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Advanced remote sensing methods for monitoring of peat bog vegetation in the Krkonoše
Mountains

Abstract

The goal of the thesis was to create maps of vegetation cover for three peat bogs in Krkonoše National
Park (KRNAP, Krkonoše NP) and to propose a method for further efficient mapping of peat bogs in the
Krkonoše Mountains in collaboration with Krkonoše NP. The research utilized UAV image data and
field botanical data measured by GPS. UAV images were preprocessed using Pix4D Mapper software
and features such as canopy height and textures derived from GLCM were added to the resulting
orthomosaics. Testing confirmed their usefulness in increasing classification accuracy. A separability
analysis was performed, and an algorithm was designed to detect errors in the field data. During the
analysis, two classification methods, Random Forest and Support Vector Machine (SVM), were
compared. The SVM method achieved the most precise results at Kyselé kouty, where average F-1 score
reached 0.957, while the F-1 scores for Hraniční louka and Pančavská louka reached only 0.899 and
0.832 respectively. The overlay analysis demonstrated that the results of the individual methods are
consistent, and for Pančavská louka, combining classifiers yielded better accuracy than the individual
models. The methods which led to the best accuracies in this thesis were recommended in the proposed
approach for further mapping of Krkonoše peat bogs.

Pokročilé metody dálkového průzkumu země pro monitoring vegetace rašelinišť v
Krkonoších

Abstrakt

Cílem práce bylo vytvořit mapy vegetačního pokryvu tří rašelinišť v Krkonošském Národním parku
(KRNAP) a navrhnout postup pro další efektivní mapování rašelinišť v Krkonoších ve spolupráci s
KRNAP. Pro výzkum byla využita obrazová data z UAV a terénní botanická data, zaměřeá GPS.
Snímky z UAV byly předzpracovány v softwaru Pix4D Mapper a do výsledných ortofot byly přidány
příznaky výšky porostu a texury, odvozené z GLCM. Testování potvrdilo jejich užitečnost pro zlepšení
přesnosti klasifikací. Byla provedena analýza separability a byl navžen algoritmus, rozpoznávající chyby
v terénních datech. Během analýzy byly porovnávány dvě klasifikační metody - Random Forest a
Support vector machine (SVM). Nejpřesnějších výsledků dosáhla metoda SVM na Kyselých koutech,
kde bylo dosaženo F-1 skóre 0.957, zatímco F-1 skóre Hraniční louky dosáhlo pouze 0.899 a Pančavské
louky 0.832. Analýza překryvů ukázala, že výsledky jednotlivých metod jsou konzistentní a v případě
Pančavské louky přineslo spojení klasifikátorů I lepší přesnost, než jednotlivé modely. Metody, které
vedly k nejlepší přesnosti, byly doporučeny v navrženém postupu pro další krkonošská rašeliniště.
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1 Introduction

1.1 Objectives

Krkonoše National Park (KRNAP, Krkonoše NP), the oldest national park (established in 1963) in the
Czech Republic, protects several diverse ecosystems. These include especially the rare relict arcto-alpine
tundra, mountain forests and peat bogs. There are 60 peat bogs on the ridges of the Krkonoše
Mountains, of which two - Pančavské and Úpské - are among the wetlands protected by the Ramsar
Convention (KRNAP, 2022). However, like other wetlands in the Czech Republic, these sites have been
systematically drained in the past and are still facing long-term impacts of climate change and human
activity (Volf et al., 2019). They therefore in some cases require revitalisation and in all cases
systematic monitoring to show the impact of both global and local changes on their species,
composition, and biodiversity. Traditional methods of collecting data from peat bogs and monitoring
them are proving unsuitable for this purpose, mainly due to their time-consumption, incompleteness,
subjective view of each botanist, and high cost (Manfreda et al., 2018). This thesis aims to provide an
approach for monitoring of Krkonoše peat bogs using advanced remote sensing methods, specifically
analysis of the multispectral data acquired by Unoccupied Aerial Vehicle (UAV).
For this thesis three peat bogs were selected, each of which is characterized by its specific conditions and
species composition - Pančavská louka, Hraniční louka and Kyselé kouty. None of these peat bogs had
previously been monitored for a long time or mapped in detail. The thesis is a part of long-term
research of the Team of Image and Laboratory Spectroscopy (TILSPEC, www.tilspec.cz) from the
Department of Applied Geoinformatics and Cartography at the Faculty of Science, Charles University.
It is directly related to the results of mapping the distribution of species in the tundra and on Úpa peat
bogs in another part of Krkonoše NP (Kupková et al., 2023). The field botanical data were collected in
a close collaboration with the botanists of Krknooše National park.
The main objectives of the thesis are:

1. To use multispectral UAV data, field botanical data and remote sensing methods to create
accurate maps of current vegetation cover (at the species level) for Krkonoše peat bogs Pančavská
louka, Hraniční louka, and Kyselé kouty, aiming for a total classification accuracy/F1-score of at
least 0.9.

2. To propose a methodology for efficient and precise vegetation monitoring of Krkonoše peat bogs
using multispectral UAV data.

The following steps/methods were used/tested to achieve the objectives:

1. Acquisition of UAV multispectral data and collection of field botanical sample data for all peat
bogs at several dates within the vegetation season 2023

2. Use of various (non-spectral) features - several textural features derived from GLCM (Gray level
co-occurrence matrix) and canopy height derived using photogrammetric methods.

3. Separability analysis of the ground truth data
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4. The testing of two classification methods - Random Forest and Support vector machine based on
optimization of hyperparameters to achieve the highest possible classification accuracy

5. The testing of of accuracy after reducing the number of training data

6. The testing of of the spatial agreement of the best classification outputs to produce final highly
accurate vegetation cover map

7. Comparison of classification accuracies on different areas of interest and orthomosaics, focusing on
the evaluation of the possibility to transfer/generalize the methods

1.2 Theoretical background

1.2.1 Use of non-spectral features in remote sensing

Classification of remote sensing data is a complex process, and its accuracy can be affected by many key
factors. One of the most important of these is the input data, which primarily includes spectral
information from each pixel. However, a large number of methods can be used to improve classification
accuracy, adding new information to the classification model (Lu & Weng, 2007). These can include, for
example, spectral indices, geometric or topographic features, but also texture and canopy height models
(J. Cao et al., 2018; Erdem & Bayrak, 2023). The latter two are used in the classification process in this
thesis.
The term texture feature denotes a new feature, computed from spectral information in the vicinity of a
pixel, which is able to express the texture of this vicinity (Hall-Beyer, 2017). Commonly used texture
features are second-order (i.e., derived from the image indirectly) and are most often derived from the
Gray level cooccurence matrix (GLCM, a matrix measuring how often different combinations of
grayscale occur in the vicinity of a pixel), but also from other metrics involving the image context
(GLDM - Gray Level Dependence Matrix, GLSZM - Gray Level Size Zone Matrix). The usefulness of
texture features derived from the GLCM for classification was already demonstrated by Baraldi &
Parmiggiani and Augusteijn et al. in 1995. Mohammadpour et al. (2022) showed that texture features
derived from GLCM can significantly improve the accuracy of the Random forest classifier in complex
vegetation classification of Lousã district in Portugal. Similarly, for example, Erdem & Bayrak (2023),
compared the abilities of various textural features to classify stands of Pinus sylvestris. In addition to
textural features derived from GLCM, they also used GLDM and GLSZM.
Another key input attribute for classification can also be canopy height. Although this vegetation
characteristic is more often used to estimate biomass volume (C. Cao et al., 2016) or is considered as a
final product of analysis by remote sensing methods (Xu et al., 2023; Zhao et al., 2022), as
demonstrated for example by J. Cao et al. (2018) in their studies of mangrove vegetation, it can also be
an important initial input for distinguishing between vegetation classes. Studies from Liu & Bo (2015)
or Zhang et al. (2016) show that vegetation height can significantly improve classification accuracy,
especially in the case of tree classification. In most cases, LIDAR or SAR sensors are used to measure
vegetation height, but photogrammetric methods can also be used to create a digital surface model
(DSM) from data taken with an optical camera on a UAV. This method of creating a DSM is more cost
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effective than the others mentioned (J. Cao et al., 2018). J. Cao et al. (2018) found that using a DSM
derived from UAV optical data can increase the overall accuracy of mangrove classification by about 5%.
Li et al. (2023), when classifying different tree species, were able to increase the overall classification
accuracy by 2-3% using a DSM derived from LIDAR data. Similar increase in classification accuracy
when using the DSM feature was also observed by Dančejová (2023) in mapping vegetation types in the
new wilderness near Kutná Hora (Czech Republic).

1.2.2 Use of UAV remote sensing in wetland species mapping

Vegetation mapping is one of the most common uses of remote sensing and has been gaining popularity
in the last few years both in landscape and protected area management and in precision agriculture.
Traditional methods of vegetation mapping based on field surveys are less accurate, expensive, and very
challenging. Therefore, efforts to use different sources of remote sensing data to classify vegetation at
the community or species level are becoming increasingly popular (Xie et al., 2008). Wetlands, as one of
the world’s most important ecosystems, are one of the areas where advanced monitoring can lead to
improved understanding of water dynamics and natural carbon cycle (Fraser & Keddy, 2005). According
to Davidson (2014), 57% of wetlands have already been destroyed by human activities and a better
understanding of the dynamics of these ecosystems could lead to more effective conservation. However,
as Huylenbroeck et al. (2020) report, only 4% of studies use remote sensing technology for vegetation
management in wetlands. According to the same article, the majority of these papers focus on either
invasive species mapping, wetland ecological monitoring or flood modelling. The small percentage of
articles using remote sensing methods is likely related to these methods being mostly unknown in the
natural landscape management field, and landscape managers are unable to recognize whether remote
sensing technique will be applicable in their case. There is also a lack of longer-term collaboration and
effective communication between institutional wetland professionals and remote sensing experts
(Huylenbroeck et al., 2020).
The use of UAVs in vegetation monitoring can significantly help to reduce the cost and increase the
flexibility of image data acquisition and the intensity of their use in remote sensing has been increasing
in recent years (Shakhatreh et al., 2019). In studies of vegetation species composition or similar detailed
analyses, satellite or aerial imagery may not provide sufficient spatial resolution, and researchers are also
leaning towards the use of UAV because of lower financial costs or the possibility of acquiring their own
data within a selected time period (Alvarez-Vanhard et al., 2020; Anderson & Gaston, 2013). UAV
imagery can produce both multispectral and hyperspectral image data with a variable spatial resolution
ranging from a few millimetres to centimetres. One of the main disadvantages of working with the UAVs
is the need for geometric data preprocessing, which a number of software programs help to automate
(Colomina & Molina, 2014). Other limitations include small payload, battery life and sensitivity to
weather conditions. The use of the UAVs is therefore mostly limited to areas of relatively small extent
(Matese et al., 2015; Nex & Remondino, 2014). At the same time, many surveys from around the world
point out that wetland vegetation is complex and dynamic, its mapping is very challenging, and it is
appropriate to use a large amount of data from different sources including UAVs (Bhatnagar et al., 2021;
Kaplan & Avdan, 2018).
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In the case of mapping protected wetlands, the advantages of the UAV include the ability to explore
sites that are difficult to reach and less disruption to the ecosystem during data collection compared to
field surveys. A good example of the use of UAV technology in wetland management is a study by
Abeysinghe et al., (2019), seeking to accurately map invasive reed canary grass (Phragmites australis) in
the Old Woman Creek estuary in Ohio, near Lake Erie (USA). The authors used a multispectral camera
on UAV and acquired image data of the area on two dates. Several other attributes such as NDVI
(Normalized difference vegetation index) and CHM (Canopy Height Model, vegetation cover height)
were calculated as inputs for the classification, and pixel-based and object-based approaches and
maximum likelihood methods, SVM and neural network (NN) were used. The pixel-oriented neural
network achieved the best results and was able to map the occurrences of the invasive species with 98%
accuracy. As the study itself notes, such a result could not have been achieved by field surveys or
analysis of aerial or satellite data.
A similar approach was applied by Zaman et al. (2011) in northern Utah, where the occurrences of the
same invasive species were mapped. They used UAV data and a multiclass relevance vector machine
classifier and achieved 95% accuracy. Another study, by Michez et al. (2016), used the Random forest
classifier to classify three invasive species in a wetland area in Wallonia. Despite good results for one of
the three species (Heracleum mantegazzianum, 97%), the authors of the study concluded that the data
was not of sufficient quality for the remaining species (Impatiens glandulifera and Fallopia
sachalinensis) and the results could not be used as a basis for decision-making on practical conservation
measures. In contrast, using the same algorithm, studies by Bhatnagar et al. (2021) and
Alvarez-Vanhard et al. (2020) achieved accuracy of over 85% for vegetation classes. Both studies used
multitemporal data and Bhatnagar et al. (2021) report that the use of remote sensing methods allows
for significantly cheaper and easier mapping, especially when UAV technologies are used.

1.2.3 Use of remote sensing in vegetation mapping in Krkonoše NP

Several studies used remote sensing for vegetation mapping in Krkonoše NP recently. The majority of
the studies have originated from the collaboration between remote sensing experts and botanists of the
national park. For example, Potůčková et al. (2021) aimed to study the changes in vegetation land cover
in the territory of the national park relict arctic tundra. According to the results, mainly due to the
expansion of grassed areas with taller vegetation, the land cover has changed in 44% of the area of
interest in the last 80 years alone. The study was carried out using data from archival aerial imagery.
Another study (Kupková et al., 2017) dealt with the classification of vegetation in the Krkonoše tundra
at the species level using data from Sentinel-2 and AISA Dual and APEX airborne hyperspectral
sensors. The overall accuracy of the best classifications (produced by a SVM classifier) was over 84%
and the results showed usefulness of the aerial hyperspectral data.
On the Polish side of the border, where the second part of the national park is located, intensive
vegetation research is also conducted using remote sensing tools. Researchers from Warsaw and
Wroclaw universities use rather frequently aerial hyperspectral data from the APEX sensor. For
example, it was used by Marcinkowska et al. (2014), who mapped types of vegetation communities in
the western part of the Krkonoše Mountains. Here again, the SVM method achieved the best results,
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namely an overall accuracy of 79%. Among other examples of the use of hyperspectral aerial data in the
Polish Krkonoše, are the studies Marcinkowska-Ochtyra et al. (2018) and Marcinkowska-Ochtyra et al.
(2017), which both classified vegetation communities above the treeline. In both cases, the SVM
classifier was used, and the resulting overall accuracy was 84% and 90%. Although mapping vegetation
communities is not identical to mapping at the species level, several of the vegetation classes used in
these studies (Molinia caerulea, Pinus mugo, Vaccinium myrtillus) directly correspond to the species
classes classified in this thesis. Another wide area in the zone above the treeline was mapped by Sucha
et al. (2016), who achieved an overall accuracy of 83.5% when classifying the basic species from satellite
and aerial images. Of the several models compared, OBIA (object-based image analysis) achieved best
accuracy in this case using the SVM algorithm on aerial imagery.
Another example of remote sensing application in the Krkonoše Mountains for vegetation mapping is a
recent study by scientists from the Team of Image and Laboratory Spectroscopy (Kupkova et al., 2023).
The main objective was to evaluate the ability of some classifiers to distinguish basic grass species in the
Krkonoše tundra using multispectral and hyperspectral UAV data. The study achieved excellent results
for common grass species, for which F-1 scores reached over 0.95.
In Krkonoše, several studies have also focused directly on peat bogs. In addition to the bachelor thesis,
which this thesis builds on (Kulich, 2022), there is for example an ongoing project on Úpa peat bog in
the eastern Krkonoše (Kupková et al., 2020), where a classification accuracy of 86 % was achieved using
object-based classification. The report demonstrates the potential of utilizing various sensors
(multispectral and hyperspectral) and classification methods, along with different dates of image data
acquisition throughout the vegetation season.
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2 Areas of interest

2.1 Peat bogs in Krkonoše NP

Peat bog is a specific type of wetland, the main characteristic of which is the gradual deposition of dead
plant remains in waterlogged, oxygen-deficient areas (NP Šumava, 2019). In Krkonoše NP, there are
about 60 peat bogs, collectively covering an area of 268 ha. These peat bogs are similar to those in
Northern Europe in terms of their conditions and are home to a large number of glacial relicts and
endangered species (KRNAP, 2022). Peat bogs in Krkonoše NP can be divided into two types, namely
forest peat bogs (or peat swamp forests), where peat areas are located among trees, and ordinary peat
bogs, forming open areas where trees do not grow. This thesis focuses on three peat bogs in the western
Krkonoše: Hraniční louka, Kyselé kouty (Sour Corners), and Pančavská louka (Pančava Meadow).
Krkonoše NP and the areas of interest are presented in figure 1.

Figure 1: Orthofotomap of Krkonoše NP with the three areas of interest
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2.2 Hraniční louka (Border meadow)

The first of the areas of interest is located in the saddle below the summit of Luboch mountain (1296
meters above sea level) at an altitude of about 1250 meters above sea level. It is a very valuable peat
bog location, which is an important part of the habitat of the black grouse (Lyrurus tetrix) (Volf et al.,
2019). The peat bog is surrounded by dense growth of mountain pine (Pinus mugo) with occasional
solitary spruces (Picea abies). On the open area itself, Trichophorum cespitosum grows abundantly and
in the ponds, Carex limosa and Carex rostrata are found. Molinia caerulea, Vaccinium uliginosum,
Vaccinium myrtillus, and Nardus stricta are also found in limited amount on the peat bog. Around the
peat lakes, a significant amount of Drosera rotundifolia grows. Hraniční louka is ecologically in good
condition, and the first phase of revitalization has taken place here.

Figure 2: Hraniční louka, 13 July 2023
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2.3 Kyselé kouty (Sour corners)

This is the only forest peat bog of the selected sites and is located on the Czech-Polish border on the
north side of the westernmost part of the Krkonoše main ridge at an altitude of about 1050 m above sea
level. The peat bog was partially drained, and some of the trees on it were cut down, so today the most
widespread species found across most of the territory is Vaccinium myrtillus. On the remnants of the
peat, Carex sp. and Juncus sp. are found in some places, and beyond the borders of the deforested area,
a waterlogged spruce forest (Picea abies) grows. During the revitalization of this peat bog, an increase
in the area of Sphagnum moss is expected, along with an increase in peat bog species (Volf et al., 2019).

Figure 3: Kyselé kouty, 13 July 2023
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2.4 Pančavské louka (Pančava Meadow)

Pančavská louka is the most significant, complex, and largest of all the studied sites. It is located in the
highest parts of the western Krkonoše mountains near the source of the Elbe River at an altitude from
1320 to 1370 meters above sea level. The majority of its area is composed of scattered islands of wetland
grasses such as Molinia caerulea, Trichophorum cespitosum, and Nardus stricta. Wide stands of dwarf
mountain pine (Pinus mugo) and occasional solitary spruces (Picea abies) also appear around the inner
parts of the peat bog. In addition to these species, Vaccinium uliginosum, Vaccinium vitis-idaea,
Calluna vulgaris, and several types of grasses (Carex limosa, Carex rostrata, Deschampsia cespitosa,
Eriophorum vaginatum and Anthoxanthum odoratum) also grow on the peat bog. The peat bog has
already been revitalized, but global human-induced changes (contamination with nitrogen fertilizers and
climate changes) likely lead to the spread of less resistant Molinia caerulea at the expense of Nardus
stricta (Hejcman et al., 2010). These changes will be one of the key points of research focus on
Pančavská louka in the future.

Figure 4: Pančavská louka, 14 July 2023
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3 Data and methods

3.1 Data collection and classification legend

Two data sets were used in the study, acquired by the author of this thesis, the TILSPEC team from the
Faculty of Science, Charles University, and in collaboration with the botanist Viera Horáková from the
Krknoše NP Administration on July 13-27, 2024. The first crucial step was acquisition of image data,
collected using DJI Phantom 4 Multispectral UAV. The DJI Phantom employs RTK (Real-time
kinematic) technology during imaging, enabling precise localization with each shot and simplifying the
georeferencing of image data. The camera captures in five bands: Blue (450 nm ± 16 nm), Green (560
nm ± 16 nm), Red (650 nm ± 16 nm), Red Edge (RE, 730 nm ± 16 nm), and Near Infrared (NIR, 840
nm ± 26 nm) (DJI, 2019). Image data collection is summarized in the table 1.

Table 1: Characteristics of the collected image data

Area of interest
Date of
acquisition

Overlap
Spatial
resolution

Light conditions

Hraniční louka 13 July 2023

25 July 2023

Front 77 % / Side 85 %

Front 77 % / Side 85 %

3.5 cm

3.5 cm

Around 4 pm, cloudy

Around 5 pm, cloudy
Kyselé kouty 13 July 2023

25 July 2023

Front 80 % / Side 85 %

Front 80 % / Side 85 %

3.5 cm

3.5 cm

Around noon, clear sky
– visible shadows

Around noon, cloudy
Pančavská louka 14 July 2023

26 July 2023

27 July 2023

Front 70 % / Side 70 %

Front 70 % / Side 70 %

Front 70 % / Side 70 %

5 cm

5 cm

5 cm

Around noon, cloudy

Around 5 pm, partly cloudy

Around 11 am, clear sky

In the field, at the same time, a large amount of positional data was collected using GPS, intended
(after pre-processing) as training and validation data for the image data classifications. Data was
collected with Trimble R7 and R10 geodetic GPS receivers, and attributes were added to each record.
These included the vegetation species at the targeted location and the radius of the circle around the
point in which this species is guaranteed to occur. Spatial accuracy for GPS measurements ranged
between 5 and 20 mm. For some easily recognizable vegetation classes (Pinus mugo, Picea abies) and
other non-vegetation classes (water, dry tree trunks), data was manually collected from the orthomosaic.

3.2 Image data preprocessing

Raw data from the UAV is produced in the form of individual images with added geographical
information, obtained with the help of the RTK system. To obtain an orthomosaic, it is necessary to
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merge the images together using photogrammetric methods with the detection of automatic tie points.
This process was carried out in the Pix4D Mapper software. Before creating the orthomosaic, the
images were examined in Agisoft Metashape Professional software, which allows for easier work with
individual images, and some of them were excluded from the analysis due to their poor RTK data
quality. Pix4D Mapper generated an orthomosaic for each of the 5 spectral bands and a DSM,
calculated from the photogrammetric 3D point cloud after processing.

3.3 Ground truth data processing

The raw data was obtained from GPS in the form of a text file with individual records. From these
records, several incorrectly marked and test records were removed. The GPS receiver Trimble R7
provided points in the S-JTSK coordinate system, which is a local coordinate system used in the former
Czechoslovakia, while Trimble R10 in two coordinate systems: WGS-84 and S-JTSK. Since the
orthomosaics from the UAV were generated in the UTM-33N coordinate system, which was chosen as
suitable for the entire analysis, it was necessary to convert the GPS data into this coordinate system as
well. Unlike conversion from WGS-84, the conversion from S-JTSK to UTM-33N is very demanding and
not always accurate. The best freely available transformer from ČUZK (Český úřad zeměměřický a
katastrální, Czech cadaster office) (ČÚZK, 2010) was therefore used for the conversion. Based on species
found in the field, classification legend for each area of interest was elaborated – see tables 2, 3 and 4.
When creating the final legend, some species were combined into categories by genus because they could
not be distinguished from each other during the analyses (they are listed as species/sp. in the legend).
Images of all classified species can be found in appendix A.
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Table 2: Legend and characteristics of ground truth data of Hraniční louka peat bog

Class
Number of
polygons

Area of ground
truth data [m2]

Corresponding
number of pixels

Vaccinium myrtillus 1 0.28 229
Carex limosa 8 0.99 809
Carex rostrata 5 1.41 1152
Unidentified moss 3 0.19 156
Molinia caerulea 5 1.92 1568
Nardus stricta 1 0.28 229
Sphagnum species 9 1.87 1527
Trichophorum cespitosum 13 3.68 3005
Vaccinium uliginosum 5 0.57 466
Pinus mugo 14 11.00 8980
Picea abies 12 9.42 7690
Water 5 3.42 2792
Dry vegetation 5 0.99 809
All combined 86 36.03 29412

Table 3: Legend and characteristics of ground truth data of Kyselé kouty peat bog

Class
Number of
polygons

Area of ground
truth data [m2]

Corresponding
number of pixels

Bare ground 8 0.97 792
Vaccinium myrtillus 32 51.71 42213
Carex species 2 0.41 335
Deschampsia cespitosa 3 0.27 221
Eriophorum vaginatum 5 1.23 1005
Juncus species 12 1.76 1437
Unidentified moss 13 1.06 866
Nardus stricta 5 1.05 858
Pinus uncinata
subsp. uliginosa

1 0.13 107

Picea abies 18 9.22 7527
Sphagnum species 4 0.10 82
Dry vegetation 4 0.28 229
All combined 110 68.18 55672
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Table 4: Legend and characteristics of ground truth data of Pančavská louka peat bog

Class
Number of
polygons

Area of ground
truth data [m2]

Corresponding
number of pixels

Vaccinium myrtillus 16 3.28 1312
Vaccinium vitis-idaea 3 0.53 212
Calamagrostis villosa 2 0.91 364
Carex limosa 24 8.84 336
Carex rostrata 29 19.74 7896
Deschampsia cespitosa 4 9.08 3632
Eriophorum angustifolium 10 4,34 1736
Hieracium species 2 0.53 212
Juncus species 2 0.27 108
Unidentified moss 8 0.87 348
Molinia caerulea 106 84.13 33652
Nardus stricta 55 43.15 17260
Salix species 1 0.79 316
Sphagnum species 13 1.46 584
Anthoxanthum odoratum 2 1,57 628
Trichophorum cespitosum 70 54,20 21680
Vaccinium uliginosum 16 3.02 1208
Calluna vulgaris 21 4.18 1672
Water 5 15.71 6284
Pinus mugo 15 47.12 18848
Picea abies 11 34.56 13824
Dry vegetation 7 1.67 668
All combined 422 339.95 132780

3.4 Canopy height feature creation

Although Pix4D Mapper generated a DSM along with the multispectral orthomosaic, this product could
not be used as a model training feature due to uneven terrain. To obtain the vegetation height, it was
therefore necessary to subtract the terrain’s elevation from the DSM. Pix4D Mapper allows for
automatic digital terrain model (DTM) creation by filtering the point cloud, but due to complex
vegetation in the area of interest (dense stands of Pinus mugo, undulating ground surface covered by
Vaccinium myrtillus), this model was not sufficiently accurate. Therefore, the freely available DMR5G
point cloud from ČÚZK (ČUZK, 2016) was used to calculate vegetation height. In the case of Hraniční
louka, where part of the classified area is located beyond the state border, the Polish DTM, Numerical
Terrain Model (NMT) (Główny Urząd Geodezji i Kartografii, 2023), was also used. The evaluation of
the accuracy improvement in classifications when including vegetation height can be found in table 8 on
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page 30. For illustration, a canopy height raster is displayed in figure 5 on the next page.

3.5 Texture feature creation

As mentioned, texture features were calculated from the GLCM, which is a matrix representation of
frequency of occurrence of pairs of gray values in the neighborhood of each pixel. The size of this
neighborhood can be selected and is referred to as the kernel size in the GLCM calculation. Since the
GLCM is calculated from grayscale, not from a multispectral image, one GLCM was calculated for the
average of the RGB bands, and two separate ones for each of the NIR and RE bands. For each of these
new greyscale images, 7 GLCMs with kernel sizes of 3, 5, 7, 9, 11, 13, and 15 were calculated. For each
of these GLCMs, 9 texture bands were subsequently calculated, following (Hall-Beyer, 2017):

1. GLCM Mean, calculated as µ =
∑︁n−1

i,j=0 iPi,j

2. Standard deviation, calculated as σ =
∑︁n−1

i,j=0 Pi,j(i − µ)2

3. Correlation, calculated as
∑︁n−1

i,j=0 Pi,j

[︂
(i−µ)(j−µ)

σ2

]︂
4. Contrast, calculated as

∑︁n−1
i,j=0 Pi,j(i − j)2

5. Dissimilarity, calculated as
∑︁n−1

i,j=0 Pi,j |i − j|

6. Homogeneity, calculated as
∑︁n−1

i,j=0
Pi,j

1+(i−j)2

7. ASM, calculated as
∑︁n−1

i,j=0 P 2
i,j

8. Maximum, which is the maximum value in GLCM

9. Entropy, calculated as
∑︁n−1

i,j=0 Pi,j(− log Pi,j)

The evaluation of the improvement in classification accuracy when including texture features can be
found in table 9 on page 31. All calculations in this part of the analysis were performed using a custom
script in the Python programming language with the help of the NumPy, ArcPy, GDAL, OGR,
scikit-image and opencv libraries. For illustration, a texture feature raster is displayed in figure 5 on the
next page.
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Figure 5: Illustration of non-spectral features. The canopy height model for Hraniční louka (left) and the
standard deviation from GLCM for Hraniční louka (right), July 13th

3.6 Ground truth data separability evaluation and cleaning

Like any other step in scientific research, the collection and processing of field data can be subject to
inaccuracies or direct errors. One of the goals of this thesis is therefore to propose an algorithm that will
detect these errors as efficiently as possible and thus improves the accuracy of the classification. Based
on experiences with data collection in the field and its processing, it appears that the quality of ground
truth data can decrease in the following cases:

1. GPS receiver error - for example, inaccurate measuring of coordinates.

2. Human error during data acquisition - for example, incorrect determination of vegetation species,
incorrect recording of vegetation class, incorrect estimation or measuring of the polygon’s diameter.

3. Technical error during processing - for example, incorrect coordinate transformation.
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4. Human error during processing - overwriting or deleting of important data, incorrect targeting of
coordinates from the orthomosaic (in the case of classes that are collected over the orthomosaic),
or incorrect estimation of the polygon size in the case of these classes.

5. The targeted polygon does not correspond with the data on the orthomosaic - for example, the
area defined by the polygon is partially or completely in shadow on the orthomosaic, or, when
collecting data at different times, some places may be recently flooded or changed according to the
seasonal development.

Some of the possible errors can be easily detected, for example, in the case of a GPS receiver error,
information about the accuracy of the measurement is usually available. In the case of an incorrect
coordinate transformation, it is a systematic error that can be easily observed. However, if one of the
human errors occurs, it is not easy to detect, and when searching for these errors, it is necessary to rely
on the ability to measure the quality of the training data. One such option is the analysis of separability
of individual classes. In this thesis, it the Jeffries-Matusita index (J-M index) was used, which is one of
the most common metrics for these purposes in remote sensing (H. Liu et al., 2020; Richards & Jia, 2006;
Schmidt & Skidmore, 2003; Sothe et al., 2019). The J-M index is a statistical measure indicating the
distance between two probability distributions ranging from 0 (identical) to 2 (completely separable).
The J-M index for two classes with many features can be calculated as

Ji, j = 2(1 − e−B)

in which
B = 1

8(mi − mj)t
[︃Σi + Σj

2

]︃−1
(mi − mj) + 1

2 log
[︄

|(Σi + Σj)/2|
|Σi|1/2|Σj |1/2

]︄
in which mi, mj reffer to matrices of means and Σi, Σj reffer to covariance matrices.
The J-M index is always calculated only for a pair of vegetation classes and should have lower values
with poor separability of these classes (Richards & Jia, 2006). For the separability analysis performed in
this thesis, the reasoning was that if classes in some polygons of ground truth data were switched or
mixed (based on the human errors), the J-M index should decrease compared to when the ground truth
data are truly of high quality (without such errors).
The proposed algorithm first extracts the complete set of ground data and measures the separability of
every two classes using the J-M index. It then focuses on all classes that do not achieve sufficient
separability (the threshold for the sufficient J-M index can be set within the algorithm and was named
threshold 1) and checks if the J-M index increases if each one of the polygons is removed from the
dataset. If the J-M index increases, the result is saved, and the polygon is suggested for inspection or
removal from the ground data (how significant increase in J-M index is needed can also be set within
the algorithm using threshold 2). Since separability can change depending on the number of input
features, it is not easy to set either of the two thresholds straightforwardly. For basic testing in this
thesis, 10 input features were chosen for this analysis (all spectral bands, vegetation height, and several
texture bands), and the thresholds were set sequentially at 1.9 and 0.1. The value of 1.9 was thus
designated as a minimal satisfactory level of separability and 0.1 as a significant improvement in

24



separability. The algorithm can be run without these threshold restrictions, but removing almost any of
the polygons may increase separability, probably due to the elimination of some outlier pixels. This
algorithm, designed by the author, will be referred to in the thesis as the Faulty polygon detector
(FPD). All calculations in this part of the analysis were performed using a custom script in the Python
programming language with the help of the NumPy, ArcPy, GDAL, OGR and SciPy libraries.

3.7 Reduction of the number of features

Because a total of 189 texture bands were calculated for each orthomosaic, it was deemed necessary to
reduce their number for faster analysis. The most common reduction technique is Principal Component
Analysis (PCA) (Kupková et al., 2017; Mohammadpour et al., 2022; Richards & Jia, 2006), but PCA
would not allow examining which bands have what effect on the outcome. Therefore, the bands were
reduced based on mutual correlation. To accelerate the process, mutual correlation of bands was
calculated only in for the ground truth data, as these are most important parts of the orthomosaic for
the analysis. From the resulting raster, bands that reached Pearson correlation coefficient greater than
0.95 with another band were removed. The evaluation of classification accuracy after this reduction and
when including multiple bands simultaneously can be found in 4.2. All calculations in this part of the
analysis were performed using a custom script in the Python programming language with the help of the
NumPy, ArcPy, GDAL, OGR and SciPy libraries.

3.8 Selection and application of a suitable classifier

Choosing the right classifier is one of the most important steps in classification itself. There are
significant differences in the implementation requirements and accuracy among commonly used
algorithms. Since this thesis aims to establish an easily replicable path usable for the management of
Krkonoše NP, the demands are high in both aspects. The ideal algorithm should be easy to implement
and, at the same time, achieve good accuracy. The simplest classifiers, such as the maximum likelihood
classifier or simple logistic regression, did not achieve good accuracy in comparable studies (Kulich,
2022; Kupková et al., 2017, 2023) or in initial tests on data from Krkonoše peat bogs. Therefore,
classifiers that achieved good results in similar conditions (J. Cao et al., 2018; Du et al., 2021; Kupková
et al., 2017, 2023; Windle et al., 2023; Zagajewski et al., 2021) were chosen: Random Forest (RF) and
Support Vector Machine (SVM). Random Forest was chosen as the primary classifier because it was
expected to achieve better accuracy, mainly because this was demonstrated in the bachelor thesis
(Kulich, 2022). Support Vector Machine was then chosen as a secondary algorithm to achieve the best
possible accuracy with it and compare its usability with Random Forest. After selecting the algorithm,
it was also necessary to choose the best model hyperparameters for each, i.e., external parameters
affecting its structure. This process is often referred to as hyperparameter tuning (Simon et al., 2023).
The RF algorithm falls into the category of ensemble algorithms, its principle being the combination of
many randomly created decision trees, and the final categorization of a pixel is decided based on the
voting of subordinate models (Breiman, 2001). It was chosen as the main classifier primarily for its
ability to classify nonlinear data, its capability to assess the importance of individual features, and its
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relatively fast training and prediction. The most commonly tuned hyperparameters of the RF algorithm
are ntree (the number of trees in the model), mtry (the number of possible splits in each node of a tree),
and the maximum depth of a tree (Probst et al., 2019).
The SVM algorithm, on the other hand, seeks an optimal separating hyperplane that maximizes its
distance from the nearest data in hyperspace. Its hyperparameters include, firstly, the regularization
parameter C, determining the degree of tolerance for misclassifications during training. For classifying
nonlinear data, a kernel function is also used, recalculating relationships between all pairs of points (this
transformation is sometimes called the “kernel trick”). The kernel function can be polynomial, RBF
(Radial Basis Function), or sigmoid. For the last three functions, the gamma parameter, describing the
size of the function curve, needs to be set, and the polynomial function has a degree parameter
(Scikit-learn developers, 2024; Vapnik & Cortes, 1995). The classification results for SVM varied
significantly for each kernel used, and therefore, the results for each kernel will always be mentioned
separately in the result tables 7.
All calculations in this part of the analysis were performed using a custom script in the Python
programming language with the help of the Scikit-learn, NumPy, ArcPy, GDAL, OGR and SciPy
libraries. All tuned hyperparameters of both models are listed in table 5.

Table 5: Optimized hyperparameters. In square brackets, the ranges within which the hyperparameter
values were tested are indicated.

algorithm hyperparameters
Random forest ntree [30-1000] mtry [3-20] Maximum tree depth [3-25]
SVM – linear function
SVM – polynomial function Polynomial degree [2,3]
SVM – RBF function
SVM – Sigmoid function

Regularization
parametr C [0-1000]

Gamma
parameter [0-1000]

When tuning these algorithms and evaluating their accuracy, it is first necessary to define a measure of
their accuracy. Commonly used measures of accuracy include overall accuracy, defined as the ratio of
correct predictions to all predictions, and the F-1 score, defined for individual classes as the harmonic
mean of their precision and recall. As a suitable measure of accuracy for this thesis, the average F-1
score of individual classes, weighted by their area in the chosen area of interest, was selected. If the term
"overall F-1 score" is mentioned later in the thesis, it refers to this weighted average. The area of the
classes was determined by signal classification using the RF classifier with hyperparameters set as ntree
- 500, mtry - square root of number of features, max depth - None. These default parameters were
selected because the literature suggests that RF should achieve good accuracy even in this typical
default setting (Probst et al., 2019). For each orthomosaic, the entire tuning process was conducted
separately, and achieving the best overall F-1 score, ideally over 0.9, was most crucial. The final F-1
score was measured using a test dataset, which was carefully selected to be as representative as possible
and was excluded from training and validation during hyperparameter tuning. The test dataset
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contained approximately 25 % of the ground truth data. For the tuning, k-fold cross-validation was used
for validating each new model, meaning the validation was done several times with several validation
subsets, and training was conducted with the remaining data. With given hyperparameters, the
accuracy of the algorithm was evaluated as the average overall F-1 score of all validations. The overall
accuracy and final overall F-1 score were then assessed on the test dataset with the model with optimal
hyperparameters, trained on the entire remainder of the data.
Data division into cross-validation subsets was done sequentially, so each validation was conducted with
an entirely different dataset. At Hraniční louka and Kyselé kouty, where less ground truth data was
available, the training and validation dataset was divided into 3 cross-validation folds of the same sizes,
while data from Pančavská louka was divided into 5 cross-validation folds. Since some classes had low
number of polygons collected (sometimes even 1 or 2), it was necessary in some cases to divide them for
validation and testing. The polygons were divided so that there was no overlap between the individual
datasets. However, it is necessary to note that, as was discovered in initial testing, the accuracy
measurement of classification for these classes is significantly affected by this, due to the spatial
dependency training, validation, and testing datasets.
For selecting optimal hyperparameters of models, a grid search was always first conducted. This involves
repeatedly validating the model for different hyperparameters in a regular grid of pre-set values. The
results of the grid search allow understanding the behavior of the algorithm across a wide range of
settings and understanding which changes in hyperparameters lead to a change in accuracy and which
do not. However, grid search may not find the best solution, especially if the accuracy of the model
depends on small changes in hyperparameters or fails to capture the range in which optimal values lie.
For these reasons, a second approach was also tried, optimization with a genetic algorithm (Holland,
1975; Lambora et al., 2019). This optimization algorithm is a machine learning method, mimicking
natural evolution in nature. It first initializes a population of models with random hyperparameters in
given range, evaluates them for cross-validation average overall F-1 score, and then in each iteration
randomly combines their parameters and adds random mutations. From the resulting models, only
those with the best overall F-1 score proceed to the next iteration. The best model hyperparameters are
then saved. In practice, the hyperparameters of a given model are recorded into a bit chain. A new
population is then created by combining these chains, and mutations are created by flipping a random
bit. The mutations generate models with entirely different hyperparameters in some populations, thus
reducing the chance of the genetic algorithm reaching a local optimum. After studying of the relevant
literature (Á. E. Eiben et al., 1999; A. E. Eiben & Smit, 2011) and initial testing, the parameters in
table 6 on the next page of the genetic algorithm were used for hyperparameter tuning.
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Table 6: Parameters of genetic optimization

Parameter Value
Population size 50
Number of bits 16
Mutation rate 0.02
Crossover rate 0.9
Number of iterations 20

3.9 Testing the classifier’s behavior when reducing the number of ground truth
data

For monitoring vegetation in Krkonoše NP, a key question is also how much ground truth data needs to
be collected for the classification to have a good accuracy, which in the case of this thesis corresponds to
an overall F-1 score of at least 0.9 (in case of lower scores for the best classifier, a comparable result
with the best achieved). Therefore, an algorithm was created to examine the accuracy of classifications
after removing a predetermined amount of field data. The proportion of data (labeled in the algorithm
as the data removal index) that were not included in training or validation was gradually increased, and
random polygons, the number of which corresponded to the data removal index, were always removed.
The dataset was then randomly divided into two parts: approximately two-thirds constituted the
training data, and the remaining third made up the validation data. Thus, training and validation were
conducted 20 times for each index. It was assumed that with worse data representativeness (in this case,
also a lower number of polygons) in the training dataset, the data would have high variability, leading to
the inability to generalize the model and lower accuracy. Subsequently in a second analysis, each of the
removed polygons was included in the validation dataset, and the rest of the process remained the same.
This made it possible to measure the accuracy the model could achieve on more independent data. This
procedure was again tried for all orthomosaics. All calculations in this part of the analysis were
performed using a custom script in the Python programming language with the help of the Scikit-learn,
NumPy, ArcPy, GDAL, OGR and SciPy libraries.

3.10 Creation of assembled vegetation cover maps

In addition to vegetation cover maps predicted by already prepared models, a further accuracy check
was carried out by assembling the resulting maps together. On each area, all classifications achieving an
overall F-1 score of at least 0.9 (or comparable to the best algorithm’s overall F-1 score in case of lower
accuracy) were selected. Which classifications were selected for overlays can be seen in table 13 on
page 41. These classifications outputs were then overlaid on each other, and a new (ensemble)
classification was created, selecting for each pixel the class on which most of the individual classifiers
agreed. The new classification accuracy was then measured on the test dataset, and it was determined
how many of the classifiers agreed on what portion of the area of interest. Therefore, a second map (see
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figure 17 on page 53) was created for the resulting vegetation cover map, describing how many of the
maps agree on the species prediction at a given location. Besides serving as an additional accuracy
check of the classifications, this analysis can distinguish places that were likely accurately mapped from
places where some models may have been confused, and it might be necessary to check them in the field.
It may also reveal inaccuracies in the classification of individual classes throughout the whole area of
interest, independently on test dataset. All calculations in this part of the analysis were performed using
a custom script in the Python programming language with the help of the Scikit-learn, NumPy, ArcPy,
GDAL, OGR and SciPy libraries.

4 Results

4.1 Classification results

The best hyperparameters, the final F-1 scores for the entire area and individual classes for both
orthomosaics of all areas of interest are summarized in table 7. Complete classification results for all
orthomosaics and classes are available in appendix B.

Table 7: Overall F-1 score of best classifications on each orthomosaic

Area of
interest, date

RF Linear SVM
Polynomial

SVM
SVM with

RBF
SVM with

sigmoid
Hraniční louka, 13 July 2023 0.899 0.875 0.879 0.895 0.779
Hraniční louka, 25 July 2023 0.893 0.805 0.710 0.805 0.807
Kyselé kouty, 13 July 2023 0.924 0.931 0.930 0.924 0.918
Kyselé kouty, 25 July 2023 0.939 0.957 0.950 0.949 0.878
Pančavská louka, 14 July 2023 0.796 0.816 0.831 0.832 0.773
Pančavská louka, 26 July 2023 0.776 0.798 0.806 0.795 0.747
Pančavská louka, 27 July 2023 0.753 0.701 0.769 0.758 0.694

Among all three areas of interest, all classifiers achieved the best accuracy at Kyselé kouty, slightly
worse accuracy was measured at Hraniční louka, and the worst at Pančavská louka. There were also
differences in accuracies across the orthomosaics at different times. The RF classifier achieved the best
accuracies at Hraniční louka, while the SVM performed better at the two remaining areas of interest.

4.2 Evaluation of usefulness of the non-spectral features

The influence of various features on the accuracy of classifications was then investigated. In all the tests,
cross-validation was always used, and the Random Forest classifier with hyperparameters set as ntree -
500, mtry - square root of number of features, max depth - None was employed. The mentioned results
are the average of all cross-validations. The RF classifier with these default parameters was selected
because the literature suggests that it should achieve good accuracy even in this typical default setting
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(Probst et al., 2019). This approach of the feature testing was chosen because it was necessary to decide
whether to use these features before proceeding with the actual model tuning and evaluation of its
accuracy.
Before the tuning of the classifier, it was first tested whether the canopy height feature would increase
the accuracy of the classification. An increase in the F-1 score occurred in all cases, and its level is
summarized in the table 8.

Table 8: Improvements in F-1 score when implementing canopy height feature

Area of interest, date
Overall F-1

score increase
The greatest increase in F-1 score for individual classes

Hraniční louka, 13 July 2023 0.108
Picea abies (0.188), water (0.128),
Carex limosa (0.103), Pinus mugo (0.075)

Hraniční louka, 25 July 2023 0.071
Molinia caerulea (0.335), Picea abies (0.136),
Pinus mugo (0.093), Sphagnum sp. (0.080)

Kyselé kouty, 13 July 2023 0.069
Picea abies (0.333), bare ground (0.268),
Eriophorum vaginatum (0.093)

Kyselé kouty, 25 July 2023 0.056
Picea abies (0.260), Carex sp. (0.229),
Nardus stricta (0.157), Juncus sp. (0.116)

Pančavská louka, 14 July 2023 0.072
Carex rostrata (0.166), Nardus stricta (0.160),
Picea abies (0.158), Pinus mugo (0.110),
Calluna vulgaris (0.106)

Pančavská louka, 26 July 2023 0.113
Picea abies (0.224), Pinus mugo (0.195),
Carex rostrata (0.147), Carex limosa (0.138)

Pančavská louka, 27 July 2023 0.097
Pinus mugo (0.191), Picea abies (0.166),
Calluna vulgaris (0.156), Vaccinium myrtillus (0.094)

The testing results show that accuracy most frequently improved for the conifers Picea abies and Pinus
mugo, although the greatest increase in accuracy was observed in the class Molinia caerulea within
Hraniční louka. The overall increase in accuracy and the most affected classes significantly depended on
the specific orthomosaic.
Before the tuning of the classifier, it was also tested whether GLCM texture features would increase the
accuracy of the classification. In this case, only those texture features that remained after the reduction
of correlated data, described in 3.7, were used. An increase in accuracy occurred in all cases, and its
level is summarized in the table 9 on the following page.
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Table 9: Improvements in F-1 score when implementing texture features

Area of interest, date
Overall F-1

score increase
The greatest increase in F-1 score for individual classes

Hraniční louka, 13 July 2023 0.025
Sphagnum sp. (0.147), Trichophorum cespitosum (0.129),
Pinus mugo (0.064)

Hraniční louka, 25 July 2023 0.073
Carex limosa (0.299), Carex rostrata (0.161),
Trichophorum cespitosum (0.103),
Sphagnum species (0.087)

Kyselé kouty, 13 July 2023 0.025 Dry vegetation (0.645), Carex sp. (0.311)

Kyselé kouty, 25 July 2023 0.040
Carex sp. (0.161), Eriophorum vaginatum (0.147),
bare ground (0.066)

Pančavská louka, 14 July 2023 0.046
Pinus mugo (0.138), Picea abies (0.136),
Eriophorum angustifolium (0.053)

Pančavská louka, 26 July 2023 0.038
Vaccinium myrtillus (0.115),
Eriophorum angustifolium (0.053), Picea abies (0.092)

Pančavská louka, 27 July 2023 0.043
Vaccinium myrtillus (0.094),
Eriophorum angustifolium (0.048)

The increase in accuracy after including the texture feature was smaller than that those after including
canopy height, but the classification accuracy of some classes still improved significantly. The most
substantial increase in classification accuracy occurred for Hraniční louka on July 25th.
It was also explored whether the accuracy of classifications changes when including all 189 bands and
after their reduction (as described in 3.7). In all cases, the classification’s overall F-1 score did not
change by more than 0.005, indicating that important information was preserved even after deleting
correlated bands. The final numbers of bands are summarized in the table 10.

Table 10: Number of bands after reduction of correlated bands

Area of interest, date Final number of bands
Hraniční louka, 13 July 2023 50
Hraniční louka, 25 July 2023 65
Kyselé kouty, 13 July 2023 42
Kyselé kouty, 25 July 2023 44
Pančavská louka, 14 July 2023 38
Pančavská louka, 26 July 2023 38
Pančavská louka, 27 July 2023 38

As seen from the table 10, most bands were always removed from the dataset. The number of correlated
bands varied significantly for each dataset, but in most cases, it was similar or the same for each
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orthomosaic of the same area of interest. This was not the case only for Hraniční louka, where there was
a difference of 15 bands.

4.3 Separability analysis

In the first step, separability was calculated for all pairs of classes. The three least separable pairs of
classes and the average separability of all pairs for each orthomosaic are listed in the table 11. Complete
J-M index matrices can be seen in the appendix C.

Table 11: Summary of separability analysis

Area of interest,
date

Average
separability

Pairs of classes with low J-M index

Hraniční louka,
13 July 2023

1.98
Sphagnum sp. and Trichophorum cespitosum (1.66)
Sphagnum sp. and Carex limosa (1.82)
Sphagnum sp. and Picea abies (1.84)

Hraniční louka,
25 July 2023

1.99
Sphagnum sp. and Trichophorum cespitosum (1.74)
Sphagnum sp. and Picea abies (1.8)
Sphagnum sp. and Carex limosa (1.86)

Kyselé kouty,
13 July 2023

1.92
Eriophorum vaginatum and Juncus sp. (1.28)
Vaccinium myrtillus and unidentified moss (1.55)
Eriophorum vaginatum and Carex sp. (1.56)

Kyselé kouty,
25 July 2023

1.95
Eriophorum vaginatum and Juncus sp. (1.41)
Juncus sp. and Nardus stricta (1.58)
Eriophorum vaginatum and Deschampsia cespitosa (1.75)

Pančavská louka,
14 July 2023

1.92
Carex limosa and Eriophorum angustifolium (1.06)
Vaccinium myrtillus and Calluna vulgaris (1.27)
Sphagnum sp. and Trichophorum cespitosum (1.33)

Pančavská louka,
26 July 2023

1.92
Carex limosa and Eriophorum angustifolium (0.99)
Sphagnum sp. and Trichophorum cespitosum (1.22)
Sphagnum sp. and Calluna vulgaris (1.29)

Pančavská louka,
27 July 2023

1.88
Carex limosa and Eriophorum angustifolium (0.91)
Nardus stricta and Trichophorum cespitosum (1.23)
Sphagnum sp. and Trichophorum cespitosum (1.26)

The results indicate that the separability of most classes is high, but there are several poorly separable
pairs of classes at Kyselé kouty and Pančavská louka. The best separability is seen in the data from
Hraniční louka, and the worst is at Pančavská louka, which also corresponds to poorer classification
results, especially regarding the orthomosaic from July 27th.
The next step was to test the FPD’s (Faulty polygon detector) performance. It was tested on the
ground truth data of Hraniční louka, which was otherwise proved to be very well separable (most J-M
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indices over 1.9). In a total of 200 tests, the class of one of the polygons was randomly changed each
time and it was tested whether it would be detected by the FPD. It was measured that in 40.7% of
cases, the faulty polygon was correctly identified, but in roughly half of these cases, FPD identified more
than one polygon as faulty. In 59.2% of cases, the change was not detected at all.
After this test, the FPD was applied to each of the orthomosaics. Neither Hraniční louka nor Kyselé
kouty showed any results, but when the FPD was applied to the ground truth data of Pančavská louka,
two demonstrably erroneous polygons were found. The first was apparently incorrectly recorded in the
field, and it was a polygon marked as Nardus stricta even though the orthomosaic clearly shows a
significant color difference between other Nardus stricta stands and this location (see figure 6). In the
second case, it was a water body polygon that was too large and encroached on dry land. After
removing these polygons, the F-1 score for the Nardus stricta class increased by 0.037, but the F-1 score
for water did not increase (it decreased by 0.001). The first was completely removed from the ground
truth data, and the second was slightly shifted so that it did not encroach on the lake shore.

Figure 6: Example of the incorrectly labeled polygon on Pančavská louka.
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4.4 Hyperparameter tuning

One of the first important questions was whether the two used tuning algorithms - gridsearch and
optimization with a genetic algorithm - identified similar combinations of hyperparameters as the best.
Both approaches were used for tuning the model on each orthomosaic. It was found that the genetic
algorithm, especially with a higher number of hyperparameters, can be significantly faster in achieving
results, but gridsearch provides an opportunity to delve deeper and determine which parameters are
truly important for the accuracy of the model. The table 12 on the next page lists the best parameters
of individual models, derived from gridsearch and then from optimization with a genetic algorithm (GS
= gridsearch, GO = genetic optimization).

Table 12: Best hyperparameters according to gridsearch and genetic optimization (GS = gridsearch, GO
= genetic optimization)

Area of interest,
date

Method RF
Linear
SVM

Polynomial
SVM

SVM with
RBF

SVM with
sigmoid

Hraniční
louka,
13 July 2023

GS

ntree = 300
mtry = 6-8
or 13-16
depth = 15

C = 1

C = 100
Degree = 2
Gamma =
0.004

C = 1000
Gamma =
1e-07

C = 1000
Gamma =
1e-07

GO
ntree = 464
mtry = 15
depth = 18

C = 2.57

C = 433.09
Degree = 3
Gamma =
0.0082

C = 945.37
Gamma =
2.86e-07

C = 394.22
Gamma =
3.22e-09

Hraniční
louka,
25 July 2023

GS
ntree = 200
mtry = 16
depth = 16

C = 0.01

C = 0.001
Degree = 3
Gamma =
0.024

C = 1000
Gamma =
0.004

C = 1
Gamma =
0.004

GO
ntree = 138
mtry = 18
depth = 17

C = 9.94

C = 1.64e-07
Degree = 2
Gamma =
0.034

C = 593.02
Gamma =
8.84e-07

C = 4.928
Gamma =
3.53e-07

Kyselé
kouty,
13 July 2023

GS
ntree = 350
mtry = 5
depth = 18

0.001

C = 0.1
Degree = 2
Gamma =
0.0001

C = 1000
Gamma =
1e-06

C = 1000
Gamma =
1e-07

GO
ntree = 885
mtry = 6
depth = 19

C =
0.00024

C = 0.15
Degree = 2
Gamma =
4.31e-05

C = 10.97
Gamma =
5.38e-06

C = 2.95
Gamma =
2.82e-07
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Table 12: Best hyperparameters according to gridsearch and genetic optimization (GS = gridsearch, GO
= genetic optimization) - continued

Area of interest,
date

Method RF
Linear
SVM

Polynomial
SVM

SVM with
RBF

SVM with
sigmoid

Kyselé
kouty,
25 July 2023

GS
ntree = 250
mtry = 7
depth = 16

C = 0.001

C = 0.001
Degree = 2
Gamma =
0.0001

C = 10
Gamma =
1 e-05

C = 1000
Gamma =
1e-07

GO
ntree = 970
mtry = 8
depth = 19

C =
0.00012

C = 0.0199
Degree = 2
Gamma =
0.00029

C = 235.06
Gamma =
1.899e-06

C = 107.20
Gamma =
5.07e-09

Pančavská
louka,
14 July 2023

GS
ntree = 350
mtry = 7
depth = 18

C = 0.001

C = 0.01
Degree = 3
Gamma =
1e-04

C = 1
Gamma =
1e-04

C = 1
Gamma =
1e-07

GO
ntree = 984
mtry = 8
depth = 20

C =
0.00036

C = 0.024
Degree = 3
Gamma =
4.36e-05

C = 436.3
Gamma =
2.9e-06

C = 218.2
Gamma =
9.6e-08

Pančavská
louka,
26 July 2023

GS
ntree = 200
mtry = 7
depth = 18

C = 0.001

C = 1
Degree = 3
Gamma =
1e-04

C = 1
Gamma =
1e-04

C = 10
Gamma =
1e-07

GO
ntree = 51
mtry = 8
depth = 19

C =
0.0001

C = 14.7
Degree = 3
Gamma =
1.19e-05

C = 72.02
Gamma =
4.51e-07

C = 10.23
Gamma =
2.35e-07

Pančavská
louka,
27 July 2023

GS
ntree = 200
mtry = 8
depth = 18

C = 0.001

C = 0.1
Degree = 3
Gamma =
1e-04

C = 1
Gamma =
1e-05

C = 10
Gamma =
1e-07

GO
ntree = 830
mtry = 9
depth = 20

C =
2.07e-05

C = 0.1
Degree = 3
Gamma =
6.46e-05

C = 98.2
Gamma =
1.40e-06

C = 912.7
Gamma =
1.40e-08
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The final best parameters obtained by both methods do not differ significantly in most cases. However,
in some cases (especially ntree in RF and parameter C in SVM), significant differences can be observed.
In all these cases, however, both grid search and comparison of results have shown that these
hyperparameters do not significantly change the overall F-1 score of the model, and as described below,
no direct dependence on the value of the parameter was found. Therefore, the final accuracies after
cross-validation are nearly identical. In the case of SVM classifiers, the average overall F-1 score was
always lower when using hyperparameters derived from grid search, but with a difference of always less
than 0.01. For the RF algorithm, the difference in accuracy between the two models was always within
0.001. In the end, the hyperparameters achieved through genetic optimization were used for the final
classification, although the opposite decision would likely not have led to a significantly different result.
The results from the gridsearch reveal the following characteristics for individual hyperparameters:

• Random Forest - Each of these parameters significantly influences the duration of training and
prediction:

– ntree - Did not affect the final accuracy of classification once a certain value was exceeded (in
this case, around 200).

– mtry - The best mtry depended on the number of features. The best results were usually
achieved by a value similar to square root of number of features or around double that, which
aligns with the literature (Simon et al., 2023).

– max depth - Mainly depends on the complexity of the dataset (Probst et al., 2019).

• SVM - Parameters seem to be interdependent, so tuning all of them is necessary for good
classification results:

– C - The appropriate setting of this parameter depends on the kernel function. In the case of a
linear function, accuracy does not significantly change, and no simple dependency could be
observed with other functions, although changes in performance were sometimes observed.

– degree - No clear correlation with classification accuracy was observed.

– gamma - Only set for non-linear SVM, and the optimal value for each function was usually
different. It’s worth mentioning that it usually had to be very low (10e-5 or lower) to achieve
good accuracy with the RBF and sigmoid functions.

The results from the gridsearch also indicate that Random Forest and linear SVM almost always achieve
similar accuracy, while tuning the SVM algorithm with a different kernel function requires much more
testing and tuning. It was also observed that in some combinations of SVM hyperparameters, the
computation runs significantly longer. Since the computation time was not directly measured, data that
would help identify these combinations are missing. In some cases, it appeared that a high value of the
regularization parameter C could extend the training time, but this dependence does not always hold.
This phenomenon considerably prolonged both the gridsearch and the optimization process.
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4.5 Results of classifications after data reduction

As mentioned in the 3.9, this testing was conducted in two different settings. Initially, some polygons
were completely removed from the ground truth data. The results for this analysis are presented in
figures 7, 8 and 9. These figures contain validations from all orthomosaics of the given area of interest.

Figure 7: Simple data reduction on Hraniční louka
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Figure 8: Simple data reduction on Kyselé kouty

Figure 9: Simple data reduction on Pančavská louka
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From figures 7, 8 and 9, it is evident that as data were removed, the variance in accuracies increased,
and accuracies generally improved as well. The latter phenomenon is likely caused by the division of
individual polygons to train and validation parts, which is automatically performed for classes with a
small amount of training and validation data available.
Furthermore, it was tested what the accuracy of classifications would be when the removed polygons
were added to the validation data. The results for this second analysis are presented in figures 10, 11
and 12. These graphs contain validations from all orthophotos of the given area of interest.

Figure 10: Data reduction on Hraniční louka with using the rest of data for validation
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Figure 11: Data reduction on Kyselé kouty with using the rest of data for validation

Figure 12: Data reduction on Pančavská louka with using the rest of data for validation
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In figures 10, 11 and 12, it is apparent that, besides a slight increase in the variance of accuracies,
accuracies also decreased because there was no division of individual polygons, making the validation
more precise.

4.6 Overlays and final vegetation cover maps

Classifications that achieved overall F-1 score close (within a 0.05 difference) to the best classification on
a given orthomosaic were included in the overlay. The table 13 shows the classifications which were
included into the calculation of the overlays.

Table 13: Classifications used for overlay analysis (bolded if used)

Area of interest, date RF
Linear
SVM

Polynomial
SVM

SVM with
RBF

SVM with
sigmoid

Hraniční louka, 13 July 2023 0.899 0.875 0.879 0.895 0.779
Hraniční louka, 25 July 2023 0.893 0.805 0.710 0.805 0.807
Kyselé kouty, 13 July 2023 0.924 0.931 0.930 0.924 0.918
Kyselé kouty, 25 July 2023 0.939 0.957 0.950 0.949 0.878
Pančavská louka, 14 July 2023 0.796 0.816 0.831 0.832 0.773
Pančavská louka, 26 July 2023 0.776 0.798 0.806 0.795 0.747
Pančavská louka, 27 July 2023 0.753 0.701 0.769 0.758 0.694

As the table 13 shows, for the second orthomosaic of Hraniční louka, the differences in accuracies were
too large, and overlaying was not performed.
The most accurate final maps for each area of interest are displayed in figures 13, 14 and 15. Other
important maps are displayed in appendix D. The table 14 shows measures of accuracy and consistency
for all overlays. The degree of agreement of classifications is measured by the proportions of the
orthomosaic on which an exact number of classifications agreed during the "voting" process for the final
class.

Table 14: Results of overaly analysis

Area of interest, date Best single
classifier F-1
score

Overlay F-1
score

Proportion of the orthomosaic area by
the number of agreeing classifications
0 2 3 4 5

Hraniční louka, 13 July 2023 89.9 88.8 0.20% 6.2% 16.5% 77.1%
Kyselé kouty, 13 July 2023 93.1 91.2 0.01% 1.3% 4.5% 4.8% 89.4%
Kyselé kouty, 25 July 2023 95.7 94.3 0.10% 4.0% 7.4% 88.5%
Pančavská louka, 14 July 2023 83.1 83.5 0.12% 3.4% 6.5% 90.0%
Pančavská louka, 26 July 2023 80.6 80.7 0.24% 5.2% 7.6% 87.0%
Pančavská louka, 27 July 2023 76.9 75.5 2.5% 11.2% 86.3%
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vegetation cover of peat bog in the Krkonoše NP (July 13th, 2023)

classified by Random forest, F-1 score 0.899
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5 Discussion

The first goal of this thesis was to classify each of the peat bogs with a final overall F-1 score of at least
0.9. This accuracy was only surpassed on one of the three studied peat bogs (Kyselé kouty) and on two
of the seven classified orthomosaics (both classifications of Kyselé kouty). Despite not achieving
complete success, this result is still very good because comparable studies generally did not achieve
better results (Beyer et al., 2019; Kupková et al., 2020), and 0.9 is a very ambitious goal. An overall F-1
score over 0.9 was achieved only at Kyselé kouty, but the best classifications at Hraniční louka also came
very close to this goal. At the larger and more complex Pančavská louka, the best result achieved was
only 0.832. The best overall F-1 score at Hraniční louka was 0.899, and at Kyselé kouty, it was 0.957.
At Hraniční louka, the RF classifier achieved better accuracy, but on the two remaining areas of
interest, it was the SVM classifier that performed better. Overall accuracy of the classifications was also
high (see appendix B). However, despite the rather good overall classification results, the analysis
showed that to achieve consistently satisfactory results for individual classes, higher amount of ground
truth data should be collected for many of the classified species.
The low amount of the ground truth data (number of polygons) for several categories caused some
problems in the analysis. Despite great efforts and several days spent in the field, it was not possible to
collect enough ground truth data. The main problem is not just in the small number of data entering
the classifier training, but also in the small representativeness of the data. Spectral information for each
polygon can vary due to variability within the species and different lighting conditions at various places
on the orthomosaic. Ideally, all spectral diversity for a given class should be included in the training,
validation, and testing data, which cannot be guaranteed in the case of a small amount of data. This
lack of data can be theoretically resolved by using part of each polygon for training the classifier and
other part for validation, but in such a case (as will be explained in more detail below), the validation
loses its informative power due to the spatial autocorrelation of information from training and validation
data. If it is considered important not to divide individual polygons into training and validation parts,
each class should contain enough polygons/pixels to safely perform cross-validation. However, for many
classes at Hraniční louka and Kyselé kouty, there were 4 or fewer polygons, making it impossible to
include more than one of them in the validation or testing data. This leads to an uneven results of
classification accuracy evaluation because the representativeness is not sufficient in either the training or
the validation data. For classes where there was more data, distributed across the entire area of interest,
the accuracies of individual validations were relatively consistent.
Collecting GPS data in the field is one of the most challenging parts of the entire research. Besides the
poor accessibility of the multiple areas of interest and the physical demands of measuring with heavy
equipment, in some cases, it is very difficult to find a piece of homogeneous vegetation suitable for
inclusion in the ground truth data on a peat bog of such large size. Although it can be very challenging,
it turns out that a truly good ground truth dataset must consist of a larger number of representatively
distributed measurements. For representative training and validation, it would be good to have enough
polygons for all classes, in my opinion ideally at least 6-10 for each and also reliable number of pixels
inside these polygons.
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The low number of field data for some categories is also the main reason why the stratified sampling
(based on the real share of the categories in the field) could not be fully employed. As the literature
(Mohri et al., 2018) indicates, the amount of data entering the training phase of the classifier in
individual classes can influence the model and its performance on the resulting data. Therefore, it can
be considered a great success that, despite the lower amount and not stratified distribution of
training/validation data, the classifiers demonstrated such good accuracy on independent data from the
test set. In the next work over this topic (during PhD project) further data will be collected in and it
will be tested if the theoretically sufficient and stratified training/validation dataset can bring further
classification accuracy improvements.
As already noted, non-spectral features proved to be very useful across all areas of interest, which is
consistent with the available literature (J. Cao et al., 2018; Mohammadpour et al., 2022; Zhang et al.,
2016). The canopy height feature increased the classification accuracy of the Picea abies class, which is
the only tree species present in the peat bogs, on all three areas of interest. On Hraniční louka and
Pančavská louka, this feature also improved the classification accuracy of Pinus mugo (F-1 score
increased by 0.075 - 0.191), which also forms stands significantly protruding above the terrain. On
Hraniční louka, the accuracy of water classification also increased (by 0.128) and Carex limosa (by
0.103), which predominantly grows in shallow ponds, suggesting that the photogrammetric DSM is
capable of recognizing even the height difference of Carex stalks above the flat water surface. The same
phenomenon occurred on Pančavská louka for Carex rostrata and Carex limosa. In other cases, the
canopy height feature contributed to better classification of tall grasses like Molinia caerulea (Hraniční
louka) or Eriophorum vaginatum (Kyselé kouty). On Pančavská louka, the classification accuracy of
Vaccinium myrtillus which grows across the site in smaller clumps protruding above the surrounding
terrain also improved. These results show that the canopy height feature is a very important input for
peat bog classification and should not be overlooked in further research.
Textural features increased classification accuracy less, but also significantly. Often, this increase in
accuracy occurred in classes whose classification was insufficiently accurate, for example, Sphagnum sp.
in the case of Hraniční louka or Eriophorum angustifolium in the case of Pančavská louka. For instance,
the significant increase in classification accuracy of Trichophorum cespitosum (F-1 score higher by 0.103
and 0.129) on both orthomosaics of Hraniční louka, where this herb is a very important species covering
most of the open peat bog area, is very noteworthy. However, regarding textural features, it remains to
be questioned which of them truly make sense to include in classification. When testing classifications,
it was found that when all textural features were included, some almost did not contribute new
information (see figure 16 on the next page). This problem was ultimately addressed by simply
removing correlated bands, but it certainly would be possible to proceed more conservatively, as the
computation of textural features can take a very long time. Literature also suggests (Erdem & Bayrak,
2023) that there are other types of textural features than those derived from GLCM, and in some cases,
they may increase classification accuracy even more.
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Figure 16: Comparion of the importances of texture bands. Bands 1-5 are spectral, band 6 is canopy
height. Derived from RF model from Hraniční louka

Another significant success was the analysis of separability. The classical method of calculating
separability indices (Schmidt & Skidmore, 2003) has been used for a long time, but utilizing separability
to identify faulty ground truth polygons is a new concept that addresses a problem not commonly
tackled. However, the testing results show that (at least with the used settings) the FPD (Faulty
Polygon Detector) is, despite its success on Pančavská louka, inaccurate in general, as it correctly
identified problematic polygons only in 40% of cases. The inaccuracy of the FPD during testing could
be due to the fact that not every pair of classes had high separability from the beginning, and not every
class had enough ground truth data. Therefore, the FPD primarily detected faulty polygons of Nardus
stricta (a common class for which a large amount of data was collected) and water (a class with spectral
features very easily distinguished from surrounding vegetation). It is also possible that better results
could have been achieved with a different setting of input parameters. In this thesis, the availability of
several orthomosaics, which could be analyzed separately (FPD achieved the same results on all of
them), as well as field experience, without which it would not be possible to determine from the
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orthomosaic what species is growing at a given location, were utilized in evaluating the algorithm’s
outputs. Ideally the results of the FPD should be controlled in the field to be sure about the
identification of the class of the problematic polygon.
Another issue, encountered in the testing was that the FPD has a low specificity and sometimes marks
not only the truly faulty polygon but also several others. This phenomenon likely arises because any
amount of pixels removed from an area not easily separable in feature space increases the J-M distance
between these two classes. In this case, it may help that the outcome of the FPD also includes the rate
of improvement in the resulting J-M index when the potentially faulty polygons are removed. The
results from Pančavská louka certainly point to the potential use of FPD or a similar algorithm and its
necessity, because even with the automation of much of the classification process, human error can still
occur.
As for the used classifiers, both have several advantages and disadvantages for classifying peat bogs.
The RF classifier trains and predicts very quickly, and its tuning only slightly improves accuracy
compared to the default settings. On the other hand, the accuracy of SVM is strongly dependent on
input parameters, and classification with this algorithm also takes much longer. Table 15 shows the time
of the classification for each orthomosaic by each method.

Table 15: Computational time requirements [hours : minutes : seconds]

Area of interest, date RF Linear SVM
Polynomial

SVM
SVM with

RBF
SVM with

sigmoid
Hraniční louka, 13 July 2023 00:11:27 00:23:19 00:36:51 01:21:39
Hraniční louka, 25 July 2023 00:11:15
Kyselé kouty, 13 July 2023 00:10:16 1:36:46 1:30:13 4:23:03 03:55:07
Kyselé kouty, 25 July 2023 00:10:27 1:19:38 0:41:16 1:59:11
Pančavská louka, 14 July 2023 00:27:56 15:24:04 12:07:58 26:18:48
Pančavská louka, 26 July 2023 00:29:42 14:57:52 7:43:44 35:37:10
Pančavská louka, 27 July 2023 00:33:03 11:29:26 39:55:14

The only advantage of the SVM algorithm is its sometimes slightly better accuracy. However, given such
a demanding process of tuning hyperparameters (several different kernels and many parameters) and
long classification time, it raises the question of whether it might be better to use more sophisticated
algorithms, such as convolutional neural networks (CNNs), in an effort to maximize classification
accuracy. Nevertheless, the process of optimization using a genetic algorithm has proven to be a very
effective and fast way to achieve results similar to the gridsearch, as shown in table 12 on page 35.
The results also show a large difference in the accuracy of the classification of individual areas of
interest. In addition to varying data quality, these differences correspond to the species diversity on the
peat bogs (Pančavská louka is the most diverse, while Kyselé kouty is the least) and also to the size of
the areas of interest. With the UAV data acquisition, the probability of homogeneous lighting conditions
is significantly lower for larger area, which may be one of the reasons why Pančavská louka was
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classified with the worst accuracy. These results suggest that it may not be possible to expect similar
accuracy across different types of peat bogs. It would also be appropriate to study more the effect of
complexity on the classification results. Merely three very distinct peat bogs are too small a sample for
a more detailed analysis, as the largest peat bog in this case was also the most complex. Additionally,
the comparison of several orthomosaics from similar periods and the same area of interest shows that
accuracies can vary significantly during the vegetation season within the same area. Interestingly, it is
not easy to observe a clear dependency of the final accuracy on lighting conditions from the results. It
seems that orthomosaics taken under cloudy conditions achieve better results, but there are too few
orthomosaics available to confirm this hypothesis. Differences may be more probably caused by a slight
change in the phase of the vegetation season, which can alter the distinguishability of some classes and
perhaps also by different wetness and water content in different days of acquisition (example of Kyselé
kouty peat bog).
In this thesis, a multitemporal approach has not been tested. Ideally, for such an approach, larger time
intervals between data acquisitions would be needed, but it was also deemed more important to compare
the accuracy of individual orthomosaics’ classifications. The Krkonoše NP administration would prefer
to reduce the costs of monitoring peat bogs as much as possible, and therefore wants to focus more on
classification without a multitemporal approach. However, the results of this thesis and relevant
literature (Huylenbroeck et al., 2020; Kupková et al., 2023), suggest that multitemporal imaging could
provide important information for the classification of peat bogs (vegetation in general) on the species
level and should be compared with the classification of a single orthomosaic.
As mentioned in the results, when reducing the number of training data, a gradual decrease in accuracy
is evident, but the variance in accuracies during random selection for training or validation does increase
only little in the most cases (this doesn’t apply to Kyselé kouty). From this, it can be inferred that the
ideal amount of training data would be higher (or at least more representatively distributed) than all
available data. If the decrease in training data is accompanied by an increase in validation data, the
drop in accuracy is evident. In cases simulating a real lack of data, however, the validation accuracy
gradually increases over time. This phenomenon is caused by the algorithm partitioning ground truth
data into training and validation parts when there are too few polygons for a given class (less than 3),
leading to a division that so significantly impacts the results that at some point it completely reverses
the validation outcomes, making them entirely unusable. For some classes, this method of training and
validation was used even during the main classification analysis because too little ground truth data was
available. These classes are summarized in the table 16.

Table 16: Classes with less than 3 polygons of the ground truth data

Area of interest Classes
Hraniční louka Vaccinium myrtillus, Nardus stricta
Kyselé kouty Carex sp., Pinus uncinata,
Pančavská louka Callamagrostis villosa, Hieracium sp., Juncus sp.,

Salix sp., Anthoxanthum odoratum
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All these classes either have very high or very low accuracies in classifications, depending on the
algorithm and the timing of the imagery. The issue is that most of these classes are very rare in the
areas of interest, and it was not easy to find additional locations of occurrence. According to experience
derived from past research of the TILSPEC team, it is not a good idea to completely exclude these
classes from the classification, as the classifier would not consider the option of an unknown species
growing on these places. How to approach these rare species could thus be one of the important issues
for the further research.
Regarding the accuracy of other species (results are summarized in appendix B), one of the main
successes of this thesis is the high classification accuracy of main peat bog species such as Trichophorum
cespitosum (0.830), or Carex rostrata (0.994) on Hraniční louka, and Molinia caerulea (0.836) and
Nardus stricta (0.886) on Pančavská louka. For Trichophorum cespitosum on Hraniční louka, the best
F-1 score achieved was 0.866, and no comparable classification of this species was found in the literature
for comparison. On Hraniční louka, out of the two Carex species, only Carex rostrata was consistently
well classified. Carex limosa, another important peat bog species, according to the confusion matrix,
was often classified as Molinia caerulea. Kyselé kouty, although it has the best overall accuracy, shows
the worst accuracy for specialized grass species, which generally could not be classified with satisfactory
accuracy. The high overall F-1 score is mainly due to a larger amount and area of non-specialized
species like Vaccinium myrtillus or Picea abies, which were very accurately classified. On Pančavská
louka, the greatest success is the high F-1 scores of Molinia caerulea (highest 0.919) and Nardus stricta
(highest 0.899). In the case of Nardus stricta, although not as good a result as Kupková et al. (2023)
was achieved, the accuracy is very similar. For the class Trichophorum cespitosum, significantly different
accuracies were achieved on each orthomosaic (F-1 scores ranging from 0.51 to 0.85). As already
discussed earlier, similar inconsistencies can be observed in the overall F-1 scores, which, given that the
test dataset polygons were always the same, show that even small differences in orthomosaics can
significantly affect classification accuracy.
Table 17 contain compares overall accuracy (OA), achieved by classification in this thesis and relevant
literature. Although the main measure of accuracy in this thesis was the weighted F-1 score, most
literature uses OA, thus the table compares only OAs. Table 18 compares F-1 score for the most
important species, achieved by classification in this thesis and relevant literature.
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Table 17: Comparison of accuracy of similar studies and this thesis. All of the compared studies used
UAV to acquire image data

Area of interest Study
Type of
vegetation

Number of
classes

Classifier OA (%)

Uchter moor,
Germany

Knoth et al., 2013
Species on the
peat bog

4
Object based
SVM

91.0

NE Germany Beyer et al., 2019
Species on the
peat bog

11 RF 89.0

South Florida,
USA

Zweig et al., 2015
Species on the
wetland

9
Object based
SVM

69.0

Eagle Bay,
Florida, USA

Pande-Chhetri
et al., 2017

Species on the
wetland

12
Object based
SVM

71.0

Northern China Du et al., 2021
Species on the
wetland

6 RF 87.8

Qi’ao island,
China

J. Cao et al., 2018
Species of
mangroves

10 SVM 88.7

Poptar island,
Maryland, USA

Windle et al., 2023
Species on the
wetland

5 RF 98

Krkonoše,
Úpské rašeliniště

Kupková et al., 2020
Species on the
peat bog

14
Object based
SVM

86.0

Krkonoše,
Bílá louka

Kupková et al., 2023
Species on the
grassland

7
Object based
SVM

95.9

Krkonoše,
Hraniční louka

This thesis
Species on the
peat bog

13 RF 91.0

Krkonoše,
Kyselé kouty

This thesis
Species on the
peat bog

12 SVM 93.4

Krkonoše,
Pančavská louka

This thesis
Species on the
peat bog

22 SVM 82.7
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Table 18: Comparison of F-1 scores for the most important species in this thesis with F-1 scores for the
same species in the relevant literature

Species Study Classifier F-1 score
Nardus stricta This thesis (Pančavská louka) SVM 0.886
Nardus stricta Kupková et al., 2017 SVM 0.792
Nardus stricta Kupková et al., 2023 Object based SVM 0.947
Molinia caerulea This thesis (Pančavská louka) SVM 0.836
Molinia caerulea Kupková et al., 2017 SVM 0.707
Molinia caerulea Kupková et al., 2023 Object based SVM 0.992
Trichophorum cespitosum This thesis (Hraniční louka) RF 0.830
Trichophorum cespitosum Kupková et al., 2017 Object based SVM 0.770
Picea abies This thesis (Hraniční louka) RF 0.965
Picea abies Zagajewski et al., 2021 SVM 0.917
Pinus mugo This thesis (Hraniční louka) RF 0.998
Pinus mugo Kupková et al., 2017 Object based SVM 0.997

This comparison shows that the overall accuracy of the classifications is comparable to similar studies.
The classifications of each important species also usually show comparable accuracy to previous studies.
This was particularly true for the classification of Picea abies and Pinus mugo, which, thanks to the
canopy height feature, were classified with nearly 100% accuracy. Conversely, for important species on
Pančavská louka (Molinia caerulea and Nardus stricta), it appears that accuracy could still be
improved. The results of the study Kupková et al. (2023) suggest that it would be appropriate to
include object-oriented methods among the algorithms tested in further research.
Another important output of this thesis is the result of the overlap analysis. It shows that, as seen from
the validation accuracies of individual classes, most classes with sufficient area within each area of
interest were classified with similarly by all algorithms. On every orthomosaic, all classifications agreed
on 75 – 90 % of the classified area. From the maps describing the degree of agreement in classifications
(figure 17 on the following page), it is also evident that the greatest disagreements occur at the edges of
stands of different species, where mixing of these species can occur and thus the inability of the classifier
to correctly predict the vegetation class. Additionally, in the area of interest with the worst classification
accuracy, Pančavská louka, the overlay even yielded better results than the individual classifications.
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Figure 17: Example of the degree of agreement map

When addressing how to further improve the accuracy of peat bogs classifications, it is advisable to
draw inspiration from the available literature. Many studies on wetland classification utilize
hyperspectral data (Du et al., 2021; Zlinszky et al., 2012), which are very suitable for identifying minor
differences in water content in plant tissues (Marcinkowska-Ochtyra et al., 2018). Thus, using
hyperspectral data could lead to increased accuracy. In contrast, other studies in the Krkonoše
Mountains have shown that the use of hyperspectral data may not lead to increased accuracy (Kupková
et al., 2023). That was one of the important reasons why it was not used in this thesis.
As already mentioned, it would be beneficial to acquire image data with the UAV several times during
the vegetation season and either use this data for multitemporal classification or at least compare them
with each other to decide when is the best time for collecting image data from peat bogs. These
multitemporal approaches are also common in vegetation monitoring (Kupková et al., 2023; Windle et
al., 2023). Another possible suggestion might be to use a different machine learning algorithm, such as
Gradient Boost or CNNs. As the author of this thesis, however, I would primarily suggest focusing more
on input data than on the algorithm. As some analyses have shown, there was still too little ground
truth data in some classes for accurate prediction. In the future, the most important question will be
which peat bogs in Krkonoše NP are essential to map and which of the species are most important to
monitor for peat bog management. Some of this information is already available (e.g., the need to
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monitor the spread of Nardus stricta and Molinia caerulea on Pančavská louka), but a more detailed
discussion with the national park management about the results of the thesis will likely be necessary to
determine the next steps. Another key follow-up question will be whether it is possible to classify less
common vegetation cover classes with similar accuracy as classes found in large areas/non mixed dense
patches of the territory.
From the results of the thesis, it is evident that peat bogs are a very challenging ecosystem for
species-level classification. Their dynamics, diversity, and poor accessibility are significant obstacles to
quality long-term research. That is also why Krkonoše NP is looking for ways to be as efficient as
possible in management using remote sensing methods and to achieve good results at the lowest possible
cost. From the results and discussion in this thesis, the following procedure (proposed methodological
steps) for creating a peat bog map for Krkonoše NP, emerges:

• Data acquisition phase:

– Image data should be captured using UAVs under homogeneous lighting conditions with a
spatial resolution of 3-5 cm and front and side overlaps of 70-85%.

– Ground truth data coordinates should be measured with geodetic GPS equipment with
accuracy to within a few centimeters. When collecting data, it is crucial not to underestimate
their amount. Every small piece of homogeneous vegetation can be used for training and can
contribute to greater complexity in the dataset. Ideally, it would be appropriate to have 6 or
more sufficiently large polygons for each class. There should be an even greater number of
polygons for more common classes, and in all cases, they should be evenly distributed across
the area of interest.

• Data preprocessing phase

– Image data can be processed using automated software workflow (Pix4D Mapper, Agisoft
Metashape), but the resulting orthomosaic should be carefully checked to ensure if it is well
georeferenced and does not contain undesirable artifacts.

– Before classification, it is strongly recommended to add additional (besides spectral) features
to the dataset that improve classification accuracy. The first of these is the canopy height
model, which can be derived photogrammetrically from image data and DTM, and the others
are texture features, which help recognize the properties of the classified classes that are not
identifiable on a level of a single pixel.

– Before classification, the separability of the data should be analyzed and the data should be
checked for errors. This can be done using an automated algorithm like the FPD proposed in
this thesis, or manually by monitoring polygons over the corresponding orthomosaic.

• Data analysis phase

– The F-1 score, weighted by class area, is a suitable metric for validation, but stratified
selection based on class share in the area of interest should also be included in the data
selection for training algorithms due to better data representation.
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– From the tested classifiers it is recommended to use an RF classifier (in general a classifier
that allows for a simple and fast learning and prediction, does not require long
hyperparameter tuning, provides good accuracy).

– When testing multiple classification methods, it is beneficial to compare the resulting
classifications using an overlap analysis. This can serve as an additional accuracy metric and
may even produce a more precise result than the individual classifications.

6 Conclusion

The goal of the thesis was to provide accurate vegetation maps on the species level for three peat bogs
in the western part of the Krkonoše Mountains using UAV multispecral data, field botanical data and
remote sensing methods for analysis. The other goal was to propose a methodology for efficient and
precise vegetation monitoring of Krkonoše peat bogs using multispectral UAV data. The highest F-1
score was achieved at Kyselé kouty (0.957), slightly lower at Hraniční louka (0.899), and the lowest at
Pančavská louka (0.832). The pre-set goal of an F-1 score of at least 0.9 was only achieved at Kyselé
kouty, but the classification results of the two remaining areas of interest are still very good, as the F-1
score of the most important classes reached high values and the overlay analysis showed that the outputs
of both classifiers agree over a large part of the areas of interest (75 – 90%). The varying accuracy of the
classifications of each peat bog could have been caused by their complexity, lighting conditions, size and
the quality of ground truth data. The classification of each area of interest was tested on two or three
orthomosaics acquired on different dates, and it was found that the resulting accuracies also varied
significantly. This is likely due to minor differences in lighting conditions of the area of interest during
data acquisition and small shifts in vegetation season. Common species, especially conifers - Picea abies
(0.965), Pinus mugo (0.998), as well as mountain or peat bog species - Molinia caerulea (0.836), Nardus
stricta (0.886), Trichophorum cespitosum (0.830) were classified with the highest accuracy. Rarer
classes, for which sufficient ground truth data was not collected, were classified with the lowest accuracy.
The thesis demonstrated that added non-spectral features, in this case canopy height and textural
features derived from GLCM, can significantly improve the F-1 score of classification (an increase by
0.113 in the case of canopy height and 0.073 in the case of GLCM textures). Also, through separability
analysis and a proposed algorithm for detecting faulty polygons, the need for more detailed investigation
of the input ground truth data was demonstrated, as it might be prone to errors during data acquisition
or processing.
Among the tested classifiers, the RF algorithm achieved the best accuracy at Hraniční louka, while the
best results on the remaining two areas of interest were achieved using the SVM algorithm. Despite
slightly better accuracy, the SVM algorithm was assessed as less suitable for peat bog classification,
mainly due to long computation times and demanding tuning. The small amount of ground truth data
for some categories did not prevent good overall classification results on the test dataset but led to large
variability in accuracies of some categories during cross-validation.
The thesis demonstrated the suitability of UAV multispectral data and remote sensing methods for
mapping the vegetation cover of peat bogs and proposes a methodological approach, outlined in the last

55



paragraph of the discussion, which, when implemented, will ensure sufficient accuracy of mapping
Krkonoše peat bogs in the future. The map outputs of this thesis will also be used in peat bog
management practice in Krkonoše NP. In the coming years, the plan is to continue in this research and
to test other approaches, such as different classifiers, to experiment with the amount and distribution of
training/validation data or to find out if the classification of multitemporal composites can provide
higher classification accuracy. Further field data will be collected and also the classification results will
be validated in the field together with botanists of the national park. Also, interdisciplinary discussion
about the significance of various species and conservation aspects of the peat bogs and about the
possibilities of remote sensing for these aspects and future monitoring of peat bogs will be important.
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A Images of classified species

Anthotraxum odoratum
(source: TILSPEC)

Callamagrostis villosa
(source: TILSPEC)

Calluna vulgaris
(source: TILSPEC)

Carex limosa
(source: TILSPEC)
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Carex rostrata
(source: TILSPEC)

Deschampsia cespitosa
(source: TILSPEC)

Eriophorum angustifolium
(source: TILSPEC)

Eriophorum vaginatum
(source: TILSPEC)
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Hieracium sp.
(source: TILSPEC)

Juncus sp.
(source: TILSPEC)

Example of unidentified moss
(source: TILSPEC)

Molinia caerulea
(source: TILSPEC)
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Nardus stricta
(source: TILSPEC)

Picea abies
(source: TILSPEC)

Pinus mugo
(source: Wikimedia Commons)

Pinus unicata subs. uliginosa
(source: TILSPEC)
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Salix sp.
(source: TILSPEC)

Sphagnum sp.
(source: TILSPEC)

Trichophorum cespitosum
(source: TILSPEC)

Vaccinium myrtillus
(source: TILSPEC)
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Vaccinium vitis-idaea
(source: TILSPEC)

Vaccinium uliginosum
(source: TILSPEC)
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B Classification results for all classes

Table 19: Classification results for Hraniční louka orthomosaic from July the 13th 2023 (F-1 scores)

RF
SVM

(linear)
SVM

(polynomial)
SVM (RBF)

SVM
(Sigmoid)

Best hyperparameters
ntree = 464
mtry = 15
depth = 18

C = 2.57
C = 433.09
Degree = 3
Gamma = 0.0082

C = 945.37
Gamma =
2.86e-07

C = 394.22
Gamma =
3.22e-09

Overall F-1 score 0.899 0.875 0.879 0.895 0.779
Overall accuracy 91.0% 89.0% 90.2% 90.7% 80.3%
Vaccinium myrtillus 1.000 0.838 0.867 0.899 0.000
Carex limosa 0.339 0.456 0.324 0.506 0.000
Carex rostrata 0.994 0.963 0.966 0.961 0.816
Unidentified moss 0.956 0.918 0.955 0.969 0.517
Molinia caerulea 0.610 0.400 0.443 0.555 0.474
Nardus stricta 1.000 0.977 0.956 0.970 0.00
Sphagnum species 0.776 0.583 0.634 0.627 0.506
Trichophorum cespitosum 0.830 0.706 0.807 0.777 0.740
Vaccinium uliginosum 0.000 0.256 0.318 0.333 0.000
Pinus mugo 0.998 0.995 0.987 0.989 0.923
Picea abies 0.965 0.994 0.995 0.995 0.954
Water 1.000 1.000 1.000 1.000 0.985
Dry vegetation 0.000 0.924 0.942 0.906 0.908
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Table 20: Classification results for Hraniční louka orthomosaic from July the 25th 2023 (F-1 scores)

RF
SVM

(linear)
SVM

(polynomial)
SVM (RBF)

SVM
(Sigmoid)

Best hyperparameters
ntree = 138
mtry = 18
depth = 17

C = 9.94
C = 1.64e-07
Degree = 2
Gamma = 0.034

C = 593.02
Gamma =
8.84e-07

C = 4.928
Gamma =
3.53e-07

Overall F-1 score 0.893 0.805 0.710 0.805 0.807
Overall accuracy 90.0% 81.8% 79.0% 81.8% 80.3%
Vaccinium myrtillus 1.000 0.526 0.000 0.526 0.526
Carex limosa 0.518 0.805 0.304 0.797 0.821
Carex rostrata 1.000 0.977 0.870 0.977 0.977
Unidentified moss 0.000 0.000 0.000 0.000 0.000
Molinia caerulea 0.825 0.783 0.781 0.783 0.783
Nardus stricta 1.000 1.000 0.000 1.000 1.000
Sphagnum species 0.021 0.037 0.000 0.046 0.056
Trichophorum cespitosum 0.866 0.762 0.733 0.765 0.766
Vaccinium uliginosum 0.9375 0.271 0.000 0.271 0.271
Pinus mugo 1.000 0.834 0.870 0.834 0.834
Picea abies 0.965 0.992 0.904 0.992 0.992
Water 1.000 1.000 0.946 1.000 1.000
Dry vegetation 0.000 0.931 0.722 0.931 0.931
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Table 21: Classification results for Kyselé kouty orthomosaic from July the 13th 2023 (F-1 scores)

RF
SVM

(linear)
SVM

(polynomial)
SVM (RBF)

SVM
(Sigmoid)

Best hyperparameters
ntree = 885
mtry = 6
depth = 19

C = 0.00024

C = 0.15
Degree = 2
Gamma =
4.31e-05

C = 10.97
Gamma =
5.38e-06

C = 2.95
Gamma =
2.82e-07

Overall F-1 score 0.924 0.931 0.930 0.924 0.918
Overall accuracy 93.4% 92.6% 92.5% 91.6% 91.9%
Bare ground 0.954 0.802 0.688 0.740 0.930
Vaccinium myrtillus 0.969 0.969 0.966 0.960 0.964
Carex species 0.760 0.760 0.836 0.838 0.000
Deschampsia cespitosa 0.000 0.000 0.000 0.000 0.000
Eriophorum vaginatum 0.143 0.143 0.074 0.039 0.015
Juncus species 0.284 0.284 0.334 0.321 0.350
Unidentified moss 0.324 0.324 0.264 0.055 0.000
Nardus stricta 0.578 0.578 0.638 0.480 0.000
Pinus uncinata
subsp. uliginosa

0.029 0.000 0.253 0.056 0.000

Picea abies 0.973 0.988 0.992 0.991 0.986
Sphagnum species 0.000 0.000 0.000 0.000 0.000
Dry vegetation 0.802 0.795 0.914 0.914 0.646
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Table 22: Classification results for Kyselé kouty orthomosaic from July the 25th 2023 (F-1 scores)

RF
SVM

(linear)
SVM

(polynomial)
SVM (RBF)

SVM
(Sigmoid)

Best hyperparameters
ntree = 970
mtry = 8
depth = 19

C = 0.00012

C = 0.0199
Degree = 2
Gamma =
0.00029

C = 235.06
Gamma =
1.899e-06

C = 107.20
Gamma =
5.07e-09

Overall F-1 score 0.939 0.957 0.950 0.949 0.878
Overall accuracy 90.3% 90.4% 89.7% 89.9% 82.3%
Bare ground 1.000 0.997 0.994 1.000 0.945
Vaccinium myrtillus 0.932 0.977 0.981 0.969 0.859
Carex species 0.951 0.878 0.906 0.914 0.791
Deschampsia cespitosa 0.000 0.010 0.009 0.000 0.000
Eriophorum vaginatum 0.349 0.618 0.646 0.496 0.091
Juncus species 0.770 0.704 0.681 0.690 0.617
Unidentified moss 0.626 0.701 0.696 0.727 0.000
Nardus stricta 0.165 0.503 0.142 0.154 0.057
Pinus uncinata
subsp. uliginosa

0.686 0.500 0.930 0.947 0.000

Picea abies 1.000 0.985 0.974 0.985 0.974
Sphagnum species 0.000 0.000 0.000 0.000 0.000
Dry vegetation 1.000 0.775 0.519 0.936 0.583
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Table 23: Classification results for Pančavská louka orthomosaic from July the 14th 2023 (F-1 scores)

RF
SVM

(linear)
SVM

(polynomial)
SVM (RBF)

SVM
(Sigmoid)

Best hyperparameters
ntree = 984
mtry = 8
depth = 20

C = 0.00036

C = 0.024
Degree = 3
Gamma =
4.36e-05

C = 436.3
Gamma =
2.9e-06

C = 218.2
Gamma =
9.6e-08

Overall F-1 score 0.796 0.816 0.831 0.832 0.773
Overall accuracy 80.8% 80.7% 82.6% 82.7% 75.7%
Vaccinium myrtillus 0.425 0.487 0.556 0.568 0.360
Vaccinium vitis-idaea 0.000 0.000 0.000 0.000 0.000
Calamagrostis villosa 0.975 0.811 0.905 0.889 0.393
Carex limosa 0.532 0.335 0.302 0.301 0.366
Carex rostrata 0.591 0.504 0.492 0.491 0.294
Deschampsia cespitosa 0.173 0.359 0.436 0.408 0.323
Eriophorum angustifolium 0.063 0.238 0.168 0.173 0.238
Hieracium species 1.000 0.997 1.000 1.000 0.859
Juncus species 0.975 0.307 0.919 0.882 0.000
Unidentified moss 0.000 0.000 0.000 0.000 0.000
Molinia caerulea 0.790 0.815 0.836 0.835 0.789
Nardus stricta 0.865 0.865 0.886 0.884 0.830
Salix species 0.936 0.292 0.826 0.766 0.000
Sphagnum species 0.355 0.438 0.421 0.423 0.000
Anthoxanthum odoratum 1.000 0.992 1.000 1.000 0.934
Trichophorum cespitosum 0.819 0.840 0.847 0.853 0.799
Vaccinium uliginosum 0.030 0.620 0.665 0.667 0.380
Calluna vulgaris 0.262 0.554 0.430 0.445 0.392
Water 1.000 1.000 1.000 1.000 1.000
Pinus mugo 0.960 0.981 0.992 0.994 0.971
Picea abies 0.933 0.906 0.924 0.929 0.886
Dry vegetation 0.000 0.995 0.983 0.980 100.0
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Table 24: Classification results for Pančavská louka orthomosaic from July the 26th 2023 (F-1 scores)

RF
SVM

(linear)
SVM

(polynomial)
SVM (RBF)

SVM
(Sigmoid)

Best hyperparameters
ntree = 51
mtry = 8
depth = 19

C = 0.000103

C = 14.7
Degree = 3
Gamma =
1.19e-05

C = 72.02
Gamma =
4.51e-07

C = 10.23
Gamma =
2.35e-07

Overall F-1 score 0.776 0.794 0.806 0.796 747
Overall accuracy 80.0% 80.9% 81.7% 81.2% 76.3%
Vaccinium myrtillus 297 0.558 0.345 0.489 0.000
Vaccinium vitis-idaea 0.000 0.000 0.192 0.000 0.000
Calamagrostis villosa 0.945 0.600 0.808 0.688 0.000
Carex limosa 0.652 0.640 0.623 0.633 0.681
Carex rostrata 0.302 0.322 0.396 0.336 0.168
Deschampsia cespitosa 0.163 0.193 0.044 0.082 0.137
Eriophorum angustifolium 0.074 0.046 0.261 0.137 0.000
Hieracium species 0.992 0.958 0.997 0.956 0.842
Juncus species 1.000 0.382 0.986 0.715 0.000
Unidentified moss 0.000 0.000 0.108 0.000 0.000
Molinia caerulea 0.886 0.898 0.910 0.900 0.815
Nardus stricta 0.814 0.899 0.869 0.884 0.827
Salix species 0.827 0.533 0.846 0.620 0.000
Sphagnum species 0.000 0.114 0.161 0.209 0.000
Anthoxanthum odoratum 0.999 0.985 0.993 0.977 0.892
Trichophorum cespitosum 0.623 0.697 0.710 0.721 0.637
Vaccinium uliginosum 0.205 0.621 0.629 0.624 0.199
Calluna vulgaris 0.111 0.347 0.316 0.323 0.080
Water 1.000 1.000 1.000 1.000 1.000
Pinus mugo 1.000 0.960 0.988 0.958 0.997
Picea abies 0.895 0.848 0.867 0.839 0.902
Dry vegetation 0.634 0.902 0.569 0.912 0.762
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Table 25: Classification results for Pančavská louka orthomosaic from July the 27th 2023 (F-1 scores)

RF
SVM

(linear)
SVM

(polynomial)
SVM (RBF)

SVM
(Sigmoid)

Best hyperparameters
ntree = 830
mtry = 9
depth = 20

C = 2.07e-05

C = 0.1
Degree = 3
Gamma =
6.46e-05

C = 98.2
Gamma =
1.40e-06

C = 912.7
Gamma =
1.40e-08

Overall F-1 score 0.753 0.701 0.769 0.758 0.694
Overall accuracy 80.0% 74.6% 80.2% 79.4% 73.9%
Vaccinium myrtillus 0.189 0.016 0.183 0.149 0.000
Vaccinium vitis-idaea 0.977 0.000 0.937 0.489 0.000
Calamagrostis villosa 0.953 0.355 0.857 0.808 0.275
Carex limosa 0.439 0.499 0.413 0.484 0.495
Carex rostrata 0.389 0.180 0.377 0.329 0.175
Deschampsia cespitosa 0.014 0.009 0.038 0.030 0.000
Eriophorum angustifolium 0.060 0.035 0.147 0.179 0.023
Hieracium species 1.000 0.646 0.989 0.984 0.596
Juncus species 1.000 0.000 0.910 0.403 0.000
Unidentified moss 0.000 0.000 0.187 0.198 0.000
Molinia caerulea 0.902 0.897 0.919 0.906 0.892
Nardus stricta 0.868 0.770 0.879 0.847 0.767
Salix species 0.795 0.000 0.861 0.618 0.000
Sphagnum species 0.506 0.000 0.000 0.000 0.000
Anthoxanthum odoratum 1.000 0.854 0.985 0.967 0.835
Trichophorum cespitosum 0.546 0.534 0.596 0.582 0.531
Vaccinium uliginosum 0.190 0.709 0.708 0.762 0.595
Calluna vulgaris 0.196 0.395 0.382 0.461 0.308
Water 1.000 1.000 0.986 1.000 1.000
Pinus mugo 0.890 0.810 0.883 0.877 0.802
Picea abies 0.848 0.828 0.842 0.855 0.827
Dry vegetation 0.667 0.643 0.703 0.690 0.629
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C Separability tables

Figure 18: Separability of pairs of classes for Hraniční louka orthomosaic from July the 13th 2023
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Figure 19: Separability of pairs of classes for Hraniční louka orthomosaic from July the 25th 2023
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Figure 20: Separability of pairs of classes for Kyselé kouty orthomosaic from July the 13th 2023
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Figure 21: Separability of pairs of classes for Kyselé kouty orthomosaic from July the 25th 2023
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Figure 22: Separability of pairs of classes for Pančavská louka orthomosaic from July the 14th 2023
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Figure 23: Separability of pairs of classes for Pančavská louka orthomosaic from July the 26th 2023
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Figure 24: Separability of pairs of classes for Pančavská louka orthomosaic from July the 27th 2023

D Best maps of vegetation cover for each date and area of interest
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