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Introduction
Cross-validation is a set of methods that divide the observed data into two

parts, commonly referred to as the validation and construction parts. These
methods find their application in nonparametric approaches such as kernel den-
sity estimation and kernel regression. Additionally, the cross-validation idea of
dividing data into two parts works well for assessing prediction error. Therefore,
these methods play a crucial role in model selection based on the model’s pre-
dictive ability, making cross-validation techniques very popular in fields such as
machine learning and data science.

In the first two chapters of this thesis, the use of cross-validation methods is
studied for bandwidth selection in kernel density estimation and kernel regression.
The popularity of cross-validation in these areas increased after the paper Stone
[1984], where it is shown that the bandwidth selected by cross-validation is opti-
mal in some sense. In these chapters, theoretical justifications of cross-validation
techniques are provided, and several other methods for bandwidth selection are
introduced based on stronger assumptions on the distribution of observed data
(see Section 1.2.2) or asymptotic approximations (see Sections 1.2.1 and 2.2.1).
Both chapters are concluded by smaller simulation studies, where the advantages
of cross-validation are demonstrated. All results are provided only for leave-one-
out cross-validation CV(1), which means that for validation purposes only one
observation is considered.

In the last chapter the focus is on the use of cross-validation techniques in the
context of linear model selection. Suppose that there are n observations available
for selecting a model from a class of linear models. For validation purposes, nv

observations are used, and for model construction, nc are used, such that nv+nc =
n. Obviously, there are

(︂
n
nv

)︂
different ways to split the dataset. Computational

complexity of cross-validation increases as nv increases. Therefore, leave-one-out
cross-validation with nv = 1 is the simplest one. However, unlike in the first two
chapters, it may be shown that CV(1) is no longer a useful method for linear
model selection. In linear model selection from all possible models, there exists
an optimal one, denoted as M∗, in some sense (for details, see Section 3.3). The
problem with the CV(1) method is that it is not asymptotically consistent in the
following sense:

P [the model selected by CV(1) is not M∗] −̸→
n→∞

0.

Chapter 3 demonstrates that instead of leave-one-out cross-validation, leave- nv-
out cross-validation should be used. Additionally, it should be ensured that
nv/n → 1 as n → ∞, which is completely opposite to the leave-one-out cross-
validation principle. However, when nv is large, the amount of computation
required to use the cross-validation may be impractical. Therefore, a so-called
”balanced incomplete” cross-validation, BICV(nv) ,should be used. The idea of
the method is that only a smaller part of

(︂
n
nv

)︂
splits are made according to a

systematic manner. Additionally, there exists a Monte Carlo alternative to the
last method, which is quite useful in practical applications. Finally, in Chapter 3,
the aforementioned methods will be applied to real data from parliamentary and
presidential elections in the Czech Republic in 2021 and 2023
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1. Kernel density estimation
Let X1, . . . , Xn be independent and identically distributed random variables

sampled from a distribution with a probability density function f . Depending
on the task, one can construct appropriate statistical procedures based on these
observations. Very often, such procedures are derived by assuming specific para-
metric models. However, these assumptions can sometimes be too restrictive.
Therefore, there may be instances where one is interested in understanding the
data structure without relying on any parametric model. In such cases, consid-
ering a nonparametric approach can be beneficial because it allows the data to
speak for themselves.

If the goal is to nonparametrically estimate the distribution of these obser-
vations, one option is to use the empirical cumulative distribution function ˆ︁Fn.
However, one can get deeper insights about the nature of the data by estimating
the probability density function f . The most famous and oldest nonparametric
density estimator is the histogram. The histogram is created by partitioning the
real line into equally-sized intervals (bins). Subsequently, it takes the form of a
step function, with the height of each step corresponding to the proportion of the
sample within that bin divided by the width of the bin (binwidth). Simplicity
of histogram ensures its popularity. However, one of the main disadvantages of
the histogram is its high sensitivity to the placement of the bin edges. Moreover,
most densities are not represented as step functions. The histogram, unfortu-
nately, approximates all densities using a step function, which can be seen as
another disadvantage. A well-known alternative for nonparametrically estimat-
ing the probability density function f is the kernel density estimator.

This chapter is based on Chapters 2 and 3 of Wand and Jones [1995] and the
course notes Nagy and Omelka [2024].

1.1 Basic properties
From this point onwards, it is assumed that X1, . . . , Xn are independent and

identically distributed (iid) random variables. The following definition provides
the recipe for constructing a family of estimates of f(x), which are consistent and
asymptotically normal (see below Theorem 1).

Definition 1. Let K : R → R and {hn}∞
n=1 be a sequence of positive real numbers.

Then, the kernel density estimator is defined as

ˆ︁fn(x) = 1
nhn

n∑︂
i=1

K
(︃

Xi − x

hn

)︃
, for x ∈ R,

where the function K is called a kernel function and hn is usually called band-
width.

First, note that compared to a histogram, the estimator ˆ︁fn is defined every-
where on R and does not require specifying the placement of edge points. It is
evident from Definition 1 that the kernel density estimator depends on the ker-
nel function K and bandwidth hn. As demonstrated in Wand and Jones [1995]
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(Section 2.7), selecting the shape of the kernel function is not particularly crucial.
Typically, the function K is chosen to be a unimodal probability density function
that is symmetric about zero. For instance, one of the possible choices is the
standard normal kernel

K(x) = 1√
2π

exp
(︄

−x2

2

)︄
.

Remark. Note that if K is a density symmetric around zero, then

x ↦−→ 1
hn

K
(︃

Xi − x

hn

)︃

is also a density symmetric around the point Xi. Thus, ˆ︂fn can be interpreted as
the average of n densities of the form 1

hn
K
(︂

Xi−x
hn

)︂
.

The important aspect lies in choosing the bandwidth hn, a topic which will be
discussed in the next section. In most cases, it is assumed that {hn}∞

n=1 is a non-
increasing sequence of positive numbers converging to zero such that nhn → ∞,
i.e., hn must not converge to zero too quickly.

Suppose that K is a density symmetric around zero. Then, the expected value
of ˆ︁fn(x) takes the following form

E ˆ︁fn(x) = 1
hn

EK
(︃

X1 − x

hn

)︃
= 1

hn

∫︂
R

f(z)K
(︃

x − z

hn

)︃
dz,

which means that E ˆ︁fn(x) is a convolution of densities 1
hn

K( ·
hn

) and f(·). Such
convolutions naturally appear in various situations. For example, consider a
random variable Z with density K, implying that hnZ has density 1

hn
K( ·

hn
).

Let X be a random variable independent of Z, then E ˆ︁fn(x) is the density value
at x of a random variable X + hnZ.

The kernel density estimator possesses the important properties of consistency
and asymptotic normality, as summarized by the following theorem.

Theorem 1. Let X1, . . . , Xn be a random sample with common probability density
function f(x), and let ˆ︁fn(x) be a kernel density estimator. Suppose that the
function K satisfies the following conditions:

(A1)
∫︁
R |K(y)|dy < ∞ and

∫︁
R K(y)dy = 1,

(A2) lim|y|→∞ |yK(y)| = 0,

(A3) hn ↘ 0 as n → ∞ and (nhn) → ∞ as n → ∞.

Then, at each continuity point x of the density f , the following holds:

1. limn→∞ nhn var( ˆ︁fn(x)) = f(x)
∫︁
R K2(y)dy,

2. ˆ︁fn(x) P−→
n→∞

f(x),

3. if x ∈ R such that f(x) > 0, then

ˆ︁fn(x) − E ˆ︁fn(x)√︂
var( ˆ︁fn(x))

d−→
n→∞

N(0, 1).
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The proof is provided in Parzen [1962], Chapter 2.
Remark.

• If K is a density, then
∫︁
R |K(y)|dy =

∫︁
R K(y)dy = 1 < ∞, i.e., the first

assumption (A1) holds.

• The second assumption (A2) means that |K(y)| converges to zero more
rapidly than 1

|y| as |y| → ∞. This condition is automatically met if K has
a bounded support.

In Parzen [1962], the consistency of ˆ︁fn(x) is proven through L2 convergence.
One might wonder if it is possible to establish consistency of ˆ︁fn(x) through the
law of large numbers. It is possible, but one must employ the law of large num-
bers for triangular arrays, as discussed in Dewan and Rao [1997] (Theorem 3.3).
Additionally, it is important to note that Theorem 1 only asserts point-wise con-
sistency. Demonstrating a similar result uniformly across x ∈ R is considerably
more challenging, see, e.g., Wied and Weißbach [2012] (Theorem 2).

1.2 Bandwidth selection

1.2.1 Asymptotic approximation
In Theorem 1, it is shown that under certain assumptions on the function K,

the kernel density estimator ˆ︁fn is a consistent estimator of the true density f .
The catch is that the kernel density estimator ˆ︁fn implicitly depends on the se-
quence {hn}∞

n=1, which should also be chosen in a reasonable manner.
A well-known measure that summarizes the quality of estimating the density f

by the estimator ˆ︁fn at the point x is the mean squared error, defined as follows

MSE( ˆ︁fn(x)) = E( ˆ︁fn(x) − f(x))2 = var( ˆ︁fn(x)) + [bias( ˆ︁fn(x))]2.

The error in estimating the density at a single point is quantified by MSE. It’s
important to note that MSE is a local characteristic of the density estimator ˆ︁fn.
To obtain a measure that globally summarizes the quality of estimation (i.e., one
that does not depend on x), it is useful to define the mean integrated squared
error

MISE( ˆ︁fn) =
∫︂
R

MSE( ˆ︁fn(x))dx.

The choice of bandwidth hn is often based on the approximation of MISE.
Let’s begin by approximating MSE. According to the first part of Theorem 1,

it follows that
var( ˆ︁fn(x)) = f(x)R(K)

nhn

+ o
(︃ 1

nhn

)︃
, (1.1)

where R(K) =
∫︁
R K2(y)dy is one possible measure of the roughness of K. The

next step is to approximate the bias. Suppose that x is an interior point of f , and
f is twice differentiable at x. Let the kernel K satisfy the following conditions:∫︁
R K(t)dt = 1,

∫︁
R tK(t)dt = 0, and

∫︁
R |t2K(t)|dt < ∞. One can get

E ˆ︁fn(x) = 1
hn

EK
(︃

X1 − x

hn

)︃
=
∫︂
R

1
hn

K
(︃

y − x

hn

)︃
f(y)dy =

∫︂
R

K(t)f(x + thn)dt.
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Using the second-order Taylor expansion of the density f around x, for sufficiently
large n, one obtains

f(x + thn) = f(x) + thnf ′(x) + 1
2t2h2

nf ′′(x) + o(t2h2
n).

By combining this Taylor approximation with the assumptions on the kernel
function K, one has

bias( ˆ︁fn(x)) = E ˆ︁fn(x) − f(x) = 1
2h2

nf ′′(x)µ2 + o(h2
n), (1.2)

where µ2 =
∫︁
R y2K(y)dy. Thus, from equations (1.1) and (1.2), the following

asymptotic approximation of the mean squared error is derived

MSE( ˆ︁fn(x)) = 1
nhn

f(x)R(K) + 1
4h4

n[f ′′(x)]2µ2
2 + o

(︃ 1
nhn

)︃
+ o(h4

n). (1.3)

This approximation of the mean squared error serves as motivation to define the
asymptotic mean integrated squared error of ˆ︁fn by integrating the main terms
and disregarding the remainder o(·) terms in (1.3)

AMISE( ˆ︁fn) = R(K)
nhn

+ h4
n

R(f ′′)µ2
2

4 , (1.4)

where R(f ′′) =
∫︁
R[f ′′(x)]2dx. AMISE can be understood as an approximation of

MISE.
It is known that MISE is a quantity that summarizes the quality of estimat-

ing the density f by ˆ︁fn. Therefore it is natural to choose the bandwidth hn in
a way that minimizes MISE( ˆ︁fn). However, since MISE( ˆ︁fn) cannot be expressed
simply as a function of hn, AMISE( ˆ︁fn) will be minimized instead. By minimiz-
ing (1.4) with respect to hn, the so-called asymptotically optimal global bandwidth
is obtained

h(opt)
n = n− 1

5

[︄
R(K)

R(f ′′)µ2
2

]︄ 1
5

. (1.5)

The asymptotically optimal global bandwidth h(opt)
n is obtained by applying

the second-order Taylor approximation to the probability density function f . A
similar procedure can generally be employed to derive the optimal bandwidth
from any p-order approximation of f (under the assumption that f is p-times dif-
ferentiable). To do this, the kernel function must satisfy the following conditions∫︁
R K(t)dt = 1 and∫︂

R
tjK(t)dt = 0, j = 1, ..., p − 1 and

∫︂
R

tpK(t)dt ̸= 0.

The disadvantage of this method is that for p > 2, it must hold that∫︂
R

t2K(t)dt = 0.

Therefore K cannot be non-negative. As a consequence, it might happen that
the estimator ˆ︁fn is negative. Detailed information about high-order kernels could
be found in Wand and Jones [1995] (Section 2.8).
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1.2.2 Normal reference rule of thumb
Note that (1.5) cannot be computed because the true density f is not known,

which also means that R(f ′′) is not known. Since f ′′(x) measures the curvature of
the function f at the point x, one could interpret R(f ′′) as the overall curvature
of the function f . Therefore, for functions with high curvature, h(opt)

n will be
small. Conversely, for functions with low curvature, h(opt)

n will be large.
In practice, so-called ’plug-in methods’ are popular, where it is assumed that

f belongs to a parametric family. This allows one to compute R(f ′′) and then
simply plug this quantity into (1.5). For example, if X1, . . . , Xn

iid∼ N(µ, σ2),
it can be shown that R(f ′′) = 3

8σ5√
π
. Thus the asymptotically optimal global

bandwidth would be

h(opt)
n = σ n− 1

5

[︄
8
√

πR(K)
3µ2

2

]︄ 1
5

.

By using a standard normal kernel K(y) = 1√
2π

e− y2
2 , the asymptotically opti-

mal global bandwidth simplifies to

h(opt)
n =

[︃4
3

]︃ 1
5

σ n− 1
5 ≈ 1.06 σ n− 1

5 .

The standard normal reference rule is given by

h(NR)
n = 1.06 n− 1

5 min{Sn, ˜︁IQRn}, (1.6)

where

Sn =
⌜⃓⃓⎷ 1

n − 1

n∑︂
i=1

(Xi − Xn)2 and ˜︁IQRn =
ˆ︁F −1

n (0.75) − ˆ︁F −1
n (0.25)

Φ−1(0.75) − Φ−1(0.25) .

In this context, Φ−1 denotes the quantile function of the standard normal distri-
bution, while ˆ︁F −1

n represents the quantile function of the empirical distribution.
The normalizing factor in the denominator of ˜︁IQRn is the population interquar-
tile range of the standard normal density and is approximately equal to 1.349.
Further discussion about why the minimum of the quantities Sn and ˜︁IQRn is
taken can be found in Silverman [1986](Section 3.4.2).

If the underlying distribution is close to a normal distribution, then the normal
reference rule provide good results. However, if the true density is, for example,
multimodal, then this bandwidth selector tends to over-smooth and mask impor-
tant features in the data. That is why some authors prefer to use the following
modification of the standard normal reference rule

h(MNR)
n = 0.9 n− 1

5 min{Sn, ˜︁IQRn}. (1.7)

1.2.3 Least-squares cross-validation
In the previous subsections, the bandwidth was selected based on the asymp-

totic approximation of MISE. Now, instead of approximating MISE, an attempt
will be made to decompose MISE and find an unbiased estimator for the part of
the decomposition that depends on the bandwidth. Then, the bandwidth that

7



minimizes this unbiased estimator will be selected. By using Fubini’s theorem,
the following holds

MISE( ˆ︁fn) =
∫︂
R
E( ˆ︁fn(x) − f(x))2dx

Fubini= E
∫︂
R
( ˆ︁fn(x) − f(x))2dx

= E
∫︂
R

(︃[︂ ˆ︁fn(x)
]︂2

− 2 ˆ︁fn(x)f(x) +
[︂
f(x)

]︂2)︃
dx

= E
∫︂
R

[︂ ˆ︁fn(x)
]︂2

dx − 2E
∫︂
R
ˆ︁fn(x)f(x)dx +

∫︂
R

[︂
f(x)

]︂2
dx. (1.8)

Note that only the first two terms of the equation (1.8) depend on the bandwidth.
Obviously, the unbiased estimator of the first term is

∫︁
R

[︂ ˆ︁fn(x)
]︂2

. At first
glance, it may seem that the estimator defined in this way is challenging to
compute. However, it can actually be computed directly from the random sam-
ple X1, . . . , Xn, as

∫︂
R

[︂ ˆ︁fn(x)
]︂2

dx =
∫︂
R

[︄
1

nhn

n∑︂
i=1

K
(︃

Xi − x

hn

)︃]︄2

dx

= 1
(nhn)2

n∑︂
i=1

n∑︂
j=1

∫︂
R

K
(︃

Xi − x

hn

)︃
K
(︃

Xj − x

hn

)︃
dx

= 1
n2hn

n∑︂
i=1

n∑︂
j=1

∫︂
R

K(u)K
(︃

u + Xj − Xi

hn

)︃
du

= 1
n2hn

n∑︂
i=1

n∑︂
j=1

∫︂
R

K(u)K
(︃

u − Xi − Xj

hn

)︃
du.

One can see that the integral from the last expression reminds one of convolution.
Assuming that K is symmetric, which is satisfied in many cases, one indeed gets
convolution. Denote ˜︂K(t) =

∫︁
R K(u)K(t − u)du. Then, for a symmetric kernel

function K, it holds that
∫︂
R

[︂ ˆ︁fn(x)
]︂2

dx = 1
n2hn

n∑︂
i=1

n∑︂
j=1

˜︂K (︃
Xi − Xj

hn

)︃
.

If K(u) = exp(−u2/2)/
√

2π, which is a standard normal kernel, then the convo-
lution ˜︂K(t) = 1√

4π
exp

(︄
−t2

4

)︄
,

is a normal density with mean zero and variance two. This holds true because
the sum of two independent N(0, 1) random variables results in a random variable
with N(0, 2) distribution. This illustrates that

∫︁
R

[︂ ˆ︁fn(x)
]︂2

dx could be calculated
explicitly.

It remains to find an unbiased estimator for An = E
∫︁
R
ˆ︁fn(x)f(x)dx. Let X

be a random variable with the same distribution as X1 and independent from the
random sample X1, . . . , Xn. Then, it holds

An = E ˆ︁fn(X).
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Define the following estimator

ˆ︁An = 1
n

n∑︂
i=1

ˆ︁f−i(Xi),

where ˆ︁f−i(x) = 1
(n − 1)hn

n∑︂
j=1,j ̸=i

K
(︃

Xj − x

hn

)︃
is the estimate of f(x) that is based on the sample without the i-th observation Xi,
where i ∈ {1, ..., n}. From the definition of the function ˆ︁f−i, one can observe a
general principle of cross-validation. In this particular situation, the estimator
was ’trained’ on all observations except for one. Such cross-validation technique
is usually referred to as leave-one-out cross-validation.

Now, compute the expected value of individual terms in the estimator ˆ︁An

E ˆ︁f−i (Xi) = E

⎡⎣ 1
(n − 1)hn

n∑︂
j=1,j ̸=i

K
(︃

Xj − Xi

hn

)︃⎤⎦ = 1
hn

EK
(︃

X1 − X2

hn

)︃

= 1
hn

∫︂
R

∫︂
R

K
(︃

y − x

hn

)︃
f(x)f(y)dx dy

=
∫︂
R

[︃∫︂
R

1
hn

K
(︃

y − x

hn

)︃
f(y)dy

]︃
f(x)dx

=
∫︂
R
E ˆ︁fn(x)f(x)dx

Fubini= E
∫︂
R
ˆ︁fn(x)f(x)dx.

Since X1, ..., Xn are identically distributed, ˆ︁An is an unbiased estimator of An.
Unbiased estimators were found for the first two terms of the equation (1.8).

Therefore, define the following function

L(hn) =
∫︂
R

[︂ ˆ︁fn(x)
]︂2

dx − 2
n

n∑︂
i=1

ˆ︁f−i(Xi).

This function can be understood as an estimate of the part of MISE that depends
on hn. In other words, L(hn) is an unbiased estimate of the shifted MISE( ˆ︁fn).
Generally, one aims to minimize MISE, thus the bandwidth is selected as

h(LCSV )
n = arg min

hn>0
L(hn). (1.9)

Further, the following notation ISE(hn) =
∫︁
R

(︂ ˆ︁fn(x) − f(x)
)︂2

dx will be used.
Note that ISE(hn) represents the integrated squared error of the kernel density
estimator ˆ︁fn and typically is denoted as ISE( ˆ︁fn). However, in this context, ISE
is considered as a function of the bandwidth hn.

The next theorem justifies that h(LSCV )
n is asymptotically optimal in terms of

minimizing ISE.

Theorem 2. Let X1, . . . , Xn be a random sample with a common probability
density function f(x). Assume that the density f is a bounded function. Further,
let the kernel function K satisfy the following conditions:

9



(B1)
∫︁
R K(u)du = 1,

(B2) K is symmetric about the origin and has compact support,

(B3) ˜︂K(0) < 2K(0), where ˜︂K denotes the convolution of K with itself,

(B4) K is Hölder continuous, i.e., there exist β > 0 and α > 0 such that

|K(y) − K(x)| < α|y − x|β ∀y, x ∈ R.

Then
ISE(h(LSCV )

n )
minhn ISE(hn)

a.s.−→
n→∞

1.

The general proof in multivariate settings is presented in Stone [1984].
Remark.

• The second assumption (B2) requires that K has a compact support. In
the above text, the standard normal kernel has always been considered for
illustrative purposes, which does not have bounded support. In Wand and
Jones [1995] (Section 2.7), it is shown that among non-negative kernels,
the optimal one is the so-called Epanechnikov kernel, which is defined as
follows:

K(u) =
⎧⎨⎩

3
4 (1 − u2) for |u| ≤ 1,

0 otherwise.
(1.10)

Note that the Epanechnikov kernel has a compact support [−1, 1]. Also,
this kernel is Hölder continuous because it is continuously differentiable on
its compact support and is otherwise defined as zero.
In general, restricting the kernel to compact support allows for simpler
proofs with more powerful asymptotic results. However, in practical ap-
plications, kernels with unbounded support, such as the standard normal
kernel, are very popular.

• The assumption (B3) is satisfied if the kernel K is nonnegative and K(0) =
maxu∈R K(u), as

˜︂K(0) =
∫︂
R

K2(u)du ≤ maxu∈R K(u)
∫︂
R

K(u)du = K(0) < 2K(0).

Hence, according to Theorem 2, cross-validated smoothing parameter selection
is asymptotically optimal in terms of minimizing the integrated squared error.
Despite the strong theoretical attractiveness of least square cross-validation, it
was demonstrated in Hall and Marron [1987] that the variance of h(LSCV )

n (for
not too big sample sizes) is rather large.
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1.2.4 Biased cross-validation
Due to the limitations of least square cross-validation, another bandwidth

selector known as biased cross-validation was proposed. In general, biased cross-
validation can be seen as a hybrid approach. It combines elements of both cross-
validation and ’plug-in’ bandwidth selection, as will be shown later.

Recall the defintion of AMISE given by (1.4), which is

AMISE( ˆ︁fn) = R(K)
nhn

+ h4
n

R(f ′′)µ2
2

4 ,

where R(f ′′) =
∫︁
R[f ′′(x)]2dx. Note that in the expression of AMISE, the only

quantity that is not known is R(f ′′). One can consider R( ˆ︁f ′′
n) as a natural esti-

mator of R(f ′′).

Lemma 3. Consider a random sample X1, . . . , Xn with a common probability
density function f . Assume that the following conditions are satisfied.

• K is a symmetric, non-negative, two times continuously differentiable kernel
function with a bounded support [−1, 1], and

∫︁ 1
−1 K(u)du = 1. Additionally,

suppose that K(±1) = 0 and K ′(±1) = 0.

• f is four times continuously differentiable and it holds that

sup
x∈R

|f ′′(x)| < ∞. (1.11)

Also, suppose that there exists δ0 > 0 such that∫︂
R

sup
η∈[−δ0,δ0]

[︂
f (4)(x + η)

]︂2
dx < ∞. (1.12)

• hn ↘ 0 as n → ∞ and (nh2
n)−1 = O(1).

Then the following holds

ER
(︂ ˆ︁f ′′

n

)︂
= R(f ′′) + R(K ′′)

nh5
n

+ O(h2
n).

Proof. Since K is symmetric, one has

ˆ︁fn(x) = 1
nhn

n∑︂
i=1

K
(︃

Xi − x

hn

)︃
= 1

nhn

n∑︂
i=1

K
(︃

x − Xi

hn

)︃
.

By differentiating twice with respect to the variable x, one obtains

ˆ︁f ′′
n(x) = 1

nh3
n

n∑︂
i=1

K ′′
(︃

x − Xi

hn

)︃
.

Hence, one gets that

ER
(︂ ˆ︁f ′′

n

)︂
= E

∫︂
R

[︂ ˆ︁f ′′
n(x)

]︂2
dx

= E
∫︂
R

⎛⎝ 1
n2h6

n

n∑︂
i=1

n∑︂
j=1

K ′′
(︃

x − Xi

hn

)︃
K ′′

(︃
x − Xj

hn

)︃⎞⎠ dx
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= 1
n2h6

n

n∑︂
i=1

E
∫︂
R

[︃
K ′′

(︃
x − Xi

hn

)︃]︃2
dx⏞ ⏟⏟ ⏞

Qn
1 =

+ 1
n2h6

n

n∑︂
i=1

∑︂
j ̸=i

E
∫︂
R

K ′′
(︃

x − Xi

hn

)︃
K ′′

(︃
x − Xj

hn

)︃
dx

⏞ ⏟⏟ ⏞
Qn

2 =

. (1.13)

By using the substitution u = x−Xi

hn
, where i = 1, . . . , n, it holds that

∫︂
R

[︃
K ′′

(︃
x − Xi

hn

)︃]︃2
dx = hn

∫︂
R
[K ′′(u)]2du = hnR(K ′′). (1.14)

Therefore, one obtains the following equation

Qn
1 = 1

n2h6
n

n∑︂
i=1

E
∫︂
R

[︃
K ′′

(︃
x − Xi

hn

)︃]︃2
dx

(1.14)= R(K ′′)
nh5

n

. (1.15)

Since X1, . . . , Xn are independent and identically distributed random variables,
the second term Qn

2 in (1.13) can be expressed as follows

Qn
2 = (n − 1)

nh6
n

∫︂
R

[︃
EK ′′

(︃
x − Xi

hn

)︃]︃2
dx

= (n − 1)
nh4

n

∫︂
R

⎡⎢⎢⎢⎢⎣
∫︂
R

K ′′(u)f(x − hnu) du⏞ ⏟⏟ ⏞
Qn

3 (x)=

⎤⎥⎥⎥⎥⎦
2

dx. (1.16)

The lemma assumes that f is four times continuously differentiable. Therefore,
by employing the Lagrange form of the remainder (see Bartle and Sherbert [2011],
Theorem 6.4.1), one obtains that for sufficiently large n.

Qn
3 (x) = f(x)

∫︂
R

K ′′(u)du − hnf ′(x)
∫︂
R

uK ′′(u)du + h2
nf ′′(x)

2!

∫︂
R

u2K ′′(u)du

− h3
nf (3)(x)

3!

∫︂
R

u3K ′′(u)du + h4
n

4!

∫︂
R

u4K ′′(u)f (4)(ξu
x,n)du, (1.17)

where ξu
x,n is between x and x−hnu. Since K is an even function, then K ′ is an odd

function and K ′′ is an even function. Hence
∫︁
R uK ′′(u)du =

∫︁
R u3K ′′(u)du = 0.

Furthermore, with the help of conditions on K, note that∫︂
R

K ′′(u)du =
∫︂ 1

−1
K ′′(u)du = K ′(1) − K ′(−1) = 0,

∫︂
R

u2K ′′(u)du =
∫︂ 1

−1
u2K ′′(u)du = [u2K ′(u)]1−1 − 2

∫︂ 1

−1
uK ′(u)du

= [u2K ′(u)]1−1 − 2[uK(u)]1−1 + 2
∫︂ 1

−1
K(u)du = 2.
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Overall with the help of (1.17), one obtains the following

Qn
3 (x) = h2

nf ′′(x) + h4
n

4!

∫︂ 1

−1
u4K ′′(u)f (4)(ξu

x,n)du.

Note that it is possible to rewrite∫︂
R

[︂
Qn

3 (x)
]︂2

dx = h4
nR(f ′′) +

∫︂
R

an(x)dx +
∫︂
R

bn(x)dx, (1.18)

where the functions an(x) and bn(x) are defined as

an(x) = h6
nf ′′(x)

12

∫︂ 1

−1
u4K ′′(u)f (4)(ξu

x,n)du,

bn(x) = h8
n

(4!)2

[︃∫︂ 1

−1
u4K ′′(u)f (4)(ξu

x,n)du
]︃2

.

First, by employing Hölder’s inequality, one can bound an(x) as

|an(x)| ≤ h6
n|f ′′(x)|

12

∫︂ 1

−1
u4
⃓⃓⃓
K ′′(u)f (4)(ξu

x,n)
⃓⃓⃓
du

Hölder
≤ h6

n|f ′′(x)|
12

(︃∫︂ 1

−1
u8
[︂
K ′′(u)

]︂2
du
)︃ 1

2
(︃∫︂ 1

−1

[︂
f (4)(ξu

x,n)
]︂2

du
)︃ 1

2

≤ h6
n|f ′′(x)|

12

(︃∫︂ 1

−1
u8
[︂
K ′′(u)

]︂2
du
)︃(︃∫︂ 1

−1

[︂
f (4)(ξu

x,n)
]︂2

du
)︃

≤ h6
n|f ′′(x)|

12 sup
u∈[−1,1]

[︂
K ′′(u)

]︂2
⏞ ⏟⏟ ⏞
<∞ by assump. on K

(︃∫︂ 1

−1
u8du

)︃(︃∫︂ 1

−1

[︂
f (4)(ξu

x,n)
]︂2

du
)︃

≤
(︃∫︂ 1

−1

[︂
f (4)(ξu

x,n)
]︂2

du
)︃

|f ′′(x)|O(h6
n). (1.19)

Note that for sufficiently large n, it holds for all real x and u

ξu
x,n ∈

(︂
min{x − δ0u, x}, max{x − δ0u, x}

)︂
.

Therefore, with the help of (1.19), one obtains the following

|an(x)| ≤
(︄∫︂ 1

−1
sup

δ∈[−δ0,δ0]

[︂
f (4)(x + uδ)

]︂2
du

)︄
|f ′′(x)|O(h6

n)

≤
(︄

2 sup
η∈[−δ0,δ0]

[︂
f (4)(x + η)

]︂2)︄
|f ′′(x)|O(h6

n)

≤
(︄

sup
η∈[−δ0,δ0]

[︂
f (4)(x + η)

]︂2)︄ (︄
sup
x∈R

|f ′′(x)|
)︄

⏞ ⏟⏟ ⏞
<∞ by assump. (1.11)

O(h6
n)

≤
(︄

sup
η∈[−δ0,δ0]

[︂
f (4)(x + η)

]︂2)︄
O(h6

n). (1.20)
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Now, by using Jensen’s inequality, bound bn(x)

|bn(x)|
Jensen

≤ h8
n

(4!)2

∫︂ 1

−1
u8
[︂
K ′′(u)

]︂2[︂
f (4)(ξu

x,n)
]︂2

du

≤ h8
n

(4!)2 sup
u∈[−1,1]

[︂
K ′′(u)

]︂2
⏞ ⏟⏟ ⏞
<∞ by assump. on K

∫︂ 1

−1

[︂
f (4)(ξu

x,n)
]︂2

du

≤
(︄∫︂ 1

−1
sup

δ∈[−δ0,δ0]

[︂
f (4)(x + uδ)

]︂2
du

)︄
O(h8

n)

≤
(︄

sup
η∈[−δ0,δ0]

[︂
f (4)(x + η)

]︂2)︄
O(h8

n). (1.21)

From (1.12), (1.20) and (1.21), one can get that⃓⃓⃓⃓∫︂
R

an(x)dx +
∫︂
R

bn(x)dx

⃓⃓⃓⃓
≤
∫︂
R

|an(x)|dx +
∫︂
R

|bn(x)|dx

≤ O(h6
n) + O(h8

n) = O(h6
n). (1.22)

Thus, by employing (1.18) and (1.22), one obtains that∫︂
R

[︂
Qn

3 (x)
]︂2

dx = h4
nR(f ′′) + O(h6

n). (1.23)

Therefore, from (1.16) and (1.23), it follows that

Qn
2 = n − 1

nh4
n

∫︂
R

[︂
Qn

3 (x)
]︂2

dx = n − 1
nh4

n

(︂
h4

nR(f ′′) + O(h6
n)
)︂

= n − 1
n

R(f ′′) + n − 1
n

O(h2
n) = R(f ′′) + O(h2

n), (1.24)

where the last equation holds because of the assumption (nh2
n)−1 = O(1). Overall,

by combining (1.13), (1.15) and (1.24), one can derive the statement of the Lemma

ER
(︂ ˆ︁f ′′

n

)︂
= R(f ′′) + R(K ′′)

nh5
n

+ O(h2
n).

Remark.

• According to the previous lemma, it holds that the bias of R( ˆ︁f ′′
n) with

respect to R(f ′′) is

ER( ˆ︁f ′′
n) − R(f ′′) = R(K ′′)

nh5
n

+ O(h2
n).

If hn decreases towards zero sufficiently quickly, more precisely, it must
hold that hn = o(n− 1

7 ). Then, for sufficiently large n, the term R(K′′)
nh5

n
would

dominate over the term O(h2
n).
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• Note that for the asymptotically optimal global bandwidth, defined in (1.5),
it holds that h(opt)

n = O(n− 1
5 ). Hence, h(opt)

n satisfies the conditions of the
lemma.

The analogy of the lemma can be proved for higher-order derivatives, see
Scott and Terrell [1987](Lemma 3.2). However, the authors of that paper do
not discuss the rate of convergence of the residual term. Therefore, they do not
consider conditions (1.11) and (1.12). The natural question is which densities
satisfy those conditions. It is worth noting that densities that are four times
continuously differentiable and have bounded support satisfy conditions (1.11)
and (1.12).

Assume that f is the density of N(0, 1). It is evident that f is 4 times contin-
uously differentiable and satisfies condition (1.11). Now, it will be shown that f
also satisfies the second condition (1.12). It could be calculated that

f (4)(x) = e− x2
2 p4(x),

where p4(x) is a polynomial of the fourth degree. Note that there exist C > 0
and K > 0 such that for all x ≥ K, it holds that

sup
η∈[−δ0,δ0]

[︂
f (4)(x + η)

]︂2
= sup

η∈[−δ0,δ0]

⃓⃓⃓
e−(x+η)2

p2
4(x + η)

⃓⃓⃓

≤ C sup
η∈[−δ0,δ0]

⃓⃓⃓
e−(x+η)2(x + η)8

⃓⃓⃓
≤ Ce−(x−δ0)2(x + δ0)8 (1.25)

and for all x ≤ −K, it holds that

sup
η∈[−δ0,δ0]

[︂
f (4)(x + η)

]︂2
≤ Ce−(x+δ0)2(x − δ0)8. (1.26)

Therefore, with the help of (1.25) and (1.26), one obtains the following∫︂
R

sup
η∈[−δ0,δ0]

[︂
f (4)(x + η)

]︂2
dx ≤ 2K sup

|x|≤K

sup
η∈[−δ0,δ0]

[︂
f (4)(x + η)

]︂2

+ C
∫︂ ∞

K
e−(x−δ0)2(x + δ0)8dx + C

∫︂ −K

−∞
e−(x+δ0)2(x − δ0)8dx < ∞.

The result of Lemma 3 is that R( ˆ︁f ′′
n) is an asymptotically positively biased

estimator of R(f ′′). That is why, as an approximation of R(f ′′), one will use
R( ˆ︁f ′′

n) − R(K′′)
nh5

n
instead. Therefore, in this method, the bandwidth is selected as

h(BCV )
n = arg min

hn>0
B(hn), (1.27)

where
B(hn) = R(K)

nhn

+ 1
4h4

nµ2
2

[︄
R( ˆ︁f ′′

n) − R(K ′′)
nh5

n

]︄
(1.28)

is the estimated counterpart of AMISE. At the beginning of the chapter, it is
mentioned that biased cross-validation combines elements of both cross-validation
and ’plug-in’ bandwidth selection. It is apparent how the ’plug-in’ method was

15



employed in formula (1.28). However, it is not entirely clear from (1.28) at which
step the cross-validation approach was applied. From the proof of Lemma 3 one
can deduce that

R( ˆ︁f ′′
n) − R(K ′′)

nh5
n

= 1
n2h5

n

n∑︂
i=1

∑︂
j ̸=i

∫︂
R

K ′′(u)K ′′
(︃

u + Xi − Xj

hn

)︃
du,

which could be interpreted as leave-out-diagonals cross-validation.
The next theorem demonstrates the asymptotic equivalence between biased

cross-validation and the asymptotically optimal global bandwidth. For the pur-
pose of the next theorem, it will be useful to define

h
(BCV )
n,b = arg min

0<hn<bh
(opt)
n

B(hn), (1.29)

where b > 1 and h(opt)
n is the asymptotically optimal global bandwidth defined

in (1.5).

Theorem 4. Let X1, . . . , Xn be a random sample with common probability density
function f(x). Suppose that the following conditions hold:

(C1) f (3) is absolutely continuous, f (4) is integrable, and also assume that

R
(︂
f (4)(f) 1

2
)︂

< ∞ and R
(︂
(f (4)) 1

2 f
)︂

< ∞.

(C2) K ≥ 0 symmetric on [−1, 1], K ′ is Hölder continuous and µ2 < ∞.

(C3) K ′′ is absolutely continuous, K(3) is continuous and R(K(3)) < ∞.

Then, for each b > 1, it holds that

h
(BCV )
n,b

h
(opt)
n

P−→
n→∞

1.

The proof is given in Scott and Terrell [1987] (Corollary 3.2).
Remark.

• Note that Theorem 4 presents a significantly different result compared to
Theorem 2. The latter asserts that the bandwidth selected by the least
squares cross-validation h(LSCV )

n is asymptotically optimal in the sense of
minimizing integrated square error. In contrast, Theorem 4 states that the
bandwidth chosen by the biased cross-validation h

(BCV )
n,b is asymptotically

equal to h(opt)
n . Another thing to note is that h

(BCV )
n,b minimizes B(hn) over

the finite interval (0, bh(opt)
n ), where b > 1. On the other hand, h(LSCV )

n

minimizes L(hn) over (0, ∞).

• Note that the conditions on the kernel function from Theorem 4 are stronger
than those from Theorem 2. For example, the Epanechnikov kernel satisfies
all the conditions (B1)−(B4) from Theorem 2. However, the simplest kernel
that satisfies conditions (C2) and (C3) is the triweight kernel, defined as
follows

K(t) = 35
32(1 − t2)3I[−1,1](t).
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Additionally, both the triweight kernel and the Epanechnikov kernel are
functions that belong to the so-called ’symmetric Beta family’, which is the
following set {︄

1
Beta(1/2, γ + 1)

[︂
(1 − t2)+

]︂γ
: γ ∈ R+

}︄
. (1.30)

The subscript + denotes the positive part, and Beta(·, ·) represents a Beta
function. As noted in Marron and Nolan [1988], Section 4, the standard
normal kernel does not belong to (1.30), but it is obtained by taking the
limit γ → ∞.

1.3 Simulation Study
In this section, different bandwidth selectors will be compared on simulated

data. The underlying probability density functions chosen for data simulations
include:

• The standard normal density N(0, 1).

• The mixture of normal densities with different means
0.5 N(−10, 1) + 0.5 N(10, 1).

The sample sizes considered here are n = 100 and n = 400. In the simulation
study, the standard normal kernel is used. Each setting involves the use of 500
Monte Carlo repetitions. Mean integrated squared errors (MISE) are compared
to evaluate bandwidth selectors. All results of the simulation study are presented
in Table 1.1. Each row in the first column of the table corresponds to a specific
method of bandwidth selection, with labels summarized as follows

• Optimal: Asymptotically optimal global bandwidth, h(opt)
n , which is defined

in (1.5).

• NR: The normal reference rule, h(NR)
n , as defined in (1.6).

• MNR: Modification of the normal reference rule, h(MNR)
n , defined in (1.7).

• LSCV: Least-squares cross-validation, h(LSCV )
n , which is defined in (1.9).

• BCV: Biased cross-validation, h(BCV )
n , defined in (1.27).

The simulations were conducted using statistical software R Core Team [2023a].
For kernel density estimation, the density function from the package R Core Team
[2023b] was used. One of the arguments of this function allows for choosing an
appropriate method for bandwidth selection. Note that Optimal, NR, and MNR can
be computed straightforwardly. However, to use LSCV and BCV, one should specify
a finite interval over which cross-validation is conducted. All cross-validation
results from Table 1.1 are based on the following interval (0.1 ˆ︁hmax, ˆ︁hmax), whereˆ︁hmax is given by ˆ︁hmax = 1.144 n− 1

5 Sn,

and Sn =
√︂

1
n−1

∑︁n
i=1(Xi − Xn)2 represents the sample standard deviation. This

interval (0.1 ˆ︁hmax, ˆ︁hmax) is recommended by default settings within the density
function.
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1.3.1 Monte Carlo
By using Fubini’s theorem, it holds that

MISE( ˆ︁fn) =
∫︂
R

MSE( ˆ︁fn(x))dx
Fubini= E

∫︂
R
( ˆ︁fn(x) − f(x))2dx = E

[︂
ISE( ˆ︁fn)

]︂
.

One may observe that MISE( ˆ︁fn) can be approximated using the law of large
numbers because it can be represented as an expectation.

To estimate MISE( ˆ︁fn), where n is fixed, one will require a Monte Carlo ap-
proach. Consider random samples Xb

1, . . . , Xb
n from a standard normal distribu-

tion or a mean mixture distribution, which are independent for b = 1, . . . , B. In
the simulation study, it is considered that n = 100 (or n = 400) and B = 500. As
the kernel function, the standard normal kernel will be considered. The kernel
density estimator from the b-th sample will be denoted as ˆ︁f b

n. The integrated
squared error of ˆ︁f b

n has the following form

ISE( ˆ︁f b
n) =

∫︂
R

[︂ ˆ︁f b
n(x) − f(x)

]︂2
dx. (1.31)

It is obvious that ISE( ˆ︁f b
n) is random, i.e., it depends on the realization of the b-th

random sample. To approximate (1.31), the integrate function from the package
R Core Team [2023b] was used.

After applying the strong law of large numbers one can get

ISEB = 1
B

B∑︂
b=1

ISE( ˆ︁f b
n) a.s.−→

B→∞
MISE( ˆ︁fn).

Analogously, by the law of large numbers, it holds that

ˆ︁σ2
B = 1

B − 1

B∑︂
b=1

(︂
ISE( ˆ︁f b

n) − ISEB

)︂2 a.s.−→
B→∞

var
[︂
ISE( ˆ︁fn)

]︂
.

Then, by combining the Central Limit Theorem and Cramér-Slucky Theorem,
one can obtain √

B
[︂
ISEB − MISE( ˆ︁fn)

]︂
ˆ︁σB

D−→
B→∞

N(0, 1).

This asymptotic result justifies a 100(1 − α)% confidence interval for MISE( ˆ︁fn)(︄
ISEB ±

u(1 − α
2 )ˆ︁σB√

B

)︄
, (1.32)

where u(1 − α
2 ) represents the (1 − α

2 )-quantile of N(0, 1). The third column in
Table 1.1, 100(1 − α)% Monte Carlo Confidence Interval of MISE, corresponds
to the confidence interval (1.32).

1.3.2 Discussion of results
From Table 1.1, one observes that in all cases, the lowest Monte Carlo ap-

proximation of MISE is provided by the asymptotically optimal global bandwidth
h(opt)

n . In practical applications, it is impossible to calculate h(opt)
n as one does not
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know the true density f(x). The next observation is that if the true distribution
is standard normal, biased cross-validation performs better than least-squares
cross-validation. This is evident as the confidence intervals for MISE when the
BCV method is employed are disjointly shifted downward from those of the LSCV
method. However, if the true distribution is a mixture of normal distributions,
then conversely, LSCV performs better than BCV. Also, if the underlying distri-
bution is a mixture of normal distributions, then it can be observed that least-
squares cross-validation is the best choice among all the provided data-driven
methods. Note that its confidence intervals are more similar to the optimal
choice for a larger sample size (see the results in Table 1.1 for n=400). In the
case when the underlying distribution is standard normal, one observes that the
normal reference rule performs as well as biased cross-validation because their
confidence intervals for MISE are similar.

If the underlying distribution is a mixture of normal distributions, it results
in a bimodal distribution. This bimodal distribution deviates significantly from
normality. As a consequence, the performance of the normal reference rule is
very poor, as expected. Additionally, h(MNR)

n exhibits better performance on
MISE than h(NR)

n because their confidence intervals for MISE do not overlap.
However, if the underlying distribution is standard normal, the MNR method does
not provide such significant an improvement. In general, one can see that the
results of the simulation study correspond to the previous discussions.

In the fourth column of Table 1.1, median values of bandwidths calculated
from simulations are presented. It can be seen that if data were generated from a
standard normal distribution, then median values of bandwidths for the Optimal,
NR, LSCV, and BCV methods are quite similar. However, the median values of
bandwidths for the MNR method are shifted downward compared to the Optimal
method. This indicates that density estimates with bandwidths selected by the
MNR method generally under-smooth.

Additionally, if data were generated from a mixture of normal distributions,
a big difference can be observed in the median values of bandwidths between the
Optimal method and the normal reference rule methods, such as the NR and MNR
methods. In other words, density estimates computed from normal reference rule
methods tend to over-smooth.
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Density function Monte Carlo
Approx. of MISE

95% Monte Carlo
Conf. Interval of MISE

Median of
bandwidths

Standard normal
n = 100
Optimal 5.439 (5.055, 5.823) 0.422
NR 5.914 (5.518, 6.310) 0.402
MNR 6.543 (6.129, 6.957) 0.342
LSCV 7.731 (7.053, 8.409) 0.429
BCV 5.720 (5.324, 6.116) 0.447
n = 400
Optimal 1.948 (1.836, 2.060) 0.320
NR 2.016 (1.902, 2.130) 0.314
MNR 2.189 (2.075, 2.303) 0.267
LSCV 2.596 (2.408, 2.784) 0.331
BCV 2.016 (1.900, 2.132) 0.338
Mixture of normal

distributions
n = 100
Optimal 5.608 (5.341, 5.875) 0.484
NR 84.687 (84.638, 84.736) 4.245
MNR 76.098 (76.039, 76.157) 3.604
LSCV 5.949 (5.675, 6.223) 0.558
BCV 88.304 (88.257, 88.351) 4.563
n = 400
Optimal 1.908 (1.814, 2.002) 0.367
NR 69.504 (69.473, 69.535) 3.214
MNR 59.972 (59.935, 60.009) 2.729
LSCV 1.992 (1.892, 2.092) 0.394
BCV 11.524 (9.405, 13.643) 0.427

Table 1.1: Results are based on 500 Monte Carlo replications. The underlying
generative mechanism includes the Standard normal distribution N(0, 1) and
the Mixture of normal distributions 0.5 N(−10, 1) + 0.5 N(10, 1). In each
case, kernel density estimators were fitted using a standard normal kernel. For
better presentation, all results were multiplied by 1000.
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2. Kernel regression
In the previous chapter, the task of estimating the probability density func-

tion using the kernel density estimator was studied. Another common scenario
where kernel smoothing concepts find application is in the context of regression
problems. In this chapter, it is assumed that

(︂
X1
Y1

)︂
, . . . ,

(︂
Xn

Yn

)︂
are independent and

identically distributed random vectors. Also, it is assumed that the observations
satisfy the following model for all i = 1, . . . , n

Yi = m(Xi) + εi, (2.1)

where m(x) = E[Y1|X1 = x] for x ∈ R and conditionally on X = (X1, . . . , Xn),
error terms ε1, . . . , εn are independent and identically distributed. The first two
conditional moments satisfy E[εi|Xi] = 0 and var[εi|Xi] < ∞.

The natural idea would be to estimate m using linear regression, which im-
plies that m belongs to a specific parametric family. Here, as in Chapter 1, the
focus will be on nonparametric approaches, i.e., no parametric form for m will
be assumed. This method leads to what is commonly known as nonparametric
regression. Nonparametric approaches for estimating the conditional mean func-
tion, m, are valuable when the relationship between the covariate and the response
variable is complex. Currently, there are various methods available for addressing
the nonparametric regression problem. Among the commonly favored approaches
are those centered around kernel functions, spline functions, and wavelets. In this
chapter, the focus will be on those methods based on kernel functions, specifically
kernel regression, due to their close relationship to kernel density estimation.

This chapter is based on Chapters 3 and 4 of Fan and Gijbels [1996] and the
course notes Nagy and Omelka [2024].

2.1 Framework for local polynomial regression
In the context of kernel regression, the traditional approach is local polynomial

regression. This approach locally fits a polynomial at a particular point x ∈ R.
Suppose that K is some prespecified kernel function. Define vector ˆ︁β(x) =(︂ ˆ︁β0(x), . . . , ˆ︁βp(x)

)︂T
as the minimizer of the following quantity

n∑︂
i=1

⎡⎣Yi −
p∑︂

j=0
bj(Xi − x)j

⎤⎦2

K
(︃

Xi − x

hn

)︃
, (2.2)

where hn is a bandwidth controlling the size of the local neighborhood, and the
terms K

(︂
Xi−x

hn

)︂
represent the weights assigned to each data point. In Fan and

Gijbels [1996], it is shown on page 58 that the optimization task (2.2) could be
reformulated as the weighted least squares problem.

The form of the optimization problem (2.2) arises from the following motiva-
tion. Assume that the conditional mean function m is sufficiently smooth. Then,
for a point y in the neighborhood of x, the following approximation holds

m(y) ≈
p∑︂

j=0
bj(y − x)j. (2.3)
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Therefore, the main interest is in the estimate of the intercept ˆ︁β0(x) since it
estimates the conditional mean m(x). This interest arises from (2.3), where it
is observed that m(x) ≈ b0. Instead of ˆ︁β0(x), the notation ˆ︂mp(x) will be used,
indicating the order of local polynomial regression.

From the expression (2.2), it is evident that the local polynomial estimator is
influenced by the following factors:

1. the kernel function K,

2. the degree of polynomial approximation p,

3. the choice of bandwidth hn.

In terms of the selection of the kernel function K, Theorem 3.4 of Fan and Gijbels
[1996] illustrates that the Epanechnikov kernel, as defined in (1.10), is optimal
among symmetric and nonnegative kernels. Regarding the determination of the
appropriate order p, Section 3.3.3 of Fan and Gijbels [1996] presents several data-
driven procedures. Therefore, the main focus here will be primarily on the choice
of the bandwidth hn.

2.1.1 Asymptotic representation of bias and variance
In the next section, the bandwidth selection problem will be discussed. Here,

as in Chapter 1, criteria for bandwidth selection will be based on MSE. Therefore,
gaining insights about the bias and variance of the defined estimators is necessary.
Here, one would need the conditional variance function denoted as

σ2(x) = var[Y1|X1 = x] for x ∈ R.

In Theorem 3.1 of Fan and Gijbels [1996], it is demonstrated that given certain
regularity assumptions on m(·), σ2(·), the marginal density fX(·), and the ker-
nel K, for every p ∈ N0, there exist constants Vp such that the following relation
holds

var
(︂ˆ︂mp(x)|X

)︂
= Vpσ2(x)

fX(x)nhn

+ oP

(︃ 1
nhn

)︃
, (2.4)

where V0 = V1 < V2 = V3 < V4 = V5 < . . ., and so forth. Moreover, for odd
values of p, there are constants Bp such that the asymptotic conditional bias is
expressed as

bias
(︂ˆ︂mp(x)|X

)︂
= Bphp+1

n m(p+1)(x) + oP (hp+1
n ). (2.5)

Conversely, for even values of p, there exist constants ˜︁Bp such that the conditional
bias takes the form

bias
(︂ˆ︂mp(x)|X

)︂
= ˜︂Bphp+2

n

[︄
m(p+2)(x) + (p + 2)m(p+1)(x)f ′

X(x)
fX(x)

]︄
+ oP (hp+2

n ). (2.6)

One can observe that if p is even, then it holds that the conditional biases of ˆ︂mp(x)
and ˆ︂mp+1(x) are both of the same order OP (hp+2

n ). However, the conditional bias
of ˆ︂mp+1(x) has a simpler structure compared to that of ˆ︂mp(x). Regarding the
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conditional variance from (2.4), it can be observed that the main term remains
the same for p and p + 1 if p is even. Therefore, when p is even, it is reasonable
to increase the order from p to p + 1. This adjustment preserves the conditional
variance without increasing it, while also potentially reducing bias.

If one wants to explicitly express constants Vp, Bp, and ˜︁Bp, it will be useful
to introduce the following notation

µj =
∫︂
R

yjK(y)dy and νj =
∫︂
R

yjK2(y)dy, (2.7)

where j ∈ {0, 1, . . . , p}. Additionally, one would need the following matrices and
vectors

Sp = (µj+l)0≤j,l≤p cp = (µp+1, . . . , µ2p+1)T

S∗
p = (νj+l)0≤j,l≤p ˜︁cp = (µp+2, . . . , µ2p+2)T .

Then the following holds (also see Fan and Gijbels [1996], Theorem 3.1)

Vp = eT
1 S−1

p S∗
pS−1

p e1, where e1 = (1, 0, . . . , 0)T ∈ Rp+1, (2.8)

Bp =
eT

1 S−1
p cp

(p + 1)! for p odd, (2.9)

˜︂Bp =
eT

1 S−1
p ˜︁cp

(p + 2)! for p even. (2.10)

2.2 Bandwidth selection

2.2.1 Asymptotic approximation
Bandwidth selection is a crucial aspect of how accurately kernel regression

would perform. A bandwidth that is too large may over-smooth the regression
function, while a bandwidth that is too small may under-smooth the regression
function. In this section, similarly to Chapter 1, the mean squared error will
be used to assess the accuracy of a kernel regression. In practical applications,
it is popular to choose p small due to the simpler expression of conditional bias
and variance. Therefore, the local linear estimator ˆ︂m1(x) will be employed for
estimating m(x). Also, the choice of ˆ︂m1(x) is justified due to its simpler bias
structure, compared to ˆ︂m0(x), as shown in (2.5) and (2.6).

First, note that expressions for the conditional variance in (2.4) and condi-
tional biases (2.5) and (2.6) are derived under some regularity assumptions on K.
Specifically, it is assumed that the kernel K is bounded, symmetric around zero,
positive on its bounded support (−1, 1), and such that

∫︁ 1
−1 K(t)dt = 1. Therefore,

it holds that µ0 = 1, and for odd p, it holds that µp = 0, where µp is defined
in (2.7).

To obtain explicit expressions for the conditional bias and variance of ˆ︂m1, it
is needed to calculate V1 from (2.8) and B1 from (2.9). Note that (2.4) reveals
that V0 = V1, hence V0 can be calculated instead. Therefore

V0 = S−1
0 S∗

0S−1
0 = ν0

µ2
0

= ν0, where S0 = µ0 and S∗
0 = ν0.
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Thus, from (2.4), one obtains that

var
(︂ˆ︂m1(x)|X

)︂
= σ2(x)ν0

fX(x)nhn

+ oP

(︃ 1
nhn

)︃
. (2.11)

On the other hand, in order to determine the constant B1, knowledge of S−1
1

and c1 is required, where

S1 =
(︄

µ0 µ1
µ1 µ2

)︄
=
(︄

1 0
0 µ2

)︄
and c1 =

(︄
µ2

µ3

)︄
=
(︄

µ2

0

)︄
.

Thus, it follows that

S−1
1 = 1

µ2

(︄
µ2 0
0 1

)︄
.

Consequently, the expression for B1 can be derived as

B1 = eT
1 S−1

1 c1

2! = 1
2µ2

(︂
1 0

)︂(︄µ2 0
0 1

)︄(︄
µ2

0

)︄
= µ2

2 .

Therefore, according to (2.5), the conditional bias of ˆ︂m1 can be expressed as

bias
(︂ˆ︂m1(x)|X

)︂
= h2

nµ2
m′′(x)

2 + oP (h2
n). (2.12)

It is known that the conditional mean squared error can be decomposed as follows

MSE
(︂ˆ︂m1(x)|X

)︂
=
[︂
bias

(︂ˆ︂m1(x)|X
)︂]︂2

+ var
(︂ˆ︂m1(x)|X

)︂
.

By using (2.11) and (2.12), one gets

MSE
(︂ˆ︂m1(x)|X

)︂
=
[︄
h2

nµ2
m′′(x)

2 + oP (h2
n)
]︄2

+ σ2(x)ν0

fX(x)nhn

+ oP

(︃ 1
nhn

)︃

= 1
nhn

σ2(x)ν0

fX(x) + 1
4h4

n [m′′(x)]2 µ2
2 + oP

(︃ 1
nhn

)︃
+ oP (h4

n).

Ignoring oP (·) terms, one could get that the asymptotic mean squared error ofˆ︂m1(x) is given by

AMSE
(︂ˆ︂m1(x)|X

)︂
= 1

nhn

σ2(x)ν0

fX(x) + 1
4h4

n [m′′(x)]2 µ2
2. (2.13)

The asymptotic mean squared error AMSE
(︂ˆ︂m1(x)|X

)︂
can be considered as an

approximation of the mean squared error MSE
(︂ˆ︂m1(x)|X

)︂
. To obtain the optimal

bandwidth, one could attempt to minimize (2.13) with respect to hn. However,
the problem is that such a bandwidth selector would depend on x, which would
not be very useful in practical applications. Therefore, define the asymptotic
mean integrated squared error as follows

AMISE
(︂ˆ︂m1|X

)︂
=
∫︂
R

AMSE
(︂ˆ︂m1(x)|X

)︂
w(x)fX(x)dx
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= ν0

nhn

∫︂
R

σ2(x)w(x)dx + 1
4h4

nµ2
2

∫︂
R
[m′′(x)]2w(x)fX(x)dx, (2.14)

where w(x) is a given weight function introduced to ensure that the integral is
finite. Minimising (2.14) with respect to hn yields the asymptotically optimal
global bandwidth

h(opt)
n = n− 1

5

[︄
ν0
∫︁
R σ2(x)w(x)dx

µ2
2
∫︁
R[m′′(x)]2w(x)fX(x)dx

]︄ 1
5

. (2.15)

Note that h(opt)
n does not depend on a specific value of x. However, to calcu-

late h(opt)
n , one needs to integrate characteristics of the true distribution, such as

σ2(x), m′′(x), and fX(x), which are typically unknown in practice. Therefore
some methods are needed to circumvent this problem.

2.2.2 Rule of thumb and homoscedasticity
Suppose homoscedastic settings, which means that σ2(x) = σ2 > 0 is constant.

Then the asymptotically optimal global bandwidth h(opt)
n , defined in (2.15), can

be rewritten as follows

h(opt)
n = n− 1

5

[︄
σ2ν0

∫︁
R w(x)dx

µ2
2
∫︁
R[m′′(x)]2w(x)fX(x)dx

]︄ 1
5

. (2.16)

To estimate m(x), the function ˜︂m(x) will be used, which is obtained by fitting a
standard polynomial regression of order 4.
Remark. In general, the recommended order of the fitted standard polynomial
regression is p+3. Because h(opt)

n was derived from the local linear estimator, i.e.,
p = 1, therefore polynomial regression of order 4 is used.

The unknown variance σ2 from (2.16) can be estimated by

˜︁σ2 = 1
n − 5

n∑︂
i=1

[Yi −˜︂m(Xi)]2.

Note the following∫︂
R
[m′′(x)]2w(x)fX(x)dx = EX [m′′(X)]2w(X), (2.17)

where EX denotes the expectation taken with respect to the probability distribu-
tion of the random variable X. As an estimation of the expected value in (2.17),
one could simply use

1
n

n∑︂
i=1

[˜︂m′′(Xi)]2w(Xi).

This results to the following bandwidth selector

h(ROT )
n = n− 1

5

[︄ ˜︁σ2ν0
∫︁
R w(x)dx

µ2
2

1
n

∑︁n
i=1[˜︂m′′(Xi)]2w(Xi)

]︄ 1
5

. (2.18)

Note that h(ROT )
n does not depend on any unknown characteristics and serves as

a global bandwidth selector, as it does not rely on any specific value of x.
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2.2.3 Cross-validation
Recall that ˆ︂mp denotes the estimation of the conditional mean using a local

polynomial regression of order p, where p ∈ N0. Let X ′ be a random variable
with the same distribution as X1 and independent of observations

(︂
X1
Y1

)︂
, . . . ,

(︂
Xn

Yn

)︂
.

The integrated squared error of ˆ︂mp can be rewritten as

ISE(ˆ︂mp) =
∫︂
R

(︂ˆ︂mp(x) − m(x)
)︂2

fX(x)w(x)dx

= EX′

(︂ˆ︂mp(X ′) − m(X ′)
)︂2

w(X ′). (2.19)

Note that ISE(ˆ︂mp) is random since it implicitly depends on the random sample(︂
X1
Y1

)︂
, . . . ,

(︂
Xn

Yn

)︂
through the estimator ˆ︂mp. The form of the integrated squared

error (2.19) motivates the following estimator

M(hn) = 1
n

n∑︂
i=1

[︂
m(Xi) −ˆ︂m(−i)

p (Xi)
]︂2

w(Xi),

where ˆ︂m(−i)
p is based on a sample that leaves out the i-th observation. The

issue with this estimator is its dependency on the unknown conditional mean m.
Therefore, instead of M(hn), the following estimator will be used

CV(hn) = 1
n

n∑︂
i=1

[︂
Yi −ˆ︂m(−i)

p (Xi)
]︂2

w(Xi). (2.20)

The choice of CV(hn) is justified because it is shown below that the conditional
expectations E[CV(hn)|X] and E[M(hn)|X] are equal up to a term that does not
depend on hn.

E[CV(hn)|X] = 1
n

n∑︂
i=1

E
{︃[︂

εi + m(Xi) −ˆ︂m(−i)
p (Xi)

]︂2
w(Xi)

⃓⃓⃓
X
}︃

= 1
n

n∑︂
i=1

E
{︂
ε2

i w(Xi)
⃓⃓⃓
X
}︂

⏞ ⏟⏟ ⏞
In=

+ 2
n

n∑︂
i=1

E
{︂
εi

[︂
m(Xi) −ˆ︂m(−i)

p (Xi)
]︂
w(Xi)

⃓⃓⃓
X
}︂

⏞ ⏟⏟ ⏞
IIn=

+ 1
n

n∑︂
i=1

E
{︂[︂

m(Xi) −ˆ︂m(−i)
p (Xi)

]︂2
w(Xi)

⃓⃓⃓
X
}︂

⏞ ⏟⏟ ⏞
IIIn=

.

Obviously, In does not depend on hn and IIIn = E[M(hn)|X]. Thus it remains
to show that the second term IIn is equal to 0. Since the error terms ε1, . . . , εn

are conditionally independent given X and εi was not used in the computation
of ˆ︂m(−i)

p for all i = 1, . . . , n, then one can conclude that

IIn = 2
n

n∑︂
i=1

E
{︂
εi|X

}︂
E
{︂[︂

m(Xi) −ˆ︂m(−i)
p (Xi)

]︂2
w(Xi)

⃓⃓⃓
X
}︂

= 2
n

n∑︂
i=1

E
{︂
εi|Xi

}︂
E
{︂[︂

m(Xi) −ˆ︂m(−i)
p (Xi)

]︂2
w(Xi)|X

}︂
= 0.

Therefore, define the bandwidth selector h(CV )
n as follows

h(CV )
n = arg min

hn>0
CV(hn). (2.21)
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Remark. Suppose that
(︂

X′

Y ′

)︂
is a random vector with the same distribution as(︂

X1
Y1

)︂
and independent of observations

(︂
X1
Y1

)︂
, . . . ,

(︂
Xn

Yn

)︂
. Another important char-

acteristic of the estimator ˆ︂mp is its ability to make predictions. Let measure the
prediction error in the following way

R(hn) = EX′,Y ′

(︂
Y ′ −ˆ︂mp(X ′)

)︂2
w(X ′). (2.22)

Note that CV(hn) was derived from the integrated squared error of ˆ︂mp. Alterna-
tively, CV(hn) could be seen as a natural estimator of the prediction error (2.22).
Also note that in the form of the estimator CV(hn), the general principle of leave-
one-out cross-validation is apparent. This is because for all i = 1, . . . , n, the
estimator of the conditional mean ˆ︂m(−i)

p was ’trained’ on all observations except
for the i-th observation.

One could be interested in whether the bandwidth choice h(CV )
n is optimal in

some sense analogously to h(LSCV )
n , as seen in Theorem 2. To formulate such a

result, the focus will be on the case when p = 0. In this special case, it can easily
be shown that the following holds

ˆ︂m0(x) =
n∑︂

i=1
wn,i(x)Yi,

where

wn,i(x) =
K
(︂

Xi−x
hn

)︂
∑︁n

j=1 K
(︂

Xj−x

hn

)︂ , i = 1, . . . , n.

Asymptotic optimality could be measured with respect to different distances,
for example:

• Average Squared Error:

ASE0(hn) = 1
n

n∑︂
i=1

[︂ˆ︂m0(Xi) − m(Xi)
]︂2

w(Xi);

• Integrated Squared Error:

ISE0(hn) =
∫︂
R

(︂ˆ︂m0(x) − m(x)
)︂2

fX(x)w(x)dx;

• Conditional Mean Integrated Squared Error:

MISE0(hn|X) = E
[︂
ISE0(hn)|X

]︂
.

Theorem 5. Suppose the weight function w ≥ 0 is bounded and has a compact
support. Assume that the following conditions are satisfied:

(D1) The kernel function K is β-Hölder continuous, i.e., there exist β > 0 and
α > 0 such that

|K(y) − K(x)| < α|y − x|β ∀y, x ∈ R,

also assume that
∫︁
R K(y)dy = 1 and

∫︁
R |y|β|K(y)|dy < ∞.
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(D2) For n ∈ N, define the interval Hn = [hn, hn] where

hn = b−1nδ−1 and hn = bn−δ,

for some constants b > 1 and 0 < δ < 1
2 .

Under appropriate regularity assumptions ∗ on m(·), the marginal density fX(·),
and the boundedness of conditional moments, the following holds

SE0(h(CV )
n )

infhn∈HnSE0(hn)
a.s.−→

n→∞
1, (2.23)

where SE0(·) can be one of the previously defined distances ASE0(·), ISE0(·), or
MISE0(·|X).

The general proof for multivariate predictors is presented in Hardle and Mar-
ron [1985].
Remark. The width of the interval |Hn| = hn−hn is converging to zero as n → ∞.
If δ = 1

5 , then under some regularity conditions on the kernel K and the marginal
density fX , it could be shown that hn = bh(opt)

n , where h(opt)
n is defined in (1.5).

In other words, in the special case where δ = 1
5 , the width of the interval Hn is

converging to zero at the same rate as the width of the biased cross-validation
interval (0, bh(opt)

n ) from the expression (1.29).
Note that in Theorem 5 the conditions on the kernel are weaker than those

in Theorem 2 and Theorem 4. In the asymptotic results from Chapter 1, it was
assumed that K has a bounded support. However, such an assumption is not
made here, as integrability issues are now controlled by the weight function w,
which has a bounded support. Also, one might think that the results of Theorem 5
are quite restrictive, as they hold only for the special case when the degree of the
local polynomial estimator is p = 0. For general p, asymptotic optimality with
respect to the mean integrated squared error can be found in Xia and Li [2002],
Theorem 2.1.

2.3 Simulation Study
Let us illustrate the performance of different bandwidth selectors in the setting

of kernel regression. Data were simulated from the following model

Yi = Xi + 2exp(−16X2
i ) + εi, where i ∈ {1, . . . , n}. (2.24)

Also, assume that the model (2.24) satisfies the following conditions:

• ε1, . . . , εn
iid∼ N

(︃
0,
(︂

2
5

)︂2
)︃

,

• X1, . . . , Xn
iid∼ N(0, 1),

• The random sample (ε1, . . . , εn) is independent of (X1, . . . , Xn).
∗See Hardle and Marron [1985], Section 2.
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The model (2.24) was considered in Fan and Gijbels [1992], Section 5. The
authors showed that a modification of the local linear estimator reasonably esti-
mates the shape of the conditional mean of the model (2.24). In this section, it
will be demonstrated how previously defined bandwidth selection methods per-
form under the model (2.24).

For the calculation, the standard normal kernel was employed along with
the following weight function w(x) = 1[−2,2](x), which is an indicator of the
compact interval [−2, 2]. The justification for using such a weight function is
that approximately only 5% of observations of X do not belong to the interval
[−2, 2]. Each setting involves the use of 1200 Monte Carlo repetitions. Results of
the simulation study can be found in Table 2.1. As in Chapter 1, each row of the
first column corresponds to a specific method, with labels summarized as follows

• Optimal: Asymptotically optimal global bandwidth, h(opt)
n , which is de-

fined in (2.15).

• ROT: Rule of thumb derived under homoscedasticity, h(ROT )
n , as defined

in (2.18).

• CV: Cross-validation, h(CV )
n , defined in (2.21).

For local constant estimation and local linear estimation, the functions loc-
CteSmootherC and locLinSmootherC from the package Cabrera and Quast [2022]
were used. To compute ROT and CV, the functions thumbBw and regCVBwSelC
from the package Cabrera and Quast [2022] were used. Also, it is important to
note that the function regCVBwSelC conducts cross-validation over the following
finite interval (5 ∗ 10−4, 1.5) by default settings.

2.3.1 Monte Carlo
Generally, the conditional mean integrated squared error of ˆ︂mp is defined as

MISE
(︂ˆ︂mp|X

)︂
= E[ISE(ˆ︂mp)|X], where p ∈ N0. (2.25)

Note that the conditional mean integrated squared error, as indicated in (2.25),
also implicitly depends on the sample size of X. Here, it is considered that n = 200
and n = 500. Due to the fixed value of n, a Monte Carlo approach is necessary.
One needs to estimate the conditional MISE ofˆ︂mp. Hence, before the Monte Carlo
repetitions, X1, . . . , Xn

iid∼ N(0, 1) were generated. Overall, B = 1200 Monte Carlo
repetitions were conducted. In each Monte Carlo repetition b = 1, . . . , B, the
following random variables Y b

1 , . . . , Y b
n were generated from the model (2.24), i.e.,

Y b
i = Xi + 2exp(−16X2

i ) + εb
i , for i = 1, . . . , n,

where εb
1, . . . , εb

n
iid∼ N

(︃
0,
(︂

2
5

)︂2
)︃

and the random sample (εb
1, . . . , εb

n) is independent
of (X1, . . . , Xn) for all b = 1, . . . , B.

Therefore, for each b = 1, . . . , B, one would obtain ISE(ˆ︂mb
p). By averaging

those ISE(ˆ︂mb
p), one gets an estimation of the conditional mean integrated squared

error (2.25).
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Recall that the integrated squared error of ˆ︂mb
p is defined as

ISE(ˆ︂mb
p) =

∫︂
R
(ˆ︂mb

p(x) − m(x))2w(x)fX(x)dx, (2.26)

where fX represents the marginal density of X. Here, fX corresponds to the prob-
ability density function of the standard normal distribution N(0, 1). To estimate
(2.26), the random sample Zb

1, . . . , Zb
m

iid∼ N(0, 1) with m = 1000 was generated
independently of Y b

1 , . . . , Y b
n and X1, . . . , Xn. Then, by the law of large numbers,

ISE(ˆ︂mb
p) could be approximated by

1
m

m∑︂
i=1

(ˆ︂mb
p(Zb

i ) − m(Zb
i ))2w(Zb

i ).

2.3.2 Discussion of results
Table 2.1 reveals that for a larger sample size (see the results for n = 500),

cross-validation CV performs better than the rule of thumb ROT. This is evident as
the confidence intervals for MISE when the CV method is employed are disjointly
shifted downward from those of the ROT method. However, for n = 500, cross-
validation performs worse than the Optimal method. Recall that the Optimal
method is impossible to calculate in real applications as one needs to know char-
acteristics of the true distribution, such as σ2(x), m′′(x), and fX(x).

In the case of local constant estimation, for a smaller sample size (see the
results for n = 200), one could see that the rule of thumb has better performance
than cross-validation. However, in the case of local linear estimation, for a smaller
sample size n = 200 the superiority of the ROT method under the CV method is
not so evident as their confidence intervals for MISE overlap.

Also, it can be seen that almost in all cases, the confidence intervals for MISE
in the case of the local linear estimator are shifted downwards compared to the
corresponding confidence intervals of the local constant estimator. This indicates
that generally under the model (2.24), the local linear estimator performs better
than the local constant estimator. The only exception is the ROT method for a
larger sample size n = 500.

In the fourth column of Table 2.1, median values of bandwidths calculated
from simulations are presented. It can be observed that for local constant esti-
mation, the median values of data-driven selected bandwidths, such as CV and
ROT, are smaller than the median value of the asymptotically optimal bandwidths.
Conversely, for local linear estimation, the median values of data-driven selected
bandwidths are larger. This indicates that regression estimates computed from
the local constant estimation with bandwidths selected by data-driven methods
generally under-smooth. In the case of local constant estimator regression esti-
mates with bandwidths selected by data-driven methods tend to over-smooth.
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Local polynomial
regression

Monte Carlo
Approx. of MISE

95% Monte Carlo
Conf. Interval of MISE

Median of
bandwidths

Local constant estimator
n = 200
Optimal 19.765 (19.451, 20.079) 0.081
ROT 20.064 (19.739, 20.389) 0.063
CV 21.034 (20.679, 21.389) 0.078
n = 500
Optimal 8.178 (8.053, 8.303) 0.068
ROT 9.384 (9.255, 9.513) 0.044
CV 8.472 (8.339, 8.605) 0.064
Local linear estimator
n = 200
Optimal 18.186 (17.835, 18.537) 0.081
ROT 18.968 (18.654, 19.282) 0.107
CV 19.173 (18.775, 19.571) 0.088
n = 500
Optimal 7.656 (7.531, 7.781) 0.068
ROT 9.926 (9.777, 10.075) 0.096
CV 7.996 (7.865, 8.127) 0.071

Table 2.1: Results are based on 1200 Monte Carlo replications. In each case, a
standard normal kernel and the indicator weight function over the interval [−2, 2]
were used. For better presentation, all results were multiplied by 1000.
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3. Linear Model Selection

Throughout the previous two chapters, the application of cross-validation in
kernel density estimation and kernel regression was discussed. In both of these
tasks, leave-one-out cross-validation was considered. In the second chapter, it was
pointed out that cross-validation emerges as a natural estimator of the prediction
error, see (2.22). This principle can be generalized for linear model selection.
In other words, if one aims to select the linear model with the best predictive
ability, cross-validation techniques can be applied. However, this section demon-
strates that instead of the classical leave-one-out cross-validation, leave-nv-out
cross-validation should be used, where nv represents the number of observations
reserved for validation. Additionally, it should be ensured that nv/n → 1 as
n → ∞, which is completely opposite to the leave-one-out cross-validation prin-
ciple, because nv = 1 for the last case.

This chapter is based on Shao [1993].

3.1 Framework for linear model selection
Let Y1, . . . , Yn be independent random variables that satisfy a linear regression

model with fixed covariates given by

Yi = xT
i β + εi, (3.1)

where β ∈ Rp (p ∈ N), xi ∈ Rp for all i = 1, . . . , n and the error terms ε1, . . . , εn

are independent and identically distributed, with E[εi] = 0 and var[εi] = σ2 for
some σ2 > 0. Also, throughout the whole chapter, it will be assumed that n > p,
which means that the number of observations is greater than the number of
predictors.

As one does not know the true β, it may happen that some of the components
of β are actually equal to zero. Suppose that our goal is to make predictions based
on the model (3.1). For this task, one needs to identify important predictors
because it may potentially reduce the prediction error. Therefore, it may be
useful to consider the compact form of the linear model (3.1)

Yi = xT
i,αβα + εi, (3.2)

where α is a subset of dα positive integers from the set {1, . . . , p}. In (3.2) βα (or
xi,α) is the dα vector containing the components of β (or xi) that are indexed
by the integers in α. Let A denote all nonempty subsets of {1, . . . , p}. Then,
obviously, there are |A| = 2p−1 different models in the compact form (3.2), each
corresponding to some subset of predictors α. Further, a model of the form (3.2)
will be denoted as Mα. In the special case when α = {1, . . . , p}, the notation M
is used for the model. The number of predictors dα will also be referred to as the
dimension of Mα and denoted as dim(Mα).
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All models Mα for α ∈ A can be classified into the following two categories:

• Category I: At least one nonzero component of β is not in βα.

• Category II: βα contains all nonzero components of β.

It is evident that all models from Category I miss at least one important predictor,
which means that they are not of the main interest. On the other hand, models
from Category II may consist of unrelated predictors, potentially resulting in an
unnecessarily large dimension for such models. Therefore, the primary interest
lies in the model within Category II with the smallest dimension, denoted as M∗,
because this model consists of all important predictors and does not include any
unrelated predictors.

From this point onwards, it is assumed that for all α ∈ A,

Xα = (x1,α, . . . , xn,α)T

is an n × dα matrix of full rank. In other words, rank(Xα) = dα because it is
assumed that n > p. Hence, under the model Mα, the least squares estimator of
βα is given as ˆ︁βα = (XT

αXα)−1XT
αY , (3.3)

where Y = (Y1, . . . , Yn)T is an n × 1 response vector. In the special case when
α = {1, . . . , p}, the matrix Xα will be denoted simply as X.

3.2 Prediction error
Suppose that the future observations Z1, . . . , Zn satisfy the following model

Zi = xT
i β + ˜︁εi, (3.4)

where i = 1, . . . , n and the error terms ˜︁ε1, . . . , ˜︁εn, ε1, . . . , εn are independent and
identically distributed.

Let the least squares estimator ˆ︁βα be given by (3.3), i.e., it is fitted under
the model Mα and based on the data (Yi, xi), i = 1, . . . , n. Now, the estimatorˆ︁βα could be used to predict the future values Zi from the model (3.4) as xT

i,α
ˆ︁βα.

Therefore, define the average squared prediction error as

ASPEn
α = 1

n

n∑︂
i=1

(︂
Zi − xT

i,α
ˆ︁βα

)︂2
. (3.5)

It is important to note that ASPEn
α is a random variable, where the randomness

is hidden in the future observations Z1, . . . , Zn and in the estimator ˆ︁βα, which
is based on the ’construction’ data (Yi, xi), i = 1, . . . , n. The following lemma
provides the expression for the expectation of ASPEn

α.

Lemma 6. The unconditional expectation of the average squared prediction error
Γα,n = E

[︂
ASPEn

α

]︂
satisfies the following equation

Γα,n = σ2 + n−1dασ2 + ∆α,n,
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where
∆α,n = 1

n
βTXT (In − Pα)Xβ,

Pα = Xα(XT
αXα)−1XT

α is the projection matrix under model Mα,

and In is the identity matrix of order n.

Proof. From the definition of ASPEn
α in (3.5), the following holds

Γα,n = E
[︄

1
n

n∑︂
i=1

(︂
Zi − xT

i,α
ˆ︁βα

)︂2
]︄

= E
[︄

1
n

n∑︂
i=1

(︂
Zi − xT

i β + xT
i β − xT

i,α
ˆ︁βα

)︂2
]︄

= 1
n

n∑︂
i=1

E
(︂
Zi − xT

i β
)︂2

⏞ ⏟⏟ ⏞
In=

+ 2
n

n∑︂
i=1

E
[︂(︂

Zi − xT
i β
)︂ (︂

xT
i β − xT

i,α
ˆ︁βα

)︂]︂
⏞ ⏟⏟ ⏞

IIn=

+ E
[︄

1
n

n∑︂
i=1

(︂
xT

i β − xT
i,α
ˆ︁βα

)︂2
]︄

⏞ ⏟⏟ ⏞
IIIn=

. (3.6)

Now each of the terms In, IIn, and IIIn will be considered separately. By using
the model (3.4), the term In can be expressed as

In = 1
n

n∑︂
i=1

E
(︂
Zi − xT

i β
)︂2

= 1
n

n∑︂
i=1

E (˜︁εi)2 = σ2. (3.7)

The second term IIn is actually equals to zero, because

IIn = 2
n

n∑︂
i=1

E
{︂
E
[︂(︂

Zi − xT
i β
)︂ (︂

xT
i β − xT

i,α
ˆ︁βα

)︂ ⃓⃓⃓
Y
]︂}︂

= 2
n

n∑︂
i=1

E
{︂(︂

xT
i β − xT

i,α
ˆ︁βα

)︂
E
[︂(︂

Zi − xT
i β
)︂ ⃓⃓⃓

Y
]︂}︂

(3.4)= 2
n

n∑︂
i=1

E
{︂(︂

xT
i β − xT

i,α
ˆ︁βα

)︂
E [˜︁εi|Y ]

}︂
indp.= 2

n

n∑︂
i=1

E
{︂(︂

xT
i β − xT

i,α
ˆ︁βα

)︂
E(˜︁εi)

}︂
= 0. (3.8)

Finally, the third term IIIn can be expressed as

IIIn = E
[︄

1
n

n∑︂
i=1

(︂
xT

i β − xT
i,α
ˆ︁βα

)︂2
]︄

= 1
n
E
[︃(︂
Xβ − Xα

ˆ︁βα

)︂T (︂
Xβ − Xα

ˆ︁βα

)︂]︃

= 1
n
E
[︂(︂

βTXT − ˆ︁βT
αXT

α

)︂ (︂
Xβ − Xα

ˆ︁βα

)︂]︂
= 1

n
E
[︂
βTXTXβ − 2βTXTXα

ˆ︁βα + ˆ︁βT
αXT

αXα
ˆ︁βα

]︂
= 1

n
βTXTXβ − 2

n
βTXTXαE ˆ︁βα + 1

n
E
[︂ ˆ︁βT

αXT
αXα

ˆ︁βα

]︂
. (3.9)

Note that by using the vector form of the linear regression model (3.1) and for-
mula (3.3) , one would obtain

E ˆ︁βα = (XT
αXα)−1XT

αEY = (XT
αXα)−1XT

αE
[︂
Xβ + ε

]︂
= (XT

αXα)−1XT
αXβ, (3.10)
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where ε = (ε1, . . . , εn)T and the last equation in (3.10) holds because Eε = 0.
Also, the following holds

1
n
E
[︂ ˆ︁βT

αXT
αXα

ˆ︁βα

]︂
= 1

n
E
[︂
Y TXα(XT

αXα)−1
]︂
XT

αXα

[︂
(XT

αXα)−1XT
αY

]︂
= 1

n
E
[︂
Y TPαY

]︂ Lem. A.1= 1
n
βTXTPαXβ + 1

n
tr(σ2Pα)

= 1
n
βTXTPαXβ + σ2

n
rank(Pα) = 1

n
βTXTPαXβ + σ2

n
dα. (3.11)

Then, by inserting (3.10) and (3.11) into (3.9), one would get that

IIIn = 1
n
βTXTXβ − 2

n
βTXTPαXβ + 1

n
βTXTPαXβ + σ2

n
dα

= 1
n
βTXTXβ − 1

n
βTXTPαXβ + σ2

n
dα

= 1
n
βTXT (In − Pα)Xβ + σ2

n
dα = ∆α,n + σ2

n
dα. (3.12)

Finally, by combining (3.6), (3.7), (3.8), and (3.12), one gets the statement of the
lemma.

The expected value of the squared prediction error Γα,n is a numerical charac-
teristic that summarizes the predictive ability of a model Mα. According to the
previous lemma, Γα,n can be decomposed into two parts:

• the variability of the future observations σ2,

• the error in model selection and estimation, represented by σ2

n
dα + ∆α,n.

Obviously, the term σ2

n
dα vanishes as n → ∞. Therefore, the main interest lies

in the term ∆α,n.
Note that In − Pα is an idempotent matrix because Pα is a projection ma-

trix. Therefore, In − Pα is also a positive-semidefinite matrix, which implies
that ∆α,n ≥ 0 for all n ∈ N and for all α ∈ A. Additionally, ∆α,n = 0 if and only
if PαXβ = Xβ. The last condition means that Xβ ∈ Im(Xα), which occurs only
when Mα is a model in Category II. Overall, one would get that ∆α,n > 0 if Mα

is a model in Category I, and ∆α,n = 0 if Mα is a model in Category II.
Many asymptotic results from this chapter will require the following condition

to hold
lim inf

n→∞
∆α,n > 0 ∀α ∈ A such that Mα in Category I. (3.13)

Now, it will be explained that the condition (3.13) is not strong and naturally
appears as a type of asymptotic model identifiability. Suppose that Mα is a model
in Category I and Mγ is a model in Category II such that dα = dγ. Then, in order
to decide which of the two models is better in terms of their predictive ability,
one is interested in the asymptotic behavior of the following fraction

Γα,n

Γγ,n

= 1 + ∆α,n

σ2 + σ2

n
dγ

. (3.14)

From the expression (3.14), it can be easily seen that Γα,n

Γγ,n
≥ 1. If lim

n→∞
Γα,n

Γγ,n

exists and equals 1, then it can be interpreted as models Mα and Mγ having
asymptotically no difference in terms of their predictive ability. On the other
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hand, to identify that the models Mα and Mγ are asymptotically different in
terms of their predictive ability, it is sufficient to observe

lim inf
n→∞

Γα,n

Γγ,n

> 1 ⇐⇒ lim inf
n→∞

∆α,n > 0.

3.3 Cross-validation
Let {(Yi, xi)}n

i=1 are data pairs that are sampled from the linear regression
model (3.1). To introduce methods for model selection, one would first need to
divide the dataset into two parts: one for fitting a model (model construction)
and the other for assessing the predictive ability of the model (model validation).
Let s be a subset of {1, . . . , n} with cardinality nv and sc be its complement with
cardinality nc, where nv + nc = n. Then, one would use the construction data
{(Yi, xi), i ∈ sc} to fit the model Mα and the validation data {(Yi, xi), i ∈ s} to
assess the prediction error. Here, the validation data {(Yi, xi), i ∈ s} are treated
as unobserved future values, therefore the average squared prediction error is
given as

ASPEs
α = 1

nv

∑︂
i∈s

(Yi − xT
i,α
ˆ︁βα,sc)2, (3.15)

where ˆ︁βα,sc = (XT
α,scXα,sc)−1XT

α,scYsc , and Xα,sc is the nc × dα matrix containing
the rows of Xα indexed by i ∈ sc, and Ysc = (Yi, i ∈ sc)T . Analogously, one
could introduce the notation of Xα,s and Ys. From the equation (3.15), it can be
seen that ASPEs

α depends on ˆ︁βα,sc . It will be useful to express the dependency
of ASPEs

α on ˆ︁βα, which is the subject of the following lemma.

Lemma 7. Let Xα be a matrix of full rank such that

rank(Xα) = rank(Xα,s) = rank(Xα,sc) = dα.

Then the average squared prediction error ASPEs
α given by (3.15) satisfies the

following equation

ASPEs
α = 1

nv

⃓⃓⃓⃓⃓⃓
(Inv − Qα,s)−1

(︂
Ys − Xα,s

ˆ︁βα

)︂⃓⃓⃓⃓⃓⃓2
2

, (3.16)

where || · ||2 denotes the Euclidean norm and Qα,s = Xα,s(XT
αXα)−1XT

α,s.

Proof. First, note that

ASPEs
α = 1

nv

∑︂
i∈s

(Yi − xT
i,α
ˆ︁βα,sc)2 = 1

nv

⃓⃓⃓⃓⃓⃓
Ys − ˆ︂Yα,sc

⃓⃓⃓⃓⃓⃓2
2

,

where ˆ︂Yα,sc = Xα,s
ˆ︁βα,sc . Therefore, it will be sufficient to prove the following

equation
Ys − ˆ︂Yα,sc = (Inv − Qα,s)−1

(︂
Ys − Xα,s

ˆ︁βα

)︂
. (3.17)
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Rewrite the left hand side of the equation (3.17)

Ys − ˆ︂Yα,sc

= Ys − Xα,s(XT
α,scXα,sc)−1XT

α,scYsc

= Ys − Xα,s(XT
α,scXα,sc + XT

α,sXα,s − XT
α,sXα,s)−1(XT

αY − XT
α,sYs)

= Ys − Xα,s(XT
αXα − XT

α,sXα,s)−1(XT
αY − XT

α,sYs)

= Ys − Xα,s

{︃
XT

αXα

[︂
Idα − (XT

αXα)−1XT
α,sXα,s

]︂ }︃−1
(XT

αY − XT
α,sYs)

= Ys − Xα,s

[︂
Idα − (XT

αXα)−1XT
α,sXα,s

]︂−1

⏞ ⏟⏟ ⏞
Hα,s=

(XT
αXα)−1(XT

αY − XT
α,sYs)

= Ys − Xα,sHα,s

(︂ ˆ︁βα − (XT
αXα)−1XT

α,sYs

)︂
. (3.18)

Since it is assumed that Xα, Xα,s, and Xα,sc are matrices of full rank, which
also means that XT

αXα, XT
α,sXα,s, and XT

α,scXα,sc are positive definite matrices.
Then Lemma A.3 implies that all eigenvalues of the matrix (XT

αXα)−1XT
α,sXα,s

are smaller than 1 in absolute value. Therefore, one can use Lemma 7.18 from
Burden and Faires [2010], and get

Hα,s =
[︂
Idα − (XT

αXα)−1XT
α,sXα,s

]︂−1
=

∞∑︂
j=0

[︂
(XT

αXα)−1XT
α,sXα,s

]︂j
. (3.19)

Hence, it holds that

Xα,sHα,s = Xα,s

[︂
Idα − (XT

αXα)−1XT
α,sXα,s

]︂−1

(3.19)= Xα,s +
∞∑︂

j=1
Xα,s

[︂
(XT

αXα)−1XT
α,sXα,s

]︂j

= Xα,s +
∞∑︂

j=1
Xα,s(XT

αXα)−1XT
α,s⏞ ⏟⏟ ⏞

Qα,s=

Xα,s

[︂
(XT

αXα)−1XT
α,sXα,s

]︂j−1

= Xα,s + Qα,sXα,s

∞∑︂
j=1

[︂
(XT

αXα)−1XT
α,sXα,s

]︂j−1

= Xα,s + Qα,sXα,s

∞∑︂
j=0

[︂
(XT

αXα)−1XT
α,sXα,s

]︂j (3.19)= Xα,s + Qα,sXα,sHα,s. (3.20)

Combining (3.18) and (3.20) one obtains the following equation

Ys − Xα,sHα,s

(︂ ˆ︁βα − (XT
αXα)−1XT

α,sYs

)︂
= Ys − Xα,s

(︂ ˆ︁βα − (XT
αXα)−1XT

α,sYs

)︂
− Qα,sXα,sHα,s

(︂ ˆ︁βα − (XT
αXα)−1XT

α,sYs

)︂
. (3.21)
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The last equation (3.21) can be simplified to

Xα,sHα,s

(︂ ˆ︁βα − (XT
αXα)−1XT

α,sYs

)︂
= (Inv − Qα,s)−1Xα,s

(︂ ˆ︁βα − (XT
αXα)−1XT

α,sYs

)︂
(3.22)

Finally, one obtains

Ys − ˆ︂Yα,sc
(3.18)= Ys − Xα,sHα,s

(︂ ˆ︁βα − (XT
αXα)−1XT

α,sYs

)︂
(3.22)= Ys − (Inv − Qα,s)−1Xα,s

(︂ ˆ︁βα − (XT
αXα)−1XT

α,sYs

)︂
= Ys − (Inv − Qα,s)−1Xα,s

ˆ︁βα + (Inv − Qα,s)−1Qα,sYs

= (Inv − Qα,s)−1(Inv − Qα,s)Ys − (Inv − Qα,s)−1Xα,s
ˆ︁βα

+ (Inv − Qα,s)−1Qα,sYs

= (Inv − Qα,s)−1
(︂
Ys − Xα,s

ˆ︁βα

)︂
.

The cross-validation estimate for Γα,n is obtained by averaging the quantities
in (3.16) over some (or all) subsets s ⊆ {1, . . . , n} of size nv. More precisely, let B
be a collection of subsets of the set {1, . . . , n} that have size nv. Note that the
maximal size of B is

(︂
n
nv

)︂
. The cross-validation estimate of Γα,n is given as

ˆ︁ΓCV
α,nv

= 1
|B|

∑︂
s∈B

ASPEs
α. (3.23)

Then, the model selected by cross-validation is Mˆ︁α(nv), where

ˆ︁α(nv) = arg min
α∈A

ˆ︁ΓCV
α,nv

. (3.24)

Note that ˆ︁α(nv) is random as it implicitly depends on ASPEs
α. The method of

model selection (3.94) will be referred as leave-nv-out cross-validation, abbrevi-
ated as CV(nv). The error rate of using the CV(nv) for selecting the optimal
model M∗ is

P
[︂
the selected model is not M∗

]︂
= P

[︂
Mˆ︁α(nv) ̸= M∗

]︂
. (3.25)

Also, it is important to note that ˆ︁α(nv) implicitly depends on n. It is said that
the method CV(nv) works if and only if the probability that this method does
not select the optimal model M∗ converges to 0 as n → ∞, which means the
following

lim sup
n→∞

P
[︂
Mˆ︁α(nv) ̸= M∗

]︂
= 0. (3.26)

In other words, condition (3.26) means that the error rate of using the CV(nv),
which is given by (3.25), vanishes as n → ∞.
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3.3.1 Leave-one-out cross-validation
In order to compute the cross-validation estimate ˆ︁ΓCV

α,nv
given by (3.23), one

would need to invert the nv × nv matrix (Inv − Qα,s) from the expression (3.16).
Therefore, from a computational point of view, the simplest CV(nv) would be
one with nv = 1. This type of cross-validation is referred to as leave-one-out
cross-validation, abbreviated as CV(1).

If s = {i} for i = 1, . . . , n, then

wn
i,α = Qα,{i} = Xα,{i}(XT

αXα)−1XT
α,{i} = xT

i,α(XT
αXα)−1xi,α. (3.27)

Note that wn
i,α is actually the i−th diagonal element of the projection matrix Pα.

Therefore, by using (3.27) and the fact that nv = 1 in the case when s = {i}, the
average squared prediction, as given in (3.16), simplifies to

ASPE{i}
α =

⎡⎣Yi − xT
i,α
ˆ︁βα

1 − wn
i,α

⎤⎦2

.

In the case of CV(1), it is natural to set B = {{i} for i = 1, . . . , n}. Therefore,
as a cross-validation estimate of Γα,n, one would get the following

ˆ︁ΓCV
α,1 = 1

n

n∑︂
i=1

ASPE{i}
α = 1

n

n∑︂
i=1

⎡⎣Yi − xT
i,α
ˆ︁βα

1 − wn
i,α

⎤⎦2

. (3.28)

To state the main results of this chapter, it is necessary to introduce the big O
and small o symbols for matrices.

Definition 2. Let {An}∞
n=1 be a sequence of square matrices of the same order

and || · || is a matrix norm, as defined in Definition A.2.

• This sequence of matrices is O(1) if there exists M > 0 and n0 ∈ N such
that for every n ≥ n0, it holds that ||An|| ≤ M .

• The sequence of matrices is said to be o(1) if ||An|| −→
n→∞

0.

Remark. In this chapter, for simplicity, only natural matrix norms as defined in
Definition A.3 will be considered. Due to the equivalence of matrix norms, as
stated in Theorem A.2, it does not matter which norm one uses to determine if
the matrix sequence {An}∞

n=1 is O(1) or o(1).

Lemma 8. Assume that the following condition holds

1
n

n∑︂
i=1

xix
T
i = O(1) and

[︄
1
n

n∑︂
i=1

xi,αxT
i,α

]︄−1

= O(1). (3.29)

Then
1
n
εTPαε

P−→
n→∞

0 and 1
n
εT (In − Pα)Xβ

P−→
n→∞

0. (3.30)

Proof. Recall that Lp convergence implies convergence in probability. Therefore,
it will be sufficient to show that the terms 1

n
εTPαε and 1

n
εT (In −Pα)Xβ converge

to 0 in Lp for some p ≥ 1.
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Obviously, the projection matrix Pα is positive-semidefinite, which means
that εTPαε ≥ 0. Also, from Lemma A.1 it is known that E

[︂
εTPαε

]︂
= σ2dα.

Thus, one obtains 1
n
εTPαε

L1−→
n→∞

0. Now, the following will be shown

1
n
εT (In − Pα)Xβ

L2−→
n→∞

0. (3.31)

To prove this, note that

E
[︂
εT (In − Pα)Xβ

]︂2
= E

[︂
βTXT (In − Pα)T εεT (In − Pα)Xβ

]︂
= βTXT (In − Pα)E

[︂
εεT

]︂
(In − Pα)Xβ

= σ2βTXT (In − Pα)2Xβ = σ2βTXT (In − Pα)Xβ. (3.32)

The condition (3.29) states that XTX is O(n) under some natural matrix norm.
The l∞ norm is a natural matrix norm defined in (A.2). From Lemma A.5, it is
obvious that if XTX is O(n) under the l∞ norm, then XTXα and XT

αX are also
O(n) under the same norm. Thus, the following holds⃓⃓⃓
βTXT (In − Pα)Xβ

⃓⃓⃓
≤ p · ||β||∞ ·

⃓⃓⃓⃓⃓⃓
XT (In − Pα)Xβ

⃓⃓⃓⃓⃓⃓
∞

Lem. A.4
≤ p · ||β||2∞ ·

⃓⃓⃓⃓⃓⃓⃓⃓
XTX − XTXα

[︂
XT

αXα

]︂−1
XT

αX
⃓⃓⃓⃓⃓⃓⃓⃓

∞

Def. A.2(4)
≤ p · ||β||2∞ ·

(︃⃓⃓⃓⃓⃓⃓
XTX

⃓⃓⃓⃓⃓⃓
∞

+
⃓⃓⃓⃓⃓⃓⃓⃓
XTXα

[︂
XT

αXα

]︂−1
XT

αX
⃓⃓⃓⃓⃓⃓⃓⃓

∞

)︃
Def. A.2(5)

≤ p · ||β||2∞ ·
(︃⃓⃓⃓⃓⃓⃓

XTX
⃓⃓⃓⃓⃓⃓

∞
+
⃓⃓⃓⃓⃓⃓
XTXα

⃓⃓⃓⃓⃓⃓
∞

⃓⃓⃓⃓⃓⃓⃓⃓[︂
XT

αXα

]︂−1
⃓⃓⃓⃓⃓⃓⃓⃓

∞

⃓⃓⃓⃓⃓⃓
XT

αX
⃓⃓⃓⃓⃓⃓

∞

)︃
(3.29)= O(n).

(3.33)

By combining (3.32) and (3.33) one would get that

1
n2E

[︂
εT (In − Pα)Xβ

]︂2
≤ O( 1

n
),

which implies (3.31).

Remark. In the next theorem, it will be important to note that by combining
(3.32) and (3.33), one would get that

nσ2∆α,n = O(n), which also means that ∆α,n = O(1). (3.34)

Consistency of leave-one-out cross validation

The next theorem demonstrates the asymptotic representation of ˆ︁ΓCV
α,1.

Theorem 9. Assume the same conditions as in Lemma 8 and that

lim
n→∞

max
1≤i≤n

wn
i,α = 0 for any α ∈ A. (3.35)

Then ˆ︁ΓCV
α,1 = Γα,n + oP (1).
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Proof. First, note that the projection matrix Pα at position (i, j) has the element
xT

i,α(XT
αXα)−1xj,α. Recall that the i-th diagonal element of the projection matrix

Pα is denoted as wn
i,α. It also holds that the matrix Pα is idempotent, meaning

Pα = PαPα. Therefore, from the definition of matrix multiplication, the following
holds for all i = 1, . . . , n

wn
i,α = (wn

i,α)2 +
∑︂
j ̸=i

[︂
xT

i,α(XT
αXα)−1xj,α

]︂2
.

Now, it is easy to observe that wn
i,α ≥ (wn

i,α)2, which also means that wn
i,α ∈

[0, 1] for all i = 1, . . . , n. Consider the following function ϕ(wn
i,α) = (1 − wn

i,α)−2

over the domain [0, 1]. It can be easily shown that for all wn
i,α ∈ [0, 1), the

following holds

ϕ′(wn
i,α) = 2

(1 − wn
i,α)3 and ϕ′′(wn

i,α) = 6
(1 − wn

i,α)4 .

Therefore, by employing the Lagrange form of the remainder (see Bartle and
Sherbert [2011], Theorem 6.4.1), there exists ρn

i,α ∈ (0, wn
i,α) such that

1
(1 − wn

i,α)2 = ϕ(0) + ϕ′(0)wn
i,α + ϕ′′(ξi,α)

2 (wn
i,α)2

= 1 + 2wn
i,α + 3

(1 − ρn
i,α)4 (wn

i,α)2. (3.36)

Obviously, there exists γ > 0 such that ∀δ ∈ (0, γ) it holds that 3
(1−δ)4 < 1. From

the assumption (3.35), it holds that wn
i,α < γ for all i = 1, . . . , n, where n is

sufficiently large. Therefore one obtains the following

3
(1 − ρn

i,α)4 <
3

(1 − wn
i,α)4 < 1, (3.37)

which by combining with (3.36) will lead to

1
(1 − wn

i,α)2 = 1 + 2wn
i,α + O

(︂
(wn

i,α)2
)︂

. (3.38)

By inserting (3.38) into the CV(1) estimate of Γα,n provided in (3.28), the fol-
lowing equation can be obtained

ˆ︁ΓCV
α,1 = 1

n

n∑︂
i=1

(Yi − xT
i,α
ˆ︁βα)2

⏞ ⏟⏟ ⏞
ξα,n=

+ 1
n

n∑︂
i=1

[︂
2wn

i,α + O((wn
i,α)2)

]︂
(Yi − xT

i,α
ˆ︁βα)2

⏞ ⏟⏟ ⏞
ζα,n=

. (3.39)

The first term ξα,n can be expressed as

ξα,n = 1
n

n∑︂
i=1

[︂
Yi − xT

i β + xT
i β − xT

i,α
ˆ︁βα

]︂2

= 1
n

n∑︂
i=1

ε2
i + 2

n

n∑︂
i=1

εi(xT
i β − xT

i,α
ˆ︁βα) + 1

n

n∑︂
i=1

(xT
i β − xT

i,α
ˆ︁βα)2. (3.40)
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The second sum in (3.40) could be rewritten as

2
n

n∑︂
i=1

εi(xT
i β − xT

i,α
ˆ︁βα) = 2

n

[︃ n∑︂
i=1

εix
T
i β⏞ ⏟⏟ ⏞

=εT Xβ

−
n∑︂

i=1
εix

T
i,α
ˆ︁βα⏞ ⏟⏟ ⏞

=εT Xαˆ︁βα

]︃

(3.3)= 2
n
εTXβ − 2

n
εTPα(Xβ + ε)

= 2
n
εT (In − Pα)Xβ − 2

n
εTPαε.

Analogous as in Lemma 6, it could be shown that the third sum in (3.40) can be
expressed as

1
n

n∑︂
i=1

(xT
i β − xT

i,α
ˆ︁βα)2 = ∆α,n + 1

n
εTPαε.

Overall, one would obtain that

ξα,n = 1
n
εT ε + ∆α,n + 2

n
εT (In − Pα)Xβ − 1

n
εTPαε. (3.41)

By using Lemma 8, it holds that

1
n
εTPαε

P−→
n→∞

0 and 1
n
εT (In − Pα)Xβ

P−→
n→∞

0.

Therefore, one could simplify the equation (3.41) to

ξα,n = 1
n
εT ε + ∆α,n + oP (1). (3.42)

Moreover, with the help of the law of large numbers, equation (3.42) can be
rewritten as follows

ξα,n = σ2 + ∆α,n + oP (1). (3.43)
Bound the second term ζα,n as follows

0 ≤ ζα,n ≤ 1
n

n∑︂
i=1

[︂
2wn

i,α + O(wn
i,α)
]︂
(Yi − xT

i,α
ˆ︁βα)2 ≤ O

(︃
max
1≤i≤n

wn
i,α

)︃
ξα,n

(3.35)
≤ o(1)ξα,n

(3.43)= o(1)
(︂
σ2 + ∆α,n + oP (1)

)︂
(3.34)= o(1)

(︂
σ2 + O(1) + oP (1)

)︂
= oP (1).

In other words it is proven that ζα,n = oP (1). Combining it with (3.39) and (3.43)
one would get that ˆ︁ΓCV

α,1 = Γα,n + oP (1).

Theorem 9 states that ˆ︁ΓCV
α,1 is consistent for Γα,n. In general, consistency does

not guarantee that CV(1) works, i.e., it does not ensure that the condition (3.26) is
satisfied. It will be discussed later that CV(1) actually does not work. However in
the next theorem it is shown that CV(1) deals correctly with not favoring models
from Category I.
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Theorem 10. Assume that conditions (3.13), (3.29) and (3.35) are satisfied.
Then the following holds

lim
n→∞

P
[︂
Mˆ︁α(1) is in Category I

]︂
= 0. (3.44)

Proof. Let A = A1 ∪ A2 and the following conditions are satisfied

• A1 ∩ A2 = ∅,

• ∀α ∈ A1 : Mα is a model in Category I,

• ∀γ ∈ A2 : Mγ is a model in Category II.

By fixing any η ∈ A2, one obtains the following{︂
Mˆ︁α(1) is in Category I

}︂
=
{︂
∃α ∈ A1 ∀γ ∈ A : ˆ︁ΓCV

α,1 ≤ ˆ︁ΓCV
γ,1

}︂
⊆
{︂
∃α ∈ A1 : ˆ︁ΓCV

α,1 ≤ ˆ︁ΓCV
η,1

}︂
=

⋃︂
α∈A1

{︂ˆ︁ΓCV
α,1 ≤ ˆ︁ΓCV

η,1

}︂
. (3.45)

Therefore, it holds that

P
[︂
Mˆ︁α(1) is in Category I

]︂ (3.45)
≤

∑︂
α∈A1

P
[︂ˆ︁ΓCV

α,1 < ˆ︁ΓCV
η,1

]︂
Thm. 9=

∑︂
α∈A1

P
[︂
Γα,n < Γη,n + oP (1)

]︂ Lem. 6=
∑︂

α∈A1

P
[︂

1
n
dασ2 + ∆α,n < 1

n
dησ2 + oP (1)

]︂

=
∑︂

α∈A1

P
[︂
∆α,n < oP (1)

]︂
.

Since lim inf
n→∞

∆α,n > 0 for all α ∈ A1 from the assumption (3.13), and |A1| < 2p,
one obtains the statement of the theorem.

Asymptotic incorrectness of leave-one-out cross-validation

Recall from Lemma 6 that if Mα is in Category II, then

Γα,n = σ2 + σ2

n
dα −→

n→∞
σ2. (3.46)

In other words, as n → ∞, it will be harder to distinguish models from Cat-
egory II based on their prediction errors Γα,n. To demonstrate that CV(1) is
asymptotically incorrect, a more detailed asymptotic representation of ˆ︁ΓCV

α,1 will
be required for models in Category II. The following theorem provides such an
asymptotic representation under stronger assumptions on moments of random
errors.

Theorem 11. Let the random errors ε1, . . . , εn, from the regression model (3.1),
have finite fourth moments. Assume, as in Theorem 9, that conditions (3.29) and
(3.35) are satisfied. If Mα is a model in Category II, then the following holds

ˆ︁ΓCV
α,1 = 1

n
εT ε + 2

n
dασ2 − 1

n
εTPαε + oP

(︂
1
n

)︂
. (3.47)
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Proof. Because of Mα is a model in Category II, Xβ = Xαβα and hence

∆α,n = 0 and PαXβ = Xβ.

Therefore, from (3.41) one gets

ξα,n = 1
n
εT ε − 1

n
εTPαε. (3.48)

Now, it needs to be shown that the following asymptotic representation holds

ζα,n = 2
n

n∑︂
i=1

wn
i,α(Yi − xT

i,α
ˆ︁βα)2

⏞ ⏟⏟ ⏞
A

(α)
n =

+ 1
n

n∑︂
i=1

O
(︂
(wn

i,α)2
)︂

(Yi − xT
i,α
ˆ︁βα)2

⏞ ⏟⏟ ⏞
B

(α)
n =

= 2
n
dασ2 + oP

(︂
1
n

)︂
. (3.49)

The first sum A(α)
n can be expressed as follows

A(α)
n = 2

n

n∑︂
i=1

wn
i,α(Yi − xT

i,αβα + xT
i,αβα − xT

i,α
ˆ︁βα)2

= 2
n

n∑︂
i=1

wn
i,αε2

i⏞ ⏟⏟ ⏞
A

(α)
n1 =

+ 4
n

n∑︂
i=1

wn
i,αεi(xT

i,αβα − xT
i,α
ˆ︁βα)⏞ ⏟⏟ ⏞

A
(α)
n2 =

+ 2
n

n∑︂
i=1

wn
i,α(xT

i,αβα − xT
i,α
ˆ︁βα)2

⏞ ⏟⏟ ⏞
A

(α)
n3 =

.

Gradually, the following will be shown

A
(α)
n1 = 2

n
dασ2 + oP

(︂
1
n

)︂
, A

(α)
n2 = oP

(︂
1
n

)︂
, A

(α)
n3 = oP

(︂
1
n

)︂
.

Showing that A
(α)
n1 = 2

n
dασ2 + oP

(︂
1
n

)︂
.

It is sufficient to show that ∑︁n
i=1 wn

i,αε2
i = dασ2 + oP (1). Define the following

random variable Zn = ∑︁n
i=1 wn

i,αε2
i , then

EZn =
n∑︂

i=1
wn

i,ασ2 = σ2tr(Pα) = σ2rank(Pα) = σ2dα,

var(Zn) =
n∑︂

i=1
(wn

i,α)2var
(︂
ε2

i

)︂
= var

(︂
ε2

1

)︂
·

n∑︂
i=1

(wn
i,α)2

≤ var
(︂
ε2

1

)︂
⏞ ⏟⏟ ⏞

<∞

·
(︃

max
1≤i≤n

wn
i,α

)︃
⏞ ⏟⏟ ⏞
−→

n→∞
0 by (3.35)

·
n∑︂

i=1
wn

i,α⏞ ⏟⏟ ⏞
=dα

−→
n→∞

0.

Thus, by using Lemma A.2, it holds that ∑︁n
i=1 wn

i,αε2
i = dασ2 + oP (1).
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Dealing with A
(α)
n2 .

Define a matrix Dα and a random vector εw, as follows

Dα = diag(wn
1,α, . . . , wn

n,α),

εw = (wn
1,αε1, . . . , wn

n,αεn)T = Dαε.

Thus, one can express A
(α)
n2 in the following way

A
(α)
n2 = 4

n

n∑︂
i=1

wn
i,αεi(xT

i,αβα − xT
i,α
ˆ︁βα) = 4

n
εT

w(Xαβα − Xα
ˆ︁βα)

= 4
n
εT

w(Xαβα − PαXαβα − Pαε) = − 4
n
εTDαPαε.

Therefore one can see that A
(α)
n2 = oP ( 1

n
) ⇐⇒ εTDαPαε = oP (1). By using

Lemma A.1 together with Eε = 0, it holds that

E
[︂
εTDαPαε

]︂
= tr(σ2DαPα) = σ2

n∑︂
i=1

(wn
i,α)2 ≤

(︃
max
1≤i≤n

wn
i,α

)︃
dασ2 (3.35)−→

n→∞
0. (3.50)

Since Pα is a positive-semidefinite matrix and Dα consists of the diagonal elements
of Pα, then it holds that E

[︂
εTDαPαε

]︂
≥ 0, which together with (3.50) implies

that εTDαPαε = oP (1).
Dealing with A

(α)
n3 .

Similarly, one can express A
(α)
n3 as

A
(α)
n3 = 2

n

n∑︂
i=1

wn
i,α(xT

i,αβα − xT
i,α
ˆ︁βα)2 = 2

n

[︂
DαXα(βα − ˆ︁βα)

]︂T [︂
Xα(βα − ˆ︁βα)

]︂
= 2

n
εTPαDαPαε.

As previously, it will be sufficient to prove that εTPαDαPαε = oP (1), which
follows from

E
[︂
εTPαDαPαε

]︂ Lem. A.1= σ2tr(PαDαPα) = σ2tr(DαP2
α) = σ2tr(DαPα) (3.50)−→

n→∞
0.

Overall, it is proven that

A(α)
n = 2

n

n∑︂
i=1

wn
i,α(Yi − xT

i,α
ˆ︁βα)2 = 2

n
dασ2 + oP

(︂
1
n

)︂
. (3.51)

Showing that B(α)
n = oP

(︂
1
n

)︂
.

To complete the proof of the entire theorem, one needs to show that

B(α)
n = 1

n

n∑︂
i=1

O
(︂
(wn

i,α)2
)︂

(Yi − xT
i,α
ˆ︁βα)2 = oP

(︂
1
n

)︂
. (3.52)

It holds that

B(α)
n = O(1) 1

n

n∑︂
i=1

(wn
i,α)2(Yi − xT

i,α
ˆ︁βα)2 ≤ O(1) max

1≤i≤n
wn

i,α A(α)
n , (3.53)

which together with the assumption (3.35) and expression (3.51) implies that
expression (3.52) is true.
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It is important to note that the residual term oP ( 1
n
) from Theorem 11 does

indeed depend on α. However, since there are only finitely many such α, the
dependence is not explicitly specified. Now, all necessary ingredients are prepared
to demonstrate the asymptotic incorrectness of CV(1).

Theorem 12. Suppose that the true regression parameter β, as given by (3.1),
consists of at least one zero component, and ε1, . . . , εn

iid∼ N(0, σ2). Also, assume
that conditions (3.29) and (3.35) are satisfied, and dim(M∗) ̸= p. Then the
following holds

lim inf
n→∞

P
[︂
Mˆ︁α(1) ̸= M∗

]︂
> 0. (3.54)

Proof. Let A1 and A2 are defined similarly as in Theorem 10. Fix α ∈ A2
such that α∗ ⊂ α, dα∗ < dα and M∗ ̸= Mα, where α∗ is a subset of {1, . . . , p}
corresponding to M∗. Note that, from the assumptions of the theorem, model
Mα exists. Hence

{Mα is preferable to M∗ by the CV(1)} =
{︂ˆ︁ΓCV

α,1 < ˆ︁ΓCV
α∗,1

}︂
⊆
{︂
∃γ ∈ A\{α∗} : ˆ︁ΓCV

γ,1 < ˆ︁ΓCV
α∗,1

}︂
=
{︂
Mˆ︁α(1) ̸= M∗

}︂
.

Therefore

P
[︂
Mˆ︁α(1) ̸= M∗

]︂
≥ P

[︂
Mα is preferable to M∗ by the CV(1)

]︂
. (3.55)

The right hand side of the inequality (3.55) is equal to P
[︂ˆ︁ΓCV

α,1 < ˆ︁ΓCV
α∗,1

]︂
, where

α∗ ⊂ {1, . . . , p} corresponding to M∗. Because Mα and M∗ are models from
Category II, one can use Theorem 11 to calculate estimators of prediction errorsˆ︁ΓCV

α,1 and ˆ︁ΓCV
α∗,1. Note that Pα − Pα∗ is symmetric and from Lemma A.6 it holds

that rank(Pα − Pα∗) = dα − dα∗ . Hence, one can use Theorem A.1 to obtain
that 1

σ2 εT (Pα − Pα∗)ε is a positive random variable, which follows a χ2
dα−dα∗

distribution. Therefore, it holds that

P
[︂ˆ︁ΓCV

α,1 < ˆ︁ΓCV
α∗,1

]︂ Thm. 11= P
[︃
2(dα − dα∗) <

1
σ2 εT (Pα − Pα∗)ε + oP (1)

]︃
Lem. A.7

≥ P
[︃
2(dα − dα∗) <

1
σ2 εT (Pα − Pα∗)ε

]︃
+ o(1)

Thm. A.1= P
[︂
2(dα − dα∗) < χ2

dα−dα∗

]︂
⏞ ⏟⏟ ⏞

=c for some c>0

+o(1). (3.56)

Finally, by combining (3.55) and (3.56) and taking the limit inferior, the state-
ment of the theorem is proven.

The previous theorem assumes normality of errors. However, a similar result
can be expected for errors with the second finite moment. Under additional
conditions on the regressor matrix, the previous theorem could be extended using
equation (A.9) from Lemma A.6 and the central limit theorem for independent,
non-identically distributed random variables.

Theorem 12 states that CV(1) is asymptotically incorrect and too conserva-
tive, as it may favor a model of a larger dimension over the optimal model M∗.
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Now, it will be intuitively explained why CV(1) is asymptotically incorrect. Re-
call from (3.46) that for models from Category II, an important component of the
prediction error, which can distinguish different models, is 1

n
dασ2. At the same

time, from (3.47), the component in ˆ︁ΓCV
α,1 influenced by the difference between

models is
1
n
dασ2 + δα,n,

where
δα,n = 1

n
dασ2 − 1

n
εTPαε

is the error in assessing the differences of the models in Category II by using
CV(1). Note that the error δα,n has the same order of magnitude as 1

n
dασ2, hence

leave-one-out cross-validation can not distinguish models in Category II.

3.3.2 Balanced incomplete cross-validation
In this section, the deficiency of CV(1) will be rectified by employing CV(nv),

with a large nv, satisfying nv/n −→ 1 as n → ∞. This is a quite surpris-
ing discovery, since it is totally opposite to the popular leave-one-out recipe in
cross-validation. The intuition behind choosing a relatively large nv is that cross-
validation involves two steps: (1) fitting a model using nc = n − nv data, and
(2) validating the fitted model using nv data. Thus, achieving a highly accurate
model fit in step (1) of the cross-validation is not necessarily crucial. Instead,
accurate assessment of the prediction error in step (2) is essential, which under-
scores the importance of selecting nv to be sufficiently large. Also, note that for
estimating ˆ︁ΓCV

α,nv
from (3.23), one must first define the collection Bn of subsets of

the set {1, . . . , n} that have size nv. Naturally, one may choose Bn as the system
of all subsets of the set {1, . . . , n} of size nv, but it turns out to be impractical and
unnecessary. It will be shown that it suffices to consider only special collections
of subsets.

Definition 3. Let Bn be a collection of bn subsets of {1, . . . , n} that have size nv.
Also, assume that Bn is selected according to the following conditions:

• every i ∈ {1, . . . , n} appears in the same number of subsets in Bn,

• every pair {i, j}, where i, j ∈ {1, . . . , n} and i ̸= j, appears in the same
number of subsets in Bn.

Then the collection Bn is called a Balanced Incomplete Block Design (BIBD).

Remark. Examples of BIBD can be found in John [1971], Chapter 13. It is
often assumed that the cardinality bn of the collection Bn satisfies bn ≥ n and
bn = O(n).

Assume that for all n ∈ N, Bn is selected according to Definition 3, then the
cross-validation estimate of Γα,n will be referred to as the balanced incomplete
CV(nv), abbreviated as BICV(nv), and is defined as

ˆ︁ΓBICV
α,nv

= 1
nvbn

∑︂
sn∈Bn

⃓⃓⃓⃓⃓⃓
Ysn − ˆ︂Yα,sc

n

⃓⃓⃓⃓⃓⃓2
2

.
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The model selected by balanced incomplete cross-validation is Mˆ︁αB(nv), where

ˆ︁αB(nv) = arg min
α∈A

ˆ︁ΓBICV
α,nv

. (3.57)

The following two theorems about asymptotic representations of ˆ︁ΓBICV
α,nv

for models
in different categories are stated without proofs. The proofs are technical and
will be presented in the next subsection. Here, the focus is on the main result,
Theorem 15, which justifies the asymptotic correctness of balanced incomplete
cross-validation.

Theorem 13. Suppose that conditions (3.29) and (3.35) hold. Also, suppose
that for all n ∈ N, Bn is a Balanced Incomplete Block Design (BIBD). If Mα is
a model in Category I, then there exists nonnegative random variables Rn such
that ˆ︁ΓBICV

α,nv
= 1

n
εT ε + ∆α,n + oP (1) + Rn.

Using the previous theorem and the law of large numbers, one obtains that

ˆ︁ΓBICV
α,nv

= σ2 + ∆α,n + oP (1) + Rn

Lem. 6= Γα,n − 1
n
dασ2⏞ ⏟⏟ ⏞

=o(1)

+oP (1) + Rn = Γα,n + oP (1) + Rn.

Now, it can be seen that unlike ˆ︁ΓCV
α,1, the balanced incomplete cross-validation

estimate ˆ︁ΓBICV
α,nv

is not consistent for Γα,n, unless Rn converges to zero in probability
as n → ∞. However, this is not a significant drawback of the BICV(nv) method,
as one is primarily interested in another type of consistency.

Theorem 14. Let conditions (3.29) and (3.35) hold, and for all n ∈ N, the
collection Bn be a Balanced Incomplete Block Design (BIBD). Also, assume that

lim
n→∞

max
sn∈Bn

⃓⃓⃓⃓
⃓⃓
⃓⃓⃓⃓
⃓⃓ 1
nv

∑︂
i∈sn

xix
T
i − 1

nc

∑︂
i∈sc

n

xix
T
i

⃓⃓⃓⃓
⃓⃓
⃓⃓⃓⃓
⃓⃓ = 0. (3.58)

Additionally, suppose that nv is selected in the following way
nv

n
−→
n→∞

1 and nc = n − nv −→
n→∞

∞. (3.59)

Then, if Mα is in Category II, it holds that

ˆ︁ΓBICV
α,nv

= 1
n
εT ε + 1

nc
dασ2 + oP

(︂
1

nc

)︂
.

Recall from the previous section that CV(1) is an asymptotically incorrect
method, meaning that it does not consistently prefer the optimal model M∗ over
other models from Category II (see Theorem 12). The reason is that ˆ︁ΓCV

α,1 is an
estimate for Γα,n, which for the models in Category II can be expressed as follows

Γα,n = σ2 + σ2

n
dα.
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The problem here is that for large n, Γα,n is almost flat as a function of α, which
means that it is harder to find the minimum of Γα,n. At the same time, Theo-
rem 14 states that ˆ︁ΓBICV

α,nv
estimates Γα,nc rather than Γα,n. From the assumptions

of Theorem 14, one knows that nc is relatively small compared to n. Therefore,
it gives the intuition that BICV(nv) can better recognize the minimum point of
Γα,nc than CV(1). The following theorem provides the main result of this section,
stating that BICV(nv) is an asymptotically correct method.

Theorem 15. Suppose that condition (3.13) and all assumptions of Theorem 14
are satisfied. Then the following holds

lim
n→∞

P
[︂
Mˆ︁αB(nv) ̸= M∗

]︂
= 0,

which means that BICV(nv) is asymptotically correct.

Proof. Let A1 and A2 are defined similarly as in Theorem 10 and α∗ is a subset
of {1, . . . , p} corresponding to M∗.{︂

Mˆ︁αB(nv) ̸= M∗
}︂

=
{︂
∃η ∈ A\{α∗} : ˆ︁ΓBICV

η,nv
< ˆ︁ΓBICV

α∗,nv

}︂
=
{︂
∃γ ∈ A1 : ˆ︁ΓBICV

γ,nv
< ˆ︁ΓBICV

α∗,nv

}︂⋃︂{︂
∃α ∈ A2\{α∗} : ˆ︁ΓBICV

α,nv
< ˆ︁ΓBICV

α∗,nv

}︂
. (3.60)

By employing Theorem 13 and Theorem 14, one gets that for all γ ∈ A1 the
following holds

P
[︂ˆ︁ΓBICV

γ,nv
< ˆ︁ΓBICV

α∗,nv

]︂
= P

[︂
1
n
εT ε + ∆γ,n + oP (1) + Rn < 1

n
εT ε + 1

nc
dα∗σ2 + oP

(︂
1

nc

)︂]︂
= P

[︂
∆γ,n + oP (1) + Rn < 1

nc
dα∗σ2 + oP

(︂
1

nc

)︂]︂
Rn is nonneg.

≤ P
[︂
∆γ,n < 1

nc
dα∗σ2⏞ ⏟⏟ ⏞

=o(1)

+oP (1)
]︂
. (3.61)

Since lim inf
n→∞

∆γ,n > 0 for all γ ∈ A1 from the assumption (3.13), which together
with (3.61) implies that for all γ ∈ A1 the following holds

P
[︂ˆ︁ΓBICV

γ,nv
< ˆ︁ΓBICV

α∗,nv

]︂
−→
n→∞

0. (3.62)

Also, note that for all α ∈ A2\{α∗}, it holds that dα > dα∗ . Therefore

P
[︂ˆ︁ΓBICV

α,nv
< ˆ︁ΓBICV

α∗,nv

]︂
Thm. 14= P

[︂
1
n
εT ε + 1

nc
dασ2 + oP

(︂
1

nc

)︂
< 1

n
εT ε + 1

nc
dα∗σ2 + oP

(︂
1

nc

)︂]︂
= P

[︂
(dα − dα∗)σ2 < oP (1)

]︂
−→
n→∞

0. (3.63)

Since the collection A contains only a finite number of sets, combining (3.60),
(3.62) and (3.63) yields the statement of the theorem.
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3.3.3 Proofs of the Theorems from Subsection 3.3.2
Proof of Theorem 13

First, recall that the matrix Qα,sn is defined as follows

Qα,sn = Xα,sn(XT
αXα)−1XT

α,sn
, where sn ∈ Bn.

Note that ∀n ∈ N ∀sn ∈ Bn, both Inv −Qα,sn and Qα,sn are symmetric and positive
semidefinite matrices because they are nv × nv diagonal blocks of the symmetric
and positive semidefinite matrices In −Pα and Pα, respectively. Therefore, for all
u ∈ Rnv the following holds

0 ≤ uT (Inv − Qα,sn)u ≤ uT u.

Analogous to inequalities (A.4) from Lemma A.3, one would get that

||Inv − Qα,sn||22 = sup
||u||2=1

||(Inv − Qα,sn)u||22 = sup
||u||2=1

uT (Inv − Qα,sn)2u

≤ sup
||u||2=1

uT (Inv − Qα,sn)u ≤ sup
||u||2=1

uT u = 1. (3.64)

Thus ⃓⃓⃓⃓⃓⃓
Ysn − Xα,sn

ˆ︁βα

⃓⃓⃓⃓⃓⃓2
2

=
⃓⃓⃓⃓⃓⃓
(Inv − Qα,sn)(Inv − Qα,sn)−1(Ysn − Xα,sn

ˆ︁βα)
⃓⃓⃓⃓⃓⃓2

2

Lem. A.4
≤ ||Inv − Qα,sn||22 ·

⃓⃓⃓⃓⃓⃓
(Inv − Qα,sn)−1(Ysn − Xα,sn

ˆ︁βα)
⃓⃓⃓⃓⃓⃓2

2

(3.64)
≤

⃓⃓⃓⃓⃓⃓
(Inv − Qα,sn)−1(Ysn − Xα,sn

ˆ︁βα)
⃓⃓⃓⃓⃓⃓2

2
Lem. 7=

⃓⃓⃓⃓⃓⃓
Ysn − ˆ︂Yα,sc

n

⃓⃓⃓⃓⃓⃓2
2

. (3.65)

In other words, the following inequality is obtained

ˆ︁ΓBICV
α,nv

= 1
nvbn

∑︂
sn∈Bn

⃓⃓⃓⃓⃓⃓
Ysn − ˆ︂Yα,sc

n

⃓⃓⃓⃓⃓⃓2
2

(3.65)
≥ 1

nvbn

∑︂
sn∈B

⃓⃓⃓⃓⃓⃓
Ysn − Xα,sn

ˆ︁βα

⃓⃓⃓⃓⃓⃓2
2

. (3.66)

Let mi
n denote the number of occurrences of element i ∈ {1, . . . , n} in subsets

sn ∈ Bn. Since Bn is a Balanced Incomplete Block Design (BIBD), it should hold
that m1

n = . . . = mn
n = mn. Also, because |Bn| = bn and each subset sn ∈ Bn

satisfies |sn| = nv, hence nmn = nvbn. Therefore, one obtains the following

1
nvbn

∑︂
sn∈Bn

⃓⃓⃓⃓⃓⃓
Ysn − Xα,sn

ˆ︁βα

⃓⃓⃓⃓⃓⃓2
2

= 1
nvbn

∑︂
sn∈Bn

∑︂
is∈sn

(︂
Yis − xT

is,α
ˆ︁βα

)︂2

= 1
nvbn

n∑︂
i=1

mi
n

(︂
Yi − xT

i,α
ˆ︁βα

)︂2
= mn

nvbn

n∑︂
i=1

(︂
Yi − xT

i,α
ˆ︁βα

)︂2

= 1
n

n∑︂
i=1

(︂
Yi − xT

i,α
ˆ︁βα

)︂2
= 1

n

⃓⃓⃓⃓⃓⃓
Y − Xα

ˆ︁βα

⃓⃓⃓⃓⃓⃓2
2

. (3.67)
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By combining (3.66) and (3.67), one can define the random variable Rn as

Rn = ˆ︁ΓBICV
α,nv

− 1
n

⃓⃓⃓⃓⃓⃓
Y − Xα

ˆ︁βα

⃓⃓⃓⃓⃓⃓2
2

≥ 0. (3.68)

Also, note that

1
n

⃓⃓⃓⃓⃓⃓
Y − Xα

ˆ︁βα

⃓⃓⃓⃓⃓⃓2
2

(3.39)= ξα,n
(3.42)= 1

n
εT ε + ∆α,n + oP (1). (3.69)

Finally, from (3.68) and (3.69) one has

ˆ︁ΓBICV
α,nv

= 1
n
εT ε + ∆α,n + oP (1) + Rn.

To prove Theorem 14, one will need the following two lemmas.

Lemma 16. Let Bn be a Balanced Incomplete Block Design (BIBD) and α ∈ A
such that Mα is a model in Category II. Define the following random vectors
rα,sn = Ysn − Xα,sn

ˆ︁βα for every sn ∈ Bn. Then the following equation holds

1
nvbn

∑︂
sn∈Bn

rT
α,sn

Qα,snrα,sn =
[︄

1
n

− nv − 1
n(n − 1)

]︄
n∑︂

i=1
wn

i,αr2
i,α,

where the matrix Qα,sn is from Lemma 7, wn
i,α is the i-th diagonal element of the

projection matrix Pα, and ri,α = Yi − xT
i,α
ˆ︁βα.

Proof. Obviously, (XT
αXα)−1 is symmetric and positive definite matrix, hence

there exists symmetric and positive definite matrix (XT
αXα)−1/2 such that

(XT
αXα)−1 = (XT

αXα)−1/2(XT
αXα)−1/2.

Define the following matrix ∼
Xα,sn= Xα,sn(XT

αXα)−1/2. Then one can rewrite Qα,sn

as

Qα,sn = Xα,sn(XT
αXα)−1XT

α,sn

= Xα,sn(XT
αXα)−1/2(XT

αXα)−1/2XT
α,sn

=∼
Xα,sn

∼
X

T

α,sn
.

Further, it will be useful to express ∼
Xα,sn as follows

∼
Xα,sn= (˜︁xi,α : i ∈ sn)T . (3.70)

Therefore, one obtains the following

1
nvbn

∑︂
sn∈Bn

rT
α,sn

Qα,snrα,sn

= 1
nvbn

∑︂
sn∈Bn

rT
α,sn

∼
Xα,sn

∼
X

T

α,sn
rα,sn = 1

nvbn

∑︂
sn∈Bn

⎛⎝∑︂
i∈sn

ri,α ˜︁xT
i,α

⎞⎠⎛⎝∑︂
j∈sn

rj,α ˜︁xj,α

⎞⎠
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= 1
nvbn

∑︂
sn∈Bn

⎛⎝∑︂
i∈sn

r2
i,α ˜︁xT

i,α ˜︁xi,α

⎞⎠+ 1
nvbn

∑︂
sn∈Bn

⎛⎜⎜⎝∑︂∑︂
i ̸=j

i,j∈sn

ri,αrj,α ˜︁xT
i,α ˜︁xj,α

⎞⎟⎟⎠ . (3.71)

Since Bn is a Balanced Incomplete Block Design (BIBD), there exist mn and hn

satisfying the following conditions:

• mn represents the number of occurrences of each element i ∈ {1, . . . , n} in
subsets sn ∈ Bn,

• hn represents the number of occurrences of each pair {i, j}, such that i ̸= j
and i, j ∈ {1, . . . , n}, in subsets sn ∈ Bn.

Also, because |Bn| = bn and each subset sn ∈ Bn satisfies |sn| = nv, then the
following holds

mnn = bnnv and hn

(︄
n

2

)︄
= bn

(︄
nv

2

)︄

⇐⇒ mn = bnnv

n
and hn = bnnv(nv − 1)

n(n − 1) . (3.72)

Thus, it holds that

1
nvbn

∑︂
sn∈Bn

⎛⎝∑︂
i∈sn

r2
i,α ˜︁xT

i,α ˜︁xi,α

⎞⎠ = mn

nvbn

n∑︂
i=1

r2
i,α ˜︁xT

i,α ˜︁xi,α
(3.72)= 1

n

n∑︂
i=1

r2
i,αwn

i,α. (3.73)

Now, it will be proven that ∑︁n
i=1 ri,α ˜︁xi,α = 0. Denote rα = (r1,α, . . . , rn,α)T . Since

Mα is a model in Category II, one has

rα = Y − Xα
ˆ︁βα

(3.2)= Xαβα + ε − Xα
ˆ︁βα

(3.3)= (In − Pα)ε. (3.74)

Similar to (3.70), one can define ∼
Xα= (˜︁xi,α : i = 1, . . . , n)T . Therefore

n∑︂
i=1

ri,α ˜︁xi,α =∼
X

T

α rα
(3.74)= (XT

αXα)−1/2XT
α(In − Pα)ε = 0. (3.75)

Finally, the following holds

1
nvbn

∑︂
sn∈Bn

⎛⎜⎜⎝∑︂∑︂
i ̸=j

i,j∈sn

ri,αrj,α ˜︁xT
i,α ˜︁xj,α

⎞⎟⎟⎠ = hn

nvbn

n∑︂ n∑︂
i ̸=j

ri,αrj,α ˜︁xT
i,α ˜︁xj,α

(3.72)= nv − 1
n(n − 1)

n∑︂ n∑︂
i ̸=j

ri,αrj,α ˜︁xT
i,α ˜︁xj,α

= nv − 1
n(n − 1)

n∑︂
i=1

ri,α ˜︁xT
i,α

⎡⎣ n∑︂
j=1

rj,α ˜︁xj,α⏞ ⏟⏟ ⏞
(3.75)

= 0

−ri,α ˜︁xi,α

⎤⎦ = − nv − 1
n(n − 1)

n∑︂
i=1

r2
i,αwi,α. (3.76)
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By combining (3.71), (3.73) and (3.76), it holds that
1

nvbn

∑︂
sn∈Bn

rT
α,sn

Qα,snrα,sn =
[︄

1
n

− nv − 1
n(n − 1)

]︄
n∑︂

i=1
r2

i,αwn
i,α.

Lemma 17. Suppose that conditions (3.29) and (3.59) hold. Let ∀n ∈ N, the
collection Bn be a Balanced Incomplete Block Design (BIBD), and let condi-
tion (3.58) also be satisfied. Then, for all sn ∈ Bn, the following holds

Qα,sn =
[︂

nv

n
+ o

(︂
nc

n

)︂]︂
Pα,sn ,

where
Qα,sn = Xα,sn(XT

αXα)−1XT
α,sn

and Pα,sn = Xα,sn

(︂
XT

α,sn
Xα,sn

)︂−1
XT

α,sn
.

Proof. For all n ∈ N and sn ∈ Bn the following holds

1
n
XT

αXα − 1
nv
XT

α,sn
Xα,sn = 1

n

(︂
XT

α,sn
XT

α,sc
n

)︂(︄Xα,sn

Xα,sc
n

)︄
− 1

nv
XT

α,sn
Xα,sn

= 1
n
XT

α,sc
n
Xα,sc

n
+
(︂

1
n

− 1
nv

)︂
XT

α,sn
Xα,sn = 1

n
XT

α,sc
n
Xα,sc

n
− nc

nnv
XT

α,sn
Xα,sn

= nc

n

[︂
1

nc
XT

α,sc
n
Xα,sc

n
− 1

nv
XT

α,sn
Xα,sn

]︂
⏞ ⏟⏟ ⏞

(3.58)
= o(1)

= o
(︂

nc

n

)︂
. (3.77)

It holds that
1
n
XT

αXα

[︃(︂
XT

α,sn
Xα,sn

)︂−1
− n

nv

(︂
XT

αXα

)︂−1
]︃

= 1
n
XT

αXα

(︂
XT

α,sn
Xα,sn

)︂−1
− 1

nv
Idα

=
[︂

1
n
XT

αXα − 1
nv
XT

α,sn
Xα,sn

]︂ (︂
XT

α,sn
Xα,sn

)︂−1 (3.77)= o
(︂

nc

n

)︂ (︂
XT

α,sn
Xα,sn

)︂−1
.

Therefore one obtains(︂
XT

α,sn
Xα,sn

)︂−1
− n

nv

(︂
XT

αXα

)︂−1
= o

(︂
nc

n

)︂ [︄ 1
n

n∑︂
i=1

xi,αxT
i,α

]︄−1 (︂
XT

α,sn
Xα,sn

)︂−1

(3.29)= o
(︂

nc

n

)︂
O(1)

(︂
XT

α,sn
Xα,sn

)︂−1
= o

(︂
nc

n

)︂ (︂
XT

α,sn
Xα,sn

)︂−1
.

Finally, one gets the following equation(︂
XT

α,sn
Xα,sn

)︂−1
− n

nv

(︂
XT

αXα

)︂−1
= o

(︂
nc

n

)︂ (︂
XT

α,sn
Xα,sn

)︂−1
. (3.78)

Denote Pα,sn = Xα,sn

(︂
XT

α,sn
Xα,sn

)︂−1
XT

α,sn
as the projection matrix onto the col-

umn space of Xα,sn , where sn ∈ Bn. Then, by using (3.78), one can express Pα,sn

as follows

Pα,sn

(3.78)= Xα,sn

[︃
o
(︂

nc

n

)︂ (︂
XT

α,sn
Xα,sn

)︂−1
+ n

nv

(︂
XT

αXα

)︂−1
]︃
XT

α,sn

= o
(︂

nc

n

)︂
Pα,sn + n

nv
Qα,sn . (3.79)

From (3.79) and condition (3.59),

Qα,sn =
[︂

nv

n
+ o

(︂
nc

n

)︂]︂
Pα,sn . (3.80)
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Note that the preceding lemma states that the matrix Qα,sn is actually a
rescaled projection matrix Pα,sn in the asymptotic sense. Now, everything is
ready to prove Theorem 14.

Proof of Theorem 14

Define the sequence of constants cn = nv(n+nc)
n2

c
and suppose that the random

vectors rα,sn are as defined in Lemma 16. Thus, one gets the following
cn

nvbn

∑︂
sn∈Bn

||Pα,snrα,sn||22 = cn

nvbn

∑︂
sn∈Bn

rT
α,sn

Pα,snrα,sn

Lem. 17= cn

nvbn

[︃
nv

n
+ o

(︃
nc

n

)︃]︃−1 ∑︂
sn∈Bn

rT
α,sn

Qα,snrα,sn

= cnn

nv

[︃
1 + o

(︃
nc

n

)︃]︃−1 1
nvbn

∑︂
sn∈Bn

rT
α,sn

Qα,snrα,sn

Lem. 16= cnn

nv

[︃
1 + o

(︃
nc

n

)︃]︃−1
[︄

1
n

− nv − 1
n(n − 1)

]︄
n∑︂

i=1
wn

i,αr2
i,α

= cnn

nv

[︃
1 + o

(︃
nc

n

)︃]︃−1 nc

n(n − 1)

n∑︂
i=1

wn
i,αr2

i,α

= nv(n + nc)
n2

c

n

nv

[︃
1 + o

(︃
nc

n

)︃]︃−1 nc

n(n − 1)

n∑︂
i=1

wn
i,αr2

i,α

Lem. A.8=
[︃
1 + o

(︃
nc

n

)︃]︃
n + nc

nc(n − 1)

n∑︂
i=1

wn
i,αr2

i,α. (3.81)

Define
Uα,sn = (Inv − Qα,sn)(Inv + cnPα,sn)(Inv − Qα,sn),

A(α)
n = 1

nvbn

∑︂
sn∈Bn

rT
α,sn

(Inv + cnPα,sn)rα,sn

= 1
nvbn

∑︂
sn∈Bn

rT
α,sn

(Inv − Qα,sn)−1Uα,sn(Inv − Qα,sn)−1rα,sn ,

and

B(α)
n = 1

nvbn

∑︂
sn∈Bn

rT
α,sn

(Inv − Qα,sn)−1(Inv − Uα,sn)(Inv − Qα,sn)−1rα,sn .

Therefore

ˆ︁ΓBICV
α,nv

= 1
nvbn

∑︂
sn∈Bn

⃓⃓⃓⃓⃓⃓
Ysn − ˆ︂Yα,sc

n

⃓⃓⃓⃓⃓⃓2
2

Lem. 7= 1
nvbn

∑︂
sn∈Bn

⃓⃓⃓⃓⃓⃓
(Inv − Qα,sn)−1

(︂
Ysn − Xα,sn

ˆ︁βα

)︂⃓⃓⃓⃓⃓⃓2
2

= 1
nvbn

∑︂
sn∈Bn

rT
α,sn

(Inv − Qα,sn)−1 (Inv − Qα,sn)−1 rα,sn = A(α)
n + B(α)

n .
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To complete the proof, it is sufficient to show that

A(α)
n = 1

n
εT ε + 1

nc
dασ2 + oP

(︂
1

nc

)︂
and B(α)

n = oP

(︂
1

nc

)︂
.

Showing that A(α)
n = 1

n
εT ε + 1

nc
dασ2 + oP

(︂
1

nc

)︂
.

Since, Mα is a model from Category II, equation (3.51) can be rewritten as
follows

n∑︂
i=1

wi,αr2
i,α = dασ2 + oP (1). (3.82)

From the balance property of Bn, one gets the following

A(α)
n = 1

nvbn

∑︂
sn∈Bn

rT
α,sn

(Inv + cnPα,sn)rα,sn

= 1
nvbn

∑︂
sn∈Bn

||rα,sn||22 + cn

nvbn

∑︂
sn∈Bn

||Pα,snrα,sn||22

balance= 1
n

⃓⃓⃓⃓⃓⃓
Y − Xα

ˆ︁βα

⃓⃓⃓⃓⃓⃓2
2

+ cn

nvbn

∑︂
sn∈Bn

||Pα,snrα,sn||22

(3.81)= 1
n

⃓⃓⃓⃓⃓⃓
Y − Xα

ˆ︁βα

⃓⃓⃓⃓⃓⃓2
2

+
[︃
1 + o

(︃
nc

n

)︃]︃
n + nc

nc(n − 1)

n∑︂
i=1

wn
i,αr2

i,α

(3.74)= 1
n
εT (In − Pα)ε +

[︃
1 + o

(︃
nc

n

)︃]︃
n + nc

nc(n − 1)

n∑︂
i=1

wn
i,αr2

i,α

(3.82)= 1
n
εT (In − Pα)ε +

[︃
1 + o

(︃
nc

n

)︃]︃
n + nc

nc(n − 1)
[︂
dασ2 + oP (1)

]︂
. (3.83)

From Lemma A.1, it holds that E
[︂
εTPαε

]︂
= σ2dα. Moreover, as nc

n
−→
n→∞

0, it
follows that nc

n
εTPαε

L1−→
n→∞

0. Therefore, one obtains

1
n
εTPαε = oP

(︂
1

nc

)︂
. (3.84)

Also, note the following

n + nc

nc(n − 1) =
1 + nc

n

nc

(︂
1 − 1

n

)︂ = 1
nc

(1 + o(1))2 = 1
nc

+ o
(︂

1
nc

)︂
. (3.85)

By combining (3.83), (3.84) and (3.85), it holds that

A(α)
n = 1

n
εT ε + oP

(︂
1

nc

)︂
+
[︂
1 + o

(︂
nc

n

)︂]︂
·
[︂

1
nc

+ o
(︂

1
nc

)︂]︂
·
[︂
dασ2 + oP (1)

]︂
= 1

n
εT ε + oP

(︂
1

nc

)︂
+
[︂

1
nc

+ o
(︂

1
nc

)︂
+ o

(︂
1
n

)︂]︂
·
[︂
dασ2 + oP (1)

]︂
= 1

n
εT ε + oP

(︂
1

nc

)︂
+
[︂

1
nc

+ o
(︂

1
nc

)︂]︂
·
[︂
dασ2 + oP (1)

]︂
= 1

n
εT ε + 1

nc
dασ2 + oP

(︂
1

nc

)︂
. (3.86)
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Showing that B(α)
n = oP

(︂
1

nc

)︂
.

Firstly, note from Lemma 17

(Inv − Qα,sn)Pα,sn(Inv − Qα,sn)

= (Inv − Qα,sn)P2
α,sn

(Inv − Qα,sn) = (Pα,sn − Qα,snPα,sn)(Pα,sn − Pα,snQα,sn)
Lem. 17=

(︂
Pα,sn −

[︂
nv

n
+ o

(︂
nc

n

)︂]︂
Pα,sn

)︂ (︂
Pα,sn −

[︂
nv

n
+ o

(︂
nc

n

)︂]︂
Pα,sn

)︂
=
[︂
1 − nv

n
+ o

(︂
nc

n

)︂]︂2
Pα,sn =

[︂
nc

n
+ o

(︂
nc

n

)︂]︂2
Pα,sn .

Hence(︂
n
nc

)︂2
(Inv − Qα,sn)Pα,sn(Inv − Qα,sn) =

(︂
n
nc

)︂2 [︂
nc

n
+ o

(︂
nc

n

)︂]︂2
Pα,sn

= [1 + o(1)]2Pα,sn = Pα,sn + o(1)Pα,sn .
(3.87)

Obviously, for sufficiently large n, the matrix 1
2Pα,sn +o(1)Pα,sn is positive semidef-

inite, i.e., ∀ ˜︁u ∈ Rnv

˜︁uT
(︂

1
2Pα,sn + o(1)Pα,sn

)︂ ˜︁u
(3.87)= ˜︁uT

(︃(︂
n
nc

)︂2
(Inv − Qα,sn)Pα,sn(Inv − Qα,sn) − 1

2Pα,sn

)︃ ˜︁u ≥ 0.

Consider ˜︁u = (Inv − Qα,sn)−1u for u ∈ Rnv then

uT
(︃(︂

n
nc

)︂2
Pα,sn − 1

2 (Inv − Qα,sn)−1 Pα,sn (Inv − Qα,sn)−1
)︃

u ≥ 0.

The last inequality implies that the matrix

2
(︂

n
nc

)︂2
Pα,sn − (Inv − Qα,sn)−1 Pα,sn (Inv − Qα,sn)−1 ≥ 0 (3.88)

is positive semidefinite (where the symbol ≥ in the matrix context indicates
positive semidefiniteness). Also, by Lemma 17,

Uα,sn

Lem. 17=
(︂
Inv − nv

n
Pα,sn + o

(︂
nc

n

)︂
Pα,sn

)︂
(Inv + cnPα,sn)

×
(︂
Inv − nv

n
Pα,sn + o

(︂
nc

n

)︂
Pα,sn

)︂
= (Inv − nv

n
Pα,sn)(Inv + cnPα,sn)(Inv − nv

n
Pα,sn)

+ o
(︂

nc

n

)︂
(Inv − nv

n
Pα,sn)(Inv + cnPα,sn)Pα,sn

+ o
(︂

nc

n

)︂
Pα,sn(Inv + cnPα,sn)(Inv − nv

n
Pα,sn)

+
[︂
o
(︂

nc

n

)︂]︂2
Pα,sn(Inv + cnPα,sn)Pα,sn

= (Inv − nv

n
Pα,sn)(Inv + cnPα,sn)(Inv − nv

n
Pα,sn)

+ o
(︂

nc

n

)︂
(1 − nv

n
)(1 + cn)Pα,sn +

[︂
o
(︂

nc

n

)︂]︂2
(1 + cn)Pα,sn . (3.89)
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Since nc

n
−→
n→∞

0 and cn

(︂
nc

n

)︂2
= nv

n

(︂
2 − nv

n

)︂
−→
n→∞

1, it follows that

o
(︂

nc

n

)︂ (︂
1 − nv

n

)︂
(1 + cn)Pα,sn = o

(︂
nc

n

)︂
nc

n
(1 + cn)Pα,sn

=
[︃
o(1)

(︂
nc

n

)︂2
+ o(1)

(︂
nc

n

)︂2
cn

]︃
Pα,sn =

[︂
o
(︂

nc

n

)︂]︂2
(1 + cn)Pα,sn . (3.90)

By combining (3.89) and (3.90), one obtains

Uα,sn = (Inv − nv

n
Pα,sn)(Inv + cnPα,sn)(Inv − nv

n
Pα,sn) +

[︂
o
(︂

nc

n

)︂]︂2
(1 + cn)Pα,sn

=
(︂
Inv − nv

n
Pα,sn

)︂2
+ cn

(︂
1 − nv

n

)︂2
Pα,sn +

[︂
o
(︂

nc

n

)︂]︂2
(1 + cn)Pα,sn

= Inv − 2nv

n
Pα,sn +

(︂
nv

n

)︂2
Pα,sn + cn

(︂
nc

n

)︂2
Pα,sn +

[︂
o
(︂

nc

n

)︂]︂2
(1 + cn)Pα,sn

= Inv + 1
n2

(︂
n2

v − 2nvn + cnn2
c

)︂
⏞ ⏟⏟ ⏞

=0

Pα,sn +
[︂
o
(︂

nc

n

)︂]︂2
(1 + cn)Pα,sn

= Inv +
[︂
o
(︂

nc

n

)︂]︂2
(1 + cn)Pα,sn . (3.91)

Multiplying the matrix from (3.88) by the factor
[︂
o
(︂

nc

n

)︂]︂2
(1 + cn), one easily

obtains that the matrix

o(1)(1 + cn)Pα,s −
[︂
o
(︂

nc

n

)︂]︂2
(1 + cn)(Inv − Qα,s)−1Pα,s(Inv − Qα,s)−1 ≥ 0 (3.92)

is positive semidefinite. Also by (3.91), the following holds

(Inv − Qα,s)−1(Inv − Uα,s)(Inv − Qα,s)−1

(3.91)=
[︂
o
(︂

nc

n

)︂]︂2
(1 + cn)(Inv − Qα,s)−1Pα,s(Inv − Qα,s)−1. (3.93)

By combining (3.92) and (3.93), one can infer that ∀u ∈ Rnv

o(1)(1 + cn)uTPα,su ≥ uT (Inv − Qα,s)−1(Inv − Uα,s)(Inv − Qα,s)−1u.

Therefore

B(α)
n ≤ o(1)(1 + cn)

(︄
1

nvb

∑︂
s∈B

||Pα,srα,s||22

)︄
= oP

(︂
1

nc

)︂
,

where the last equation follows from the fact that in (3.83) and (3.86) it was
shown that

cn

nvb

∑︂
s∈B

||Pα,srα,s||22 = 1
nc

dασ2 + oP

(︂
1

nc

)︂
.
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3.3.4 Monte Carlo cross-validation
Using the BICV(nv) requires having a balanced incomplete block design Bn

for all n ∈ N, which can be hard to obtain in real applications. Therefore, a
Monte Carlo alternative of BICV(nv) may be used. For all n ∈ N randomly draw
without replacement a collection Tn of bn subsets of {1, . . . , n} that have size
nv. Then the cross-validation estimate of Γα,n will be referred to as the Monte
Carlo CV(nv), abbreviated as MCCV(nv), and is defined as

ˆ︁ΓMCCV
α,nv

= 1
nvbn

∑︂
sn∈Tn

⃓⃓⃓⃓⃓⃓
Ysn − ˆ︂Yα,sc

n

⃓⃓⃓⃓⃓⃓2
2

.

The model selected by Monte Carlo cross-validation is Mˆ︁αM (nv), where

ˆ︁αM(nv) = arg min
α∈A

ˆ︁ΓMCCV
α,nv

. (3.94)

The following result is similar to Theorems 13, 14 and 15. The probability state-
ments in Theorem 18 are with respect to the joint probability corresponding to Y
and the Monte Carlo selection of the subsets.

Theorem 18. Suppose that conditions (3.13), (3.29), (3.35) and (3.59) are sat-
isfied. Also, assume that

max
sn∈Tn

⃓⃓⃓⃓
⃓⃓
⃓⃓⃓⃓
⃓⃓ 1
nv

∑︂
i∈sn

xix
T
i − 1

nc

∑︂
i∈sc

n

xix
T
i

⃓⃓⃓⃓
⃓⃓
⃓⃓⃓⃓
⃓⃓ = oP (1), (3.95)

where Tn contains bn subsets selected randomly with bn satisfying

n2

bnn2
c

−→
n→∞

0. (3.96)

This yields the following conclusions:

• If Mα is a model in Category I, then there exists nonnegative random vari-
ables Rn such that

ˆ︁ΓMCCV
α,nv

= 1
nvbn

∑︂
sn∈Tn

εT
sn

εsn + ∆α,n + oP (1) + Rn,

where εsn = Ysn − Xsnβ and Xsn is the nv × p matrix containing the rows
of X indexed by i ∈ sn.

• If Mα is a model in Category II, it holds that

ˆ︁ΓMCCV
α,nv

= 1
nvbn

∑︂
sn∈Tn

εT
sn

εsn + 1
nc

dασ2 + oP

(︂
1

nc

)︂
.

• Consequently,
lim
n→∞

P
[︂
Mˆ︁αM (nv) ̸= M∗

]︂
= 0,

which means that MCCV(nv) is asymptotically correct.

The proof is given in the appendix of paper Shao [1993], p. 494.
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Note that condition (3.95) is the probabilistic analog of assumption (3.58).
Condition (3.96) imposes certain restrictions on bn and nc, indicating that when
fewer data are used for model construction, more splits are needed. In addition
to the Monte Carlo method CV(nv), there is another alternative to BICV(nv)
called an analytic approximate cross-validation, details of which can be found in
the paper Shao [1993], Chapter 3.3.2.

3.4 Real Data
In this chapter, the cross-validation techniques will be compared using real

data from parliamentary and presidential elections in the Czech Republic held in
the years 2021 and 2023. In 2021, elections were held for the Chamber of Deputies
of the Czech Parliament, with the participation of 22 political parties. In 2023,
presidential elections took place, with the participation of 9 candidates. The
presidential election system is such that initially, the first round is held, where two
candidates with the highest number of votes are selected. These candidates then
advance to the second round, where the election is held again, and the president
is chosen. On the other hand, the parliamentary election system is conducted in
just one round. Voting in parliamentary and presidential elections took place in
each district of every municipality in the country. The goal of this chapter will
be to make predictions of the percentage of votes obtained by the two candidates
in the first round (the candidates from the presidential elections who advanced
to the second round) based on information from the parliamentary elections.
Predictions will be made using leave-one-out cross-validation and Monte Carlo
cross-validation, and the results will then be compared.

3.4.1 Data Structure
All data used in this chapter are available on the following website Czech

Statistical Office.
The data from the parliamentary elections include the following information:

idM (identification number of the municipality), idD (identification number of the
district), P1, ... , P22 (number of votes for individual political parties), IE (total
number of issued envelopes), RV (total number of registered voters).

Similarly, the data from the first round of the presidential elections include
the following information: idM (identification number of the municipality), idD
(identification number of the district), V (total number of valid votes in the first
round) and RV1 (total number of registered voters in the first round). Addition-
ally, it includes the number of votes received by the candidates who advanced to
the second round: Y (Petr Pavel) and Z (Andrej Babǐs).

Both datasets are arranged according to the processing time. Note that each
district is characterized by a pair of numbers, idM and idD, and will be treated
as an individual observation.

3.4.2 Used Linear Models
It is important to note that since the data are arranged according to process-

ing time, the data structure dictates that smaller districts will appear first in the

59



datasets, followed by larger ones. Therefore, one would expect that homoscedas-
ticity assumption would not be met in a dataset of this nature. To approach
the assumption of homoscedasticity, all variables were transformed using square
root transformations. Recall that in a linear model with p predictors, the cross-
validation criterion for model selection involves all 2p−1 possible submodels being
explored, and the one with the smallest estimate of Γα,n is selected. Therefore, to
ensure computational manageability, only the seven largest political parties (in
terms of the number of votes they received) were considered as predictors when
constructing models to predict the number of votes for candidates Y and Z. These
political parties are P4 (Svoboda a př́ımá demokracie), P5 (Česká strana sociálně
demokratická), P12 (PŘÍSAHA Roberta Šlachty), P13 (SPOLU), P17 (PIRÁTI
a STAROSTOVÉ), P18 (Komunistická strana Čech a Moravy), and P20 (ANO
2011). Overall, the following linear models were considered:

• M1 is a linear model whose response is
√

Y and its predictors are
√

RV1,√
RV,

√
IE and

√
Pk for k = 4, 5, 12, 13, 17, 18, 20.

• M2 is a linear model whose response is
√

Z and its predictors are
√

RV1,√
RV,

√
IE and

√
Pk for k = 4, 5, 12, 13, 17, 18, 20.

Since one wants to predict the percentage of votes obtained by the candidates Y
and Z, it is necessary to have a model to predict the total number of valid votes
in the first round V. Therefore, the following model is also considered:

• M3 is a linear model whose response is
√

V and its predictors are
√

RV1,√
RV and

√
IE.

Using cross-validation techniques, the optimal models will be chosen from M1
and M2, and then predictions will be made using those optimal models. For
predictions of the number of valid votes in the first round V, the entire model M3
will be employed.

3.4.3 Notation
In total, there are N = 14 844 observations available. To construct and vali-

date the model, the initial n = q · N observations will be used, where q ∈ [0, 1].
Recall that observations are arranged according to the processing time, so it’s
crucial to use the earliest observations in the dataset for model construction and
validation. The motivation behind this is the desire to make predictions about
the overall impact of elections once, for example, the first 15% of results are
known. The remaining N − n data points will be reserved as test data. For
model construction, nc = n

3
4 data points will be employed, while nv = n − nc

data points will be used for model validation. As mentioned earlier, CV(1) and
Monte Carlo CV(nv) methods will be used to select the optimal submodels of M1
and M2. It’s worth noting that the estimate ˆ︁ΓCV

α,1 can be directly computed from
the expression (3.28), while for computing ˆ︁ΓMCCV

α,nv
, bn = 2n selections for Monte

Carlo sampling were used. Therefore, it can be observed that with the chosen bn

and nc, condition (3.96) is satisfied.
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Summarize the notation that will be used here:

• {1, . . . , N} is the set of all available data.

• {1, . . . , n} is the set of data used for model construction and validation,
where n = q ·N and q ∈ [0, 1]. For model validation, a subset s ⊂ {1, . . . , n}
is used such that |s| = nv, while for model construction, the complement
subset sc ⊂ {1, . . . , n} \ s is used such that |sc| = nc.

• Yi represents the number of votes received by Petr Pavel in the i-th district,
while Zi represents the number of votes received by Andrej Babǐs in the i-th
district, for i = 1, . . . , N . At the same time, Vi represents the total number
of valid votes in the first round in the i-th district.

• ˆ︁Yi,1 denotes the prediction of the number of votes received by Petr Pavel in
the i-th district, for i = n+1, . . . , N , where this prediction was made based
on leave-one-out cross-validation applied to model M1. Similarly, ˆ︁Yi,nv can
be understood as the prediction based on Monte Carlo CV(nv) applied to
model M1, while ˆ︁Yi denotes the prediction based on the full model M1.

• ˆ︁Zi,1 denotes the prediction of the number of votes received by Andrej Babǐs
in the i-th district, for i = n + 1, . . . , N , where this prediction was made
based on leave-one-out cross-validation applied to model M2. Similarly,ˆ︁Zi,nv can be understood as the prediction based on Monte Carlo CV(nv)
applied to model M2, while ˆ︁Zi denotes the prediction based on the full
model M2.

• ˆ︁Vi denotes the prediction of the total number of valid votes in the first round
in the i-th district, for i = n + 1, . . . , N , which was made by model M3.

3.4.4 Assessment of the Prediction
To predict the percentage of votes obtained by the two candidates in the first

round, the following quantities will be needed:

• RY(n) = ∑︁n
i=1 Yi/

∑︁n
i=1 Vi and RZ(n) = ∑︁n

i=1 Zi/
∑︁n

i=1 Vi show the percent-
age ratio of how many votes each of the candidates actually received based
on the data {1, . . . , n}.

• ˆ︁RY =
(︂∑︁n

i=1 Yi +∑︁N
j=n+1

ˆ︁Yj

)︂
/
(︂∑︁n

i=1 Vi +∑︁N
j=n+1

ˆ︁Vj

)︂
represents the esti-

mation of RY(N) based on the full model M1, and similarly, ˆ︁RZ can be
defined.

• ˆ︁RY(1) =
(︂∑︁n

i=1 Yi +∑︁N
j=n+1

ˆ︁Yj,1
)︂

/
(︂∑︁n

i=1 Vi +∑︁N
j=n+1

ˆ︁Vj

)︂
represents the

CV(1) estimation of RY(N), and similarly, ˆ︁RZ(1) can be defined.

• ˆ︁RY(nv) =
(︂∑︁n

i=1 Yi +∑︁N
j=n+1

ˆ︁Yj,nv

)︂
/
(︂∑︁n

i=1 Vi +∑︁N
j=n+1

ˆ︁Vj

)︂
represents

the Monte Carlo CV(nv) estimation of RY(N), and similarly, ˆ︁RZ(nv) can
be defined.

Another measure that describes the quality of the prediction is the average
squared prediction error:
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• PEY = 1
N−n

∑︁N
j=n+1

(︂
Yj − ˆ︁Yj

)︂2
, and similarly, PEZ can be defined.

• PEY(1) = 1
N−n

∑︁N
j=n+1

(︂
Yj − ˆ︁Yj,1

)︂2
, and similarly, PEZ(1) can be defined.

• PEY(nv) = 1
N−n

∑︁N
j=n+1

(︂
Yj − ˆ︁Yj,nv

)︂2
, and similarly, PEZ(nv) can be de-

fined.

Additionally, the normalized average squared prediction errors will be needed:

• REY(1) = PEY(1)/min
{︂
PEY(1), PEY(nv), PEY

}︂
, and similarly, REZ(1) can

be defined.

• REY(nv) = PEY(nv)/min
{︂
PEY(1), PEY(nv), PEY

}︂
, and similarly, REZ(nv)

can be defined.

• REY = PEY/min
{︂
PEY(1), PEY(nv), PEY

}︂
, and similarly, REZ can be de-

fined.

All the above-mentioned quantities will be used to assess the quality of pre-
diction in the following subsection.

3.4.5 Discussion of results
From Table 3.1, it can be observed that from the beginning, the difference be-

tween the estimates ˆ︁RY, ˆ︁RY(1), and ˆ︁RY(nv) appears at the third decimal place. It
is also evident that if more than 17% of the data were used for model construction
and validation, differences between the estimates begin to emerge at the fourth
decimal place, which is almost negligible. Overall, it can be seen from the results
of Table 3.1 that it almost does not matter whether the overall model M1 is used
for prediction or some submodel selected via CV(1) or Monte Carlo CV(nv) is
used. A nearly analogous situation arises in Table 3.2, where unlike Table 3.1,
differences at the third decimal place appear even for larger percentages of data
used for model construction and validation.

Note that in Table 3.1, ˆ︁RY(1) and ˆ︁RY(nv) are almost the same as the esti-
mate ˆ︁RY, which indicates that both methods CV(1) and Monte Carlo CV(nv) try
to select models close to the full model M1 (analogously in Table 3.2). This may
indicate that the majority of the considered predictors in models M1 and M2 are
important.

The overall percentage ratios of votes received by candidates Y and Z are
RY(N) = 0.3538 and RZ(N) = 0.3502 respectively. Note that these numbers
slightly differ from those stated in Czech Statistical Office because in the presiden-
tial elections of 2023, there were 13 newly added districts that were not present in
the parliamentary elections of 2021. Since the number of such districts is relatively
small, such districts were excluded from the dataset. An interesting observation
is that from Tables 3.1 and 3.2, it is already evident, using only 5% of the data
for model construction and validation, that all three methods estimate the overall
vote percentage ratios approximately as 0.35. Meanwhile, the current percentage
ratios of votes RY(n) = 0.3038 underestimate, and RZ(n) = 0.3981 overestimate
the percentage ratios of votes each candidate will receive for n = 0.05 · N .
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On the other hand, one does not see in Tables 3.1 and 3.2 any clear advantage
of the Monte Carlo CV(nv) method over CV(1). One of the reasons could be
that the theory mentioned above assesses prediction quality by considering the
average squared prediction error, while here, the ratios RY and RZ were consid-
ered. Those quantities were used here because it was hoped that minimizing the
average squared prediction error would also reflect in the quality of estimating
RY and RZ.

However, since the differences in estimates of RY and RZ are small, let’s
look at Tables 3.3 and 3.4, where average squared prediction errors were used
to assess the quality of prediction. Fitting the models M1 and M2 on data
{1, . . . , 0.05 · N} and then conducting the formal statistical test confirmed het-
eroscedasticity (Koenker’s studentized version of the Breusch-Pagan Test was
used). Since the assumption of homoscedasticity is violated, one wouldn’t expect
the results to align with the theory. However, as shown, for example, in Table 3.4,
in almost all cases, Monte Carlo CV(nv) performs better than CV(1). The only
exceptions are when 20%, 22%, and 40% of the total data were used for model
construction and validation. Nonetheless, from this table, it’s apparent that quite
often, the normalized values of prediction error computed from CV(1) differ from
the normalized values of the optimal model by the first or second decimal place.
This could be interpreted as CV(1) differing from the optimal model within units
or tens of percent. Whereas, in all cases, the normalized values of prediction error
from Monte Carlo CV(nv) differ from the normalized values of the optimal model
by the third decimal place. This could be interpreted as Monte Carlo CV(nv)
differing from the optimal model by less than 1 percent. Therefore, despite the
violation of homoscedasticity, Table 3.4 indicates that Monte Carlo CV(nv) out-
performs CV(1) in terms of prediction error. Additionally, it can be seen from
this table that the full model M1 performs optimally in terms of prediction error
with larger percentages of used data for model construction and validation.

Nearly an analogous situation arises in Table 3.4. When less than 15% of
all data is used for model construction and validation, CV(1) differs more from
the optimal model than Monte Carlo CV(nv). In other cases, CV(1) selects the
optimal model, but Monte Carlo CV(nv) differs from it at the third decimal place,
which may be deemed negligible.

Another reason why CV(1) may not be easily surpassed by Monte Carlo
CV(nv) in practice could be that for large datasets, all reasonably selected pre-
dictors are statistically significant. This implies that both methods tend to select
the full model.
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Percentage of
used data RY(n) ˆ︁RY

ˆ︁RY(1) ˆ︁RY(nv)

5 % 0.3038 0.3505 0.3510 0.3510
7 % 0.3087 0.3532 0.3540 0.3514
10 % 0.3117 0.3546 0.3548 0.3528
12 % 0.3118 0.3534 0.3534 0.3514
15 % 0.3124 0.3514 0.3514 0.3496
17 % 0.3124 0.3523 0.3523 0.3529
20 % 0.3135 0.3520 0.3520 0.3520
22 % 0.3144 0.3519 0.3519 0.3519
25 % 0.3146 0.3518 0.3519 0.3519
27 % 0.3152 0.3512 0.3513 0.3513
30 % 0.3156 0.3506 0.3506 0.3506
40 % 0.3189 0.3504 0.3505 0.3505

Table 3.1: The table illustrates the percentage ratio of the votes Petr Pavel
actually received, along with various estimations of this percentage ratio obtained
by the full model M1, leave-one-out, and Monte Carlo cross-validations. The
overall percentage ratio of votes received by Petr Pavel is RY(N) = 0.3538.

Percentage of
used data RZ(n) ˆ︁RZ

ˆ︁RZ(1) ˆ︁RZ(nv)

5 % 0.3981 0.3508 0.3511 0.3508
7 % 0.3937 0.3486 0.3487 0.3469
10 % 0.3913 0.3477 0.3465 0.3465
12 % 0.3909 0.3473 0.3472 0.3452
15 % 0.3915 0.3479 0.3479 0.3460
17 % 0.3932 0.3485 0.3484 0.3476
20 % 0.3913 0.3490 0.3491 0.3491
22 % 0.3907 0.3490 0.3491 0.3491
25 % 0.3914 0.3491 0.3492 0.3486
27 % 0.3908 0.3497 0.3498 0.3493
30 % 0.3906 0.3502 0.3503 0.3498
40 % 0.3870 0.3501 0.3501 0.3501

Table 3.2: The table illustrates the percentage ratio of the votes Andrej Babǐs
actually received, along with various estimations of this percentage ratio obtained
by the full model M2, leave-one-out, and Monte Carlo cross-validations. The
overall percentage ratio of votes received by Andrej Babǐs is RZ(N) = 0.3502.
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Percentage of
used data REY REY(1) REY(nv)

5 % 1.0000 1.0000 1.0060
7 % 1.0000 1.0425 1.0161
10 % 1.0000 1.0417 1.0044
12 % 1.0000 1.0474 1.0001
15 % 1.0000 1.0571 1.0021
17 % 1.0117 1.0000 1.0113
20 % 1.0000 1.0000 1.0005
22 % 1.0000 1.0000 1.0004
25 % 1.0000 1.0000 1.0020
27 % 1.0000 1.0000 1.0019
30 % 1.0000 1.0000 1.0005
40 % 1.0000 1.0000 1.0014

Table 3.3: The table shows the normalized average squared prediction errors
computed on the test data for Petr Pavel. These errors are calculated using three
methods: employing the full model M1 , using CV(1), and Monte Carlo CV(nv).
It’s important to note that normalization is performed based on the smallest
prediction error. Thus, a value of 1.0000 in the table indicates that the method
has the smallest prediction error. The higher the value in the table, the worse
the method is in terms of prediction error relative to the other methods.

Percentage of
used data REZ REZ(1) REZ(nv)

5 % 1.0014 1.1275 1.0000
7 % 1.0000 1.1335 1.0004
10 % 1.1047 1.1047 1.0000
12 % 1.0010 1.1579 1.0000
15 % 1.0004 1.1485 1.0000
17 % 1.0004 1.0309 1.0000
20 % 1.0000 1.0000 1.0009
22 % 1.0000 1.0000 1.0014
25 % 1.0000 1.0291 1.0020
27 % 1.0000 1.0278 1.0016
30 % 1.0000 1.0262 1.0019
40 % 1.0000 1.0000 1.0013

Table 3.4: The table shows the normalized average squared prediction errors
computed on the test data for Andrej Babǐs. These errors are calculated using
three methods: employing the full model M2 , using CV(1), and Monte Carlo
CV(nv). As in the caption of Table 3.3, the higher the value in the table, the
worse the method performs in terms of prediction error relative to the other
methods.
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Conclusion
In this work, we focused on the use of cross-validation methods in various

contexts. The first two chapters showed the application of leave-one-out cross-
validation for kernel density estimation and kernel regression. The structure
of these chapters was based on lecture notes Nagy and Omelka [2024], with a
greater emphasis on methods for bandwidth selection relying on cross-validation.
In Chapter 1, theoretical results ensuring the optimality of cross-validation were
introduced. For instance, one of the theoretical contributions is a rigorous proof
of Lemma 3. In comparison to the orginal paper Scott and Terrell [1987], it seems
that additional technical assumptions (1.11) and (1.12) are needed. A possible
extension of the results from Chapter 1 would be to derive the asymptotical
variances of bandwidths selected by cross-validation based on the paper Hall and
Marron [1987]. Theoretical results of the first two chapters were illustrated using
simulated data.

Chapter 3, based on the paper Shao [1993], can be considered the main part of
the thesis. In this chapter, in comparison to the original paper, proofs of certain
claims were elaborated in greater detail. Many claims used in the argumentation
of the paper are not obvious, and some of them required nontrivial derivation.
The methods introduced in this chapter were then applied to real data from
parliamentary and presidential elections in the Czech Republic in 2021 and 2023.
It became clear that homoscedasticity is a crucial assumption for highlighting the
advantages of the CV(nv) method over CV(1). However, it was demonstrated that
even in our data, where this assumption is not met, if CV(1) outperforms CV(nv),
the difference in prediction errors is not large. Conversely, in cases where CV(nv)
outperforms CV(1), the difference in prediction errors is more pronounced.

Another crucial assumption throughout Chapter 3 was that the number of
predictors remained constant as n → ∞. It could potentially be studied how the
aforementioned methods behave when the number of predictors also increases. It
would be also interesting to study various extensions of the theory from Chapter 3
to generalized linear models or heteroscedastic linear regression.
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A. Appendix
Theorem A.1. Let X = (X1, . . . , Xn)T , where X1, . . . , Xn

iid∼ N(0, σ2). Let Q =
σ−2XTAX for a symmetric matrix A with rank r. Then Q has a χ2

r distribution
if and only if A is idempotent.

The proof is given in Hogg et al. [2018], Theorem 9.8.4.

Lemma A.1. Let Z be a random vector of length n with the expectation µ and
the finite covariance matrix Σ. Let B be any matrix of size n × n. Then

E
[︂
ZTBZ

]︂
= µTBµ + tr(BΣ).

The proof can be found in the course notes Omelka, Lemma 2.5.

Lemma A.2. Assume that {Zn}∞
n=1 is a sequence of random variables such that

var(Zn) −→
n→∞

0. Then
Zn − EZn

P−→
n→∞

0.

Proof. The proof follows simply from Chebyshev’s inequality as

P
[︂
|Zn − EZn| > ε

]︂ Cheb.
≤ var(Zn)

ε2 −→
n→∞

0,

for each ε > 0.

Definition A.1. The spectral radius ρ(A) of a square matrix A is defined by

ρ(A) = max |λ|, where λ is an eigenvalue of A.

If λ = α + βi is complex, then |λ| = (α2 + β2) 1
2 .

Definition A.2. A matrix norm on the set of all n × m matrices is a real-valued
function, || · ||, defined on this set, satisfying for all n × m matrices A and B and
all real numbers α:

1. ||A|| ≥ 0;

2. ||A|| = 0, if and only if A is the matrix with all 0 entries;

3. ||αA|| = |α| ||A||;

4. ||A + B|| ≤ ||A|| + ||B||;

5. ||AB|| ≤ ||A|| ||B||.

Definition A.3. Let || · ||v is a vector norm. Then,

||A|| = sup
||x||v=1

||Ax||v

is called the natural matrix norm associated with the vector norm || · ||v.

67



Remark. It can be easily shown that the natural matrix norm satisfies Defini-
tion A.2. The most commonly used natural matrix norms are

||A||2 = sup
||x||2=1

||Ax||2, the l2 norm, (A.1)

||A||∞ = sup
||x||∞=1

||Ax||∞, the l∞ norm, (A.2)

where

||x||2 =
{︄

m∑︂
i=1

x2
i

}︄ 1
2

and ||x||∞ = max
1≤i≤m

|xi|.

Lemma A.3. Let A1 and A2 be square matrices of order n that are symmetric,
positive definite and A1 − A2 is also positive definite, then ρ(A−1

1 A2) < 1.

Proof. First, note that because A1 is symmetric and positive definite, there ex-
ists a symmetric and positive definite matrix A1/2

1 such that A1 = A1/2
1 A1/2

1 .
From the assumptions of the lemma, it holds that A1 − A2 is a positive defi-
nite matrix. Therefore, A−1/2

1 (A1 − A2)A−1/2
1 is also positive definite. Denote

B = A−1/2
1 A2A−1/2

1 , which is also positive definite. Then, it holds that

A−1/2
1 (A1 − A2)A−1/2

1 = In − A−1/2
1 A2A−1/2

1 = In − B > 0,

where the symbol >, in the context of matrices, indicates positive definiteness.
Therefore, for all nonzero vectors x ∈ Rn one would get that

xT (In − B)x > 0.

Equivalently, for all nonzero x ∈ Rn, it holds that

0 < xTBx < xT x, (A.3)

where the first inequality holds due to the positive definiteness of B. Note that
because B is positive definite and symmetric, there exists a positive definite and
symmetric matrix B1/2 such that B = B1/2B1/2. Therefore, it could also be shown
that for all x ∈ Rn, the following holds

0 ≤ (Bx)T (Bx) sym.= xTB2x =
(︂
B1/2x

)︂T
B
(︂
B1/2x

)︂ (A.3)
< xTBx < xT x. (A.4)

Overall, one obtains that
sup

||x||2=1
xTB2x < 1.

Finally, bound the l2 matrix norm as follows

||B||2 = sup
||x||2=1

||Bx||2 = sup
||x||2=1

√
xTBTBx = sup

||x||2=1

√
xTB2x < 1.

After using Theorem 7.15 from Burden and Faires [2010], one can conclude that

ρ(A−1/2
1 A2A−1/2

1 ) = ρ(B) ≤ ||B||2 < 1.

The last thing to note is that A−1/2
1 A2A−1/2

1 and A−1/2
1 A−1/2

1 A2 = A−1
1 A2 have the

same eigenvalues, which means that

ρ(A−1
1 A2) = ρ(A−1/2

1 A2A−1/2
1 ) < 1.
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Lemma A.4. For any vector x ̸= 0, matrix A, and any natural norm || · ||, it
holds that

||Ax|| ≤ ||A|| · ||x||.

The proof can be found in Burden and Faires [2010], Corollary 7.10.

Lemma A.5. If A = (ai,j) is an n × m matrix, then

||A||∞ = max
1≤i≤n

m∑︂
j=1

|aij|.

The proof is given in Burden and Faires [2010], Theorem 7.11.

Theorem A.2. For any two matrix norms || · ||γ and || · ||β, there exist positive
constants r and s such that for all matrices A the following holds

r||A||γ ≤ ||A||β ≤ s||A||γ.

The proof is provided in Horn and Johnson [2012], Corollary 5.4.5.

Lemma A.6. Let X = (x1, . . . , xd) and X∗ = (x1, . . . , xd∗) be n × d and n × d∗
matrices, respectively, such that rank(X) = d, rank(X∗) = d∗, and d∗ < d. Then
rank(P − P∗) = d − d∗, where P and P∗ are projection matrices onto the column
spaces Im(X) and Im(X∗), respectively.

Proof. It is known from the QR-factorization (see Horn and Johnson [2012], The-
orem 2.1.14) that there exist an n × d matrix Q = (q1, . . . , qd) with orthonormal
columns and an upper triangular d × d matrix R with positive elements on its di-
agonal, such that X = QR. Since X∗ is a submatrix of X that contains the first d∗
columns of X, there should also exist an upper triangular d∗ × d∗ matrix R∗ with
positive elements on its diagonal, such that X∗ = Q∗R∗, where Q∗ = (q1, . . . , qd∗).
Thus, one can express the projection matrices in the following way

P = X
(︂
XTX

)︂−1
XT = Q

[︃
R
(︂
RTR

)︂−1
RT
]︃
QT , (A.5)

P∗ = X∗
(︂
XT

∗ X∗
)︂−1

XT
∗ = Q∗

[︃
R∗
(︂
RT

∗ R∗
)︂−1

RT
∗

]︃
QT

∗ . (A.6)

Since R is an upper triangular matrix with positive elements on its diagonal, it
implies that both R and RT are invertible (similarly for matrix R∗). Therefore,
the following holds

R
(︂
RTR

)︂−1
RT = RR−1

(︂
RT
)︂−1

RT = Id. (A.7)

R∗
(︂
RT

∗ R∗
)︂−1

RT
∗ = R∗R−1

∗

(︂
RT

∗

)︂−1
RT

∗ = Id∗ . (A.8)

Finally, by combining (A.5), (A.6), (A.7) and (A.8), one obtains

P − P∗ = QQT − Q∗QT
∗ =

d∑︂
i=1

qiq
T
i −

d∗∑︂
j=1

qjq
T
j =

d∑︂
i=d∗+1

qiq
T
i . (A.9)

The statement of the lemma follows from equation (A.9) and the fact that the
set of vectors (qd∗+1, . . . , qd) is also orthonormal.
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Lemma A.7. Let Y ≥ 0 be a nonnegative random variable with a continuous cu-
mulative distribution function FY , and {Xn}∞

n=1 be a sequence of random variables
such that Xn

P−→
n→∞

0. Then for all a > 0, it holds that

P(Xn + Y > a) ≥ P(Y > a) + o(1).

Proof. Since Xn
P−→

n→∞
0, there exists a sequence of positive real numbers {εn}∞

n=1
such that εn −→

n→∞
0 and P(|Xn| < εn) −→

n→∞
1. Therefore

P(Xn + Y > a)

≥ P(Xn + Y > a, |Xn| ≤ εn) ≥ P(Y > a + εn, |Xn| ≤ εn)

≥ 1 − P(Y ≤ a + εn) − P(|Xn| > εn) = P(Y > a + εn)⏞ ⏟⏟ ⏞
=P(Y >a)+o(1)

− P(|Xn| > εn)⏞ ⏟⏟ ⏞
=o(1)

= P(Y > a) + o(1).

Lemma A.8. Let {xn}∞
n=1 be a sequence of positive real numbers such that

xn −→
n→∞

0. Then it holds that

1
1 + o(xn) = 1 + o(xn).

Proof. Since the function 1
1+x

is defined on the open interval
(︂
−1

2 , 1
)︂
. Therefore,

by employing the Lagrange form of the remainder (see Bartle and Sherbert [2011],
Theorem 6.4.1), then there exists c ∈

(︂
−1

2 , 1
)︂

such that for any x ∈
(︂
−1

2 , 1
)︂

1
1 + x

= 1 − x + 1
(1 + c)3 x2.

Thus, for sufficiently large n

1
1 + o(xn) = 1 − o(xn) + 1

(1 + c)3 [o(xn)]2

= 1 − o(xn) + 1
(1 + c)3 o(xn) = 1 + o(xn).
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