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Abstract 

The ubiquitin-proteasome system is an essential cellular instrument that provides timely 

degradation of specific protein substrates. This thesis examines its role in the regulation of DNA 

replication with emphasis on human cells, while thoroughly exploring DNA replication, with 

respect to its position in the cell cycle, and the ubiquitin-proteasome system.  
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Abstrakt 

Ubikvitin-proteazomový systém je důležitý buněčný systém, který zajišťuje včasnou degradaci 

specifických proteinů. Tato práce se zaměřuje na jeho roli při regulaci replikace DNA 

s důrazem na lidské buňky a detailní výklad replikace DNA a ubikvitin-proteazomového 

systému. 
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1. Introduction 

The ubiquitin-proteasome system is an intricate degradation machinery that plays an essential 

role in many cellular processes, importantly including DNA replication. This thesis aims to 

explore the complexity of this regulation in human cells, while shedding light on 

the fundamental processes involved. The loss of function of the ubiquitin-proteasome pathway 

has been shown to lead to pathogenesis and is currently thoroughly studied with the aspiration 

to medical advances and future opportunities in targeting cancer.  

2. Eukaryotic DNA replication 

2.1. A brief history of DNA 

From the discoveries in the late 19th century made by J.F. Miescher, who unveiled an unusual 

ratio of distinct elements, particularly phosphorus, in the content of the cell nucleus, and two 

decades later by R. Altmann, who successfully separated nucleic acid from proteins, to 

the transforming principle which was revealed during experiments with S. pneumoniae by 

F. Griffith, a novel breakthrough arose - there truly might be a specific molecule standing 

behind one of the prime principles of life: replication1, 2. This presumption was finally 

confirmed by the team of O.T. Avery, C.M. McLeod, and M. McCarthy, who discovered that 

the molecule behind the transforming principle is DNA, thus revealing the genetic material for 

bacteria (later it was discovered that DNA serves as the genetic material also for archaea, 

eukaryotes, and some viruses)3, 4.  

Watson and Crick later famously proposed the first highly accurate model of the structure of 

DNA and gave solid arguments for the semiconservative model of replication (the two others 

being the conservative and the dispersive model)5. The semiconservative model of replication 

was finally confirmed in 1958 by Meselson and Stahl, who discovered that the content of N15 

in the DNA of E. coli grown in N15 containing medium halves in the next generation if grown 

on N14 and then continues to correspond to the semiconservative model in every subsequent 

generation6.  

2.2. The mechanism of DNA replication 

The semiconservative model states that during DNA replication, both strands of the parental 

dsDNA are used as templates for creating nascent dsDNAs, which, therefore, contain one newly 

synthesized and one parental strand. The underlying mechanism is that the sequence of bases  

incorporated in the structure of ssDNA is read base by base by DNA dependent DNA 
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polymerases that continuously assign corresponding bases to the ones in the template 

(Figure 2). Human cells contain many different families and types of DNA-dependent DNA 

polymerases depending on the location and situation (mitochondrial Pol γ belongs to 

the A-family of DNA polymerases, whereas nuclear polymerases α, δ and ε are all classified 

into the B-family – polymerases from this family typically have the catalytic activity and 

the proofreading activity, the latter is, however, inactive in Pol α)7, 8. The ligation of a base to 

the previous one is facilitated by the catalytic activity of distinct subunits of 

polymerases –  Pol2/POLE1 subunit in Pol ε and Pol3/POLD1 in Pol δ8.  

Since DNA polymerases ε and δ require a free hydroxyl group for DNA synthesis, the launch 

of their activity depends on a preexisting DNA segment, which is initially represented by 

a primer composed of DNA and a short segment of RNA (Figure 2)9. The primer is synthesized 

by DNA polymerase α/Primase complex, comprising two subunits of the polymerase and two 

primase subunits. At first, the primase synthesizes a short RNA oligomer, which provides 

the free 3’ end with a hydroxyl group. This fragment is then extended by Pol α, which, however, 

has a relatively low processivity and, as such, synthesizes only the first fraction of the nascent 

DNA strand10, 11. Upon the essential creation of the primer, replication is facilitated by Pol ε 

and Pol δ. 

The highly required precision of DNA replication is controlled by a complex DNA repair 

system on which Pol δ and Pol ε participate by their proofreading activity, which is facilitated 

by their 3’-5’ exonuclease activity (this is triggered if the nascent sequence does not pair 

properly with the bases in the template.)12 It was also suggested that Pol δ participates on 

proofreading of both the lagging strand and the leading strand13. 

As mentioned above, Pol ε and Pol δ require a free hydroxyl group for their catalytic activity. 

However, as dsDNA consists of two antiparallel strands, only the one with the 5’-3’ orientation, 

the leading strand, can be synthetised continuously. The other strand, also called the lagging 

strand, must thus be synthesized in a discontinuous manner, which utilizes the employment of 

multiple primers that are continuously added further from the nascent strand, thus allowing 

the 5’-3’ catalytic activity of Pol δ to take place (Figure 2). Consequently, a series of fragments 

called the Okazaki fragments is formed14. These fragments are later ligated into 

an uninterrupted DNA strand during the Okazaki fragment maturation (Figure 1). 
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The progression of Pol δ upstream of an Okazaki fragment leads the polymerase directly into 

the downstream fragment, creating an overlapping 5’ flap segment. This flap is cleaved by flap 

endonuclease 1 (FEN1)15. The nicks in between individual Okazaki fragments are consequently 

filled by the activity of DNA ligase I, thus connecting all the Okazaki fragments and forming 

two complete dsDNA molecules16. 

Although the central part of DNA replication occurs during the S phase of the cell cycle, 

the entire process is strictly temporally segregated, and a crucial part, licensing, takes place 

from metaphase on and through the G1 phase17. During licensing, several initiation factors bind 

to distinct parts of DNA called replication origins. The eukaryotic replication origins in higher 

eukaryotes, unlike the bacterial ones, usually do not contain consensus DNA sequence 

elements, instead, they rely on a combination of differing factors – mainly the local structure 

of chromatin and epigenetics18 19.  

The process of licensing is launched by the association of the Origin Recognition Complex 

(ORC) with a replication origin20. This allows the Cell Division Cycle 6 (CDC6) and Chromatin 

licensing and DNA replication factor 1 (CDT1) to bind to the origin of the replication site and 

recruit the minichromosome maintenance (MCM) complex (a ring-like heterohexamer 

composed of MCM2-7 subunits), which concludes the formation of the pre-replication complex          

(pre-RC)21, 22. In the S phase, the MCM complex is complemented by CDC45 and GINS, 

forming two head-to-head CMG complexes on the leading strand template. After the origin 

firing, CMGs start translocating in the 3’-5’ direction (Figure 2)23.  

The helicase activation and, consequently, replication are controlled by multiple activating and 

inhibiting factors, which ensure the temporal segregation of origin licensing and firing. 

The formation of the CMG helicase is allowed by the activity of CDK2 complexes that 

phosphorylate Sld2 and Sld3. This allows them to create a complex with Dpb11 and 

consequently recruit Cdc45 to Mcm2-724, 25, 26, 27. The dissociation of this complex subsequently 

allows the binding of GINS28. 

The Dbf4-dependent kinase (DDK) subsequently phosphorylates the MCM complex, 

promoting replication26. Interestingly, in Saccharomyces cerevisiae, it was shown that 

Figure 1: A simplified model of Okazaki fragment maturation. Taken from Greenough et al17. 



4 
 

the impact of this modification is caused by discharging the inhibitory activity of the N-terminal 

serine/threonine-rich domain (NSD) of Mcm429. 

Although DNA polymerases are the critical actors of DNA synthesis, there are several other 

factors whose presence is essential for their activity. After the replication bubble forms, 

segments of ssDNA form along. These segments could easily reassociate, which is prevented 

by the binding of replication protein A (RPA) (Figure 2)33.  

DNA polymerases ε and δ periodically dissociate from chromatin and must be replaced with 

new ones. To prolong the duration of their association with chromatin, they are bound by 

proliferating cell nuclear antigens (PCNAs) – homotrimeric ring-shaped clamp proteins that are 

continuously loaded onto chromatin by replication factor C (RFC) in an ATP-hydrolysis 

dependent manner (Figure 2)30 31, 32. Importantly, PCNA also functions as an organising centre 

for many vital processes, as explored further.  

The helicase activity of CMG complexes creates positive supercoils in front of the helicase and 

negative supercoils behind it. This helical stress can be released either by rotation of 

the replication fork or by the activity of topoisomerases, which can cut DNA strands, rotate 

them, and reconnect them, thus lowering the linking number and releasing the helical stress34. 

2.3. Termination of DNA replication 

The termination of an unperturbed DNA replication occurs when two replication forks meet. 

Since CMG helicases appear to associate with leading strand templates, two approaching CMGs 

will meet on different strands. Moreover, because there is not much evidence for stable 

Figure 2: A schematic model of the eukaryotic replication fork. Taken from Nasheuer et al30. 
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associations between the replicative machinery on leading and lagging strands, the CMG would 

proceed onto the lagging strand template after the fusion of the two converging replication 

forks. It is speculated that the CMGs continue their way on the lagging strand template until 

they reach the closest Okazaki fragment. After that, the CMG proceeds, however, without 

unwinding dsDNA, which is allowed by a 5’ flap35.  

As discussed later, the CMG helicase is subsequently disassembled in a ubiquitin-dependent 

manner, together with components of the replisome progression complex that are bound to 

CMG. Other proteins that do not interact with the CMG complex but are used during the DNA 

replication probably dissociate independently of the DNA replication termination35. 

3. Eukaryotic cell cycle 

The mechanistic and functional changes occurring during the life of a proliferating cell can be 

artificially divided into four distinct phases – G1, S, G2, and M phase. The M phase, itself 

composed of four main phases, allows cell division, while the former three phases, altogether 

called the interphase, prepare the cell for division. Nevertheless, most cells of an adult 

mammalian organism do not enter the cell cycle and instead exit to quiescence (G0), a reversible 

cell cycle arrest. 

Each of the three phases of interphase encompasses several essential events, such as growth 

during G1, DNA replication during the S phase, and control of the replicated strands during G2. 

Moreover, the whole cell cycle is intertwined by several checkpoints that ensure accurate 

progress to the next phase.  

The chief regulators of cell cycle progression are cyclin-dependent kinases (CDKs), whose 

activities are controlled by oscillating levels of specific cyclins and CDK-activating 

kinases (CAKs)164.  

4. The ubiquitin-proteasome system 

4.1. The ubiquitin-proteasome system in the context of cellular life 

The sustainment of life depends on the precise cooperation of temporally and spatially 

coordinated molecules, of which a fundamental fraction is represented by proteins. 

Consequently, an accurate apparatus controlling each protein throughout its existence – its 

synthesis, regulation of its function, and its degradation – is required.  

The synthesis of proteins is mediated by transcription of a DNA sequence into mRNA and 

subsequently by translation of mRNA into a sequence of amino acids according to the genetic 
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code36, 37. However, a plain sequence of amino acids itself is not sufficient for the function of 

a protein. It is the proper 3D structure of proteins that usually allows their function. This native 

structure of a protein is achieved in an endoergic manner, according to the entropic principle, 

which proposes that the spontaneous folding is allowed by distinct properties of amino acids 

that may cause, depending on their characteristics, a structural change in the surrounding 

molecules of the water crystal, which would increase their organization. Since this would 

violate the second law of thermodynamics, the peptide is instead forced to fold in a manner that 

allows for the lowest organization of water molecules, while inner hydrogen bonds drive 

the formation of secondary structures38, 39.  

Nevertheless, this automatic process may lead to stable structures that are not native and thus 

must be refolded (which is allowed by chaperones) to their functioning conformation40. 

The other option is protein degradation. Many new proteins must be degraded for their improper 

folding, which is also facilitated by chaperones41. Moreover, proteins that are no longer needed 

must be disassembled too – firstly, it allows for the homeostasis of amino acid levels; secondly, 

such a protein may be pathogenic for the cell or cause behaviour pathogenic for the whole 

organism as discussed later42, 43.  

In eukaryotic cells, two systems are responsible for protein degradation – the autophagy-

lysosome and the ubiquitin-proteosome systems. While the main focus was initially put on 

lysosomes, recent decades of research have highlighted the importance of the 

ubiquitin-proteasome system44. 

4.2. The ubiquitin system cascade 

The ubiquitin-proteasome system serves as the central cellular protein-specific proteolysis 

system, the fundamental principle being that proteins ubiquitylated by the ubiquitin system 

cascade (Figure 3) are recognized by proteasome, which disassembles them45. 

The ubiquitin system cascade is composed of three main enzymes – the ubiquitin-activating 

enzyme (usually abbreviated as E1), the ubiquitin-conjugating enzyme (E2), and the ubiquitin 

ligase (E3) – the coordinated engagement of the three enzymes leads to the ligation of ubiquitin 

(a highly stable and among eukaryotes conserved protein) to the target substrate46,47. E1s, 

ATPases which of the three enzymes are the least specific ones, being able to interact with 

numerous E2s, bond ubiquitin due to hydrolysis of ATP, thus creating a macroergic thiolester 

(Figure 3)48. The activated ubiquitin is then reconnected to an E2, directly associating with 

an E3-substrate complex. The association of E2s and E3s catalyses the transfer of ubiquitin to 

the substrate. Consequently, the ubiquitylated substrate is released from the E3. Ultimately, 
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the substrate specificity of E3s side by side with the lower specificity of E2s and E1s contributes 

to a complex hierarchical system of enzymes that, with increasing specificity, carry ubiquitin 

to the target substrate while providing an effective system that does not require high variability 

of all involved types of enzymes49, 50, 51.  

Ubiquitin ligases are divided into three structurally and functionally distinct classes52. 

The largest one, the RING family, is defined by the presence of a Really Interesting New Gene 

(RING) domain that directly binds E2-Ub. This allows for the proximity of the activated 

ubiquitin and the target substrate while also allosterically catalysing the transfer53. Very 

frequent RING ligases are Cullin-RING ligases (CRLs), in which RING is accompanied by a 

cullin scaffold protein (CUL) and a substrate adaptor54, 55. 

Another E3 class is the Homologous to E6-AP Carboxyl Terminus (HECT) family. The 

N-terminal lobe of HECT ligases contains an E2 binding domain, while the C-terminal lobe 

contains a catalytic cysteine. A flexible hinge region connects both lobes53. Unlike RING E3s, 

HECT ligases initially need to accept the activated Ub from the E2, forming a thioester on their 

catalytic cysteine, and only then can they ubiquitylate the substrate53. 

The smallest class, called the RING-between-RING (RBR) family, is characterised by 

the presence of a RING1 domain, an in-between-RING domain (IBR), and a catalytic RING2 

domain. Mechanistically, RBR ligases are hybrids of RING and HECT ligases. Although 

initially their RING1 domain associates with the E2-Ub, the rest of the interaction is more 

Figure 3: A simplified model of the ubiquitin system cascade. Created with BioRender.com 
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similar to the one of HECT ligases, as the ubiquitin must be at first transferred to the E3 itself 

(to the catalytic cysteine of the RING2 domain) and only then can it be attached to 

the substrate56. 

4.3. The ubiquitin code 

A single activity of the ubiquitin system cascade results in an isopeptide bond between 

the C-terminus of ubiquitin and, usually, a lysine from the substrate, that 

is – monoubiquitylation. However, the process of ubiquitylation may continue, leading either 

to the assignment of multiple moieties of ubiquitin, each to a distinct residue of the substrate 

(multimonoubiquitylation), or the creation of a ubiquitin chain (as short as two ubiquitins or 

longer than ten moieties) of a differing topology on an already substrate-linked ubiquitin 

(polyubiquitylation) (Figure 3). Accordingly, the variability of ubiquitylation enciphers 

a diverse system called the ubiquitin code, which, by employing specific proteins bearing 

ubiquitin-binding domains (UBDs), allows for leading proteins to their distinct fates46. 

Polyubiquitylation is allowed by modifying one of the seven lysine residues (K6, K11, K27, 

K29, K33, K48, K63) or the N-terminus of the already connected ubiquitin. This, combined 

with other factors (including topology, localization of the enzyme or substrate, or reversibility 

and timing of the reaction), contributes to the variability of the ubiquitin code. Ubiquitin chains 

promote proteolysis by the proteasome, often when K11- or K48-linked chains are used. This 

modification, although irreversible upon engagement of the substrate in proteasome, can be 

reversed by the activity of deubiquitinating enzymes (DUBs), which can remove ubiquitin 

moieties from the substrate46. 

Monoubiquitylation or K63-linked chains may lead to a non-proteasome mediated protein 

degradation. Many ubiquitylations also result in a completely non-proteolytic pathway. This is 

often connected with monoubiquitylation or K63-/M1-linked ubiquitin chains46. 

4.4. The structure of the 26S proteasome 

Substrates ubiquitylated in a proteasome degradation-promoting manner are subsequently 

recognized by the proteasome (Figure 4), a multisubunit complex whose catalytic function is in 

eukaryotes facilitated by the 20S core particle (CP)57. Although the 20S proteasome can degrade 

ubiquitin-tagged substrates on its own, it is usually accompanied by other subunits, proteasomal 

activators58. The degrading activity itself is mediated by the proteolytic chamber of the β rings 
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(specifically by β1, β2, and β5 subunits) of CP (Figure 4), while proteasomal activators allow 

for the entrance of the protein into CP (by recognition, unfolding and translocation of 

the protein). The most thoroughly studied of these activators is the 19S regulatory particle (RP), 

which in a complex with 20S core particle forms the 26S proteasome59, 60.  

When the substrate is irreversibly engaged into the entry channel of the proteasome, which is 

mediated by the activity of the ubiquitin receptor subunits, Rpn1, Rpn10 and Rpn13 (Figure 4) 

and (in yeast) by shuttling factors Rad23, Dsk2 and Ddi1 that bring the ubiquitylated substrate 

to the proteasome, Rpn11 (or other distinct deubiquitinating enzymes) cleaves the ubiquitin 

chain59, 60. The inserted protein is then proteolyzed into small peptides (Figure 3)42. 

5. Ubiquitin-mediated control of DNA replication 

The DNA replication is precisely controlled by a complex system of regulators. Factors that 

control replication, among others, include ubiquitin ligases and proteolytic or non-proteolytic 

ubiquitylation. Importantly, a set of ubiquitin ligases is focused on the regulation 

of the periodical transitions between distinct cell cycle phases. 

5.1. The ubiquitin-proteasome system in the cell cycle context of replication 

5.1.1. The ubiquitin-proteasome system during the G1/S transition 

The principal control machinery behind the cell cycle progression is conservatively composed 

of cyclin-dependent kinases (CDKs) and oscillating levels of their regulators. Their activity is 

accompanied by several checkpoints, providing a system in which each step of the cell cycle 

must be finished before the initiation of the next one. A vital component of this mechanism 

during G1 is the inhibition of genes essential for S phase entry. Their transcription is controlled 

by members of the E2F family of transcription factors and is inhibited by the principal regulator 

Figure 4: Schematic structure of the 26S 

proteasome. Taken from Rousseau and Bertolotti 

and modified with BioRender.com61. 

The 20S core particle consists of hexameric alpha 

and beta rings. The 19S regulatory particle consists 

of the base and the lid. The base is composed of four 

non-ATPase subunits (Rpn1, Rpn2, Rpn10 and 

Rpn13) and a heterohexameric ring that is 

composed of six AAA+-ATPase subunits (Rpt1-

Rpt6). The lid consists of nine non-ATPase subunits 

(Rpn3, Rpn5-9, Rpn11, Rpn12 and Sem1)59. 
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of E2F proteins, the retinoblastoma protein (pRb) (and the related p107 and p130, which target 

some of the E2F repressors) (Figure 5)61, 62. 

Binding of mitogens (growth factors and growth inhibitory factors) to a newly formed cell leads 

to a response that sets the subsequent fate of the cell (Figure 5). This event occurs during 

the restriction point in late G1 and leads either to entry to the next phase or cell cycle arrest63, 64.  

Positive signals from growth factors promote the S phase entry and progress through the rest of 

the cell cycle (Figure 5). This is facilitated by increased transcription of D-type cyclins, 

the binding partners of CDK4 and CDK665, 66. The resulting complexes phosphorylate pRb, 

which together with the subsequent phosphorylation mediated by CDK2 (in complex with 

cyclin E in G1 and cyclin A in S phase) leads to the inactivation of pRb. This allows for 

the expression of E2F-controlled genes67,68. The inhibitory activity of pRb is then reestablished 

in late mitosis by PP1-mediated dephosphorylation69.  

On the other hand, the binding of growth inhibitory factors or depletion of growth factors 

activates pathways promoting cell cycle arrest, such as p21 transcription (Figure 5)70, 71. 

The activity of p21 leads to the inhibition of G1 cyclin-CDKs and consequently to obstruction 

of the aforementioned pathway72. Importantly, p21 can be also transcribed in response to DNA 

damage via activation of p5373. The activity of p21 is accompanied by p27, another prominent 

inhibitor of G1 cyclin-CDKs (Figure 5)74. 

The ubiquitin-proteasome system plays a crucial part in these processes, as proteolysis of 

distinct factors involved in the G1/S transition ensures the strict separation of cell cycle phases 

and protection from re-replication.  

The E2F family comprises of multiple different factors, including both transcriptional activators 

and repressors. Members of both have been shown to be degraded by the ubiquitin-proteasome 

system (Figure 5), which restricts transcription of S phase-promoting genes to the appropriate 

phase of the cell cycle. All three activators (E2F1-3a) are degraded during S and G2 phases by 

SCFCCNF 81. This ubiquitin ligase also targets two repressors, E2F7 and E2F8, during G282, 83. 

Similarly, APC/CCDH1 also targets activators and repressors – E2F8, E2F3 and E2F182, 84, 85. 

Additionally, E2F1 has been shown to be ubiquitylated by SCFSKP2 and APC/CCDC20 during 

the S/G2 phase and mitosis respectively86, 87. 

While the ubiquitin-proteasome system does not target CDKs directly, it can modify their 

activity through ubiquitin-mediated degradation of cyclins (Figure 5). The ubiquitylation of 

cyclin D1 requires its previous transfer to cytoplasm, which is facilitated by phosphorylation of 
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its Thr286 during the S phase. This has been shown to be mediated by glycogen synthase kinase-

3β (GSK-3β) and the E3 ligase SCFFBX4-CRYAB in unperturbed cells or alternatively by MAPK 

cascade and the E3 ligase FBXW8 in cancer cell lines75, 76, 77. A similar pathway has been 

discovered for cyclin D2. Its ubiquitylation, and the ubiquitylation of cyclin D3, is mediated by 

SCFFBXL2, leading to cell cycle arrest78, 79, 80.  

The progression through the cell cycle also requires timely degradation of CDK inhibitors. 

The principal inhibitors of G1 cyclin-CKDs, p21 and p27, are polyubiquitylated by SCFSKP2 

during the G1/S transition and later during the S phase78, 79. Although modification of both 

proceeds similarly, the ubiquitylation of p27 by SCFSKP2 requires previous phosphorylation by 

Figure 5: Diagram of the role of UPS at the G1/S transition. Created with BioRender.com. 
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CDK2 (in complex with cyclin E or cyclin A), while phosphorylation of p21 is not 

necessary78,79, 94. The degradation of both p21 and p27 does not depend solely on the activity of 

SCFSKP2. p21 is additionally ubiquitylated by CRL4CDT2 during the S phase and later during 

prometaphase by APC/CCDC20 90, 91. The ubiquitylation of p27 is also mediated by Pirh2 at G1/S 

transition and by KPC after translocation of p27 out of the nucleus during G192, 93. 

After the decrease of levels of CDK inhibitors and the phosphorylation of pRb, the cell can 

enter the S phase, which requires the previous assembly of the replication machinery and 

the origin firing which is controlled by DDK and CDK2 complexes26. To prevent re-replication, 

these enzymes are subsequently inactivated in a UPS-dependent manner, as distinct ubiquitin 

ligases target binding partners necessary for their activity. 

Cyclin E and cyclin A, the activator of CDK2, are conservatively ubiquitylated by SCFFBW7 and 

APC/CCDC20 respectively98, 99. Dbf4p, the activator of DDK, was shown to be ubiquitylated by 

APC/C upon anaphase in yeast extracts100. Moreover, as transcription of all these binding 

partners is mediated by E2F1, their accumulation is inhibited by the previously explored 

ubiquitin-dependent degradation of this transcription factor65, 86, 97. 

5.1.2. Introduction of APC/C, a pivotal ubiquitin ligase of mitosis and G1 

The cyclosome/anaphase-promoting complex (APC/C) is essential for the degradation of many 

proteins and the onset of anaphase. Inhibition of APC/C is controlled by the spindle assembly 

checkpoint (SAC), a mitotic event that protects key anaphase inhibitors from degradation before 

the attachment of all chromosomes to the mitotic spindles is secured. This is ensured by 

the assembly of the mitotic checkpoint complex (MCC) that binds and inhibits the APC/CCDC20 

complex101. The tension generated upon attachment of kinetochores to microtubules later 

signals the completion of metaphase and leads to silencing of SAC and consequently releasing 

of APC/CCDC20 102, 103. 

The substrate specificity of APC/C is allowed by two cofactors – CDC20 and CDH1 (Figure 5). 

This association is importantly regulated by the phosphorylation of both APC/C and CDH1, 

which secures the sequential binding of CDC20 and CDH1 respectively. CDC20 associates 

with phosphorylated APC/C, while binding of CDH1 is inhibited until its dephosphorylation 

upon mitotic exit104, 105. APC/CCDH1 then promotes its own activity by targeting CDC2066. 

The activity of APC/CCDH1 is subsequently inhibited by EMI1 at the G1/S transition after its 

transcription mediated by E2F factors124. 
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5.2. Control of licensing factors mediated by the ubiquitin-proteasome system 

As described above, licensing is an essential process that takes place at the end of mitosis and 

during the G1 phase and results in forming the pre-RC (composed of ORC, Cdc6, Cdt1, and 

MCM2-7). 

5.2.1. The degradation pathways of the Origin Recognition Complex 

Uninhibited licensing factors support the danger of re-replication. To prevent it, cells have 

developed precise mechanisms that ensure the timely degradation of these proteins.  

While levels of most subunits of the ORC complex remain stable throughout the cell cycle in 

human cells, the largest subunit (ORC1) is sequentially expressed and degraded. It is 

transcribed during the M/G1 transition and later proteolyzed in a ubiquitin-dependent manner 

during the S phase, which is facilitated by SCFSKP2 (Figure 6) 106. Interestingly, it was suggested 

that this modification might play multiple roles in DNA replication regulation, as it could take 

part in the control of origin firing106. Importantly, SKP2 is degraded upon the initiation of 

the next cell cycle by APC/CCDH1, which allows for the accumulation of ORC1 and 

licensing95, 96.  

Although there is not much more evidence of UPS-mediated control in the case of subunits of 

the human ORC complex, ubiquitin itself was shown to have a significant impact on the stability 

and regulation of the complex (Figure 6). Experiments in multiple cancer cell lines revealed 

that ORC3 and ORC5 are multimonoubiquitylated by OBI1 during the S phase, which likely 

takes part in origin firing and might be involved in selecting pre-RCs for firing107. Moreover, 

RFWD3-mediated ubiquitylation was shown to be required for the association of ORC with 

ORC-associated (ORCA), a protein essential for the recruitment of ORC to chromatin and 

possibly for DNA replication initiation (Figure 6)108, 109, 110. The activity of RFWD3 is targeted 

at ORCA, which is later also polyubiquitylated (likely for degradation since a K48 ubiquitin 

linkage is created) by Cul4A-Ddb1 (and other, to date unknown, ubiquitin ligases). The latter 

modification is prevented by ORC2, which binds ORCA and shields its ubiquitylation site until 

the G1/S transition when ORC2 dissociates from chromatin111.  
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5.2.2. The UPS and the Chromatin licensing and DNA replication factor 1 

The employment of CDT1 in licensing relies on the inactivation of its inhibitor, geminin, which 

binds CDT1 and blocks its association with chromatin outside of a short time window during 

late mitosis and G1 (Figure 7). Geminin levels decrease upon metaphase-anaphase transition 

due to its polyubiquitylation by APC/CCDH1 112, 113, 114. It was hypothesised that this modification 

predominantly does not lead to proteasome-mediated degradation. Instead, while a minority of 

geminin is degraded, the rest is deubiquitylated by DUB3 and USP7, leaving geminin in 

an inactive state likely caused by structural changes brought by the previous 

ubiquitylation113, 115.  

Geminin also affects the stability of CDT1 by blocking its ubiquitylation site114. Interestingly, 

even though geminin is present during the S and G2 phases, it does not participate on 

the accumulation of CDT1 until mitosis, likely because geminin cannot bind it before 

the nuclear envelope breakdown event during prometaphase116. 

After the inactivation of geminin during the metaphase-anaphase transition, CDT1 can 

participate on licensing. Subsequently, it must be degraded to prevent re-licensing, which 

utilises several distinct ubiquitin ligases depending on the phase of the cell cycle (Figure 7). 

During the S phase, it is ubiquitylated by CRL4CDT2, employing PCNA as an organizing 

platform. Both CDT1 and CDT2 contain a PCNA interaction protein box (PIP box), which 

Figure 6: Ubiquitin-mediated control of origin recognition complex. Created with BioRender.com 
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allows them to bind PCNA117, 120. Another ubiquitin ligase targeting CDT1 during S-G2 phases 

is SCFSKP2. This modification requires the previous formation of a phosphodegron mediated by 

phosphorylation of CDT1 by cyclin E-CDK2 and cyclin A-CDK2117, 119. The remaining CDT1 

is targeted by SCFFBXO31 during G2 in the cytoplasm, where it is transferred after its previous 

phosphorylation118.  

Interestingly, p97, a prominent factor frequently used for removing ubiquitylated substrates 

from an attached surface (as explored later), was shown to be involved in removing CDT1 from 

chromatin. This was demonstrated in X. leavis after exposure to UV irradiation, which led to 

ubiquitylation of CDT1 by CRL4Cdt2 and a subsequent removal for proteasomal degradation by 

p97 and its cofactor Ufd1. A similar pathway was discovered in Caenorhabditis elegans, 

indicating the conservation of this process in higher eukaryotes. Moreover, it was suggested 

that this pathway might be employed even during an unperturbed S phase121, 122.  

5.2.3. The role of UPS in regulating the Cell Division Cycle 6 

As with other licensing factors, the activity of CDC6 too must be restricted to a distinct phase 

of the cell cycle, after which it is degraded in a ubiquitin-dependent manner (Figure 8). After 

its association with chromatin at the M/G1 transition, the unbound CDC6 is targeted by 

Figure 7: Diagram of UPS-mediated control of CDT1. Created with BioRender.com. 
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APC/CCDH1 during early G1123. Later, upon the inhibition of APC/CCDH1 by EMI1 at 

the G1-S transition, CDC6 levels could rise again, leading to the danger of re-replication. This 

is prevented by another ubiquitin ligase, CRL4CDT2, that targets CDC6 for degradation upon 

S phase entry. This ubiquitylation utilises the PIP-box-like motif found in CDC6, allowing 

PCNA to be established as a platform for the process125. Later, mainly during late G2 and early 

mitosis, CDC6 is polyubiquitylated by SCFCCNF 126, 127.  

 

5.2.4. CDT1 and CDC6 in the context of quiescence exit and rapid proliferation 

Interestingly, the regulation of CDC6 noticeably differs between rapidly proliferating cells and 

quiescent cells.  

The cell cycle arrest of quiescent cells is a result of activity of a multitude of factors, importantly 

including the activity of APC/C, which leads to decreased levels of CDC6 and many other 

proteins. When quiescent cells aim to re-enter the cell cycle, accumulation of cyclin E (a result 

of E2F-dependent transcription) leads to the formation of cyclin E-CDK2 complexes, which 

can phosphorylate CDC6, thus masking its degron from APC/C. This process, together with 

Figure 8: Diagram of UPS-mediated control of CDC6. Created with BioRender.com. 
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APC/C mediated degradation of geminin and cyclin A (inhibitor of CDC6), allows for 

the accumulation of CDC6 and CDT1. APC/C is then inactivated in late G1, leading to 

the accumulation of geminin and cyclin A128, 129. 

On the other hand, the control of licensing in proliferating cells of metazoa is independent of 

cyclin E levels. While CDT1 is degraded later during the S phase, CDC6 is degraded upon 

mitotic exit130. This sequential degradation of distinct licensing factors provides a sufficient 

system for the prevention of re-licensing 116.  

5.3. The DNA dependent DNA polymerases and the UPS 

While ubiquitylation plays a crucial role in regulating licensing factors to prevent the risk of 

re-replication, its function in the context of DNA polymerases revolves mainly around the DNA 

damage response. This has been demonstrated in both Pol α and Pol δ. The importance of 

ubiquitylation for Pol ε in human cells is unclear.  

5.3.1. The DNA dependent DNA polymerase δ 

DNA synthesis of the lagging strand during replication in mammals is mainly provided by 

Pol δ3144, which comprises three subunits - p50, p68 (p66 in humans), and p125. Nevertheless, 

the activity of this heterotrimeric polymerase is accompanied by a second, less abundant, form 

of the polymerase, which comprises one more subunit – p12148.   

The prevailing Pol δ3 was shown to be a more vigilant tool for DNA synthesis, being less prone 

to performing incorrect synthesis past lesions in DNA – such as an abasic site, 

a thymine-thymine dimer, 8-oxoguanin or O6-methylguanine145. Moreover, it was shown that 

Pol δ3 is more effective in processing Okazaki fragments146.  

On the other hand, Pol δ4 has a higher processivity and can associate with distinct Pol δ 

interacting proteins (PDIPs) that do not associate with Pol δ3147. Accordingly, it is utilised 

during DNA replication, although in a minor degree, because of its higher error production148. 

Accordingly, since the properties of Pol δ3 are ideal for executing DNA synthesis upon DNA 

damage, the existing Pol δ4s can be converted to Pol δ3s in response to mutagenic factors. This 

has been shown in experiments with UV, methyl methanesulfonate, hydroxyurea, and 

aphidicolin treatment, upon which p12 was targeted by proteolysis promoting 

polyubiquitylation mediated by RNF8, which is controlled by ATR, the apical kinase of DNA 

damage response regulation during S phase149, 150. Interestingly, it was proposed that the RNF8-

mediated ubiquitylation of p12 might be involved in the unperturbed cellular turnover of this 
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subunit150. p12 is also targeted by CRL4CDT2 in a PCNA-dependent manner upon both DNA 

damage and S phase entry151.  

In human cells, it was shown that the p66 subunit is also ubiquitylated (mainly 

monoubiquitylated) and SUMOylated by SUMO3. However, these modifications do not seem 

to promote proteolysis152. 

5.3.2. The DNA dependent DNA polymerase α 

It was proposed that the activation of ATR during the unperturbed S phase is promoted by 

loading of POLA/PRIM (DNA polymerase α/Primase complex) on chromatin upon the origin 

firing. This process is limited by the activity of VCP/p97, which removes POLA/PRIM from 

chromatin, thus preventing excessive ATR activity. It was suggested that the cumulative 

activation of ATR (and subsequently CHK1) could explain how cells count the number of active 

DNA replication forks, which helps to prevent excessive origin firing. Extraction of 

POLA/PRIM by VCP/p97 could also promote DNA polymerases switching from Pol α to 

elongation polymerases Pol δ and Pol ε153. 

5.3.2.1 The role of MCM10 in regulating the DNA dependent DNA polymerase α  

Mcm10 is an essential part of the eukaryotic replisome, bearing several functions as a scaffold 

protein vital for proper replication. By interacting with DNA and all three main components of 

CMG helicase, Mcm10 promotes DNA replication initiation. Moreover, Mcm10 also 

participates in replication fork stability control and recruits PCNA and polymerase α/primase 

complex, thus mediating the synthesis of Okazaki fragments. In the absence of MCM10, 

polymerase α/primase complex dissociates from chromatin154, 155. Interestingly, it was shown 

that upon UV irradiation, Mcm10 is promoted for degradation by CRL4VprBP-mediated 

ubiquitylation, which could have an essential role during loading of translesion synthesis 

mediating polymerases (such as Pol η) during DNA damage response by facilitating 

dissociation of POLA/PRIM156.  

5.4. The role of the ubiquitin-proteasome system during DNA replication termination 

5.4.1. The CDC45-MCM2-7-GINS helicase complex  

5.4.1.1 The minichromosome maintenance (MCM) complex 

While ubiquitylation has been suggested to be involved in the regulation of the MCM complex 

in many organisms, little is known about its role in human cells. However, as discussed further, 

it has been shown that ubiquitylation plays a pivotal role in mediating CMG disassembly 

through targeting the MCM7 subunit. Moreover, MCM3 has been proposed to be ubiquitylated 
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by KEAP1 in metazoa as a part of the KEAP1-CUL3-RBX1 complex, nevertheless, the specific 

role of this modification is unclear140, 141. 

The disassembly of CMG appears to be conservatively driven by ubiquitylation of the MCM7 

subunit throughout metazoa131, 132, 136. The precise mechanism of CMG disassembly regulation 

in human cells is unknown since studying CMG helicase in diploid human cells bears many 

obstructions (the ideal model for studying mammalian CMG helicases was proposed to be 

mouse embryonic stem cells, mESCs)131.  

 In mESCs, the CMG-MCM7 subunit is ubiquitylated by CUL2LRR1, which leads to 

the activation of CMG disassembly during the termination of DNA replication (Figure 8). As 

a negative regulator of this modification, the deubiquitylating enzyme Usp37 has been 

suggested131. During the mitotic pathway of CMG disassembly, ubiquitylation is provided by 

TRAIP instead of CUL2LRR1 (as also observed in Xenopus laevis egg extracts and 

Caenorhabditis elegans, suggesting conservativeness of this modification)131, 133, 136. Reasons 

for restricting CRL2LRR1-mediated ubiquitylation to DNA replication termination are unclear. 

However, it has been proposed that this specificity might be caused by repression of its activity 

by DNA replication fork during elongation139. 

Interestingly, in Xenopus egg extracts, TRAIP has been shown to be the master regulator of 

DNA lesion repair. Two pathways can be employed during a collision of replication fork with 

interstrand crosslinks (ICLs, which block the progress through DNA replication) - Fanconi 

anemia (FA) pathway or a simpler NEIL3-mediated cleavage of the crosslink. Both pathways 

appear to be regulated by TRAIP-mediated ubiquitylation. TRAIP is associated with replisome, 

and while it cannot ubiquitylate the replisome to which it is attached during the S phase 

(a conformational change occurring during mitosis releases this block), it can ubiquitylate 

factors that would obstruct the course of the replisome, such as DNA-protein crosslinks (DPCs) 

or other CMGs in trans at interstrand DNA crosslinks (ICLs). In this manner, two different 

types of ubiquitin chains can arise - short chains, which lead to the recruitment of NEIL3, and 

long chains, which promote the p97-dependent unloading of CMG, which allows for the FA 

pathway136.  

Both ubiquitylations (S phase-specific and M phase-specific) appear to conservatively lead to 

a p97-mediated disassociation of MCM7, which, as has been shown in budding yeast, leads to 

disassembly of CMG into CDC45, GINS, and MCM2-7 (Figure 8), followed by disassembly 

of the whole replisome progression complex (RPC) during S phase (nevertheless, it is unsure 

whether other ubiquitin ligases are involved in the process or not)137, 131. 
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p97 (also known as VCP in humans or Cdc48 in Saccharomyces cerevisiae) is a hexameric 

AAA+ protein that bears several vital functions that are modulated by distinct cofactors. One of 

its pivotal functions is the remodeling of ubiquitylated proteins that releases targeted proteins 

from complexes, allowing for proteasomal degradation. p97 is also involved in the coordination 

of ubiquitylation and ubiquitin editing and might also participate in substrate unfolding by 

proteasome138. 

5.4.2. GINS and CDC45:  

To date, there is little information on ubiquitin-mediated control of the other two subunits of 

the CMG helicase – GINS and CDC45. While experiments in recent years showed the role of 

UPS in control of CDC45, to which extent ubiquitin controls GINS remains to be elucidated.  

CDC45 in human cells is accumulated during late G1, employed in CMG during the S phase, 

and then promoted for degradation during the subsequent G1 phase by APC/CCDH1 143. It was 

demonstrated that high levels of CDC45 block S phase entry, probably due to enhanced 

expression of hspa6 (heat shock protein family A (Hsp70) member 6), showing the importance 

of this ubiquitylation142. 

5.5. The role of ubiquitin in DNA damage response 

There is substantial evidence for the role of ubiquitin in the DNA damage response (DDR) 

during the DNA replication. However, to properly explore the entire role of ubiquitylation in 

DDR is beyond the extent of this thesis, which will thus encompass only a brief introduction of 

some of the roles of ubiquitylation in this cellular event. 

Figure 8: Diagram of UPS-mediated control of CDC6. Created with BioRender.com 
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While PCNA plays an essential role during unperturbed DNA replication, serving as 

a processing enhancer and an organizing platform, it is also a key factor of the cellular response 

to DNA damage. 

When the moving replication fork encounters an obstacle, such as DNA damage, 

the progression of the replication fork is obstructed157. To ensure the continuation of DNA 

replication (DNA damage can be repaired during later stages of the cell cycle), cells can turn 

on DNA damage tolerance (DDT) pathways, which ensure the bypassing of lesions. DDT can 

be mediated by error-prone translesion synthesis (TLS) or error-free template switching (TS). 

The pathway employed is chosen by ubiquitylation (or SUMOylation) of PCNA on K164                      

– monoubiquitylation signals for TLS, whereas polyubiquitylation for TS158, 159, 160, 161.  

Interestingly, ubiquitylation of many histones also plays a vital role in DDR as a part of 

the nucleotide excision repair (NER) response or homologous recombination (HR) 

response162, 163.  

6. Conclusion 

Throughout this thesis, it was demonstrated that the ubiquitin-proteasome system plays 

a pivotal role in regulating the intricate enzymatic processes involved in orchestrating cell cycle 

and replicating DNA, which is principal in preserving genome stability and allowing proper 

transitions between distinct cell cycle phases. The primary emphasis of this thesis was a detailed 

description of pathways controlling the degradation of proteins involved in replication. 

However, it has also been shown that non-proteolytic modifications mediated by ubiquitin 

binding are an essential part of the proper progress of both DNA replication and cell cycle.   

Although this thesis has presented many essential degradation pathways that affect the progress 

of DNA replication, it has also pointed out that there are a number of cell cycle regulation areas 

whose molecular mechanisms are still unknown, and thus, research focused on targeted protein 

degradation is a viable and important direction of the molecular biology studies. This is 

especially clear by comparison of our understanding of these processes in human cells with 

knowledge gained from studies in classical laboratory model organisms. This knowledge gap 

is an opportunity for future research focused on developing novel therapeutic approaches 

towards cancerous malignancies.  
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