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Abstrakt: Interakce vysoce energetických elektron̊u s látkou je využ́ıvána ke
studiu a zobrazováńı struktury materiál̊u v elektronové mikroskopii a difrakci.
Jednou z forem této interakce je emise fotonu d́ıky vazbě elektromagnetického
pole elektronu s polarizaćı látky v jeho bĺızkosti, jedná se o jev tzv. katodo-
luminiscence. Nedávné teoretické práce předpov́ıdaj́ı, že by mohlo být možné
optickou koherenci přenesenou do elektronové vlnové funkce pomoćı modulace
skrze optická pole následně pozorovat v koherenčńıch vlastnostech emitovaných
foton̊u. V této práci se zabýváme rozš́ı̌reńım současně použ́ıvaného teoretického
formalismu pro studium tohoto efektu s ćılem hlubš́ıho porozuměńı d́ıky studiu
r̊uzných režimů optické modulace elektronového svazku. V prvńı části popisu-
jeme d̊uležité aspekty interakce elektron̊u s látkou vyplývaj́ıćı z klasické elek-
trodynamiky a v druhé části systematicky budujeme kvantově elektrodynamický
formalismus pro studium statistiky emitovaných foton̊u. Pomoćı numerických
simulaćı pak na základě analytických výsledk̊u diskutujeme očekávanou závislost
jejich mı́ry koherence na relevantńıch fyzikálńıch parametrech.
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Abstract: The interaction of swift electrons with matter is used to study and
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tion. One particular form of this interaction is the emission of a photon due to
the coupling of the electron’s electromagnetic field with the polarization of the
material in its vicinity, a phenomenon called cathodoluminescence. Recent the-
oretical works predict that it might be possible to observe the optical coherence
imprinted upon the electron wavefunction by modulation through optical fields
in the coherence properties of the emitted photons. In this thesis, we extend
the theoretical formalism currently used to study this effect in order to gain a
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of coherence on relevant physical parameters based on derived analytical results.
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Introduction
Electron microscopy is currently among the best options for imaging both lo-
calized and nonlocalized modes in various materials with sub-nanometer spatial
detail and sub-eV energy resolution. There are different variations of experiments
conducted in the field of electron microscopy, but the interests of this thesis lie
in the case of swift electron interactions with nanoscopic samples. When an ul-
trafast electron beam strikes a target, a multitude of different phenomena can
be measured, for instance secondary electron emission (SEE) or electron energy-
loss spectrum (EELS). The latter uses the fact that electrons themselves are a
source of electromagnetic field that generates a response from the material when
located in proximity of the studied sample. The created induced field then acts
as a stopping force on the electron and the measured energy-loss spectrum allows
us to analyze the excitation spectrum of our sample. An interesting subset of
all electron energy-losses are those that lead to the excitation and subsequent
emission of radiative modes in samples, which consequently add an asymptotical
component of the induced field, the so called coherent cathodoluminiscence (CL).
In this thesis, a particular focus will be given to the theoretical analysis of various
properties of coherent CL from classical and quantum viewpoint. In the quantum
picture, this means to determine the statistics of photons contained within the
medium-assisted electromagnetic field, consequently enabling us to describe the
spectrum of specific modes within our sample. Recent works [1], [2] also point out
that due to modern methods of electron wavefunction modulation (in both spa-
tial and temporal domain), we might observe a considerable level of correlation
between the coherence properties of photons emitted by the sample and the mod-
ulating photons, by which the incident electron beam has been shaped. Such an
effect would suggest a measurable transfer of optical coherence by free electrons
that could be then utilized in a wide range of experiments. The main goal of this
thesis is to theoretically describe the interaction of modulated electron beams
with sample modes and to extend the formalism by which the transfer of optical
coherence is currently studied, in order to enable the possibility of examining the
behaviour of this quantity in different regimes of electron beam modulation.

Figure 1: Schematic representation of the interaction of a modulated electron
beam with optical sample modes theoretically examined within this thesis.
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Figure 1 represents a schematic outline of this thesis. We begin by considering
an initial electron wavepacket moving along a straight-line trajectory and describe
its modulation by a photon-induced electromagnetic near-field created through
external illumination of a nanoscopic structure with a modulating laser pulse.
This method of shaping the electron beam will be primarily employed because of
its reciprocity with respect to the subsequent interaction with radiative sample
modes. The modulated electron beam is then generally described by a density
operator, the specific form of which depends on the modulation regime and, con-
sequently, on the properties of the laser pulse. The electron’s statistical ensemble
then freely propagates over a distance significantly greater than the modulating
region, resulting in periodic acceleration and deceleration of its specific com-
ponents. This leads to temporal lensing and the creation of energy sidebands
corresponding to the absorption or emission of photons from the electromagnetic
near-field. We will then study the quantum interaction of such an electron beam
with an electromagnetic field mediated by a dielectric sample. This endeavor
will require us to adapt the formalism of macroscopic quantum electrodynamics
(QED) to describe the electron-field system and the post-interaction statistics of
emitted photons. Once we have established a comprehensible theoretical frame-
work, we will quantify the optical coherence carried by the electron beam from
the modulating laser field to the medium-assisted electromagnetic field.
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1. Relevant quantities from
classical electrodynamics
In this chapter, we will discuss important concepts, quantities and formalisms
applied in classical electrodynamics and describe the form, in which they may be
used in QED calculations. This will involve discussing the methods, by which we
may quantify the rate of electron energy-loss events and their characterization and
the description of very simple dielectric functions that model material response
with emphasis on the means to ensure their consistency with causality. These
approaches will be then utilized in order to solve a problem with rather simple
geometry in a fully analytical manner with the inclusion of relativistic effects.
At the beginning however, we need to specify the electromagnetic properties of a
moving electron.

1.1 Electromagnetic field of a non-accelerated
point charge

It will prove useful to restrict ourselves to the description of swift electrons in-
teracting with sample modes of low excitation energies, the reason for which is
that we may then use the so called non-recoil approximation where an electron
is considered to be moving with constant velocity along a straight line and in-
teracting linearly with the individual modes. However, we have to determine the
electromagnetic field set up by such an electron first in order to understand its
capabilities as a probe into the excitation spectrum of our sample. It is necessary
to mention that throughout this thesis, it will also be assumed that the elec-
tron interacts with homogeneous media described by the frequency dependent
dielectric function ε(ω), relating c0, the speed of light in vacuum and c(ω), the
frequency dependent speed of light inside the medium. Later, we will briefly com-
ment upon the derivation of two simple homogeneous dielectric functions used in
various practical calculations.

Let’s consider an electron moving with constant velocity v = vez, where ez
denotes unity vector along z-axis. Therefore, it is advantageous to split the posi-
tion vector as r = (R, z), where R = (x, y), in order to adapt to the symmetry
of motion. Crucial tool for handling the calculations seen below is the Fourier
transform between (r, t) and (q, ω), where q denotes a wave vector, which will
be defined as

ϕ(r, t) = 1
(2π)2

∫︂
d3q

∫︂
dω ϕ̃(q, ω)eiq·r−iωt . (1.1)

To determine the electron’s electromagnetic field, we will start from the wave
equations for scalar and vector potential, ϕ and A respectively

−□ϕ(r, t) = ρ(r, t)
εt

,

−□A(r, t) = j(r, t)
ϵ0c2

0
,

(1.2)

4



where □ = ∆ − 1
c2

∂2

∂t2 (∆ is the Laplacian operator), ρ is the free charge density, j
denotes free current density, ε0 is the permittivity of free space and εt = ε(ω) ε0
the total permittivity of the medium1. Applying Fourier transform (1.1) to the
set of equations (1.2) yields algebraic equations for Fourier components

(︂
q2 − ε(ω)k2(ω)

)︂
ϕ̃(q, ω) = ρ̃(q, ω)

ε(ω)ε0
,

(︂
q2 − ε(ω)k2(ω)

)︂
Ã(q, ω) = j̃(q, ω)

c2
0ε0

,

(1.3)

where k2(ω) = ω2/c2
0 . The charge density of an electron moving along a straight-

line trajectory can be written as ρ(r, t) = −eδ(3)(r − vt), where e denotes the
elementary charge and δ(3)(·) is the 3D Dirac delta function. Therefore, the
inverse Fourier transform results in

ρ̃(q, ω) = − e

(2π)2

∫︂
d3r

∫︂
dt δ(3)(r − vt)e−iq·r+iωt = − e

2πδ(ω − q · v) ,

where we only canceled the integration over r thanks to the delta function and
then carried out the integral over t resulting in 2πδ(ω − q · v). Since current
density of a single electron can be written as j = vρ, it also holds (within the
non-recoil approximation) that j̃ = vρ̃. The standard expression for electric field
E in terms of potentials E = −∇ϕ−∂tA gives us the frequency dependent Fourier
components as

E(r, ω) = −i
(2π) 3

2

∫︂
d3q

(︂
q ϕ̃(q, ω) − ωÃ(q, ω)

)︂
eiq·r =

= ie

ε0(2π) 5
2

∫︂
d3q

q
ε

− k v
c0

q2 − εk2 e
iq·rδ(ω − q · v) ,

(1.4)

where we only made use of equations (1.3) and substituted for ρ̃ and j̃.
Since v is assumed to be along the z-axis, the integral (1.4) can be carried

out in cylindrical coordinates by transforming it to the form

E(r, ω) = ie

ε0(2π) 5
2

∫︂ ∞

−∞
dqz

∫︂ ∞

0
dq⊥ q⊥

∫︂ π

−π
dφ

1
ϵ
(q⊥ cosφ, q⊥ sinφ, qz) − kv

c0
(0, 0, 1)

q2
⊥ + q2

z − εk2 ei(q⊥·R+qzz)δ(ω − qzv) .

(1.5)
Integration over qz is trivial due to the delta function. Before we proceed, let us
evaluate arising factors(︃

ω

v

)︃2
− εk2 = ω2

v2

(︄
1 − ε

v2

c2
0

)︄
=
(︄
ω

γεv

)︄2

,

ω

εv
− kv

c0
= ω

εv

(︄
1 − ε

v2

c2
0

)︄
= ω

γ2
εεv

,

where γε denotes the frequency dependent Lorentz factor related to the electron
moving inside a sample described by the dielectric function ε(ω).

1We assume the magnetic properties of the medium to be negligible, therefore its perme-
ability µt ≈ µ0.
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The integration over φ in (1.5) can be done by converting to polar coordi-
nates for R = R(cosψ, sinψ), which leads to the remaining exponential becoming
exp(iq⊥R cos(φ− ψ)) and the integral taking form

E(r, ω) = ie

ε(ω)ε0(2π) 5
2
e

izω
v

∫︂ ∞

0
dq⊥ q

2
⊥

∫︂ π

−π
dφ

(cos [φ+ ψ] , sin [φ+ ψ] , ω
γ2

ε vq⊥
)

q2
⊥ +

(︂
ω

γεv

)︂2 eiq⊥R cos φ .

We then utilize the integral representation of ordinary Bessel functions [3]

Jn(z) = i−n

π

∫︂ π

0
dθeiz cos θ cos(nθ) , n ∈ Z ,

which can be directly observed in our integral if we expand the cosine and sine
of (φ+ ψ), omit terms odd in φ, since their integration results in zero and limit
the boundaries of integration to ⟨0, π⟩ for even terms. The last integration over
q⊥ then leads immediately to modified Bessel functions through their relation to
the ordinary Bessel functions [3]

Kn(z) = 1
zn

∫︂ ∞

0
dt
tn+1Jn(t)
t2 + z2

and the final result for the frequency component of the electron’s electric field
then becomes

E(r, ω) =
eω exp(i zω

v
)

ε0(2π) 3
2 ε(ω)γεv2

[︄
−K1

(︄
ωR

γεv

)︄
eR + i

γε

K0

(︄
ωR

γεv

)︄
ez

]︄
, (1.6)

where eR is a unit radial vector perpendicular to the z-axis. By comparing with
other literature (e.g. [4]), we recognize that this is indeed the correct2 expression
for the field component set up by a non-accelerated electron in a homogeneous
medium. By calculating the curl of (1.6), we find the associated magnetic field
component

B(r, ω) = −
eω exp(i zω

v
)

ε0(2π) 3
2 ε(ω)γεvc2

0
K1

(︄
ωR

γεv

)︄
eφ , (1.7)

where eφ is the azimuthal unit vector.
If we analyze the discovered electromagnetic field, we can make a few key

observations about its effect on samples with which it interacts. First, we mention
the asymptotics [3]

K0(z) z→0−−→ − ln z ,

Km(z) z→0−−→ Γ(m)
2

(︃
z

2

)︃−m

, m > 0 ,

Km(z) z→∞−−−→
√︃
π

2z e
−z , m ≥ 0 ,

2Except for multiplication by a constant stemming from using SI instead of Gaussian units
and a different definition of the Fourier transform.
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from which we see that the field diverges at R → 0 and thus we can expect a
significant interaction contrast over small regions close to the electron’s trajectory.
Additionally, the field exponentially decays at large R for v < c(ω) (γε ∈ R)
and therefore exhibits evanescent behaviour. However, for v > c(ω) we have an
oscillating field decaying as 1/

√
R, so the electron actually emits electromagnetic

waves known as Cherenkov radiation3 (CR). This property means that an electron
can be regarded as a source of radiation permitting the study of momentum-
energy space regions outside the light cone. Moreover, it means that fast electrons
can also excite nondipolar modes in small particles, which would be difficult to
resolve using external light instead [4].

1.2 Semi-classical EELS and CL
Evanescent character of the electron’s field is beneficial in the investigation of lo-
calized excitations, which enables EELS experiments to achieve nanometer spatial
resolution. Similar types of spectroscopies were used to discover and characterize
collective excitations of conduction electrons, also known as plasmons. Addition-
ally, localized plasmons have the ability to radiatively decay and therefore create
a component of the induced field that carries energy which was transmitted from
the electron, thus contributing to CL.

Theoretical analysis of both EELS and CL involves the definition of so-called
probabilities Γ(ω), which in classical description represent an artificial quantiza-
tion using ℏ as a semiclassical prescription to convert the energy loss (or energy
emission) into a probability [4], [5]. The true quantum nature of these quantities
will be discussed later, for now we shall show how even classical description of
both the electromagnetic field and the interacting bodies (probe and sample) can
lead to complex analytical results with practical applications.

1.2.1 EELS probability
The energy loss of a swift electron on a straight-line trajectory r(t) with constant
velocity v is obtained from integrating the stopping force proportional to the
induced field Eind(r(t), t)

∆E = e
∫︂
dtv · Eind(r(t), t) , (1.8)

where the sign has been changed in order to have ∆E > 0. By rewriting
Eind(r(t), t) as a real part of its Fourier decomposition in frequency domain,
we can define the mentioned EELS probability

ΓEELS(ω) =
√︄

2
π

e

ℏω

∫︂
dtℜ{v · Eind(r(t), ω)e−iωt} , (1.9)

which enables us to write

∆E =
∫︂ ∞

0
dω ℏωΓEELS(ω) . (1.10)

3In the rest of this thesis, we will be only discussing fields in vacuum and we therefore return
to the notation c ≡ c0.
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Using this definition, we can see that the normalization of ΓEELS(ω) is such that
its integral over ω ∈ ⟨0, ∞⟩ represents the total loss probability and (1.10) the
average energy loss. It is also often convenient, especially in nonhomogeneous
media, to express the EELS probability in terms of the electromagnetic Green
tensor G(r, r′, ω), defined by the equation

∇ × ∇ × G(r, r′, ω) − ω2

c2 ε(r, ω)G(r, r′, ω) = δ(3)(r − r′)1 , (1.11)

which is related to the total electric field as

E(r, ω) = iω

ε0c2

∫︂
d3r′ G(r, r′, ω) · j(r′, ω) ,

but we shall discuss this later in the quantum picture. As was previously men-
tioned however, our primary interest at this point does not concern all energy
losses, but mainly those that stem from coupling of the electron’s electromag-
netic field to sample modes capable of radiative decay resulting in CL, because
we wish to describe the detectable radiation spectrum.

1.2.2 CL probability
Cathodoluminiscence offers a method for characterizing nanostructures with vir-
tually no sample damage and is commonly used to study the electronic bands of
insulators and doped semiconductors. It is important to classify the sources of
CL emission in accordance with their degree of coherence relative to the external
field. There is a multitude of mechanisms of coherent CL, the most known of
which are Cherenkov radiation, diffraction radiation and transition radiation [4].
What we observe as CL is actually an interference between all of the coherent
sources and this is a consequence of the fact that the quantum-mechanical state
of the sample after the emission returns to the same as before the interaction (all
the energy transferred from the electron has radiated away). On the other hand,
the incoherent part of CL bears a resemblance to photoluminescence, where the
sample is first excited but decays inelastically, either to an intermediate state or
via nonradiative decay, where in both cases the final state differs from the ini-
tial ground state and the eventual radiation is not coherent with respect to the
external field.

The definition of ΓCL is similar to the case of EELS, but instead of energy
loss we start with a total radiated energy obtained by integrating the flux of the
Poynting vector over a large sphere

Erad = lim
r→∞

∫︂
dt r2

∫︂
S2
dΩ er · [E(r, t) × H(r, t)] , (1.12)

where
∫︁
S2
dΩ =

∫︁ π
0 dϑ sinϑ

∫︁ π
−π dφ, er is a unit radial vector from the origin and

µ0H = B. Decomposing both E and H into their frequency components ω and
ω′, respectively and then carrying out the integral over t resulting in 2πδ(ω+ω′),
leads to the definition

ΓCL(ω, Ω) = lim
r→∞

2r2

ℏω
ℜ{er · [E(r, ω) × H(r,−ω)]} , (1.13)
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which represents the solid angle and frequency resolved CL probability4. Inte-
grating over all solid angles gives us the total probability for emission of a photon
with frequency ω, ΓCL(ω) =

∫︁
S2
dΩ ΓCL(ω, Ω) and in terms of this quantity, the

final result then reads
Erad =

∫︂ ∞

0
dω ℏωΓCL(ω) . (1.14)

1.3 Elementary causal homogeneous dielectric
functions

Before we proceed and determine the classical EELS and CL probabilities for a
particular geometry, we will briefly discuss two simple dielectric functions that are
applicable for the description of certain materials with surprisingly good results.

1.3.1 Drude and Lindhard models
Shortly after the discovery of electrons, Paul Drude developed a model providing
a simple description of the optical properties of solids. Its applicability is mainly
limited to metals, but it showed satisfying results even in the case of heavily
doped semiconductors [6]. The derivation is very straightforward, the conduction
electrons are influenced by external field E(t) and their oscillations are assumed
to be damped due to collisions that occur with a characteristic frequency η and
the equation of motion can therefore be written as

m∗r̈ +m∗ηṙ = −eE(t) ,

where r is the average electron displacement and m∗ denotes the electron effective
mass incorporating band structure of the material. Applying Fourier transform
to this equation then yields

r(ω) = eE(ω)
m∗ω(ω + iη) .

Assuming n to be the number density of electrons, we can easily evaluate macro-
scopic polarization

P(ω) = −ner(ω) = − ne2

m∗ω(ω + iη)E(ω) ,

from which we can immediately extract the dielectric function as

εD(ω) = 1 −
ω2

p

ω(ω + iη) , (1.15)

where ωp =
√︂
ne2/(m∗ε0) is the bulk plasma frequency of free electron gas. Such

a dielectric function has been used to accurately describe the properties of alu-
minium for instance, where [4] ℏη ≈ 0.6 eV and ℏωp ≈ 15.8 eV, which is in good
agreement with the value of 15 eV obtained from EELS measurements. A slight

4In literature, it is also being referred to as the number of photons emitted per incoming
electron, per unit of solid angle of emission and per unit of photon frequency range.
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modification to (1.15) is to change the 1 to an unknown parameter ε∞, which
then accounts for the net contribution from the positive ion cores present in the
metal. Even with this modification, we can see that the Drude model fails to
describe very small frequencies, where the imaginary part of dielectric function
tends to infinity, which is an unphysical behaviour.

A better model for the behaviour of electron gas was derived by Lindhard in
1954. It is based on quantum mechanical calculations of the effects of electric
field screening by electrons in a solid and uses the first-order perturbation theory
while utilizing the random phase approximation. The resulting dielectric function
can be written as [7]

εL(q, ω) = 1 − Vq
∑︂

k

fk−q − fk

ℏ(ω + iδ) + Ek−q − Ek
,

where Vq = Veff(q) − Vind(q), fk is the Fermi-Dirac distribution function for
electrons in thermodynamic equilibrium, Ek is the energy level of wavevector
k, δ is a positive infinitesimal constant and the sum runs over all possible k
in an assumed quantization volume. An explicit analytical expression for the
Lindhard dielectric function can be determined either at zero temperature or at
high temperatures in the long wavelength limit q → 0, where we get [6]

εL(ω) = 1 −
ω2

p

(ω + iη)2 . (1.16)

Dielectric functions (1.15) and (1.16) behave similarly at high frequencies, but
there is obviously a major difference at ω → 0, namely (1.16) no longer diverges.
However, it has been shown [8] that it is not consistent with conservation of the
number of electrons in the metal. Different approaches towards obtaining various
dielectric functions for specific materials can be found in literature (see e.g. the
appendix of [4]), but for our purposes it will suffice to consider the simplest
Drude dielectric function (1.15) and pay special attention to the case of ω → 0
in numerical calculations if neccessary.

1.3.2 Kramers-Kronig relations
We have very briefly summarized the derivation of two homogeneous dielectric
functions, but we have not yet ensured that they are consistent with relativistic
description. The causality of any linear response function leads to the Kramers-
Kronig relations, which bind the real and imaginary part of said function. A
simple derivation of these relations for ε(ω) = εR(ω) + iεI(ω), where εR denotes
the real and εI the imaginary part of ε(ω), can be found in [9] and we will shortly
comment on it.

If we begin from a linear relation between electric field and electric displace-
ment field, D(r, ω) = ε0ε(ω)E(r, ω) and apply Fourier transform, we arrive to

D(r, t) = ε0

[︃
E(r, t) +

∫︂ ∞

−∞
dτG(τ)E(r, t− τ)

]︃
, where

G(τ) = 1
2π

∫︂ ∞

−∞
dω(ε(ω) − 1)e−iωτ .
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However, it would be against our understanding of causality if D(r, t) was influ-
enced by future electric field E(r, t′), t′ > t. Therefore, in order to preserve a
spatially-local causal relation between D and E, it must hold that G(τ) = 0 for
τ < 0, which yields an inverse relation

ε(ω) = 1 +
∫︂ ∞

0
dτG(τ)eiωτ .

This expression, along with reasonable physical assumptions for G(τ) and the
fact that G(τ) is real (it connects real fields E(r, t) and D(r, t)) leads us to the
conclusion that ε(ω) is analytic in the upper half-plane as a function of complex
ω. We can therefore invoke Cauchy’s theorem to relate the real and imaginary
part of ε on the real axis,

ε(z) = 1 + 1
2πi

∮︂
C
dω′ ε(ω′) − 1

ω′ − z
,

where the contour C is chosen to consist of the real axis and a large semicircle at
infinity in the upper half-plane. A suitable expansion (shown in [9]) demonstrates
that there is no contribution from the semicircle and by relating the real and
imaginary parts of the remaining result (and utilizing the parity of ε(ω)), we get
the known Kramers-Kronig relations for homogeneous dielectric function

εR(ω) = 1 + 2
π

P
∫︂ ∞

0
dω′ ω

′εI(ω′)
ω′2 − ω2 ,

εI(ω) = −2ω
π

P
∫︂ ∞

0
dω′ εR(ω′) − 1

ω′2 − ω2 ,

(1.17)

where P represents Cauchy principal value integral. These relations are applied
in practise when one empirically models the absorption properties of a certain
material and arrives to an explicit expression for εI(ω). They can then use (1.17)
to calculate a causality ensuring εR(ω) from the first relation. If we were to
separate the imaginary parts of (1.15), (1.16) and apply this method, we would
see that the real parts are in order and therefore these dielectric functions are in
fact consistent with a proper causality preserving theory.

1.4 Analytical relativistic solution of a single di-
electric sphere

In this section, we will use the classical formalism for calculating CL and EELS
probabilities to solve the case of a single dielectric sphere analytically with the
inclusion of retardation effects associated with full relativistic description of the
interaction. We will be mainly focusing on the CL probability, in order to em-
phasize the shape of expected induced radiative field, but the result for EELS
probability will also be presented, because it will play a crucial role in the subse-
quent quantum calculations. The result for this geometry has been derived [10]
by expanding the retarded Green function in free space, but we will use a slightly
different approach and show that it is possible to reach the same result by working
directly with the already determined external field set up by a non-accelerated
electron (1.6), as well as provide all the details of the underlying calculations.
Obtained results will then be used further in the quantum picture.
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Figure 1.1: A simple diagram depicting assumed geometry of the analytically
solved CL problem.

The geometry of our problem is summarized on figure 1.1. Suppose we have a
dielectric sphere of radius a placed in the origin and described by the homogeneous
dielectric function ε(ω) and an electron moving in vacuum along a straight-line
trajectory r(t) = bex + vtez outside the sphere (b > a) with constant velocity v.
We already know that the external electromagnetic field set up by the electron
corresponds to the translated field E(r − bex, ω), expressed from (1.6). The task
is then to evaluate the CL probability (1.13). The mathematical analysis of (1.6)
has also concluded that it falls of exponentially in vacuum, therefore it will not
contribute to radiation and fields E, H in (1.13) can be replaced by only the
radiative components of induced fields Eind, Hind .

The starting point for finding the induced field is the dyadic identity [11]

1 = ∇ 1
∆∇ + L

1
L2 L − (∇ × L) 1

L2∆(L × ∇) ,

where L = −ir × ∇ is the orbital momentum operator. This identity allows
us to express the electric field in terms of 3 scalar functions, which are called
longitudinal, magnetic and electric,

E = ∇ψL + LψM − i

k
∇ × LψE .

In accordance with the dyadic identity, they are determined as

ψL = 1
∆∇ · E ,

ψM = 1
L2 L · E ,

ψE = −ik
L2∆(L × ∇) · E .
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By recalling (1.3), we see that in a vacuum free of charges and currents it holds
that (∆+k2)E = 0 and since ∆ commutes with both ∇ and L, the same equation
must be true for each of the individual ψ. With this knowledge, we can also
evaluate magnetizing field from ∇ × E = iω

ε0c2 H as

H = −ε0c
(︃
i

k
∇ × LψM + LψE

)︃
, (1.18)

where we have utilized that ∇ × (∇ × L) = −L∆, which is easily provable by
evaluation of individual components in Cartesian coordinates. Additionally, the
analysis done in [11] shows that the contribution of ψL describes an instant propa-
gation and it must cancel with the contribution of 1/∆ present in the prescription
for ψE. The situation can therefore be considerably simplified by setting ψL = 0
and rewriting 1/∆ = −1/k2 in the definition of ψE. These adjustments then lead
to a new decomposition5

E = LψM − i

k
∇ × LψE ,

ψM = 1
L2 L · E ,

ψE = i

kL2 (L × ∇) · E .

(1.19)

Our task of finding the electric field E = Eext + Eind, of which we know that
limr→∞ keeps only the induced component, therefore requires us to solve the
scalar Helmholtz equation (∆ + k2)ψ = 0 in the outter region, its analogy with
k2 → ε(ω)k2 inside the sphere and apply geometrically appropriate boundary
conditions to match these solutions. We will briefly summarize the derivation of
such conditions, but the comprehensive mathematical reasoning can be found in
[11], [12].

Directly from Maxwell equations, one can immediately conclude that ET , BT ,
εEN , BN must be continuous at r = a where the indices T and N denote field
components tangential and normal to the sphere. The continuity of ET at r = a
implies the same for L · E and therefore ψM . The second term of E will have
a continuous tangential component if r × (∇ × LψE) is continuous, which after
some manipulation implies the continuity of (1 + r ∂

∂r
)ψE. The same procedure is

then applied to BT , which leads to continuity of εψE and (1 + r ∂
∂r

)ψM as well. It
is then shown that these 4 conditions are sufficient also for continuous εEN and
BN , therefore the functions ψE and ψM can be completely determined.

Having described the boundary conditions for ψ at r = a we now turn to pre-
scribing suitable multipole expansions in vacuum for ψEe , ψMe , ψEi , ψMi , where
the subscripts e and i denote either external or induced part. We know that the
external field set up by an electron cannot give rise to any radiation and since
the electron’s trajectory is always external to the sphere, a divergent behaviour

5The equation (1.18) retains its form, we just need to apply the new expression for ψE .
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at r → 0 should not occur, therefore the only suitable multipole expansion6 is

ψEe(r) =
∞∑︂

l=1

l∑︂
m=−l

iljl(kr)Ylm(ϑ, φ)ψEe
lm ,

ψMe(r) =
∞∑︂

l=1

l∑︂
m=−l

iljl(kr)Ylm(ϑ, φ)ψMe
lm ,

(1.20)

where jl are the spherical Bessel functions and Ylm are scalar spherical harmonics.
Multipole expansion of the induced component is then simply based on the fact
that a general electromagnetic field is the combination of incoming and outgoing
waves [11] represented by spherical Hankel functions h(−)

l (kr) and h
(+)
l (kr), re-

spectively and since our induced field is produced by the sources within a finite
sphere, the field outside it has to be composed of only the outgoing components,
therefore it holds that

ψEi(r) =
∞∑︂

l=1

l∑︂
m=−l

ilh
(+)
l (kr)Ylm(ϑ, φ)ψEi

lm ,

ψMi(r) =
∞∑︂

l=1

l∑︂
m=−l

ilh
(+)
l (kr)Ylm(ϑ, φ)ψMi

lm .

(1.21)

By combining these multipole expansions with the boundary conditions at
r = a that were mentioned above, we conclude the most important result

ψEi
lm = tEl ψ

Ee
lm ,

ψMi
lm = tMl ψ

Me
lm ,

(1.22)

where (details in [10], [12])

tEl = −jl(ρ>) [ρ<jl(ρ<)]′ + ε [ρ>jl(ρ>)]′ jl(ρ<)
h

(+)
l (ρ>) [ρ<jl(ρ<)]′ − ε

[︂
ρ>h

(+)
l (ρ>)

]︂′
jl(ρ<)

,

tMl = −jl(ρ>)ρ<j
′
l(ρ<) + ρ>j

′
l(ρ>)jl(ρ<)

h
(+)
l (ρ>)ρ<j′

l(ρ<) − ρ>

[︂
h

(+)
l (ρ>)

]︂′
jl(ρ<)

,

(1.23)

with the notation ρ> = ka, ρ< = ka
√
ε (positive imaginary part is applied) and

the prime denoting differentiation with respect to ρ> or ρ<. This result means
that the components of external and induced field are related by a scattering
matrix, much like in the partial-wave scattering analysis of finite-range potential
in quantum mechanics. The scattering matrix elements tEl and tMl , which are
independent of m due to spherical symmetry of the scattering body, are even
more commonly being derived in terms of phase shifts δl.

The significance of the result (1.22) is clear, based on boundary conditions
stemming directly from Maxwell equations and multipole expansions that were
unambiguous due to the physical properties (no radiation or r → 0 divergence in
the external field and only outgoing spherical waves in the induced field), we have
acquired a direct way to calculate the total electromagnetic field in our geometry

6It can be seen from (1.19) that l = 0 waves do not contribute to the electromagnetic field.
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depicted on figure 1.1. It is also worth mentioning that zeros of denominators in
(1.23) directly describe the modes characteristic for homogeneous spheres.

So far, we have mainly summarized the technique for finding the electro-
magnetic field in the presence of a dielectric sphere, but now we provide a very
straightforward approach towards determining the expansion coefficients ψEe

lm and
ψMe

lm , because it turns out that we do not require the definition and multipole ex-
pansion of a retarded Green function like in [10], but we may directly utilize the
translated external field (1.6), since the associated integrals are reducible to a
single known integral of the modified Bessel functions.

As was already mentioned above, the external field set up by an electron
is simply the field (1.6) translated to be centered at bex instead of the origin,
therefore

Eext(r, ω) =
eω exp(i zω

v
)

ε0(2π) 3
2γv2

⎡⎣−K1

⎛⎝ω
√︂

(x− b)2 + y2

γv

⎞⎠ (x− b)ex + yey√︂
(x− b)2 + y2

+ i

γ
K0

⎛⎝ω
√︂

(x− b)2 + y2

γv

⎞⎠ ez

⎤⎦ .
(1.24)

We first turn our attention to ψEe , in case of which the equation (1.19) shows
that we need to first determine (L × ∇) · Eext. By rewriting the acting differential
operator into Cartesian coordinates, it is simple to explicitly show the identity
L × ∇ = −i [(r · ∇)∇ − r∆]. Since ∇ · Eext vanishes outside the electron’s trajec-
tory and (∆ + k2)Eext = 0, we can directly write

(L × ∇) · Eext(r, ω) =
eω3 exp(i zω

v
)

ε0(2π) 3
2γ2c2v2

⎡⎣iγK1

⎛⎝ω
√︂

(x− b)2 + y2

γv

⎞⎠ x(x− b) + y2√︂
(x− b)2 + y2

+zK0

⎛⎝ω
√︂

(x− b)2 + y2

γv

⎞⎠⎤⎦ .
(1.25)

By also applying L2 to the definition of ψE in (1.19), rewriting the left-hand side
according to (1.20) and utilizing L2Ylm = l(l + 1)Ylm, we get the equation

∞∑︂
l=1

l∑︂
m=−l

ill(l + 1)jl(kr)Ylm(ϑ, φ)ψEe
lm = i

k
(L × ∇) · Eext . (1.26)

Spherical harmonics Ylm obey the orthogonality relations∫︂ π

−π
dφ
∫︂ π

0
dϑ sinϑYlm(ϑ, φ)Y ∗

l′m′(ϑ, φ) = δll′δmm′

and therefore multiplying the equation (1.26) by Y ∗
l′m′ and integrating over S2

gives us

ψEe
lm = i1−l

k l(l + 1)jl(kr)

∫︂
S2
dΩY ∗

lm(ϑ, φ)(L × ∇) · Eext . (1.27)

To evaluate this integral, we recall that

Ylm(ϑ, φ) =

⌜⃓⃓⎷2l + 1
4π

(l −m)!
(l +m)!P

m
l (cosϑ)eimφ ,
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where Pm
l are the associated Legendre polynomials with the Condon-Shortley

phase (−1)m included. First, we carry out the integral over φ in (1.27), for which
we will use the integral representations [3]

Km(z) = 1
2

(︃
z

2

)︃m ∫︂ ∞

0

dt

tm+1 exp
(︄
t− z2

4t

)︄
,

Im(z) = 1
π

∫︂ π

0
ez cos φ cos(mφ)

(1.28)

and a known integral [13]
∫︂ ∞

0

dt

t
exp

(︄
− t

2 − a2 + b2

2t

)︄
Im

(︄
ab

t

)︄
= 2Im(a)Km(b) , 0 < a < b . (1.29)

Integration over φ of the second term in (1.25) reduces (by omitting all φ
independent functions) to evaluation of∫︂ π

−π
dφe−imφK0(

√︂
A2 +B2 − 2AB cosφ) ,

where A = ωR/(γv) and B = ωb/(γv). We can take only cos(mφ) from the expo-
nential, limit integration to ⟨0, π⟩, rewrite K0 according to (1.28), discover that
terms dependent on φ integrate to form πIm

(︂
AB
2t

)︂
and the remaining integration

then leads us directly to 2πIm(A)Km(B) through (1.29).
Evaluating the integral over φ of the first term in (1.25) requires slightly more

complicated manipulation, therefore we will comment it a bit more thoroughly.
The integral in question reduces to∫︂ π

−π
dφe−imφK1(

√︂
A2 +B2 − 2AB cosφ) A2 − AB cosφ√

A2 +B2 − 2AB cosφ
=

∫︂ π

0
dφ cos(mφ)(A2 − AB cosφ)

∫︂ ∞

0

dt

2t2 exp
(︄
t− A2 +B2 − 2AB cosφ

4t

)︄
=

π

2

∫︂ ∞

0

dt

t2
et− A2+B2

4t

[︃
A2Im

(︃
AB

2t

)︃
− AB

2

(︃
Im+1

(︃
AB

2t

)︃
+ Im−1

(︃
AB

2t

)︃)︃]︃
,

where the first equality stems from the integral representation of K1 and the
second one is simply the consequence of the representation of Im after using the
identity cos(mφ) cosφ = 1/2(cos [(m+ 1)φ]+cos [(m− 1)φ]). We will use a trick
to bring the integral to a form, in which we can utilize (1.29). First, it can be
found [3] that Im+1(z) + Im−1(z) = 2I ′

m(z) and therefore

A2Im

(︃
AB

2t

)︃
− AB

2

(︃
Im+1

(︃
AB

2t

)︃
+ Im−1

(︃
AB

2t

)︃)︃
=

A2Im

(︃
AB

2t

)︃
− 2At ∂

∂A
Im

(︃
AB

2t

)︃
= −2AteA2

4t
∂

∂A

[︃
e− A2

4t Im

(︃
AB

2t

)︃]︃
.

This manipulation quite miraculously allows us to bring the partial derivative
with respect to A out of the integral since dependence on A in the exponential
is first canceled and then reintroduced. It also reduces dt/t2 to dt/t, which is
exactly what we required in order to apply (1.29). The integral then results in
−2πAI ′

m(A)Km(B).
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With the integration over φ completed, we return to (1.27), which can now
be written in full form as

ψEe
lm =

i1−l

√︃
2l+1
8π2

(l−m)!
(l+m)!

k l(l + 1)jl(kr)
eω3Km

(︂
ωb
γv

)︂
ε0γ2c2v2

∫︂ π

0
dϑ sinϑ ei zω

v Pm
l (cosϑ)[︄

zIm

(︄
ωR

γv

)︄
− iγRI ′

m

(︄
ωR

γv

)︄]︄
,

(1.30)

where there is also ϑ dependence through z = r cosϑ and R = r sinϑ. The right-
hand side of (1.30) is independent of r and therefore the left-hand side must be as
well and to make use of this fact, we will now substitute Im and the exponential for
their expansions around r = 0, where it is known that jl(kr) → (kr)l/(2l + 1)!! .
After we plug in the expansions, the integral that we need to evaluate becomes7

∞∑︂
j=m

∞∑︂
n=j

in−j
(︂

ω
v

)︂n
(2γ)−j

(n− j)!
(︂

j−m
2

)︂
!
(︂

j+m
2

)︂
!

[︃
rn+1I lm

j, n+1−j − ijγ2 v

ω
rnI lm

j, n−j

]︃
,

where the first sum runs only over even j −m and

I lm
j, n−j =

∫︂ 1

−1
du(1 − u2)

j
2un−jPm

l (u) . (1.31)

By examining (1.31) and realizing the orthogonality relations held by Pm
l [3], we

can conclude that I lm
j, n−j is equal to zero if conditions j ≥ m and n < l are true,

therefore only terms with n ≥ l survive, which is very convenient since the limit
r → 0 then cancels all contributions of rnI lm

j, n−j with n > l. Therefore the sum
over n reduces only to n = l and since our expansion permitted only (n− j) ≥ 0
in the first place, the sum over j is then bound to even values of j−m from all the
remaining j ∈ {m, m + 1, . . . , l}. After elementary manipulations of the sums
and constants, we then arrive to the final closed result for multipole expansion
coefficients

ψEe
lm = (2l + 1)!!

l(l + 1)

⌜⃓⃓⎷2l + 1
8π2

(l −m)!
(l +m)!

eωKm

(︂
ωb
γv

)︂
ε0γ2c2βl+1

⎡⎣ l−1∑︂
j=m

I lm
j, l−j(l + jβ2γ2)

(l − j)!
(︂

j−m
2

)︂
!
(︂

j+m
2

)︂
!(2iγ)j

+ [(l −m+ 1) mod 2]
lγ2I lm

l, 0(︂
l−m

2

)︂
!
(︂

l+m
2

)︂
!(2iγ)l

⎤⎦ ,
(1.32)

where β = v/c and the last term is present in the result only if l−m is divisible by
2, since the sum over j is still restricted to even j−m. It is clear that an efficient
evaluation of these coefficients depends on our approach to the determination of
integrals (1.31). Our best option is to use a natural reccurence relation

(l −m)I lm
j1j2 = (2l − 1)I l−1, m

j1, j2+1 − (l +m− 1)I l−2, m
j1j2 ,

which stems directly from the properties of Pm
l and we may find various starting

values for this reccurence in [13]. Although the result (1.32) is in a form different
7Im(x) =

∑︁∞
k=m(x/2)k/

[︁
k−m

2 ! k+m
2 !
]︁

and the sum runs over even k −m values.
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from the one in [10], an extensive numerical analysis showed that the results
for expansion coefficients are proportional with a constant factor e/(4π

√
2πε0),

which stems from the difference of used units as well as a different definition of
the Fourier transform.

Having covered the derivation of ψEe
lm , we will now quickly skim through an

analogous procedure for the derivation of ψMe
lm . From (1.19), we proceed to eval-

uate
L · Eext = −i(r × ∇) · Eext = −ir · (∇ × Eext) = ωr · Bext ,

where Bext refers to the translated field (1.7) (r → r − bex)8 and therefore

L · Eext =
eω2b exp(i zω

v
)

ε0(2π) 3
2γvc2

K1

⎛⎝ω
√︂

(x− b)2 + y2

γv

⎞⎠ y√︂
(x− b)2 + y2

.

We then need to again multiply this quantity by Y ∗
lm and integrate over

∫︁
S2
dΩ.

The integral over φ dependent parts reduces to∫︂ π

−π
dφe−imφK1(

√︂
A2 +B2 − 2AB cosφ) A sinφ√

A2 +B2 − 2AB cosφ
,

which can be evaluated by similar techniques as before, the result of which is
−2πim

B
Im(A)Km(B). The integration over ϑ is then carried out in the same way

as in the previous case, utilizing the expansion of exp(izω/v), Im

(︂
ωR
γv

)︂
and then

applying the limit r → 0, which cancels most of the rnI lm
j, n−j contributions. The

final result for expansion coefficients of ψMe then takes form

ψMe
lm = m(2l + 1)!!

il(l + 1)

⌜⃓⃓⎷2l + 1
8π2

(l −m)!
(l +m)!

eωKm

(︂
ωb
γv

)︂
ε0c2βl

⎡⎣ l∑︂
j=m

I lm
j, l−j(2iγ)−j

(l − j)!
(︂

j−m
2

)︂
!
(︂

j+m
2

)︂
!

⎤⎦ .
(1.33)

This expression has again been compared with the result provided in [10] and the
proportionality with identical constant multiplier has been verified.

We have therefore acquired an analytical result for Eind, one just needs to
combine (1.32), (1.33) with (1.22), (1.23) and plug it into (1.21), but as we will
now show, there is a rather straightforward way to write the probability (1.13)
in terms of ψEi

lm and ψMi
lm . As we know, for an electron moving in vacuum, the

external field vanishes in r → ∞ and then

ΓCL(ω) =
∫︂
S2
dΩ lim

r→∞

2r2

ℏω
ℜ{er · [Eind(r, ω) × H∗

ind(r, ω)]} . (1.34)

In the limit r → ∞, we may replace h(+)
l (kr) by its asymptotics and therefore

acquire

ψEi(r) =
∞∑︂

l=1

l∑︂
m=−l

eikr

kr
Ylm(ϑ, φ)ψEi

lm ,

ψMi(r) =
∞∑︂

l=1

l∑︂
m=−l

eikr

kr
Ylm(ϑ, φ)ψMi

lm .

8This translation then makes eφ → (x−b)ey−yex√
(x−b)2+y2
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It also proves useful to write the following operators in spherical coordinates

∇ = er
∂

∂r
+ eϑ

1
r

∂

∂ϑ
+ eφ

1
r sinϑ

∂

∂φ
,

L = −i
(︄

eφ
∂

∂ϑ
− eϑ

1
sinϑ

∂

∂φ

)︄
,

∆ = 1
r

∂2

∂r2 r − 1
r2 L2 ,

∇ × L = −i
[︄
r∆ − ∇

(︄
1 + r

∂

∂r

)︄]︄
,

because we can then simply evaluate

L
(︄
eikr

kr
Ylm

)︄
= −ie

ikr

kr

(︃
eφYlm,ϑ − eϑ

im

sinϑYlm

)︃
,

L × ∇
(︄
eikr

kr
Ylm

)︄
= ier

l(l + 1)
kr2 eikrYlm − eikr

r

(︃
eϑYlm,ϑ + eφ

im

sinϑYlm

)︃
,

where Ylm,ϑ denotes ∂
∂ϑ
Ylm. By plugging these results in (1.18) and (1.19), we get∫︂

S2
dΩ lim

r→∞
r2ℜ{er · [Eind(r, ω) × H∗

ind(r, ω)]} =

− ε0c
∫︂
S2
dΩ lim

r→∞
r2er · ℜ

{︄[︃
LψMi − i

k
∇ × LψEi

]︃
×
[︃
i

k
∇ × LψMi + LψEi

]︃∗}︄
=

ε0c

k2

∑︂
lm, l′m′

∫︂
S2
dΩ ℜ

{︄[︄(︄
Ylm,ϑY

∗
lm,ϑ + mm′

sin2 ϑ
YlmY

∗
l′m′

)︄
(ψEi

lmψ
∗Ei
l′m′ + ψMi

lmψ
∗Mi
l′m′ )

+ i

(︄
m

sinϑYlmY
∗

l′m′,ϑ + m′

sinϑYlm,ϑY
∗

l′m′

)︄
(ψMi

lmψ
∗Ei
l′m′ − ψEi

lmψ
∗Mi
l′m′ )

]︄}︄
.

The first equality is simply the consequence of definitions, but the second equality
is the result of a quite extensive algebraic manipulation, which is however very
straightforward, we just need to plug in the asymptotic multipole expansion,
substitute for the acting of operators mentioned above and then evaluate the
products of unit vectors in spherical coordinates. It turns out that the pair
of large parentheses containing spherical harmonics each represent a different
scalar product of vector spherical harmonics, for which there are known integral
identities [14]∫︂

S2
dΩ

(︄
mm′YlmY

∗
l′m′

sin2 ϑ
+ Ylm,ϑY

∗
l′m′,ϑ

)︄
= l(l + 1)δll′δmm′ ,

∫︂
S2
dΩ

(︄
m′Ylm,ϑY

∗
l′m′

sinϑ +
mYlmY

∗
l′m′,ϑ

sinϑ

)︄
= 0 .

We can therefore write the complete result for ΓCL(ω) as

ΓCL(ω) = 2ε0

ℏk3

∞∑︂
l=1

l∑︂
m=−l

l(l + 1)
(︃⃓⃓⃓
ψEi

lm

⃓⃓⃓2
+
⃓⃓⃓
ψMi

lm

⃓⃓⃓2)︃
,

but to gain a better understanding of the dependence of this result on individual
physical parameters, we will recast it into a more transparent form. By recalling
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Figure 1.2: Dependency of the scattering matrix elements |tl|2 on photon fre-
quency for different values of (a) the multipole order l, (b) the radius of our
dielectric sphere a, (c) the electron gas damping frequency η. Plots (a) and (b)
are evaluated for η = 0.04ωp (valid for aluminium), plots (a) and (c) consider
the radius a = 1.0 c/ωp. (d) shows the dependence of decomposition coefficients
|βl+1ξlm|2 (see (1.35)) on β for a few values of l, m.

(1.22) and (1.23), we realize that dependence on the sphere’s radius and dielectric
function is included through |tEl |2 and |tMl |2. By looking at (1.32) and (1.33), it
becomes apparent that by factoring out eωKm

(︂
ωb
γv

)︂
/(ε0c

2), we will be left with
expansion coefficients dependent only on β. A suitable form of the result is then

ΓCL(ω) = 4πα
ω

∞∑︂
l=1

l∑︂
m=−l

K2
m

(︄
ωb

γv

)︄ [︃⃓⃓⃓
tEl ξ

E
lm

⃓⃓⃓2
+
⃓⃓⃓
tMl ξ

M
lm

⃓⃓⃓2]︃
,

ξM
lm = m(2l + 1)!!

iβl
√︂
l(l + 1)

⌜⃓⃓⎷2l + 1
4π2

(l −m)!
(l +m)!

⎡⎣ l∑︂
j=m

I lm
j, l−j(2iγ)−j

(l − j)!
(︂

j−m
2

)︂
!
(︂

j+m
2

)︂
!

⎤⎦ ,
ξE

lm = (2l + 1)!!
γ2βl+1

√︂
l(l + 1)

⌜⃓⃓⎷2l + 1
4π2

(l −m)!
(l +m)!

⎡⎣ l−1∑︂
j=m

I lm
j, l−j(l + jβ2γ2)

(l − j)!
(︂

j−m
2

)︂
!
(︂

j+m
2

)︂
!(2iγ)j

+ [(l −m+ 1) mod 2]
lγ2I lm

l, 0(︂
l−m

2

)︂
!
(︂

l+m
2

)︂
!(2iγ)l

⎤⎦ ,
(1.35)

where α ≈ 1/137 is the fine-structure constant.
Due to the properties of associated Legendre polynomials [3], we know that

for both types of expansion coefficients, it holds that |ξlm| = |ξl,−m| and the
explicit expression also tells us that ξM

l0 = 0. Figure 1.2 shows some of the key
dependancies of both tl and ξlm on physical parameters, where the numerical
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Figure 1.3: Dependency of the full CL probability ΓCL(ω), given by (1.35), on
photon frequency for different values of (a) the ratio β of electron’s velocity to
c, (b) the impact parameter b of the trajectory, (c) the electron gas damping
frequency η, (d) the dielectric sphere’s radius a. Plots (a), (b), (c) consider the
sphere’s radius a = 1.2 c/ωp, plots (a),(b) and (d) are evaluated for η = 0.04ωp.
Plots (a), (c), (d) represent a situation with impact parameter b = 1.1a and (b),
(c), (d) assume β = 0.6.

values of η are in proportion to ωp and the radius in proportion to c/ωp
9. We

can see that the scattering matrix elements rapidly decrease with rising l in the
small frequency region, where the l = 1 wave is dominant. It is also clear that
|tl|2 increase with the sphere’s radius and decrease with larger damping frequency
η, which means that the sample absorbs more energy that is not then radiated
away. From the dependence of |βl+1ξlm|2, we observe that they tend to larger
values with larger l, but this growth will be effectively suppressed by |tl|2 in the
region, where ω/ωp is small10. We should also note that despite there being an
apparent divergence of |ξlm|2 with β → 0, it will never be an issue in context of
the full expression (1.35), since we know that Km(z) exponentially vanishes for
large z and ωb

γv
∝ β−1 for β → 0.

Figure 1.3 visualizes the behaviour of analytical result (1.35) with respect to
different physical parameters. We can tell from the graphs that lesser impact
parameter b significantly increases the probability of emission. The dependence
on β is slightly more complex, because our result includes retardation effects.
Figure 1.3a shows that the behaviour of β2ΓCL(ω) is increasing with β, but if
we were to evaluate the probability on its own, we would see that it increases
up until β ≈ 0.4 − 0.5, depending on the heights of individual peaks, which
correspond to the sphere’s eigenfrequencies [10], and then it decreases. Radius a

9For the experimentally determined value ℏωp ≈ 15 eV in case of aluminium,
c/ωp ≈ 13.165 nm.

10Large frequencies are then being suppressed by the modified Bessel functions.

21



of the dielectric sphere determines the modes that the sphere is able to contain
and it therefore influences the number and positions of peaks. Lastly, we see that
the dependence on η appears quite irregular, because the extreme value η = 0
means that the sample is unable to absorb any energy and the entire electron
energy loss is converted into radiation, which creates additional peaks that would
otherwise not contribute to radiation.

The last note concerning this particular analytical solution is that if we were to
use the determined induced field to evaluate the probability ΓEELS(ω) (see (1.9))
for any event, in which the electron loses energy and not just those resulting in
radiation, we would find a very similar result [10]

ΓEELS(ω) = 4πα
ω

∞∑︂
l=1

l∑︂
m=−l

K2
m

(︄
ωb

γv

)︄ [︃
ℑ{tEl }

⃓⃓⃓
ξE

lm

⃓⃓⃓2
+ ℑ{tMl }

⃓⃓⃓
ξM

lm

⃓⃓⃓2]︃
, (1.36)

where ℑ{·} denotes imaginary part. It can then be shown from (1.23) that⃓⃓⃓
tE, M
l

⃓⃓⃓2
≤ ℑ{tE, M

l } and they are equal for strictly real-valued dielectric functions.
This is consistent with the underlying fact that CL events are a subset of all
electron energy losses, but they coincide if the specific dielectric medium is not
able to absorb any energy.

1.5 Classical-Quantum equivalence of EELS
probabilities

The presented classical formalism for calculating electron energy losses and their
consequent contributions to CL is still currently widely used, because there exists
an intuitive correspondence with results obtained by approaches involving second
quantization of plasmon excitations.

The validity of classically determined probabilities manifests itself, if we mod-
ify the relation for ΓEELS(ω) in order to express it solely in terms of the elec-
tromagnetic Green tensor, satisfying (1.11). The induced electric field, which is
present in (1.9), can be written as

Eind(r, ω) = iω

ε0c2

∫︂
d3r′

[︂
G(r, r′, ω) − G0(r, r′, ω)

]︂
· j(r′, ω) ,

where G0 is the solution to (1.11) in case of an infinite vacuum. Frequency
dependent charge density of an electron moving in a straight line with constant
velocity along the z-axis can be written as ρ(r, ω) = −e

v
√

2π
exp(izω/v)δ(2)(R−R0),

where R0 = (x0, y0) are the electron coordinates in xy-plane. With current
density j being equal to vρ, we can evaluate (1.9) as

ΓEELS(R0, ω) = 4α
c

∫︂∫︂
dzdz′ℜ

{︂
i
[︂
G0

zz(R0, z, z
′, ω) −Gzz(R0, z, z

′, ω)
]︂
ei ω

v
(z′−z)

}︂
,

where the R0 dependence enters through both r and r′ and we used the notation
Gzz = ez ·G ·ez. This relation can be simplified by entirely omitting G0

zz, since it
is known that the electromagnetic field set up by an electron in vacuum cannot
lead to any energy losses due to a kinematical mismatch between electrons and
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photons in free space [15]. By also utilizing the reciprocity theorem [9], which
states that G(r, r′, ω) = GT (r′, r, ω), we can then identify the correct real part
and get the desired result

ΓEELS(R0, ω) = 4α
c

∫︂∫︂
dzdz′ℑ {Gzz(R0, z, z

′, ω)} cos
[︃
ω

v
(z − z′)

]︃
. (1.37)

Various works (e.g. [4], [5], [16], [17]) have studied the formation of images
in EELS experiments from a QED viewpoint and here we only summarize the
relevant results connected to discussed probabilities, but the entirety of the next
chapter will be dedicated towards the application of QED formalism in presence
of dielectric media.

The state of current experimental setups allows us to consider each electron
as a coherent superposition of plane waves with a narrow focus (≈ 1 nm) of the
wavefunction in perpendicular direction. We may therefore describe an incident
energetic electron with a wavefunction

ψinc(r) = 1√
L
eikzψ⊥(R) ,

where ℏk is the momentum along electron’s trajectory, L is a quantization length
in the same direction and ψ⊥(R) is a wavefunction in the perpendicular plane,
which is assumed to remain unchanged after the interaction due to the slow mo-
tion in xy-plane and available experimental techniques. In the works mentioned,
it is shown that under these assumptions, while adopting the non-recoil approxi-
mation, a minimal coupling interaction Hamiltonian between the electron and a
quantized photon field, consisting of electric-field eigenfunctions (satisfying ho-
mogeneous form of (1.11), see [17]) and using Fermi’s golden rule to evaluate the
probability that an electron creates a photon in a specific state, we then arrive
to the expression

ΓEELS(ω) =
∫︂
d2R |ψ⊥(R)|2 ΓEELS(R, ω) , (1.38)

with ΓEELS(R, ω) being given by (1.37). This important result validates the clas-
sical formalism including retardation effects in approaches, where all the inelastic
losses are collected. The analytical result derived in the previous section can
therefore be utilized in the following chapter if we average it over the perpendicu-
lar probability profile of an incident electron wavefunction. We will also discover
that (1.38) will serve as an effective coupling coefficient between electrons and
a quantized electromagnetic field, when we study the coherence transfer from
modulating fields to the electromagnetic field, which is the result of coherent
cathodoluminiscence.
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2. Quantum description of the
interaction of modulated electron
beams with optical sample modes
In this chapter, we will build upon the insight acquired from classical electron-
sample interactions and describe the problem within the formalism of second
quantization. This will entail an extensive discussion of EM field quantization
in the presence of absorbing and dispersing bodies, as well as the description
of the process of electron beam modulation through interaction with quantum
light. Once we acquire these tools, we will proceed to describe the interaction of
a modulated electron with optical sample modes by adapting a minimal coupling
Hamiltonian. The post-interaction state of our system will then serve as the
foundation for analyzing the coherence properties present in the generated EM
field.

2.1 PINEM-modulated electron beams
Photon-induced near-field electron microscopy (PINEM) is a technique, in which
external photons are used to impulsively heat or excite a sample in order to follow
its nonequlibrium state evolution in real time [15]. The result of light scattering
from the surface of a nanostructure is the formation of a confined nanoscale elec-
tromagnetic near-field, which contains photons with altered dispersion relations
and eliminates the energy-momentum mismatch that is present in vacuum and
kinematically forbids the net absorption/emission of photons by electrons. The
result is an energy exchange in tens of electronvolts, which is then resolved in
energy spectra and enables both spatial and temporal imaging.

An interesting effect of this procedure is its application in dynamical manip-
ulation of the electron wavefunction by utilizing a conveniently prepared elec-
tromagnetic near-field. The subsequent propagation of an electron beam beyond
the PINEM region leads to a modulated wavepacket resembling the structure
of a frequency comb made up of different sidebands related to the number of
photons absorbed/emitted by the electron. The purpose of this section will be to
derive the expression for such a modulated electron state by adopting a simplified
second-quantization scheme resulting from a reduction of the Dirac equation to
an effective form of the Schrödinger equation, which is an approach applied in
[18], [19].

The Dirac equation describing an electron’s interaction with a nonclassical
electromagnetic field reads

[︂
mc2β + cα⃗ · (p + eA) − eϕ

]︂
Ψ = iℏ

∂Ψ
∂t

, (2.1)

where m is the electron’s rest mass, Ψ is the four-component electron spinor,
p = −iℏ∇, A and ϕ are operators corresponding to vector and scalar potential
respectively and β, α⃗ are represented through 2×2 identity 1 and Dirac matrices

24



σ⃗ as

β =
(︄
1 0
0 −1

)︄
, α⃗ =

(︄
0 σ⃗
σ⃗ 0

)︄
.

By neglecting processes involving electron-positron pair creation [19], we may
expand Ψ in terms of plane-waves of momenta ℏk and positive relativistic energies
Ek = c

√
m2c2 + ℏ2k2 located within a quantization volume V as

Ψ(r, t) = 1√
V

∑︂
k
ψk exp

[︃
i
(︃

k · r − Ekt

ℏ

)︃]︃
Ψk ,

Ψk = Ak

(︄
s

Bk(k · σ⃗) s

)︄
,

(2.2)

where Ak =
√︂

(Ek +mc2)/(2Ek), Bk = ℏc/(Ek +mc2) and s is a two-component
unit spin vector. By elementary calculations1, one can show that (2.2) satisfies
(2.1) in the absence of A and ϕ, therefore we can replace (mc2β + cα⃗ · p) by Ek

when plugging this expansion in (2.1).
Experimental results [15] justify the assumption that the incident electron

forms a wavepacket which is narrowly focused around a central value k0 and we
may then approximate Ek ≈ E0 + (ℏ2c2/E0) k0 · (k − k0), where E0 ≡ Ek0 . Due
to the form of our expansion (2.2), we may also substitute k → −i∇ within this
expression. We will further assume the conservation of initial four-component
spinor Ψk ≈ Ψk0 and hence the electron’s spin s itself, because the non-recoil
approximation concludes that replacing k by k0 in Ψk results in only a negligible
error [19].

Relativistic expressions ℏk0 = mγv and E0 = mc2γ lead to the electron
velocity vector (assumed to be constant within the non-recoil approximation)
v = ℏc2k0/E0. By elementary manipulations, it is also very straightforward to
see that spinors Ψk satisfy the relations Ψ†

kΨk = 1 and Ψ†
kα⃗Ψk = ℏck/Ek. If we

then multiply (2.1) by Ψ†
k0

from the left and put all of the above together, we
recast (2.1) into an effective Schrödinger equation for the scalar spinor amplitude
ψ(r, t), expressed by the expansion (2.2) when omitting Ψk ≈ Ψk0 , which takes
the form

[E0 − ℏv · (i∇ + k0) + ev · A − eϕ]ψ(r, t) = iℏ
∂ψ(r, t)
∂t

. (2.3)

It is important to note that despite the form of this equation, it fully incorporates
relativistic kinematics through E0 and ℏk0.

Since we assume a tightly focused electron beam, which means that the overlap
of the electron wavefunction and any charges within the light-scattering sample
is negligible, we can work in the radiation gauge [20] with ϕ = 0 and therefore
E = −∂A/∂t. The operator A can2 then be written as

A =
∑︂

j

− i

ωj

[︂
Ej(r)âj − E∗

j(r)â†
j

]︂
, (2.4)

1Only the identity (k · σ⃗)2 = k21 is required.
2An extensive description of the EM field quantization will be the topic of the following

section, now we just adapt the expressions from [20].
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where Ej(r) denotes electric-field eigenfunction associated to the optical bosonic
mode (contained by the electromagnetic near-field) with frequency ωj and cre-
ation and annihilation operators, â†

j and âj respectively. However, we will consider
a simplification, in which the sample response is modeled to be dominated by a
single bosonic optical mode at frequency ω0 corresponding to an electric-field dis-
tribution E0(r). This approximation then allows, after accounting for the energy
stored within the single optical mode, for the formulation of (2.3) as

iℏ
∂|ψ(r, t)⟩

∂t
= (Ĥ0 + ĤI)|ψ(r, t)⟩, with

Ĥ0 = ℏω0â
†
0â0 + E0 − ℏv · (i∇ + k0) ,

ĤI = − ie

ω0
v ·

[︂
E0(r)â0 − E∗

0(r)â†
0

]︂
,

(2.5)

where |ψ(r, t)⟩ is a state describing both the electron and the optical mode con-
tained by the sample. We will consider an initial electron wavefunction of the
form

ψinc(r, t) = ei(k0·r− E0t

ℏ )ϕinc(r − vt) ,

with ϕinc(r − vt) being a slowly varying function of the moving frame coordinate
r−vt (its derivatives may be neglected). This initial condition and the assumption
that v = vez permit us to find that the solution to (2.5) can be written as

|ψ(r, t)⟩ = ψinc(r, t)
∞∑︂

l=−∞

∞∑︂
n=0

eiω0[l(z/v−t)−nt]fn
l (r)|n⟩ , (2.6)

where |n⟩ denotes the Fock state with n excitations contained by the bosonic
optical mode, the sum over l corresponds to the sum over electron energy side-
bands associated with l energy quanta being absorbed by the electron (l < 0 then
denotes electron energy loss) and fn

l (r) are the amplitudes for such states. By
inserting (2.6) into (2.5) and neglecting ∂ϕinc/∂r′, we see that (2.6) is in fact a
solution, provided that the equations

∂fn
l (r)
∂z

=
√
n g∗(r)fn−1

l+1 (r) −
√
n+ 1 g(r)fn+1

l−1 (r) , (2.7)

with g(r) = e/(ℏω0) exp [−i(ω0z/v)] E0z(r), are satisfied. An important conse-
quence of (2.7) is that n + l is conserved during the interaction, which means
that each initial population pn of state |n⟩ can be treated separately. The depen-
dence of fn

l on perpendicular coordinates R = (x, y) stems from E0z and even
though it plays a crucial role in the determination of orbital momentum transfer
and could be used to calculate electron beam aberrations, we will neglect it alto-
gether, since the detailed form of E0z will not influence the asymptotic electron
wavefunction, if those effects contribution is negligible3.

Since we are interested only in the electron spectrum far beyond the PINEM
region, it is convenient to initiate fn

l (−∞) = √
pn δl0, the interpretation of which

is that before the interaction, the electron has not yet absorbed/emitted any
photons (l = 0) and |n⟩ has been populated with the probability pn. After the
interaction, the probability that the electron changed its energy by lℏω0 then

3For a more detailed discussion, we may refer to [15], [18], [19].
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reduces to Pl = ∑︁∞
n=max{0,−l} |fn

l (∞)|2. Equation (2.7) is (after disregarding the
R-dependence) equivalent to the Schrödinger equation for a classically driven
quantum harmonic oscillator and an exact solution is therefore obtainable (solu-
tions can be found in [18], [19]) in a closed form

fn
l (z) = √

pn+le
iχ(z)

√︂
n!(n+ l)!(−β0(z))le− |β0(z)|2

2

n∑︂
n′=max{0,−l}

(−|β0(z)|2)n′

n′!(n′ + l)!(n− n′)! ,

(2.8)
where χ is a global phase irrelevant to the electron spectrum and β0 is a dimen-
sionless coupling coefficient defined as β0(z) =

∫︁ z
−∞ g(z′)dz′. Since the field E0z is

assumed to have evanescent character, we are permitted to separate the spatial
scale on which PINEM modulation takes place and use fn

l ≡ fn
l (∞) within (2.6).

Probability Pl that the electron underwent a net exchange of l photons is
therefore only dependent on the initial population pn of the optical mode excita-
tions and a coupling coefficient β0 ≡ β0(∞). We may consider various statistics
for pn (e.g. a pure Fock state or thermal excitations [19]), but we are interested
in excitations that result from coherent external illumination. In such conditions,
it can be shown4 [21] that the initial populations follow a Poissonian distribution
pn = e−µµn/n!, where µ = ∑︁∞

n=0 npn is the mean number of excitations. Figure
2.1 depicts the dependence of electron sideband populations Pl (or occupancy
probabilities), for different µ, on the coupling parameter β0. It can be seen from
the spectra that for lower µ, the electron energy losses prevail, since the electron
cannot possibly absorb more photons than there are stored within the bosonic
optical mode. With increasing µ, the spectra are progressively more and more
symmetrical.

To extract only information about the electron states from (2.6), we can trace
out degrees of freedom related to the bosonic excitation from a pure joint-state
density matrix

⟨r|ρ̂e(t)|r′⟩ =
∞∑︂

n=0
⟨n|ψ(r, t)⟩⟨ψ(r′, t)|n⟩ =

∞∑︂
n=0

ψn(r, t)ψ∗
n(r′, t) , (2.9)

where ρ̂e(t) is the time-dependent electron density operator and

ψn(r, t) = ϕinc(r − vt)
∞∑︂

l=−∞
exp

[︄
iz

(︄
k0 + lω0

v

)︄
− it

ℏ
(E0 + lℏω0)

]︄
fn

l .

It is worthwhile to note that ρ̂e(t) admits the form of a pure-state density operator,
if we assume a general smooth optical mode population strongly peaked around
µ ≫ 1 and consider only |l| ≪ n, after which one can separate the dependence of
fn

l . This subsequently allows for complete splitting of light and electron degrees
of freedom and transforms (2.6) into (for details, see [18])

|ψ(r, t)⟩ =
[︄ ∞∑︂

n=0

√
pne

−inω0t|n⟩
]︄ ⎡⎣ψinc(r, t)

∞∑︂
l=−∞

ei(χ+φl(z−vt))Jl(2
√
µ|β0|)

⎤⎦ ,
where φl(z − vt) = lArg{−β0} + lω0(z/v − t). Tracing of the joint-state density
operator in this form results in a pure-state electron density matrix with the

4This result stems from the average occupation number of a Fock state |n⟩ in a single-
frequency quantum harmonic oscillator described by a coherent state.
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Figure 2.1: Dependencies of asymptotic electron energy spectra after the PINEM
modulation described by an interaction of a single bosonic optical mode with the
incident electron. The optical mode of frequency ω0 is assumed to be initially
populated due to coherent external illumination, resulting in Poissonian distri-
bution of Fock states with a mean value µ, and its coupling with the electron is
described through a dimensionless parameter β0.

state being represented by the wavefunction contained in the second brackets,
which is a well-known expression for a PINEM modulated electron calculated
with classical light [15].

However, we believe that a keener insight into the transfer of optical coherence
might be obtained, if we work with the entire electron density matrix. We will
therefore attempt to formulate a theoretical framework for its calculation that
would allow us to retain the impurity of electron state, in order to describe an
interaction regime with a finite number of optical excitations performing the
modulation. In this regime, we should be able to distinguish between an initial
population resulting from coherent external illumination and a pure Fock state
|µ⟩, which the limit presented above ultimately erases5. But first, we need to cover
the procedure of electromagnetic field quantization in the presence of macroscopic
media.

5We will also be able to examine other initial populations, e.g. thermal excitations created
by chaotic illumination.
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2.2 Overview of QED formalism in linearly re-
sponding media

Quantization of the free electromagnetic field was first formulated by Heisenberg,
Jordan and Born in 1926. The theory of QED predicted a fluctuating vacuum
field existing even in the absence of any sources and the well-estabilished formal-
ism permitted the study of a vast range of light-matter interactions. However,
the standard quantization procedure needed to be altered in order to include ab-
sorbing and dispersing bodies, which was achieved through quantization schemes
for medium-assisted electromagnetic fields. In this section, we will point out
the most important aspects of this alteration in comparison with the standard
procedure.

Quantization of the electromagnetic field in vacuum is standardly done in
one of two ways, either through a postulated Lagrangian satisfying relativistic
covariance or by mode expansion of a general solution to the Maxwell equations.
The latter is considerably more transparent (in its connection to classical theory)
and a procedure starting with Maxwell equations is usually utilized also in the
formulation of macroscopic QED. We will therefore comment on this approach.

2.2.1 Quantization procedure in vacuum
In vacuum, the Coulomb gauge comes also with zero scalar potential and there-
fore the homogeneous wave equation □A(r, t) = 0 for the vector potential A
encompasses all information on both electric and magnetic field. The solutions
to this equation permit separation of variables through mode decomposition

A(r, t) =
∑︂

κ

Aκ(r)uκ(t) ,

where the sum turns into an integral for mode continuum. The modes Aκ(r)
are therefore determined as eigenfunctions to the Hermitian operator −∆ corre-
sponding to eigenvalues conveniently parametrized as ω2

κ/c
2. As a consequence,

they form a complete orthogonal basis, albeit in only a distributional sense. The
individual solutions can be written in a form of plane waves

Aκ(r) = Nκeα(kκ)eikκ·r ,

where wavevectors obey dispersion relations k2
κ = ω2

κ/c
2 and allow for two orthog-

onal polarizations satisfying eα(kκ) · e∗
α′(kκ) = δαα′ and eα(kκ) · kκ = 0, which

are the consequences of imposed gauge. The orthogonality and completeness of
Aκ can be summarized as∫︂

d3r Aκ(r) · A∗
κ′(r) = (2π)3N 2

κ δ
(3)(kκ − kκ′)δαα′ ,∑︂

κ

Aκ(r) ⊗ A∗
κ(r′) =

∑︂
κ

N 2
κ eα(kκ) ⊗ e∗

α(kκ) eikκ·(r−r′) .

The mode decomposition in infinite vacuum therefore means ∑︁κ → ∑︁2
α=1

∫︁
d3k

and a suitable normalization is Nk = (2π)−3/2, which changes the right-hand side
of the second condition to δ⊥(r − r′) ≡ δ(3)(r − r′)1⊥, with 1⊥ being identity
on a space spanned by polarization vectors. The time-dependent functions uκ(t)
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satisfy classical equations for linear harmonic oscillators with frequencies ωκ and
are therefore expressed as

uκ(t) = e±iωκtuκ(0) ≡ e±iωκtuκ .

By further imposing the conditions ukα(t) = u∗
−kα(t) and6 eα(−k) = e∗

α(k), we
can write the decomposition of real vector potential

A(r, t) =
2∑︂

α=1

∫︂ d3k
(2π) 3

2

[︂
eα(k)ukαe

i(k·r−ωt) + e∗
α(k)u∗

kαe
−i(k·r−ωt)

]︂
. (2.10)

The vector potential can then be used to write the field’s Hamiltonian

H =1
2

∫︂
d3r

[︄
ε0E2(r, t) + 1

µ0
B2(r, t)

]︄
=

1
2

∫︂
d3r

⎡⎣ε0

(︄
∂A(r, t)

∂t

)︄2

+ 1
µ0

(∇ × A(r, t))2

⎤⎦ =

2ε0

2∑︂
α=1

∫︂
d3kω2|ukα|2 ,

where we just substituted from (2.10), integrated over d3r, which ultimately
cancelled time-dependence, and utilized the identities eα(k) · e∗

α′(k) = δαα′ and
(k × eα(k)) · (k × e∗

α′(k) = k2eα(k) · e∗
α′(k). By further defining

qkα = √
ε0(ukα + u∗

kα) ,
pkα = −iω

√
ε0(ukα − u∗

kα) ,

we turn the Hamiltonian of the classical electromagnetic field into the familiar
form

H = 1
2

2∑︂
α=1

∫︂
d3k(p2

kα + ω2q2
kα) , (2.11)

which represents an infinite set of uncoupled harmonic oscillators. The functions
qkα, pkα can be therefore treated as canonical coordinates and momenta, respec-
tively. In the context of classical mechanics, they then obey the Poisson bracket
relation

{qkα, pk′α′} = δ(3)(k − k′)δαα′ ,

which is the cornerstone for performing quantization and formulating canonical
commutators

qkα → q̂kα , pkα → p̂kα , [q̂kα, p̂k′α′ ] = iℏδ(3)(k − k′)δαα′ .

We then circle back to complex functions resembling the former mode ampli-
tudes and define operators

âα(k) =
√︃
ω

2ℏ

(︃
q̂kα + i

ω
p̂kα

)︃
, â†

α(k) =
√︃
ω

2ℏ

(︃
q̂kα − i

ω
p̂kα

)︃
, (2.12)

6Complex valued polarization vectors are permitted in order to also include circular polar-
ization.
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for which the following commutation relations arise

[âα(k), âα′(k′)] =
[︂
â†

α(k), â†
α′(k′)

]︂
= 0 ,

[︂
âα(k), â†

α′(k′)
]︂

= δ(3)(k − k′)δαα′ .

(2.13)
By tracing back the quantization procedure to (2.10) and estabilishing a con-

nection between â, â† and u, u∗, we can now write the operator for vector poten-
tial Â in the Schrödinger picture as

Â(r) =
2∑︂

α=1

∫︂ d3k
(2π) 3

2

√︄
ℏ

2ε0ω

[︂
eα(k)âα(k)eik·r + e∗

α(k)â†
α(k)e−ik·r

]︂
. (2.14)

This plane-wave expansion represents a special case of a general mode expansion

Â(r) =
∑︂

κ

[︂
Aκ(r)âκ + A∗

κ(r)â†
κ

]︂
, (2.15)

with a sole non-zero commutator
[︂
âκ, â

†
κ′

]︂
= δκκ′ . Various problems of different

geometries might encourage other specific forms of this general decomposition,
e.g. an expansion of A(r) into spherical or cylindrical Bessel functions. Their
common feature is the familiar Hamiltonian operator

Ĥ =
∑︂

κ

ℏωκ

(︃
â†

κâκ + 1
2

)︃
,

which one can derive from (2.11) by using (2.12) and (2.13) for the plane-wave
expansion.

The expansion (2.15) enables us to also determine the electric and magnetic
field operators

Ê(r) = i
∑︂

κ

ωκ

[︂
Aκ(r)âκ − A∗

κ(r)â†
κ

]︂
,

B̂(r) =
∑︂

κ

[︂
∇ × Aκ(r)âκ + ∇ × A∗

κ(r)â†
κ

]︂
.

By combining these expressions, we can evaluate[︂
Ê(r), B̂(r′)

]︂
= i

∑︂
κ

ωκ {Aκ(r) ⊗ [∇′ × A∗
κ(r′)] + A∗

κ(r) ⊗ [∇′ × Aκ(r′)]} ,

where we have only utilized the commutators of â, â† and used notation ∇′ in
order to emphasize its acting on r′ coordinates. The operator (∇′×) can be there-
fore taken out of the expansion and by plugging in the plane-wave decomposition
(2.14) along with the completeness of Aκ(r) basis (discussed earlier in this sec-
tion), we arrive at the fundamental (equal-time) commutation relation for the
electromagnetic field operators

[︂
Ê(r), B̂(r′)

]︂
= −iℏ

ε0
∇ × δ⊥(r − r′) , (2.16)

where the change of sign results from ∇′ × δ⊥(r − r′) = −∇ × δ⊥(r − r′).
This particular commutator is the reason for such a prolonged discussion of

a long-known quantization scheme. It reveals the bosonic nature of excitations,

31



photons, within the electromagnetic field and shows the mutual algebraic proper-
ties of electric and magnetic field operators. However, operators Ê and B̂ describe
only the electromagnetic degrees of freedom and when one wants to formulate a
theory with medium-assisted fields, it requires the usage of electric displacement
field (D̂) and magnetizing field (Ĥ). In free space, their connection to Ê and B̂
is trivial, but in general, they contain both electromagnetic and matter degrees
of freedom. Nevertheless, we will see that in the context of macroscopic QED,
one can proceed with the quantization scheme in a way that ultimately satisfies
(2.16), which is regarded as the fundamental building block for such a theory.

2.2.2 Quantization of medium-assisted EM field
In the formulation of macroscopic QED, we will mostly rely on general results
and widely used procedures, examples of which can be found in [22], [23]. Some
of the highly technical results will be just commented upon, since the main goal
is to understand the conceptual differences from the vacuum QED. Significant
attention will be paid to media described by local and isotropic dielectric func-
tions, because we ultimately want to address the situation analytically solved in
the first chapter. It is also worth noting that a naive attempt at quantization
through plane-wave mode expansion, like in the vacuum case, fails. The reason
is that simply changing k →

√︂
ε(ω)k erases the completeness and orthogonality

of the plane-wave basis, since refractive index is a complex-valued quantity in
a general absorbing medium and the corresponding plane-waves are ultimately
damped and therefore cannot be used.

One of the correct ways is to start from constitutive relations

D(r, t) = ε0E(r, t) + P(r, t) , H(r, t) = 1
µ0

B(r, t) − M(r, t) ,

where P(r, t) denotes the polarization field and M(r, t) the magnetization field.
If we assume the medium response to be linear and local, we can write the most
general expressions relating the fields, while retaining causality and following the
linear fluctuation-dissipation theorem [22] as

P(r, t) = ε0

∫︂ ∞

0
dτχe(r, τ)E(r, t− τ) + PN(r, t) ,

M(r, t) = 1
µ0

∫︂ ∞

0
dτχm(r, τ)B(r, t− τ) + MN(r, t) ,

with χe(r, t), χm(r, t) denoting electric and magnetic susceptibilities, respec-
tively and PN(r, t), MN(r, t) representing noise polarization and magnetization
resulting from absorption, respectively.

These noise responses are the consequence of the fluctuation-dissipation theo-
rem which states that the linear response of a given system to an external pertur-
bation is expressed in terms of fluctuation properties of the system in equilibrium.
This theorem is usually formulated in the form of a stochastic equation describing
fluctuations by adding a Langevin noise term, which in our context is due to ab-
sorption itself. To put it very bluntly, Langevin noise sources, introduced above
by PN , MN , can be understood as bridges between the classical and quantum
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regimes in macroscopic systems in a sense that they effectively incorporate quan-
tum fluctuations into the classical equations of motion and they represent the
stochastic forces arising from the quantum nature of the electromagnetic field.
They are therefore ensuring consistency between descriptions and accounting for
dissipation processes in materials.

If we limit further discussion to media without inherent magnetic response
(χm = 0) and reintroduce the dielectric function

ε(r, ω) = 1 +
∫︂ ∞

0
dτχe(r, τ)eiωτ ,

we can write down the macroscopic Maxwell equations

∇ · B(r, ω) = 0 ,
∇ × E(r, ω) = iωB(r, ω) ,

ε0∇ · [ε(r, ω)E(r, ω)] = ρN(r, ω) ,

∇ × B(r, ω) + iω

c2 ε(r, ω)E(r, ω) = µ0jN(r, ω) .

(2.17)

By using notation

ρN(r, ω) = −∇ · PN(r, ω) ,
jN(r, ω) = −iωPN(r, ω) + ∇ × MN(r, ω) ,

it is made clear that even though no free charges or currents have been put into
consideration, the noise sources themselves act as a driving force for electromag-
netic field in absorbing media and it is also evident that they obey the standard
continuity equation.

In a more general case concerning nonisotropic media with χm ̸= 0, we would
combine the analogies of the second and fourth equation in (2.17) and write down

∇ × ∇ × E(r, ω) − ω2

c2 E(r, ω) = iωµ0j(r, ω) , with

j(r, ω) = jN(r, ω) +
∫︂
d3r′ Q(r, r′, ω) · E(r′, ω) ,

where Q(r, r′, ω) denotes the general complex conductivity tensor and its real part
σ(r, r′, ω) ≡ ℜ{Q(r, r′, ω)} describes the dissipation of electromagnetic energy.
This can be simply seen from the equations (2.17) for media under consideration,
where the mentioned tensors simplify to

Q(r, r′, ω) = −iωε0(ε(r′, ω) − 1)δ(3)(r − r′)1 ,
σ(r, r′, ω) = ωε0ℑ{ε(r′, ω)} δ(3)(r − r′)1 .

(2.18)

The entire system (2.17) can therefore be reduced into

∇ × ∇ × E(r, ω) − ω2

c2 ε(r, ω)E(r, ω) = iωµ0jN(r, ω)

and we can understand B to be defined through the second Maxwell equation in
(2.17) and ρN to be determined by jN due to the continuity equation. If we recall
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the electromagnetic Green tensor G(r, r′, ω), defined by (1.11), we see that the
electric field can be uniquely calculated solely from the noise current as

E(r, ω) = iµ0ω
∫︂
d3r G(r, r′, ω) · jN(r′, ω) .

This expression is crucial, when it comes to quantization, since we know that
the electromagnetic Green tensor encompasses the structure of Maxwell equations
as well as all the information on geometry and macroscopic response properties
of considered dielectrics. In order to quantize the theory, the noise current itself
will be therefore regarded as an operator and then

Ê(r, ω) = iµ0ω
∫︂
d3r′ G(r, r′, ω) · ĵN(r′, ω) ,

B̂(r, ω) = µ0∇ ×
∫︂
d3r′ G(r, r′, ω) · ĵN(r′, ω) .

(2.19)

This approach is quite intuitive, since as we commented earlier, the noise sources
originate from quantum fluctuations related to dissipation. There is still the
question of prescribing suitable commutators for ĵN and it is done in a way that
consequently ensures the validity of (2.16). First, we write the total electromag-
netic field operators in the Schrödinger picure as

Ê(r) =
∫︂ ∞

0
dω Ê(r, ω) + H.c. ,

B̂(r) =
∫︂ ∞

0
dω B̂(r, ω) + H.c. ,

(2.20)

where H.c. denotes Hermitian conjugate.
By first postulating (motivated by creation and annihilation operators (2.13))

commutation relations[︂
ĵN(r, ω), ĵN(r′, ω′)

]︂
= 0 =

[︃
ĵ
†
N(r, ω), ĵ

†
N(r′, ω′)

]︃
,

we can simplify the fundamental equal-time commutator to assume the form [22][︂
Ê(r), B̂(r′)

]︂
= −iµ2

0

∫︂ ∞

0
dω ω

∫︂ ∞

0
dω′

∫︂
d3ξ

∫︂
d3ξ′{︃

G(r, ξ, ω) ·
[︃
ĵN(ξ, ω), ĵ

†
N(ξ′, ω′)

]︃
· G∗(ξ′, r′, ω′)+

G∗(r, ξ, ω) ·
[︃
ĵ
†
N(ξ, ω), ĵN(ξ′, ω′)

]︃
· G(ξ′, r′, ω′)

}︃
× ∇

′⃗
,

with the left-arrow of ∇
′⃗
emphasizing its acting on r′ from the right. This expres-

sion comes directly from definitions (2.19), (2.20) by recalling the reciprocity of
G(r, r′, ω). Prescription of the remaining commutator is motivated by a general
integral identity satisfied by the electromagnetic Green tensor,

µ0ω
∫︂
d3ξ

∫︂
d3ξ′ G(r, ξ, ω) · σ(ξ, ξ′, ω) · G∗(ξ′, r′, ω) = ℑ{G(r, r′, ω)} . (2.21)

Detailed derivations of this identity can be found in [22], [23]. We can then see
that by introducing7 the last commutation relation as

7It should be noted that this relation is not just mathematically convenient. It could have
been also derived solely from the fluctuation-dissipation theorem.

34



[︃
ĵN(r, ω), ĵ

†
N(r′, ω′)

]︃
= ℏω

π
δ(ω − ω′)σ(r, r′, ω) , (2.22)

the fundamental equal-time commutator reduces to
[︂
Ê(r), B̂(r′)

]︂
= ℏµ0

iπ

∫︂ ∞

−∞
dω ωℑ{G(r, r′, ω)} × ∇

′⃗
. (2.23)

The remaining integration is then done in the complex ω-plane over a contour
that includes an infinite semi-circle in the upper half-plane, where G is known
to be analytical, and then the real axis with an infinitesimal semi-circular cutout
around the origin, where the Green tensor is known to be singular [9]. Integration
over the large semi-circle can be done quite simply, since (1.11) shows that for
ε(r, ω) approaching 1 at |ω| → ∞, G → −(c2/ω2)δ(3)(r − r′)1. Its contribution
therefore turns (2.23) exactly into (2.16) after properly handling the constants.
Contribution of the infinitesimal semi-circle has been proven [22] to result in a
tensor related to purely longitudinal electromagnetic field, which was then shown
(using the projection into longitudinal waves) to vanish after performing the sub-
sequent curl. We can then see that commutator of the form (2.22) ultimately
leads to the satisfaction of (2.16) and hence an approach consistent with the
quantization scheme in vacuum.

If we turn back to our specific simplification of local and isotropic dielectrics,
expressed by (2.18), we see that a simple renormalization of the form

ĵN(r, ω) =
√︄
ℏε0

π
ℑ{ε(r, ω)} ω f̂(r, ω)

can be performed. The vector field operators f̂(r, ω) then satisfies the familiar
commutators of a bosonic creation and annihilation operators[︃

f̂(r, ω), f̂
†
(r′, ω′)

]︃
= δ(3)(r − r′)δ(ω − ω′)1 (2.24)

and the electric field can be calculated as

Ê(r, ω) = i

√︄
ℏ
πε0

ω2

c2

∫︂
d3r′

√︂
ℑ{ε(r′, ω)} G(r, r′, ω) · f̂(r′, ω) . (2.25)

In order to finalize the quantization procedure, we need to ensure that in the
Heisenberg picture, operators f̂ , f̂

†
evolve in time with Fourier exponential fac-

tors e−iωt and eiωt respectively. Time evolution of any operator Ô is described
through the equation −iℏ ∂tÔ(t) =

[︂
Ĥ, Ô(t)

]︂
and we therefore need to prescribe

a Hamiltonian satisfying [︂
Ĥ, f̂(r, ω)

]︂
= −ℏω f̂(r, ω) ,[︃

Ĥ, f̂
†
(r, ω)

]︃
= ℏω f̂

†
(r, ω) .

These constraints, together with (2.24), show that we are looking for a quadratic
Hamiltonian and an intuitive choice would be

Ĥ =
∫︂ ∞

0
dω ℏω

∫︂
d3r f̂

†
(r, ω) · f̂(r, ω) . (2.26)
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We can verify that it is indeed the right Hamiltonian satisfying both constraints
mentioned above and can be shown to be unique up to a constant [23].

The described procedure shows that the quantization of medium-assisted fields
also leads to a set of creation and annihilation operators of a bosonic nature.
The difference here is that f̂ , f̂

†
collectively excite not only the field, but also the

dielectric matter (polaritons). Such an approach can then be used to describe
light-matter interactions in macroscopic environments with the input being only
an experimentally accessible linear-response function (permittivity or refractive
index). We will now proceed, equipped with this formalism, to study the quantum
nature of coherent CL.

2.3 Quantum statistics of CL photons
This section will be devoted to the theoretical study of statistical properties
inherent to the quantum light, emitted as a consequence of an electron-sample
interaction. We will first prescribe the initial state of our system consisting of the
modulated electron and the medium-assisted EM field and solve its evolution by
adapting a minimal coupling interaction Hamiltonian. The post-interaction state
will be then utilized for the statistical description of emitted photons, leading
towards a simple local quantity related to the coherence transfer mediated by the
modulated electron beam.

2.3.1 Initial state of the system
We will assume that the approaching electron beam was prepared through a
single-mode PINEM modulation, which was discussed in the beginning of this
chapter. Such an electron is described by the mixed state density matrix (2.9).
In the expression for individual states ψn, contained within the mixture, we can
recognize the energies El = E0 + lℏω0 and first-order expansions of wavevectors
kl ≈ k0 + lω0/v resulting from a net exchange of l photons. Since we assume
the PINEM region to be at large distance from the CL emitting sample, we need
to apply at least a second order correction from the full relativistic wavevector
expression

ℏkl =
√︄
E2

l

c2 −m2
ec

2 ≈ ℏk0 + lℏω0

v
− 2πℏl2

zT

,

which is the result of an expansion at lℏω0/E0 ≪ 1 and zT = 4πmev
3γ3/(ℏω2

0) is
the Talbot distance [18]. To gain perspective, for β = 0.6 electrons (127.75 keV)
and ℏω0 = 2.5 eV, one obtains zT ≈ 86 mm, which is a large distance with respect
to the range of evanescent PINEM fields.

Furthermore, we assumed in the first section of this chapter that the incident
electron’s spatial profile could be divided into

ϕinc(r − vt) = ϕ⊥(R)ϕ∥(z − vt)

and that ϕ⊥ described a narrowly focused beam centered at R0, which remained
unchanged8 throughout the modulation. This assumption will allow us to treat

8The term ”unchanged” does not imply that the electron beam remains focused on its own,

36



perpendicular degrees of freedom separately and consider the modulated electron
wavefunctions

⟨r|ψn(t)⟩ = ⟨R|ϕ⊥⟩⟨z|ψ̃n(t)⟩ = ϕ⊥(R)ϕ∥(z − vt)
∞∑︂

l=−∞
fn

l e
i(klz−Elt/ℏ) .

In order to better manipulate with |ψ̃n(t)⟩ states, we will expand them in terms
of plane waves as

|ψ̃n(t)⟩ =
∑︂

k

⟨k|ψ̃n(t)⟩|k⟩ = 1√
L

∑︂
k

∞∑︂
l=−∞

fn
l e

−iElt/ℏ
∫︂
dz ϕ∥(z − vt)ei(kl−k)z|k⟩ =

1√
L

∑︂
k

∞∑︂
l=−∞

fn
l e

−iElt/ℏei(kl−k)vt
∫︂
dz′ ϕ∥(z′)ei(kl−k)z′|k⟩ ≈

∞∑︂
l=−∞

fn
l e

−2πil2vt/zT −iElt/ℏ|k0 + lω0/v⟩ ,

where the transition from the first to the second line is through a simple substi-
tution z′ = z−vt. However, the subsequent approximation involved disregarding
the shape of longitudinal electron beam envelope by assuming ϕ∥(z′) = 1/

√
L as

well as considering the interaction regions (in case of both PINEM and CL) to be
smaller than the Talbot distance (z′ ≪ zT ). When substituting for the expansion
of kl, we can therefore use only the first-order within the integral.

In order to obtain an initial density operator for the description of an electron-
sample interaction resulting in CL, we need to identify

ρ̂e(tCL → −∞) ≡ ρ̂e(tPINEM → ∞) ,

which means that we need to connect the future asymptotics of the PINEM
modulation to the past asymptotics of the CL interaction. This can be done
by replacing vt in the above expression for |ψ̃n(t)⟩ by d, the distance travelled
from the PINEM region in the limit t → ∞, therefore the approximate distance
between the PINEM and CL samples. The initial state of our system, which
consists of a modulated electron and a medium-assited electromagnetic field can
be then described by a density operator

ρ̂inc
e−f ≡ ρ̂e−f (t → −∞) = ρ̂⊥ ⊗

[︂
ρ̂∥ ⊗ ρ̂f

]︂inc
,

ρ̂⊥ = |ϕ⊥⟩⟨ϕ⊥| ,
[︂
ρ̂∥ ⊗ ρ̂f

]︂inc
=

∞∑︂
n=0

|ψ̃n, 0⟩⟨ψ̃n, 0| ,

|ψ̃n, 0⟩ =
⎛⎝ ∞∑︂

l=−∞
fn

l e
−2πil2d/zT −iφl |k0 + lω0/v⟩

⎞⎠⊗ |0⟩f ,

(2.27)

with |0⟩f denoting the electromagnetic vacuum and φl ≡ limt→−∞ Elt/ℏ denoting
a phase factor that will vanish when we transition to the interaction picture (see
below). We can also verify that from the relation9 ∑︁

n,l |fn
l |2 = 1, it can be seen

that indeed Tr ρ̂∥ = 1, which is satisfied automatically for perpendicular electron
degrees of freedom (ρ̂⊥) and also for the initial electromagnetic vacuum.

but we want to emphasize the fact that current experimental setups allow for refocusing in the
perpendicular direction, while maintaining the longitudinal profile.

9This stems from the normalization of PINEM modulated electron states. A more detailed
commentary can be found in [18].
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2.3.2 S-operator derivation
To describe the evolution of (2.27), we need to formulate the Hamiltonian of
our system. We have already commented upon the derivation of a free-electron
Hamiltonian encompassing relativistic kinematics in the first section of this chap-
ter. In the formalism of second quantization, we can rewrite the same expression
as (see (2.5))

Ĥ
(e)
0 =

∑︂
k

[E0 + ℏv · (k − k0)] ĉ†
kĉk , (2.28)

with ĉ†
k, ĉk denoting fermionic creation and annihilation operators, respectively.

The quantization of medium-assisted electromagnetic field was covered in the
previous section and we therefore already know that the non-interacting EM field
Hamiltonian Ĥ

(f)
0 is given by (2.26).

The electron-field interaction Hamiltonian can be directly written through
minimal coupling approach as [24]

ĤI = −
∫︂
d3r ĵ(r) · Â(r) , (2.29)

where ĵ(r) denotes the current density operator associated with an electron and
Â(r) is the vector potential operator. In a gauge with zero scalar potential, we
can immediately write Â(r) as

Â(r) =
∫︂ ∞

0
dω Â(r, ω) + H.c. ,

Â(r, ω) =
√︄

ℏ
πε0

ω

c2

∫︂
d3r′

√︂
ℑ{ε(r′, ω)} G(r, r′, ω) · f̂(r′, ω) ,

(2.30)

which is a consequence of (2.20) and (2.25). The current density operator in non-
recoil approximation can be determined as ĵ(r) = −evΨ̂

†
(r)Ψ̂(r), where Ψ̂

†
, Ψ̂

are electron field operators, which correspond to the coordinate representation
of ĉ†

k, ĉk and can therefore be written as Ψ̂(r) = ∑︁
k L

−3/2 exp(ik · r)ĉk. We can
then prescribe the current density operator as

ĵ(r) = −ev
L3

∑︂
k, q

eiq·r ĉ†
kĉk+q . (2.31)

Time evolution of the proposed system turns out to be analytically solvable
within the interaction picture, where states and operators satisfy

|Ψ(I)(t)⟩ = eiĤ
(S)
0 t/ℏ|Ψ(S)(t)⟩ ,

Â
(I)(t) = eiĤ

(S)
0 t/ℏÂ

(S)
e−iĤ

(S)
0 t/ℏ ,

with superscripts S and I emphasizing the Schrödinger and interaction pictures10,
respectively. Time evolution in the interaction picture is then determined through
the S-operator, which can be compactly written as

Ŝ(tf , ti) = T exp
[︃
− i

ℏ

∫︂ tf

ti

dt′ ĤI(t′)
]︃
, (2.32)

10We will not need to distinguish between them by using indices, since in our case both
non-interacting Hamiltonian and also ĤI are time-independent, so ĤI(t) will always imply
interaction picture.
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where T denotes time-ordering of the terms within the exponential Taylor series.
Before we address the derivation of ĤI(t), we should note that transition of the
initial density operator (2.27) from Schrödinger to interaction picture only erases
the phases φl, because it holds that

Ĥ
(e)
0 |k⊥, k0 + lω0/v⟩ = El|k⊥, k0 + lω0/v⟩ .

The calculation of interaction picture Hamiltonian ĤI(t) requires us to eval-
uate

ĤI(t) = −
∫︂
d3r

(︂
eiĤ0t/ℏĵ(r)e−iĤ0t/ℏ

)︂
·
(︂
eiĤ0t/ℏÂ(r)e−iĤ0t/ℏ

)︂
.

Obtaining Â(r, t) is very straightforward, because the non-interacting field Hamil-
tonian (the only part of Ĥ0, which does not commute with Â) was constructed
to ensure

[︃
Ĥ

(f)
0 , f̂(r, ω)

]︃
= −ℏωf̂(r, ω) and both Â(r, ω) and its Hermitian con-

jugate are linear in f̂ , f̂
†
, respectively. We can therefore conclude that

Â(r, t) =
∫︂ ∞

0
dω Â(r, ω)e−iωt + H.c. (2.33)

In order to determine ĵ(r, t), we first need to recall the anticommutative relations
satisfied by fermionic creation and annihilation operators

{ĉk, ĉk′} =
{︂
ĉ†

k, ĉ
†
k′

}︂
= 0 ,

{︂
ĉk, ĉ

†
k′

}︂
= δk,k′ ,

where
{︂
Â, B̂

}︂
= ÂB̂+B̂Â. These anticommutators can then be used to calculate

the following commutative relation[︂
ĉ†

k′ ĉk′ , ĉ†
kĉk+q

]︂
= ĉ†

kĉk+q(δk,k′ − δk+q,k′) ,

which then gives us[︃
Ĥ

(e)
0 , ĵ(r)

]︃
= −ev

L3

∑︂
k′,k,q

eiq·r (E0 + ℏv · (k′ − k0))
[︂
ĉ†

k′ ĉk′ , ĉ†
kĉk+q

]︂
= −ev

L3

∑︂
k, q

(−ℏv · q)eiq·r ĉ†
kĉk+q .

The commutator with Ĥ(e)
0 therefore does not affect the operator structure within

ĵ(r), but it just introduces a factor of (−ℏv · q). This allows us to conclude that

ĵ(r, t) = −ev
L3

∑︂
k, q

eiq·(r−vt) ĉ†
kĉk+q . (2.34)

Now that we have ĤI(t), it can be used to determine the S-operator (2.32).
We will utilize a technique from [24] and discretize the time interval ⟨ti, tf⟩ into
N segments with lengths ∆t = (tf − ti)/N . If we denote the midpoint of each
segment as tk = ti + (k − 1/2)∆t, where k ∈ {1, . . . N}, we can directly apply
time-ordering and rewrite

T exp
[︃
− i

ℏ

∫︂ tf

ti

dt′ ĤI(t′)
]︃

= lim
N→∞

e−i∆tĤI(tN )e−i∆tĤI(tN−1) . . . e−i∆tĤI(t1) . (2.35)
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This particular approach works very well if
[︂
ĤI(t), ĤI(t′)

]︂
is just a time depen-

dent multiple of 1̂, which turns out to be true in our problem. It can be shown
that

[︂
ĵ(r, t), ĵ(r′, t′)

]︂
= 0, because

e2v ⊗ v
L6

∑︂
k,q;k′,q′

eiq·(r−vt)eiq′·(r′−vt′)
[︂
ĉ†

kĉk+q, ĉ
†
k′ ĉk′+q′

]︂
=

e2v ⊗ v
L6

∑︂
k,q;k′,q′

eiq·(r−vt)eiq′·(r′−vt′)
(︂
ĉ†

kĉk′+q′δk′, k+q − ĉ†
k′ ĉk+qδk, k′+q′

)︂
and after canceling one of the sums in each term, we can see the subtraction
of two identical expressions (just by renaming k ↔ k′ in one of them). By
recalling the expression (2.30) for Â(r, ω), the integral identity (2.21) satisfied
by electromagnetic Green tensor and the relation (2.18) held for considered media,
we can derive[︂

Â(r, t), Â(r′, t′)
]︂

=
∫︂ ∞

0
dωe−iωt

∫︂ ∞

0
dω′eiω′t′

[︃
Â(r, ω), Â†(r′, ω′)

]︃
− H.c. =

2iℏ
πε0c2

∫︂ ∞

0
dω sin [ω(t′ − t)] ℑ{G(r, r′, ω)} .

(2.36)
The very important consequence of this is that the commutator[︂
ĤI(t), ĤI(t′)

]︂
=

2iℏ
πε0c2

∫︂
d3r

∫︂
d3r′

∫︂ ∞

0
dω sin [ω(t′ − t)] ĵ(r, t) · ℑ{G(r, r′, ω)} · ĵ(r′, t′)

(2.37)
acts only upon the electron degrees of freedom and even more crucially, since[︂
ĵ(r, t), ĵ(r′, t′)

]︂
= 0, it is indeed true that[︂

ĤI(t),
[︂
ĤI(t′), ĤI(t′′)

]︂]︂
= 0 . (2.38)

We can now return to (2.35), because due to (2.38), it can11 be rewritten as

lim
N→∞

exp

⎧⎨⎩−i∆t
ℏ

N∑︂
j=1

ĤI(tj) − ∆t2
2ℏ2

∑︂
1≤k<l≤N

[︂
ĤI(tl), ĤI(tk)

]︂⎫⎬⎭ =

exp
{︃

− i

ℏ

∫︂ tf

ti

dtĤI(t) − 1
2ℏ2

∫︂ tf

ti

dt1

∫︂ tf

ti

dt2Θ(t1 − t2)
[︂
ĤI(t1), ĤI(t2)

]︂}︃
,

where we returned back to integration and applied time-ordering of the second
term via the Heaviside theta function. Since our primary interest are going to be
the statistical properties of field quantities after the electron leaves the interaction
region, we will extend ti → −∞ and tf → ∞ and write the S-operator in the
following form

Ŝ(∞,−∞) = eiφ̂(∞,−∞)Û(∞,−∞) ,

Û(∞,−∞) = exp
{︃

− i

ℏ

∫︂ ∞

−∞
dtĤI(t)

}︃
,

φ̂(∞,−∞) = i

2ℏ2

∫︂ ∞

−∞
dt1

∫︂ ∞

−∞
dt2Θ(t1 − t2)

[︂
ĤI(t1), ĤI(t2)

]︂
.

(2.39)

11Here, we utilized the BCH formula exp
(︂
X̂
)︂

exp
(︂
Ŷ
)︂

= exp
(︂
X̂ + Ŷ +

[︂
X̂, Ŷ

]︂
/2
)︂

, which

is valid if
[︂
X̂,
[︂
X̂, Ŷ

]︂]︂
=
[︂
Ŷ ,
[︂
X̂, Ŷ

]︂]︂
= 0.
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The exact expression for φ̂ will not be necessary and it will suffice to realize its
hermiticity12 and the fact that it commutes with any operator describing a quan-
tity related only to the electromagnetic field. The post-interaction expectation
value of any such operator F̂ can then be calculated as

⟨F̂ ⟩ = Tr
(︂
ρ̂e−f (∞)F̂

)︂
= Tr

(︃
Ŝ(∞,−∞)ρ̂e−f (−∞)Ŝ†(∞,−∞)F̂

)︃
=

Tr
(︃
ρ̂e−f (−∞)Û †(∞,−∞)F̂ Û(∞,−∞)

)︃
,

(2.40)

where we also utilized the invariance of trace under circular shifts of the operators
within it.

The derivation of Û(∞,−∞) will be done in a way that takes into account the
particular properties of (2.27), namely the electron motion with constant v = vez

and the separability of parallel and perpendicular degrees of freedom, with the
latter being represented by a narrowly focused wavefunction ϕ⊥(R). This justifies
the separation of operators ĉk ≈ ĉk⊥ ĉkz and the expansion |ϕ⊥⟩ = ∑︁

k⊥ αk⊥|k⊥⟩.
We can then simplify the integral∫︂ ∞

−∞
dtĤI(t) =

∫︂ ∞

−∞
dt
∫︂
d3r

∫︂ ∞

0
dω

∑︂
k,q

ev

L3 e
iq·(r−vt)ĉ†

kĉk+qAẑ(r, ω)e−iωt + H.c. =

∫︂ ∞

0
dω

∫︂
d3re−iωz/vAẑ(r, ω)

⎛⎝ ∑︂
k⊥,q⊥

e

L2 e
iq⊥·Rĉ†

k⊥
ĉk⊥+q⊥

⎞⎠⎛⎝∑︂
kz

ĉ†
kz
ĉkz− ω

v

⎞⎠+ H.c. =
∫︂ ∞

0
dω b̂

†(ω)
∫︂
d3re−iωz/vAẑ(r, ω)ĵ⊥(R) + H.c. ,

where the transition from the first to the second line was done by separating
ĉk and carrying out the time integration resulting in L/v δqz ,−ω/v. We then also
denoted

b̂
†(ω) =

∑︂
kz

ĉ†
kz
ĉkz− ω

v
, ĵ⊥(R) =

∑︂
k⊥,q⊥

e

L2 e
iq⊥·Rĉ†

k⊥
ĉk⊥+q⊥ . (2.41)

An effective way to deal with the acting of ĵ⊥(R) is to approximate it with its
average over the perpendicular degrees of freedom and subsequently omit them
from the density operator. We can therefore calculate

⟨ϕ⊥|ĵ⊥(R)|ϕ⊥⟩ =
∑︂

k⊥,q⊥

e

L2 e
iq⊥·Rα∗

k⊥
αk⊥+q⊥ =

∑︂
k⊥,q⊥

e

L2 e
iq⊥·R

∫︂
d2λ1

∫︂
d2λ2

1
L2ϕ

∗
⊥(λ1)ϕ⊥(λ2)eik⊥·λ1e−i(k⊥+q⊥)·λ2 =

e
∫︂
d2λ1

∫︂
d2λ2ϕ

∗
⊥(λ1)ϕ⊥(λ2)⟨λ1|

⎛⎝∑︂
k⊥

|k⊥⟩⟨k⊥|

⎞⎠ |λ2⟩⟨R|
(︄∑︂

q⊥

|q⊥⟩⟨q⊥|
)︄

|λ2⟩ =

e
∫︂
d2λ1

∫︂
d2λ2ϕ

∗
⊥(λ1)ϕ⊥(λ2)δ(2)(λ1 − λ2)δ(2)(R − λ2) = e|ϕ⊥(R)|2 ,

where we only utilized the completeness of perpendicular wavevector and perpen-
dicual coordinate bases. By further defining

Â (ω) = −ie
ℏ

∫︂
d3r|ϕ⊥(R)|2e−i ωz

v Aẑ(r, ω) , (2.42)

12Which is a direct consequence of the fact that the commutator of two Hemitian operators
is anti-Hermitian and we then multiply it by i.
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we can rewrite

− i

ℏ

∫︂ ∞

−∞
dtĤI(t) =

∫︂ ∞

0
dω

[︃
b̂

†(ω)Â (ω) − b̂(ω)Â †(ω)
]︃
.

The algebraic properties of b̂, Â can be derived by the same methods that were
used to determine

[︂
ĵ(r, t), ĵ(r′, t′)

]︂
= 0 and (2.36), the results of which are

[︂
b̂(ω), b̂(ω′)

]︂
=
[︃
b̂

†(ω), b̂†(ω′)
]︃

=
[︃
b̂(ω), b̂†(ω′)

]︃
= 0 ,[︂

Â (ω), Â (ω′)
]︂

=
[︃
Â

†(ω), Â †(ω′)
]︃

= 0 ,[︃
Â (ω), Â †(ω′)

]︃
= δ(ω − ω′)4α

c

∫︂
d2R

∫︂
d2R′|ϕ⊥(R)|2|ϕ⊥(R′)|2∫︂

dz
∫︂
dz′ℑ {Gzz(R, z,R′, z′, ω)} cos

[︃
ω

v
(z − z′)

]︃
.

(2.43)

The only non-zero commutator is very familiar and by comparing it with
(1.37), we can realize its connection to the semi-classical EELS probability. The
usual procedure at this point involves the assumption |ϕ⊥(R)|2 ≈ δ(2)(R − R0),
which reduces the commutator exactly to ΓEELS(R0, ω). However, we wish to
incorporate at least the first-order correction stemming from a finite width of
|ϕ⊥(R)|2, which can be achieved by assuming a non-zero contribution only at
R = R′ and therefore |ϕ⊥(R)|2|ϕ⊥(R′)|2 ≈ |ϕ⊥(R)|2δ(2)(R − R′), which is valid
only for very narrow distributions and subsequently yields exactly the averaged
semi-classical probability (1.38). If we then define the square-root of this prob-
ability γ(ω) ≡

√︂
ΓEELS(ω), we can renormalize â(ω) = Â (ω)/γ(ω), which then

leads to the bosonic commutator[︂
â(ω), â†(ω)

]︂
= δ(ω − ω′) . (2.44)

The final result for Û(∞,−∞) is then

Û(∞,−∞) = exp
(︃∫︂ ∞

0
dω γ(ω)

[︃
b̂

†(ω)â(ω) − b̂(ω)â†(ω)
]︃)︃

. (2.45)

This result has a very clear interpretation. Operators â(ω), â†(ω) annihilate and
create scalar (unlike f̂ , f̂

†
) bosonic excitations within the medium-assisted EM

field and they are paired with operators b̂†(ω) and b̂(ω), respectively. By looking
at (2.41), we can see that b̂†(ω) increases the electron’s longitudinal momentum
by ℏω/v and its Hermitian conjugate does the opposite. Operator (2.45) then
includes annihilation of an excitation followed by an increase in the electron’s mo-
mentum and the inverse process as well. The coupling strength between b̂

†(ω),
â(ω) is then represented through

√︂
ΓEELS(ω), which we semi-classically deter-

mined to be the probability amplitude of an electron exchanging a photon with
the sample.

2.3.3 Photon statistics
Now that we are equipped with all the tools required for evaluating averages
(2.40), we will determine some of the fundamental properties of the EM field
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after interaction. In the interest of clarity, we will further abbreviate the following
notation

ρ̂ ≡ ρ̂e−f (−∞) , Û ≡ Û(∞,−∞) .
The results derived in this subsection will be then visualized for specific physical
parameters in the following subsection.

The simplest quantity of interest is the mean number of photons at a given
frequency present in the field after the interaction has taken place. We therefore
want to calculate

n(ω) = ⟨â†(ω)â(ω)⟩ = Tr
[︃
ρ̂ Û

†
â†(ω)Û Û †

â(ω)Û
]︃
, (2.46)

where the insertion of 1̂ ≡ Û Û
† between the field operators simplifies the sub-

sequent calculation. It is of great importance to recall the BCH-formula in the
form

eX̂ Ŷ e−X̂ = Ŷ +
[︂
X̂, Ŷ

]︂
, (2.47)

which is valid if
[︂
X̂,

[︂
X̂, Ŷ

]︂]︂
=
[︂
Ŷ ,
[︂
X̂, Ŷ

]︂]︂
= 0. By remembering the zero

commutators held by b̂, b̂† (see (2.43)) and evaluating∫︂ ∞

0
dω′γ(ω′)

[︃
b̂(ω′)â†(ω′) − b̂

†(ω′)â(ω′), â(ω)
]︃

= −γ(ω)b̂(ω) ,

where we only made use of (2.44), we can see that the conditions needed for
(2.47) are indeed satisfied. We are then able to simplify

n(ω) = Tr
[︃(︂
â(ω) − γ(ω)b̂(ω)

)︂
ρ̂
(︃
â†(ω) − γ(ω)b̂†(ω)

)︃]︃
.

Operators â, â† ultimately vanish from this expression, since ρ̂ contains only the
initial electromagnetic vacuum apart from the electron’s longitudinal degrees of
freedom. Furthermore, the action of b̂†(ω)b̂(ω) on any single electron z-component
wavevector basis state |qz⟩ retains it, because

b̂
†(ω)b̂(ω)|qz⟩ =

∑︂
kz ,k′

z

ĉ†
kz

(︂
δkz ,k′

z
− ĉ†

k′
z−ω/v ĉkz−ω/v

)︂
ĉk′

z
|qz⟩ =

∑︂
kz

ĉ†
kz
ĉkz |qz⟩ = |qz⟩ .

We may therefore conclude the important result

n(ω) = γ2(ω) Tr ρ̂ = γ2(ω) = ΓEELS(ω) . (2.48)

Equation (2.48) implies that the post-interaction average number of specific
frequency photons contained within the field is completely unaffected by the
given mixture of states present within ρ̂ and moreover, it is expressed by the
semi-classically determined EELS probability. The total number of photons can
be then calculated by integrating over all frequencies. We can also further derive
the variance

σ2
n(ω) =

⟨︃(︂
â†(ω)â(ω)

)︂2
⟩︃

−n2(ω) =
[︂
γ4(ω) + γ2(ω)

]︂
−γ4(ω) = ΓEELS(ω) , (2.49)

where the result
⟨︃(︂
â†(ω)â(ω)

)︂2
⟩︃

= γ4(ω) + γ2(ω) was obtained by the same
techniques leading to (2.48).
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Having estabilished the post-interaction number of photons, we shall now
turn to the analysis of their coherence properties. First, we will remark that
any averages of time-dependent field quantities ⟨F̂ (t)⟩ are going to be evaluated
at large t with respect to the time scale of electron-sample interaction, which
therefore permits the approximation Ŝ(t,−∞) ≈ Ŝ(∞,−∞) within the trace.
For the purpose of subsequent calculations, we also adapt the specific notation

ρ̂ =
∑︂
l,l′
ρll′|kl, 0⟩⟨kl′ , 0| , with

ρll′ ≡
∞∑︂

n=0
fn

l (fn
l′ )∗ exp

[︄
2πi(l′2 − l2) d

zT

]︄
, |kl, 0⟩ ≡ |k0 + lω0/v⟩ ⊗ |0⟩f .

(2.50)

In order to find a simple way to quantify coherence of the resulting EM field,
at first without explicitly using any external reference field, we need to realize that
the post-interaction fields themselves are created sequentially through the sample
coupling to incoming energy sidebands. Every individual element in the electron
state mixture therefore induces a part of each final field frequency component in
a particular phase. If these phases were to be entirely random, we would get the
vanishing field average over electron statistical ensemble,

⟨︂
Êi(r, ω)e−iωt

⟩︂
= 0 and

the resulting field could not exhibit any coherence. This elementary idea moti-
vates the following definition of a simple approach towards quantifying coherence
of the field by the normalized frequency dependent degree of coherence

D(ω) =

⟨︃
Ê

†
i (r, ω)

⟩︃⟨︂
Êi(r, ω)

⟩︂
⟨︃
Ê

†
i (r, ω)Êi(r, ω)

⟩︃ , (2.51)

where the time-dependence stemming from evaluations in the interaction picture
automatically vanishes and as will be evident from the following calculations, the
dependence on polarization and spatial profile will also be canceled out. We can
see from (2.51) (and even more clearly from the derived version (2.56)) that if
all the phases, in which the frequency components are created by an element
of the electron’s statistical ensemble, were to be identical, they would cancel in
the numerator as well and we would get D(ω) = 1. In the opposite case of
zero correlation, the expected values of particular frequency components would
be averaged out, therefore resulting in only a randomly fluctuating field and
D(ω) = 0.

Before proceeding to the calculation of D(ω), we will recall

Êi(r, ω) = i

√︄
ℏ
πε0

ω2

c2

∫︂
d3r′

√︂
ℑ{ε(r′, ω)}

3∑︂
j=1

Gij(r, r′, ω)f̂ j(r′, ω) ,

â(ω) = − ieω

c2γ(ω)
√
πℏε0

∫︂
d3r|ϕ⊥(R)|2e−i ωz

v

∫︂
d3r′

√︂
ℑ{ε(r′, ω)}

3∑︂
j=1

Gzj(r, r′, ω)f̂ j(r′, ω) .

Since both of these quantities are linear in f̂ , we can use the same methods as
before to derive [︂

Êi(r, ω), â†(ω′)
]︂

= −δ(ω − ω′) eωgi(r, ω)
πε0γ(ω)c2 , (2.52)
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where we denoted

gi(r, ω) ≡
∫︂
d3r′|ϕ⊥(R′)|2ei ωz′

v ℑ{Giz(r, r′, ω)} . (2.53)

Equation (2.52) validates the use of (2.47) to calculate

⟨Êi(r, ω)⟩ = Tr
{︃
ρ̂
(︃
Êi(r, ω) −

∫︂ ∞

0
dω′γ(ω′)b̂(ω′)

[︂
Êi(r, ω), â†(ω′)

]︂)︃}︃

and since the acting of Êi(r, ω) on electromagnetic vacuum results in zero, we get

⟨Êi(r, ω)⟩ = eωgi(r, ω)
πε0c2 ⟨b̂(ω)⟩ . (2.54)

Interestingly, we can also evaluate

⟨â(ω)⟩ = −γ(ω)⟨b̂(ω)⟩

and estabilish the important proportionality

⟨Êi(r, ω)⟩ ∝ ⟨â(ω)⟩ . (2.55)

By utilizing the same techniques that were applied in order to evaluate (2.46),
we can determine ⟨︃

Ê
†
i (r, ω)Êi(r, ω)

⟩︃
=
(︃

eω

πε0c2

)︃2
|gi(r, ω)|2

and we can see that (2.51) simplifies to

D(ω) =

⟨︂
â†(ω)

⟩︂
⟨â(ω)⟩⟨︂

â†(ω)â(ω)
⟩︂ =

⟨︃
b̂

†(ω)
⟩︃⟨︂

b̂(ω)
⟩︂
, (2.56)

where it becomes clear that both specific polarization and spatial profile do not
affect the locally defined degree of coherence and the second equation also shows
that this measure of coherence can be studied solely by examining the initial
mixture of electron states. It is then very straightforward to show that

⟨b̂(ω)⟩ =
∑︂
qz

∑︂
l,l′

∑︂
kz

ρll′⟨qz|kl⟩⟨kl′|ĉ†
kz−ω/v ĉkz |qz⟩ = δω,κω0

∑︂
l

ρl+κ,l ,

where we have only utilized the completeness and orthonormality of the wavevec-
tor basis and denoted the harmonic order as κ ≡ ω/ω0 ∈ N∪{0}. The final result
then reads

D(ω) = δω,κω0

⃓⃓⃓ ⎛⎝ ∞∑︂
l=−∞

ρl+κ,l

⎞⎠ ⃓⃓⃓2 , κ ∈ N ∪ {0} . (2.57)

The fact that (2.57) depends only on the post-modulation electron density
matrix suggests that D(ω) quantifies the transfer of optical coherence that was
carried by the electron after the PINEM interaction. Also, despite it being ini-
tally defined as a spatially local quantity, we can see that neither the geometry
nor the material of our sample appears in the result, which makes it a truly in-
herent property of the modulated electron probe. The density matrix formalism
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that we have adapted throughout the calculations now allows us to look at D(ω)
for different statistics of the modulating photons. However, there are some gen-
eral properties of (2.57). The first being that D(0) = 1, since ρ̂ is normalized,
which will later serve as a valuable tool for verifying the stability of numerical
calculations. The second visible property is spatial periodicity in d, the distance
travelled by the electron, with a period of zT/2κ, which can be seen directly from
(2.50).

2.3.4 Numerical results
In order to better understand the theoretical results contained within the previous
section, we will now visualize their dependencies on specific physical parameters
in various situations.

Regarding the post-interaction average number of photons at frequency ω
(2.48), which coincides with the classically determined EELS probability, we are
not only interested in the actual shape of ΓEELS(ω), but also in its alteration
stemming from the inclusion of the first-order correction with respect to a finite
width of the electron beam in perpendicular direction. We can examine this
effect in a specific geometry by recalling the analytically solved case of a single
homogeneous sphere from the first chapter, which resulted in (see (1.36))

ΓEELS(b, ω) = 4πα
ω

∞∑︂
l=1

l∑︂
m=−l

K2
m

(︄
ωb

γv

)︄ [︃
ℑ{tEl }

⃓⃓⃓
ξE

lm

⃓⃓⃓2
+ ℑ{tMl }

⃓⃓⃓
ξM

lm

⃓⃓⃓2]︃
.

The sole quantity within this expression which takes into account the impact
parameter b of the electron trajectory is the modified Bessel function Km. We
can therefore convert to polar coordinates within the xy-plane and rewrite the
averaging (1.38) as

ΓEELS(ω) =
∫︂ ∞

0
dR R

∫︂ π

−π
dφ|ϕ⊥(R,φ)|2 ΓEELS(R,ω) . (2.58)

For the purpose of estimating the consequence of averaging (2.58), we can
assume a gaussian perpendicular profile of the electron beam

|ϕ⊥(R)|2 = 1
2πσ2 e

− |R−R0|2

2σ2 , (2.59)

with R0 = (b0, 0). Integrating over the angular coordinate then leaves us with
the impact distance distribution

∫︂ π

−π
dφR|ϕ⊥(R,φ)|2 = R

σ2 e
−

R2+b2
0

2σ2 I0

(︄
b0R

σ2

)︄
.

Since the perpendicular width of the electron beam is still assumed to be narrow
(σ ≪ b0), we can further approximate [3] I0(z) ≈ ez/

√
2πz and the averaging

(2.58) is then simply done by replacing

K2
m

(︄
ωb0

γv

)︄
−→

∫︂ ∞

0

dR

σ

√︄
R

2πb0
e− (R−b0)2

2σ2 K2
m

(︄
ωR

γv

)︄
. (2.60)
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In order to comply with the validity of our calculations and at the same
time respect the current experimental capabilities, we will assume the width of
perpendicular electron beam profile to be quantified by σ ≈ a/25. This means
that if we referred back to the case of aluminium, where c/ωp ≈ 13.2 nm and
took the radius of the sphere to be around this value, we would get an electron
beam focused onto a surface about a nanometer wide. Such a narrow focus
is still experimentally obtainable and with this in mind, we have visualized the
dependencies of ΓEELS(b, ω) (dashed lines) and its averaged counterpart (full lines)
in figure 2.2.

The first property we can notice, is the overall larger magnitude of ΓEELS(ω)
with respect to ΓCL(ω) (see figure 1.3), which reaffirms the fact that only a fraction
of all photons mediating the interaction contribute to far-field radiation detectable
as CL. However, they coincide when the sample is not able to absorb any energy,
which we can verify by looking at figures 2.2c and 1.3c, specifically at the graphs
with η = 0. Contrary to the dependence of ΓCL(ω), where the influence of electron
velocity was quite complex, the overall energy losses are rising with declining β,
which is expected, since it prolongs the interaction duration. We can also observe
that at low electron energies and close incident distances, the change stemming
from averaging over the perpendicular electron profile becomes noticable even
for the considered narrow gaussian distribution. Averaging also always tends to
increase the amount of post-interaction photons, since the contribution of closer
incident distances of the electron outweigh the effect of lower central peak in its
perpendicular probability distribution. Apart from these specific cases, we can
see that applying the standard EELS probability ΓEELS(b, ω) works well, but one
should keep in mind that the described deviations need to be accounted for, when
discussing certain modes of the interaction.

We now turn to the analysis of the derived degree of coherence (2.57), which
quantifies the transmission of optical coherence imprinted upon and carried by the
modulated electron beam. By not applying the usual PINEM limit |l| ≪ n ≈ µ
(number of photons exchanged assumed to be significantly lesser than the in-
finitely narrow bosonic mode population), we have obtained a formalism that
permits the examination of D(ω) also in situations, in which the electron was not
modulated coherently, e.g. by scarcely or thermally populated bosonic modes.
Since the final result (2.57) is not dependent on sample material or geometry,
such an analysis then constitutes an insight into the inherent ability of free elec-
trons to mediate the transfer of optical coherence between two spatially separate
fields under various circumstances.
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Figure 2.2: Comparison of the analytical EELS probabilities ΓEELS(ω) (or post-
interaction photon counts per frequency) for a single dielectric sphere given by
(1.36) and the same quantity averaged over the narrow gaussian perpendicular
electron beam profile (2.60). Dependencies on photon frequency are depicted
for different values of (a) the ratio β of electron’s velocity to c, (b) the impact
parameter b of the trajectory, (c) the electron gas damping frequency η, (d)
the dielectric sphere’s radius a. Plots (a), (b), (c) consider the sphere’s radius
a = 1.2 c/ωp, plots (a),(b) and (d) are evaluated for η = 0.04ωp. Plots (a),
(c), (d) represent a situation with impact parameter b = 1.1a and (b), (c), (d)
assume β = 0.6. Width of the perpendicular profile in all graphs is quantified by
σ = a/25.
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By recalling (2.8), we can calculate

fn
l+κ(fn

l )∗ = (−β0)κe−|β0|2 |β0|2ln! Σn
l+κΣn

l , where

Σn
l ≡

√︂
(n+ l)! pn+l

n∑︂
j=max{0,−l}

(−|β0|2)j

j!(j + l)!(n− j)! .
(2.61)

The regime of modulation is described through the probability distribution pn,
which characterizes the population of the single bosonic mode that dominates
the modulating process and via the coupling parameter β0. Combining (2.61)
with (2.50) and inserting into (2.57) then yields an expression for the degree of
coherence

D(ω) = δω,κω0|β0|2κe−2|β0|2
⃓⃓⃓ ∞∑︂

l=−∞

∞∑︂
n=0

e−4πilκd/zT |β0|2ln! Σn
l+κΣn

l

⃓⃓⃓2
, κ ∈ N ∪ {0} .

(2.62)
We can first evaluate (2.62) for the spectra depicted in figure 2.1, where the
PINEM mode was assumed to be populated by coherent external illumination,
which led to Poissonian distribution characterized by a mean number of excita-
tions µ that was considered to be finite13. Figure 2.3 visualizes the dependence
of the degree of coherence of the first harmonic frequency D(ω0) on the coupling
strength |β0| and the distance d travelled by the electron in correspondence with
the figure 2.1.

The first note we need to make is that a realistic coupling strength is severely
limited and entirely dependent on the PINEM sample material and geometry,
which gives rise to a specific electric-field distribution. One of the stronger cou-
plings have been examined in plasmonic cavities [19], where |β0| ∼ 0.1 for mode
energies ℏω0 ∼ 1 eV, which needs to be taken into account when we wish to un-
derstand the plots from a practical viewpoint. We can however still make some
interesting theoretical observations by looking at the entire 2D maps.

We notice that all the plots in figure 2.3 possess a common feature, which is
the main arch peak that repeats with a period of d/(2zT ). The width of this peak
scales as √

µ|β0|, but its height appears to be bound by a specific value. The
presence of the peak even in the 2D map with µ = 2, corresponding to the case
of very weak modulation, suggests that its predicted appearance should not be
affected by the specific statistics pn in the small µ limit. This simple hypothesis
was numerically verified by examining the contrast between excitations resulting
from coherent illumination and chaotic illumination (thermal excitations) for µ
approaching zero. The specific form of pn then primarily affects the limiting height
and sharpness of the main peak for large µ as well as the formation of sidepeaks
visible in figure 2.3, which will be associated with the imprinted coherence.

By comparing figures 2.3a and 2.3b, we can then see that adding only a
few more excitations in the case of coherent illumination raises the main peak
dramatically (more than two thirds of the remaining distance to the limiting
value) and in the second plot, much of the main peak now lies in a regime,
which is already reachable via realistic strong coupling. One can also observe the
formation of the first two sidepeaks, which do not occur in the case of incoherent

13Such a regime could in theory be achieved by a low intensity coherent illumination of the
PINEM sample.
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PINEM mode population. The transition between figures 2.3c and 2.3d then
emphasizes that any substantial increase in µ does not heighten the main peak,
but rather increases the number and magnitude of the subsequent coherent peaks.
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Figure 2.3: Dependence of the degree of coherence (2.62), corresponding to the
first harmonic frequency (κ = 1), on the distance travelled by the electron d
and coupling strength |β0| of the modulating bosonic optical mode. Individual
2D maps contain one spatial period Λ = zT/2 and they each consider a specific
average number of excitations µ, which were populated by coherent illumination
and correspond exactly to the post-PINEM spectra depicted in figure 2.1. Heights
of the main peaks D(µ)

max were numerically determined as (a) D(2)
max

.= 0.236, (b)
D(10)

max
.= 0.312, (c) D(50)

max
.= 0.333 and (d) D(100)

max
.= 0.336.
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We can further use the derived general formalism to assess the two easily
accessible extreme cases of modulating bosonic populations. The first one is the
widely used PINEM limit, which considers an infinitely narrow statistics with
a very large average number of excitations µ ≫ 1 and a comparatively small
number of exchanged photons |l| ≪ µ. These assumptions are then used14 to
approximate pn+l ≈ pn ≈ δnµ, effectively leading to a Fock state and a result that
matches the description of PINEM modulation via illumination with classical
light fields. The opposite limit of incoherently created bosonic mode population
can be modelled by thermal excitations that are inducible by chaotic illumination,
resulting in the Bose-Einstein statistics pn = (1−e−ϑ)e−nϑ, with ϑ = ℏω0/(kBT ).
The average occupation number then obeys the relation µ = 1/(eϑ − 1). In
order to determine a realistic maximal µ for the case of thermal excitations, we
can consider low energy modes ℏω0 ∼ 10 meV and calculate the corresponding
sample temperature T ≈ µℏω0/kB ∼ µ × 100 K. A large number of excitations
therefore requires considerably high temperatures, but there are structures which
can withstand such conditions. An example we could refer to are plasmonic
modes in graphene [19] which has a vacuum melting point of at least 4000 K and
we can therefore justify values of µ around 10 − 50.

Comparison of the two discussed extreme cases is shown in figure 2.4. The
qualitative difference between the two plots is clear, we see that the thermal
excitations do not give rise to any of the sidepeaks associated with coherent
modulation and the thermal main peak is noticably lower and wider (towards the
center of the plot) than in the case of modulation by a Fock state with a large
number of excitations. Accurately calculating the height of the main peak in the
case of Bose-Einstein statistics D(µt)

max can prove numerically quite challenging for
larger µt, because the upper bound N of the sum over n in the expression (2.62)
has to be linearly increased to achieve the same precision, which causes significant
extension15 of the required computation time. A reasonable assumption for the
limiting height of the main peak in the µt ≫ 1 case can still be made however,
based on the values obtained for manageably large µt. Conducted numerical
simulations on the realistic interval µt ∈ ⟨10, 40⟩ have shown a convergence rate
similar to Poissonian statistics and the resulting estimated maximum height has
been determined as D(∞t)

max
.= 0.199. On the other hand, the PINEM limit main

peak height converges already around µf ≈ 600 to the value D(∞f )
max

.= 0.3386 and
the relative heights of subsequent coherent peaks also no longer change.

14Mathematical details can be seen in [15], [19].
15From expressions (2.61) and (2.62), one can see that time complexity rises at least quadrat-

ically with N .
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Figure 2.4: Comparison between the degrees of coherence (2.62) of the first har-
monic frequencies (κ = 1), corresponding to situations in which an electron beam
was modulated by (a) a thermally populated bosonic mode (practically feasible
by chaotic illumination) with an average number of excitations µt = 20 and (b)
an optical bosonic mode populated by a strong coherent illumination, effectively
resulting in a Fock state with µ ≫ 1, which constitutes the usual PINEM limit.
Heights of the main arch peaks were numerically determined as (a) D(20t)

max
.= 0.198

and (b) D(∞f )
max

.= 0.3386.

The remaining unexplored property is the magnitude of D(ω) for higher har-
monics (κ > 1). We already know that D(κω0) is periodical in d with a spatial
period Λ = zT/(2κ) and also even with respect to its center zT/(4κ) (as can
be verified from the presented 2D maps). We have therefore taken slices of the
higher harmonics 2D maps corresponding to obtainable fixed values of |β0| and
visualized the dependence of D(ω) on d and harmonic order in figure 2.5.

By looking at 2.5a and 2.5c, we can see that both weak and incoherent mod-
ulation do not allow for the defined degree of coherence to extend over a larger
number of harmonics and substantial values are present only for κ ∈ {1, 2, 3}.
The plot 2.5b, which corresponds to coherent modulation with √

µc|β0| = 2, al-
ready captures the slice from 2.3d where 2 coherent sidepeaks are present in the
first harmonic, which gives rise to a more interesting pattern of D(ω) that ex-
tends up to κ ≈ 9. The most complex behaviour by far is then shown on figure
2.5d, which depicts the limit of strong coherent modulation by a Fock state with
large number of excitations µf . The resulting pattern then reaches up to κ ≈ 21
harmonic orders and the narrow profile of individual peaks in the √

µf |β0| = 5
region (see figure 2.4b) makes for a diverse dependence on d and harmonic order.
Two particular propagation distances were then selected from this plot and the
resulting distributions of D(ω) across harmonic orders can be seen in figures 2.5e
and 2.5f. Their comparison then shows that depending on d, the magnitude of
imprinted coherence can either exhibit an overall declining trend with the rising
harmonic order or we might see an effective suppression of optical coherence at
certain frequencies of the observed spectrum. The presented theoretical results
for D(ω) are however considerably impacted by the assumption of an infinite co-
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herence length of the electron beam. One could expect that by taking an electron
pulse of a finite duration, the individual peaks present in patterns shown in fig-
ure 2.5 would appear distorted (increasingly with shorter beams) and would fade
quicker with rising harmonic order. Such an effect has been commented upon in
[2] and could be incorporated in the future through numerical simulations.
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Figure 2.5: Dependence of the degree of coherence (2.62) on frequency ω and
electron beam propagation distance d in case of PINEM modulation by (a) a
coherently populated bosonic mode with average number of excitations µc = 10
and coupling strength |β0| = 0.2, (b) the same setup with a larger average pop-
ulation µc = 100, (c) thermal bosonic excitations (incoherently populated mode)
with µt = 20 and coupling parameter |β0| = 0.1, (d) an optical bosonic mode
populated by a strong coherent illumination (effectively resulting in a Fock state)
with µf ≫ 1 and |β0| satisfying √

µf |β0| = 5. Plots (e) and (f) then constitute the
isolated frequency dependence of D(ω) obtained from the case (d) by choosing
two specific distances d = 0.011 zT and d = 0.013 zT , respectively.
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Conclusion
In this thesis, we have theoretically studied the interaction of a modulated elec-
tron beam with optical modes sustained by a nanoscopic sample. To gain a better
understanding of this problem, we have dedicated the first chapter to describing
the energy losses experienced by a charged point-particle undergoing an inter-
action with a polarizable dielectric sample, described by a causal homogeneous
dielectric function, all within the formalism of classical electrodynamics. This
discussion has been considerably simplified by limiting ourselves to the case of
swift electrons interacting with sample modes of low excitation energies, which
allowed us to adapt the widely used non-recoil approximation that assumes an
electron with constant velocity. Within this approximation, we have described
the semi-classical probability for the occurance of a general electron energy-loss
event. Among all such events, we have identified an interesting subset, which
encompasses energy transfers from the electron to radiative modes, consequently
contributing to non-vanishing asymptotic EM field upon decaying. These prob-
abilities are very difficult to determine analytically for complex geometries with
the inclusion of all relativistic effects, which are neccessary to account for when
one considers high-energy electrons. We have therefore derived the EELS and CL
probabilities only for the case of a single dielectric sphere and went through the
underlying calculations and concepts in great detail. These efforts have not been
self-serving, since as we then discussed, the defined semi-classical EELS probabil-
ities also play a crucial role as coupling coefficients in the interaction of electron
states with a quantized EM field in the quantum picture.

In the second chapter, we first examined the process of modulation of the
incident electron wavepacket by photons contained within a specifically prepared
electromagnetic near-field, resulting from light scattering off the surface of a
nanostructure. This so-called PINEM approach was chosen mainly because of
its reciprocity with respect to the subsequent interaction of the modulated elec-
tron with radiative sample modes. We have worked with a simplification, in
which the modulating process is dominated by a single optical bosonic mode that
could, however, have been populated by various forms of external illumination.
In order to work with a general bosonic mode population and not just the usual
limit of its narrow statistics with a very large average number of excitations,
we have allowed the post-modulation electron state to be described by a density
operator. The specific regime of modulation was consequently imprinted upon
the mixture of states through the bosonic mode initial statistics and its coupling
strength parameter. To describe the interaction of the modulated electron with
an EM field in the presence of a dielectric sample, we then required the procedure
of medium-assisted field quantization, the overview of which was covered along
its vacuum counterpart, with particular emphasis being placed on their main
conceptual differences. Once we obtained the neccessary formalism, we formu-
lated the Hamiltonian of our system through the minimal coupling approach and
analytically solved its evolution in the interaction picture.

By acquiring the evolved density operator of the electron-field system, we have
paved the way for examining the post-interaction statistical properties of CL pho-
tons. The first quantity that we determined, was the number of photons at specific
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frequencies contained within the medium-assisted EM field, which turned out to
be independent of the modulated electron state and coincided with the semi-
classical EELS probability. Our approach towards the S-operator derivation also
included the first-order correction with respect to a finite width of the electron
beam in perpendicular direction, the impact of which we then assessed via nu-
merical simulations for the analytically solved case of a single dielectric sphere.
The main result however, was the normalized degree of coherence, defined as
a simple spatially local correlation function of the post-interaction electric field
frequency components. This quantity turned out to be dependent only on the
post-modulation electron density matrix, therefore implying its meaning as an
inherent ability of the modulated electron probe to mediate the transfer of opti-
cal coherence. The extension of existing formalism for its calculation allowed us
to examine various regimes of electron beam modulation and their impact on the
measure of optical coherence passed on to the medium-assisted EM field, which
we subsequently analyzed in simple numerical simulations.

Moreover, the presented theoretical framework can now be utilized in cal-
culations of practically measurable quantities, such as intensity correlations in
interferometric experiments, where one could experimentally observe the trans-
fer of optical coherence from interference patterns created by the emitted CL
and modulating laser pulse as a reference field. The general density operator
formalism then enables the study of different approaches towards electron beam
modulation and with suitable numerical methods, we could study its effect in a
vast range of sample geometries.
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