as follows.  

The second chapter begins with an overview of word form relationships in the mental lexicon 

as defined in common psycholinguistic theories of lexical access. The central notion is 

‘phonological neighbor’, a measure of the relationship between word forms. Much explanatory 

weight of network science is placed on the quality and quantity of relationships between entities 

(words) along known similarity dimensions, and phonological neighbors are the logical starting 

point for a network-theoretical approach to word forms. The chapter will survey various facets 

of the mathematical concepts of network science and their application to phonological network 

 
1 The term “second language” will be used throughout this book in the psycholinguistic sense of any language 
learned after the first (native) language of a speaker, with the exception of bilingualism (see, e.g., Gass & 
Selinker, 2008). ESL or “English as a second language” and EFL or “English as a foreign language” will thus be 
used as synonymous terms.  
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description, with a special focus on the different levels of network organization, including 

micro, meso, and macro levels of analysis. Characteristics of individual nodes, small clusters 

of connected nodes (communities), and the overall topology of a network are of systemic 

relevance for network connectivity and can provide information about lexical processing in 

phonological networks. Also covered will be theories on activation spreading (diffusion) in 

lexical networks, since patterns of co-activation are expected to follow network principles and 

thus differ from predictions based on the traditional models of lexical access.  

Chapter 3 presents the findings of the network computations for the phonological networks of 

learners of English as a second language. Vocabulary data for each of the six CEFR proficiency 

levels gathered from the Cambridge Learner Corpus, with which phonologically neighboring 

words were calculated in an Oracle database, formed the basis of network construction. In 

addition to the learner networks, a phonological network of British first-language users (data 

from the British National Corpus) was constructed for comparative purposes. Network-

mathematical analyses of the seven networks are presented, including micro-, meso-, and 

macro-analytical detail. Implications for lexical access are discussed.  

In the fourth chapter, network growth algorithms that are of potential significance for 

phonological networks will be reviewed. A particular focus will be on scale-free networks and 

how new links can be accumulated consistently with the scale-free assumption of phonological 

networks. A discussion of various factors impacting the growth of scale-free networks will 

follow, including, for instance, uniform and preferential attachment processes, fitness models, 

and aging effects. The chapter ends with a review of previous findings on the growth of 

phonological networks.  

The network growth algorithms are explored in the learner networks in chapter 5, where gains 

in vocabulary from one CEFR proficiency level to the next will be analyzed from the theoretical 

perspective of evolving networks. Growth rates across distinct network parts, communities, 

and individual nodes, as well as the contributions of growth algorithms arising from various 

evolving network theories, will be investigated. Furthermore, growth development over the 

course of language learning is charted in micro, meso, and macro levels of the respective 

networks. Various theoretical extensions of the Barabási-Albert evolving network model (e.g., 

initial attractiveness) are also tested in the networks.  
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Chapter 6 replicates a previous phonological network growth study of first-language American 

English and Dutch, which was conducted by Cynthia Siew and Michael Vitevitch in 2020. Due 

to computational differences, their findings are not directly comparable to the results presented 

in chapter 5 of this work. In order to ensure comparability, network growth algorithms of the 

present data were re-calculated in accordance with the alternative computations as used by 

Siew and Vitevitch. Regression analysis showed similar results for both studies, strengthening 

the growth hypothesis suggested by Siew and Vitevitch.  

The conclusion summarizes the findings and presents future directions for the application of 

network sciences to the study of the mental lexicon and word learning. The potential of network 

theoretical approaches to lexical organization and lexical access in language users has only 

begun to be explored, with new theories currently being developed that aim to accommodate 

traditional knowledge about the mental lexicon and new hypotheses derived from network 

sciences.  

A two-part appendix of this book includes network graphs and the phonological neighborhood 

data used for the present study. The latter is presented in an online format where interested 

researchers are provided with measures of phonological neighborhood density in English as a 

second language as a resource for linguistic experimentation.  

Hopefully this book will inspire researchers to apply network-mathematical notions to the 

psycholinguistic study of word relationships in the mental lexicon. This integrated approach 

across research specialties can be intellectually fruitful and lead to a deeper understanding of 

the cognitive underpinnings of linguistic representations in the human mind. Embracing 

different theoretical approaches and innovative research questions will get us further to the 

goal of elucidating the nature of words in the human mind.  
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2. The mental lexicon as a 
phonological network 

2.1. Traditional views of lexical connectivity 

The mental lexicon is the human repository of lexical knowledge (Oldfield, 1966). It is the 

cognitive system that organizes lexical activity and forms the basis of linguistic expression by 

providing storage to all vocabulary items that are known by a language user (Dóczi, 2020). A 

lexical representation is suggested to contain information about its form, meaning, and 

syntactic properties that is accessible upon lexical access of a given word (Yelland, 1994). How 

words are represented and processed in the mental lexicon is not only crucial for theories on 

language acquisition and development but can more generally shed light upon universal 

principles by which humans mentally categorize language. The mental lexicon is best 

conceptualized as an ideal, abstract notion, rather than a concrete list of word knowledge 

(Aitchison, 2012; He & Deng, 2015). Generally, it can be seen as a dynamical memory system 

supporting linguistic processing that is continuously adapting in the face of experience.  

Theories on lexical access in the mental lexicon distinguish between word production and word 

perception. In production, a meaning is provided (i.e., the semantic concept the speaker wants 

to convey) and the appropriate phonological representation has to be identified. In perception, 

the input is the phonological representation and the listener has to match it with existing words 

in the lexicon to retrieve the meaning. This dichotomous search system poses problems for 

theoretical accounts of word storage, as optimization of word accessibility in production and 

perception are seemingly incompatible (Levelt, 2001). While some researchers have postulated 
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two separate mental lexica for production and perception processes, a single lexicon with 

duplicate sound-meaning pairings is also plausible (see Aitchison, 2012; Fay & Cutler, 1977, 

for a discussion). Alternatively, the mental lexicon could either be organized according to 

optimal production or to optimal perception, thereby biasing word storage toward a particular 

type of speech process.  

Virtually all psycholinguistic accounts of lexical processing propose that lexical information is 

primarily organized along similarity principles, both semantic and word form similarity (see 

Buchwald, 2011, for a review). The former refers to words sharing semantic features, while the 

latter refers to words sharing phonological forms. Even though the two processes work in 

tandem, they are conceptually separate from one another and associated with different neural 

processing pathways (Ullman, 2007). Studies have consistently demonstrated an advantage of 

phonological similarity in word learning, demonstrating the strong influence of phonological 

word form on lexical processing in first language acquisition and foreign language learning 

(e.g., Aitchison, 2012; Arutiunian & Lopukhina, 2020; Beckage & Colunga, 2019; Dell & 

Gordon, 2003; Fourtassi, Bian, & Frank, 2020; Gahl, Yao, & Johnson, 2012; Harley & Bown, 

1998; Havas et al., 2018; James & Burke, 2000; Siew & Vitevitch, 2016; Vitevitch & Luce, 

2016).  

2.1.1. Phonological neighbors 

The similarity bias in the phonological domain is governed by ‘phonological neighbors’, a 

well-studied notion of lexical relationships (Goldrick, Folk, & Rapp, 2010; Landauer & 

Streeter, 1973). In their seminal study of lexical frequency, Streeter and Landauer (1973) 

defined phonological (in their term “lexical”) similarity as the distance of one piece of 

information (a phoneme or grapheme) between two words. What was referred to as “neighbors” 

and “similarity neighborhoods” have evolved into today’s concepts of “phonological 

neighbors” and “phonological neighborhoods” (see, e.g., Vitevitch & Luce, 2016). 

Phonological neighbors are commonly defined as sharing the majority of phonological 

segments and differing by one phoneme substitution, deletion, or addition (the so-called 

Hamming or Levenshtein distance, Landauer & Streeter, 1973; Luce & Pisoni, 1998). What 

lies at the core of lexical activation is competition for activation between segments and thus 

phonological neighbors. When a target word becomes activated (through production or 

perception), other words that share phonemes with the target word also become co-activated. 

Since co-activation spreads through common phonemes, the more phonemes are shared within 
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a neighborhood, the more activation spreads within the neighborhood. This is generally 

referred to as the “phonological neighborhood effect” (Vitevitch & Luce, 2016). Differences 

arise in relation to speech production and perception processes: in perception, competition 

among lexical candidates leads to slower access of the target word (Luce & Pisoni, 1998; 

Magnuson, Dixon, Tanenhaus, & Aslin, 2007; Vitevitch, 2002a; Vitevitch & Rodriguez, 2004). 

In speech production the opposite is observable, and words from dense neighborhoods are 

produced faster and more accurately (Vitevitch, 2002b; Vitevitch, Armbruster, & Chu, 2004; 

Vitevitch & Sommers, 2003). As mentioned, the crucial distinction here is that in speech 

recognition, a listener has little accompanying semantic information available and thus has to 

guess a phonological word form from phonemic input alone. In production, speakers have 

semantic information at their disposal, which they can use to prevent co-activation of 

phonological neighbors. It has been suggested that in speech production, articulation-relevant 

features of phonological representations become strengthened through co-activation 

(Vitevitch, 2002b). In general, phonological neighborhood effects are a well-documented 

phenomenon in psycholinguistic research, can be observed in different languages and 

populations (e.g., Arutiunian & Lopukhina, 2020; Gordon, 2002; Marian & Blumenfeld, 2006; 

Stamer & Vitevitch, 2012), and constitute a central component of lexical processing (see 

Vitevitch & Luce, 2016, for an overview of neighborhood effects in perception and 

production).  

An important question arising from phonological neighborhoods in the mental lexicon 

concerns word learning, or the addition of new words to the mental lexicon. Words which find 

many potential neighbors or ‘anchor words’ in the vocabulary of a learner are more easily and 

rapidly integrated (Gaskell & Dumay, 2003; Storkel, Armbruster, & Hogan, 2006). Thus, dense 

phonological neighborhoods with numerous words connected via the one-segment distance can 

exert a pull-effect on new words that share phonological features with these neighborhoods. In 

fact, there are indications that clusters of phonologically related words constitute particularly 

strong attraction points for new words (Stamer & Vitevitch, 2012; Storkel et al., 2006). While 

adult word learning seems to be facilitated by high-density neighborhoods, it is impaired when 

target words reside in sparse neighborhoods (Storkel et al., 2006). A phonological homogeneity 

bias is evident here that essentially skews the learner’s perceptions and word memory in a way 

that favors larger clusters of phonologically similar words. While the majority of word learning 

research has focussed on first languages (or ‘L1’), phonologically guided word learning has 

also been demonstrated in second language (‘L2’) learning (e.g., Bialystok, 2010; 
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Kaushanskaya, Yoo, & Van Hecke, 2013; Leach & Samuel, 2007; Smits, Sandra, Martensen, 

& Dijkstra, 2009; Stamer & Vitevitch, 2012; Yates, 2013), and new L2 words that are 

phonologically similar to many words that are already in a learner’s L2 vocabulary will be 

learned faster and more accurately (Dijkstra, Miwa, Brummelhuis, Sappelli, & Baayen, 2010). 

Vice versa, new words entering sparse phonological neighborhoods in a learner’s vocabulary 

are more difficult to acquire and retain. The phonological similarity bias in learning is not 

restricted to one language but operates across different languages, as evidenced by parallel 

activation of L1 phonological forms when L2 is being processed (Broersma & Cutler, 2008). 

Phonologically similar L1 and L2 words are frequently co-activated, even when their activation 

is irrelevant to the task (Carrasco-Ortiz, Midgley, & Frenck-Mestre, 2012; Schulpen, Dijkstra, 

Schriefers, & Hasper, 2003). Third language (‘L3’) studies have yielded similar results, too. 

L3 words tend to activate words from the first and second languages of speakers (Van Hell & 

Dijkstra, 2002), which suggests that similarity in word forms across languages can provide 

benefits for lexical processing in L3 learners (Mulík, Carrasco-Ortiz, & Amengual, 2018). 

While co-activation between L3 and L1 lexemes is commonly observed, that between L3 and 

L2 seems to be more dependent on the proficiency level of the learner (Mulík et al., 2018), and 

this has implications for phonological pull-effects during word learning: higher L2 proficiency 

leads to increased L3 neighborhood effects. The typological and phonological relationship of 

L1, L2, and L3 languages certainly plays a role here. In addition, cross-language homophones 

(Carrasco-Ortiz et al., 2012; Haigh & Jared, 2007) and cognates (Dijkstra et al., 2010; Dijkstra, 

Timmermans, & Schriefers, 2000; Midgley, Holcomb, & Grainger, 2011; Van Heuven, 

Dijkstra, & Grainger, 1998) need to be considered as they may also be affected by phonological 

neighborhood effects.  

2.1.1.1. Quantifying phonological neighbors 

The one-segment phonological distance has proven to be a useful concept for psycholinguistics 

over the last few decades. However, more detailed quantifications of phonological neighbors 

have been introduced. One line of research focusses on locus-oriented notions of phonological 

neighborhoods that consider the serial order of phonemes in words, essentially proposing that 

not all phonemes are equal when it comes to phonological neighborhoods (e.g., Desroches, 

Newman, & Joanisse, 2009; Simmons & Magnuson, 2018). Typically, word-initial phonemes 

are attributed a higher conceptual importance in the sense that stronger neighborhood 

connections exist between words that share onsets (so-called “cohort effects), such as cat-cab; 

rhyme neighbors differing in the onset phoneme (for instance cat-hat) show weaker 
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competition effects (Simmons & Magnuson, 2018). In addition to locus of phoneme 

substitution/deletion/addition, another fact that has been suggested to be important in 

phonological neighborhood measures is the so-called P-metric that counts the phonemic 

possibilities that exist for a word to form neighbors (Vitevitch, 2007). As exemplified by 

Vitevitch (2007), the English word mop has three phoneme positions where neighbors can form 

(P=3), e.g., hop, map, mock. Its phonological neighbor word mob, however, has only two 

phoneme positions for neighborhood formation (P=2), e.g., rob, mock. Contrasting findings 

regarding the phonological neighborhood spread have been presented by the literature. Yates 

(2009) found that words where numerous phoneme positions can be changed to create 

neighbors were responded to faster, as opposed to words where only a limited number of 

phoneme positions are changeable. Vitevitch (2007), however, reported the opposite: words 

with smaller P-values were recognized faster, supporting activation-competition theories. 

Fewer neighbor formation possibilities mean less cognitive effort involved in processing 

words. Higher degrees of certainty in word recognition (in the case of a smaller P) correlates 

with faster recognition rates, whereas more uncertainty due to a higher rate of variation 

probability (in the case of a larger P) slows down processing. Even though these findings are 

not in agreement, they nonetheless show that the probability of phoneme overlap with 

neighbors (across different phonemic positions) has an effect on lexical access and potentially 

the structural organization of word forms in the mental lexicon.  

Although the Levenshtein distance is the dominant metric of phonological similarity, different 

ways of quantifying phonological similarity have been suggested, such as the 75% similarity 

grouping (Kapatsinski, 2006). Here, the overall number of segments per word factors into 

neighborhood similarity and phonological neighbors may differ by up to 25% from the target 

word. Perceived phonological similarity is tightly linked with the notion of phonological 

confusability and the question of how individual language users rate similarity of phonemes. 

Phonological confusability may encompass a wider range of word similarity relationships apart 

from the one-segment neighborhood, including the 75% metric or PLD20, which gives the 

mean number of steps that are required to transform a word into its 20 closest neighbors 

(Suarez, Tan, Yap, & Goh, 2011). Suarez and colleagues show that co-activation extends to 

the wider neighborhood separated by more than one phoneme distance (also see Chan & 

Vitevitch, 2009, for similar findings), even when no one-phoneme neighbors exist. What they 

proved was “neighborhood effects without neighbors” (Suarez et al., 2011: p. 605).  
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Phonological similarity can also be described across different phonetic dimensions, with 

feature-based analyses describing the degree of closeness of phonological neighbors (Bailey & 

Hahn, 2001). Voiced and unvoiced variants of a consonant are arguably much closer in 

phonological distance than a vowel and a consonant, as in bat-pat vs. ball-boy. Fricke, Baese-

Berk, and Goldrick (2016) point out that the English word cod has a multitude of neighbors 

(27 overall) with which it shares different phonological features: God differs only in the voicing 

parameter of the word-initial plosive, while the word-initial sibilant in sod represents a larger 

phonetic distance to the target word cod. The authors showed that position-specific similarity 

of segments can predict activation spreading in a phonological neighborhood (in their case, in 

word-initial position). These findings demonstrate that further quantification of phonological 

neighbors can inform lexical processes.  

Phonology-based models of lexical access tend to view the mental lexicon as “a collection of 

arbitrarily ordered phonological representations and the process of lexical retrieval as a special 

instance of pattern matching” (Chan & Vitevitch, 2009: p. 1934). The majority of current 

models of spoken word recognition share the assumption that phonological overlap is the 

central force driving competition and activation in lexical processing (Weber & Scharenborg, 

2012). Phonemic input activates all similar phonemes within a phonological neighborhood and 

words containing those shared phonemes compete for activation. The way phonological 

connections between words can further or impede activation spreading is a crucial question in 

theoretical models of lexical access.  

 

2.1.1.1.1. Spoken word recognition 

Models of spoken word recognition rely on various notions of phonological neighbors. One of 

the earliest models, the cohort model of lexical access, focusses on word-initial segments 

(Marslen-Wilson, 1987; Marslen-Wilson & Warren, 1994). The model predicts co-activation 

based on temporal phonemic overlap starting at the initial phoneme and proceeding with each 

successive, similar phoneme in a serial manner as speech unfolds in time. Here, phonological 

neighbors are those words sharing onset phonemes, and non-onset phonological neighbors are 

excluded as candidate words early on in chronological phonemic perception. This model is 

based on the assumption that the human brain, and thus the mental lexicon, operates according 

to the principle of greatest efficiency (Marslen-Wilson & Welsh, 1978). Initially, the range of 

lexical candidates is large (with activation of the first few phonemes) but it rapidly declines 

and produces mismatches which are then excluded from the candidate list. Word-initial 
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phonological cohorts are proposed to be co-activated and word choice is narrowed down with 

each new perceived phoneme. Upon hearing /s/, the whole cohort of s-initial words is activated 

and then gradually, with each further phoneme, different words are dismissed until the target 

word is retrieved. Words will be recognized once they have reached a unique identifying 

phoneme, for example the English phonemic string /fεb/ clearly identifies the only English 

word that begins with it, February (Weber & Scharenborg, 2012). After this initial access 

process, the integration stage checks for syntactic and semantic suitability of a word, removing 

contextual mismatches from the cohort. The special status of the word-initial phonological 

portion for lexical processing has been confirmed by numerous studies (e.g., Friedrich, Felder, 

Lahiri, & Eulitz, 2013; Treiman & Danis, 1988; Vitevitch, 2002a). High onset density or a high 

number of phonological neighbors sharing the same onset phoneme generally slows down 

lexical processing, as a large number of competitor words become activated (Vitevitch, 2002a). 

No such effect has been determined for rhyme neighbors, underscoring the phoneme-wise left-

to-right activation in speech recognition (Sevald & Dell, 1994; Vitevitch, 2002a). Competition 

remains high at word onsets but eases up as more phonemes are added to the word selection 

process (Chen & Mirman, 2014). In the cohort model, competition is restricted to phonemic 

access but it is not explicitly postulated that words in a cohort compete with one another. 

According to Marslen-Wilson (1987, p. 84), “the timing of word-recognition processes is not 

affected by the number of alternatives that need to be considered”, thus the speed and accuracy 

of word retrieval is not influenced by the number of competitors.  

The successor model Cohort II was devised to account for lexical frequency of words (high-

frequency words are recognized faster than low-frequency ones) and to consider phonological 

confusability, for instance nobility being activated by mobility (Marslen-Wilson, 1990; 

Marslen-Wilson, Brown, & Tyler, 1988). The cohort model has been challenged by findings 

that (English) listeners can rarely uniquely identify a word before offset (Bard, Shillcock, & 

Altmann, 1988; Luce, 1986). As a consequence, the notion of onset matching as the single 

most important mechanism of lexical access has been questioned (Weber & Scharenborg, 

2012).  

The cohort model defines the structure of the mental lexicon as one-segment distance neighbors 

in a right-unfolding way (see Figure 1). The structural organization predicted by the cohort 

theory would resemble a computerized feed-forward string matching, however it is not clear 

how different strings (=words) would be related to one another. Since cohorts are formed 
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depending on the initial phoneme, each word-initial phoneme in a language would constitute 

the first layer of cohort. Word-initial biphones, triphones, and so forth, all constitute their own 

cohorts. This means that each word is a member of different cohorts (e.g., bean belongs to the 

/b/-cohort, the /bi/-cohort, and the /bin/-cohort), and the probability of belonging to different 

cohorts increases with phonemic length.  
 

 
Figure 1: A network graph of word relationships as predicted by the cohort model. The structural organization 

of the mental lexicon links words together via temporally ordered segments, creating clusters of serially 
matched phonemic strings. Activation is shared in groups of overlapping phonemes. 

 

While the special role of word-initial phonological segments in speech processing is accepted 

by the majority of literature, other models of word recognition acknowledge a contribution of 

non-initial phonological segments to neighborhood formation. A famous activation-

competition model of spoken word recognition, the Neighborhood Activation Model (or NAM, 

Luce & Pisoni, 1998) and its derived connectionist instantiation PARSYN (Luce, Goldinger, 

Auer, & Vitevitch, 2000), posit that phonological co-activation spreads within a group of words 

that overlap in the majority but differ in a minimal number (N=1) of phonological segments. 

In the original NAM model, neighborhoods may be established through any segmental position 

in a word, and phonemic differences in neighborhood formation do not impact the strength of 

a neighborhood. An addendum to the model, however, recognizes different variations of 

acoustic-phonetic distances between phonological neighbors, and thus neighborhood strength. 

As Goldinger, Luce and Pisoni (1989) showed, phonetically close neighbors have an amplified 

effect on phonemic competition by inhibiting word recognition (see Gahl et al., 2012; 

Scarborough, 2013; Suarez et al., 2011, for similar findings). For instance, cap and cab are 

more influential neighbors and share more activation (and competition), as opposed to cab and 

fab.  
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In general, NAM assumes that competition arises between the co-activated lexical candidates 

from which the best-fitting word is then chosen for final selection. Since lexical selection is a 

competitive process, words with strengthened activation, resulting for instance from high 

frequency rates, facilitate word recognition (Frisch, 2011). The neighborhood probability 

equation follows 

p=(target * frequencyt) / (target * frequencyt)+( ∑(neighborsj * frequencyNj) 

Here, the activation level of the target word t, the sum of neighbor word probabilities 

(=neighborsj, i.e., the overall level of activity in the lexical neighborhood), and lexical 

frequency information are taken into account (Chan & Vitevitch, 2009; Luce & Pisoni, 1998). 

Low-density neighborhoods (i.e., words that have few neighbors) experience less competition 

and thus faster target word recognition rates, which leads to those words being responded to 

and recognized more quickly as opposed to words with a high number of neighbors. Numerous 

studies have confirmed the NAM predictions for word recognition, earning it its prominent 

place in spoken word recognition (e.g., Goh, Suarez, Yap, & Tan, 2009; Luce et al., 2000; 

Vitevitch, 2002c; Ziegler, Muneaux, & Grainger, 2003). Figure 2 schematizes neighborhood 

connectivity as outlined by NAM.  

 
Figure 2: Phonological neighborhood structure according to NAM; node size according to lexical frequency rate 
(larger nodes are more frequent words), links according to phonological distance (thicker links indicate closer 
distance, Downey, Sun, & Norquest, 2017). Graph constructed with Gephi using B2 learner data of the present 

study (see chapter 3 for details). 
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Luce and Pisoni (1998: p. 1) explicitly acknowledge a “structural organization of the lexicon” 

based on “similarity relations among the sound patterns of spoken words” but do not provide 

hints as to what (if any) larger structural design there might be beyond linking words in one-

segment neighborhoods. It is a logical assumption that each of the neighbors of way in Figure 

2 has its own neighborhood, with potential implications for further spreading of co-activation 

outside of the immediate neighborhood. Ultimately, a large number of words in a lexicon could 

be interlinked in one large web, however, NAM does not address this issue nor does that factor 

into the NAM account of activation spreading. The immediate, one-phoneme-distance 

neighborhood of a target word constitutes the central tenet of activation spreading in the model. 

Recognizing the crucial role of phonetic features in phonological neighborhoods, the TRACE 

model of speech recognition was developed, which posits that competitor words are activated 

that match any part of the speech input not by phonological segments but by features 

(McClelland & Elman, 1986). TRACE is a connectionist interactive-activation model with 

three layers: feature, phoneme, and word. Multidimensional features of phonemes serve as the 

input (e.g., frication, nasality, back vowel, front vowel), which are then channelled up to the 

next layer, the phoneme layer (see Strauss, Harris, & Magnuson, 2007, for an overview). 

Phonemes best matching the features level (e.g., frication: /s/, /f/) will be selected and 

activation will then be spread to the next layer, where the word will be selected. Words with 

higher activation levels then inhibit activation in other, non-matching words. Due to its focus 

on phonetic features rather than phonemes, TRACE can account for underspecification, 

phonological variation (e.g., dialects), and mispronunciation of target words (Mayor & 

Plunkett, 2009). Special weighting is assigned to higher frequency units in the model 

(Hannagan, Magnuson, & Grainger, 2013). TRACE predicts that phonemic activation becomes 

stronger over time and as a word receives more activation it will activate its phonemes more 

strongly. Differences in the time course of phoneme activation predict that activation of words 

overlapping in word-initial segments (i.e., onset neighbors) will occur earlier (Weber & 

Scharenborg, 2012), mirroring a crucial dynamic proposed by the cohort model.  

The structural organization of the mental lexicon that is assumed by TRACE is phonological 

feature sharing based on phonological detail. Phonological neighborhoods are established 

according to phonological features (e.g., nasality, frontness in vowels), link together words that 

are defined by a distance of more than one phonological segment, and may vary with acoustic-
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phonetic detail of a particular speaker (for instance, idiosyncratic phonological detail). Figure 

3 schematizes the phonological structure underlying the TRACE model.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: The three levels of processing elements in the TRACE model. Spreading activation indicated in light 
grey, inhibition indicated in dark grey. 

 

Phonological neighbors are defined differently in this model as compared to NAM and the 

cohort model, with the sharing of phonetic features rather than phonemes being the criterion. 

Thus, word pairs such as cat-bad become co-activated as neighboring lexical competitors 

(Hannagan et al., 2013). The implication for the organization of the mental lexicon is that 

phonological neighborhoods can potentially have a wider dimension, encompassing a greater 

range of sounds that share features.  

These classical models of spoken word recognition make different predictions about the spread 

of co-activation in the mental lexicon. Connectionist models, such as TRACE, propose 

inhibitory mechanisms between lexical representations. Due to the bottom-up phonemic 

activation, candidate words are able to inhibit each other depending on similarity of the input. 

Once the bottom-up activation coupled with the lateral inhibition focusses on a target word, it 

becomes the last activated candidate. According to NAM and the cohort model, activated 

candidate words do not interact at the lexical level but these models propose decision rules that 

determine which lexical entry received the most activation relative to the other activated 

candidate words. These models only make predictions about immediate phonological 

neighbors and how they influence and compete with one another. TRACE suggests a wider net 

of neighboring words going beyond the one-phonological-segment distance but does not make 

any predictions concerning activation spreading in neighbors of neighboring words. The larger 
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organizational design of all words contained in a lexicon and their relationships to one another 

via extended neighborhoods remains unaddressed by these models.  

2.1.1.1.2. Spoken word production 

A salient feature of phonological neighborhood effects is that they fulfil dual functions. In 

spoken word recognition, neighbors inhibit lexical processing. Spoken word production, on the 

other hand, is facilitated by neighbors (Chen & Mirman, 2012; Dell & Gordon, 2003). 

Explanations for this discrepancy can be found in models of speech processing, in particular 

interactive models where lexical and phonological levels of word recognition provide feedback 

to one another. This interaction is captured by Dell’s interactive two-step model of lexical 

access and retrieval (Dell, 1986; Dell, Schwartz, Martin, Saffran, & Gagnon, 1997) where 

lexical and phonological retrieval are distinct and ordered categories but interact through bi-

directional spreading of activation. This means that semantic information (semantic features) 

can influence phonological retrieval and phonological information can affect lexical retrieval 

(Dell, Martin, & Schwartz, 2007). In word production, the first step is lexical selection which 

maps the conceptual representation of a word to a lexical representation (often referred to as 

‘lemma’, Foygel & Dell, 2000). Phonological information is not required at this point (Levelt, 

Roelofs, & Meyer, 1999). Next, phonological encoding is initiated and the phonemes used for 

building the target word are retrieved. Phonological encoding describes the process of 

constructing the phonological form of a target token before articulatory gestures can be 

prepared in spoken word production (Caramazza, Costa, Miozzo, & Bi, 2001; Dell, 1986; 

Levelt et al., 1999). Phonological components (phonemes) of target words are sequentially 

activated after speakers have selected words (Oppermann, Jescheniak, & Schriefers, 2010), 

mostly independently of the whole word representation (O'Séaghdha & Frazer, 2014; Roelofs, 

2006). This phonological pre-activation (also referred to as phonological preparation, see Li, 

Wang, & Davis, 2017) is initiated at the start of the target word, and thus the onset phoneme(s) 

are attributed a crucial role in the process (Meyer, 1991; O’Séaghdha, Chen, & Chen, 2010). 

In word production, the initial semantic activation provides a baseline activation, which is then 

further boosted by activation of phonological neighbors. Word recognition, on the other hand, 

begins with the activation of phonological segments and boosts activation of all phonological 

neighbors, including the target word, and thus activation spreads more evenly within the 

phonological neighborhood and is less focussed on the target word. Competition for activation 

is greater in word recognition than in production, as suggested by the literature. The two-step 

model postulates separate modules for lexical and phonological detail that are linked via 
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interactive routes of information flow. Figure 4 shows the interactive-feedback model as 

proposed by Dell (1986).  

 
Figure 4: Interactive model of speech production. 

 

One unresolved question in speech production models concerns the flow of information from 

the semantic to the phonological domain and whether it can be characterized as discrete, 

cascading, or fully interactive (Schriefers & Vigliocco, 2015). This has direct implications for 

neighborhood activation. According to discrete serial models of lexical access, the target 

lemma and a set of semantically related other lemmas are initially activated. After exclusion of 

the non-target lemmas, phonological encoding of the target is initiated, and non-targets are not 

phonologically encoded (Levelt, 1999). In cascading models (e.g., Peterson & Savoy, 1998), 

the activated set of initial lemmas send some activation to phonological encoding before the 

final target lemma has been selected, thereby spreading phonological activation among 

competing lemmas. Interactive models (e.g., Dell, 1986) assume feedback spreading between 

the phonological and the lemma level, a process through which activation will be spread among 

competitor lemmas at the lemma stage, in addition to the phonological forms sending activation 

back to the lemmas and thus spreading co-activation among phonologically similar forms. 

There is some evidence that semantic competitors receive co-activation (as predicted by 

cascading and interactive models), for instance phonological activation has been shown to 

spread between near-synonyms like ‘couch’ and ‘sofa’ (Jescheniak & Schriefers, 1998; 

Peterson & Savoy, 1998) but others have pointed out that this may just be a special case of 

activation spreading under certain circumstances (Levelt, 1999; Schriefers & Vigliocco, 2015). 

The assumption of feedback from the phonological to the lemma level has been supported by 

the ‘lexical bias effect’, which refers to the fact that phonemic errors tend to lead to existing 

rather than non-words (Nooteboom, 2005). Feedback spreading from the level of the 
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phonological segments to the higher lemma level can explain this phenomenon, while discrete 

serial models would predict independence of phonological errors from an existing word.  

 

2.1.2. The “cauldron of lexical soup” 

The notion of phonological neighborhood is essential for any theory of speech production or 

perception, as the mental lexicon is known to be structured according to phonological 

similarity. While quantification and qualification of phonological neighbors may differ in 

classic psycholinguistic models, one-phoneme difference measurements with phonetic distance 

considerations are the predominant notions for which theories on lexical access allow 

predictions. Words constituting so-called minimal pairs that differ in one phoneme receive 

enough co-activation to arise as lexical competitors for target words. Further, phonetic 

closeness contributes as well and minimal pairs differing by fewer phonetic features share more 

co-activation. This logic concerning phonological neighborhood activation spreading is 

commonly applied in investigations of words and their immediate neighborhoods (such as in 

experimentation involving particular words) but is largely ignored in the larger context of how 

all words in a lexicon relate to one another. Due to their processing-oriented nature, the 

traditional lexical access models take into account only the nearest neighborhood of a word but 

disregard the larger structure linking different neighborhoods together, which may also have 

an effect on activation spreading, as evidenced by neighborhood effects without neighbors 

(Suarez et al., 2011).  

Although lexical access models of speech production and perception differ in terms of their 

basic architecture, they are united by the prediction that phonological pattern matching is the 

guiding principle. As Chan and Vitevitch (2009) put it, the mental lexicon is presumed to 

resemble a “cauldron of lexical soup” (p. 1944) where similar phonological forms compete for 

selection. This means that the lexical models are able to account for neighborhood density 

effects through virtue of phonological matching without explicitly investigating (or 

acknowledging) any non-arbitrary phonological structure underlying the collection of all words 

present in the mental lexicon. Psycholinguistic models have focussed on acquisition, 

recognition, and production of words, but the issue of how language-related information is 

represented in the mental lexicon, including the relationship that exists between the stored 

words, has received little research attention. Word memory itself is an issue separate from 
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(albeit intertwined with) the processing-centric bias in contemporary cognitive psychology 

(Vitevitch, 2021).  

2.1.3. Complex systems approach to the lexicon 

Multi-agent systems, consisting of numerous constituent parts, may give rise to collective 

behaviors at the holistic level of the entire system, which can be unpredictable from solely the 

individual constituent interactions (Siegenfeld & Bar-Yam, 2020). Such systems can be 

defined as complex systems (Boccara, 2010), and in contrast to reductionist modelling where 

the focus is on a part of a system or a small-sized model of it, the complex systems approach 

takes into account the dependencies, relationships, competitions, and other forms of 

interactions between local constituents, to which the emergence of a global behavior of a 

system is linked. A complex system is thus more than “the sum of its parts” (Kane & Higham, 

2015), as new behaviors appear when individual parts come together to form larger structures. 

Similarities to Chaos Theory exist (Rickles, Hawe, & Shiell, 2007), and complex (linguistic) 

systems may develop ways to self-organize, resulting in emergent principles on the 

macroscopic level (Hohenberger & Peltzer-Karpf, 2009).  

The mental lexicon has been described as a complex system (Siew, 2013; Vitevitch, 2008; 

Vitevitch, Chan, & Roodenrys, 2012). While the majority of studies of the mental lexicon has 

focussed on specific and localized lexical neighborhoods within a given lexicon (see section 

2.1.1.), Aitchison (2012: ch. 9) acknowledged that a larger structure of word relations beyond 

the immediate neighborhood must exist and refers to the mental lexicon in terms of a “gigantic 

multidimensional cobweb”. However, no further mentioning of the functional principles or 

structural organization underlying this gigantic web is made.  

An effort to understand a complex system entails the theoretical ability to model it, and network 

science has become a popular methodological approach applied to the description and analysis 

of complex systems (Turnbull et al., 2018). Applying the tools of networks science (or graph 

theory) to phonological connections between words in the mental lexicon permit the modelling 

of the organizational structure of lexical entries in the mental lexicon from a holistic, “top-

down” approach. This line of research has only just emerged but it has already been shown that 

phonological forms in the mental lexicon are organized in a specific, predictable way and that 

the structure of the organization – the network design – plays a role in lexical processing (e.g., 

Benham, Goffman, & Schweickert, 2018; Chan & Vitevitch, 2009; Lara-Martinez, Quintana-
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Obregon, Reyes-Manzano, Lopez-Rodriguez, & Guzman-Vargas, 2021; Levy et al., 2021; 

Neergaard, Luo, & Huang, 2019; Shoemark, Goldwater, Kirby, & Sarkar, 2016; Siew & 

Vitevitch, 2016, 2020a; Turnbull, 2021; Turnbull & Peperkamp, 2017; Vitevitch, 2008, 2021). 

Through network science, connectivity of words in a given lexicon can be modelled from a 

global perspective, patterns of interactions within and between lexical sub-groups can be 

correlated with emerging behaviors at the level of the lexicon, and fundamental principles 

underlying the organization (and constant re-organization through learning) of the system and 

its growth can be studied.  

 

2.2. Phonological networks 

Networks science (or graph theory) has been used in cognitive psychology for decades 

(Kauffman, 1993; van Hemmen & Schulten, 1995), and its utility for the study of linguistic 

processes in the human mind was recognized early on (Estes, 1975; Feather, 1971; for a review 

see Siew, Wulff, Beckage, & Kenett, 2019). With network science, the structure of dyadic 

relationships between entities can be modelled and the influence of the structure on cognitive 

processes (for instance, word retrieval) can be mathematically quantified (Castro & Siew, 

2020; Cong & Haitao, 2014). This is similar to connectionism, which investigates processing 

of information in human cognition and behavior from the viewpoint of large networks of 

interactive units (see Joanisse & McClelland, 2015). While connectionism models processes, 

such as memory categorization or pattern recognition, network theory models the relationships 

between cognitive units, such as words. The two approaches are largely distinct.  

In the network sciences, the main network-theoretical concepts are nodes (or vertices) and 

edges (or ties) and their relationship to one another is the essence of network connectivity. A 

basic assumption about networks is that the transmission of information can only occur 

between connected nodes. To which and to how many neighbors a node passes its information 

(or a portion of it) is restricted by the number of neighbors and the strength of the relationships 

between nodes (Wang et al., 2011). Describing the mental lexicon as a network of phonological 

word forms requires an understanding of how information (i.e., lexical activation) flows within 

networks and what role the structural properties of the different levels of network analyses 

(micro, meso, macro) play. 
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Studies of word relationships have long relied on graph theoretical architecture, even without 

explicitly acknowledging it. For instance, Quillian (1967) and Collins and Loftus (1975) 

constructed semantic-based representations of the mental lexicon that schematized words as 

nodes and the relationships between them as edges (see Figure 5). Collins and Loftus 

conceptualized word relationships as two-fold: semantic and phonological (referred to as 

“lexical” by the authors). Phonological word relationships were presumed to be organized 

along phonemic similarity, with phonemic properties specified according to their position in a 

word. Closeness of word relationships was expressed via edge length, with shorter length 

distances between two nodes indicating a closer semantic or phonological relationship.  

 

Figure 5: Semantic network, adapted from Collins and Loftus (1975). 

 

Starting in the late 2000s, network-theoretical approaches were beginning to be applied more 

widely in lexical research, and networks of phonological word forms slowly emerged 

(Gruenenfelder & Pisoni, 2009; Stella & Brede, 2015; Vitevitch, 2008). In such networks, 

nodes are words and in case of a phonological relationship between two words, an edge is 

placed between them. Most commonly, the relationship measure is the one-segment 

Levenshtein distance (see section 2.1.1.) and words are linked if they differ by one phoneme.  

Research on semantic and phonological networks has demonstrated that network-theoretical 

models of the mental pathways can predict word acquisition (Beckage & Colunga, 2016; 

Beckage, Smith, & Hills, 2011; Carlson, Sonderegger, & Bane, 2014; Hills, Maouene, 

Maouene, Sheya, & Smith, 2009b; Vitevitch & Castro, 2015), storage (De Deyne, Kenett, 

Anaki, Faust, & Navarro, 2017; Storkel, 2002; Vitevitch, 2008), and retrieval (De Deyne et al., 

2017; iCancho & Solé, 2001; Vitevitch & Castro, 2015). Beckage, Aguilar, and Colunga (2015) 

modeled lexical acquisition based on network theory and compared it to a different growth 

model based on an equal probability for each word to be learned (‘bag-of-words model’, see 
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Beckage et al., 2011), and they demonstrated superiority of the network growth model for word 

form (phonological) learning. The network science approach in studies on word learning has 

gained popularity recently, and the last few years have seen a rise of network-theoretical studies 

investigating phonological relationships in the mental lexicon. What follows now is an 

overview of the most crucial network measures, their application to phonological networks, 

and their meaning for psycholinguistic reality. This will be followed by mathematical 

modelling of those measures in phonological networks of English-as-a-second-language 

(‘ESL’) learners in chapter 3.  

2.2.1. Network connectivity 

Network measures can relate to different slices (or aspects) of a network. In macro analysis, 

the focus is on the whole network and its topology. Meso analysis investigates sub-groups of 

nodes or communities in a network, and micro analysis has as its focus the individual 

constituents (nodes).  

 

2.2.1.1. Micro-level centrality 

One way to understand network cohesion is to look at the role of individual nodes in it, and the 

location of nodes is generally referred to as centrality (Scott, 1991). Centrality is a crucial 

property of networks as it influences dynamical processes, such as activation spreading, 

synchronization, and information transmission between nodes. Many metrics have been 

suggested that quantify aspects of node centrality in networks (see, e.g. Rodriguez, 2019), and 

the ones that have known or potential implications for phonological networks are discussed 

below (for mathematical details see Barabási, 2016; Rodriguez, 2019; Wasserman & Faust, 

1994).  

 

2.2.1.1.1. Degree centrality 

This measure counts the number of links of a node and relates it proportionally to all other 

links in a network, and is equivalent to the notion of phonological neighbors in phonological 

networks. It can be calculated with the following equation 

CD(u)=∑v∈V∖{u} auv 

where N is the total number of nodes in the network, v represents a particular node, and u is 

the node for which degree is measured. If the two nodes are linked, the adjacency matrix value 
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auv=1. Degree centrality of a node is calculated by starting with 1 and adding values up to N. 

A node can potentially have a degree of up to N-1 if it is linked to all other nodes in a network. 

Degree distribution refers to the probability that a node has k links to other nodes (see Figure 

6 for a schematization).  

In weighted networks nodes are linked via different edge strengths, and the notion of degree 

centrality has been expanded to include the sum of all edge strengths between each node and 

its neighbors (Roberts, 1976). In phonological networks this can represent the 

phonological/phonetic distance between phonological neighbors (e.g., Fricke et al., 2016). 

Words with many phonologically close neighbors (e.g., bat: pat, bad, bag) show higher 

weighted degrees than neighboring words with greater phonological distance scores (e.g., fog: 

dog, fig, for). The equation for weighted degree is expressed as  

CD(u)=∑v∈V∖{u} wuv 

with w being the weighted adjacency matrix, in which wuv>1 if nodes u and v are linked, and 

the value representing the exact weight of the edge (see Opsahl, Agneessens, & Skvoretz, 

2010).  

2.2.1.1.2. Closeness centrality 

This measure accounts for the length of the shortest paths from a given node to all other nodes 

in a network and is a useful estimate of the speed of information flow through one node to all 

others (see Figure 6). Closeness of a node is defined as 

CCl(v)=1/ ∑w∈V dv,w 

where the distance matrix value dv,w represents the shortest path between nodes v and w, and 

the sum of path lengths from node v to all other nodes is accounted for. Closeness centrality 

scores range from 0 to 1, with 1 indicating that a node is close to all other nodes (Metcalf & 

Casey, 2016). While there are conceptual similarities to degree centrality, closeness centrality 

is a mathematically different measure and not correlated with degree centrality (Ko, Lee, & 

Park, 2008). In highly-connected networks, a large number of nodes may show similar 

closeness centralities, and the measure is thus best applied to sub-groups (or clusters) of nodes 

in a network (Salavati, Abdollahpouri, & Manbari, 2019). Eccentricity is the opposite of 

closeness centrality and measures the maximum distance of a node from any other node in the 
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network; the maximum eccentricity value is the graph diameter. Phonological word forms that 

show high closeness centrality can potentially spread co-activation more efficiently in 

phonological networks, as they show short path distances to numerous other nodes. Some 

studies have reported an effect of closeness centrality on lexical processing (Goldstein & 

Vitevitch, 2017; Iyengar, Veni Madhavan, Zweig, & Natarajan, 2012) but the effects seem 

counterintuitive to standard lexical processing theories: Goldstein and Vitevitch (2017) found 

a recognition advantage for words with high closeness centrality. Contrary to the many-

neighbors-disadvantage postulated by models of word recognition (e.g., Vitevitch & 

Rodriguez, 2004), words that are close to many others in the lexicon were retrieved faster and 

more accurately in the study by Goldstein and Vitevitch (2017). The authors explain their 

findings by hypothesizing an accumulation of partial activation benefits over time that 

strengthens cognitive representations of central words with high closeness centrality scores, 

eventually leading to a lexical access advantage. Goldstein and Vitevitch (2017) hypothesize 

that an accrual of partial activation through activation of neighbors may take place over time 

as the lexicon ages. Specifically, they state that “this accrued partial activation can yield 

processing benefits in the future” (p. 8). A derived implication in the context of phonological 

network growth is that during the course of vocabulary build-up, words with high closeness 

centrality scores become strengthened, benefit from a lexical processing advantage, and play a 

more central role in network growth.  

 
Figure 6: Degree, closeness, betweenness, and eigenvector centralities in a network. 
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2.2.1.1.3. Betweenness centrality 

Betweenness measures the times a given node lies on the shortest path between other nodes; 

specifically, it measures the percentage of shortest paths that lead through a node (Goldbeck, 

2015; see Figure 6). Nodes of high betweenness centrality function as ‘bridges’ (Gerometta, 

2015) that link groups of nodes and they represent crucial points that govern the information 

flow in a network. The following equation yields betweenness scores  

CB(v)= ∑s≠v≠t (σst(v)/ σst) 

where σst stands for the total number of geodesic distances from node s to node t and σst(v) is 

the number of those paths that lead through v. Weighted networks take into account edge 

weights, and a node’s betweenness score in a weighted network is given by the sum of the 

weights of its adjacent edges 

CwB(i)=∑Nj=1 aijwij 

where aij and wij are adjacency and weight matrices between the nodes i and j. Here, a higher 

betweenness score is assigned when a node has many strong (high weight) edges. In 

phonological networks, some words occupy key positions of higher betweenness centrality. 

Previous research suggests that words in strategic key positions of a phonological network are 

strengthened by repeated co-activation (or partial activation) that they receive through 

activation of nearby words, and this results in lexical processing advantages (Vitevitch & 

Goldstein, 2014). Words with high betweenness centrality play an important role in the 

community structure of a network (i.e., subgrouping of nodes according to similarity, Siew, 

2013) and create cohesion between phonological subgroups in the network (Gerometta, 2015).  

2.2.1.1.4. Eigenvector centrality 

This centrality measure assigns nodes a score based on their influence in a network; this is 

achieved by taking into account the number of neighbors and their centrality in the network 

(Bonacich, 1972, 2007; see Figure 6). Highly-connected nodes (=high degree centrality) that 

are linked to other highly-connected nodes are deemed most influential in a network. Thus, this 

centrality measure is appropriate when it is assumed that the status of a node is a positive 

function of the status of its neighbors (Bonacich & Lloyd, 2015). There are a number of 

efficient but mathematically complicated algorithms to calculate eigenvalue and eigenvectors 
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for networks, incorporating features such as edge centrality (Xu, Feng, & Qi, 2021), different 

interaction patterns between nodes (Carreras, Miorandi, Canright, & Engo-Monsen, 2007), the 

number of interactions between nodes (Katz centrality: Katz, 1953), and link quality between 

nodes (PageRank: Page, Brin, Motwani, & Winograd, 1998). Generally, links with high-

scoring eigenvector centrality nodes will contribute more to the eigenvector centrality score of 

a particular node than links with low-scoring nodes, following the logic that not all neighbors 

are equal. The information that is available to a node is limited to what the neighbors pass on, 

and highly central neighbors possess more information. In phonological networks, high 

eigenvector centrality of a node could indicate more efficient activation spreading through 

highly-central node connections. Vitevitch et al. (2011) and Chan and Vitevitch (2009) suggest 

that lexical retrieval could be facilitated by eigencentrality-centered search algorithms (similar 

to what Griffiths, Steyvers, & Firl, 2007, described for semantic search).  

 

2.2.1.2. Assortativity by degree 

Another graph-theoretical concept that has been shown to have an effect on phonological 

networks is assortativity by degree (also known as ‘assortative mixing by degree’ or 

‘homophily’, see Peel, Delvenne, & Lambiotte, 2018). It is the extent to which nodes link with 

other nodes that have similar degrees, and it is calculated as a correlation between two node 

degrees. The most popular mathematical approach to assortativity by degree is Pearson’s 

assortativity coefficient, also known as degree correlation r (Newman, 2002a), where Pearson’s 

correlation coefficient is calculated for degree centrality of two linked nodes. Positively 

assorted networks show clustering of high-degree nodes, whereas negatively assorted networks 

(=disassortative networks) show a propensity for high-degree nodes to link up with low-degree 

nodes. Assortativity is generally high in phonological networks (r=0.56-0.76, in Arbesman et 

al., 2010; Vitevitch, 2008), which means that high-density neighborhoods tend to be linked to 

other high-density neighborhoods, whereas low-density neighborhoods tend to be linked to 

other low-density neighborhoods (see Gravino, Servedio, Barrat, & Loreto, 2012; Van 

Rensbergen, Storms, & De Deyne, 2015, for similar findings in semantic networks). Vitevitch 

(2008) explains that assortative mixing in phonological networks could represent advantages 

for lexical processing: if disassortative mixing was the rule, the distribution of highly connected 

nodes throughout the network would result in wide activation spreading among a large number 

of nodes. This means that a large number of lexical competitors would have to be processed 

for each word recognition event, leading to slower and more laborious speech recognition. 

Activation spreading and lexical competition remain more localized in a highly assortative 
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network, making lexical retrieval more efficient and quicker. The implications of high degree 

assortativity and lexical processing are twofold. Accumulation of phonological neighbors 

facilitates production and inhibits retrieval of words (Chen & Mirman, 2012; Dell & Gordon, 

2003; see section 2.1.). Speech perception being generally slowed by co-activation of 

numerous neighbors (Luce & Pisoni, 1998; McClelland & Rogers, 2003; Vitevitch & Luce, 

2016), Arbesman et al. (2010) argue that low rates of degree assortativity in phonological 

networks strengthen lexical representations and reduce retrieval errors. Inversely, high 

assortativity in phonological networks could indicate a lexical organization that favors 

production processes.  

Assortativity also has implications for network failure, and networks with high positive 

assortative mixing are not easily disrupted by targeted removal of high-degree nodes (Newman, 

2002a, see section 4.2.2. for a discussion of network robustness). If one highly connected word 

is lost in an assortative network, only a small impact on the overall connectivity and activation 

spreading patterns within a network is measurable (McClelland, Rumelhart, & Hinton, 1986). 

If one highly connected node is lost in a disassortative network, major implications arise for 

overall connectivity, with network break-down as a likely outcome (Newman, 2002a). This 

prediction was confirmed in a network study on misperceived words, so-called “slip of the ear” 

errors, in American English. Vitevitch, Chan, and Goldstein (2014) found a correlation 

between neighborhood density/degree of words that are produced by speakers and those 

misheard by listeners. The fact that the misheard word and the correct word were from similar 

assortative neighborhoods indicate that speech recognition utilizes assortative patterns in a 

phonological neighborhood. 

 

2.2.1.3. Macro-level analysis 

Macro analyses of networks traditionally deal with a range of graph theoretical constructs, 

including the giant component, islands, and singleton nodes or hermits (Barabási, 2016). Of 

significant interest in network science is the giant component, which is the largest connected 

portion of a network (see Figure 6) that allows each node to reach any other node by “traversing 

a suitable path of intermediate collaborators” (Newman, 2004, p. 5202). The size of the giant 

component determines the geodesic (=shortest) distance between two random nodes (Barabási 

& Albert, 1999), and provides information about the topological make-up of a network. Giant 

component formation is not necessarily related to the number of nodes in a network, but small 

networks may have large giant components. Assortative mixing has implications for giant 

component growth: positive assortative mixing by degree may result in the giant component 



 38 

gaining in size over time, as high-degree nodes are linked to other high-degree nodes (Newman, 

2002a). Disassortative mixing by degree, on the other hand, may lead to the dynamic of high-

degree nodes tending not to join the giant component, maintaining instead as a small proportion 

of the network. 

Islands, or “lexical islands” in language networks, are smaller, linked components that are not 

connected to the giant component (Arbesman, Strogatz, & Vitevitch, 2010). Singleton nodes, 

or “lexical hermits”, are isolated nodes with no connections. Figure 7 shows the macro level 

network components of the A2 learner network (see Appendix A for further graphs).  

 

Figure 7: The giant component of the A2 learner network of the present study at the center, surrounded by 
lexical islands and singleton words (=grey dots). Yifan-Hu visualization in Gephi. 

 

The beta index (β) is a simple connectivity measure of the ratio of edges to vertices within a 

network (Arbesman et al., 2010). It is expressed by the relationship of the number of edges (e) 

over the number or nodes (v), thus β =e/v, and is a good indicator of network efficiency 

(Linehan, Gross, & Finn, 1995). Beta values of >1 signify more complex levels of connectivity 

(Haggett & Chorley, 1972), as opposed to β=1 (=circular connectivity) or β<1 (tree-like 

dendogrammatic network). An efficient network with high β links a large number of nodes 

together, minimizing average path lengths and geodesic distance. In addition to a high β index, 

an efficient network where nodes can easily link to one another and exchange or spread 

information is also characterized by short path lengths between nodes and a small network 

diameter, defined as the longest path of the shortest paths across a network (Latora & 
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Marchiori, 2001). The mean path length (ℓ) is the average of all path lengths in a network and 

estimated as  

ℓ = 1/[N(N-1] ∑ i≠j∈V dij 

where N is the number of nodes in a network and dij denotes the shortest distance between 

nodes i and j (see Watts & Strogatz, 1998). The network diameter δ is found by calculating all 

the shortest paths between all nodes following the equation 

δ = max{s(i, j)}ij 

with s(i,j) being the number of edges in the shortest path from node i to node j. The longest of 

all paths is then chosen as the network diameter.  

In phonological networks, path length and diameter of the giant component are crucial 

measures of how densely words are crowded in phonological space in the lexicon. Word are 

linked beyond the immediate neighborhood and even distant words, connected to a target via 

multiple paths, can become lexical competitors. Vitevitch, Goldstein, and Johnson (2016) 

showed that phonological associations more frequently contained words from the distant 

neighborhood when the target word had a sparse neighborhood (low-degree target word). Here, 

activation was suggested to spread out from the immediate neighborhood, with only few near 

neighbors containing the activation diffusion close to the target word. In semantic word 

processing, different effects of near and distant semantic neighbors on a target word have been 

suggested, with near neighbors exerting an inhibitory effect but distant neighbors exerting a 

facilitative effect on semantic processing (Mirman & Magnuson, 2008). The authors explain 

this as a competition effect, where semantically similar words (=near neighbors) heighten 

competition, while distant neighbors create a graviational gradient that helps identify the 

correct “attractor” (=target word). The authors argue that this dynamic should also apply to 

phonological processing.  

Many networks show a tendency to form links between neighboring nodes, a process called 

clustering. Node clustering is quantified by the clustering coefficient (CC) and calculated using 

the equation 
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CC = 2en/(kn(kn-1)) 

with kn being the number of neighbors per node (n) and en the number of connected pairs 

between all neighbors (Watts & Strogatz, 1998). Hence, CC=0 if none of the neighbors of a 

node are linked, and CC=1 if all are. In probabilistic terms, the clustering coefficient expresses 

the likelihood of a connection between two arbitrary neighbors of a node. Clustering 

coefficients in phonological networks assess the number of phonological neighbors of a target 

word that are also neighbors of one another (Goldstein & Vitevitch, 2014). Words with low 

clustering coefficients (i.e., low-C words) were found to be recognized faster and more 

accurately in spoken word recognition (Chan & Vitevitch, 2009; Yates, 2013), findings that 

mirror neighborhood density and word recognition (e.g., Luce & Pisoni, 1998; Vitevitch & 

Rodriguez, 2004). Neighborhood density and the clustering coefficient are different measures, 

with neighborhood density accounting for the number of neighbors and the clustering 

coefficient accounting for neighborhood connections between neighbors. The two measures 

are generally not correlated (Chan & Vitevitch, 2009; Yates, 2013). In the realm of word 

production, the clustering coefficient behaved differently compared to neighborhood density, 

and it was shown that low-C words are produced faster and more accurately (Chan & Vitevitch, 

2010). High clustering coefficients of phonological neighborhoods seem to interfere with 

lexical retrieval and production, a finding potentially linked to the diffusion of activation across 

a lexical network (see more on the activation diffusion theory in section 2.3.). In terms of 

language acquisition, clustering coefficients have been shown to be indicative in children 

acquiring the semantics of their first language: normally developing children show higher 

clustering coefficients in their semantic networks than those delayed in their semantic 

development (Beckage et al., 2011). 

A macro-level network measure closely related to the clustering coefficient is transitivity, the 

probability of adjacent nodes being connected (Luce & Perry, 1949; Newman, Strogatz, & 

Watts, 2002). Values are bounded between zero and one, with high values indicating good 

transitivity. While conceptually similar, transitivity differs mathematically from the clustering 

coefficient and typically leads to different values (Schank & Wagner, 2005). Specifically, the 

consideration of triangles (or triads) of nodes constitutes a crucial difference in the two 

measures. Triads are subgraphs between three nodes in a graph, which can all be linked to one 

another (the triangle), not linked at all (the null triad), or show some links (e.g., one-edge-

subgraph). The clustering coefficient takes into account the ratio of the number of triangles of 
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a node in relation to the number of potential triangles that could involve that node, whereas 

transitivity accounts for the total number of triangles in a network divided by the total number 

of triads (Estrada, 2016). A transitive triad is a group of three nodes that are completely 

interconnected; an intransitive triad may only have two edges. The transitivity equation follows 

T=3t/P2 

where t represents the triangles in a network and  

P2 =∑Ni=1 ki(ki – 1)/2  (see Wasserman & Faust, 1994) 

Network transitivity is a related measure to the clustering coefficient and frequently used in 

undirected graphs (Newman et al., 2002), however the two can yield different results (see 

Schank & Wagner, 2005, for a mathematical description). Both measures have been calculated 

in studies on phonological networks (Arbesman et al., 2010; Chan & Vitevitch, 2009). In the 

present study, global transitivity was calculated to serve as an indicator of network connectivity 

(the probability of adjacent nodes to be connected) across the whole network, while clustering 

coefficients were calculated for each individual node, estimating the interconnectedness of a 

node’s immediate neighborhood.  

Networks that are characterized by short average path lengths and high clustering coefficients 

or transitivity are known as small-world networks (Watts & Strogatz, 1998). Such networks 

show exceptionally dense connectivity patterns, which enable fast and efficient information 

propagation (see Figures 8a and 8b). The small-world coefficient σ proposed by Humphries 

and Gurney (2008) compares the ratio of network transitivity and path length to their 

equivalents in a random network. The conditions for a small-world network are defined as 

C≫Crand and L≈Lrand, which results in σ>1.  
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7a                                                                                                   7b  

 
Figure 8: Scale-free (a) and small-world (b) networks (constructed with R package “igraph”, functions 

“barabasi.game”, “watts.strogatz.game”). 

 

Phonological networks display small-world structuring, with ensuing rapid, accurate, and 

robust lexical processing (Gerometta, 2015; Vitevitch, 2008). Small world structuring is 

important for lexical retrieval and phonological networks structured in that way are optimally 

designed for rapid and robust lexical retrieval processes (Goldstein & Vitevitch, 2014). In a 

small-world phonological network, the extreme inter-connectedness of phonological neighbors 

and the short distances that connect all words could mean that phonological activation spreads 

more widely and potentially encompasses neighboring neighborhoods. As a target word 

becomes activated, and neighbors become co-activated, their neighbors may also receive some 

of the co-activation, potentially bouncing activation back and forth in the tightly connected 

network. Figure 9 schematizes this activation diffusion in a small-world phonological network.  

 

 
 

Figure 9: Lexical activation diffusion in a small-world phonological network. 

 

Scale-Free Network Small-World Network
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There is some debate over the concept of small-worldness in phonological networks. 

Kapatsinski (2006) argues that small-worldness and/or short average path lengths are not 

required for efficient lexical retrieval, as lexical search is generally restricted to small localized 

neighborhoods that share sublexical similarity features, with short path lengths across the giant 

component or the overall network playing a minor role.  

 

2.2.1.4. Meso-level analysis 

In addition to the macro and micro level analyses that are commonly performed on networks, 

another layer of mesoscopic dimension rests between the two. Here, the focus is on smaller 

sub-graphs embedded within the larger network, a natural tendency of nodes to cluster together 

in so-called communities (Ravasz & Barabási, 2003; see Figure 10). Communities are sub-

groups of nodes in a network and can play an important role for network structure (Barabási, 

2016). They can partition a complex network into smaller, more interpretable parts and reveal 

coarse-grained network interactions and relations (Hoffmann, Peel, Lambiotte, & Jones, 2020).  

 

 
Figure 10: Three communities in a simple network. 

 

In graph theoretical terms, all nodes of a community must be linked to one another or be able 

to be reached through other nodes of the community. In addition, nodes belonging to a 

community show a higher probability of being linked to other nodes of that community than to 

nodes outside of the community (Porter, Onnela, & Mucha, 2009). Nodes of high betweenness 

centrality tend to play an important role in community formation, as they link the different sub-

groups together. There are various methods for community detection, including modularity 

(Newman & Girvan, 2004). The starting point here is maximization of difference between 

actual number and expected number of edges in a community, which needs to be optimized at 
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a later point. One of the most popular optimization methods is the so-called Louvain algorithm 

(Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) and it has proven useful in community 

detection in phonological networks (Siew, 2013). A modularity value Q quantifies the density 

of links within communities as compared to the density of links between communities 

(Newman, 2006). It is mathematically defined as  

Q=∑ki=1 (eii – a2i) 

with eii representing the probability that edge e is in module i, and a2i representing the 

probability that a random edge would be classified into module i. Q ranges from -1 to 1. A high 

Q value close to 1 indicates that more edges are found within a module than would be expected 

by chance (Rosvall, Delvenne, Schaub, & Lambiotte, 2017) and is a good indicator that 

community structure is well optimized within a network. The Louvain method (a so-called 

greedy heuristic, Blondel et al., 2008) first puts each node in its own cluster and then repeatedly 

merges two clusters that increase modularity by the largest amount. The process ends when all 

merges lead to reduction of modularity (or Q).  

The only study of communities in phonological networks (Siew, 2013) demonstrated that 

community size can predict various lexical characteristics of words in the lexicon of American 

English first-language users. Large communities house phonemically shorter and more 

frequent words, show higher phonological neighborhood density (i.e., node degree), and are 

acquired relatively early during childhood language acquisition (see Siew, 2013). This has 

implications for language learning/acquisition: the early stages of language learning may be 

geared toward building robust communities as a foundation for lexical growth in the future. In 

addition, community structure in phonological networks is suggested to influence the flow of 

lexical activation among neighboring words and communities: communities can better contain 

activation, thereby limiting the phonological search space and lexical competition (Siew, 

2013). If activation remains within a community with minimal spill-out, each word within the 

community receives a larger share of the activation, while at the same time keeping competitor 

words out of the activation loop. Community formation could play an important role in 

activation-competition restriction and optimizing lexical retrieval to high efficiency. There is 

undoubtedly great utility of the network community concept for phonological networks of 

second language learners in terms of both learning trajectory and lexical retrieval efficiency in 

the mental lexicon.  
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2.3. Diffusion of lexical activation 

Diffusion theory (or diffusion dynamics) is the analysis of how an innovation or a bit of 

information spreads through an interconnected network, and different diffusion models have 

been proposed in the network literature (Dearing, 2008; Gomez-Rodriguez, Leskovec, & 

Krause, 2012; Ren, Yang, Yang, Xu, & Yang, 2012; Rogers, 2003; Zhang & Gan, 2018). 

Diffusion processes typically consist of three components: the population where they unfold, 

the mechanisms governing their evolution and development, and the content of the diffusion 

(Milli, Rossetti, Pedreschi, & Giannotti, 2018). There are two main branches of diffusion 

modelling, characterized by different predictions for overall network behavior: (1) purposeful 

information spreading and (2) non-selective information spreading (Wang et al., 2011). In 

human social networks, information spreading tends to be purposeful, as not every person will 

pass on information to all of the people with whom they interact. Such selective spread of 

information to specific individuals is complex to model and various factors need to be 

accounted for that can explain people’s motivations to share information with select others 

(see, e.g., Alexy, George, & Salter, 2013). Models of non-selective spreading, on the other 

hand, follow the simple rule that each node will potentially infect all of its neighboring nodes 

(e.g., Keeling & Eames, 2005). Generally, a number of factors can play a role in spreading 

patterns but nodes do not generally possess the ability to deny the transmission of information 

to another node upon interaction. While non-selective network propagation models stem from 

viral spreading models (including computer viruses, Kephart & White, 1991), there are crucial 

differences to activation spreading in phonological networks. In viral spreading, connected 

social agents or computers do not always transmit the virus: if a person does not meet their 

friends, they cannot infect them; if a computer is equipped with an anti-virus software, they 

may prevent being infected by a connected machine. In phonological networks, however, 

shared phonemes will always become co-activated by neighboring words upon lexical 

access/retrieval and production. There is no (known) property of segments or words that may 

prevent co-activation of shared phonemes under particular circumstances analogous to 

purposeful spreading in social networks. There is also no mechanism that could make a 

neighboring node resistant to activation reception. Thus, activation of phonological word forms 

will always reliably lead to co-activation of shared phonemes with neighbors in a phonological 

network.  
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Two categories of virus propagation models are commonly recognized: homogeneous and 

heterogeneous models. In homogeneous networks, all nodes are fully interconnected and 

viruses can be propagated without dependence on network typology (Zhu & Cen, 2017). 

Heterogeneous networks are not fully interconnected and their typological make-up plays an 

important role for determining how viral infection can spread between nodes (Kjaergaard, 

Brander, & Poulsen, 2010): not all nodes can reach all other nodes and viruses can remain 

localized to specific parts of the network. Phonological networks can certainly be characterized 

as heterogeneous: information from islands or singleton nodes cannot spread to the giant 

component.  

A number of network-relevant measures have been implicated in activation spreading in 

phonological networks, chief among them the overall network typology. The sizes of the giant 

component, islands, and the ratio of singleton nodes have paramount influence on the ability 

of individual nodes to exchange activation. Larger giant components mean more (and 

potentially more wide-spread, see below discussion on clustering coefficient) diffusion of 

activation, encompassing a larger array of words (Siew & Vitevitch, 2016). If a network 

contains many small islands and/or unconnected singleton nodes, activation will be diffused 

only minimally. In terms of lexical processing, the latter scenario means less lexical 

competition as there are fewer co-activated words. This can have great lexical retrieval benefits 

(Siew & Vitevitch, 2016). Clustering coefficients of network parts or whole networks (small-

worldness) also have crucial impact on activation diffusion. Networks with low clustering 

coefficients generally show wider spread of information because there are fewer densely (or 

exclusively) interconnected regions of the network. In contrast, networks with high clustering 

coefficients will restrict information transmission to the interconnected regions, which are in 

turn less strongly linked to other regions of the network (Naug, 2008; Newman, 2003a). 

Individual network neighborhoods can also have activation-restricting or activation-

propagating features. Figure 11 shows how activation can be localized to singleton nodes or 

less densely connected neighborhoods, and how it can be propagated by a highly 

interconnected neighborhood.  
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Figure 11: Activation-restricting network parts (a, b) are smaller, less-connected entities. Activation-

propagating network parts (c) are larger, interconnected entities. 

 

An activation diffusion theory for phonological networks was proposed by Chan and Vitevitch 

(2009) and further elaborated on by Vitevitch and colleagues (2011). Activation starts with a 

node and spreads along phonological similarity paths to neighboring words, from which it is 

passed on further to neighbors of neighbors. Some of the activation spreads back to the 

originally activated node, which is then given an additional activation boost. Over time, 

activation keeps building up in a specific node, which is then retrieved as the target node. The 

more interconnected the neighbors are (such as in Figure 11c), the more activation bounces 

back and forth in the neighborhoods. The “badge” neighborhood displayed in Figure 11c is 

highly interconnected and characterized by a high clustering coefficient (see Chan & Vitevitch, 

2009). Here, activation is spread widely among the neighboring words, making it more difficult 

for listeners to hone in on the target word among the lexical competitors. In the case of the 

neighborhood shown in Figure 11b, activation of “firm” spreads to “farm”, and from there 

some of it goes back to “firm” and some spreads further to “far”. The overall portion of the 

activation that “firm” receives is much larger compared to any word in the 11c neighborhood, 

making lexical retrieval faster and more efficient.  
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The diffusion model has direct implications for lexical processing of words residing in different 

parts of the phonological network. Words in the giant component are hypothesized to be more 

laborious to retrieve, due to the wider activation spreading through the greater neighborhood. 

As shown by Siew and Vitevitch (2016) in their study of lexical retrieval in relation to 

phonological network partitioning, words in lexical islands and singleton nodes are indeed 

easier to retrieve. When a node resides in the giant component, the activation diffuses out to a 

greater degree, with each node in the giant component receiving less share of the activation, 

rendering lexical retrieval a more difficult and time-consuming task (Siew & Vitevitch, 2016). 

A similar study by Vitevitch and Castro (2015) reports higher accuracy in picture naming of 

words in islands and even singleton words. Thus, lexical islands (and singleton words) possess 

a clear lexical retrieval advantage over giant component words (Siew & Vitevitch, 2016). 

Based on this, it would be expected that giant component size of a phonological network plays 

a role in speed and accuracy of lexical access. In addition, network diameter seems relevant: 

farther distances in the giant component could mean that activation ebbs faster, not reaching 

many distant neighbors. By contrast, if a giant component has a short diameter, activation 

diffusion could reach farther and potentially include many distant neighbors of the target word. 

The findings reported by Vitevitch and his colleagues (2015, 2016) are difficult to reconcile 

with psycholinguistic models of lexical processing, which would predict a processing 

advantage in the highly connected giant component that contains shorter and more frequent 

words (Siew & Vitevitch, 2016). Following the rationale that word length and frequency are 

correlated (Zipf’s law) and the known lexical processing benefits that frequent words entail 

(see, e.g., Brysbaert, Mandera, & Keuleers, 2017, for a review of the word frequency effect), 

it would be expected that giant component words are retrieved more efficiently. In addition, 

the larger share of co-activation that giant component words receive through phoneme-sharing 

should lead to giant component words being processed more rapidly and accurately by 

listeners. The diffusion model of lexical activation spreading can help explain the discrepancy 

between expected and actual findings in terms of lexical access in giant component words, 

underscoring the need to integrate a network-scientific approach in theories of lexical access.  

Vitevitch and colleagues (2011) ran a computer-simulated version of their proposed lexical 

diffusion process and attributed an initial burst of activation to a target node, which was 

programmed to retain a proportional share of it and then pass on activation to the nearest 

neighbors. The portion of the activation that was passed on to the neighbors was equally split 

between all neighbors, which in turn gave off activation to their own neighbors (=neighbors of 
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neighbors of target node), all the while retaining a portion of the activation. This simple model 

of activation diffusion was able to mimic lexical retrieval delays for highly connected words, 

as observed by Siew and Vitevitch (2016). Siew (2019) created a simulation model for the 

spreading pattern modelled after Vitevitch et al. (2011) and was able reproduce the exact 

results. While the activation diffusion model is preliminary and based on 24 mini networks 

(Vitevitch et al., 2011), it nonetheless presents an intriguing view of lexical processing being 

potentially analogous to diffusion dynamics. One important caveat concerns the distance 

between the phonological neighbors and the fact that some neighbors are more closely related 

than others. Ergo, activation diffusion should take into account the phonological or phonetic 

distance between phonological neighborhoods. This is also acknowledged by Vitevitch and 

colleagues (2011).  

Figure 12 illustrates how lexical activation mediated by phonological distances can alter 

diffusion dynamics in a network. Edge numbers indicate similarity scores between 

phonological neighbors based on a feature-weighted distance measurement for comparative 

linguistics developed by Kondrak (2000) and Downey et al. (2008). Similarity scores range 

from 0 (=no similarity) to 100 (=identical) [see section 3.1.1. for more details on the similarity 

computations].  

 

Figure 12: Phonological neighborhoods of “a” (left) and “ache” (right) with phonological distance 
measurements. Constructed from the B2 learner network of the present study. 
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Even though the sum of all phonological distances is relatively equal in the two neighborhoods 

shown in Figure 11 (“ache”=1228, mean=73, “a”=1239, mean=68), the “ache” neighborhood 

is characterized by a larger number of close relationships between words. In the “ache” 

neighborhood, nine words have phonological distances of >79, while in the “a” neighborhood, 

only five words have such a close phonological distance. Conversely, the “a”-neighborhood 

houses a higher number of words which are phonologically more distant to the target word 

(N=13), while the “ache”-neighborhood has fewer of those words (N=7). According to the 

current account of the diffusion framework for phonological processing by Vitevitch and 

colleagues (2011), activation diffuses similarly through both neighborhoods and is essentially 

only restricted by the number of neighbors there are (i.e., degree per node), which is quite 

similar in the two neighborhoods (k”a”=18, k”ache”=16). However, it is reasonable to assume 

that phonologically closer neighbors share a larger portion of the overall activation or, at the 

very least, activation spreads faster through phonologically closer neighbors. This would 

naturally result in modified diffusion patterns from what was outlined by Vitevitch and 

colleagues (2011). For instance, more activation would spread from “ache” to “a” than vice 

versa, since “ache” passes on more activation to “eight”, which then in turn passes on a smaller 

portion of that to “a”. Such fine-grained activation patterns accounting for phonological 

distances can contribute to the diffusion hypothesis of phonological networks.  

Vitevitch and colleagues (2011) identified a number of network measures that can serve as 

predictors for activation spreading: degree, clustering coefficient, and network density. Words 

with low degree (=few neighbors) and low clustering coefficients in their immediate 

neighborhood received the largest proportion of overall activation in their neighborhood faster 

than words with many neighbors and high clustering coefficients in their neighborhood. In 

addition, denser networks with more interconnected neighborhoods diffused activation in a 

way that target word identification (via the largest share of activation accrual in the simulation) 

was impeded. The authors suggest that their model of activation spreading can account for the 

observed phenomena in phonological network connectivity and lexical access that have been 

reported by Chan and Vitevitch (2009).  

In the diffusion model of phonological activation spreading, activation “spreads unimpeded 

between connected nodes” (Vitevitch et al., 2011: p. 11) and does not decay over time. This, 

however, could lead to what has been referred to as “heat death problem” (Berg & Schade, 

1992), an overactivation of too many (irrelevant) words leading to inefficient processing. 
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Memory decays with time and node activation levels may too. The initial burst of activation in 

a phonological neighborhood may not be fully retained until the activation back-and-forth in 

the neighborhood is finished. A target node must keep the largest share of the activation to be 

selected as the lexical candidate, and accrual of activation will be impeded by activation decay. 

A spreading activation model by Bock and Levelt (1994) proposes a similar procedure but with 

activation decay: an activation signals spreads through the mental lexicon along associations 

(in semantic and phonological aspects), activation bounces back between associated words and 

finally focusses on the target word. In addition, inhibitory connections may be present 

(Baronchelli, iCancho, Pastor-Satorras, Chater, & Christiansen, 2013; Dóczi, 2019). Most 

network diffusion theories incorporate a time component, which predicts activation 

transmission lessening over time (Liu & Kuan, 2016; Rogers, 2003).  

Recent research has shown that network science can be useful to gain knowledge on lexical 

processing by being able to go beyond the localized measure of neighborhood density and 

describe the phonological word form lexicon from a global perspective (Siew & Vitevitch, 

2016). As demonstrated by the lexical activation diffusion hypothesis, the lexical activation of 

a target word is not only dependent on its immediate neighborhood but the larger interlinked 

parts of which the neighborhood is a member. The embedding of phonological neighborhoods 

within a larger network structure has opened new research avenues that may potentially explain 

some of the discrepancies in studies on phonological neighborhood density from the past. For 

instance, neighborhood density in Spanish and Russian was shown to have the opposite effect 

from what is known for English, and Spanish and Russian words in dense phonological 

neighborhoods impair word production but facilitate recognition (Arutiunian & Lopukhina, 

2020; Vitevitch & Stamer, 2006; also see, e.g., Neergaard, Britton, & Huang, 2019; Sadat, 

Martin, Costa, & Alario, 2014; Vitevitch & Rodriguez, 2004, for conflicting results on 

phonological neighborhood density in relation to lexical retrieval/production in various 

languages). Future studies may show that predictions arising from the global rather than 

localized network view of the different lexica may be able to resolve this issue and find 

common linguistic universals in relation to neighborhood characteristics and lexical 

processing.  

A largely unexplored avenue in the linguistic network sciences is the question of how second 

language learners construct and grow their networks. A small number of studies have explored 

semantic and syntactic word associations in learners of different languages, where network 



 52 

graphs were drawn based on linked words as elicited in experimental settings with first- and 

second-language users of French (Wilks & Meara, 2002; Wilks, Meara, & Wolter, 2005) and 

English (Jiang, Yu, & Liu, 2019; Schur, 2007; Tanaka & Takahashi, 2019). The results reported 

by Wilks and colleagues indicate higher semantic network density in L1 as compared to L2 

language users, which influences linguistic performance in word-association tasks. The authors 

argue for an inclusion of network theoretical notions in the study of second language word 

acquisition in the semantic domain. Phonological networks of word forms in the mental lexicon 

of second language learners have not been explored, and the network methodological approach 

can help expand our knowledge of how phonological associations are formed in the developing 

lexicon during second language learning. Since the utility of phonological networks for the 

study of the L1 lexicon has produced crucial new insights into lexical access and acquisition 

of word form associations, such knowledge on the L2 lexicon can potentially enhance our 

understanding of L2 lexical processes. The present study was designed to address the question 

of phonological network structure in English L2 learners through various proficiency levels, 

with a special focus on network growth algorithms and their application and utility for 

descriptions of vocabulary learning. The expected findings can illuminate how the English L2 

word form lexicon is structured and what implications the structure may have on lexical 

processing at different stages of language learning.  
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3. Learner networks 

3.1. Drawing phonological networks 

Phonological networks of language learner vocabulary data critically rely on accurate 

vocabulary lists that closely correspond to the words learners actually know at the investigated 

proficiency stages. Previous studies constructed phonological networks of L1 English by using 

psycholinguistic word knowledge dictionaries (e.g. Hoosier Mental Lexicon, see Nusbaum, 

Pisoni, & Davis, 1984) as their sample of English words known by adults (Siew, 2013; 

Vitevitch, 2021; Vitevitch & Castro, 2015). Alternatively, the Merriam-Webster Pocket 

Dictionary from 1964 has been used for American English phonological networks (Arbesman 

et al., 2010). It is understood that this approach is a less-than-perfect but relatively good 

approximation of an adult speaker’s vocabulary as not every speaker is familiar with 100% of 

the lexicon data but it can be expected that a majority of words are known on some (passive) 

level (Vitevitch, 2008). A number of studies have constructed phonological networks from 

language corpora, for instance the Spanish LEXESP database (Sebastián Gallés, Cuetos Vega, 

Carreiras Valiña, & Martí Antonin, 2000) or the CALLHOME Mandarin Chinese database of 

telephone transcriptions (Huang, Bian, Wu, & McLemore, 1997). A phonological network of 

aphasic speech was constructed with data retrieved from a dataset of aphasic naming tests 

(Philadelphia Naming Test) consisting of 31,600 utterances (Stella, 2020), and a recent study 

of semantic and phonological networks of English used a free-association word databank (see 

De Deyne, Navarro, Perfors, Brysbaert, & Storms, 2019; Levy et al., 2021) as its basis. 

Developmental studies of phonological networks in L1-learning children have utilized 
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different age of acquisition norms for different languages to obtain vocabulary lists per age 

group, for instance the MacArthur-Bates Communicative Development Inventory (Dale & 

Fenson, 1996), consisting of 680 words, (see Beckage et al., 2015). Siew and Vitevitch (2020a) 

used the age-of-acquisition norms reported by Kuperman and colleagues (2012) for English 

and Brysbaert and colleagues (2014) for Dutch to construct networks with close to 13,000 and 

15,000 words, respectively.  

3.1.1. Learner lexica 

Capturing the entire vocabulary of a specific proficiency stage of English L2 learners is 

difficult, as there is large variation between individual speakers. Usage-based learner corpora 

can hardly reflect the whole lexical knowledge of a learner, as only a limited number of all 

known words are elicited by the tasks of the corpus study (Gráf, 2017). This inherent corpus-

study problem equally applies to all types of linguistic corpus research but is particularly 

pronounced in a network study that relies on an accurate representation of vocabulary 

knowledge.  

The present study gathered data from the Cambridge Learner Corpus (CLC), the largest corpus 

of English as a foreign language that consists of a collection of written student exams compiled 

in collaboration with the Cambridge English Language Assessment. It contains language data 

from over 180,000 students from approximately 200 countries and 138 different first languages 

and was built to specifically describe English learners’ competencies at various stages of the 

language learning process (McEnery, Brezina, Gablasova, & Banerjee, 2019). Based on it, the 

English Vocabulary Profile (EVP) word lists, a freely available online resource on vocabulary 

knowledge of L2 English learners (https://www.englishprofile.org/wordlists) was developed, 

which was further supplemented with data from leading coursebooks, vocabulary books, and 

vocabulary lists for standardized examinations (Key English Test or KET, Preliminary English 

Test or PET). The EVP provides specific wordlists for each of the proficiency levels that are, 

for the most part, empirically based on the CLC, and thus a good approximation of what 

learners actually know. There are sub-categories for American and British English varieties.  

For the present study, the EVP word lists were used to estimate the vocabulary sizes of learners 

of English at the proficiency levels defined by the ‘Common European Framework of 

Reference for Languages’, ranging from A1 as the lowest to C2 as the highest level. In order 

to compile vocabulary lists for each of the six proficiency levels, the British English word lists 
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on the EVP website were filtered accordingly and vocabulary data for each level was copied 

onto a spread sheet. The EVP word lists only contain base words and thus manual sorting and 

correcting of the data was kept to a minimum. The following cleaning processes were applied: 

remove duplicate word forms that share meaning (e.g., “address”-noun, “address”-verb; note 

that semantically non-related words, such as“four/for” were kept in the data), dissolve phrases 

in constituent parts (e.g., “think”, “about”, “something”), remove abbreviations (e.g., “Dr”, 

“Mrs”). The only inflections left in the word lists were all forms of the verbs “be” and “have” 

(e.g., “is”, “had”). Clitics were dissolved and noted as separate words (e.g., “it’s” à “it”, “is”). 

Acronyms, such as “p.m.” or “CD” were left in the sample. Table 1 shows the resulting final 

vocabulary size of each proficiency level. 

Table 1: Vocabulary size estimation for each CEFR proficiency level based on the English Vocabulary Profile.  
A1 A2 B1 B2 C1 C2 
606 1483 2901 4621 5632 6714 

 

In a next step, phonological transcriptions of all words were extracted with the online 

Tophonetics tool (https://tophonetics.com/) set for British English. Approximately 10% of the 

transcriptions were compared to the transcriptions given by the EVP website and 100% 

correspondence was noted. Vowel length symbols and stress indicators were removed from the 

IPA transcriptions. This was followed by further transcribing all IPA-transcribed words in X-

SAMPA (Extended Speech Assessment Methods Phonetic Alphabet or machine-readable 

phonetic transcriptions) with the use of the online Phoneverter tool 

(http://phonetictools.altervista.org/phonverter/). This was necessary for neighbor 

determination (see below). Approximately 10% of the automatic X-SAMPA transcriptions 

were compared to manually coded transcriptions according to the SAMPA coding scheme 

developed by Wells (1997) and correspondence was 98%.  

A number of lexical variables were calculated for each word at each proficiency level. Lexical 

frequency rates of the words were extracted from the British National Corpus (see 

https://www.english-corpora.org/bnc/) and log-transformed [LOG(x+1) in order to account for 

frequency rates of ‘0’]. The resulting values were normalized by a factor of 100 and converted 

to integer numbers for improved graphic display. Phonological length of words (i.e., number 

of phonemes) was determined with the Microsoft Excel function “len”, which counted the 

number of IPA symbols that make up the phonological transcription of a target word (minus 

stress and length symbols). Phonotactic probabilities were computed with the Kansas 
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University Phonotactic Probability Calculator for English 

(https://calculator.ku.edu/phonotactic/about). Each word was manually transcribed in 

computer-readable ‘Klattese’ as required by the software (Vitevitch & Luce, 2004) before 

being entered into the online calculator. As the calculator uses an American English database, 

all words had to be transcribed in American English first (also using Tophonetics, see above). 

The Kansas University phonotactic probability calculator computes the sum of all positional 

probabilities of each segment per word, in addition to the sum of all biphone probabilities 

(Pearson’s correlation between the average of both measures was r=0.6 in the learner data). 

The average biphone probabilities per word were selected as the variable “phonotactic 

probability” in the analysis.  

Phonological neighbors are defined as two words that differ in only one segment via additions, 

deletions, and substitutions of phonemes (Levenshtein, 1966; Turnbull & Peperkamp, 2017; 

Vitevitch, 2008). Levenshtein distances were determined pairwise for each word and with each 

other word in a learners’ lexicon. For example, in the A1 network of 606 words, the 

phonological distance of each of the 606 words to each of the other 605 words was determined. 

This resulted in a very large number of possible combinations, so that the use of an Oracle 

Database, a multi-modal database management system capable of handling millions of rows of 

data, was necessary. In Oracle 12c (see Bryla, 2015), the function “Edit Distance” (or 

“Levenshtein Distance”) was implemented to compare the string similarities of paired X-

SAMPA-transcribed words. The output was the number of character changes (so-called 

insertions, updates, and deletes) that are required to transform the first string into the second. 

This number is referred to as the “edit distance” and only edit distances of “1” were extracted 

for further analysis, as these represented the phonological neighbors. Appendix B lists all 

phonological neighborhoods calculated for each proficiency level.  

After establishment of the phonological neighbors for each of the proficiency level word lists, 

the phonetic/phonological distances between phonological neighbors were further quantified. 

Therefore, a feature-weighted distance measurement was computed based on evolutionary 

applications to language distances and comparisons. The open-source R software package 

“alineR” (Downey et al., 2017) calculates similarity scores of word pairs according to a set of 

feature weighting parameters that quantifies phonetic distances following the method of 

Kondrak (2000) and Downey et al. (2008). The alineR package considers twelve features: 

syllabic, voice, lateral, high, manner, long, place, nasal, aspirated, back, retroflex, and round. 
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The input in alineR are pairs of IPA-transcribed words for which a similarity score ranging 

between 0 (= no distance between two words) and 1 (=maximal phonetic distance) is then 

calculated. For the present study, the alineR results were transformed to reflect percentage 

agreement between two words: the values were reverse scaled and multiplied by 100. Thus, 0 

reflects the least similarity and a value of 100 reflects the highest similarity between two 

segments. For instance, a value of 0.3 in alineR was transformed to a value of 70, so that 

similarity scores correspond to percentages and, in this case, 70% similarity was measured. 

Essentially, the alineR output of a distance score was converted to a similarity score. This 

rescaling was necessary in order to get more intuitive edge strengths for the phonological 

networks: thicker edges show a closer relationship between two words, thinner edges indicate 

a more distant relationship. The phonetic distance between phonological neighbors is valuable 

in that it can provide finer-grained distance measurements that play a role in linguistic 

processing (Goldinger et al., 1989).  

 

3.1.2. L1 British English (BNC) network 

The British National Corpus (or BNC, 2007) consists of approximately 100 million words 

collected from written and spoken language samples, specifically designed to represent a wide 

cross-section of British English from the latter part of the 20th century. Its latest edition was 

released in 2007. Data cited herein have been extracted from the British National Corpus 

Online service, managed by Oxford University Computing Services on behalf of the BNC 

Consortium. All rights in the texts cited are reserved.  

A word list containing all words in the BNC was downloaded and further processed in an 

identical way as described for the learner corpora. The word list was manually sorted, removing 

abbreviations, duplicates etc. The final word count was 5376. The L1 language user vocabulary 

was smaller than that of the learners at the C1 and C2 levels (C1=5632 words, C2=6714 words), 

and this is most likely due to the fact that a large portion of the learner data stems from specific 

vocabulary tests, whereas the BNC data of the L1 British speakers was gathered from naturally 

occurring speech and texts.  

As a next step, phonological transcriptions and X-SAMPA transcriptions were created, lexical 

frequency rates were calculated and log-transformed, phonological length per word was 

counted, and phonotactic probabilities (biphones) were computed (see details on these steps in 

section 3.1.1.). With the use of an Oracle database, phonological neighbors of one-segment 
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edit distances were calculated (data provided in Appendix B), and phonological distances were 

determined with the help of the alineR package in R (see section 3.1.1.).  

 

 

3.2. Network construction 

Networks of learners’ lexica and the L1 British users’ lexicon were constructed with Gephi, an 

open-source software for network and graph analysis, widely used in network analysis in 

sociology, biology, and genomics (Bastian, Heymann, & Jacomy, 2009) and the R packages 

“qgraph” and “igraph” (Csardi & Nepusz, 2006; Epskamp, Cramer, Waldorp, Schmittmann, & 

Borsboom, 2012). Separate networks were created for each proficiency level (referred to as 

“A1 network”, “B2 network” etc., up to “C2 network”) and for the L1 British English data 

from the BNC (“BNC network”). In the undirected graphs, words were entered as nodes, and 

weighted edges connected phonologically neighboring words according to their phonological 

distance. With Gephi, the following statistical details were calculated for each network:  

 

• network size (number of nodes) 

• number of edges 

o the β coefficient was manually calculated by dividing the number of edges by the 

number of nodes, once for the whole network and once for the giant component 

• size of the giant component (number of nodes and edges, percentage of overall network size) 

• number and size of the islands 

• number of singleton nodes 

• average path length ℓ (whole network, giant component) 

• clustering coefficient per node 

• degree centrality per node 

• weighted degree centrality per node 

• closeness centrality per node 

• betweenness centrality per node 

• eigenvector centrality per node 

 

Using the R package “igraph” (Csardi & Nepusz, 2006), the following variables were 

calculated:  
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• network diameter 

• Pearson’s assortativity coefficient 

• global transitivity of network 

 

Small-world coefficients were calculated for each of the seven networks with the function 

“smallworldness” of the R package “qgraph” (Epskamp et al., 2012), taking into account the 

global transitivity of the network (Newman, 2003b), with the iterations set to “1000” per 

network.  

Community detection in the learner networks was done with the “Modularity” function in 

Gephi. First, modules were created with the resolution set to “2” (as suggested by Siew, 2013, 

for phonological networks) and the inclusion of edge weights. Singleton nodes were excluded 

from the analysis, as each of them constitutes their own community. Modularity values (Q) 

were obtained, and each node was assigned a modularity class. These modularity classes were 

then extracted to spread sheets, where their sizes and the average values of the investigated 

network measures (degree, clustering coefficient, etc.) were calculated.  

Generally, network comparisons are hampered by the fact that network size influences 

centrality measures. Closeness centrality, for instance, is highly dependent on network size as 

larger networks tend to have lower centrality measures due to the fact that larger networks have 

more connections that need to be traversed to get from one node to another. Freeman (1979) 

suggested normalizing centrality values in order to reduce the effect of network sizes. For the 

statistical calculations, all calculated measures were normalized (z-scored) in order to establish 

comparability between the differently sized learner networks.  

3.2.1. Distribution fitting 

Distributions of node degree, preferential attachment values, node fitness, and most other 

network measures are crucial considerations in the network sciences (see debate in Broido & 

Clauset, 2019; Zhou, Meng, & Stanley, 2020). Especially power law distributions are 

frequently the subject of network investigations, as they represent specific assumptions about 

network structure in general and growth possibilities in particular (see section 4.1.1.1.). In such 

distributions, the mathematical relationship between variables is such that changes in one 

variable lead to proportional relative changes in the other variable, independent of the initial 
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size of the variable quantities (Clauset, Shalizi, & Newman, 2009). Power laws are 

mathematically represented with the function  

y=cx–α 

with α being the power law exponent, and c an overall scale (or normalization). With changes 

in x, y either decreases or increases. When power laws are calculated for distributions, the 

exponent α is positive, and y decreases as x increases (Milojević, 2010). This means that events 

with a high value of a quantity are typically rare. Power law distributions can represent what 

is known as the ‘Pareto principle’ or the ‘80:20 rule’ stating that 20% of causes lead to 80% of 

phenomena (Sanders, 1987). Perline (2005) suggested three different variants of power law 

distributions: (1) a strong power law, with all values of a variable falling into the category of a 

power law, (2) a weak power law, where only a part of the distribution follows a power law, 

and (3) a false power law, where a truncated part of the distribution can mimic a power law 

(such as in log-normal distributions, where only the upper tail approximates a power law). 

The probability of a distribution following a power law is calculated by comparing distribution 

probabilities involving other heavy-tailed distribution types (e.g., discrete log-normal, discrete 

exponential) and selecting the best fit based on comparative tests. The procedure of distribution 

fitting in the present study started with an investigation of good candidates among a predefined 

set of heavy-tailed distributions, including log-normal, log-logistic, log-gamma, weibull, 

exponential, Pareto, and Burr. Using the R packages “fitdistrplus” (Delignette-Muller & 

Dutang, 2015) and “actuar” (specifically for log-logistic, Pareto, and Burr fitting) and the 

“plotdist” function, plots of the empirical cumulative distribution function (CDF plot) and the 

histogram on a density scale were obtained per investigated network (i.e., proficiency level 

networks and BNC network). In addition to these classical goodness-of-fit plots, a Q-Q plot 

emphasizing a lack-of-fit at the distribution tails and a P-P plot emphasizing a lack-of-fit at the 

distribution center were plotted per network. Next, different goodness-of-fit statistics were 

calculated with “fitdistrplus” in order to compare the fit of best-seeming candidate distributions 

as judged by the plots. Goodness-of-fit statistics measure the distance between a fitted 

parametric distribution and the empirical distribution (between the fitted cumulative 

distribution function F and the empirical distribution function Fn). The following goodness-of-

fit statistics were calculated with the R function “gofstat”: Cramer-von Mises, Kolmogorov-

Smirnov, and Anderson-Darling statistics (as recommended by D’Agostino & Stephens, 1986). 
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Distributions were compared by classical penalized criteria based on the log-likelihood 

(Akaike Information Criterion or AIC and Bayesian Information Criterion or BIC), with lower 

values indicating a preference for a particular distribution (Delignette-Muller & Dutang, 2015). 

The smallest values per goodness-of-fit statistic and goodness-of-fit criteria (AIC, BIC) were 

selected as the best fitting distribution for a given network.  

As power laws can be difficult to mathematically quantify due to the fluctuations in the heavy 

tail and the fact that not all values of a variable x may follow a power law, the R package 

“poweRlaw” specifically designed to detect power laws and discriminate them from other, 

similar heavy-tail distributions (specifically for continuous data: power law with cutoff, 

exponential, stretched exponential, and log-normal; for discrete data: Yule, exponential, 

Poisson) was additionally used. The package is based on Clauset and colleagues’ (2009) 

approach, who propose a rigorous power law validation procedure with maximum-likelihood 

fitting methods and goodness-of-fit tests based on the Kolmogorov-Smirnov statistic and 

likelihood ratios (see Gillespie, 2014, for details). A Monte-Carlo bootstrapping p-value is then 

calculated to evaluate the plausibility of a power law; and lastly, the power law model is 

compared to a set of alternative models. In practice, heavy-tailed distributions as identified by 

the first distribution fitting procedure (with “fitdistrplus”, see above) were further subjected to 

specific power law calculations with “poweRlaw”. If power law was the best-fitting of the 

distributions compared by the package, a power law distribution was assumed for the data. This 

power law fitting procedure has increasingly been used in linguistic literature on statistical 

distributions in recent years (see,e.g. Macklin-Cordes & Round, 2020).  

When histograms indicated a bi- or multimodal distribution, the R package “diptest” was used, 

which utilizes Hartigan’s dip test to determine whether a distribution has more than one mode 

(see Maechler, 2021). P-values of less than 0.05 indicate significant bimodality, and values 

greater than 0.05 but less than 0.1 indicate bimodality with marginal significance (Hartigan & 

Hartigan, 1985).   
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3.3. Macro-level network measures 

The learner networks and the BNC network differ in quite a few of the central network 

measures. In some regards, the C2 and BNC networks are similar (e.g., assortativity coefficient, 

average degree in giant component, transitivity and β of the giant component), in others the 

BNC network stands out and does not resemble any of the learner networks (e.g., giant 

component size). Table 2 summarizes the main macro level network measures that were 

calculated for the learner and BNC networks.  

 
Table 2: Overview of network measures in the ESL and BNC networks.  

 A1 A2 B1 B2 C1 C2 BNC 
Network size (number of words) 606 1483 2901 4621 5632 6714 5378 
Connectivity (number of edges) 583 1784 3748 5889 6717 8129 4866 
Giant Component size (%) 44% 42% 38% 35% 31% 30% 13.2% 
Pearson assortativity coefficient r 0.57 0.59 0.65 0.67 0.68 0.68 0.71 
Average degree 1.9 2.4 2.6 2.5 2.4 2.4 1.8 
Average degree in GC 4.1 5.3 6.2 6.7 6.7 7 7.2 
Edges in GC (%) 94% 93% 92% 90% 89% 88% 52.3% 
Average path length 7.42 6.03 5.9 5.9 6 6 5.1 
Clustering coefficient 0.42 0.37 0.35 0.34 0.34 0.34 0.38 
Ratio of edges to vertices/β  0.96 1.2 1.3 1.3 1.2 1.2 0.9 
Ratio of edges to vertices/β (GC) 2.04 2.6 3.1 3.3 3.4 3.5 3.6 
 

 

3.3.1. Network connectivity 

The A1 lexicon consists of 606 nodes (i.e., words) and 583 edges (i.e., links between words), 

which equals a beta (β) value of 0.96. This represents a rather sparsely connected language 

network, as compared to the adult native L1 American English network, which has a β value 

of 1.61 in Arbesman, Strogatz, and Vitevitch (2010). 94% of all edges can be found in the A1 

giant component, and β of the giant component is 2.04 (in adult L1 English β= 4.55, Arbesman 

et al., 2010). Word increase per lexicon is at first accompanied by higher connectivity between 

the nodes (β increase from A1 to A2 to B1) but connectivity trails off at later proficiency stages 

(β decrease/plateau from B2 to C1 to C2). The β value of the giant component increases 

continuously and proportionally, showing a steady development from A1 to C2. Number of 

edges found in the giant component decreases as the networks grow. Compared to the L1 

American English network described by Arbesman et al. (2010), in which β=4.55, the learner 

networks show substantially lower β values in the giant components. The BNC giant 
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component contains 52.3% of all network edges, with a β value of 3.6, the highest of all seven 

networks.  

The high β index of 1.6 calculated by Arbesman and colleagues (2010) for American English 

and that of 4.55 for the giant component is not reached by even the highest ESL learner 

proficiency level, but the BNC network comes close. This shows that tight interlinking of a 

high number of phonologically neighboring words is much more pronounced in networks of 

L1 English users (American and British), with L2 English networks being more sparsely 

interlinked, even absent differences in lexicon size (note that the BNC network is smaller than 

the C1 and C2 networks). The giant components of the L1 English networks are especially 

tightly knit units, a dynamic possibly resulting from their smaller sizes.  

3.3.2. Giant components, lexical islands, and singleton words 

Like most networks, phonological networks can be divided into discrete network parts: the 

giant component as the largest cluster of linked entities, the smaller linked entities called 

islands, and non-linked stand-alone phonological isolate words. Of these, the giant component 

plays an outsized role as it represents an expanded phonological neighborhood where all words 

are connected through multiple degrees of phonological neighbors. Studies have proven that 

phonological activation spreads not only in the immediate one-segment-distance phonological 

neighborhood but reaches farther, potentially activating neighborhoods multiple phonological 

segments away (Chan & Vitevitch, 2009; Suarez et al., 2011). Therefore, the density of 

connections in the giant component of a lexical network, the overall diameter of the giant 

component (i.e., geodesic distance between farthest points), as well as the average phonological 

neighbor per word (=degree) in the giant component are crucial measures that can give insights 

into patterns of activation spreading of phonological word forms in the lexical processing of 

language learners. Figure 13a-b depicts two same-sized networks differing by diameter, degree 

centrality, and β values. In 13a activation can spread quickly through the entire network, 

encompassing a larger number of nodes in a short time, whereas activation spreading in 13b 

involves more steps to reach each node.   
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a 

 
 
 
 

CD=2.67, diameter=4, β=1.33 

b 

 
      CD=2, diameter=7, β=1 

 
Figure 13a-b: Two same-sized networks differing by degree centrality, diameter, and β coefficient. 

 

Giant component size is largest in the A1 lexicon (=44%), with an additional 25 islands (=10%) 

and 279 singleton nodes (=46%) in the network (see Figure 14a). Islands are small and range 

from 2 to 4 nodes with 1 to 3 edges. In the A2 network, the giant component size has shrunk 

to 42%, with 77 islands (=13%) and 664 (=45%) singleton nodes. Island size and connectivity 

have increased and range from 2 to 6 nodes, with 1 to 6 edges per island. The giant component 

of the B1 network equals 38%, with 162 islands (=15%) and 1371 (=47%) singleton nodes in 

the network. Islands range from 2 to 18 nodes, involving 1 to 7 edges (see Figure 14b). In the 

B2 network, the giant component makes up 35% of the network, and an additional 328 islands 

(=18%) and 2193 (=47%) singleton nodes can be found. Islands sizes range from 2 to 26 nodes, 

involving 1 to 37 edges. The C1 giant component consists of 31% of all nodes, and 431 islands 

(=21%) and 2751 (=48%) singleton nodes are included in the network. Average island size has 

markedly increased, ranging from 2 to 70 nodes with 1 to 88 edges. At the C2 level, the giant 

component proportion shrinks further and constitutes only 30% of the overall network. The 

proportion of islands and singletons has increased (527 islands =21%; 3295 singleton nodes 

=49%, see Figure 14c). Islands sizes and connectivity range from 2 to 45 nodes involving 1 to 

52 edges. In the BNC network, 515 islands and 2791 singleton nodes (=52%) were detected; 

islands range from 2 to 175 nodes (see Figure 14d, additional graphs of the learner networks 

can be found in Appendix A.  
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a 

A1: 606 words, 25 islands, 279 singletons 

 

b 

B1: 2901 words, 162 islands, 1371 singletons 

 
c  

C2: 6714 words, 527 islands, 3295 singletons 

 

d 

BNC: 5376 words, 515 islands, 2791 singletons 

 
 

Figure 14a-d: Yifan Hu visualization (from the Gephi Network Project) of the A1 (a), B1 (b), C2 (c), and BNC (d) 
phonological networks. The giant component is central and surrounded by (lexical) islands and singleton nodes 

(i.e., lexical hermits). 

 

The giant component proportions within the respective learner networks shrink as proficiency 

increases from its highest percentage of 44% in the A1 network to only 30% in the C2 network. 

A study on giant component sizes in various language by Arbesman and colleagues (2010) 

calculated the giant component of American English at approximately 34%, which was the 

smallest of all languages measured. For instance, Spanish and Basque had giant component 
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sizes of 37% and 35%, respectively; Mandarin Chinese even reached 66% (see Arbesman et 

al., 2010). In the present study, the BNC giant component amounted to only 13.2% of the 

network. One important caveat complicates a comparison of the findings of the present study 

and those of Arbesman and colleagues. The Arbesman et al. analyses were not based on corpus 

data, but the authors constructed phonological networks from dictionaries of the languages, in 

the case of English the Merriam-Webster Pocket Dictionary from 1964, a database frequently 

used in psycholinguistics, containing 19,323 words. While their study design is not directly 

comparable to the usage-based account of the present study, it is interesting to note that the 

giant component sizes of the learner networks are quite similar to those measured by Arbesman 

and colleagues. The findings of the present study clearly support the hypothesis of small giant 

component sizes of English phonological networks, further underscored by the very small giant 

component of the BNC network of first-language users of British English.  

Most social, technological, and biological networks can combine an extraordinarily large 

amount of nodes in a large giant component (up to 80-90%, see Newman, 2001). Several 

disadvantages are associated with large giant component sizes, chief among them low network 

robustness (Hu & Lee, 2020, see section 3.2.2.). Small giant component sizes predict better 

resilience against accidental failures and targeted attacks on a network, and the phonological 

networks may be particularly well structured to make them maximally robust (Siew & 

Vitevitch, 2016; Vitevitch, 2008). Arbesman and colleagues (2010) found the phonological 

network of several languages to be highly resistant to network failures, primarily caused by 

small giant component sizes paired with large numbers of islands and singletons. New words 

preferentially attaching to lexical islands and singletons, rather than contributing to the giant 

component, are predicted to help maintain network stability (Siew & Vitevitch, 2016; Zhao & 

Xu, 2009). Such a dynamic keeps constant the structure and size of the giant component, where 

the bulk of lexical processing occurs, all the while promoting growth in the overall network by 

supplementing smaller components (islands, singletons) with new words, without drastically 

influencing the overall functioning of the lexical network (Siew & Vitevitch, 2016).  

The A1 level houses 44% of all words in the giant component, the highest rate of all learner 

networks. This indicates a stronger tendency for phonological clustering at the initial stage of 

word learning. Studies have shown that phonological similarity greatly facilitates word 

learning in children (Hoover, Storkel, & Hogan, 2010; Storkel & Lee, 2011) and this may be 

particularly pronounced when fewer words are involved and at beginning learning stages (be 
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it child language acquisition or foreign language learning). While phonological clustering is 

most pronounced in the A1 network, already at the A2 level, the giant component of the learner 

networks is starting to shrink, while the islands grow at a continuous pace to the C2 level. From 

a macro level perspective, network growth takes place primarily in the islands, which grow at 

each level, starting at a proportion of 10% within the A1 network and increasing to 21% of the 

C2 network. This is in agreement with findings by Siew and Vitevitch (2020a) in relation to 

network growth during child language acquisition in American English and Dutch, which will 

be described in more detail in chapter 5.  

The proportion of singleton, non-connected words is rather stable across all learner levels, 

ranging between 45% and 49%. Almost half of the learner network at each respective level 

consists of singleton nodes, indicating a propensity to learn words even in the case of zero 

phonological neighbors. A phonological network of American English described by Vitevitch 

(2008) also showed a large proportion of singletons (lexical hermit) words: 53% of the 

investigated words (see Gerometta, 2015, for similar findings). In the BNC network the 

proportion of singleton nodes was 52% of the network.  

Th network part to which a word belongs has consequences for its lexical access. The 

processing disadvantage of giant component words has been described in the diffusion 

activation context (see section 2.3.). The results of the present study demonstrate a shrinking 

of giant component proportion with each successive proficiency level, possibly reflecting a 

cognitive development geared toward increasing processing advantages and minimizing lexical 

activation competition (which is most pronounced in the giant component). During the build-

up of the ESL lexicon, network resources (i.e., newly learned words) are gradually shifted more 

toward peripheral parts of the network, thereby avoiding concentration in the giant component. 

Due to activation diffusion, smaller giant component proportions could be an adaptation to 

improved lexical processing: with each successive proficiency level, a larger number of words 

needs to be navigated in lexical search, which places a burden on processing efficiency. Larger 

vocabularies need better organization for efficient navigation, and smaller giant component 

sizes may facilitate that.  
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3.3.3. Lexical characteristics of network parts 

The results of the present study confirmed a core finding by Siew (2013) for an L1 American 

English network: shorter words have a higher likelihood of residing in the giant component. In 

all learner networks, phonemic length of words was lowest in the giant components and longest 

in singleton nodes (see Figures 15a-f; tests reported for the learned networks: Kruskal-Wallis 

one-way ANOVA on ranks with post-hoc Wilcoxon signed rank tests; A1: χ2(2)=313.6, 

p<0.001; A2: χ2(2)=786.8, p<0.001, B1: χ2(2)=1576.2, p<0.001, B2: χ2(2)=2428.5, p<0.001, 

C1: χ2(2)=2837.5, p<0.001, C2: χ2(2)=3413.4, p<0.001).  
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Figures 15a-f: Phonemic length of words belonging to different network parts (giant component, island, 
singleton) in the six learner networks. Post-hoc Wilcoxon signed rank test results indicated. 

 

Additionally, words of higher lexical frequency tended to cluster together in the giant 

component of the learner networks (also see Siew, 2013; frequency log-transformed, A1: 

χ2(2)=67.6, p<0.001, A2: χ2(2)=118.6, p<0.001, B1: χ2(2)=150.13, p<0.001, B2: χ2(2)=227.38, 

p<0.001, C1: χ2(2)=329.7, p<0.001, C2: χ2(2)=402.7, p<0.001). Figures 16a-f show the lexical 

frequency differences between network parts across the six learner networks.  
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e 

 

f 

 
 

Figure 16a-f: Lexical frequency rates of words belonging to different network parts (giant component, island, 
singleton) in the six learner networks. Post-hoc Wilcoxon signed rank test results indicated. 

 
 

Phonotactic probability was generally lowest in the giant component words, with islands and 

singletons containing higher-probability phonemic combinations on average (log-transformed 

biphone probability, A1: χ2(2)=11.5, p=0.003, A2: χ2(2)=30.1, p<0.001, B1: χ2(2)=75.4, 

p<0.001, B2: χ2(2)=120.3, p<0.001, C1: χ2(2)=142.8, p<0.001, C2: χ2(2)=199.7, p<0.00). See 

Figures 17a-f for details. In the A1 network, singleton nodes stand out at significantly higher 

phonotactic probability as compared to giant component and island words. Starting at the A2 

level, the giant component develops a statistically outstanding role, with the lexical islands and 

singletons comprising the majority of high-probability words. In the C2 network, all three 

network parts differ from one another.  
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Figure 17a-f: Phonotactic probability of words belonging to different network parts (giant component, island, 

singleton) in the six learner networks. Post-hoc Wilcoxon signed rank test results indicated. 
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3.3.4. Network of L1 British English 

Similar to the learner networks, phonemic length of words was highest in singleton nodes and 

lowest in the giant component (Kruskal-Wallis: χ2(2)=1912.5, p<0.001; see Figure 18).  

 

 
Figure 18: Phonemic length is shortest in giant component words and longest in singleton nodes. 

 

The BNC giant component contained more high-frequency words than the island or singleton 

components (Kruskal-Wallis: χ2(2)=156.4, p<0.001), mirroring findings from the learner 

networks (see Figure 19).  

 

 
Figure 19:  Lexical frequency rate in the different network parts of the BNC network. 

 



 73 

Phonotactic probability was lowest in the giant component but highest in the singleton nodes 

(Kruskal-Wallis: χ2(2)=812.3, p<0.001; see Figure 20).  

 

 
Figure 20: Phonotactic probability is lowest in giant component words and highest in singleton nodes. 

 

In sum, the BNC network and the learner networks show identical dynamics with regard to 

network parts and the distribution of lexical characteristics. The findings are also in agreement 

with results reported by Siew (2013) for L1 American English: shorter words of high lexical 

frequency rate and low phonotactic probability possess a clear learning advantage and are 

acquired earlier in first and second language learning (also see, e.g., Ellis, 2002; Storkel et al., 

2006). The fact that these words tend to be found in the giant component of all learner networks 

highlights the importance of giant component formation in word learning. As can be seen in 

the topological development of the learner networks, reliance on giant components decreases 

over time, while reliance on lexical islands increases.  

 

3.3.5. Assortativity by degree 

As described in section 2.2.1.2., assortativity by degree is the tendency of nodes to connect to 

nodes with similar degree centrality, thus highly connected nodes link up with other highly 

connected nodes (Newman, 2002a). Assortativity by degree increased as the learner networks 

grew from A1 to C2. Positive assortative mixing in phonological networks is recorded when 

r>0.5 and all learner networks exceeded that value. Preferential neighborhood formation by 

degree makes it less likely that sparse neighborhoods can become linked to dense ones, in other 

words the neighborhood distribution will inevitably be skewed. Arbesman et al. (2010) report 
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r=0.65 for their L1 American English network, which represents a high positive degree 

correlation between neighboring nodes (as compared to social networks with r commonly 

ranging from 0.1 to 0.3). Their analysis of Spanish even yielded r=0.76. The ESL learner 

networks exhibited lower assortativity values (ranging from 0.57 to 0.68, see Table 2) but with 

a clear tendency to increase degree assortativity with network growth. The L1 British English 

network yielded a high r-value of 0.71, while the C1 and C2 proficiency levels reached r=0.68, 

thus exceeding the Arbesman estimation for English.  

Figure 21 displays assortativity patterns in the A1 network, with Pearson’s assortativity 

coefficient r equaling 0.57 and average node degree across the network being 1.9; average node 

degree in the giant component was 4.1. The A1 network is rather small and the giant component 

contained 44% of the 606 total nodes. Clusters of nodes with similar degrees are clearly visible.  

 
Figure 21: Assortativity in the giant component of the A1 network (hub size and color by degree). 

 

As r increased to 0.59 in the A2 network, average node degree rose to 2.4 and in the giant 

component to 5.3. The B1 and B2 networks showed average node degrees of 2.6 and 2.5 across 

the whole networks and 6.2 and 6.7 in the giant components; assortativity coefficients equalled 

0.65 and 0.67, respectively. At the C1 level, r equalled 0.68, with the average node degree 

being 2.4 across the network and 6.7 in the giant component. The average degree per node was 
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2.4 across the C2 network and 7 in the giant component, while r amounted to 0.68 (see Figure 

22).  

 

 
Figure 22: Assortativity in the giant component of the C2 network (hub size and color by degree). 

 
 
The BNC network was characterized by r=0.71, with the average node degree being 1.8 across 

the whole network and 7.2 in the giant component (see Figure 23, rendering neighborhoods in 

the giant component denser than in the learner networks.  

 



 76 

 
Figure 23: Assortativity in the BNC giant component (node size and color by degree). 

 

As previous studies indicate (Chan & Vitevitch, 2009; Siew, 2013), denser and more tightly 

connected neighborhoods can impair lexical retrieval due to the higher level of activation 

diffusion and/or more activation competition. Continuous enrichment of already “rich” 

neighborhoods cannot be an open-ended process in a lexicon, as the ability of lexical recall 

starts to suffer at some point. On the other hand, network robustness increases with higher 

positive assortativity levels (Newman, 2002a). The gradual increase in assortativity in the 

learner networks points toward a word learning bias that favors robustness over lexical retrieval 

efficiency.   

3.3.6. Phonological distance: Edge weight 

Edge weight reflecting phonological/phonetic distances between the phonological neighbors 

served as indicators of connectivity in the learner and BNC networks. Words in the giant 

component tend to be more closely related in phonological terms, and the difference in 

phonological distance between the giant component and the islands increases as the learner 

networks grow (see Figure 24).  
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Figure 24: Edge strength (assessed through weighted degree centrality) increases in the giant component as 

the learner networks grow, while it stays relatively constant in the islands. 

 
Since the giant component words were typically of higher lexical frequency rates and shorter 

phonemic length than words in other network parts (see above), correlations with edge weight 

were computed. Lexical frequency and weighted degree were not correlated at any significant 

degree (average Pearson’s r across all learner networks <0.33). However, phonemic word 

length and weighted degree showed a moderate negative correlation (average across all 

proficiency levels r=-0.58), with shorter word length being positively correlated with higher 

weighted degrees. Shorter words are known to have more phonological neighbors (Bard & 

Shillcock, 1993; Charles-Luce & Luce, 1990; Pisoni, Nusbaum, Luce, & Slowiaczek, 1985), 

with phonetic similarity playing a crucial role, as shown by the present findings. The 

probability of phonological neighbor creation in different segmental position – the P-metric 

(Johnson & Pugh, 1994) – is higher in shorter words, with the spread of the neighborhood being 

more widely dispersed (Vitevitch, 2007). Since short words tend to have more neighbors in 

general, they might be more flexible when it comes to neighbor-creation and the P-metric. In 

terms of activation spreading, more closely related phonological neighbors are assumed to take 

more of the spreading co-activation within a neighborhood. In the diffusion activation 

framework, this could mean that phonologically close neighbors receive more and also pass on 

more of the existing activation to their own neighbors, potentially strengthening the 

phonological representations of themselves and their connections in the network at the expense 

of phonologically distant neighbors of a target word. Future studies focussing on activation 

spreading along phonological-relatedness lines within the giant component may show that 
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phonologically strong links share more of the overall activation among themselves, with the 

phonologically weak links losing out on activation sharing.  

 

3.3.7. Diameters and average path lengths in the giant components 

The learner networks showed some fluctuation in network diameter and average path length 

between nodes in their giant components (see Figure 25). Both measures were highest in the 

A1 network, and then decreased in the A2 and B1 levels, after which they continued to grow 

again. These data indicate a more loosely linked network at the beginning of learning which 

seems to develop into a more tighly linked structure as learning progresses. In the BNC 

network, the diameter of the giant component and average path length were comparable to the 

advanced learner proficiency levels. 

 

 
Figure 25: Average path length and diameter of giant components in the learner and BNC networks. 

 

The longest average path length and diameter in the A1 network predisposes it to less efficient 

lexical processing, according to Vitevitch and colleagues (2016), underscoring the previous 

observation that lexical processing efficiency increases as the learner networks grow (see 

section 3.3.2. on findings reported on giant component size, for instance). Efficiency in terms 

of diffusion activation (shorter average path length, shorter diameter, smaller GC) continues to 

be shaped as learning progresses.  
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3.3.8. Centrality 

The average centrality measurements yielded by the analyses are reported in Table 3. While 

overall rather similar, the BNC and learner networks differ markedly in betweenness centrality 

and closeness centrality, with the BNC network displaying lower average betweenness but 

higher average closeness values (see Appendix A for betweenness centrality graphs of the 

learner and BNC networks). This is most probably related to the unusual topology of the BNC 

network, where larger islands co-exist with a very small giant component.  

 
Table 3: Mean network measures and their standard deviations across the networks.  

 A1 A2 B1 B2 C1 BNC 

Degree centrality 1.92±2.6 2.41±3.5 2.58±4.2 2.55±4.42 2.38±4.34 1.8±3.4 
Weighted degree 
centrality 

136.21±174.
9 

178.56±250.
4 

196.27±306.
6 

196.57±324 185.21±320.
4 

141.1±254 

Closeness centrality 0.15±0.26 0.19±0.28 0.19±0.3 0.22±0.33 0.22±0.34 0.26±0.36 
Betweenness 
centrality 

380.35±961.
7 

670.6±1813.
3 

1040±3145 1362.19±403
9.3 

1391.7±4418
.3 

220.6±952 

Clustering coefficient 0.16±0.29 0.14±0.26 0.13±0.24 0.12±0.23 0.11±0.23 0.1±0.23 
Eigenvector centrality 0.046±0.13 0.047±0.12 0.043±0.13 0.032±0.11 0.029±0.09 0.03±0.09 

 

Density analyses showed heavy-tail distributions for all network measures (see Figures 26a-f 

and Table 4).  

 
Table 4: Best-fitting distribution per network measure (across all proficiency levels).  

 Degree 
centrality 

Weighted 
degree c. 

Closeness 
centrality 

Betweenness 
centrality 

Clustering 
coefficient 

Eigenvector 
centrality 

Best fit  Log-normal Power law 
(Pareto) 

Multimodal 
(dip test p: 

<0.001) 

Multimodal  
(dip test p: 

<0.001) 

Multimodal  
(dip test p: 

<0.001) 

Log-logistic 

 

As expected based on the controversy surrounding power laws in scale-free networks (see 

discussion in section 4.1.1.1.), a power law distribution was not observed for degree 

distribution in the phonological networks (also see Vitevitch, 2008, for a similar finding). Over 

the course of L2 development, there is an obvious shift of degree centrality towards large values 

in only a few prolific nodes, approximating an exponential distribution of node degree at the 

C1 proficiency level (see Figure 25a). The skewness of node degree gets more extreme with 

each proficiency level. In other words, few neighborhoods can increase their density during 

growth, with dense neighborhoods impeding lexical retrieval. Studies in child language 

acquisition found that children improved word learning when phonological neighborhoods 

start to emerge in their lexicon (Donnelly & Kidd, 2020). The developmental trajectory of node 
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degree in the ESL learner networks could indicate a similar tendency, with denser 

neighborhoods emerging in more advanced stages of lexical learning.  

A special case of neighborhood effect and language development is implied by Karimi and 

Diaz (2020) in their study of age-graded neighborhood density in child language acquisition. 

They compared lexical processing efficiency in words acquired at different acquisitional stages 

in L1 English-learning children and found that dense phonological neighborhoods facilitated 

retrieval of early-acquired words but inhibited retrieval of late-acquired words. The authors 

suggested that this may be related to weaker phonological representations in late-acquired 

words, as opposed to the more strongly ingrained early-acquired words. The level of activation 

in a target word in relation to the level of activation in its neighbors plays a role here: if an 

early-acquired target word with strong phonological representation resides in a neighborhood 

with late-acquired words with weak representations, the target word is hypothesized to take 

most of the activation in the neighborhood. While Karimi and Diaz defined phonological 

neighbors more broadly than the present study, their findings have implications for the learner 

networks studied here. L2 learning could incorporate similar age-of-acquisition features in 

neighborhood activation: early-learned words may have stronger phonological representations, 

setting them apart from their immediate neighbors to a greater extent, thereby heightening 

discriminability and reducing lexical competition, which could ultimately influence the 

neighborhood structures at different stages of language learning. On a more speculative level, 

lexical retrieval in the more advanced learner lexica, which include a multitude of both old and 

new words (early-learned and late-learned), may ultimately not be impeded by dense 

neighborhoods. Old and new words have phonological representations of different strengths, 

reducing activation competition to some extent, and allowing denser neighborhoods to be 

formed. At the beginning stages of language learning, the ages of learned words do not differ 

markedly, so that the A1 lexicon includes only newly-learned words. Here, phonological 

neighborhoods should conceivably trend toward more sparsity, in order to facilitate lexical 

retrieval by minimizing activation competition. Changing degree distributions over the course 

of learning (see Figure 25a) may hint toward such a dynamic in the learner networks, as they 

show a dominance of more numerous and moderately dense neighborhoods in the beginning 

networks, followed by the emergence of very few dense and many sparse neighborhoods in the 

higher proficiency networks.  
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For various network measures, it can be observed that inequality increases as the networks 

grow. Not only degree, but also weighted degree, clustering coefficient, and eigenvector 

centrality gain in skew during the course of language learning. This could be a function of 

increased network sizes and different mathematical probabilities relating to those differently 

sized networks. Alternatively, this could reflect an inherent property of complex systems: as 

they grow, properties change as a function of different rules emerging in the system. At the 

very least, these findings demonstrate that the beginner network is not just a smaller mirror 

image of the more advanced lexicon but is a different system operating according to its own 

set of rules.  
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Figures 26a-f: Distributions of network measures in the learner networks. 

 

The BNC network measures were distributed in a similar way to the learner networks and the 

results are displayed in Table 5 and Figures 27 a-f.  

Table 5: Best-fitting distribution per network measure in the BNC network.  

 Degree 
centrality 

Weighted 
degree c. 

Closeness 
centrality 

Betweenness 
centrality 

Clustering 
coefficient 

Eigenvector 
centrality 

Best fit  Multimodal  
(dip test p: 

<0.001) 

Bimodal 
(dip test p: 

<0.001) 

Multimodal  
(dip test p: 

<0.001) 

Burr Multimodal 
(dip test p: 

<0.001) 

Log-normal 
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Figures 27a-f: Distributions of network measures in the BNC network. 

 

In sum, all of the network measures in the learner and BNC networks showed heavily skewed 

distributions. Clustering coefficient and closeness centrality were the least skewed measures, 

where high values are spread to a larger number of nodes in the networks. High values in 

eigenvector and betweenness centrality were restricted to very few prolific nodes, as would be 

predicted from their roles in networks.  

 

3.3.9. Small-worldness 

All learner networks are characterized by high clustering coefficients in combination with 

relatively short average path lengths (i.e., shortest path length), indicating a tendency to 

incorporate small-world features. Even though small-worldness is notoriously hard to define 

(see, e.g., Telesford, Joyce, Hayasaka, Burdette, & Laurienti, 2011) and has been questioned 

in phonological networks (Gerometta, 2015), the concept serves some purpose in relation to 

lexical competition in phonological networks (Levy et al., 2021; Vitevitch, 2008). In the learner 

networks, a development toward more small-worldness is obvious (see Table 6).  Sigma values, 

calculated by comparison of path length and transitivity to a random network (see section 3.2.) 

are commonly used to prove the existence of small-world networks when σ>1 (Humphries, 

Gurney, & Prescott, 2006). The learner networks start out with rather high σ values at the A1 

level, which decrease in A2 and B1 but increase significantly starting at the B2 level (see Table 

6). Small-worldness is rather pronounced in the upper proficiency levels, but reach even higher 

σ values in the BNC network. A major advantage of small-world networks is their improved 

searchability where inspection of a small number of interconnected nodes yields a high 

likelihood of success in locating a particular node in a system (Kleinberg, 2000). Lexical search 

in the adult and developing L1 lexicon can be greatly aided by such a structure (Arbesman et 

al., 2010; Carlson et al., 2014; Chan & Vitevitch, 2009).  
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Table 6: Small-world coefficients across the proficiency levels of the learner and BNC networks.  

 A1 A2 B1 B2 C1 C2 BNC 
σ 5.19 4.22 4.25 5.72 6.87 6.96 7.9 

 

Tight interconnectedness of neighbors leads to higher rates of co-activation in a neighborhood 

and eventually results in discrimination problems of the target word, slowing down and making 

less accurate the lexical access and retrieval process (Chan & Vitevitch, 2009, 2010; Goldstein 

& Vitevitch, 2014; Yates, 2013). Word learning in the ESL networks could be maximally 

facilitated at the initial-intermediate stages (A2, B1) when small-worldness is lowest. Since the 

vocabulary is relatively small at these stages, lower degrees of small-worldness could have a 

relatively large effect on learning success. Following the Goldstein and Vitevitch proposal 

(2014), word learning should become more difficult when small-worldness increases in the 

advanced proficiency stages. At this point, the vocabularies are generally rather large and 

integrating new words increasingly crowds the phonological spaces in the network (especially 

the giant component), making lexical processing more arduous from a small-world perspective.  

The learner networks showed a clear tendency to decrease transitivity with each progressive 

stage (see Table 7). This could be related to the increase in network size, with smaller networks 

and fewer nodes having an advantage in terms of interconnectedness. The larger a network 

gets, the more difficult it becomes to keep a larger proportion of nodes interconnected.  

Table 7: Transitivity values across the learner and BNC networks.   

 A1 A2 B1 B2 C1 C2 BNC 
Transitivity 0.47 0.42 0.41 0.4 0.39 0.39 0.39 
 

Transitivity values measured by Arbesman et al. (2010) for a variety of languages range from 

approximately 0.23 in Basque to 0.4 in Mandarin Chinese. American English scored 0.31, 

which is lower than what the present study found for British English or any of the learner 

networks. Higher transitivity in the beginning learner networks could indicate a more tightly 

knit phonological network during the initial stages of language learning where fewer words are 

present, which eases up at the later stages. The C1, C2, and the BNC networks are identical in 

terms of transitivity.  
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3.3.10. Phonemic inventories and neighbor formation 

During the course of language learning, the phonological connectivity naturally increases per 

successive proficiency level. The limited (but not small) phonemic inventory of British English 

(see Roach, 2004) restricts phonotactic possibilities and formation of new words so that a small 

number of phonemes appears in a large number of words. Previous studies have shown that 

phonemic distributions within languages frequently exhibit a power law distribution (e.g., 

Zipfian or Yule), and that this is also the case for English (Tambovtsev & Martindale, 2007).  

When only a small set of phonemes is used to assemble the majority of words in a language, 

the likelihood of phonological neighbor creation increases since there are fewer possibilities to 

add, delete, or substitute phonemes. In fact, biased word formation processes are commonly 

observed, where highly frequent and probable phonemes are more likely to be used for new 

word formation (Macklin-Cordes & Round, 2020). This “rich-gets-richer” dynamic on the 

phonemic scale could point toward a bias in phonological neighborhood creation, where a 

certain set of “preferred” phonemes is being awarded a main growth advantage at the expense 

of other phonemes. Figure 28 shows an overview of phonemic distributions per proficiency 

level of the ESL learners in comparison to the BNC data. Distributional skew is evident and 

different at each proficiency level. Density plots show that the A1 and A2 levels show the 

largest phonemic skew, while the C1 and C2 as well as the BNC distributions display the 

smallest skew and the longest tail.   

 
Figure 28: Phonemic distribution in the six proficiency levels of L2 speakers and the BNC data of L1 speakers. 
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Phonemic distributions were compared between the proficiency levels by calculating a series 

of independent-samples Kolmogorov-Smirnov tests to determine distribution differences. 

Results showed that the A1 and A2 levels were significantly different from all the other levels 

(A1: p values <0.001, D values range from 0.47 to 0.9, df=38; A2: p values <0.012, D 

range=0.37-0.66, df=38). The B1 distribution differs from C1, C2, and the BNC distributions 

(p values<0.045, D range: 0.32-0.34, df=38), while the rest of the proficiency levels do not 

show different phonemic distributions.  

Power laws are intriguing for phonemic distributions in languages, as they suggest that growth 

perpetuates with “fitness” of particular phonemes, a reasonable and often-cited explanation for 

differences in cross-language phonology (see, e.g., Macklin-Cordes & Round, 2020; 

Martindale, Gusein-Zade, McKenzie, & Borodovsky, 1996; Tambovtsev & Martindale, 2007)/ 

This phonological rich-gets-richer mechanism would indicate a tendency to re-use particularly 

fit phonemes in word formation. The phonemic inventories of the EFL learners and the L1 

British English users were tested for their underlying heavy-tail distributions (see Clauset et 

al., 2009; Gillespie, 2014), but none of the phoneme distributions in the learner networks follow 

a power law (see results of the distributional analyses in Table 8).  

Table 8: Phonemic distributions in the learner and BNC networks.  

 A1 A2 B1 B2 C1 C2 BNC 

Best fitting 
distribution 

Gamma 
 

(dip test 
p=0.8) 

Gamma 
 

(dip test 
p=0.9) 

Log-logistic  Log-normal Log-normal  Log-normal  Log-normal  

 

Following Piantadosi (2014), phonemic distributions have real-world implications of what they 

actually reflect about a language. Log-normally distributed phonemes per lexicon indicate that 

the increase in phonemes is proportionally and predictably related. Larger entities in log-

normal distributions increase in proportional amounts (the so-called law of proportional effect), 

rather than through disproportional accumulation, as in power-law distributions. Log-normally 

distributed phonemes reflect greater predictability, as each phoneme increases its presence in 

the lexicon based on its proportional share.  

 



 87 

The skewed phonemic distributions in the beginning levels suggest a more pronounced 

tendency for phoneme clustering to involve a few select phonemes at initial learning stages 

when the vocabulary is rather small. The vowels [ɪ] and [ə] and the consonants [t], [s], and [n] 

are the most prolific in the A1, while phonemic distribution is more equal in the other levels 

and the BNC data. One might assume that this distributional skew in A1 and A2 could reflect 

the fact that the A1 lexicon houses the most frequent words in general (see micro analysis of 

networks in section 5.1.1. and Figures 16a and 42), which are in turn characterized by frequent 

phonemes. However, the four mentioned phonemes are generally the most frequent ones across 

all investigated lexica, including the BNC lexicon (see list below), suggesting that the 

phonemic make-up of beginning stages of language learning follows statistical probabilities 

shown by the target language, with learners preferentially learning the higher-frequency 

phonemes. This is in line with findings from child language acquisition, showing that young 

infants are already finely attuned to statistical frequencies of phonemes in their native language 

and acquire high-frequency sounds first (de Boysson-Bardies & Vihman, 1991; Velleman & 

Vihman, 2007). There are indications that learning of second language phonology also follows 

this principle, and the present results could support this hypothesis.  

Neighbor formation tended to involve different phonemes per proficiency level. The five most 

common phonemes forming neighbors (by deletion, addition, or substitution) are listed below 

(in order of frequency):   

A1:  / ɪ, t, a, n, k/ 
A2: / ɪ, t, l, e, k/ 
B1:  /i, ɪ, t, n, l/ 
B2:  /ɪ, t, n, s, e/ 
C1:  /ɪ, t, l, n, s/ 
BNC:  /ɪ, r, t, n, ə/ 
 

The phonemes /ɪ, t/ are by far the most frequent ones involved in neighbor formation at all 

proficiency levels, followed by /n, l/ and /k, s, e/. As mentioned above, /ɪ, t, n/ are among the 

most frequent phonemes to be found in all learner and BNC networks, and their role in neighbor 

formation underscores the special status of high-frequency phonemes in a phonological 

inventory. The fact that not all phonemes are equally frequent within and across languages has 

long been recognized and formalized in the hypothesis of a universal phonological complexity 

hierarchy that is based on the human articulatory and perceptual language apparatus 

(Greenberg, 1966; Jakobson, 1941/68). The simpler phonemes are acquired earlier by children 
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and retained for longer in the face of language impairment (see Romani, Galuzzi, Guariglia, & 

Goslin, 2017, for an overview). Zipf (1935) recognized that the most frequent phonemes are 

simpler, and the least frequent ones tend to be more complex in articulatory terms (the 

“principle of least effort”). These findings have more recently been confirmed by showing that 

easier phonological forms tend to be used and re-used, resulting in shorter words being more 

frequent and using sequences with higher phonotactic probabilities, while at the same time 

being associated with higher degrees of homophony and polysemy (Piantadosi, Tily, & Gibson, 

2012). Phonological measures of simplicity and complexity are subject to debate (see, e.g. 

Maddieson, 2009), but markedness theory has played a central role (see Trubetzkoy, 1939). A 

principle of least effort could apply to phonological neighborhood formation, where more 

complex (“marked") phonemes have less opportunity to form neighbors, possibly due to their 

complexity property and the fact that speakers try to minimize their articulatory or perceptual 

efforts. Preferential accumulation of more frequent and articulatorily easier phonemes in the 

phonological space of the mental lexicon would be the logical result of such a trend.  

 

3.4. Community structure 

Using the Louvain method of community detection in the giant component of the L1 American 

English phonological network (see Vitevitch, 2008), Siew (2013) identified numerous 

communities of various sizes with different characteristics pertaining to the phonological word 

form associations. She investigated a number of lexical characteristics, but her findings 

concerning phonemic word length, lexical frequency rate, and node degree are most relevant 

for the present study. Specifically, Siew found larger communities to consist of more frequent 

and shorter words. This is in agreement with Zipf’s law (Zipf, 1935) that states that word length 

and lexical frequency are negatively correlated. The overall structure of a language is thus 

reflected on the mesoscopic community level of a phonological network. Ravasz and Barabási 

(2003) have proposed an intriguing hypothesis that communities of a network are simply sub-

graphs of the original network, mirroring characteristics and dynamics of the global network 

on a local level. In this sense, the largest community is seen as analogous to the giant 

component of a network, with smaller communities mirroring the islands. In the case of the 

phonological network investigated by Siew (2013), this prediction holds true.  
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Generally, words of high lexical frequency are less common, as languages tend to consist of 

many low-frequency words (Zipf, 1935). The fact that high-frequency words are primarily 

found in large rather than small communities may indicate that not all areas of the giant 

component share an equal amount of cognitive processing (Siew, 2013). The high-frequency 

clusters presumably require more cognitive effort in lexical retrieval, as opposed to other parts 

of the phonological word form lexicon. Siew also found large communities to contain more 

high-degree nodes (i.e., denser phonological neighborhoods).  

3.4.1. Learner networks 

The community detection in the learner networks closely followed the method outlined by Siew 

(2013). First, modularity values Q were obtained for each of the learner networks in order to 

check the reliability of community detection. Next, the number of communities in each network 

(excluding singleton nodes) and in the giant component were calculated, and community sizes 

(including mean, standard deviation, and range) were computed. Average lexical frequency 

rate, phonemic length, node degree/neighborhood density, and clustering coefficients per giant 

component community and network were then calculated. The clustering coefficient was 

included in the present study to determine the effect of phonological neighborhood interlinking 

in network communities. Table 9 presents an overview of Q, communities and their sizes per 

learner and BNC network.  

 

 
Table 9: Modularity (Q), number of communities, and their sizes in the learner and BNC networks.  

 A1 A2 B1 B2 C1 C2 BNC 

Q 0.83 0.76 0.74 0.74 0.76 0.75 0.84 
Communities 
(no singletons) 

37 87 171 338 439 538 520 

GC 
communities 

11 10 11 12 11 11 6 

Community 
size:   
mean, sd, range 

9.1±12;  
38 

9.4±23.1; 
137 

8.9±34.6; 
315 

7.2±34.9; 
429 

6.6±34.2; 
406 

6.4±36.4; 
673 

4.9±22.5; 
375 

  

In general, Q values are quite high, indicating robust community identification in the 

phonological networks. Number of communities increased with increasing network size, but 

community sizes decreased as the networks grew larger. Community sizes were rather large in 

the learner networks as opposed to the BNC networks. The C2 and the BNC networks were 

quite similar in terms of the number of communities they house: 538 in the C2 network and 
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520 in the BNC network. Community sizes (i.e., number of words per community) are largest 

in the beginning networks and decrease substantially as learning progresses. The fact that 

standard deviations increase indicates that the variability in community sizes becomes more 

pronounced in larger networks.  

While community sizes were different between the networks (possibly related to network size), 

the number of communities per giant component was relatively constant. Only the BNC 

network of L1 users had fewer communities, presumably owed to the fact that the BNC giant 

component is very small (approximately 13% of the overall network). By comparison, the 

communities of the phonological network charted by Siew (2013) identified 17 giant 

component communities; average community size was measured as 383 (standard deviation of 

250). Methodological differences between the networks presented by Siew for American 

English and the present study for British English may explain this discrepancy.  

Giant component communities of the seven networks were further investigated and the graphs 

and results are presented in Tables 10 to 16 and figures 29 to 32 (see below, and see Appendix 

A for more graphs). Communities were classified as large when they contained a number of 

nodes exceeding the 75th percentile of all communities, as medium size when they contained 

nodes between the 25th and the 75th percentile, and as small when they contained less than the 

25th percentile in number of nodes.  

 

Figure 29: Community structure in the giant component of the A1 network. 
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In agreement with findings by Siew (2013), the larger communities of the A1 giant component 

contained words of higher lexical frequency, shorter phonemic length, and denser 

neighborhoods. Clustering was less pronounced in larger communities than in smaller.  

 
Table 10: Lexical communities of the A1 giant component.  

GC 
communities 

Lexical frequency Phonemic length Neighborhood 
density 

Clustering coefficient 

 Mean SD Mean SD Mean SD Mean SD 
Small (<25th 
percentile) 

440.3 74.6 3.7 0.8 3.2 1.6 0.45 0.4 

Medium 
(25th-75th 

percentile) 

441.1 71.7 3.5 0.8 4.2 2.3 0.36 0.3 

Large (>75th 
percentile) 

450.3 86.4 3.0 0.8 4.2 2.9 0.33 0.3 

 

In the A2 giant component, no small communities could be detected. Results of the remaining 

communities differed from Siew (2013) and larger communities contained fewer high-

frequency and generally longer words, as well as sparser neighborhoods with less node 

clustering (see Table 11 for details and Appendix A for corresponding graph). This inverse 

trend to the L1 American English network detailed by Siew continued for all consecutive 

proficiency levels up to C1, and higher lexical frequency rates and shorter words were 

primarily found in smaller network communities. Node degree and clustering coefficient both 

increased with community sizes for all networks (see Tables 11 to 14).  

 
Table 11: Lexical communities of the A2 giant component.  

GC 
communities 

Lexical frequency Phonemic length Neighborhood 
density 

Clustering coefficient 

 Mean SD Mean SD Mean SD Mean SD 
Medium 
(25th-75th 

percentile) 

414.9 81.8 3.4 0.8 5.8 3.9 0.33 0.3 

Large (>75th 
percentile) 

402.7 75.9 3.8 0.9 5 3.7 0.31 0.3 

 
Table 12: Lexical communities of the B1 giant component.  

GC 
communities 

Lexical frequency Phonemic length Neighborhood 
density 

Clustering coefficient 

 Mean SD Mean SD Mean SD Mean SD 
Small (<25th 
percentile) 

391.5 48.8 3.5 0.7 0 0 0 0 

Medium 
(25th-75th 

percentile) 

374.3 78.7 3.8 0.9 5.6 4.3 0.31 0.3 



 92 

Large (>75th 
percentile) 

380.2 78.3 3.7 1 6.4 5 0.29 0.2 

 
Table 13: Lexical communities of the B2 giant component.  

GC 
communities 

Lexical frequency Phonemic length Neighborhood 
density 

Clustering coefficient 

 Mean SD Mean SD Mean SD Mean SD 
Small (<25th 
percentile) 

391.5 48.8 3.5 0.7 0 0 0 0 

Medium 
(25th-75th 

percentile) 

357 72.2 4.5 0.8 4.5 3.3 0.31 0.33 

Large (>75th 
percentile) 

364.8 76.8 3.9 1 7.1 5.6 0.29 0.26 

 
Table 14: Lexical communities of the C1 giant component.  

GC 
communities 

Lexical frequency Phonemic length Neighborhood 
density 

Clustering coefficient 

 Mean SD Mean SD Mean SD Mean SD 
Small (<25th 
percentile) 

391.5 48.8 3.5 0.7 0 0 0 0 

Medium 
(25th-75th 

percentile) 

361.7 71.7 4.4 1.1 7.2 6.3 0.38 0.33 

Large (>75th 
percentile) 

356.5 77 4.1 1.1 6.7 5.5 0.28 0.26 

 

In the C2 giant component communities, only medium-sized and large communities could be 

detected, and here, both communities were equal in terms of lexical frequency, phonemic 

length, node degree, and clustering coefficient (see Table 15 and Figure 30).  
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Figure 30: Communities of the C2 giant component. 

 
Table 15: Lexical communities of the C2 giant component.  

GC 
communities 

Lexical frequency Phonemic length Neighborhood 
density 

Clustering coefficient 

 Mean SD Mean SD Mean SD Mean SD 
Medium 
(25th-75th 

percentile) 

350.3 76.8 4 1 7.1 6.8 0.29 0.27 

Large (>75th 
percentile) 

348.8 77.5 4.2 1.1 7 5.8 0.3 0.3 

 
 
3.4.2. BNC network 

The BNC network showed an unusually small giant component and a number of slightly 

smaller islands/communities surrounding it (see Figure 31).  
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Figure 31: Communities of the BNC network: giant component in the middle, and other larger 

islands/communities nearby (in color), surrounded by small islands and singleton nodes (in grey). 

 
Table 16: Lexical communities of the BNC giant component.  

GC 
communities 

Lexical frequency Phonemic length Neighborhood 
density 

Clustering coefficient 

 Mean SD Mean SD Mean SD Mean SD 
Small (<25th 
percentile) 

3.9 0.5 3.5 0.7 0 0 0 0 

Medium 
(25th-75th 

percentile) 

2.9 1.8 4.9 0.8 2.3 0.9 0.19 0.35 

Large (>75th 
percentile) 

3.1 1.7 3.9 0.8 7.3 5.1 0.32 0.24 

 

The community dynamics as outlined for the intermediate and advanced learner networks are 

similar in the BNC network: high-frequency, short words are primarily found in smaller 

communities, while denser and more tightly clustered neighborhoods are found in larger 

communities. Denser neighborhoods in large communities were also reported by Siew (2013), 

and this seems to be a robust measurement in relation to phonological community size. The 

present findings on lexical frequency and phonemic length, however, are not in agreement with 

Siew. Different databases used for the phonological network constructions could explain these 

differences. Alternatively, the fact that the advanced learner communities differ from what was 

shown by Siew could be explained by different word learning dynamics in L1 and L2 speakers. 
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Growth patterns in the differently sized communities of the learner networks may be able to 

shed more light on the discrepancy recorded here (see sections 5.1.2. and 5.4.).  

In the A1 and A2 learner networks, larger communities house more words of higher frequency, 

shorter phonemic length, and denser neighborhoods. As these words tend to be learned earlier 

in language acquisition, the initial build-up of the phonological network and its stratification 

into (giant component) communities could be geared towards greater robustness and efficiency. 

Early-acquired words form robust phonological communities, which may ultimately promote 

the growth of a cohesive language network necessary for rapid and efficient lexical processing 

(Siew, 2013). L1 and L2 word learning starts with an initial development of large phonological 

communities in the giant components of their respective networks. Once a small lexicon has 

been acquired, the statistics of word learning change so that larger communities receive new 

neighbors of lower frequency and longer duration, while at the same time forming denser and 

more tightly clustered neighborhoods. Through this dynamic, smaller communities become 

supplemented with new words which show characteristics of easier word learning (high 

frequency and short length). The community structure of the learner networks seems adjusted 

to fewer small communities and more medium-size to larger communities, ultimately leading 

to the presence of a multitude of similarly-sized communities in the giant component. This 

effect could be described in terms of inequality minimization in network communities, where 

the goal is to establish comparable communities. This is an optimal network design in terms of 

robustness (see section 4.2.2.).  
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4. Network growth algorithms 

4.1. Accumulation of links in networks 
Phonological networks grow as learners acquire new words. Growth in networks can follow 

various developmental paths, and growth patterns play a major role for network functionality 

and stability. How new nodes and links are added to a system and which changes are initiated 

to the overall structure of the network as it grows are fundamental questions for evolving 

networks.  

 

4.1.1. Random and scale-free network growth 

Early network models followed the assumption of random network design, where node size is 

fixed and the relationship between two nodes is seen as a random event that is independent of 

other links in the network (Janson, Luczak, & Rucinski, 2000; 2001). New nodes entering a 

system randomly select other nodes to which they can link. This paradigm had its roots in the 

Erdős–Rényi exponential network model (Erdős & Rényi, 1959) which was originally 

conceived to represent a static rather than a growing network. Pairs of nodes are connected at 

a specific probability, leading to a Poisson distribution of degrees. Thus, growth in random 

networks occurs in a uniform manner across the network (referred to as "uniform attachment 

model", see, e.g., Fotouhi & Rabbat, 2013; Lugosi & Pereira, 2019), with the expected degrees 

of nodes increasing over time (see Figure 32).  
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a       b  

  
Figure 32: Random network growth (R package “igraph”, function “erdos.renyi.game”).  

A variety of complex networks do not follow random distributions of growth but it is a common 

observation that some nodes have a large number of links, whereas many nodes have only a 

few links. Connections of world wide web pages, transportation systems, citation networks of 

academic works, scientific collaborations, among many other real-life networks, contain hubs 

(i.e., nodes with a very high number of links), with most nodes having just a few connections 

or none at all (Newman, 2001, 2003b). Such scale-free networks are not predicted to add new 

nodes randomly but according to degree. This process is called “preferential attachment” and 

it describes the phenomenon that high-degree nodes (i.e., those with many links) attract the 

majority of incoming new nodes (Barabási, 2009; Hébert-Dufresne, Allard, Marceau, Noël, & 

Dubé, 2011); low-degree nodes lose out and cannot grow. Preferential attachment forms the 

basis of scale-free networks and leads to highly-connected nodes (or hubs) becoming even 

more highly-connected over time, a rich-gets-richer dynamic or the so-called Matthews effect 

(Rigney, 2010). At the same time, nodes with few links become increasingly impoverished 

(“weak-gets-weaker” phenomenon). Figure 33 shows an example of network growth in a non-

random scale-free network.  
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a       b 

  
Figure 33: Scale-free network growth (R package “igraph”, function “barabasi.game”).  

 

An inherent feature of scale-free networks is the assumption that not all nodes are created equal 

(Barabási, 2009; Barabási & Albert, 1999). Some nodes are more attractive to attach to by 

virtue of their higher degree: a creator of a new website may choose to hyperlink other popular, 

high-traffic websites, thereby exercising a bias toward those websites that are already well 

connected. Some nodes display higher fitness and thus attract the majority of incoming new 

nodes: for instance, a nice person attracts more friends through their personality in a social 

network. Preferential attachment in growth can lead to the existence of hubs in networks. As 

new nodes appear, they tend to attach to highly-connected nodes, driving inequality of degree 

in the network over time (Bauer & Kaiser, 2017). There is a chronological aspect to growth 

benefits, with early-acquired nodes being able to increase their connectivity at the expense of 

late-acquired nodes. Contrary to random networks, in scale-free networks a small number of 

edges and hubs becomes immensely important for network connectivity. Thus, betweenness 

centrality of nodes is a meaningful variable to be measured in scale-free networks.  

 

4.1.1.1. Power laws in scale-free networks 

Barabási and Albert (1999) have suggested that preferential attachment causes networks to 

become scale-free, and node distribution will follow a power law. Generally, a network is 

considered scale-free if a fraction of nodes follows a power law distribution k–α, with α>1 

(Broido & Clauset, 2019; Newman, 2010). It has been proposed that power law distributions 
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are the only scale-free distributions in networks (Newman, 2005), and thus the terms “scale-

free” and “power law distribution” are often considered as synonymous (Milojević, 2010). 

However, this claim has been challenged by numerous researchers who posit that scale-

freeness can arise from other distribution types (see Li, Alderson, Doyle, & Willinger, 2005, 

for a short review). Clauset, Shalizi and Newman (2009) found that statistical tests rarely yield 

a power law distribution in networks, and Stumpf and Porter (2012) point out the suboptimal 

mathematical fitting commonly employed to determine power laws in networks.  

In general, a non-linear power-law relationship between node size and growth is not the norm, 

as there can be other mechanisms of preferential attachment (Redner, 2005; Sheridan & 

Onodera, 2018). Linear preferential attachment can be observed when a new node is twice as 

likely to attach to a node that has twice as many neighbors as compared to a competing node. 

Non-linear preferential attachment mechanisms, on the other hand, are less predictable and can 

lead to scenarios where a new node may be ten times as likely to attach to a node with twice as 

many neighbors. Over time, non-linear growth leads to a star-shaped network typology (also 

referred to as “hub-and-spoke” typology), where the “winner-takes-all” mechanism is 

prevalent and all incoming nodes will primarily attach to the large hub (Vlachos, Parousis-

Orthodoxou, & Simos, 2008; see Figure 34).   

 
Figure 34: Hub-and-spoke network typology resulting from a close approximation of the “winner-takes-all” 
mechanism of node growth.  

 

It has been suggested that costs associated with forming new links make a power law 

distribution less likely to occur (Amaral, Scala, Barthélémy, & Stanley, 2000). If nodes are 
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only able to accommodate a fixed number of overall neighbors, each new neighbor adds an 

overall cost. Such a restriction may well exist in phonological networks, where word length, 

phonemic repertoire, and phonotactic constraints could limit growth potential per node 

(Vitevitch, 2008). A word cannot grow phonological neighbors ad infinitum, as phonotactically 

legal segments are limited and the cognitive ability to discriminate words must be upheld by 

not clustering too many homophones and phonological neighbors together. In fact, power law 

degree distributions are not commonly found in phonological networks (including the learner 

networks constructed for the present study, see chapters 3 and 5). Cost-conscious growth can 

have consequences for assortativity patterns and/or the presence of lexical isolates (singleton 

nodes) in a phonological network (Vitevitch, 2008). A striking conclusion from scale-free 

networks is that many nodes interact with a limited number of other nodes, whereas a small 

subset of nodes interacts with a high number of other nodes. This places a high processing 

burden on the hub (or hubs). In the case of phonological networks, this interaction pattern leads 

to few words being characterized by high prominence and influence in the network, whereas 

the large majority of words have limited ability to exert influence on (or diffuse activation to) 

others.  

Two concepts are important in the context of network growth: evolvability and robustness of 

networks. The former refers to the ability of a network to change and adapt over time (including 

the incorporation of new nodes), while the latter concept refers to the ability to withstand 

failures.  

 

4.2. Evolvability and robustness of networks 

Per common definition, ‘evolvable networks’ are able to accommodate changes and 

adaptations, while ‘robust networks’ show a topological shape that makes them resilient to 

node and edge disturbances by keeping a stable connectivity even in the face of changes (see, 

e.g., Payne & Wagner, 2014). There is an intricate relationship between evolvability and 

robustness: a resilient structure may present challenges to evolvability of a network (Pigliucci, 

2008). Robustness and evolvability are generally opposing mechanisms – while the former 

promotes stability, the latter requires some degree of instability (Wagner, 2007). However, 
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robustness must also be seen as a result of the ability to adapt to changes through evolution 

(Chen & Lin, 2011), as only an adaptable system can maintain its own long-term survival.  

4.2.1. Evolving networks 

A debated question in the network sciences concerns the node locations that are most evolvable 

within a scale-free network. Hubs with many neighbors take a central position and their 

behaviors are influential across large parts of the network. This has led to the assumption that 

large hubs should be better insulated against changes, as the multitude of links exert conformity 

pressures within the word neighborhood and thus suppress change (Kim, Korbel, & Gerstein, 

2007). The more payoff there is for each individual node, the more likely it is to conform to 

the conservative standard upheld by its neighbors. In phonological network, payoff can be 

measured in activation – the more co-activation a phoneme/word receives, the more likely it is 

to keep its current (phonological) form and resist changes. Indeed, the degree of a node can 

correlate with the rate of change or evolvability (Alvarez-Ponce, Feyertag, & Chakraborty, 

2017). Therefore, changes (or mutations) are frequently expected to show up in more peripheral 

nodes. But network dynamics can also be different, depending on the type of network that is 

investigated. In some scale-free networks evolvability is actually facilitated by the existence of 

“perturbations” or “mutations” in hubs (Helsen, Frickel, Jelier, & Verstrepen, 2019). In genetic 

networks, a higher rate of mutations in central and highly connected nodes (i.e., hubs) does not 

lead to a breakdown of the network but actually offers evolutionary advantages by allowing a 

fitter phenotype to gain a foothold and spread through the network (Koubkova-Yu, Chao, & 

Leu, 2018). The essential and central role of hubs should theoretically lead to slower 

evolutionary rates (Alvarez-Ponce et al., 2017; Kim et al., 2007), however certain 

characteristics may predispose hubs more to being evolvable. In a phonological network of L1 

German, hubs were more likely to show one type of sound change, while non-hubs were more 

likely to incorporate a different type of sound change (Luef, in preparation). Characteristics of 

the specific hubs as well as of the specific changes that are introduced (type of adaptation) may 

both be relevant for the question of evolvability in phonological networks. Since hubs are more 

highly connected and regulate information flow to a greater degree within a network, their 

behavior has major implications for network connectivity.  

 

4.2.2. Robustness measures 

Network robustness is commonly investigated with percolation theory, which stems from 

statistical physics and mathematics and can be applied to the question of how networks can 
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break up into smaller, non-connected parts (Li, Zhang, Zio, Havlin, & Kang, 2015). It 

essentially tracks the gradual fragmentation of a network by removing nodes at random, all the 

while analyzing how their absence influences the integrity of the network (essentially the 

inverse of a percolation process, Barabási, 2016). Removal of few nodes does not have much 

of an impact; removal of a larger number of nodes can lead to a break-up of the giant 

component. A critical threshold value of the node removal variable fc is defined that cannot be 

exceeded or the giant component disappears (Barabási, 2016). Random node removal can 

induce a phase transition from a connected to a fragmented network; in fact, after a finite 

fraction of nodes (i.e., fc) are removed, a network break-up is imminent (Boccaletti, Latora, 

Moreno, Chavez, & Hwang, 2006). In scale-free networks, however, a large number of nodes 

can be removed with the network remaining largely intact. This unusual robustness if furthered 

by the fact that in those networks large hubs and giant components can be found (Barabási, 

2009; Cohen & Havlin, 2010). Scale-free networks have unusually large fc values (which is 

related to their degree distribution, Barabási, 2016), and are able to withstand an arbitrary level 

of node removal without suffering major failures. As random node removal does not consider 

node degree, the likelihood of a low-degree node being removed in a scale-free network is 

much higher than the likelihood that one of the very few high-degree nodes (hubs) is affected. 

Low-degree nodes contribute little to network connectedness and their removal has little impact 

on the overall network. As seen in Figure 35, in a network of 30 nodes (constructed with data 

from the B2 learner network of the present study), each node has a 1/30th chance of being 

selected for removal in the percolation theory context. The chances that one of the 26 small-

degree nodes is selected for removal is far higher than the chance that one of the three larger-

degree or the one hub node are affected.  
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Figure 35: According to percolation theory, each node has an equal 0.03 change of being selected for removal. 
This leads to a higher likelihood of small-degree nodes being selected as they are more numerous.  

 

Using R (“runif” function for uniform distributions), 1000 runs of probability simulations of 

the above network produced the following choices for random node removal (see Table 17): 

the probability of node 19 failing is rather low and the node is selected for random removal 

only 29 out of 1000 times.  

Table 17: Probability of node removal in network of 30 nodes in 1000 simulations.  

 Node 19 Node 4 Node 10 Node 13 Average 
other nodes 

Hits 29 24 45 41 33 
Probability of event 0.03 0.02 0.05 0.04 0.03 

 

In general, scale-free networks are very robust against accidental failure or random node/edge 

removal but may fall apart if targeted attacks against the large hubs are performed (Albert, 

Jeong, & Barabási, 2000; Newman, 2002b; in phonological/semantic networks: Stella, 2020). 

Network failures, due to a loss of connection between nodes, may lead to (substantial) increases 

in average path length, and this is an indication that the network functioning is compromised 

(Albert et al., 2000). Networks become more robust when node clustering is more evenly 

distributed and less tightly clustered in one giant component (Hu & Lee, 2020). What is known 

as ‘cascading failure’ in technological and biological networks is a chain reaction caused by an 

error (or failure) in one node that leads to larger, more far-reaching failures in connected nodes 

(Ren, Song, Yang, Baptista, & Grebogi, 2016). Large giant component sizes combined with 

4 

10 
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19 
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high clustering coefficients and short average path lengths heighten the risk of cascading 

failures (Hu & Lee, 2020). When a highly connected node in the giant component fails, a large 

number of links may be terminated and giant component diameter, as well as average path 

lengths, increase. 

A number of network centrality measures – chief among them degree centrality – are predictors 

for robustness, and networks with higher average degrees are more robust (Martin & Niemeyer, 

2020). As network centrality measures are inherently related to network size, robustness is 

predictably different at different stages of network growth. Zhao and Xu (2009) investigated 

network growth (in theoretical mathematical models) from the viewpoint of strengthening 

network robustness by comparing three different mechanisms of node addition: (1) add a new 

neighbor to an isolated node, (2) add a new neighbor to a low-degree node (i.e., one with few 

neighbors), and (3) add a new neighbor to a high-degree node (i.e., one with many neighbors). 

Results proved that the strategy to supplement low-degree nodes in a network provides the 

greatest robustness benefits for growing scale-free networks. Through this kind of growth, 

focussed clustering of nodes in a giant component is markedly reduced and more numerous but 

smaller, unconnected clusters appear, protecting the network better against failure.  

Phonological networks are prone to failure – diseases, cognitive decline, or temporary memory 

loss (e.g., forgetfulness, word-finding difficulties) can diminish phonological neighborhoods, 

with potential ensuing systemic failures in connectivity of the mental lexicon (Stella, 2020). 

Non-pathological temporary phonological processing impairments, such as speech errors or 

perception errors (i.e., ‘slips of the ear’), are also indicative of lexical processing failures, and 

studies on speech errors have produced evidence that phonological neighborhood effects are 

involved, most frequently dense neighborhoods (Harley & Bown, 1998; James & Burke, 2000; 

Vitevitch, 2002c; Vitevitch & Sommers, 2003). Vitevitch (1997) found that overly dense and 

overly sparse phonological neighborhoods can both impede lexical processing and lead to more 

malapropism-type speech errors (depending on the neighborhood frequency), indicating that 

lexical cognition functions best when phonological neighborhoods consist of a moderate 

number of neighbors. Thus, a general mechanism by which word growth in phonological 

networks is primarily concentrated in low-density neighborhoods (i.e., low-degree nodes) best 

fits the stability model outlined by Zhao and Xu (2009) and the predictions stemming from 

Vitevitch (1997). A more equal distribution of (phonological) resources among the giant 

component, islands, and singleton nodes provides best protection against failures (Estrada, 
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2006). Therefore, a prevalence of more numerous smaller components in a network indicates 

improved robustness and higher stability.  

 

4.3. Growing scale-free networks 
 

4.3.1. Barabási–Albert model 

Since the inception of preferential attachment, a variety of network growth models have been 

introduced that aim to supplement as well as challenge the concept of preferential attachment 

in aiming to better explain scale-free network growth. In the classical preferential attachment 

Barabási–Albert model, each node gets to increase its degree according to the equation 

pi = ki / ∑j kj 

where the probability that a new node links to node i (pi) is the degree of the node i (ki), divided 

by the sum calculated overall pre-existing nodes j (i.e., the denominator results in the overall 

number of edges in the network). Preferential attachment can be seen as highly probabilistic, 

with the probability of node attachment increasing with degree of a node (linear growth). For 

instance, a new node is twice as likely to connect to a six-degree node in the network than it is 

to a three-degree node. This is a simple degree-based attachment model that exemplifies the 

rich-gets-richer mechanisms in the network and incorporates a correlation of degree with age 

of nodes (Barabási, 2009). The fact that older nodes capture the majority of links is referred to 

as “first mover advantage” (Bianconi & Barabási, 2001).  

In their study of phonological network growth in Dutch- and English-speaking children, Siew 

and Vitevitch (2020a) identified preferential attachment (termed PATT) as the main growth 

mechanisms for the early stages of language acquisition (ages 3 to 6 years). However, at more 

advanced acquisition stages (over 6 years of age), the inverse variant of preferential attachment 

(termed iPATT) was shown to be the driving force behind phonological neighbor acquisition.2 

As their results showed, young children grew words by adding phonological neighbors to high-

density neighborhoods (high-degree nodes), but this growth mechanism was reversed when the 

 
2 It has to be noted that the authors did not calculate preferential attachment following the above network 
equation but used node degree as a proxy variable (see chapter 6 for more details).  
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children had already acquired a larger vocabulary at later stages of language acquisition. At 

this point, new words became primarily linked to words in lexical islands, which had few 

neighbors. To further explore these findings, Siew and Vitevitch (2020b) conducted a series of 

computational simulations of vocabulary growth algorithms, and their results confirmed that 

initial PATT followed by iPATT results in a network typology that resembles known 

phonological networks. Specifically, such a mechanism leads to a degree distribution that does 

not adhere to a power law and shows small network diameter combined with short average 

path length (Vitevitch, 2008). The iPATT strategy is analogous to a process known from 

theoretical network robustness studies – adding new neighbors to low-degree nodes helps 

strengthen a network’s resilience (Zhao & Xu, 2009). Since a large giant component makes a 

network more vulnerable, one strategy to minimize attack risk is to grow in a way that 

supplements low-degree nodes. Phonological networks follow this strategy, proving that 

robustness plays a role in network construction. Siew and Vitevitch (2020a) only found this 

dynamic in advanced stages of language acquisition, and this suggests that the lexicon of 

adult/advanced first-language learners is set up in a way to strengthen its resilience and counter 

vulnerabilities. At the initial stages of network construction (in child language acquisition), 

preferential attachment causes a “rich-club” topology where high-degree nodes gather most 

new links. These different strategies for vocabulary growth in beginning and advanced first-

language learners offer intriguing perspectives into second-language learning strategies. Here, 

too, the initial vocabulary build-up may be guided by preferential attachment, followed by a 

“poor-gets-richer” mechanism at higher proficiency stages.  

The original Barabási-Albert model was extended to include more mechanisms (besides from 

preferential attachment), resulting in a family of evolving network models that can better 

account for different phenomena that shape topology of real networks (Newman, 2003b). One 

extension of the Barabási-Albert model is the initial attractiveness model (Dorogovtsev, 

Mendes, & Samukhin, 2000a). Barabási (2016) gives the example of research paper citations: 

each new research paper has a finite probability to be cited at least once (see, e.g., Ying, 2011). 

In social networks, a new student arriving at a school makes at least one friend. Initial 

attractiveness can better model real-life situations where most unconnected nodes do acquire 

some first links (albeit few and only initially). In general, networks become more homogeneous 

if initial attractiveness plays a role. This mechanism reduces the size of hubs, and increases the 

probability of no-degree or low-degree nodes receiving a small share of the new nodes as 

neighbors. Initial attractiveness weakens preferential attachment to some degree, since it favors 
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growth in small-degree nodes. Its effect on high-degree nodes is negligible (Barabási, 2016). 

By raising the possibility of small-degree attachment, initial attractiveness leads to a small-

degree cutoff in the power law distribution.  

4.3.2. Fitness model 

While the preferential attachment model and its inverse variant can explain some phenomena 

observed in phonological networks, there may be other factors – besides from degree and node 

age – that influence the ability of a word to grow its neighborhood. A number of network 

growth models consider node-intrinsic qualities, with the internet search engine Google being 

a famous example: even though Google came late, it quickly became the biggest hub of internet 

search engines (Bell et al., 2017)). Here, young age and few previous links did not pose 

obstacles to Google acquiring the majority of future links. Thus, a consideration of node-

intrinsic properties that make a node in a network particularly prone to neighbor acquisition 

can add considerably to growth models. Node fitness refers to an accumulation of attributes 

that make a node prone to growth: a fit node acquires a larger number of new neighbors than a 

less fit one (Bedogne’ & Rodgers, 2006; Caldarelli, Capocci, De Los Rios, & Munoz, 2002). 

In principle, node fitness can be modelled after any quantifiable property or properties of 

individual nodes (Ferretti, Cortelezzi, Yang, Marmorini, & Bianconi, 2012) or depend on the 

properties of the neighboring node (Ferretti et al., 2012; Papadopoulos, Kitsak, Serrano, 

Boguna, & Krioukov, 2012), with the exact fitness qualities depending on the type of network 

that is charted. In phonological networks, factors that contribute to better retention or retrieval 

of a word could serve as aspects of node fitness. It is well-known that word length and lexical 

frequency are major contributors to better retention and faster and more accurate word learning, 

in addition to low phonotactic probability (e.g., Crossley, Skalicky, Kyle, & Monteiro, 2019; 

Ellis, 2002; Goodman, Dale, & Li, 2008; Storkel et al., 2006; Storkel, 2001).  

Fitness-based growth models attribute more growth to fitter nodes and assume that scale-free 

topologies arise from the unequal distribution of node fitness across networks (Garlaschelli & 

Loffredo, 2004). This conceptual approach is often referred to as the “fit-gets-richer” 

mechanism (Caldarelli et al., 2002) and shows that power-law distributions can arise from 

factors other than preferential attachment (Mendes & Da Silva, 2009). While the majority of 

fitness growth models focus on higher growth in fitter nodes, a related mechanism has been 

suggested by Bell and colleagues (2017), the “avoidance of the weakest links” dynamic. Such 

growth occurs in a way that minimizes “maximum exposure to node unfitness” (p. 1), 
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essentially providing each node in a network with a minimum of fitness. A bias of new nodes 

to attach to the least-fit nodes in the system could serve as evidence for that.  

Hybrid models combine node fitness and preferential attachment to model network growth. A 

prominent example is the Bianconi-Barabási model, following this equation:  

pi = ηiki / ∑j  ηjkj 

where the probability of a new neighbor at node i can be calculated by taking into account the 

fitness of the node (ηi) and the fitness of the other nodes in the network (ηj). If two nodes have 

the same fitness, the one with the higher degree will be more likely selected. If two nodes have 

the same degree, the one with the higher fitness score will excel (Bell et al., 2017). In the 

Bianconi-Barabási model, a young node can grow faster than an older one, overcoming the age 

disadvantage (induced by the first-mover-advantage) through higher fitness.  

As mentioned above, measurements of fitness can vary. Node-intrinsic qualities are different 

depending on the type of network under investigation. One can also investigate growth rate 

itself as a fitness measure. Here, neighborhood growth of words is tracked over a period of 

word learning, and those words that acquire the most links overall are classified as the fittest 

nodes. This second approach captures a network’s “collective perception of a node’s 

importance relative to the other nodes” (Barabási, 2016: p. 208) and provides a measure of 

evolvability by comparing a node’s evolution to that of other nodes in the network. The fittest 

nodes can then be investigated in terms of their intrinsic qualities, and conclusions can be 

drawn as to what constitutes node fitness in a specific network.  

A fitness-related issue in network growth is the Bose-Einstein condensation, a specific 

behavior of subatomic particles in quantum gas that can be mapped to networks (Bianconi & 

Barabási, 2001). The original Bose-Einstein condensation (Bose, 1924; Einstein, 1924) 

describes a specific energy state of gas particles, where a group of atoms is cooled close to 

absolute zero, at which point the atoms begin to clump together and enter the same low energy 

states. They are not able to take on more energy at this point, regardless of how much Bose 

liquid is being added (see Glazer & Wark, 2001). The only particles taking on the incoming 

energy are the few ones with high energy levels. This principle can be useful as it describes the 

transition process from a fit-gets-richer to a winner-takes-all growth mechanism, a 
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phenomenon in certain networks (Barabási, 2016). By mapping network nodes to energy levels 

and network links to particles, Bianconi and Barabási (2001) demonstrated that networks can 

undergo Bose-Einstein condensation. The process predicts two distinct phases: a scale-free 

phase of fit-gets-richer dynamic followed by the Bose-Einstein condensation where all network 

nodes crowd to the lowest growth level, with a few prolific (fittest) nodes capturing a finite 

fraction of the new links and turning into super-hubs. At this point, scale-freeness is lost and 

the dominant dynamic can be described as winner-takes-all (Barabási, 2016). Whether a 

network can undergo a Bose-Einstein condensation depends on the fitness distribution, where 

a few fittest nodes and a majority of less fit nodes compose the network. Developments of 

fitness distribution over stages of language learning can give insights into a possible Bose-

Einstein condensation in phonological networks of ESL learners. Figure 36 shows a Bose-

Einstein condensation in a hypothetical network.  

 

Figure 36: Bose-Einstein condensation in a network with two super-hubs taking all incoming links.  

 

 
4.3.3. Internal linking: “double preferential attachment” 

Another special network dynamic can result when new neighbors have the effect of linking 

together two pre-existing nodes in a network that were not neighbors of each other previously. 

In such a case, there are two (interlinked) mechanisms by which new links are established in 

the network: (1) arrival of new nodes and (2) linking of existing nodes. In phonological 

networks, this commonly happens during word learning (see Figure 37). In English beginners 

(A1 proficiency level), “all” and “feel” are not linked neighborhoods, whereas in slightly 

advanced learners (A2 proficiency level), the two neighborhoods are linked by the introduction 
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of the new word “fall”. Different predictions concerning co-activation ensue (see section 2.3.) 

on the effects of the clustering coefficient, average path length, and separate network 

components on lexical processing).  

 
A1 

 
A2 

 

 
Figure 37: The introduction of new words can lead to new neighbor formation in pre-existing words in a phonological 
network (data from the A1, above, and A2, below, networks of the present study).  

The internal linking mechanism can lead to so-called “double preferential attachment” 

(Ghoshal, Chi, & Barabási, 2013), which is the probability that an internal link connects two 

high-degree nodes network-internally. In the A2 network, neighborhood density is quite high 

for “all” and “feel”, making them more likely to become linked by the introduction of a new 

word if double preferential attachment is the driving force. Double preferential attachment 

generally leads to more heterogeneity in a network by making larger hubs larger (through 

linking them), which results in small-degree nodes losing out in terms of growth potential 

(Barabási, 2016). It is also possible that internal links are not governed by preferential 

attachment but by “random attachment”, where internal links are established on a random basis 

(Ghoshal et al., 2013). In such a case, networks would become more homogeneous in terms of 

node-degree distribution.  
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4.3.4. Aging effects and declining networks 

Real networks are often characterized by node removal; in the case of phonological networks, 

that is essentially forgetting a word due to cognitive decline or speech errors (Stella, 2020). If 

node disappearance outpaces node arrival, the network naturally shrinks (for instance in 

neurodegenerative disease or when a learner stops using a language). So-called ‘declining 

networks’ lose nodes at a higher rate than they add new ones. A mechanism called “preferential 

survival” has been suggested to account for node loss, with high-degree nodes being better 

equipped to survive a round of node deletions (Kong & Roychowdhury, 2008). In some 

networks, new nodes may be added at the same rate as old ones are removed, in which case the 

network may lose its scale-free nature (Saavedra, Reed-Tsochas, & Uzzi, 2008). Here, the 

question is also whether nodes are removed at random, or whether there is a system to node 

removal. For instance, low-degree nodes may be more prone to failure or loss, as shown in 

lexical networks of aphasics (Stella, 2020). Co-existence of node removal with other network-

internal processes can lead to complex interactions, such as was shown for the declining 

network of the garment industry in New York City, where the giant component shrunk 

considerably but the degree distribution was not affected by this (Saavedra et al., 2008). In the 

Saavedra et al. study, the declining network preferentially lost low-degree nodes (weak-gets-

weaker phenomenon), but the new nodes that occasionally arrived followed the rules of 

preferential attachment. This led to a tight clustering of the shrinking number of nodes in a 

giant component, which overall shrank because node removal exceeded node arrival.  

The so-called aging effect in networks relates to node disappearance when nodes have a limited 

lifetime (Sun, Michaels, & Mahadevan, 2020). This is the case for collaboration networks of 

scientists, when the professional life span of the scientist is limited by the length of their 

employment or active publishing period. The nodes here are not removed suddenly but 

gradually fade away through an aging process: scientists start collaborations early in their 

academic life, then go through a period of higher productivity that may be characterized by a 

multitude of collaborations, and then toward the end of their career they slowly end 

collaborations, until they retire and stop collaborating altogether, at which point they exit the 

network. Different dynamics may be at play in networks showing aging effects: new nodes 

may preferentially connect with older ones in the network (thereby accelerating preferential 

attachment), new nodes may show a tendency to connect with young nodes in the network, or 

each new node may attach to the previously introduced one, turning the network into a chain-

like structure (Zhu, Wang, & Zhu, 2003).  
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4.3.5. Accelerated growth 

Networks may also show accelerated growth or even hyper-accelerated growth, in addition to 

decelerating growth (Gagen & Mattick, 2005; Mendes, 2003). Accelerated growth is defined 

as a super-linear increase in nodes in a network over time (Liu et al., 2019) and it occurs for 

instance with scientific collaboration networks or the world wide web (Dorogovtsev & 

Mendes, 2003). Popular network growth theories calculate the probability that a new node 

attaches to an existing one by taking into account the degree of the existing one (see, e.g., 

Albert & Barabási, 2002; Barabási & Albert, 1999), essentially defining growth as a linear 

process. Many real networks, however, do not follow this rule but show growth rates exceeding 

the linear predictions. Here, the accelerated growth over a period of time eventually leads to 

the creation of super-hubs.  

 

4.3.6. Local-world networks 

The phenomenon of local worlds captures the notion that networks are divided into sub-groups 

(i.e., the communities), where members show more feature similarity to one another than to 

other nodes in the network (Shai, Stanley, Granell, Taylor, & Mucha, 2017). Local-world 

evolving network models have been developed to account for the fact that in many networks 

new nodes can only attach to a specific part of the network (Li & Chen, 2003; Li, Jin, & Chen, 

2003). Each new node can access a sub-part of the network where the group of pre-existing 

nodes show certain similar characteristics to the new node. For instance, only certain countries 

trade with one another, thus a new shipping company can only establish routes between a set 

of predefined countries, rather than between any two random countries globally that participate 

in shipping. Local-world models are suited for phonological network investigations: a new 

word form can only attach to phonologically similar word forms, i.e., to a group of words 

sharing similar phonotactic combinations but not to any random node in the whole network. 

There are different ways to conceptualize phonological sub-groups: either through community 

detection in the phonological networks, where certain communities are the natural attachment 

points for new words (see Cong & Haitao, 2014; Siew, 2013), or by finding all possible 

neighbors to which a new node can attach and group them as the “potential attachment points” 

(the so-called lure-of-the-associates mechanism, Hills et al., 2009b). The first approach defines 

a larger phonological neighborhood, where a new node can find connection points. The second 

approach zooms in on specific connection points but disregards the larger phonological 

neighborhood to which those points belong. This is schematized in Figure 38. The different 

colors indicate phonological communities, created through greater phonological similarity 
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among its member (i.e., community detection, see Yang, Algesheimer, & Tessone, 2016), and 

they can serve as local-world communities in local-world networks. Alternatively, the actual 

attachment points for a new node can serve as the local-world community, since they represent 

all the attachment possibilities that exist for a new node. If the new word “hit” were to enter 

the system, its community membership (orange) or its link to individual nodes (“hat”, “hot”) 

could become the decisive feature.  

 

Figure 38: In the A1 learner network, the new word “hit” has one network community (orange) but another 
community of individual connection points (“hot”, “hat”, i.e., the lure-of-the-associates dynamic). 

 

The following equation, adapted from Li and Chen (2003), calculates the preferential 

attachment of node i by taking into consideration the local sub-group of nodes (LOCAL) to which 

an incoming node can potentially attach.  

pi = ki / ∑j∈LOCAL kj 

Local-world connectivity has major implications for phonological networks. First, it 

recognizes that a node has a limited ability to attach in the network, since only a small number 

of the overall nodes are phonologically predisposed for anchoring. Second, the local-world 

effect generally improves robustness of scale-free networks (Tang & Liu, 2014), an important 
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criterion for cognitive network construction (Walsh & Gluck, 2015) and paramount for 

phonological networks (Siew & Vitevitch, 2016; Stella, 2020). Local-world effects likely occur 

in combination with other network-relevant mechanisms, such as fitness dynamics (including 

the Bose-Einstein condensation), internal linking, or accelerated growth, among others. These 

mechanisms may act out locally in node communities rather than across the entire network.  

 

4.3.7. Uniform and preferential attachment 

Another group of network growth models, the hybrid random networks (HRN), combines 

preferential attachment with uniform attachment (as known from random network growth, see 

above). Here, the probability of new node creation is taken into account when assigning it to 

the preferential or uniform attachment mode (Wang & Zhang, 2021), as well as the age of 

nodes (with younger nodes becoming attached uniformly, see A. Pachon, L. Sacerdote, & S. 

Yang, 2018). Classical preferential attachment models predict all nodes in a network to behave 

in the same way and attach to the highest-degree node. Models where this strict assumption is 

relaxed has arisen recently, and they allow new nodes to attach to a network following a 

combination of uniform and preferential attachment (Cooper & Frieze, 2003; L. Pachon, L. 

Sacerdote, & S. Yang, 2018). While there are different ways to calculate this combination 

mathematically (see, e.g., De Ambroggio, Polito, & Sacerdote, 2020), the following equation 

represents a simple compound variable  

pi = UAiki / ∑j UAjkj 

with uniform attachment “UA” denoting the proportion of a node within its network (for 

instance, each node in the A1 network has a proportion of 1/606th). UA and degree of a node 

(k) are computed proportionally to the sum of all nodes, with their UA values and degree 

yielding the hybrid uniform/preferential attachment variable. Preferential attachment of node i 

and random attachment probability – the proportion of node i in the network – are combined.  

The introduction of uniform attachment leads to lighter tail distributions in the networks than 

what would be expected if preferential attachment was the main mechanism. An important 

consideration for node growth in networks is the possibility that a new node does not have to 

attach to a pre-existing one, as implied by scale-free and most other network models (e.g., 

Barabási & Albert, 1999). Rather, a new node may enter the network as a singleton node 

without any immediate neighbors. Phonological networks are characterized by a large 
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proportion of singleton nodes (approximately half of the network, see Gerometta, 2015; 

Vitevitch, 2008, and the results of the present study), rendering a mechanism to add nodes 

without attachment an important theoretical consideration. Some random network growth 

models can account for singleton nodes entering the network (Callaway, Hopcroft, Kleinberg, 

Newman, & Strogatz, 2001). New emerging types of hybrid growth models combine elements 

from random network growth with preferential attachment and can potentially explain how a 

large number of singleton nodes can enter a network, while at the same time accounting for 

preferential attachment playing a role (e.g., Anwar, Yousuf, & Abid, 2021; Banerjee & 

Bhamidi, 2021; Callaway et al., 2001; Shao, Zou, Tan, & Jin, 2006; Wang & Zhang, 2021; 

Weaver, 2015).  

In general, most networks are characterized by a complex combination of growth processes, 

including preferential attachment, random attachment, and local-world effects, among others. 

The majority of research in network science recognizes this fact and new models combining 

various of the above-mentioned network growth mechanisms are constantly being developed 

(e.g., Bauer & Kaiser, 2017; Bedogne’ & Rodgers, 2006; Bell et al., 2017; Callaway et al., 

2001; Dorogovtsev et al., 2000a; Ferretti et al., 2012; Pham, Sheridan, & Shimodaira, 2015).  

 

4.4. Growing phonological networks 

A small but growing body of literature has focussed on network growth theories regarding 

semantic and phonological word forms in the mental lexicon of first-language users. The 

pioneering study in the field of semantic network growth was conducted by Steyvers and 

Tenenbaum (2005) who established a correlation between word learning probability and 

connectivity of words (i.e., degree) in a semantic network. They identified a process akin to 

preferential attachment responsible for word growth in children, where words were more likely 

learned if they connected to already known words in a child’s current lexicon, leading to the 

scale-free nature observed in the semantic network (Beckage & Colunga, 2019). The 

preferential attachment dynamic in semantic growth was also shown in paired-associate-

learning tasks (memorizing word pairs) where well-connected words (=high-degree words) in 

the semantic network were recalled/recognized faster and more accurately (Mak & Twitchell, 
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2020). Later research on semantic network growth conducted by Hills and colleagues (Hills, 

Maouene, Riordan, & Smith, 2010; Hills, Maouene, Maouene, Sheya, & Smith, 2009a; Hills 

et al., 2009b) did not confirm these initial findings but identified a growth mechanism called 

“preferential acquisition” as the main driver for word learning in L1 English-learning children. 

As opposed to preferential attachment, preferential acquisition takes into account the 

connectivity of a semantic network in the fully-developed adult lexicon (see Hills et al., 2009b). 

When an evolving network represents an earlier stage of a known, fully-grown network, 

conclusions can be drawn as to the developmental trajectory from the earlier to the final 

network. In language learning this is naturally the case. The child’s growing lexicon can be 

compared to the adult lexicon, and in fact, growth in the child’s lexicon is strictly channelled 

toward the adult lexicon. The two linguistic growth algorithms of preferential attachment and 

preferential acquisition reflect fundamentally different concepts of lexical growth: preferential 

attachment suggests that future word knowledge is shaped by the learner’s current knowledge, 

whereas preferential acquisition suggests that it is shaped by the input. In the case of 

preferential attachment, a new word links to a known word with many neighbors in the 

learner’s current lexicon; in the case of preferential acquisition, a new word links to a highly-

connected word in the adult lexicon of a language. As shown by the works of Hills and 

colleagues, children growing up in that linguistic environment are more likely to learn words 

that have more neighbors in the adult L1 English lexicon than words with low connectivity. In 

addition, Hills et al. (2009b) tested the network growth measure called lure-of-the-associates, 

which predicts that new words that can find many semantic neighbors to which they can 

potentially attach will be learned more efficiently than new words which have few semantic 

neighbors in a lexicon. This measure essentially counts the number of neighbors a new word 

can find in the existing lexicon of the learner but disregards information about how many 

neighbors these words have (which is the core feature of preferential attachment). The 

conclusion reached by Hills et al. (2009) that preferential acquisition is the most influential 

mechanism by which English-speaking children learn words in their first language was not 

supported by a later study by Beckage and Colunga (2019) investigating semantic and 

phonological network growth in first language acquisition of English-learning children. Rather, 

they found lure-of-the-associates to be the most influential factor for network growth. In 

general, their study was focussed on individual word learning of children with the result that 

learners were found to use different strategies for word learning, encompassing all three 

network growth algorithms (preferential attachment, preferential acquisition, lure-of-the-

associates) in idiosyncratic ways.  
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Siew and Vitevitch (2020a) adapted the three growth measures from Hills et al. (2009) in the 

following way for their study growth of the L1 American English phonological network: “lure 

of the associates” came to represent the phonological docking words that new words encounter 

in a network, thus the phonological word forms to which new words can potentially attach. 

“Preferential attachment” took into account the phonological neighbors (=degree in the known 

lexicon of the learner) of each potential anchor word, while “preferential acquisition” counted 

the number of neighbors of words in the adult lexicon. Phonological networks were constructed 

for each vocabulary acquisition stage of children aged 3 to 9 years, and successive networks 

were compared in order to detect the node locations of greatest growth during the different 

vocabulary growth stages. Results showed that preferential attachment was the dominant 

mechanism in the early stages of word learning, with a process called “inverse preferential 

attachment” taking over in the later stages. The authors suggested that this could reflect an 

organizational structure of the mental lexicon where crowded phonological spaces cause delay 

in word retrieval and are thus avoided when the lexicon has reached a certain threshold word 

count (Siew & Vitevitch, 2020a).  

In a similar vein, Fourtassi, Bian and Frank (2020) constructed phonological (and semantic) 

networks of children’s language acquisition in ten languages, including English. The study 

focussed exclusively on nouns and dealt with rather small networks (word counts ranged 

between 180 and 339 words). Due to the rarity of one-segment noun neighbors in the networks, 

the authors opted to include a 2-segment phonological distance score. These significant 

methodological differences prevent direct comparison with Siew and Vitevitch (2020b) and 

the present study. Fourtassi and colleagues calculated comparable measures of “preferential 

acquisition” and “preferential attachment” as Siew and Vitevitch, but they found preferential 

acquisition to be the main predictor for word learning across all ten studied languages. 

Specifically, well-connected words (=high-degree nodes) in the adult lexicon led to better word 

learning in children exposed to a language. Contrary to Siew and Vitevitch (2020b), 

preferential attachment had no effect. Fourtassi and colleagues suggest that the ambient 

learning environment has a larger impact on word learning in children than statistical 

algorithms based on the children’s current vocabulary, a finding in agreement with Hills et al. 

(2009). An explanation given by Fourtassi and colleagues is that caregivers put more emphasis 

on words which are connected in their own language, thereby increasing saliency and 

furthering the learning process in the child (also see Carlson et al., 2014). An interesting 

addendum provided by Fourtassi and colleagues (2020) was a cross-linguistic correlation of 
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degree density in the ten languages. For instance, if the word dog is highly connected in the 

English lexicon, is the French word for dog, chien, also highly connected in the French lexicon? 

The answer was clearly ‘no’, indicating that phonological connectivity is different across 

languages and learners have to acquire knowledge about phonological neighborhood density 

in each new language they learn. This carries major implications for second language learners 

who cannot rely on neighborhood statistics from their first language. While it is conceivable 

that semantic networks show more overlap in node degree across different languages (a 

question not explored by Fourtassi et al., 2020), phonological networks can differ quite 

drastically in phonological neighborhood density. Language typology may play a role, since 

segmental probabilities and frequencies are important determiners of phonological 

relationships.  

Recently, some researchers have opted to include a combination of semantic and phonological 

networks in so-called multiplex networks (Levy et al., 2021; Stella, 2020; Stella, Beckage, 

Brede, & de Domenico, 2018). Here, two (or more) layers of networks are linked with one 

another, and information spreading between the different networks can be tracked. While new 

insights can potentially be gained into word representations in the mental lexicon, this approach 

is not comparable to the single-layer networks of semantic or phonological networks. Multiplex 

networks address specific research questions that combine information on phonological and 

semantic word representations but remain limited by the fact that (in the English language) 

phonology and semantics are rarely related. Cases of polysemy where one phonological word 

form can have multiple meanings, such as [nəʊ] (i.e. “no”, “know”), are special instances of 

activation spreading between phonological and semantic representations that can be observed 

in speech production (in aphasia, see Castro & Stella, 2018; Castro, Stella, & Siew, 2019). The 

role of homophones in language learning becomes elevated by these multiplex studies, and the 

implications of that for lexical access theories are unclear at the moment. Current theories of 

lexical processing can hardly account for a combinatorial effect of semantic and phonological 

similarity. An intriguing application of multiplex networks to second language learning would 

be the plotting of different languages of a speaker (first and other learned languages) on 

different layers of either semantic or phonological networks. Such an investigation could 

provide insights into the question of how the first language can prime or facilitate word learning 

in a second language, without the limitation of having to overcome conceptual differences 

between semantics and phonology. It is a well-established fact that meaning-based assumptions 

about words derived from the first language have an impact on another, learned language (e.g., 
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Moreira & Hamilton, 2010). Similarly, phonological similarity between the first and the second 

language (or third language) have an influence on one another and can predict word learning 

(Marecka et al., 2021). Making visible and analyzable interactions between L1 and L2 in a 

multiplex network could yield interesting dynamics in relation to phonological or semantic 

transfer effects.  

Chapter 5 will address the role of network growth algorithms in the measured vocabulary 

growth of the learner networks outlined in chapter 2. Growth rates of different network parts 

and communities and their distributions will be presented, followed by regression analysis to 

test the statistical significance of the investigated growth algorithms.  
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5. Growth of learner networks 

 

5.1. Growing nodes in the learner networks 

This chapter assesses growth in the ESL networks, its relation to network parts, communities, 

and individual nodes, and additionally, the contributions of various network growth algorithms 

and network centrality measures to growth patterns at different proficiency stages.3  

 

5.1.1.  Network parts 

Growth was shown to take place primarily in the giant component of all proficiency levels, 

with singleton nodes displaying the slowest growth rate in all networks (see Figures 39a-e; 

reported tests are significant Kruskal-Wallis ANOVAs at p>0.05, with post-hoc Wilcoxon 

signed rank tests). In the beginning stages of language learning, giant component and island 

growth was rather pronounced but weakened as proficiency increased. This is a reflection of 

the macro-analytical trend to reduce giant component size over the course of language learning 

(see section 3.3.2.).  

 

 

 

 

 
3 Growth levels will refer to proficiency levels from which growth starts, for instance “A1 growth” references 
the vocabulary growth taking place to get from the A1 to the A2 level. 
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Figure 39a-e: Word growth (i.e., addition of new phonological neighbors) according to network parts in the 
learner networks. 
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Distributions of growth rates across the proficiency levels followed more egalitarian tendencies 

in the earlier networks (see Figure 40). Increasing inequality of growth opportunities became 

apparent starting at the A2 network, with the advanced learner networks being characterized 

by a large bias in the growth distribution, where a small number of nodes continued to grow, 

while the large majority of the nodes did not.  

 

 
Figure 40: Growth distribution across the proficiency networks (heavy tails were shortened). Proficiency levels 

indicate starting point of growth development, i.e., ‘A1 growth’ refers to growth occurring between the A1 and 
A2 level. 

 
 

Table 18 lists the results for the best approximations of growth distributions across the 

proficiency levels.  

 
Table 18: Distribution types of growth spurts in the learner networks.  

 A1 A2 B1 B2 C1 
Best-fitting distribution Multimodal  

(dip test p: 
<0.001) 

Multimodal  
(dip test p: 

<0.001) 

Multimodal  
(dip test p: 
<0.001) 

Multimodal  
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<0.001) 
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The multimodal distributions indicate that each proficiency has more than one growth spurt 

mode and growth is not exclusively focussed on specific nodes. Table 19 lists the highest-

growth nodes for each proficiency level and overall, during the course of ESL learning (from 

A1 to C1).   

Table 19: Raw node growth rates of the highest-growth nodes per proficiency level (and overall).  

A1 A2 B1 B2 C1 
Overall 
(A1-C1) 

WILL: 12 SEA/ SEE: 9 SEEM: 9 HOLE/ WHOLE: 4 DEEP: 6 FOR/ FOUR: 23 

EIGHT: 9 FALL: 8 SCENE: 7 SIGN: 4 FOUR/ FOR: 6 RAIN: 19 

KICK: 9 FOUR/ FOR: 8 SEAT: 7  KEEP: 6 EIGHT: 18 

SIT: 9 FALL: 8 SELL: 7  DOOR: 5 WEAR/ WHERE: 18 

WHY: 9 LOW: 8 DEAR: 6  LAW: 5 WILL: 18 

HAIR: 8 BEAN/ BEEN: 7 FACE: 6  LEAD: 5 FAIL: 17 

THEIR/  THERE: 8 MIGHT: 7 HEAD: 6  MORE: 5 FEEL: 17 

WEAR/ WHERE: 8 RIGHT/ WRITE: 7 LIP: 6  NOR: 5 SEA/ SEE: 17 

 SHORT: 7 RAIL: 6  PAW: 5 WHY: 17 

 WAR: 7 RAISE: 6  POUR: 5 PAIR: 16 

  SALE/ SAIL: 6  RED: 5 PAY: 16 

  SET: 6  SHEEP: 5 SIT: 16 

  TELL: 6  SHORE: 5 WHITE: 16 

    WAR: 5 BEER: 15 

    YOUR: 5 BUT: 15 

To better understand which node characteristics contribute the most to node growth, a linear 

mixed effects model using the R package “lme4” and the function “lmer” (Bates, Maechler, 

Bolker, & Walker, 2014) was calculated to analyze how node growth (relative to network size) 

is affected by a number of fixed effect variables, namely phonemic length, lexical frequency 

rate, phonotactic probability, network centrality measures (degree centrality, closeness 

centrality, betweenness centrality, clustering coefficient, eigenvector centrality) and their 

weighted counterparts (weighted degree centrality). As random effects, “word” and 

“proficiency level” were entered into the model. Full models were compared with a 

corresponding null model lacking the fixed effect under investigation using a likelihood ratio 

test and the significance of the individual fixed effect was determined (Dobson, 2002; 

Forstmeier & Schielzeth, 2011). All variables were z-scored before being entered into the 

analysis.  
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The variables “degree” and “weighted degree” were correlated at r=-0.9 and combined as an 

interaction variable. Therefore, the first principal component (PC1) was computed via principal 

components analysis in order to combine the two variables into one that can account for the 

majority of the variance (see, e.g., Salem & Hussein, 2019). The first principal component 

(PC1) of “degree” and “weighted degree” was correlated at -0.71, with PC1 explaining 99% of 

the variance in the data. The computations were performed with R and the function “prcomp”. 

Due to high correlations with PC1, the two variables “betweenness centrality” (r=0.64) and 

“eigencentrality” (r=0.73) were removed from the models. The rest of the variables showed 

variance inflation factors of <1.8, as calculated with the R package “car” and the function 

“vif”), and collinearity did not appear to be an issue (Field, 2005; Quinn & Keough, 2002). 

The following pseudo code was used for the model:  

growth rate ~ lexical frequency(log) + phonotactic probability + closeness centrality + clustering 
coefficient+ PC1:degree & weighted degree+(1|word)+(1|proficiency level) 

Results of the linear mixed models showed that node growth was primarily shaped by 

phonemic length, lexical frequency rate, phonotactic probability, clustering coefficients, and 

degree/weighted degree of a node (see Table 20).  

 
Table 20: Results of the linear mixed model analysis.  

Predictors Estimate SE t χ2 

 
p 

(Intercept) 0.062 0.035 1.77   
Phonemic length -0.0055 0.0008 -7.26 50.36 <0.001*** 
Lexical frequency 0.0034 0.0007 5.27 27.69 <0.001*** 
Phonotactic 
probability 

0.0019 0.0006 3,17 10.02 0.002*** 

Closeness centrality  -0.0003 0.0006 -0.46 0.21 0.65 
Clustering coeff. 0.0075 0.0007 10.45 107.85 <0.001*** 
PC1: Degree, 
weighted degree 

-0.0051 0.0006 -9.09 51.04 <0.001*** 

 

For better illustration of the results (see figures below), growth rates were grouped according 

to how many neighbors each node grew from one proficiency level to the next. Number of 

neighbors were scaled to ensure comparability across the networks and different growth rates: 

words which grew a number of phonological neighbors above the 75th percentile were defined 

as “high” growth rate nodes, words that grew neighbors between the 25th and 75th percentile 

were defined as “mid” growth rate, and those that grew below the 25th percentile were defined 
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as “low” growth nodes. Nodes that grew no new neighbors at all were classified as “zero” 

growth nodes.  

Per linear mixed model analysis, the highest-growing nodes were of shorter phonemic length 

in all proficiency levels (see Figure 41). As the lexica of the beginning stages (A1, A2) 

generally contained shorter words, the effect of phonemic length on growth was less 

pronounced at those levels than in the advanced learning stages (C1). It has to be kept in mind 

that the raw numbers of phonological neighbor acquisition were the highest in A1 and A2 (up 

to 12 neighbors per word or twice as much as at the C1 level, see Table 19 above).  

 
Figure 41: Standardized node growth in relation to phonemic length and per proficiency level. Kruskal-Wallis 

test statistics indicated by asterisks (within-proficiency-group comparisons). 

 
 

Concerning lexical frequency rate, the highest-growing nodes came from the highest lexical 

frequency class (see Figure 42), and this was true for each proficiency level. While the A1 

vocabulary showed above average lexical frequency rates, there was a general proficiency-

wise progression toward lower lexical frequency rates for low-growth nodes and higher lexical 

frequency for high-growth nodes (which was most pronounced at the C1 level).  
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Figure 42: Standardized node growth and lexical frequency rate of words. Kruskal-Wallis test statistics 

indicated for each proficiency level. 

 

Phonotactic probability had different effects on node growth at different proficiency levels (see 

Figure 43). High phonotactic probability aided phonological neighbor acquisition at the 

beginning A1 level but had the opposite effect at later proficiency stages. Node growth and 

phonotactic probability were only statistically significant in the levels A2 and C1, with the 

higher growth classes being characterized by low phonotactic probability. When few words 

exist in the lexicon, highly probable phonotactic combinations can amass without impairing 

word discriminability; at advanced stages of word learning, when the lexicon contains a large 

number of words, the “high probability disadvantage” (see Storkel et al., 2006, for L1 English 

child language acquisition) sets in and increases confusability of similar word forms. There 

could be a type of saturation effect where the lexicon has exhausted high-probability segments 

to such a degree that discriminability of words suffers. At such a point, low-probability 

phonotactics develop an advantage, as they aid discrimination of word forms.  
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Figure 43: Standardized node growth and phonotactic probability of words. Kruskal-Wallis test statistics 

indicated for each proficiency level. 
 

Growing nodes were generally characterized by high clustering coefficients at all proficiency 

levels, (see Figure 44), indicating a tendency to tightly interlink phonological neighborhoods 

through growth (i.e., phonological neighbors of target words becoming neighbors of one 

another). This finding supports previous studies of a word learning advantage when a new word 

becomes a member of a dense phonological neighborhood (see Gaskell & Dumay, 2003; 

Storkel et al., 2006).  
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Figure 44: Standardized node growth and clustering coefficients of words. Kruskal-Wallis test statistics 

indicated for each proficiency level. 
 

The interaction between node degree and weighted degree was influential for node growth, 

with high degree/weighted degree being characteristic of higher-growing nodes (see Figure 

45).  

 

  
 
Figure 45: Standardized node growth and degree/weighted degree. Kruskal-Wallis test statistics indicated per 

proficiency level. 
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These results of the regression model closely correspond to the main factors contributing to 

word learning efficiency as derived from the literature: high lexical frequency, low phonotactic 

probability, high neighborhood density, and highly clustered neighborhoods of words are good 

indicators of their learning probability.  

By virtue of their well-connectedness, the highest-growing nodes tend to reside in the giant 

component, with close to 100% of high-growth nodes being part of the giant component in all 

proficiency levels (see Figures 46a-e). In general, the giant component is characterized by a 

wider variety of node growth, encompassing nodes of all growth classes, whereas the islands 

and singletons mainly contain nodes of mid, low, and zero growth.  
a 

 

b 

 
c 

 

d 

 
e 

 
Figure 46: Node growth and network parts (giant component, islands, singletons). 
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While high growth rates are exclusively concentrated in the giant component in the beginning 

proficiency levels, high growth rates can also be observed in the C1 islands (see Figure 46e). 

The distribution of zero growth generally widens to encompass all three network parts to a 

larger extent as the networks grow.  

5.1.2. Community size and growth 

At the beginning stages of ESL learning, the majority of growth takes place in the mid-sized 

communities (see Figure 47), whereas in the advanced stages of language learning, growth is 

most prolific in the larger communities. Small communities tend to grow less (in relative terms) 

than larger communities. This fact could arise from the tendency of the larger communities to 

house words of different lexical characteristics (see section 3.4.). As mentioned in the 

community description in chapter 3, the beginning A1 network tends to put words of higher 

lexical frequency rate and shorter phonemic length in larger clusters (similar to what Siew, 

2013, found for a phonological network of American English). As learning progresses, the 

larger communities start to receive fewer of those high-frequency, short words but become 

supplemented with phonemically longer and lower-frequency words. At this point of lexical 

development, community growth follows a different trajectory than initially. As can be seen in 

Figure 46, growth supports the formation of mid-sized and larger communities at first, but 

starting at level B2, it becomes more equally distributed across the differently-sized 

communities.  
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Figure 47: Standardized growth rate and community sizes across the proficiency levels. Kruskal-Wallis test 

statistics indicated per proficiency level. 

 
Growth patterns of the beginning proficiency stages may lay the groundwork for mid-sized and 

larger community formation, with the later stages not contributing as much to community 

stratification any more. This finding is in line with what has been suggested by Siew (2013): 

larger communities are developed earlier in language learning and are a prerequisite for robust 

language development. They may provide the necessary scaffolding for lexical retrieval, which 

is largely dependent on similarity in phonological word forms (Vitevitch & Sommers, 2003).  

 

 

5.2. Growth probability algorithms 

 
5.2.1. Preferential attachment probability 

The probability of a node to grow a new neighbor per growth cycle is proportional to the sum 

and degree of all nodes in the network, i.e.,  

pi = ki / ∑j kj 
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Applied to the learner networks, this resulted in widely different distributions of the preferential 

attachment (‘PA’) value across the proficiency levels (see Figure 48). Preferential attachment 

probability is more evenly spread in the beginner networks (A1, A2), but develops into a highly 

competitive resource over time. At the C1 level, only few very prolific nodes have high 

preferential attachment probabilities. With advancing proficiency, few nodes stand out and 

accumulate growth opportunities through this network growth algorithm, while the vast 

majority of nodes lose out.  

 

 
Figure 48: Probability of preferential node attachment in the different learner networks. PA values were 

normalized by 100.000. 

 

The distributions of preferential attachment probability in the learner networks are presented 

in Table 21.  

 
Table 21: Distributions of preferential attachment probabilities in the learner networks.  

 A1 A2 B1 B2 C1 

Best-fitting distribution Bimodal  
(dip test p: 

<0.001) 

Multimodal 
(dip test p: 

<0.001) 

Multimodal 
(dip test p: 

<0.001) 

Multimodal 
(dip test p: 

<0.001) 

Multimodal 
(dip test p: 

<0.001) 
These results model the evolution of a bimodal distribution with two peaks in a distribution 

with multiple modes (A2) until the emergence of a comb-like multimodal distribution at the 

C1 level. While initially higher preferential attachment probabilities exist for two clusters of 

nodes in the A1 network, multiple peaks appear in the A2 level. At the B1 level, one peak 
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accelerates growth (rich-gets-richer dynamic), reaching extreme preferential attachment 

probabilities at the C1 level. The fact that multiple smaller peaks develop in the advanced 

lexicon (B2, C1) may reflect the tendency of the phonological network to maintain at least a 

few more inclusive growth opportunities and avoid concentrating growth in an extremely 

limited number of nodes.  

 

5.2.2. Fitness  

Node fitness can be defined as the “inherent competitive ability (or the ‘attractiveness’) that a 

node has, which influences the rate at which it acquires links from other nodes as the network 

evolves over time” (Bell et al., 2017, p. 1). This growth-related fitness measure stems from 

node attributes that raise the likelihood of new neighbor attachment. In the case of phonological 

networks, the learnability of a word can be defined as its fitness. Based on previous 

psycholinguistic literature, attributes that make a word more likely to be acquired and retained 

by adult learners include  

• high lexical frequency (e.g., Chen & Truscott, 2010) 

• low phonotactic probability (e.g. Storkel et al., 2006) 

• high neighborhood density or high node degree in network terms (e.g. Stamer & Vitevitch, 
2012; Storkel et al., 2006) 

• high clustering coefficient (Goldstein & Vitevitch, 2014) 

Other well-known factors contributing to word learning, such as closeness to L1 (Poltrock, 

Chen, Kwok, Cheung, & Nazzi, 2018), context of word learning (Elgort, Beliaeva, & Boers, 

2020), instructional setting (Luef, Ghebru, & Ilon, 2018), or phonological familiarity 

(Kaushanskaya, Yoo, & Van Hecke, 2014), among others, cannot be explored with the present 

dataset, as information pertaining to these variables is not available on EVP. In order to arrive 

at a measurement of node fitness for the present study, the variables “lexical frequency rate”, 

“phonotactic probability (biphone-based)”, “node degree”, and “clustering coefficient” were 

combined as an interaction variable termed “fitness” by using principal components analysis 

for dimensionality reduction (Salem & Hussein, 2019). Composite z-scored principal 

components of the four variables were computed, and the first principal component was defined 

as the “fitness” variable. Results showed that the first principal component was correlated with 

degree at 0.64, while lexical frequency rate and clustering coefficient showed correlations of 

0.42 and 0.62, respectively. Phonotactic probability showed a correlation coefficient of -0.17 

(indicating a negative correlative relationship to the other variables, as predicted by Storkel et 
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al., 2006). The first principal component accounted for 44% of the variance in the data. Figure 

49 shows its distributional pattern at each proficiency level.  

 
Figure 49: Density general node fitness across network (PC 1). 

 

The distributions of node fitness in the learner networks are presented in Table 22. In order to 

be able to calculate the distributions, a value of “10” was added to each data point in order to 

shift the data to positive numbers. Hartigan’s dip test yielded p>0.9, excluding the possibility 

that a distribution may be bimodal.  

 
Table 22: Distribution types of node fitness of ESL learner network growth.  

 A1 A2 B1 B2 C1 

Best-fitting distribution Power law Power law Power law Power law Power law 

The distribution of fitness across all networks reflects the fact that few words possess all 

characteristics of improved word learning but that many words possess some of them. At the 

beginning stages of language learning, a larger percentage of words are of high fitness, and 

while their fitness is higher than that of the other words, the difference between high- and low-

fitness words is less extreme. During the course of word learning, fewer high-fitness words 

gain higher fitness scores. Since all proficiency levels followed a power law distribution, a 

Bose-Einstein condensation was not tested.  
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5.2.3. Preferential attachment and fitness: PAFit  

PAFit was calculated using the following equation:  

 

pi = ηiki / ∑j  ηjkj 

where the probability of node i to grow new links is the proportion of i’s fitness and degree (z-

scored for the calculation) of the overall sum of nodes per network multiplied by those nodes’ 

fitness values and degrees (both z-scored). The distribution of PAFit in the networks is 

exclusively focussed on few nodes, which gain scores over the course of learning (see Figure 

50).  

 
Figure 50: PAFit distributions across the learner networks. PAFit normalized by the factor of 1 mio. 

 

The distributions of PAFit in the learner networks are presented in Table 23. A value of “1” 

was added to each data point in order to shift the data to positive numbers for distribution 

fitting.  

 
Table 23: Distribution types of PAFit in the learner networks.  

 A1 A2 B1 B2 C1 

Best-fitting distribution Burr Log-logistic Log-logistic Weibull Weibull 
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PAFit values are visibly highly concentrated on specific nodes in all of the proficiency levels. 

The advantage of the few prolific nodes increases substantially over the course of word 

learning, so that PAFit values increase exclusively in the nodes already showing high PAFit 

values from the beginning (i.e., A1 level).  

 

5.2.4. Hybrid model of uniform and preferential attachment 

The probability of random attachment in combination with preferential attachment is calculated 

by combining preferential attachment values per node with the proportion of the network the 

node represents (as the uniform attachment probability ‘UA’) 

pi = UAiki / ∑j UAjkj 

The distribution of this hybrid variable is shown in Figure 51 (and table 24).  

 
Figure 51: Distributions of the hybrid uniform/preferential attachment variable. 
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Best-fitting distribution Power law Power law Power law Power law Power law 

 

Similar to PAFit, hybrid UA/PA values develop into an exclusive resource in all of the learner 

networks. This is due to their calculations where the effect of one attachment mechanism by 

itself is not accounted for but only their interaction (i.e., only non-zero values can become 

multiplied). While relatively low in the beginning stages, the hybrid UA/PA scores develop 

quite high values in later proficiency stages.  

 

5.2.5. Statistical assessment 

Rarely do singular explanations suffice to explain complex phenomena, and this certainly 

applies to linguistics and network science. Many network measures are conceptually or 

mathematically related to some degree (consider eigenvector and betweenness centrality or 

preferential attachment and PAFit), with changes in one often affecting changes in the other. It 

can therefore be reasonable to assume that more than one of the calculated network growth 

algorithms may be a relevant determiner for network growth dynamics or that multiple growth 

algorithms exert a concerted influence over a network, and this has indeed been implied by 

previous research (Fourtassi et al., 2020; Siew & Vitevitch, 2020a). Additionally, idiosyncratic 

principles of language learning may play a role, with different learners relying on different 

strategies for lexical network growth (Beckage & Colunga, 2019). Psycholinguistic 

investigations of lexical processing and word learning, as well, have shown that a myriad of 

factors – and their interactions – are responsible for observed effects. In order to account for a 

word learning effect of multiple of the network-related and psycholinguistic variables 

measured in the context of the present study, statistical analyses were performed to determine 

the most influential factors on growth.  

Chapter 2 outlines a number of network centrality measures which have been shown to be 

influential in phonological networks, including degree centrality, weighted degree centrality, 

closeness centrality, betweenness centrality, and eigenvector centrality. For some of them, a 

role in network growth or word learning has been documented, such as degree and weighted 

degree, which can be viewed as proxy variables of neighborhood density. Denser 

neighborhoods, characterized by phonologically closer word forms, are known to become 

supplemented during word learning in first and second languages (Stamer & Vitevitch, 2012; 

Storkel, 2001, 2002; Storkel et al., 2006). High clustering coefficient is a measure of the 

interconnectedness of the phonological neighborhood and has been implicated in facilitated 
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word learning (Goldstein & Vitevitch, 2014). Thus, words with high degree and weighted 

degree centralities, as well as high clustering coefficients are expected to possess higher growth 

potential in all networks. Closeness centrality, being an indicator of the phonological closeness 

of a target word to all others in the network (a fact known to incur a recognition advantage, see 

Goldstein & Vitevitch, 2014), can convey information about the extended phonological 

neighborhood going far beyond the one-segment metric. High closeness centrality words have 

many extended neighbors, and it can be hypothesized that in such cases word learning is 

facilitated by the dynamic of a “dense extended neighborhood” becoming supplemented in 

word learning, similar to the effect of degree centrality but extending beyond one degree of 

separation. In a similar vein, words of high eigenvector centrality may attract new neighbors 

by virtue of their denser extended neighborhoods of high degree words. Eigenvector centrality 

can account for the closer extended neighborhood, taking into account primarily the importance 

of the nearest neighbors of a target word; closeness centrality more loosely connects the farther 

reaches of the extended neighborhood. Degree (and weighted degree), closeness, and 

eigenvector centralities may all be contributing pieces of a rich-gets-richer dynamic in a 

network, where higher centrality measures predict more growth. If only the closest (one-

segment) neighbors matter, degree and possibly weighted degree play an outsized role. If the 

two-hop neighbors are influential, this would show in eigenvector centrality playing a role in 

growth. If the larger three-and-more hop neighborhood plays a role, this would become evident 

in closeness centrality having an effect on growth. 

Betweenness centrality can be viewed as conceptually related to internal linking of nodes (see 

section 4.3.3.) and the question is whether “bridge words” linking different neighborhoods 

have a tendency to strengthen their outstanding position through neighbor acquisition. As 

indicated by previous research (Vitevitch & Goldstein, 2014), such strategically placed key 

words in phonological networks tend to accrue activation benefits that result in lexical retrieval 

advantages, and it is conceivable that through their strengthened representation, words of high 

betweenness centrality are able to attract new neighbors.  

In a first step, Pearson’s correlation coefficients (r) were calculated to determine whether the 

network growth algorithms and the network centrality measures, together with the well-known 

variables for word learning (lexical frequency, phonemic length, phonotactic probability), are 

predictive for actual network growth. They are listed in Table 25 (see also Figure 52).  
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Table 25: Pearson’s correlation coefficients of variables with growth rate per proficiency level (dark red cells 

r>0.6; light red cells r>0.5).  

 A1 A2 B1 B2 C1 Mean 
PA/ hybrid UA/PA* 0.49 0.69 0.56 0.36 0.51 0.52 
PAFit -0.21 -0.52 0.39 -0.24 0.39 -0.04 
Fitness 0.41 0.63 0.51 0.32 0.46 0.47 
Degree 0.49 0.69 0.56 0.36 0.51 0.52 
Lexical frequency 0.23 0.3 0.22 0.11 0.16 0.2 
Phonotactic prob.  0.06 -0.08 -0.02 -0.003 -0.06 -0.02 
Phonemic length -0.43 -0.51 -0.44 -0.26 -0.37 -0.4 
Weighted degree 0.51 0.68 0.55 0.37 0.5 0.52 
Closeness centr. 0.07 0.06 0.03 0.01 -0.01 0.03 
Betweenness centr. 0.43 0.42 0.32 0.32 0.34 0.37 
Clustering coeff.  0.32 0.48 0.39 0.22 0.31 0.34 
Eigenvector centr. 0.19 0.5 0.42 0.2 0.34 0.33 
Mean 0.21 0.28 0.29 0.15 0.26 
Highest r 0.51 0.69 0.56 0.37 0.51 
Lowest r 0.06 0.06 -0.02 -0.003 -0.01 

*The two variables are correlated at r>0.9 at each proficiency level.  

The strongest overall correlations with growth rates were calculated for preferential attachment 

(highly correlated with hybrid UA/PA: r=0.9), degree, and weighted degree (r>0.5), and this 

indicates that rich nodes may get richer in phonological neighborhood growth. As graphically 

displayed in Figure 52, all correlations are largely positive, with the exception of phonemic 

length, where shorter words tend to grow more neighbors, and PAFit, where the A1, A2, and 

B2 levels grow by lower PAFit values, while higher values prevail in the other levels.  
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Figure 52: Correlation coefficients (Pearson’s r) of network growth variables with growth rate per proficiency 

level. 

It is evident that the correlations of some network variables with growth differ by proficiency 

level. The A2 level leads in terms of the magnitude of the correlations involving the majority 

of the variables, while the B2 level lags on many of them (see Table 25 and Figure 52). Specific 

learning dynamics may take place at various proficiency levels that may be responsible for the 

observed correlation dynamics (e.g., lower PAFit scores in lower proficiency levels). In 

addition, the utility of certain network growth measures may depend on the size of the 

vocabulary at a given point in relation to the learning environment of yet-to-be-learned words, 

which shrinks as the networks grow (see chapter 6 for an analysis of this issue).  

To determine which network variable has the largest impact on node growth at any given 

proficiency level, series of linear mixed effects regression models with growth rate as the 

outcome variable (i.e., number of new words that each lexicon entry grows to the next 

proficiency level) were fitted. The following independent variables (fixed effects) were z-

scored and included:  
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- node fitness (first principal component) 

- PAFit  

- phonemic length  

- lexical frequency 

- phonotactic probability 

- degree*weighted degree centrality 

- closeness centrality  

- betweenness centrality  

- eigenvector centrality  

- clustering coefficient 

 

As random effect, the variable ‘network part’ was included, accounting for unexpected 

influences that may be related to the part of the network a word belongs to (i.e., giant 

component, islands, singletons). Random slopes could not be included due to resulting 

convergence issues. The following pseudo code was used:  

 
growth ~ PA+fitness+PAFit+phonemic length+lexical frequency+phonotactic 

probability+degree*weighted degree+closeness+betweenness+eigenvector+clustering coefficient 
+(1|network part) 

The R package “lme4”, with the function “lmer” (Bates et al., 2014), was used to perform linear 

mixed effects analysis models of the relationship between the fixed effects and the growth rate 

per word from one proficiency level to the next one up. P-values were obtained by likelihood 

ratio tests of the full model with the effect in question against the model without the effect in 

question (Dobson, 2002; Forstmeier & Schielzeth, 2011). Multicollinearity testing was 

performed with the function “vif” of the R package “car” to ensure variance inflation factors 

remained low (Field, 2005; Quinn & Keough, 2002). In case of correlations of >0.6 between 

variables, one of the variables was removed in a model. Due to its high correlation with 

preferential attachment in all models, the variable hybrid UA/PA was removed from each 

model. Results of the mixed model analyses are presented separately for each ESL proficiency 

level.   

In the A1 network, lexical frequency rate and clustering coefficient were removed, as both 

were highly correlated with one another (r=0.8) and node fitness (r=-0.9). In addition, 

phonotactic probability was correlated with fitness (r=-0.72). Of the remaining variables, 

preferential attachment, phonemic length, and closeness and betweenness centralities were 
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significant contributors to network growth (see Table 26). Specifically, high preferential 

attachment probability and high betweenness centrality, as well as short phonemic length and 

low eigenvector centrality, led to higher growth rate in A1 nodes.  

Table 26: Results of the linear mixed effects regression model of the A1 network growth variables.  

 Estimate Std. Error t value χ2 p 
(Intercept) 1.20284 0.22949 5.241   
PA probability 1.40931 0.54620 2.580 18.02 <0.001*** 
PAFit 0.42792 0.23253 1.840 3.38 0.07 
Fitness 0.24336 0.14270 1.705 2.9 0.09 
Phonemic length -0.36294 0.11568 -3.138 9.77 0.002** 
Degree*weighted 
degree 

0.05806 0.28030 0.207 0.41 0.81 

Closeness centrality -0.08952 0.08098 -1.106 1.22 0.27 
Betweenness centrality 1.06728 0.33410    3.194 10.12 0.001** 
Eigenvector centrality -0.34313 0.14608 -2.349 5.49 0.02* 

 

A comparison of standardized regression coefficients showed that preferential attachment and 

eigenvector centrality were the most influential independent variables in the regression model 

(see Figure 53).  

 

 
Figure 53: Standardized regression coefficients of significant network growth variables in the A1 network. 

 
In the A2 network, phonotactic probability and lexical frequency rate were removed, as they 

correlated with one another (r=0.6) and with fitness (r=-0.8). PAFit correlated with preferential 

attachment (r=0.73) and the interaction degree*weighted degree (r=0.88), thus PAFit was 

removed from the model. In the A2 network, the majority of network growth variables were 

highly significant predictors for lexical growth to the B1 level (see Table 27, Figure 54).  

 
Table 27: Results of the linear mixed effects regression model of the A2 network growth variables.  

 Estimate Std. Error t value χ2 p 
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PA probability 18.937 0.25134 6.761 175.4 0.001*** 
Fitness 0.01024    0.07902 0.130 0.017 0.89 
Phonemic length -0.21353 0.04652 -4.590 20.92 <0.001*** 
Degree*weighted degree -0.18185 0.05562 -3.270 13.1 0.001** 
Closeness centrality -0.10529 0.03412 -3.086 9.5 0.002** 
Betweenness centrality -0.21632 0.09911 -2.183 4.76 0.03* 
Eigenvector centrality -0.15096 0.06423 -2.350 5.51 0.018* 
Clustering coefficient 0.01503 0.04285 0.351 0.12 0.73 

 
 
 

 
Figure 54: Standardized regression coefficients of significant network growth variables in the A2 network. 

 

Variables removed from the B1 network included phonotactic probability and lexical 

frequency rate (correlated at r=-0.8 with fitness). Again, preferential attachment was a very 

significant predictor for lexical growth, together with the majority of variables with the 

exception of betweenness centrality (see Table 28, Figure 55).  

 
Table 28: Results of the linear mixed effects regression model of the B1 network growth variables.  

 Estimate Std. Error t value χ2 p 
(Intercept) 0.75578 0.03209 23.550   
PA probability 1.05182 0.19826 5.305 183.5 <0.001*** 
PAFit -0.34913 0.07729 -4.517 20.33 0.001*** 
Fitness 0.19270 0.04657 4.138 17.1 0.001*** 
Phonemic length -0.08894 0.02470 -3.600 12.93 <0.001 
Degree*weighted degree -0.16823 0.02888 -5.825 48.4 <0.001*** 
Closeness centrality -0.10242 0.01859 -5.508 6.003 0.014* 
Betweenness centrality -0.02920 0.03033 -0.963 0.9 0.34 
Eigenvector centrality 0.25415 0.04492 5.658 31.8 <0.001*** 
Clustering coefficient -0.09076 0.02568 -3.534 12.5 <0.001*** 
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Figure 55: Standardized regression coefficients of significant network growth variables in the B1 network. 

 
 
In the B2 network, degree was correlated with PAFit (r=0.72), and phonotactic probability and 

lexical frequency were correlated with fitness (r>0.7). Degree*weighted degree, phonotactic 

probability, and lexical frequency were removed (see Table 29, Figure 56).  

 
Table 29: Results of the linear mixed effects regression model of the B2 network growth variables.  

 Estimate Std. Error t value χ2 p 
(Intercept) 1.1683662 0.0061300 190.599   
PA probability 0.2661017 0.0216774 12.276 126.04 <0.001*** 
PAFit 0.0783564 0.0227093 3.450 11.89 >0.001*** 
Fitness 0.0320535 0.0178999 1.791 3.2 0.07 
Phonemic length -0.0067843 0.0080066 -0.847 0.72 0.4 
Closeness centrality -0.0156975 0.0061455 -2.554 5.76 0.02* 
Betweenness centrality 0.0236926 0.0086342 2.744 7.52 0.006** 
Eigenvector centrality -0.0837386 0.0168937 -4.957 24.5 >0.001*** 
Clustering coefficient 0.0009425 0.0090544 0.104 0.01 0.9 

 
 
 

 
Figure 56: Standardized regression coefficients of significant network growth variables in the B2 network. 
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Variables removed from the C1 analysis included lexical frequency rate and phonotactic 

probability (both correlated with fitness at r>0.72), as well as degree, which correlated with 

PAFit at r=0.72 (see Table 30, Figure 57).  

 
Table 30: Results of the linear mixed effects regression model of the C1 network growth variables.  

 Estimate Std. Error t value χ2 p 
(Intercept) -2.417e-02 1.588e-02 -1.522   
PA probability 8.213e+06 4.241e+05 19.366 260.9 <0.001*** 
PAFit 8.817e-03 2.580e-02 0.342 0.12 0.73 
Fitness 8.768e-03 2.052e-02 0.427 0.18 0.67 
Phonemic length -4.124e-02 8.651e-03 -4.767 22.68 <0.001*** 
Closeness -3.774e-02 6.787e-03 -5.561 6.82 0.009** 
Betweenness -4.327e-02 8.867e-03 -4.880 23.76 <0.001*** 
Eigenvector centrality -1.873e-01 2.074e-02 -9.029 80.95 <0.001*** 
Clustering coefficient -6.781e-03 1.043e-02 -0.650 0.42 0.52 

 
 

 
Figure 57: Standardized regression coefficients of significant network growth variables in the C1 network. 

 

In all networks, the effect of preferential attachment was ubiquitous and overwhelming. 

Eigenvector centrality was also significant at all proficiency levels, whereas the effects of the 

other variables were more specifically tied to certain proficiency levels (see Figure 58). In 

general, the results clearly show that more than one network growth dynamic is involved in 

phonological growth of the learner networks.  
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Figure 58: Significant network growth variables in the learner networks and their direction of influence on 
growth. 

 

For each significant network growth variable, the direction of its influence on growth rate is 

shown in Figure 58. High preferential attachment scores predicted high growth in all 

proficiency levels, displaying the trend of rich words getting richer. Eigenvector centrality had 

the inverse effect and low values predicted growth in all networks. Closeness centrality 

displayed a similar trend and low values were predictive for growth. The implication here is 

that network growth occurs primarily by adding new words to those with sparser extended 

neighborhoods (i.e., low eigenvector and closeness centralities) across all proficiency 

networks. One-degree neighborhoods tend to grow denser through learning over time, while 

extended neighborhoods (a few hops removed) preferentially remain sparse. This growth 

dynamic (schematized in Figure 59) leads to a network structure where large hubs are 

surrounded by sparse neighborhoods (compare to “hub-and-spoke” typology of networks, see 

section 4.1.1.1.).  
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Figure 59: Network structure favored by growth according to preferential attachment in combination with low 
closeness and eigenvector centralities: dense phonological neighborhoods (i.e., larger hubs) surrounded by a 

sparser extended neighborhood. 

 

When betweenness centrality was significant (A1, A2, B2, C1), the direction of influence 

varied depending on the proficiency level: high betweenness centrality furthered growth at the 

A1 level but impeded growth at the C1 level. Nodes of high betweenness centrality in the 

beginning A1 level had less opportunity to benefit from a lot of co-activation as compared to 

such nodes in the C1 network, as activation is assumed to accrue over time (Chan & Vitevitch, 

2009; Goldstein & Vitevitch, 2014). In initial build-ups of networks, there may be a tendency 

to avoid words of high betweenness centrality, as they represent a particular vulnerability of 

networks due to their central positions, and to strengthen such frail linking points in a network 

by growth. In larger networks, more numerous links exist between all nodes in the network, 

relieving some of the burden placed on nodes with high betweenness centralities. In such a 

case, growth at key betweenness centrality positions may become less prevalent.  

The fact that node fitness and PAFit only played a minor role in growth rules out the possibility 

that phonological networks follow fitness models of network growth. While these models offer 

intriguing hypotheses for lexical learning by focussing on word characteristics, such as lexical 

frequency and phonotactic probability, the results of the present study clearly demonstrate the 

superiority of preferential attachment models for phonological network growth.  
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5.3. Developmental growth trends 

 
5.3.1. Growth fluctuations: Aging effects 

There are nodes which grow only once during their lifetime in a lexicon and those which show 

more consistent growth patterns. Of the latter group, a question concerns the developmental 

pattern of growth. Specifically, at which point of their tenure in a lexical system do words show 

their largest growth potential? In addition, at what age in a lexical system do words attract the 

most neighbors? To address these issues, a sub-analysis was performed to test the growth 

development of the continuously growing nodes, which keep adding neighbors from their 

introduction to the system to the final ESL proficiency level C2. Figure 60 displays a declining 

trend in growth rate in relation to word age. Continuously growing words go through their 

largest growth spurt when they initially appear in a lexicon, at which point their growth always 

starts to decline. A word’s growth rate is thus highly predictable by their point of entry into the 

lexical system. Initial growth lags cannot be overcome by growth spurts at a later time.  

 

 
Figure 60: Growth patterns of consistently growing nodes from their entry points in the lexicon until C1. 

 
This developmental growth dynamic indicates a preference for new words to attach to dense 

neighborhoods with many neighbors initially (a known tendency in word learning), thereby 

gaining the maximum number of neighbors upon entry in the system. This largest initial growth 

potential declines with higher proficiency level, and after some time in the lexicon, words 

decrease their growth potential, indicating an aging effect in the phonological networks of ESL 
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learners. This could reflect a tendency to learn phonologically similar words (=phonological 

neighbors) at the same time.  

 

5.3.2. Initial attractiveness 

The likelihood of a word to acquire at least one neighbor in the learning process from A1 to 

C1 is generally not high. The majority of singleton words never grow any neighbors and remain 

singletons throughout all proficiency levels. Of 161 singleton nodes that first appear in the A1 

network, only 24 will eventually grow a neighbor by the C1 level; 85% will remain 

unconnected. Of the 532 singletons that appear in the A2 network, 390 (=74%) will remain 

singletons; and of the 1017 singletons in the B1 network, 854 (=84%) will never grow a 

neighbor. The B2 network houses 1529 singletons of which 1357 (=89%) will remain 

singletons in the C1 network. There are a number of lexical characteristics which raise the 

initial attractiveness of a word, thus making it more likely to gain a neighbor. Phonemically 

shorter words tend to have more opportunities to grow at least one neighbor (see Figure 61).  

 

Figure 61: Short words are more likely to eventually grow a neighbor. 

Phonotactic probability is another good indicator of growth opportunities, and words 

containing lower phonotactic probability biphones are more likely to eventually acquire at least 

one neighbor (see Figure 62).  
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Figure 62: Low phonotactic probability raises the likelihood of a word growing at least one neighbor. 

In addition, high lexical frequency raises the probability of acquiring at least one neighbor 

throughout the learning stages (see Figure 63).  

 

Figure 63: High lexical frequency rate raises the likelihood of a word growing at least one neighbor. 

A generalized linear regression model (R function “glm”) with the dependent variable “growth 

opportunity” (0=never grow a neighbor, 1=grow at least one neighbor at some proficiency 

level) was calculated to determine the influence of phonotactic probability, phonemic length, 

and lexical frequency rates, using the pseudo model code 

Wilcoxon, p = 2.8e-11

0.000

0.005

0.010

0.015

0 1
growth opportunity

ph
on

ot
ac

tic
 p

ro
ba

bi
lit

y 
(b

ip
ho

ne
s)

growth_chance 0 1

Wilcoxon, p < 2.2e-16

0

200

400

600

0 1
growth opportunity

le
xi

ca
l f

re
qu

en
cy

 ra
te

 (l
og

)

growth_chance 0 1



 151 

Growth opportunity~phonotactic probability+phonemic length+lexical frequency(log), family=binomial 

Results show that all three factors play a role in a node’s ability to acquire at least one neighbor 

(see Table 31 for the results).  

Table 31: Initial attractiveness is influenced by phonotactic probability, phonemic length, and lexical frequency 

rate.  

 Estimate Std. Error z value p 
(Intercept) 0.7 0.23 3.0  
Phonotactic probability 56.25 13.3 4.24 <0.001*** 
Phonemic length -0.68 0.02 -31.3 <0.001*** 
Lexical frequency 0.007 0.0005 12.67 <0.001*** 

 

Initial attractiveness can be calculated with a modified preferential attachment equation, 

following Dorogovtsev, Mendes, and Samukhin (2000b), where the probability of the 

acquisition of at least one neighboring node is defined as k+A, with A being the ‘initial 

attractiveness constant’ inferred from the preferential attachment rule incorporating initial 

attractiveness  

p(ki)= (A+ki )/ ∑j (A+kj) 

Thus, it can be calculated that p(0)~A (Barabási, 2016). In the learner networks, A decreases 

from the beginning to more advanced stages (see Table 32), mirroring the findings displayed 

in Figure 60.  

Table 32: Initial attractiveness constants for each learner network.  

 A1 A2 B1 B2 C1 
A 0.39 0.21 0.16 0.06 0.05 

The A values from Table 32 indicate that initial attractiveness is much higher in early acquired 

words of the A1 level but decreases substantially over the course of learning history, in 

accordance with findings from growth development. At the B2 and C1 levels, it becomes highly 

unlikely for a singleton node to grow its initial and exclusive neighbor. According to Barabási 

(2016), the presence of initial attractiveness in a network has two consequences: it makes the 

network more homogenous by decreasing hub sizes, and it influences the degree distribution 

and deviates it from a power law. Node growth not only takes place in highly connected nodes  

but also may spread to some non-connected nodes, thereby adding a random component to the 

attachment probability.  
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5.3.3. First-mover-advantage 

Words that are acquired early during the vocabulary build-up may have an advantage in terms 

of overall neighbor acquisition, a concept called “first-mover-advantage” (Barabási, 2016). 

Preferential attachment incapsulates the first-mover-advantage, as only the well-connected 

nodes gain links from the beginning of the growth process. This leads to a large link advantage 

of nodes that are initially present in the network, with later arriving nodes lagging behind in 

obtaining new links. In some networks a certain chronological preference for growth exists 

where, for instance, new words tend to attach to young nodes, which have only recently been 

added to the network (also see section 4.3.1.). Alternatively, a tendency to attach to old nodes 

in a network could indicate a stronger foothold of those older nodes in the network, where new 

nodes preferentially attach to them. A recent study on phonological neighborhood density (but 

not from the network viewpoint) showed that in child first language acquisition, early learned 

words play a more important role for lexical competition than late-acquired words (Karimi & 

Diaz, 2020). Specifically, it was shown that the age of acquisition affected how strongly or 

weakly a word was activated in its phonological neighborhood. It is generally assumed that the 

earlier the acquisition age of a word, the stronger its lexical activation (also see Alario et al., 

2004; Belke, Brysbaert, Meyer, & Ghyselinck, 2005; Gilhooly & Watson, 1981; Navarrete, 

Pastore, Valentini, & Preressotti, 2015, for similar findings). This has implications for word 

age and its role in lexical networks. The Barabási-Albert network model predicts that older 

nodes accumulate more growth over time, expressed as k(t)=t1/2, with t representing a specific 

time step (Barabási, 2016).  

In order to address the question of the first-mover-advantage in the learner networks, the 

number of overall neighbors of early-acquired words (A1, A2 levels) was compared to those 

of late-acquired words (B2, C1). Given the fact that preferential attachment has such a large 

influence on network growth (see section 5.2.), early acquisition is expected to lead to a larger 

accumulation of neighbors across the learning time span (up to C1). An overview of node 

growth classes (see section 5.1.1.) and age of acquisition of words demonstrates a neighbor-

growth advantage for early-learned words, while late-learned words grow only slowly. In fact, 

early-learned words by far exceed all other proficiency levels in terms of neighbor 

accumulation (mean growth class grouping per proficiency level: A1=2.6, A2=1.3, B1=0.6, 

B2=0.3, C1=0.1). This indicates a tendency for older nodes that were acquired early in 

language learning to gain more new neighbors, underscoring the importance of word age for 

lexical processing (also see Karimi & Diaz, 2020).  
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5.4. Growth algorithms in communities 

Given that communities of different sizes are not homogenous in terms of lexical 

characteristics (see section 3.4.1. and Siew, 2013), community growth in the learner networks 

was examined more closely in relation to network growth algorithms. Growth algorithms were 

calculated per proficiency level in small, medium-sized, and large communities (see Table 33, 

see also Figure 46 for community growth rates) and results showed a tendency for preferential 

attachment probability to be higher in mid-sized and larger communities. Node fitness and 

PAFit were also generally higher in the medium and larger communities, indicating a growth 

advantage for larger communities. Small communities seem to be awarded fewer opportunities 

to grow neighbors via the investigated growth algorithms. Here, rich (=large) communities 

become richer through growth.  

 

 
Table 33:  Growth algorithms in network communities of different sizes.  

Level Community 
size 

Growth rate PA (normalized) Fitness PAFit (normalized) 
Mean SD Mean SD Mean SD Mean SD 

A1 Small (<25th 
percentile) 

1.6 1.4 0.5 0.2 1.6 1.1 -0.04 0.05 

Medium 
(<25th>75th 
percentile) 

3.4 2.5 0.6 0.3 1.5 0.9 -0.07 0.09 

Large (>75th 
percentile) 

1.9 1.8 0.6 0.4 1.4 1.3 -0.1 0.2 

A2 Small (<25th 
percentile) 

0.3 0.6 0.004 0.009 -0.56 0.5 -0.04 0.03 

Medium 
(<25th>75th 
percentile) 

2.3 1.9 0.1 0.07 1.4 1.4 -0.22 0.3 

Large (>75th 
percentile) 

2 1.8 0.1 0.06 1.22 1.3 -0.18 0.3 

B1 Small (<25th 
percentile) 

0.18 0.4 0.001 0.002 -0.7 0.5 0.006 0.004 

Medium 
(<25th>75th 
percentile) 

1.15 1.5 0.024 0.02 1.1 1.4 0.028 0.04 

Large (>75th 
percentile) 

1.4 1.4 0.03 0.02 1.3 1.4 0.04 0.06 

B2 Small (<25th 
percentile) 

0.07 0.27 0.0006 0.001 -0.72 0.5 1.07e-06 8.29e-
06 

Medium 
(<25th>75th 
percentile) 

0.33 0.67 0.007 0.005 0.75 1.3 -7.65e-05 1.32e-
04 

Large (>75th 
percentile) 

0.36 0.6 0.013 0.01 1.29 1.4 -2.06e-04 2.99e-
04 
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C1 Small (<25th 
percentile) 

0.05 0.23 0.0004 0.0007 -0.78 0.5 1.84e-07 1.06e-
06 

Medium 
(<25th>75th 
percentile) 

0.36 0.6 0.007 0.007 1.1 1.6 -2.21e-05 4.1e-05 

Large (>75th 
percentile) 

0.63 0.9 0.009 0.007 1.12 1.4 -2.34e-05 3.6e-05 

 

As can be seen in Figure 64a-c, preferential attachment, fitness, and PAFit differ between 

differently-sized communities across all learner networks.  

 
a 

 

b 

 
c 

 
Figure 64a-c: Preferential attachment probability, node fitness, and PAFit differ between proficiency levels and 

community sizes. 
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The fact that preferential attachment and PAFit values are the highest in mid-sized and large 

communities of the A1 network leads to the prediction that these factors can have a more 

substantial influence on growth in these particular network communities. Node fitness was 

relatively low in small communities, which shows that any advantage gained from high fitness 

is primarily bestowed upon words in mid-sized and larger communities.  

The results in Figure 64a-c show one clear trend: the patterns of actual community growth rates 

(see Figure 47) are not identical to the patterns suggested by preferential attachment (64a), 

fitness (64b), and PAFit (64c). While preferential attachment seems the best match in patterns 

as judged by visual inspection, it is clear that community growth must be additionally governed 

by other growth principles. Communities of medium and larger size record the highest growth 

rates, supporting findings by Siew (2013) who suggested that large communities are built up 

first in child language acquisition to form the basis for rapid and efficient lexical processing. 

This trend is particularly relevant for earlier language proficiency stages (A1, A2) where 

growth rates are the highest of all networks, and here preferential attachment and PAFit might 

be the primary mechanisms to support the development of robust and larger communities.  

 

5.5. Conclusions 

In this chapter, four main strands of growth perspectives were discussed. First, growth rates of 

individual nodes and their placement in the larger structure of the proficiency network were 

analyzed to gain insights into which network-mathematical and psycholinguistic factors 

predispose a word to higher growth. Results demonstrated differences between proficiency 

levels, lexical characteristics, as well as network parts. Second, the influence of growth 

algorithms and network centrality measures on growth were tested, with findings indicating 

that phonological ESL networks can be described as Barabási-Albert growth models, where 

preferential attachment is the dominant mode. Eigenvector and closeness centralities also 

affected growth, and the network structure supported by the observed growth patterns of the 

phonological ESL networks indicate a preference for hub formation, with dense near 

neighborhoods (one phonological segment distance) but sparser distant neighborhoods (more 
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than one phonological segment distance). Third, extensions of the Barabási-Albert model that 

include initial attractiveness and aging mechanisms were also demonstrated to influence 

growth in the ESL networks. Their contributing effect weakens preferential attachment and 

allows for random attachment, making their presence crucial to explain growth in singleton 

nodes. Fourth, community growth patterns show unequal growth opportunities for differently-

sized communities, with medium-sized and larger communities displaying clear advantages 

over small communities in terms of growth probabilities resulting from the growth algorithms.  

The picture that emerges from the growth analyses of the ESL phonological networks presented 

here is one of unequal growth distributions: the rich get richer on all levels of the network. On 

the micro level, dense phonological neighborhoods tend to become denser through growth; on 

the meso level, mid-sized and larger communities receive the majority of growth opportunities; 

and on the macro level, giant components tend to grow at the expense of smaller, less connected 

network parts. As such extreme imbalances are commonly observed in social, technological, 

and biological networks, it comes as no surprise that “rich words” in the network-theoretical 

and psycholinguistic sense would gain growth advantages. The findings presented here have 

direct implications for spoken word recognition and production at different levels of language 

proficiency. Future research may focus on developmental trajectories concerning the ease 

and/or difficulty of lexical access of specific words during various stages of vocabulary build-

up.  
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6. Growth and the learning 

environment 

 

 

6.1. The ‘yet-to-be-learned’ words 

A so-far neglected aspect of lexical networks and word learning is the consideration of the 

general learning environment in the sense of the ‘yet-to-be-learned’ words at each proficiency 

level, which formed the basis of previous research on phonological network growth in first-

language acquisition. Siew and Vitevitch (2020a) investigated network growth algorithms in 

their study of phonological networks of L1-learning children and analyzed them from the 

viewpoint of the not-yet-known words at each acquisition stage. They compiled vocabulary 

lists of adult L1 English users, subtracted the words known by children at each analyzed 

acquisition stage, and computed the growth algorithms per unknown word in relation to the 

known words of the learners. Essentially, network growth algorithms were calculated for each 

yet-to-be-learned word, and it was expected that high growth algorithm scores would predict 

the likelihood that a word would be learned at a given acquisition stage. This methodology is 

fundamentally different from the current approach to network growth in the ESL learner 

networks and does not enable direct comparison of the results. Therefore, the data of the present 

study was re-calculated to replicate the Siew and Vitevitch study for the ESL learner networks 
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to gain insights into possible parallels of second-language and first-language vocabulary 

growth from the network perspective.  

 

Consistent with Siew and Vitevitch (2020a), vocabulary lists of yet-to-be-learned words at each 

proficiency level were compiled, which only included the new words that appear at a specific 

proficiency level but are not present in the previous level (see Table 34). The ESL learning 

environment was defined as the words known at the C2 proficiency level: 6714 words (see 

section 3.1.1.).4  

Table 34: Newly learned words that appear in the lexicon of learners at each proficiency level. References to 

proficiency levels indicate the end point of growth, meaning the higher proficiency level achieved through growth.  

A2 B1 B2 C1 C2 
877 1426 1727 1018 1084 

 

Learners at the A1 proficiency level have 6132 English words that they have yet to learn (A2 

to C2 growth), while at the C1 level learners have 1084 new words to learn to reach the C2 

level. Based on these word growth lists, growth algorithms were calculated in accordance with 

Siew and Vitevitch, who adapted theirs from the semantic network study by Hills and 

colleagues (Hills et al., 2009b). For each newly learned word (per proficiency level) the 

following three growth variables were calculated: preferential acquisition growth value 

(PACQ), preferential attachment growth value (PATT), and the “lure of the associates” growth 

value (LA). These values were not stable for a given word but changed with each proficiency 

level, as the learners’ vocabulary continued to grow. An explanation of each algorithm with 

examples is presented below.  

 

6.1.1. Preferential acquisition (PACQ) 

PACQ takes into account the set of words that will eventually be known by a learner if they 

achieve L1 (native) proficiency. In the context of the present study this is first-language 

English, and the adult vocabulary of L1 English users thus serves as a reference point for 

vocabulary learning. Preferential acquisition assumes that new words that are phonological 

 
4 This definition excludes an analysis of the C2 levels, as there is no defined learning environment for that level. 
It was opted against using L1 English as a measure of the learning environment for C2 learners, since L1 and L2 
word learning are conceptually different processes from the network perspective (see section 3.1.) and a conflation 
of the two would have rendered the C2 analysis out of line with the other proficiency level analyses.  
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neighbors of a high number of words in L1 English are learned earlier than those that have few 

neighbors in L1 English. Thus, the PACQ value of a yet-to-be-learned word is the number of 

phonological neighbors of that word in the adult English L1 lexicon (see Figure 65 for a 

schematization). Neighborhood densities of L1 English words were calculated with the 

Clearpond Database for English (Marian, Bartolotti, Chabal, & Shook, 2012), and all neighbors 

of each of the yet-to-be-learned words were determined. For instance, at the B2 level, the yet-

to-be-learned words included aboard, which has ten phonological neighbors in the L1 English 

lexicon (afford, award, abort, abide, adored, abroad, accord, abode, board, bored), with the 

PACQ value equaling “10” in this case.  

 

6.1.2. Preferential attachment (PATT) 

This preferential attachment/PATT growth value is not computed following the Albert-

Barabási equation (see Barabási, 2016, and chapter 3 of this manuscript) but the phonological 

neighborhood density of anchor words in the known lexicon, i.e., node degree, was used to 

represent PATT5.  For each word in the yet-to-be-learned vocabulary list (per proficiency 

level), the phonological neighbors of those words to which a yet-to-be-learned word can 

potentially become a phonological neighbor were determined. For instance, the yet-to-be-

learned word aboard at the B2 level has five phonological neighbors in the C1 lexicon (board, 

bored, abroad, afford, award). The mean number of phonological neighbors of those five 

words – and thus the PATT growth value for “aboard” at B2 – is 7.4. PATT growth values for 

a given word are different at each proficiency level, and aboard has a growth value of 6 and 5 

at the B1 and A2 levels. As the vocabulary of a learner grows, PATT values change. Figure 65 

graphically shows the PATT calculations.  

The inverse variant of preferential attachment (iPATT) stipulates that nodes with few links 

(=low-degree nodes) receive the largest share of new nodes in more developed phonological 

networks (Siew & Vitevitch, 2020a, 2020b). In order to determine the influence of iPATT on 

the ESL learner networks, the measurements obtained for PATT (see above) were co-opted for 

the reverse hypothesis that low PATT values would be better predictors of neighbor growth.  

 
5 Values calculated with the original preferential attachment equation and those calculated with the proxy 
variable PATT as used by Siew and Vitevitch were correlated at r=0.65 (Pearson’s r).  
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6.1.3. Lure-of-the-associates (LA) 

LA growth values represent the number of phonological neighbors in a learner’s lexicon to 

which the yet-to-be-learned words can connect to. The word aboard has 5 phonological 

neighbors at the B2 level (board, bored, abroad, afford, award) and thus its LA growth value 

equals 5. The difference to PATT is that only the phonological neighbors are counted, whereas 

PATT counts the phonological neighbors of the phonological neighbors (=degree of a node) at 

a given proficiency level. Words with high LA growth values are expected to be learned 

preferentially as opposed to words with few phonological neighbors (=low LA growth values) 

in a learner’s existing vocabulary. See Figure 65 for a schematization of the different growth 

algorithms.  

 

Figure 65: Schematization of three network growth algorithms calculated by Hills et al. (2009) and Siew and 
Vitevitch (2020b) as adapted for the present study. 

 
The distributions of the growth algorithms LA, PACQ, and PATT are displayed in Figures 66, 

67, and 68.  
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Figure 66: Distributions of PACQ growth algorithm across the growth levels. 

 

 
Figure 67: Distributions of PATT growth algorithm across the growth levels. 
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Figure 68: Distributions of LA growth algorithm across the growth levels. 

 

 

The distributions of the three algorithms of the yet-to-be-learned words in the learner 

networks are presented in Table 35.  

 
Table 35: Distribution types of network growth in yet-to-be-learned words at each proficiency level. 

Best-fitting 
distribution 

A2 B1 B2 C1 

PACQ Log-normal Multimodal  
(dip test p: <0.001) 

Multimodal  
(dip test p: <0.001) 

Multimodal  
(dip test p: <0.001) 

PATT Power law Power law Power law Power law 
LA Log-normal Log-logistic Multimodal  

(dip test p: <0.001) 
Multimodal  

(dip test p: <0.001) 
 

The PACQ score is related to the phonological neighbors of yet-unknown words in the English 

L1 lexicon, which is much larger than the learner lexica, thus leading to the PACQ score to be 

similar across most ESL proficiency levels. The fact that PACQ is evidently smaller in the A2 

network indicates that the large number of yet-to-be-learned words of ESL beginners find 

fewer phonological neighbors (or anchor words) in the small A2 vocabulary. As lexical 

knowledge and networks grow, the list of yet-to-be-learned words becomes shorter but the 

anchor points in the larger lexica become more numerous. The PATT score develops from a 
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significant skew to a much less-skewed distribution as proficiency increases but overall follows 

a power law distribution (see Table 35). Only a small sub-group of the yet-to-be-learned words 

of A2 learners show high PATT values, with the majority displaying low values. As the learner 

networks grow, the set of unknown words at the advanced stages (C1) become characterized 

by less skew, which could be a reflection of the fact that the yet-to-be-learned words are 

relatively few at this point. The LA score is generally distributed rather unevenly, with a small 

number of nodes showing a high score and a large majority of nodes showing a small score 

across all proficiency levels. What these distribution-related findings clearly demonstrate is 

that characteristics of the yet-unknown vocabulary of learners change as learning progresses. 

The shrinking learning potentials leave the yet-to-be-learned vocabulary exposed to different 

dynamics regarding their links to L1 English words (PACQ) and the constantly expanding 

vocabulary of a learner (PATT, LA).  

 

6.2. Assessing the statistical effects in the learner networks 

In line with Siew and Vitevitch (2020a), the network growth algorithms were entered into a 

spreadsheet, together with all yet-to-be-learned words and level-of-acquisition information for 

each. One column indicated whether a word was learned at a specific proficiency level (yes/no). 

The growth levels were defined as ranging from proficiency level A2 to C1 (e.g., “A2” 

represents the growth from A1 to A2). Regression modelling was used to test the effects of the 

algorithms on network growth.  

First, the contribution of each growth algorithm to the overall probability of word learning was 

assessed in order to ensure they were actual predictors of learning probability (also see Siew 

& Vitevitch, 2020a). Identical to Siew and Vitevitch, the variables phonemic length and lexical 

frequency rate were included in the models as they have a well-known effect on word learning 

probability. Five generalized linear mixed-effects models were constructed and a series of 

likelihood ratio tests were calculated to compare the model fits to the data. Model 1 included 

the following interactions (indicated by *) and their main effects: phonemic length *proficiency 

level, and lexical frequency rate* proficiency level. Model 2 included all predictors from model 

1 and the PACQ*proficiency level interaction; model 3 included the predictors from model 1 

and the LA*proficiency level interaction; model 4 included all predictors from model 1 plus 
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the interaction PATT*proficiency level. Model 5 represented the full model, including 

interaction terms between proficiency level and all predictors (phonemic length, lexical 

frequency rate, PACQ, LA, PATT growth values). The function “lrtest” of the R package 

“lmtest” was used for likelihood ratio tests for nested models. Results of the tests are 

summarized in Table 36 below. All three network growth algorithms are significant predictors 

of word learning beyond the influence of the variables phonemic length and lexical frequency 

rate.  

 
Table 36: Results of likelihood ratio tests for the models.  

 Model 2: PACQ Model 3: LA Model 4: PATT 
Model 1: Baseline χ2=6.59 

df=2 
p=0.037 

χ2=35.38 
df=2 

p<0.001 

χ2=22.23 
df=2 

p<0.001 
Model 5: Full model χ2=32.96 

df=4 
p<0.001 

χ2=4.17 
df=4 

p=0.38 

χ2=17.32 
df=4 

p=0.002 

The full model was then submitted to a generalized linear mixed-effects model analysis with 

binomial error structure, using the function “glmer” of the R package “lme4” (Bates et al., 

2014), in order to determine which of the three growth algorithms can best account for word 

learning. The dependent variable was binary for “learned” (=1) or “not learned” (=0) for each 

word, describing whether or not they appeared in the vocabulary of the next higher proficiency 

level. As fixed effects, the three growth mechanisms were added, in addition to the control 

variables phonemic length and lexical frequency rate (calculated with the BNC, see section 

3.1.1.). All variables were first z-scored before being entered into the model. In the full model, 

interaction terms were constructed between proficiency level and all other predictors. Inclusion 

of the interaction terms allows for the accounting of the magnitude of the effect of the growth 

algorithms varying over time/proficiency. As a random effect, “word” was specified in order 

to account for possible individual variation associated with particular words. Mixed effects 

analysis was performed to model the relationship of the fixed effects and the probability of 

word learning (yes/no). P-values were obtained by likelihood ratio tests of the full model with 

the effect in question against the model without the effect in question (Dobson, 2002; 

Forstmeier & Schielzeth, 2011). Residuals were checked to ensure homoscedasticity and 

normality of the distribution. Cases of multicollinearity were searched by computing the 

variance inflation factors of the model (R package “car”, function “vif”), which were all below 

3.5. Even though the LA and PATT scores are correlated at r=0.71 (Pearson’s r), their variance 

inflation factors were below 3.5 in the model. The correlation of >7 can hardly be ignored, 
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however, even if variance inflation factors were not affected in a way that made the model 

untenable.6 Therefore, two models were computed: (1) model 1: an identical model to Siew 

and Vitevitch (2020b), with each of the three growth algorithms, and (2) model 2: an alternative 

model accounting for the correlation between LA and PATT by creating an interaction term 

for the two. The pseudo-code for the full model 1 was 

learned~LA*level+PACQ*level+PATT*level+phonemic length*level+lexical frequency*level+(1|word), 
family=binomial 

Table 37 summarizes the descriptive statistics for lexical characteristics and network growth 

values for yet-to-be-learned words at a given proficiency level.  

 
Table 37: Descriptive statistics of predictors for unknown words at the different proficiency levels.  

  A1 A2 B1 B2 
 N (yet-to-be-learned) 6132 5246 3821 2097 

Phonemic 
length 

M 
SD 
Min 
Max 

6.42 
2.44 

1 
18 

6.64 
2.44 

1 
18 

6.93 
2.47 

1 
18 

7.2 
2.49 

1 
18 

Lexical 
frequency 
(log) 

M 
SD 
Min 
Max 

3.13 
0.63 

0 
5.71 

3.06 
0.59 

0 
5.5 

2.97 
0.54 

0 
5.32 

2.8 
0.49 
0.48 
4.95 

PACQ M 
SD 
Min 
Max 

3.55 
8.32 

0 
59 

3.05 
7.65 

0 
59 

2.53 
6.86 

0 
55 

2.15 
6.28 

0 
55 

LA M 
SD 
Min 
Max 

0.43 
1.29 

0 
13 

0.68 
1.9 
0 
19 

0.85 
2.33 

0 
23 

0.93 
2.59 

0 
23 

PATT M 
SD 
Min 
Max 

0.45 
1.36 

0 
13 

0.77 
2.1 
0 
17 

0.97 
2.55 

0 
18 

1.3 
3.16 

0 
20.1 

 

Results of the mixed-effects logistic regression show that numerous main effects and 

interactions terms were significant (see Table 38). As expected, short phonemic length and 

high lexical frequency rates (and their interaction terms with proficiency level) were significant 

predictors of higher likelihood of word learning, providing further support for a large body of 

research on the influence of the two variables on word learning. The only network growth 

algorithm that had a measurable effect on probability of word learning was the lure of the 

 
6 Siew and Vitevitch (2020a) do not provide information on correlations between any of the growth algorithms 
in their study.  
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associates (LA) score (in isolation and in interaction with proficiency level). Here, a higher LA 

score raised probability of learning in the yet-to-be-learned words (see Figure 69).   

 
Table 38: Final mixed-effects logistic regression with lexical and network growth values to predict learning 

(model 1).  

Predictors Estimate SE z p 
(Intercept) 
Phonemic length*proficiency 
Lexical frequency* proficiency 
PACQ* proficiency 
LA* proficiency 
PATT* proficiency 
Phonemic length 
Lexical frequency 
PACQ 
LA 
PATT 

-4.055 
0.082 
0.079 
0.014 
-0.096 
0.016 
-0.48 
0.81 

-0.078 
0.45 

-0.039 

0.588 
0.009 
0.034 
0.023 
0.031 
0.029 
0.044 
0.15 
0.09 
0.15 
0.14 

-6.89 
8.53 
2.29 
0.59 
-3.09 
0.53 

-10.74 
5.38 
-0.82 
3.05 
-0.27 

< 0.001 *** 
< 0.001 *** 

0.022 * 
0.48 

0.008 ** 
0.42 

< 0.001 *** 
< 0.001 *** 

0.41 
0.0023 ** 

0.79 
 

Figure 69 shows the general trend of the lower proficiency levels (A2, B1, B2) to have higher 

values of LA, PATT, and PACQ in the learned words, while this trend was reversed in the 

higher proficiency level (C1) where the three growth algorithms showed higher values in non-

learned words. This clearly represents a similar developmental dynamic as outlined by Siew 

and Vitevitch of the more advanced lexicon relying on lower rather than higher PATT values 

to raise probability of word learning. The regression analysis yielded only the LA score as 

significant, so PACQ and PATT scores in Figure 69 should be interpreted with caution.  
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Figure 69: Overview of network growth algorithms and their contributions to word learning probability. Note 
the opposite trend in learned/non-learned words at the C1 level. 

 

Due to the correlation between LA and PATT (r=0.71), an alternative model was computed 

where LA and PATT were centered and combined as an interaction variable. The pseudo-code 

of the full model 2 was 

learned~PACQ*level+LA*PATT*level+phonemic length*level+lexical frequency*level+(1|word), 
family=binomial 

Here, the LA*PATT interaction variable was shown to have the same effect on learning 

probability that was described by Siew and Vitevitch (2020b) for PATT, with the smaller 

vocabularies at the beginning stages of learning showing higher scores in learned words (see 

Figure 70), which becomes reversed at the C1 level, reflecting what Siew and Vitevitch termed 

the iPATT effect (Siew & Vitevitch, 2020a, 2020b). PACQ did not have an effect on learning 

probability in this new model (see Table 39 for results).  

Table 39: Final mixed-effects logistic regression with lexical and network growth values to predict learning, 

including the LA*PATT interaction term (model 2).  

Predictors Estimate SE z p 
(Intercept) 
Phonemic length*proficiency 

-2.04 
0.49 

0.04 
0.06 

-56.19 
0.28 

< 0.001 
< 0.001 

-0,2

-0,1

0

0,1

0,2

0,3

0,4

0,5

LA learned LA not learned PATT learned PATT not learned PACQ learned PACQ not learned

z-
sc

or
e,

 st
an

da
rd

 e
rr

or
Growth algorithms: LA, PATT, PACQ (z-scored)

A2 B1 B2 C1
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Lexical frequency*proficiency 
PACQ*proficiency 
LA*PATT*proficiency 
Phonemic length 
Lexical frequency 
PACQ 
LA*PATT 

0.79 
-0.016 
0.14 
-0.64 
0.61 
-0.04 
-0.14 

0.13 
0.06 
0.036 
0.04 
0.04 
0.03 
0.033 

8.43 
-0.13 
3.86 
-16.1 
15.27 
-1.23 
-4.34 

<0.001 
0.47 

< 0.001*** 
< 0.001*** 
< 0.001*** 

0.22 
<0.001*** 

 

 

Figure 70: LA*PATT scores are higher in learned words in the lower proficiency levels; in the highest proficiency 
level, the dynamic is inverse and LA*PATT scores are lower in learned words. 

 

The iPATT mechanism has been suggested to avoid clustering of too many similar word forms 

in the advanced lexicon (Siew & Vitevitch, 2020b). This has benefits for lexical processing by 

minimizing competitor words and enhances network robustness (see Zhao & Xu, 2009). 

Human linguistic cognition must strike a balance between the efficiency of similarity-based 

learning on the one hand, and maximal discriminability on the other hand. According to the 

iPATT hypothesis, preferential attachment functions as the initial mechanism by which new 

words are added to the lexicon. At this stage, the lexicon is small and phonological similarity 

clusters provide learning advantages, without impeding lexical processing. Once the lexicon 

has grown, the PATT mechanism is reversed to the iPATT mechanism, and new neighbors are 

added to low-degree network words. Through this process, unequal distribution of growth is 

restricted and growth can supplement low-degree and singleton nodes to build a more robust 
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network. It remains to be investigated when and how the switch between the two mechanisms 

PATT and iPATT takes place and what factors contribute to its cause in first and second 

languages.  

The present study suggests that phonological similarity-guided learning is most pronounced in 

beginners, when there are actually only few words that new neighbors can attach to (see Figure 

71). In larger lexica, new words can find a multitude of cognitive anchors to attach to 

phonologically. At this stage, network growth becomes more diversified through iPATT. The 

learning environment of yet-to-be-learned words, on the other hand, shrinks as proficiency 

grows. At the A2 stage, more than 6000 words are “available” for learning but they only find 

a small number of possible anchor words in a learner’s dictionary. At the C1 level, word 

learning potential has shrunk to approximately 1000 words, but anchor points in the lexicon 

have grown by a multitude.  

 
Figure 71: Potential anchor words become more frequent as the lexicon grows. 

 

The findings of the present study align with the hypothesis advanced by Siew and Vitevitch 

(2020a, 2020b) that the current vocabulary retained by a learner plays a central role in growth 

processes (as opposed to what was found by Fourtassi et al., 2020). Both LA and PATT were 

shown to be influential for word learning, with PACQ not having an effect on the results. The 

interaction between LA and PATT is initially higher in learned words but this dynamic is turned 

on its head in the advanced proficiency level C1, where LA*PATT is lower in learned words. 

This parallel pattern of growth dynamic documented for first and second language learners of 
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English is certainly noteworthy, as it may represent a basic and common principle of language 

learning. Language proficiency changes many of the parameters of the learning process, and 

there is an undeniable role of the existing knowledge for the acquisition of new knowledge. 

What the results presented in this chapter suggest is that the lexical knowledge that a learner 

possesses at a given time is indicative of what they will learn in the future. The adult L1 lexicon 

of a particular language is the target for all learners, be it children or second language learning 

adults, however, lexical acquisition – like all learning – is a process where existing knowledge 

has to be interwoven with new knowledge in a systematic way in order to create a harmonious 

web of knowledge in the learners’ minds. Anchoring new words to known words can represent 

an efficient method for maximizing similarity-guided learning benefits in language learners’ 

mental lexica, all the while reducing cognitive effort committed to linguistic processing and 

storage.  
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7. Conclusion 

7.1. Utility of network science for lexical learning 

The current book has highlighted the advantages of network science for the study of the mental 

lexicon of (second) language learners, and it is easy to see what network-theoretical concepts 

can contribute to our understanding of word learning and lexical access. Underlying the 

methodology of network theory are the assumptions that a system is governed by local as well 

as global rules, which work in tandem to influence the behaviors of the individual constituents. 

By contrast, a reductionist view utilizes only a fraction of the available information within a 

(lexical) system and tends to underestimate its complexity by failing to account for global 

properties that may impose unexpected constraints. Until recently, the mental lexicon was 

exclusively studied from the “bottom-up” perspective of local rules governing small groups of 

interrelated words, and these findings greatly furthered our understanding of the dynamical 

underpinnings of lexical learning and processing. The introduction of network science has now 

offered a tool to take a “top-down” approach to study the mental lexicon, following the 

rationale of complex systems. Rather than conceiving of the mental lexicon as an accumulation 

of independent, co-existing local word neighborhoods, lexical networks posit a complex lexical 

storage system characterized by far-reaching interconnections that span a large number of 

words. In this view, lexical learning is seen as a process of network growth, emphasizing the 

fact that network changes are dependent on network structure, encapsulating Steven Strogatz’ 

rule that “structure always affects function”. This interplay between the grander layout of the 

lexical network and the possibilities it offers for investigations of word learning are significant 

to acknowledge, especially in light of long-known evidence that not all words are equipotential 
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in their learning probability by (second) language learners. Network science now opens the 

view on how individual words can embed themselves in the pre-existing lexical knowledge of 

learners and can, thus, derive new predictions about learning probabilities.  

The findings presented in this book can contribute to theories on second language word 

memory and learning. The structural organization of word knowledge at different proficiency 

levels can help inform predictions on activation spreading by making visible and analyzable 

the larger neighborhoods in which words are embedded and in which activation can spread, 

following the activation diffusion hypothesis put forth by Michael Vitevitch and colleagues for 

first language processing. The lexical dynamic of co-activation leaking out of the immediate 

neighborhood, essentially thinning out activation and thereby delaying lexical access of a target 

word when there is a denser larger neighborhood, may well be identical in second language 

learning, and the present findings can form the methodological scaffold upon which future 

studies of L2 activation spreading can build.  

The results of this book can also make contributions to scale-free network growth theories by 

detailing growth algorithms in evolving phonological networks. Preferential attachment was 

shown to have an overwhelming influence on growth at all stages of network development, 

supporting a dominant theory of evolving networks. The increasingly popular fitness growth 

models, on the other hand, are less applicable to phonological networks, even though they take 

into account lexical characteristics indicative of better word learning and, thus, would seem a 

better theoretical fit. Seemingly, cumulative advantages in phonological neighbors excel over 

quality of those neighbors, with ensuring implications for the growing architecture of the 

investigated network over time. Principles of rich-get-richer, initial attractiveness, aging 

effects, as well as the first-mover-advantage in phonological networks, place them well within 

the mathematical norms of scale-free networks, further underscoring the utility of network-

mathematical growth algorithms for phono-lexical data.   

Lastly, the data presented in this book can help answer questions as to what role the external 

and internal language environments play in word learning. Growth of the ESL learner networks 

suggests that the current lexical knowledge of learners at a given time is more influential, as 

opposed to the L1 environment of the target language. Because literature on this issue is scarce 

and conflicting, with only two network-theoretical studies with contrary findings being 
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available, any new study contributing evidence to one or the other hypothesis can add valuable 

information to this ongoing debate in second language learning and psycholinguistics.  

An online appendix to this book makes the neighborhood data as calculated from the EVP 

website available. All one-phoneme neighbors (Levenshtein distance) of all words in the 

learner networks are presented per proficiency level and in a format that can easily be navigated 

by interested researchers or used to replicate the present study. Furthermore, this resource can 

be used for neighborhood density estimations of ESL/ L2 English. As opposed to relying on 

neighborhood density data from L1 English, future studies involving English-as-a-second-

language learning are given the option to calculate more L2-specific and potentially more 

applicable neighborhood density data that can better account for learners’ actual lexical 

knowledge at a given proficiency level.  

7.1.1. Future directions 

A number of relevant issues have arisen from the findings presented here, which were beyond 

the scope of this book but may be explored by future studies incorporating the network-

theoretical approach to vocabulary storage and learning in second languages. A few will be 

mentioned here.  

First, the developmental trend of hub formation during network growth carries potential 

consequences for the learning of phonological detail. At initial learning stages, not all 

phonological contrasts are successfully implemented in a learner’s language, as for instance, 

dental fricatives are difficult to acquire for many learners whose first language does not 

incorporate such consonants, and they may be substituted by sibilants or labio-dental fricatives, 

resulting in words such as “sink” instead of “think” in a German learner’s ESL vocabulary. As 

learning progresses, phonological (and phonetic) learning may improve, leading to the 

acquisition of the correct dental fricative [θ]. An interesting question concerns the role of hubs 

in this phonological learning/phonological changes in the network: do hubs suppress the 

introduction of a new phonological feature, due to the many members exerting pressure to 

maintain a conservative phonological standard in the neighborhood? Or are hubs the main 

facilitators of phonological changes, disseminating them most efficiently in the network? A 

similar question could be posed in relation to sound changes in first languages in general. The 

role of hubs in phonological or phonetic changes with potentially far-reaching consequences 

for the whole network remains to be described.  
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Another intriguing research question relates to language loss or network decline. Analyzing 

which network parts start to disintegrate first and which parts are able to maintain their structure 

the longest, whether build-up and decline are correlated, and what constitutes the most robust 

core of a network can yield valuable information for strategies on how to fight language loss, 

be it temporary or pathological. Language educators as well as clinical linguistics studying 

language impairments stand to benefit from such an analysis.  

The network-theoretical approach to the mental lexicon has yet to be broadly evaluated by 

psycholinguistics and tested under different experimental conditions, but there can be no doubt 

that it has potential to complement current theoretical frameworks of word memory and 

learning. The most promising possibility is that network science will be best understood as a 

natural extension of the neighborhood analysis methodology to study the inner workings and 

developmental functions of the mental lexicon. 
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9. Appendix 

9.1. Appendix A: Network graphs (ESL, BNC) 

9.1.1. Micro-level graphs of giant components 

Node sizes and colors according to the respective network centrality measure: larger and 
darker nodes indicate higher centrality values. Yifan-Hu network layouts (Gephi).  
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9.1.1.2. Closeness centrality 
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9.1.1.3. Betweenness centrality 
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9.1.1.4. Eigenvector centrality 

A1 

 
A2 

 

 
 



 207 

B1 
 

B2  

 
 



 208 

C1 

 
C2 

 



 209 

BNC 

 

 

9.1.2. Macro-level graphs 
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9.1.3. Giant component communities 
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