
MASTER THESIS

Bc. Petr Pechman

Czech Grammar Error Correction

Institute of Formal and Applied Linguistics

Supervisor of the master thesis: RNDr. Milan Straka, Ph.D.

Study programme: Computer Science

Study branch: Artificial Intelligence

Prague 2024

I declare that I carried out this master thesis on my own, and only with the cited
sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to express my deep gratitude to my supervisor, RNDr. Milan Straka,
Ph.D. and to my consultant, Mgr. Jakub Náplava, Ph.D. for the patient guid-
ance, numerous pieces of advice and corrections, without which the thesis would
not be possible. I would also like to thank my girlfriend for her support and
understanding.

ii

Title: Czech Grammar Error Correction

Author: Bc. Petr Pechman

Department: Institute of Formal and Applied Linguistics

Supervisor: RNDr. Milan Straka, Ph.D., Institute of Formal and Applied Lin-
guistics

Abstract: We present a grammatical error correction system for correcting the
Czech language. The system is based on the neural machine translation approach.
We utilize the Transformer architecture, which depends on a large amount of an-
notated data. Given that for most languages, including Czech, there is not enough
annotated data available, we opt to generate synthetic data with artificial errors.
We generate not only using simple language-independent errors, but we also intro-
duce typical Czech errors. To facilitate quick experimentation, we develop a flexi-
ble training pipeline capable of real-time data generation. Consequently, we eval-
uate the effect of several proposed improvements such as oversampling of language
domains or a choice of data source for synthetic generation. Our best-performing
model achieves state-of-the-art results in the Czech language for comparable
model size. The implementation is released on GitHub at https://github.
com/petrpechman/czech_gec/tree/MasterThesis_PechmanPetr_2024.

Keywords: Gramatical Error Correction, Synthetic Data Generation, Czech,
AKCES, GECCC

iii

https://github.com/petrpechman/czech_gec/tree/MasterThesis_PechmanPetr_2024
https://github.com/petrpechman/czech_gec/tree/MasterThesis_PechmanPetr_2024

Contents

Introduction 3

1 Background 6
1.1 Evaluation . 6
1.2 Datasets . 8

1.2.1 AKCES-GEC . 8
1.2.2 GECCC . 8

1.3 GEC Systems . 9
1.3.1 Korektor . 9
1.3.2 Opravidlo . 10
1.3.3 Encoder-Decoder Systems 10
1.3.4 Non-Autoregressive GEC Tagging 11
1.3.5 Systems Focused on the Specific Error Type 11

1.4 Methods for Data Generation . 13
1.4.1 Wikipedia Corpus Extraction 13
1.4.2 Synthetic Corpus Generation 13

2 Description of Our System 15
2.1 Model . 15
2.2 Data Generation . 15

2.2.1 Artificial Errors . 16
2.2.2 Typical Errors . 19

2.3 Analysis of Czech Typical Errors 19
2.4 Technical Solution of the Pipeline 23

3 Experiments 24
3.1 Synthetic Data Generation for Model Pre-training 25
3.2 Fine-tuning vs. Pre-training . 27
3.3 Fine-tuned Model – AKCES . 30
3.4 Finetuned Model – GECCC . 33

3.4.1 Domains . 35
3.4.2 Oversampling . 41

3.5 Corpora Comparison . 43
3.5.1 Pre-training . 43
3.5.2 Fine-tuning . 44

3.6 Model Comparsion . 46
3.6.1 Pre-training . 46
3.6.2 Fine-tuning . 47

1

Conclusion 52

Bibliography 54

2

Introduction
Effective communication is paramount for professional and personal success in
today’s digitally connected world. The ability to express oneself clearly and ac-
curately in writing plays a critical role in achieving this communication goal.
Mastering a language’s grammar and syntax can pose significant challenges, es-
pecially for non-native speakers. However, achieving proficiency in these areas is
crucial for effective communication, as grammar errors can impede understanding,
diminish the quality of written work, and erode the author’s credibility. Auto-
matic grammatical error correction serves as a solution to address this challenge.

Grammatical error correction (GEC) is a task that aims to correct errors
in texts. These errors can range from simple typos and spelling errors to more
complex issues such as incorrect verb tenses, subject-verb agreement errors, punc-
tuation errors, and syntactic inconsistencies. These errors and their corrections
are usually language-specific, so development is focused on a language-specific
correction system.

GEC is a long-studied task, with most research conducted in English. Due
to the large availability of data, many comprehensive datasets and the best-
performing systems with neural-based models have been developed for English.
Other languages are also progressing in development, but not as significantly.
Náplava et al. [2022] recently examined this task for Czech, created a new dataset
(GECCC), analyzed metrics, and evaluated Transformer-based neural models
based on it.

Our work is dedicated to a GEC system focusing on the Czech language.
It extends the approach taken by Náplava et al. [2022], who addressed the low
amount of annotated Czech data by generating synthetic training data using
simple language-independent rules applied to clean texts.

We examine a new approach and address the main research question: “How
can the GEC system in Czech be improved by synthetically adding typical Czech
errors?”. The synthetic addition of typical errors benefits from a one-time lan-
guage analysis of Czech. This analysis defines typical Czech errors, which are
then introduced to the clean data. This process can generate training data that
captures the Czech language much better and is readily available.

Closely related to this is the question: “How does the performance of the GEC
system depend on clean data?”. The assumption is that clean data is completely
grammatically correct and does not contain any errors, but the reality is different,
and we know that even clean data can contain some grammatical errors or typos.
Therefore, we evaluate several corpora with different levels of quality to assess
how much the system’s performance depends on the quality of the data.

Another interesting question of our work is: “How does the model performance

3

depend on its size?”. To answer this question, we train different-sized models to
evaluate how model size matters.

All three previous questions deal with improving a GEC system. We also
examine optimal data generation settings, pre-training length, fine-tuning data
mixing, etc., to achieve the best GEC system for the Czech language.

By carrying out this multifaceted research effort, we are trying to contribute
to developing grammatical error correction systems, especially in Czech. We aim
to build a state-of-the-art GEC system that effectively solves linguistic challenges
specific to Czech and is a template for similar advances in other languages.

4

Our Contributions

All implementation and experimental work was carried out solely by the thesis
author. The author’s contributions are:

• Design and implementation of a model training pipeline. The
pipeline generates real-time data and passes it directly to model training.
This approach has several advantages: there is no need to generate data in
advance, we can easily make changes to both the generation and training
settings, and it allows execution on multiple GPUs and easy-to-run eval-
uations. The implementation is released on GitHub at https://github.
com/petrpechman/czech_gec/tree/MasterThesis_PechmanPetr_2024.

• Analysis of typical Czech errors and their addition to the au-
tomatic generation of noisy data. Typical Czech errors significantly
improve the performance of our GEC system.

• Analysis of the data source for the GEC system using typical
Czech errors. We compare different corpora for model pre-training with
different cleanliness levels and find that the cleaner the corpus is, the better
the system performs.

• Domain oversampling. We try an approach of oversampling individ-
ual domains in different ways when training the model, achieving better
performance on the GECCC dataset [Náplava et al., 2022].

• Comparison of different model sizes. Larger models achieve better
results.

• Evaluation of pre-trained models. Our model is the original Trans-
former [Vaswani et al., 2017]. We experiment with replacing it with a
pre-trained MT5 [Xue et al., 2021] and compare the results.

• The state-of-the-art GEC system in Czech for comparable model
size. Our final GEC system achieves state-of-the-art results for the Czech
language for comparable model size.

5

https://github.com/petrpechman/czech_gec/tree/MasterThesis_PechmanPetr_2024
https://github.com/petrpechman/czech_gec/tree/MasterThesis_PechmanPetr_2024

1. Background

1.1 Evaluation

The evaluation of GEC systems is based on edits. An edit is the correction of
the subsequence of the source sentence. It is specified by the start and end in the
source sentence and the text to be inserted at that part of the sentence to remove
the error. Edits have the advantage that they can contain an entire error, which
can span multiple words.

Example of edit in M2 format:

S Co je pro mně důležité ?
A 3 4|||MeMne|||mě|||REQUIRED|||-NONE-|||0

Edits also have another advantage, which may not be obvious, and that is the
inverse operation, i.e., we can introduce an error into the correct sentence. For
example, we use this in our approach of adding typical Czech errors.

Edits are divided into system and gold. System edits are corrections generated
by the GEC system, and gold edits are corrections from annotators, where we
assume their correctness.

Edit evaluation is done by computing Precision, Recall, and F1-score [Blair,
1979] between the set of system edits {e1, . . . , en} and the set of gold edits
{g1, . . . , gn} for all sentences

P =
∑︁n

i=1 |ei ∩ gi|∑︁n
i=1 |ei|

, (1.1)

R =
∑︁n

i=1 |ei ∩ gi|∑︁n
i=1 |gi|

, (1.2)

F1 = 2 · P · R

P + R
, (1.3)

where we define the intersection between ei and gi as [Dahlmeier and Ng, 2012]:

ei ∩ gi = {e ∈ ei|∃g ∈ gi(match(e, g))}. (1.4)

F0.5-score is introduced to better capture the performance of the GEC system
because the F0.5-score emphasizes Precision more than Recall. This metric cor-
related better with human judgment because leaving an uncorrected error is not
as bad as using the wrong edit [Ng et al., 2014].

F0.5 = (1 + 0.52) · P · R

0.52 · P + R
, (1.5)

6

An essential part of the evaluation is extracting edits. The GEC system
usually does not generate edits, but straightaway corrects sentences. We need
to get edits from the original uncorrected sentence (system hypothesis) and the
newly generated corrected sentence (source sentence) for evaluation.

Dahlmeier and Ng [2012] present evaluation tool MaxMatch scorer finding ed-
its between a source sentence and a system hypothesis that achieves the highest
overlap with the gold-standard annotation. These optimal edits are then scored
using the F-score. They use the Levenshtein distance [Levenshtein, 1966] between
a source sentence and a hypothesis computed in the Levenshtein matrix. Each
vertex in the graph corresponds to a cell in the matrix, and each edge corresponds
to an atomic edit operation: inserting, deleting, substituting, or leaving a token
unchanged. Each path corresponds to the shortest sequence of atomic edit oper-
ations that transform the source sentence into a hypothesis. They assign a unit
cost to each edge in the lattice.

0,0 1,1Our (1) 2,2baseline (1)

3,3
system (1)

4,5feeds/feeds a (2)

4,4

feeds (1) 5,6
word (1)ε/a (1)

word/a word (-45)

6,7

into (1)

7,8PB-SMT (1) 8,9pipeline (1) 9,10. (1)

system feeds/system feeds a (3)
feeds word/feeds a word (3)

word into/a word into (3)

Figure 1.1: The edit lattice for “Our baseline system feeds (ϵ → a) word into
PB-SMT pipeline” Edge costs are shown in parentheses. The edge from (4,4) to
(5,6) matches the gold annotation and carries a negative cost. [Dahlmeier and
Ng, 2012]

To allow for multi-token edits, they add transitive edges to the graph as long
as the number of unchanged words in the newly added edit is not greater than the
limit (u) and the edit changes at least one word. The cost of a transitive edge is
the sum of the costs of its parts. The graph extracted from the example sentence
is shown in Figure 1.1 taken from Dahlmeier and Ng [2012]. They change the
cost of each edge whose corresponding edit has a match in the gold standard to
−(u + 1) × |E|.

Then, they perform a single-source shortest path search with negative edge
weights, which can be done with the Bellman-Ford algorithm [Cormen et al.,
2001].

Another well-known evaluation tool is ERRANT [Bryant et al., 2017]. Bryant
et al. [2017] extract edits using a linguistically enhanced alignment algorithm
supported by a set of merging rules from Felice et al. [2016]. Further, tokens of
source and system sentences are POS tagged, lemmatized, stemmed, and depen-
dency parsed. Due to the extraction of edits and token tagging, the rule-based

7

classifier can classify edits and evaluate a specific type of error. For example, you
can choose only replacement errors or more specific replacement noun errors.

1.2 Datasets

Datasets are a necessary part of GEC, a source of quality data, and therefore
they allow us to build and evaluate our GEC systems. These datasets are usually
manually annotated by experts for specific languages. There are many datasets
for different languages, most of them for English.

The Lang-8 corpus [Tajiri et al., 2012] is one of them, created from texts
written by English-as-a-second-language (ESL) learners and corrected by na-
tive speakers. It consists of approximately 120,000 English entries containing
2,000,000 verb phrases, with 750,000 verb phrases having corrections.

Another English corpus is NUCLE [Dahlmeier et al., 2013], which is created
from student essays written by undergraduate students at NUS. These essays
were annotated by CELC English instructors. In total, this corpus has 46,597
error tags.

The FCE [Yannakoudakis et al., 2011] corpus is composed of scripts written
by learners taking the First Certificate in English (FCE) exam. Each script has
between 200 and 400 words and is manually tagged with information about the
linguistic errors committed.

There are two main datasets for the Czech language: AKCES-GEC [Náplava
and Straka, 2019] and GECCC [Náplava et al., 2022].

1.2.1 AKCES-GEC

Náplava and Straka [2019] present the AKCES-GEC dataset, composed of re-
sources CzeSL (learner corpus of Czech as a second language, originally created
by Rosen [2016]) and ROMi (Romani ethnolect of Czech Romani children and
teenagers) created within the AKCES project [Šebesta, 2010], containing addi-
tional resources: SKRIPT and SCHOLA – written and spoken language collected
from native Czech pupils. The dataset is split into train/dev/test parts. Develop-
ment and test parts are annotated by two annotators to enable better evaluation.
All parts are saved in the M2 format [Dahlmeier and Ng, 2012].

1.2.2 GECCC

The Grammar Error Correction Corpus for Czech (GECCC) [Náplava et al.,
2022] is a large and diverse dataset containing 83,058 sentences from various
domains. It is one of the largest GEC datasets and it is composed of several
datasets or their subsets: SKRIPT 2012 (AKCES project), Facebook Dataset

8

[Habernal et al., 2013], Czech news site novinky.cz, the ROMi corpus (AKCES
project), the ROMi section of the AKCES-GEC corpus, the Foreigners section of
the AKCES-GEC corpus, and the MERLIN corpus [Boyd et al., 2014]. Therefore,
GECCC covers four main domains: essays by native Czech pupils, informal web
discussions written primarily by Czechs, essays by Roma children and teenagers,
and non-native student essays. Each domain has a different representation size;
see Table 1.1. The dataset is divided into train/dev/test parts and stored in the
M2 format [Dahlmeier and Ng, 2012] and in a plain-text format.

Domain Train Dev Test Error Rate
Natives Formal 4 060 1 952 1 684 5.81%
Natives Web Informal 6 977 2 465 2 166 15.61%
Romani 24 824 1 254 1 260 26.21%
Second Learners 30 812 2 807 2 797 25.16%
Total 66 673 8 478 7 907 18.19%

Table 1.1: The number of sentences in the GECCC dataset’s domains. The
average error rate was computed by concatenating development and test data.

1.3 GEC Systems

We now describe several grammar error correction systems. They are based on
different approaches, some of them using rules, others using statistical methods,
some using Encoder from the Transformer architecture, and others using the
complete Transformer architecture. Transformer-based systems (specifically the
one described in Section 1.3.3) are closely related to our approach of Czech GEC.
We also present a few systems dealing with only specific phenomena instead of a
full-scale grammar error correction.

1.3.1 Korektor

A forerunner of today’s systems, Korektor [Richter et al., 2012] is a tool for
Czech text correction. It uses a statistical model based on the hidden Markov
Model to suggest word variants (hidden states). Language n-gram models specify
transition costs and the Viterbi algorithm determines the passage through the
hidden states. This tool performs well in correcting typos and diacritics, but it
is limited to correcting words only, for example, it cannot add a word.

9

1.3.2 Opravidlo

Opravidlo is a complex GEC tool for Czech and its development involved an
analysis of the most common errors in Czech. It is a rule-based system using
five different rule modules targeting a specific range of errors. It also uses a
spell-checker with an extensive dictionary to correct typos [Hlaváčková et al.,
2022].

1.3.3 Encoder-Decoder Systems

Nowadays, neuron-based models built on encoder-decoder architecture achieve
state-of-the-art grammatical error correction performance, especially for morpho-
logically rich languages such as Czech. The approach of Encoder-Decoder models
is the most direct of all mentioned. Its input is a noisy sentence, and its output
is a corrected sentence; it works similarly to translation.

Brockett et al. [2006] are the first to propose this idea, in which the correction
of grammatical errors is solved as a translation from noisy incorrect sentences
into corrected sentences. This approach allows the correction task to be treated
as SMT (Statistical Machine Translation) problem that they solve using the noisy
channel model [Brown et al., 1993].

Yuan and Briscoe [2016] are the first to use this translation approach for NTM
(Neural Machine Translation) based on the RNNsearch model with a bidirectional
RNN as an encoder and an attention-based decoder [Bahdanau et al., 2016].

Grundkiewicz et al. [2019] use the same approach with NMT, but replace the
RNNsearch model with deeper neural networks, where the Transformer model
[Vaswani et al., 2017] achieves the best results.

Synthetic-trained Transformer

Náplava and Straka [2019] use a GEC system based on the Transformer model
[Vaswani et al., 2017], which is improved by techniques such as source and target
word dropouts, edit-weighted MLE, and checkpoint averaging. The pre-training
of the model is based on Grundkiewicz et al. [2019] using an unsupervised ap-
proach to create noisy input sentences, it is more described in Section 1.4.2.

Fine-tuned Transformer

The model described by Náplava and Straka [2019] follows the previous Trans-
former approach described above, it takes the pre-trained model on synthetic
data and fine-tunes it on a mixture of the AKCES-GEC dataset and synthetic
data. This mixture avoids early overfitting and improves model performance
significantly.

10

Náplava et al. [2022] use also the same pre-trained model and fine-tune it on
a mixture of synthetic data and the GECCC dataset. For the Czech language, a
mixture of 2:1 is used, and it has a better F0.5-score than a model fine-tuned only
on a mix of AKCES-GEC and synthetic data. The evaluation of both models is
performed on the GECCC test set.

1.3.4 Non-Autoregressive GEC Tagging

The encoder-decoder architectures are computationally demanding and slow dur-
ing inference. To address these limitations, recent approaches propose token-
tagging methods, which achieve significant speedups.

Omelianchuk et al. [2020] introduce English GEC sequence tagger using a
Transformer encoder. This approach transforms GEC into a sequence tagging
problem that benefits from the Transformer architecture and speed of the tagging
system. The sequence tagger is pre-trained on synthetic data and then fine-
tuned in two stages: first on errorful corpora and then on a combination of
errorful and error-free parallel corpora. Developing custom token-level (word-
level) transformations increases the coverage of grammatical error corrections,
and iterative usage of the sequence tagger improves output quality.

A similar approach is taken by Straka et al. [2021], who created a Czech
character-based non-autoregressive GEC system with automatically generated
character transformations. The use of token-level taggers would bring a large
increase in rules for morphologically rich languages. Therefore, they choose
character-level transformations, which address errors like spelling errors, dia-
critics, and morphology. By automatically inferring transformations from the
corpus, they avoid the need for manual rule design and achieve efficient han-
dling of character-level corrections. The results show good performance but do
not reach the level of the Encoder-Decoder architecture. The effectiveness of
non-autoregressive systems decreases mainly for morphologically rich languages
(e.g. Czech). However, it brings significant speed-up compared to autoregressive
systems.

1.3.5 Systems Focused on the Specific Error Type

Here we list a few systems that deal with specific error types. These systems can
be significantly simpler than a complex GEC system. Some of them are or may
become part of complex GEC systems.

RNN-based Correction Diacritics

Náplava et al. [2018] describe a model architecture focused on adding diacritics
to input characters. Diacritics are orthographic marks added to letters that

11

indicate variations in meaning or pronunciation. The model uses a bidirectional
recurrent neural network (RNN) [Graves and Schmidhuber, 2005] to process input
characters. In addition, during inference, the model uses a left-to-right beam
search decoder combining the probabilities from the output of the RNN and a
language model. This integration of RNN and a language model improves the
decoding process and enables better character diacritics. Among other things,
the system is trained and evaluated on Czech diacritics.

Punctuation Correction Based on SET

Kovář [2014] presents an automatic method for correcting errors in commas and
subject-predicate agreement. The system is based on a rule-based syntactic anal-
ysis provided by the SET parsing system [Kovář et al., 2011]. The system has ten
rules and emphasizes precision in error detection to minimize false alerts. Kovář
et al. [2016] extend this system by adding new rules and obtaining significantly
higher recall but slightly lower accuracy.

CzAccent

The CzAccent system [Rychlý, 2012] operates on the principle of utilizing a large
lexicon for Czech words to restore accents in text. For every word, the most
frequently accented word from all possible accented words and the original non-
accented word is selected and added to the CzAccent lexicon. Then, it uses
a straightforward approach involving reading words, searching for them in the
lexicon, and printing the accented variant if found or the original word if not.
This simplicity contributes to the system’s speed, allowing it to quickly process
a large amount of data.

BERT-based Correction Diacritics

Náplava et al. [2021] introduce a BERT-based approach to the task of correcting
diacritics in the given text and achieve significant improvements in Czech. The
model architecture uses a pre-trained multilingual BERT model [Devlin et al.,
2019] to obtain contextualized embedding processed through a fully-connected
feed-forward neural network producing probabilities of diacritics instructions for
sub-words.

Classifier of Homophones

The classification of homophones task [Švec et al., 2020] is focused on correcting
homophones y/i in the Czech language. It differs from all other systems because
its input is output from an ASR decoder. Although its main goal is a bit different,
the approach to solving the problem is very similar to Transformer-based systems

12

focused on GEC. Because this system is aimed at solving one particular task (a
decision between i and y), a classifier can be used, specifically a Transformer with
the BERT architecture [Devlin et al., 2019].

1.4 Methods for Data Generation

While a machine translation–based approach to grammar error correction deliv-
ers superior results, especially when employing the Transformer-based encoder-
decoder architecture, such a system requires a vast amount of data on the order
of billions of words. Annotated corpora by language experts are an ideal data
source, but they are insufficient for most languages. Therefore, automated meth-
ods are needed to generate the required amount of data.

1.4.1 Wikipedia Corpus Extraction

The first described approach for generating synthetic errorful sentences is to ex-
tract parallel sentences from Wikipedia revision history. This way, a large corpus
can be obtained, especially for English. However, since Wikipedia edits are not
created specifically for GEC purposes, the resulting corpus tends to be highly
noisy. An example of a corpus created by extraction from Wikipedia is Grund-
kiewicz and Junczys-Dowmunt [2014]

1.4.2 Synthetic Corpus Generation

Another popular approach is to generate a synthetic corpus from a clean mono-
lingual corpus using data noising.

Grundkiewicz et al. [2019] present the synthetic generation of noisy sentences
from error-free sentences. For each sentence, they sample probability perr from a
normal distribution resembling the word error rate of the development set. This
is multiplied by sentence length and rounded to a number of words to change.
We apply one operation (deletion, substitution, swapping with a neighbor, and
inserting a random word) for every chosen word with a given probability. The
probability for word substitution is 0.7, and the three other operations are chosen
with a probability of 0.1. The same method to obtain noisy data is applied to
individual characters in 10 percent of words.

This approach is also used by Náplava and Straka [2019]. They introduce
errors to synthetic data for Czech, English, German, and Russian. After analyzing
the results on texts, they added another word-level edit to change capitalization
and a char-level edit to change diacritics for Czech.

Another approach is used by Yuan and Felice [2013], they extract correction
patterns from the NUCLE corpus. They then rewrite these correction patterns

13

on the error generation patterns, which they then apply on the clean data.

Corpora

We present several clean corpora that we also use to generate synthetic noisy
texts in our work (especially in Section 3.1 and Section 3.5).

• The SYN-v4 corpus [Křen et al., 2016] is a representative collection of re-
cent written Czech, containing over 3.5 billion word tokens. It contains
all synchronous written corpora of the SYN series (SYN2000, SYN2005,
SYN2006PUB, SYN2009PUB, SYN2010, SYN2013PUB, SYN2015) and, in
addition, it includes journalism mainly from 2010-2014.

• The News 2019 corpus [Barrault et al., 2019] is a monolingual Czech corpus
created together with others for the WMT 2019 news translation shared
task.

• The Wikipedia corpus [Kubeša and Straka, 2023], presented within DaMuEL,
is a large Multilingual Dataset for Entity Linking containing data in 53 lan-
guages. We use only raw sentences extracted from Wikipedia, which makes
up our Wikipedia corpus.

• The Common Crawl corpus [Ginter et al., 2017] is created from downloaded
texts from the internet and was created for the CoNLL 2017 Shared Task.

Table 1.2 shows us the sizes of the corpora. We use subsets of corpora because
they are otherwise too large. Each subset consists of individual sentences; each
sentence is on a separate line.

Corpus Num of Sentences
SYN-v4 28 619 909
News 2019 14 645 268
Wikipedia 9 743 253
Common Crawl 75 594 393

Table 1.2: Corpora sizes.

14

2. Description of Our System
In this thesis, we build a parametrized pipeline composed of two main parts,
the transformer-based model and the data generation. Data generation happens
simultaneously during model training and fills batches in real-time. This avoids
the one-time creation of a synthetic corpus, which could limit long-time pre-
trainings that need a large amount of data, and also allows us to easily change
the automatic text noising and model settings.

2.1 Model

One of the best solutions in the field of GEC in Czech is the GECCC fine-tuned
Transformer presented by Náplava et al. [2022] (Section 1.3.3). We decided to
follow this approach because Transformer-based architecture is the state-of-the-
art approach for GEC.

The Transformer architecture [Vaswani et al., 2017] contains an encoder for
processing the input and a decoder for generating the output. Both components
utilize self-attention mechanisms, allowing the model to capture contextual de-
pendencies effectively. The biggest benefit of this architecture is enabling parallel
processing and efficiently capturing long-distance dependencies.

Our pipeline is built in such a way that it is possible to change the model, the
only requirement is any encoder-decoder model supporting sequence-to-sequence
and a corresponding tokenizer. Following Náplava et al. [2022], we choose the
same model named “Transformer”, defined in the Tensor2Tensor1 library. The
Tensor2Tensor is no longer being developed, so we use the TensorFlow2 frame-
work, where we define the “Transformer” model and use this model in base size
whose hyper-parameters are described in Table 2.1.

Model Dim Layers Heads FFN Params
base 512 6 8 2 048 65×106

Table 2.1: Hyper-parameters of the Transformer model.

2.2 Data Generation

To train a sequence-to-sequence model based on Transformer, it is necessary
to have enough data that contain input sequence and sample output sequence,
especially pairs of incorrect-correct sentences. The best source of data is a corpus

1http://github.com/tensorflow/tensor2tensor
2https://www.tensorflow.org/

15

http://github.com/tensorflow/tensor2tensor
https://www.tensorflow.org/

annotated by human language specialists. Unfortunately, there is a lack of such
data for Czech, or rather it is a problem for almost every language. Therefore,
we have to create such data automatically. There are many possible approaches
to solving the lack of data (described in Section 1.4).

We choose the approach of generating synthetic corpora. The synthetic corpus
is generated during model training, not beforehand. We also utilize already-
known methods and newly implemented the generation of typical errors for the
Czech language. Data generation can be divided into two parts: artificial errors
and typical errors. These parts are connected; artificial errors are introduced
first, and then typical errors are generated.

2.2.1 Artificial Errors

We generate synthetic data from a clean monolingual corpus (Section 1.4.2). We
follow Náplava and Straka [2019] and Grundkiewicz et al. [2019] using an unsu-
pervised approach to create noisy input sentences. For each correct sentence, we
sample a probability, perr word, from a normal distribution with a preset mean
and standard deviation. This probability is then multiplied by the number of
words in the sentence, and it determines how many words will be modified. Each
selected word is modified by one of several predefined operations with specific
probabilities: deletion, swapping with its adjacent right neighbor, insertion of a
random word from the dictionary after the current word, or substitution with one
of its suggestions (Aspell/MorphoDiTa). It is shown in detail in Figure 2.1.

Náplava and Straka [2019] state that for better robustness of the system to
spelling errors, it is a good idea to use the same operations for individual char-
acters. Additionally, they extend word-level operations to contain the change of
the word casing. If a word is chosen for case changing, a word is converted to
lower-case with 50% probability, or some individual characters are chosen and
their casing is changed. Furthermore, they add a new character-level operation
that generates one of the diacritical variants or removes the diacritics for the
selected character.

The token-level substitution is greatly influenced by how the suggestions are
selected. Suggestions can be selected from a dictionary or a lexical network.
Náplava and Straka [2019] utilize suggestions by a spell-checking tool Aspell.

16

Input:
sentence: Viděl jsem v lese velkého medvěda .

mean_token, std_token = 0.15, 0.2
mean_char, std_char = 0.02, 0.01
token_operation_probs: [substitution: 0.7,

insert: 0.1, delete: 0.05,
swap: 0.1, change_casing: 0.05]

char_operation_probs: [substitution: 0.2,
insert: 0.2, delete: 0.2, swap: 0.2,
change_diacritics: 0.2]

p_err_token = sample_normal_dist(mean_token, std_token)
count_of_word = count_words(sentence)
count_of_changes = round(p_err_token * count_of_word)

for i in 1..count_of_changes:
index = randomly_select_word_index()
word = get_word(sentence, index)
operation = select_operation(token_operation_probs)
word = apply_operation(word, operation)
sentence = replace_word(index, sentence, word)

p_err_char = sample_normal_dist(mean_char, std_char)
count_of_chars = count_chars(sentence)
count_of_changes = round(p_err_char * count_of_chars)

for i in 1..count_of_changes:
index = randomly_select_char_index()
char = get_char(sentence, index)
operation = select_operation(char_operation_probs)
char = apply_operation(char, operation)
sentence = replace_char(index, sentence, char)

return sentence

Figure 2.1: Generating a noisy sentence from an error-free sentence by simple
language-independent error introduction.

17

Aspell

Aspell proposes candidate words that are lexically and phonetically similar but
also valid words, thereby introducing errors that are hard to detect and correct
[Náplava, 2022]. For example, it can generate errors in subject-verb agreement,
verb tense, or morphology (see example on Figure 2.2).

Aspell:
input: medvěda
output: [’medvěda’, ’Nedvěda’ ’medvěd’, ’medvěde’,

’medvědi’, ’medvědu’, ’medvědy’, ’medvědě’,
’medvědı́’, ’medvědů’, ’med věda’, ’med-věda’]

Figure 2.2: Example of possible substitution words generated by Aspell.

MorphoDiTa

We also add the MorphoDiTa [Straková et al., 2014], which allows us to find
related words that are morphologically similar or derived from each other (see
example on Figure 2.3). Morphological Dictionary and Tagger (MorphoDiTa) is
an open-source tool that offers advanced morphological analysis, morphological
generation, tagging, and tokenization for the Czech language. It incorporates
MorfFlex CZ 2.0 [Hajič et al., 2020] – a morphological dictionary used for analyz-
ing and generating Czech word forms, and DeriNet data [Vidra et al., 2021] – a
lexical network storing derivational relations among Czech lemmas. By merging
these resources, MorphoDiTa provides a comprehensive tool for exploring mor-
phological phenomena in Czech, enabling users to traverse derivational trees and
access detailed linguistic information efficiently [Žabokrtský et al., 2016].

MorphoDiTa:
input: medvěda
derinet_distance: 2
output: [’medvědáriu’, ’nemedvı́dkovštějšı́ch’,

’nemedvědovitejch’, ’nejmedvı́dkovitějšı́m’,
’medvědice’, ’medvı́ďátku’,
’medvı́dkářštějšı́mi’, ’nemedvědovitostech’,
’nemedvı́dkovskýma’, ’méďovými’, ...]

output_length: 684

Figure 2.3: Example of possible substitution words generated by MorphoDiTa.

18

2.2.2 Typical Errors

The amount of typical Czech errors in synthetically generated noisy texts is rel-
atively small because typical errors are too complex for approaches such as the
Synthetic Corpus, and their representation in the Wikipedia Extracting Corpus
is not guaranteed. In corpora, AKCES-GEC (Section 1.2.1) and GECCC (Sec-
tion 1.2.2), some of these errors are represented, but unfortunately, datasets are
too small for robust pre-training. By adding specific errors, we assume an overall
improvement of the GEC system. We would also like to analyze how the model
behaves on specific typical Czech errors.

In our approach, after introducing artificial errors, we add typical errors for
Czech regardless of how the words/characters were changed in the previous part.
In Section 2.3, we analyze typical errors for the Czech language, from which we
obtain the basic typical errors for the Czech language. An error is defined as an
edit, i.e., where in the sentence the error begins, where the error ends, and what
the given sub-sequence should be replaced with M2 format (see the M2 format
described in Section 1.1).

We do not introduce a typical error into the data whenever we can. We need
to train the model on both noisy and clean sentences. Therefore, for each typical
error, we have a defined probability with which the error is introduced into the
data. This probability can be absolute or relative.

If we can introduce the given error into a sentence, we decide with absolute
probability whether to apply it or not.

On the other hand, the relative probability expresses the probability of an
error on any token. For example, we have 20 sentences, each with 10 tokens.
Error A has a relative probability of 0.02, so we want to introduce error A four
times because 20 · 10 · 0.02 = 4. If we have multi-word errors, we count them
as single-word errors. For example, we have a sentence with ten tokens, and
error B affects two words. If we introduce error B into the sentence, the relative
probability of error B on the sentence is 1

10 = 0.1.
For each typical error, only one type of probability can be used to generate

data. We go through the data sentence by sentence and generate all possible
errors for each one. Then, if two sentence errors overlap, we randomly pick one
and remove it. We repeat this process until only non-overlapping errors remain.
We thus obtain a set of feasible errors, which we introduce into the sentence
according to the given probability (absolute or relative).

2.3 Analysis of Czech Typical Errors

We have identified common grammatical errors in Czech that frequently appear
in both written and spoken language. We aimed to address a wide range of these

19

errors to improve the entire GEC system.
The first typical error is the forms of the words “mě” and “mně”, which are

often confused. These forms of the word “já” are often confused because they are
pronounced the same. Example: correct “Přǐsel ke mně.” vs. incorrect “Přǐsel ke
mě.”, translated: “He came to me.” Both sentences have the same pronunciation,
but using the third case determines the form “mně” [Plocková, 2019]. The parts
of the words “mě” and “mně” are also often interchanged in the middle or at
the end of words. For example, in the word “upř́ımně”, the suffix “-mně” is
used because this word is derived from the word “upř́ımný” [Plocková, 2019]. In
the same way, parts of the words “bě” and “bje” can be interchanged (Example:
“objet” vs. “obět”).

The next common mistake involves improper capitalization, which is governed
by numerous rules [Vostřelová, 2019]. Capital letters are written, for example, in
personal names, at the beginning of sentences, in official names of geographical
places, etc.

Another crucial area of error is punctuation. Punctuation marks are used
for text segmentation and meaning clarification. People often make punctuation
errors due to a lack of knowledge about punctuation rules or simply overlooking
the importance of proper punctuation [Machura, 2022].

Next, we examine typical errors for second-grade elementary school students
[Šmatová, 2015]. Here are examples of errors:

• Typing “i” or “y” (same for “́ı”/“ý”) after specific letters (“b”, “f”, “l”,
“m”, “p”, “s”, “v”, “z”). For Czech, there is a set of words in which these
selected letters are followed by “i” or “y”. The letter (“i”/“y”) is fixed for
each such word. Example: “mlýn”.

• Interchanging the prepositions “s” and “z” due to the same pronunciation.
The spelling follows the case of the preposition. In connection with the
second case, we write “z”, and in connection with the seventh case, we
write “s”. Example: “ze skř́ıně” – means from the closet, “se skř́ıně” –
means to get something away that was on the closet.

• Interchanging the prefixes “s-” and “z-” – errors occur here due to the
similarity of pronunciation. Some words have only one correct prefix, but
there are words where both prefixes are possible. For those with a change
in the prefix, there is also a change in meaning.

• Interchanging the letters “̊u” and “ú”, which are pronounced the same.
Writing “̊u”/“ú” follows a simple rule that “ú” is written at the beginning
of a word and “̊u” is written in the middle or at the end of a word, but
there are many exceptions.

20

• Interchange of endings “-i”/“-́ı” and “-y”/“-ý” for nouns, adjectives, and
verbs. This is one of the most common mistakes. To write “i”/“y” (“́ı”/“ý”)
correctly, one must know Czech grammar and phenomena such as the agree-
ment of the subject with the predicate, types of adjectives, etc.

Other typical errors that can appear in Czech and are worth mentioning are
errors in diacritics. The Czech language uses 42 letters. Of these, 27 are from the
basic Latin alphabet, and 15 have three different types of diacritical marks (“ˇ”,
“´”, “̊ ”). Diacritical marks distinguish different meanings of the same letter.

Here, we also have errors, such as incorrect forms of conditionals. For exam-
ple, the correct “My bychom vyhráli.” and the incorrect “My bysme vyhráli”,
translated: “We would win.”

Errors are also often made in the use of written numerals (“dvěma/dvouma”),
the word “sebou”, which is sometimes used with the preposition “s”, or specific
words such as “výjimka”, which is confused with “vyj́ımka” or “viz”, which is
written without a period.

From this analysis of typical errors, we create a list of errors we introduce
into the data. Some errors in the list correspond precisely to the analysis, some
cover several errors at once, and others, on the contrary, cover only a part. Ta-
ble 2.2 contains all the errors we generate, including examples of clean and noisy
sentences with marked changes.

21

Name Example – Clean Example – Noisy
word mě/mně Přǐsel ke mně. Přǐsel ke mě.

suffix -mě/-mně Ohromně se bavil. Ohromě se bavil.

infix -mě-/-mně- On je rozumněǰśı. On je rozuměǰśı.

suffix -i/-y Kluci jeli domů. Kluci jely domů.

letter d/t/n followed by -i/-y Mladý muž. Mlad́ı muž.

letter b/f/l/m/p/s/v/z followed by -i/-y Obyvatelé města. Obivatelé města.

letter ů/ú Jdu domů. Jdu domú.

conditionals Byli bychom rádi. Byli bysme rádi.

specific words To je výjimka. To je vyj́ımka.

prefix s-/z- or se-/ze- On shrabal list́ı. On zhrabal list́ı.

word forms denoting count Jeli oběma auty. Jeli oběmi auty.

word mi/my Dej mi knihu. Dej my knihu.

suffix -bě/-bje Našel v sobě odvahu. Našel v sobje odvahu.

prefix bě-/bje- & infix -bě-/-bje- Co je k obědu? Co je k objedu?

phrase sebou/s sebou Přines to s sebou. Přines to sebou.

The first character in the sentence:
– uppercase to lowercase Postalvil d̊um. postalvil d̊um.

– lowercase to uppercase toto je poznámka Toto je poznámka

The first character in any word:
– uppercase to lowercase Viděl jsem Vaška. Viděl jsem vaška.

– lowercase to uppercase Krásné město. Krásné Město.

preposition s/z Volby budou kdo s
koho.

Volby budou kdo z
koho.

adding a comma Hlavńı město má his-
torické a krásné cen-
trum.

Hlavńı město má his-
torické, a krásné cen-
trum.

removing a comma Navšt́ıvil město, kde
vyr̊ustal.

Navšt́ıvil město kde
vyr̊ustal.

adding diacritics Nic ho nenapadlo. Nic ho nenápadlo.

removing diacritics On mi zavolá. On mi zavola.

Table 2.2: Typical Errors.

22

2.4 Technical Solution of the Pipeline

We are coming up with a pipeline implementation that improves and simplifies
the overall process of model training and data generation. Usually, these two
processes are separated, where the researcher first generates the data and then
trains the model on that data.

We have combined these processes into a single pipeline so that we generate
real-time data that is immediately used to train the model.

To connect these processes, we use the tools provided by the TensorFlow
library, which allow to read data, transform it, and pass it to batch processing,
after which the batches are passed to training.

The first problem was the slow reading of data from one process; we, therefore,
had to parallelize this reading. We allow reading iteratively across multiple files.
For every file, we run multiple reading processes, each assigned a part of the file.

Another problem was the Aspell tool, which is time-consuming and allocates
more and more memory due to a memory leak. We solved the memory issue3 and
overcame the low Aspell runtime performance with parallelization. By already
reading the data in parallel, we added to the reading the process of generating
synthetic errors, both artificial and typical.

The next problem was data batching. Usually, the data is bundled into a
batch, and if the individual samples have different lengths, they are padded.
This approach was suboptimal in our case because we have different sentence
lengths that can be very different, so we employed batching by buckets4. This
means we bundle similar length samples into a bucket and pad them by just a
few tokens. This approach allows us to limit the ratio of the padding tokens used
in every batch, resulting in nearly optimal effective batch sizes.

Another benefit that our pipeline brings is easy configurability. If we run an
experiment, everything is set up in one configuration file, which contains informa-
tion about what model to use, what data, how the data should be noised, which
optimizer and how it should be set, also contains the batch sizes, the paths to
the evaluation datasets, etc.

We also split the evaluation into two parts: the first part is the prediction,
and the second is the evaluation itself. Such a division is motivated by the fact
that the prediction requires a GPU card, while the evaluation is handled by the
CPUs. So, in this way, we optimize the use of graphics cards.

We also enable training (and inference) on multiple graphics cards using Ten-
sorFlow and MirroredStrategy5.

3https://github.com/WojciechMula/aspell-python/issues/23
4https://www.tensorflow.org/api_docs/python/tf/data/Dataset#bucket_by_

sequence_length
5https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy

23

https://github.com/WojciechMula/aspell-python/issues/23
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#bucket_by_sequence_length
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#bucket_by_sequence_length
https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy

3. Experiments
By default, model training is divided into two stages: pre-training and fine-tuning.
The pre-training stage is computationally demanding and time-consuming. Dur-
ing this phase, the model learns general language patterns, syntactic structures,
semantics, and mainly grammatical corrections. This stage corresponds to the
situation where we have no annotated data but want to build a model for gram-
mar correction. The fine-tuning stage is less computationally demanding and
aims to improve the model in grammar corrections further. We perform it on
annotated data in the Czech language. We also often use the approach of mixing
synthetic and annotated data to avoid model overfitting.

Unless otherwise noted, all graphs we present are evaluated on the develop-
ment data to show training progress; conversely, the results shown in the tables
are evaluated on the test data, where we are already making the final comparison
of runs. For each run, we select a checkpoint according to the highest score on
the development data and evaluate it on the test data using the F0.5-score. We
perform evaluations using the MaxMatch (M2) scorer (Section 1.1).

Overview of Experiments

In Section 3.1, we first focus on the pre-training stage, where we compare different
settings for generating synthetic noisy data. Then we turn to Section 3.2, where
we examine the dependence of the fine-tuning stage on the length of the pre-
training stage. Then, we try to find the best way of fine-tuning for the AKCES
dataset (Section 3.3) and, subsequently, for the GECCC dataset (Section 3.4),
where we also analyze the use of domain oversampling. In Section 3.5 we deal
with the quality of different corpora and how their quality affects the performance
of the model. In Section 3.6, we enlarge the model to get the best results and also
train a smaller model for comparison. We also examine whether using an MT5
model, i.e., a model pre-trained on a variety of NLP tasks instead of a randomly
initialized model for pre-training, leads to a better GEC model.

Model Configuration

Unless otherwise stated, we train on a single GPU (NVIDIA RTX A4000); for
pre-training, we use the AdamW optimizer [Loshchilov and Hutter, 2019] with
a learning rate of 5e-05 and a weight decay of 0.01. The batch size is 128, the
epoch length is 128 000 steps (128 · 128 000 = 16 384 000 samples per epoch), and
the maximal length of a sample is 128 tokens.

We use the same AdamW optimizer also for fine-tuning, but we lower the
learning rate to 5e-6. The batch size is still 128, and the epoch length is 330

24

steps for the AKCES dataset and 938 for the GECCC dataset. The pre-training
time of one epoch is approximately 12 hours. The fine-tuning time of one epoch
is from 4 minutes to 12 minutes, depending on the data size.

In the evaluation, we decode using a beam search of size 4.

3.1 Synthetic Data Generation for Model Pre-
training

In the pre-training stage, the quality of the synthetic data plays an important
role. We try four ways of data noising that are preceded by the same generation
of artificial errors (Section 2.2.1) with different parameter settings. Then, we
optionally add typical errors for the Czech language. Setting the parameters is
based on experiments by Náplava and Straka [2019].

We have named each setting according to a specific parameter or method
(when we write about settings, we write in italics – e.g., a setting that uses only
Aspell for substitution and no typical errors is denoted as Aspell). The MATE
setting is a combination of all the others, so it comes from names MorphoDiTa,
Aspell and Typical Errors.

For all settings, we have the same probabilities of character-level operations
(see Table 3.1). The settings differ only in token-level substitution (see Table 3.2),
where there are two tools to choose from: Aspell (see Section 2.2.1) and Mor-
phoDiTa (see Section 2.2.1). Typical errors are introduced into data only in
Typical Errors and MATE.

Char-level Operations
sub ins del swap diacritics
0.2 0.2 0.2 0.2 0.2

Table 3.1: Probabilities for character-level noising operations.

Token-level Operations

Setting
sub

Aspell
sub

MorphoDiTa ins del swap recase
typical
errors

Aspell 0.7 0.0 0.1 0.05 0.1 0.05 No
MorphoDiTa 0.5 0.2 0.1 0.05 0.1 0.05 No
Typical Errors 0.7 0.0 0.1 0.05 0.1 0.05 Yes
MATE 0.5 0.2 0.1 0.05 0.1 0.05 Yes

Table 3.2: Probabilities for token-level noising operations and using of typical
errors.

25

All settings use the same clean data – the SYN-v4 corpus to generate noisy
data.

As Figure 3.1 shows, the MATE setting has the best results during pre-
training on the AKCES dataset, and the Typical Error setting has very similar
results. The MorphoDiTa and Aspell settings are less than ten percentage points
worse.

Table 3.3 shows the evaluation on the AKCES and GECCC datasets after
45 epochs of pre-training. The results show that adding typical Czech errors
significantly improves the model, especially the MATE setting. We also select
the best checkpoints during every pre-training and compare them to each other
on the AKCES dataset.

1 5 10 15 20 25 30 35 40 45
Epoch

58

60

62

64

66

68

70

72

74

F 0
.5

MATE
Aspell
MorphoDiTa
Typical Errors

Figure 3.1: Comparison of methods for synthetic errors generation during pre-
training, evaluated on the AKCES dataset using the F0.5-score.

45th Epoch The Best
Setting AKCES GECCC Epoch AKCES

Aspell 67.22 55.41 65 67.11
MorphoDiTa 64.19 53.24 22 67.77
Typical Errors 73.58 65.55 44 74.52
MATE 74.23 65.55 47 74.11

Table 3.3: Comparison F0.5-score of settings.

26

3.2 Fine-tuning vs. Pre-training

The pre-training has a short growth period in the F0.5-score until about the 10th

epoch, after which it stagnates and does not change much. However, even if the
performance on the AKCES development set does not increase further, the model
might still improve its understanding of the language. We, therefore, perform
experiments where we continue to pre-train the model further and test whether
this affects the model, especially in the following fine-tuning. Only AKCES train
data is used for fine-tuning, not mixed with synthetic data.

For each setting, we selected three checkpoints from the pre-training. We
tried to choose them evenly, from the beginning, middle, and end of the pre-
training. Each setting took a different amount of time due to the complexity of
data generation or the currently available computing capacity. Therefore, each
setting has differently selected checkpoints.

For Aspell setting, we start from the 45th, 60th, and 75th checkpoints. We
can see that the long pre-training positively affects the following fine-tuning in
this setting, even though the 60tth and 75th fine-tunings already have very similar
courses (see Figure 3.2).

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
Epoch

76.0

76.5

77.0

77.5

78.0

78.5

79.0

79.5

F 0
.5

45. epoch
60. epoch
75. epoch

Figure 3.2: Fine-tunings from different checkpoints for setting Aspell. The F0.5-
score is evaluated on the AKCES dataset.

For MorphoDiTa settings, we select 22nd, 45th and 60th checkpoint. We can
observe from Figure 3.3 that the time of pre-training helps, the difference between
the 45th and 60th checkpoint is noticeable, but it is not such a difference as between
22nd and 45th checkpoint.

27

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Epoch

76

77

78

79

80

F 0
.5

22. epoch
45. epoch
60. epoch

Figure 3.3: Fine-tunings from different checkpoints for setting MorphoDiTa. The
F0.5-score is evaluated on the AKCES dataset.

For Typical Errors, we pre-train up to the 45th epoch, so we start from the 9th,
30th, and 45th checkpoint. Figure 3.4 shows how the long pre-training improves
fine-tuning performance here as well. We also see that the difference between the
fine-tuning from the 9th epoch and the 30th is large, while the difference between
the fine-tuning from the 30th and 45th is significantly smaller.

The MATE setting (Figure 3.5) has results similar to Aspell. Here, it is also
confirmed that a long pre-training helps to improve the fine-tuning performance;
however, we can see that the difference between the 45th and 70th epoch is already
minimal (similar to the Figure 3.2 for Aspell between the 45th and 60th epoch).

The results show that long pre-training has a positive effect on fine-tuning
performance. However, in our experiments, fine-tuning seems to start to stagnate
from the 50th epoch, even with longer pre-training. In any case, even a longer
pre-training, more than 50 epochs (less than 70 epochs), does not make the model
noticeably worse.

28

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145
Epoch

75

76

77

78

79

80
F 0

.5

9. epoch
30. epoch
45. epoch

Figure 3.4: Fine-tunings from different checkpoints for setting Typical Errors.
The F0.5-score is evaluated on the AKCES dataset.

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175
Epoch

76

77

78

79

80

F 0
.5

10. epoch
45. epoch
70. epoch

Figure 3.5: Fine-tunings from different checkpoints (epochs) for setting MATE.
The F0.5-score is evaluated on the AKCES dataset.

29

3.3 Fine-tuned Model – AKCES

We now search for the best fine-tuning method for the AKCES dataset. Although
MATE is the best pre-training setting, is it the same in the following fine-tuning?
This question is justified because the best results in the pre-training stage do not
guarantee the best results in the fine-tuning stage. This shows us the fact that
the length of pre-training has an effect on fine-tuning (previous Section 3.2). It
could be the same with the fine-tuning method.

Another aspect we examine is the effect of data mixing on fine-tuning. We
mix data only during fine-tuning by combining synthetic data and data from the
annotated dataset (AKCES or GECCC). We run experiments with three ratios
to mix them: 0:1 (no synthetic data), 2:1, and 5:1.

For each setting, we use its pre-trained model and always start fine-tuning
from the 45th checkpoint. This also applies to all ratios, where synthetic data is
generated in the same way as in pre-training.

The first is the ratio 0:1 (see Figure 3.6), where we see a rapid improvement
in all settings. The Aspell setting loses out to the others, and the MATE setting
looks best, outperforming both Aspell and MorphoDiTa.

The second is the 2:1 ratio (see Figure 3.7); improvement is slower. Aspell
loses again, but not as much as in the previous ratio. The MATE setting is again
the best and has the highest F0.5-score in most epochs.

The last one is a ratio of 5:1 (see Figure 3.8). The improvement grows the
slowliest, and again, the MATE setting is the best, the Typical Errors and Mor-
phoDiTa settings are also good, and the last one is Aspell.

30

40 50 60 70 80 90 100 110 120 130 140
Epoch

76.0

76.5

77.0

77.5

78.0

78.5

79.0

79.5

80.0

F 0
.5

MATE
Aspell
MorphoDiTa
Typical Errors

Figure 3.6: Comparison of fine-tunings with different methods to generate syn-
thetic errors with ratio 0:1. The F0.5-score is evaluated on the AKCES dataset.

40 50 60 70 80 90 100 110 120 130 140
Epoch

73

74

75

76

77

78

79

80

F 0
.5

MATE
Aspell
MorphoDiTa
Typical Errors

Figure 3.7: Comparison of fine-tunings with different methods to generate syn-
thetic errors with ratio 2:1. The F0.5-score is evaluated on the AKCES dataset.

40 50 60 70 80 90 100 110 120 130 140
Epoch

73

74

75

76

77

78

79

80

F 0
.5

MATE
Aspell
MorphoDiTa
Typical Errors

Figure 3.8: Comparison of fine-tunings with different methods to generate syn-
thetic errors with ratio 5:1. The F0.5-score is evaluated on the AKCES dataset.

31

The MATE setting is the best for each mixing ratio and also produces the
best results after pre-training. Thus, we select this setting as the best option to
fine-tune the AKCES dataset.

Figure 3.9 compares all mixing ratios for the MATE setting. All of them
achieve good results, so we find the best checkpoints on the AKCES dev and
evaluate them on the AKCES test. Table 3.4 shows us that the ratio 0:1 per-
forms the best. It is interesting because Náplava et al. [2022] claim that the
combination of synthetic and annotated data performs better because the model
quickly overfits them on clear annotated data. However, fine-tuning remains
relatively stable for us.

40 50 60 70 80 90 100 110 120 130 140
Epoch

76

77

78

79

80

F 0
.5

0:1
2:1
5:1

Figure 3.9: Comparison of fine-tunings of setting MATE with different ratios.
The F0.5-score is evaluated on the AKCES dataset.

Ratio Epoch F0.5-score
0:1 72 81.19
2:1 105 80.98
5:1 92 80.24

Table 3.4: Comparison of fine-tunings of setting MATE with different ratios. The
F0.5-score is evaluated on the AKCES dataset.

32

3.4 Finetuned Model – GECCC

Just as we search for the best setting for the AKCES dataset, we search for
it for the GECCC dataset. We start with the same approach of comparing all
settings and ratios for fine-tuning. The settings remain the same, and again, we
use mixing ratios of 0:1 (GECCC only), 2:1, and 5:1.

For each setting, we use its pre-trained model again and always start fine-
tuning from the 45th checkpoint. This also applies to all ratios, where synthetic
data is generated in the same way as in pre-training.

The best setting for a ratio of 0:1 is the MATE setting, which rises quickly
(see Figure 3.10). The setting Typical Error has similar progress but does not
achieve such performance. MorpohoDiTa is already worse than the two above,
and below that is Aspell, which has the worst score in all epochs.

For the 2:1 ratio, the progress is already different (see Figure 3.11). In the
beginning, Typical Errors looks best, but MATE beats it from the 70th epoch.
MorphoDiTa and Aspell are about one percentage point worse, and from the
100th epoch, MorphoDiTa has a worse score than Aspell.

For the 5:1 ratio, the increase of curves is the mildest (see Figure 3.12). Again,
the best settings are MATE and Typical Errors, which are comparable. Both
MorphoDiTa and Aspell are again about one percentage point worse, but in
recent epochs, Aspell outperforms MorphoDiTa.

33

40 50 60 70 80 90 100 110 120 130 140
Epoch

65

66

67

68

69

F 0
.5

MATE
Aspell
MorphoDiTa
Typical Errors

Figure 3.10: Comparison of fine-tunings with different methods to generate syn-
thetic errors with ratio 0:1. The F0.5-score is evaluated on the GECCC dataset.

40 50 60 70 80 90 100 110 120 130 140
Epoch

62

63

64

65

66

67

68

69

F 0
.5

MATE
Aspell
MorphoDiTa
Typical Errors

Figure 3.11: Comparison of fine-tunings with different methods to generate syn-
thetic errors with ratio 2:1. The F0.5-score is evaluated on the GECCC dataset.

40 50 60 70 80 90 100 110 120 130 140
Epoch

58

60

62

64

66

68

F 0
.5

MATE
Aspell
MorphoDiTa
Typical Errors

Figure 3.12: Comparison of fine-tunings with different methods to generate syn-
thetic errors with ratio 5:1. The F0.5-score is evaluated on the GECCC dataset.

34

The MATE setting is the best and outperforms the other three on the GECCC
dataset. It, along with the Typical Errors setting, is the best even after pre-
training. Adding typical Czech errors significantly improves the model’s perfor-
mance in pure pre-training and following fine-tuning.

In Figure 3.13 we compare the mix ratios for the MATE setup. Ratio 0:1
reaches the highest F0.5-score and Table 3.5 shows that ratio 0:1 has the best
performance.

40 50 60 70 80 90 100 110 120 130 140
Epoch

64

65

66

67

68

69

F 0
.5

0:1
2:1
5:1

Figure 3.13: Comparison of fine-tunings of setting MATE with different ratios.
The F0.5-score is evaluated on the GECCC dataset.

Ratio Epoch F0.5-score
0:1 70 72.25
2:1 100 72.08
5:1 110 71.86

Table 3.5: Comparison of fine-tunings of setting MATE with different ratios. The
F0.5-score is evaluated on the GECCC dataset.

3.4.1 Domains

The GECCC dataset is composed of four domains: Natives Formal (NF), Natives
Web Informal (NWI), Romani (R), and Second Learners (SL). This raises the
question of what fine-tuning looks like on individual domains and their evaluation.

35

We perform four fine-tunings; we fine-tune each domain separately. Fig-
ure 3.14 shows the progress of fine-tunings, and Table 3.6 compares the eval-
uation on GECCC. We use the MATE settings with its pre-trained model for
each fine-tuning and always start from the 55th checkpoint.

Fine-tuning the Romani domain performs best, probably due to the more
extensive training data size (27 824 sentences), which can cover a larger range
of errors. The size of the representation of the Romani domain is smaller in the
development and test data, but the higher error rate of these samples compensates
for this.

Fine-tuning the domain Natives Web Informal has the second highest F0.5-
score on the development data. This domain already has a smaller training data
size than the Romani domain, but still has a significant error rate and size of
representation in the development and test data. However, when evaluated on
the test data, the NWI domain is worse than the SL.

The third is fine-tuning Second Learners (on the development data), which is
quite surprising given the size of the training data (30 812), the error rate, and
the representation size in the development and test data. The lower performance
than Natives Web Informal may be due to a lower error rate in the training
data, or the training data does not have such a large overlap of errors with the
development or test set as with Natives Web Informal. As mentioned above,
when evaluated on the test dataset, it outperforms NWI.

The last one is fine-tuning the Natives Formal domain, which is unsurprising
because Natives Formal has small training data and the lowest error rate in the
development and test data.

Fine-tuning Data Size F0.5-score
Natives Formal 4 060 67.71
Natives Web Informal 6 977 69.79
Romani 24 824 71.44
Second Learners 30 812 70.02
GECCC 66 673 72.25

Table 3.6: Comparison of fine-tunings using one specific domain data, evaluated
on the GECCC dataset.

36

50 60 70 80 90 100 110 120 130 140 150 160
Epoch

63

64

65

66

67

68

F 0
.5

Natives Formal
Natives Web Informal
Romani
Second Learners

Figure 3.14: Comparison of fine-tunings of domains. The F0.5-score is evaluated
on the GECCC dataset.

We evaluate domain fine-tunings on the AKCES dataset (see Figure 3.15),
where the best fine-tuning is Romani and then fine-tuning Second Learners, which
is unsurprising since AKCES consists of Romani and Second Learners domains.
We find the results in Romani to be the best, even though Second Learners have
the best F0.5-score in Table 3.7 because Romani outperforms Second Learners
each epoch in the evaluation on development data. Natives Formal and Natives
Web Informal fine-tunings are approximately four percentage points worse.

50 60 70 80 90 100 110 120 130 140 150 160
Epoch

73

74

75

76

77

78

79

F 0
.5

Natives Formal
Natives Web Informal
Romani
Second Learners

Figure 3.15: Comparison of domain fine-tunings evaluated on the AKCES
dataset.

37

Fine-tuning Data Size F0.5-score
Natives Formal 4 060 75.77
Natives Web Informal 6 977 74.96
Romani 24 824 79.35
Second Learners 30 812 79.41
AKCES 42 210 81.19

Table 3.7: Comparison of fine-tunings using one specific domain data, evaluated
on the AKCES dataset.

Finally, we also evaluate each domain separately (see Figures 3.16, 3.17, 3.18
and 3.19), where it is confirmed that fine-tuning solely on the in-domain data leads
to the best results on each domain, where it is confirmed that fine-tuning solely on
the in-domain data leads to the best results on the domain. Here, it is also possible
to see the mutual relations of the domains. For example, fine-tuning Romani has
the best results for evaluating the Romani domain (see Figure 3.18), but it also
has good results for evaluating the Natives Formal domain (see Figure 3.16). The
Romani domain probably covers the most errors from Natives Formal compared
to Natives Web Informal or Second Learners.

50 60 70 80 90 100 110 120 130 140 150 160
Epoch

58

60

62

64

66

68

F 0
.5

Natives Formal
Natives Web Informal
Romani
Second Learners

Figure 3.16: Comparison of domain fine-tunings evaluated on the Natives Formal
domain.

38

50 60 70 80 90 100 110 120 130 140 150 160
Epoch

64

66

68

70

72

74

76

F 0
.5

Natives Formal
Natives Web Informal
Romani
Second Learners

Figure 3.17: Comparison of domain fine-tunings evaluated on the Natives Web
Informal domain.

50 60 70 80 90 100 110 120 130 140 150 160
Epoch

62

64

66

68

70

F 0
.5

Natives Formal
Natives Web Informal
Romani
Second Learners

Figure 3.18: Comparison of domain fine-tunings evaluated on the Romani do-
main.

50 60 70 80 90 100 110 120 130 140 150 160
Epoch

63

64

65

66

67

68

69

70

F 0
.5

Natives Formal
Natives Web Informal
Romani
Second Learners

Figure 3.19: Comparison of domain fine-tunings evaluated on the Second Learners
domain.

39

Table 3.8 shows the improvement of models fine-tuned on individual domains
over the model that is fine-tuned on the entire GECCC dataset. From the results,
we deduce that fine-tuning on the specific domain does not worsen the perfor-
mance of the model on the specific domain, but rather improves it. For all domain
fine-tunings, the results for their specific domain are better than when fine-tuned
with the entire GECCC training set, except for the Natives Web Informal do-
main, where the difference compared to GECCC is minimal. These observations
could be beneficial in the building of narrowly focused systems.

Evaluation Data Fine-tuning Data F0.5-score
Relative

Improvement
Natives Formal GECCC 70.46
Natives Formal Natives Formal 71.87 +1.41
Natives Web Informal GECCC 75.91
Natives Web Informal Natives Web Informal 75.83 -0.08
Romani GECCC 73.04
Romani Romani 74.75 +1.71
Second Learners GECCC 71.82
Second Learners Second Learners 72.64 +0.82

Table 3.8: Comparison of fine-tunings using one specific domain data with the
model fine-tuned on the whole GECCC dataset. The relative improvement is
evaluated against the performance of the fine-tuned model on GECCC.

40

3.4.2 Oversampling

By evaluating individual domains, we find that each domain contributes to the
final score to a certain extent. The distribution of domain contribution is not
uniform; each domain contributes differently. Therefore, we examine how the
oversampling of individual domains affects performance.

We go through each domain, calculate its size, and raise it to the power of
factor (sizefactor). The resulting value is the weight with which we select a random
sample from the corresponding domain. It is shown in detail in Figure 3.20.

n = number of samples
total_size = size of all domains
weights = {}

for domain in domains:
size = size of domain
weight = pow(size, factor)
weights[domain] = weights

probabilities = {}
for domain in domains:

probability = weight / sum(weights)
probabilities[domain] = probability

sentences = []
for i in 1..n:

domain = select_domain(probabilities)
sentence = randomly_choose_sentence(domain)
sentences.append(sentence)

return sentences

Figure 3.20: Language domain oversampling.

In this way, we create 5 datasets using the factors 0.0 (uniform domain dis-
tribution), 0.25, 0.5, 0.75, and 1.0 (domain distribution of the original GECCC).

We use the pre-trained model with setting MATE for each fine-tuning and
always start from the 55th checkpoint.

Figure 3.21 shows that oversampling fine-tuning with factors of 0.25 and 0.75
achieve the best results. Factors 0.5 and 1.0 are already a little worse, and factor

41

0.0 is the worst. In Table 3.9 we can see a comparison of the best checkpoints,
where the factor 0.25 reaches the best F0.5-score.

Table 3.9 also shows the evaluation on individual GECCC domains. The 0.25
factor performs the best on Natives Formal and Natives Web Informal domains.
We hypothesize these results are caused by the fact that the 0.25 factor oversam-
ples the small domains more than the large ones. On the contrary, on the Second
Learners and Romani domains, the best factor is 0.75, which oversamples more
the larger domains.

50 60 70 80 90 100 110 120 130 140 150 160
Epoch

68.5

69.0

69.5

70.0

70.5

71.0

71.5

F 0
.5

0.0
0.25
0.5
0.75
1.0

Figure 3.21: Comparison of oversampling factors used during fine-tunings on
GECCC. The F0.5-score is evaluated on the GECCC dataset.

Factor Epoch F0.5-score NF NWI SL R
0.00 140 71.82 72.29 75.78 68.96 71.67
0.25 130 73.52 73.36 77.19 71.13 73.36
0.50 120 72.96 71.93 76.09 71.11 72.80
0.75 100 73.32 71.19 75.93 71.78 73.55
1.00 90 73.09 70.40 75.91 71.52 73.27

Table 3.9: Results of oversampling factors used during fine-tunings on GECCC.
The F0.5-score is evaluated on the GECCC dataset, and NF, NWI, SL, and R are
evaluations on language domains.

42

3.5 Corpora Comparison

Another important part of our GEC system is the corpus from which noisy sen-
tences are generated. Our assumption is that the corpus contains no errors and
only our pipeline introduces them. Unfortunately, we can never be sure that
the corpus is completely error-free, especially for large texts. Thus, we examine
how the purity of the data will affect our model, both in the pre-training and
fine-tuning stage. We train on four corpora mentioned in Section 1.4.2.

3.5.1 Pre-training

We pre-train four models, one for every source of clean data, from which noisy
data are generated during training. Otherwise, all other settings will be identical
(MATE settings, base size Transformer model).

Figure 3.22 shows that we pre-train each model for at least 50 epochs. The
SYN corpus has the highest F0.5-score on the AKCES dataset and on the GECCC
dataset (see Table 3.10), probably because it is a synchronous Czech national
corpus emphasizing text correctness. Its most significant difference from the
others is in the Natives Formal domain, where it outperforms the others by up
to 8 percentage points. Corpus News 2019 is the second best, even with a better
F-score on the Natives Web Informal domain than SYN-v4. The third is the
Wikipedia corpus, which lost about five percentage points to the best SYN-v4.
The last is the Common Crawl corpus, which is probably more noisy; its most
significant drop is in the Natives Web Informal domain.

1 5 10 15 20 25 30 35 40 45 50
Epoch

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

F 0
.5

Common Crawl
News 2019
SYN-v4
Wikipedia

Figure 3.22: Pre-trainings of different corpora evaluated on the AKCES dataset.

43

Corpus AKCES GECCC NF NWI R SL
Common Crawl 67.44 55.27 56.94 44.59 53.01 60.30
News 2019 72.36 63.54 58.19 62.94 63.02 65.16
SYN-v4 74.11 64.00 66.16 59.94 63.62 65.91
Wikipedia 69.89 60.23 55.28 55.43 61.75 63.19

Table 3.10: Corpora comparison in the pre-training stage evaluated on the
AKCES dataset in the best epoch and on the GECCC dataset in the 50th epoch
(All domains are also evaluated in the 50th epoch).

3.5.2 Fine-tuning

We also run fine-tuning for each corpus from its 50th checkpoint on the AKCES
and GECCC datasets. For AKCES fine-tuning, we use only AKCES data (ratio
0:1), and for GECCC fine-tuning, we use oversampled GECCC data with a factor
of 0.25.

Figures 3.23 and 3.24 show that fine-tuning based on pre-training with the
SYN-v4 corpus achieves the best results, both on the AKCES dataset and the
GECCC dataset. The second best is fine-tuning based on pre-training with the
News 2019 corpus, which has good results. The third best is a bit surprisingly
Common Crawl, which outperforms Wikipedia on both AKCES and GECCC.
The Common Crawl was worse than Wikipedia during the entire pre-training but
since Common Crawl is the largest (more than 7 times larger than Wikipedia,
which is the smallest), the pre-trained model was able to learn more about the
language itself (even if not about the grammar error correction, given that the
Common Crawl data is very noisy), which was then beneficial during fine-tuning.

In Table 3.11, we compare all fine-tunings in their best checkpoints; here
again, Common Crawl beats Wikipedia, but only by a small margin.

Corpus Epoch AKCES Eepoch GECCC
Common Crawl 133 79.73 90 71.93
News 2019 63 79.76 130 72.52
SYN-v4 65 81.32 130 72.97
Wikipedia 99 79.25 150 70.94

Table 3.11: Corpora comparison in fine-tuning. The F0.5-score is evaluated on
the AKCES dataset and on the GECCC dataset.

44

45 55 65 75 85 95 105 115 125 135 145 155
Epoch

75

76

77

78

79

80
F 0

.5

Common Crawl
News 2019
SYN-v4
Wikipedia

Figure 3.23: Fine-tuning of different corpora on AKCES. The F0.5-score is eval-
uated on the AKCES dataset.

50 60 70 80 90 100 110 120 130 140 150
Epoch

68.0

68.5

69.0

69.5

70.0

70.5

71.0

F 0
.5

Common Crawl
News 2019
SYN-v4
Wikipedia

Figure 3.24: Fine-tuning of different corpora on GECCC. The F0.5-score is eval-
uated on the GECCC dataset.

45

3.6 Model Comparsion

In this section, we examine how enlarging models improves performance. We run
experiments with three different sizes of our Transformer model: small, base, and
large (see Table 3.12). For our large model, we use half the batch size and train
on two GPUs, and for the small model, we leave the settings the same as for
the base size. In addition to enlarging the model, we also try to use the already
pre-trained MT5 model base size [Xue et al., 2021].

Model Size Dim Layers Heads FFN Params
small 256 2 4 1 024 10×106

Transformer base 512 6 8 2 048 65×106

large 1 024 6 16 4 096 213×106

MT5 base 768 12 12 2 048 580×106

Table 3.12: Hyper-parameters and size of the Transformer model and the MT5
model.

MT5 Configuration

We use two GPUs and the Adafactor optimizer [Shazeer and Stern, 2018] with
a learning rate of 5e-05. The batch size is 24, the epoch length is 341 333 steps
(2 · 24 · 341 333 = 16 384 000 samples per epoch), and the maximal length of a
sample is 128 tokens. We use the same settings for both the pre-training and
fine-tuning stages.

3.6.1 Pre-training

The length of the pre-training stage is different for each model. Figure 3.25 shows
that Transformer-large performs best in pre-training, but MT5-base reaches a
very similar performance. The Transformer-base model is a little worse, and the
Transformer-small model performs the worst. The results are relatively consistent
with intuition, namely that large models perform better. However, the difference
between the large and base variants is not great. The pre-training stage is time-
consuming; for the Transformer-small model, the epoch takes 8 hours, for the
base size 12 hours, and for the large even 28 hours. However, the MT5-base
model takes the longest, with one epoch lasting 96 hours.

46

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Epoch

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

F 0
.5

Transformer-large
Transformer-base
Transformer-small
MT5-base

Figure 3.25: Comparison of pre-trainings with different models, evaluated on the
AKCES dataset.

3.6.2 Fine-tuning

Again, we divide the fine-tuning stage for the AKCES dataset and the GECCC
dataset. For AKCES fine-tuning, we use only AKCES data (ratio 0:1), and for
GECCC fine-tuning, we use oversampled GECCC data with a factor of 0.25.

Figures 3.26 and 3.27 show that the Transformer-large and MT5-base mod-
els achieve the best results. They achieve a comparable F0.5-score on both the
AKCES dataset and the GECCC dataset. The Transformer-base model achieves
slightly worse results, and the Transformer-small model is the worst. We can
observe that size matters if we want to achieve the best results.

47

0 15 30 45 60 75 90 105 120 135 150 165 180
Epoch

72

74

76

78

80

F 0
.5

Transformer-large
Transformer-base
Transformer-small
MT5-base

Figure 3.26: Comparison of different models fine-tuned on AKCES and evaluated
on the AKCES dataset.

10 25 40 55 70 85 100 115 130 145 160 175
Epoch

66

67

68

69

70

71

72

F 0
.5

Transformer-large
Transformer-base
Transformer-small
MT5-base

Figure 3.27: Comparison of different models fine-tuned on GECCC and evaluated
on the GECCC dataset.

48

Final Evaluation

In Table 3.13, we present the results of our models and compare them with the
results of other authors that achieve the best results for the Czech language.

We introduce models from Katsumata and Komachi [2020] and Náplava and
Straka [2019], as well as a base size model from Rothe et al. [2021]. We outper-
form these three models with our Transformer-base model fine-tuned on GECCC,
which reaches a higher F0.5-score on both AKCES and GECCC datasets.

It is confirmed that the larger model achieves better scores. It can be seen
that Rothe et al. [2021] has the best results at AKCES, but unlike us, they use
a 13B model, while we have a 22 times smaller model and achieve the F0.5-score
that is only one point worse.

The model from Náplava et al. [2022] fine-tuned on the GECCC dataset
achieves an F0.5-score of 72.96. Our Transformer-large model fine-tuned on GECCC
outperforms this model with an F0.5-score of 73.92.

Model Params AKCES GECCC
Rothe et al. [2021] base 580M 71.88 -
Rothe et al. [2021] xxl 13B 83.15 -
Katsumata and Komachi [2020] 610M 73.52 -
Náplava and Straka [2019] – AG finetuned 210M 80.17 68.08
Náplava et al. [2022] – GECCC finetuned 210M - 72.96
Transformer-small – AKCES-finetuned 10M 76.41 66.19
Transformer-small – GECCC-finetuned 10M 75.19 68.03
Transformer-base – AKCES-finetuned 65M 81.25 71.03
Transformer-base – GECCC-finetuned 65M 79.95 73.32
Transformer-large – AKCES-finetuned 210M 81.56 72.12
Transformer-large – GECCC-finetuned 210M 80.66 73.92
MT5-base – AKCES-finetuned 580M 82.18 71.55
MT5-base – GECCC-finetuned 580M 79.98 73.50

Table 3.13: Comparison of different models evaluated on the AKCES and the
GECCC datasets.

49

We analyze individual errors in Czech, as we defined them in Section 2.3. For
each error, we count the number of occurrences and evaluate its Precision, Recall,
and F0.5-score using ERRANT [Bryant et al., 2017]. We evaluate individual errors
on the GECCC dataset because it has a larger number of errors than the AKCES
dataset.

Table 3.14 shows that errors related to diacritics are the most common in the
data, and we also correct them very well. On the other hand, it is possible to
improve our system on capitalization errors, which are not so well corrected.

In some cases, we are able to correct all occurrences of errors, especially for
less frequent types of errors.

Error Count Precision Recall F0.5

removing a comma 1753 72.6 86.3 75.0
removing diacritics 1607 81.3 93.5 83.5
adding diacritics 1604 83.6 91.4 85.0
sentence – first to uppercase 457 85.5 88.8 86.1
any word – first to lowercase 345 57.3 65.8 58.8
letter b/f/l/m/p/s/v/z followed by -i/-y 257 82.0 88.7 83.3
any word – first to uppercase 118 48.1 84.8 52.6
word mě/mně 39 83.0 100.0 85.9
prefix s-/z- or se-/ze 26 81.2 100.0 84.4
suffix -i/-y 21 69.2 85.7 72.0
preposition s/z 20 65.2 75.0 67.0
infix -mě-/-mně- 20 82.6 95.0 84.8
conditionals 12 100.0 25.0 62.5
sentence – first to lowercase 5 0.0 0.0 0.0
suffix -mě/-mně 5 100.0 80.0 95.2
word mi/my 4 40.0 100.0 45.5
suffix -bě/-bje 3 100.0 100.0 100.0

Table 3.14: Comparison of typical Czech errors evaluated on the GECCC dataset.

In Table 3.15, we introduce examples of sentence correction. We present
examples from the Natives Formal and Second Learners domains that our model
corrects.

50

Source Sentence Corrected Sentence Domain
Muj oblibeny kavárny je Luvur cáfe ,
ktery je blizko stanice Národni třida . (
nebo pěšky od stańıce Můstek)

Moje obĺıbená kavárna je Lou-
vre Café , který je bĺızko stanice
Národńı tř́ıda (nebo pěšky od stan-
ice Můstek) .

SL

Je uplně unikatńı a věselé misto . Je to úplně unikátńı a veselé mı́sto . SL
Když jsem čekala tam , nikdo přijel a
vzal moji kabelku .

Když jsem tam čekala , někdo přijel
a vzal moji kabelku .

SL

Vı́te co se stalo jednou Švejkovi ? Vı́te , co se stalo jednou Švejkovi ? NF
Pomoćı farem a měst zvyšujte popu-
laci.Optim álńı je na jedno město ,
třicet farem .

Pomoćı farem a měst zvyšujte popu-
laci . Optimálńı je na jedno město
třicet farem .

NF

Závěrečné slohová práce Závěrečná slohová práce NF

Table 3.15: Examples of source sentences corrected by our model. Domain de-
scribes from which domain example comes.

51

Conclusion
We presented the Grammatical Error Correction system for correcting the Czech
language using the Neural Machine Translation approach. Our model is based
on Transformer architecture. This approach requires an extensive amount of
annotated data, which is insufficient for many languages, especially for Czech.
Therefore, noisy sentences are generated from clean corpora to obtain the required
amount of data. Náplava et al. [2022] have utilized the approach of generating
synthetic noisy data from clean texts using simple language-independent rules.
We have extended this approach by adding typical Czech errors to the automatic
generation of noisy data.

We analyzed typical Czech errors and implemented a model training pipeline
that includes the real-time generation of noisy data from clean corpora. This
avoids creating the corpus once and allows us to change and adjust the data
generation for the model easily.

We found that the length of the pre-training stage is important. Even if
the GEC metrics stagnate in the pre-training stage, the subsequent fine-tuning
performs better from the later checkpoints. This also holds for models that did
not use typical Czech errors during learning.

We experimented with different data generation settings during both pre-
training and fine-tuning stage:

• Settings that added typical Czech errors in the pre-training stage outper-
formed the settings without them, even in the following fine-tuning. We ob-
tained the best pre-training setting that combines the adding typical Czech
errors and simple language-independent rules with Aspell and MorphoDiTa
tools.

• During fine-tuning, we experimented with mixing synthetic data and man-
ually annotated data, which did not perform as well as fine-tuning on only
annotated data. For fine-tuning on the GECCC dataset language contain-
ing four domains, we examined the oversampling of individual domains.
The sizes of domains in GECCC vary, each contributing to the final score
to a different extent. Changing the domain ratio can improve model per-
formance. Oversampling with a factor of 0.25 is the best performer. This
factor samples more from smaller domains than the original data distribu-
tion.

We compared different-quality corpora for the Czech language to see if this
would affect the model’s performance. We used four corpora to generate synthetic
noise data. Models trained with higher-quality corpora performed significantly
better in both the pre-training and fine-tuning stages.

52

We validated that larger models perform better than smaller. We increased
the size of the Transformer model from base to large and also provided an eval-
uated small sized model that is significantly worse. Still, it could be the solution
for narrowly focused tasks because the results are not so bad. The Transformer
model of large size, trained from scratch, performed best, which even surpassed
the already pre-trained MT5 model of base size (MT5 has an order of magni-
tude larger models). The pre-trained MT5 model was further pre-trained and
fine-tuned by us in the same way as the Transformer model.

We presented models that achieve state-of-the-art results for the Czech lan-
guage for comparable model size. The model MT5-base fine-tuned on AKCES
achieves F0.5-score of 82.18 on the dataset AKCES and the model Transformer-
large fine-tuned on GECCC achieves F0.5-score of 73.92 on the dataset GECCC.

In the Introduction, we stated the research questions that we answer
here:

1. “How can the GEC system in Czech be improved by synthetically adding
typical Czech errors?”

Answer: “The addition of typical Czech errors to the automatic generation
of noisy data increases the model performance. In the pre-training and fine-
tuning stages, models with typical Czech errors outperform the same models
without them. In pre-training, the improvement in F0.5-score can be up
to eight percent points, and in fine-tuning, the improvement is around two
percent points.”

2. “How does the performance of the GEC system depend on clean data?”

Answer: “To achieve the maximum performance of the model, it is necessary
to have a clean corpus containing a minimum number of errors, preferably
no errors. The corpus size is also important, but 15 million correct sen-
tences overcome three times the number of noisier sentences.”

3. “How does the model performance depend on its size?”

Answer: “Larger models achieve better performance. The difference in the
pre-training stage between small and base sizes is about 5 percentage points
on the F0.5-score, and between the base and large sizes, it is about half a per-
centage point. In the fine-tuning stage, the difference is about 4 percentage
points between small and base, and 1 point between base and large.”

The implementation is released on GitHub at https://github.com/petrpechman/
czech_gec/tree/MasterThesis_PechmanPetr_2024.

53

https://github.com/petrpechman/czech_gec/tree/MasterThesis_PechmanPetr_2024
https://github.com/petrpechman/czech_gec/tree/MasterThesis_PechmanPetr_2024

Bibliography
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-

lation by jointly learning to align and translate, 2016.

Löıc Barrault, Ondřej Bojar, Marta R. Costa-jussà, Christian Federmann, Mark
Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Philipp Koehn, Shervin
Malmasi, Christof Monz, Mathias Müller, Santanu Pal, Matt Post, and Marcos
Zampieri. Findings of the 2019 conference on machine translation (WMT19).
In Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Mark Fishel, Yvette
Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp
Koehn, André Martins, Christof Monz, Matteo Negri, Aurélie Névéol, Mari-
ana Neves, Matt Post, Marco Turchi, and Karin Verspoor, editors, Proceed-
ings of the Fourth Conference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 1–61, Florence, Italy, August 2019. Association
for Computational Linguistics. doi: 10.18653/v1/W19-5301. URL https:
//aclanthology.org/W19-5301.

David C Blair. Information retrieval, 2nd ed. C.J. van rijsbergen. london: But-
terworths; 1979: 208 pp. price: $32.50. J. Am. Soc. Inf. Sci., 30(6):374–375,
nov 1979.

Adriane Boyd, Jirka Hana, Lionel Nicolas, Detmar Meurers, Katrin Wisniewski,
Andrea Abel, Karin Schöne, Barbora Štindlová, and Chiara Vettori. The
MERLIN corpus: Learner language and the CEFR. In Nicoletta Calzolari,
Khalid Choukri, Thierry Declerck, Hrafn Loftsson, Bente Maegaard, Joseph
Mariani, Asuncion Moreno, Jan Odijk, and Stelios Piperidis, editors, Proceed-
ings of the Ninth International Conference on Language Resources and Evalu-
ation (LREC’14), pages 1281–1288, Reykjavik, Iceland, May 2014. European
Language Resources Association (ELRA). URL http://www.lrec-conf.org/
proceedings/lrec2014/pdf/606_Paper.pdf.

Chris Brockett, William B. Dolan, and Michael Gamon. Correcting ESL er-
rors using phrasal SMT techniques. In Nicoletta Calzolari, Claire Cardie,
and Pierre Isabelle, editors, Proceedings of the 21st International Conference
on Computational Linguistics and 44th Annual Meeting of the Association for
Computational Linguistics, pages 249–256, Sydney, Australia, July 2006. As-
sociation for Computational Linguistics. doi: 10.3115/1220175.1220207. URL
https://aclanthology.org/P06-1032.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and Robert L.
Mercer. The mathematics of statistical machine translation: Parameter es-

54

https://aclanthology.org/W19-5301
https://aclanthology.org/W19-5301
http://www.lrec-conf.org/proceedings/lrec2014/pdf/606_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/606_Paper.pdf
https://aclanthology.org/P06-1032

timation. Computational Linguistics, 19(2):263–311, 1993. URL https:
//aclanthology.org/J93-2003.

Christopher Bryant, Mariano Felice, and Ted Briscoe. Automatic annotation and
evaluation of error types for grammatical error correction. In Regina Barzilay
and Min-Yen Kan, editors, Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers), pages 793–
805, Vancouver, Canada, July 2017. Association for Computational Linguistics.
doi: 10.18653/v1/P17-1074. URL https://aclanthology.org/P17-1074.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, London, England, 2 edition, September
2001.

Daniel Dahlmeier and Hwee Tou Ng. Better evaluation for grammatical error
correction. In Eric Fosler-Lussier, Ellen Riloff, and Srinivas Bangalore, editors,
Proceedings of the 2012 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, pages
568–572, Montréal, Canada, June 2012. Association for Computational Lin-
guistics. URL https://aclanthology.org/N12-1067.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu. Building a large annotated
corpus of learner English: The NUS corpus of learner English. In Joel Tetreault,
Jill Burstein, and Claudia Leacock, editors, Proceedings of the Eighth Workshop
on Innovative Use of NLP for Building Educational Applications, pages 22–31,
Atlanta, Georgia, June 2013. Association for Computational Linguistics. URL
https://aclanthology.org/W13-1703.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of deep bidirectional transformers for language understanding.
In Jill Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of
the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. As-
sociation for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL
https://aclanthology.org/N19-1423.

Mariano Felice, Christopher Bryant, and Ted Briscoe. Automatic extraction of
learner errors in ESL sentences using linguistically enhanced alignments. In
Yuji Matsumoto and Rashmi Prasad, editors, Proceedings of COLING 2016, the
26th International Conference on Computational Linguistics: Technical Papers,
pages 825–835, Osaka, Japan, December 2016. The COLING 2016 Organizing
Committee. URL https://aclanthology.org/C16-1079.

55

https://aclanthology.org/J93-2003
https://aclanthology.org/J93-2003
https://aclanthology.org/P17-1074
https://aclanthology.org/N12-1067
https://aclanthology.org/W13-1703
https://aclanthology.org/N19-1423
https://aclanthology.org/C16-1079

Filip Ginter, Jan Hajič, Juhani Luotolahti, Milan Straka, and Daniel Ze-
man. CoNLL 2017 shared task - automatically annotated raw texts and
word embeddings, 2017. URL http://hdl.handle.net/11234/1-1989.
LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied
Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University.

Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with
bidirectional lstm and other neural network architectures. Neural Networks, 18
(5):602–610, 2005. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.
2005.06.042. URL https://www.sciencedirect.com/science/article/
pii/S0893608005001206. IJCNN 2005.

Roman Grundkiewicz and Marcin Junczys-Dowmunt. The wiked error cor-
pus: A corpus of corrective wikipedia edits and its application to grammat-
ical error correction. In Adam Przepiórkowski and Maciej Ogrodniczuk, edi-
tors, Advances in Natural Language Processing, pages 478–490, Cham, 2014.
Springer International Publishing. ISBN 978-3-319-10888-9. URL http:
//emjotde.github.io/publications/pdf/mjd.poltal2014.draft.pdf.

Roman Grundkiewicz, Marcin Junczys-Dowmunt, and Kenneth Heafield. Neu-
ral grammatical error correction systems with unsupervised pre-training on
synthetic data. In Helen Yannakoudakis, Ekaterina Kochmar, Claudia Lea-
cock, Nitin Madnani, Ildikó Pilán, and Torsten Zesch, editors, Proceedings
of the Fourteenth Workshop on Innovative Use of NLP for Building Edu-
cational Applications, pages 252–263, Florence, Italy, August 2019. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/W19-4427. URL
https://aclanthology.org/W19-4427.

Ivan Habernal, Tomáš Ptáček, and Josef Steinberger. Facebook data
for sentiment analysis, 2013. URL http://hdl.handle.net/11858/
00-097C-0000-0022-FE82-7. LINDAT/CLARIAH-CZ digital library at the
Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics
and Physics, Charles University.

Jan Hajič, Jaroslava Hlaváčová, Marie Mikulová, Milan Straka, and Barbora
Štěpánková. MorfFlex CZ 2.0, 2020. URL http://hdl.handle.net/11234/
1-3186. LINDAT/CLARIAH-CZ digital library at the Institute of Formal
and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles
University.

Dana Hlaváčková, Hana Žižková, Klára Dvořáková, and Martkéta Pravdová.
Developing online czech proofreader tool: Achievements, limitations and pit-

56

http://hdl.handle.net/11234/1-1989
https://www.sciencedirect.com/science/article/pii/S0893608005001206
https://www.sciencedirect.com/science/article/pii/S0893608005001206
http://emjotde.github.io/publications/pdf/mjd.poltal2014.draft.pdf
http://emjotde.github.io/publications/pdf/mjd.poltal2014.draft.pdf
https://aclanthology.org/W19-4427
http://hdl.handle.net/11858/00-097C-0000-0022-FE82-7
http://hdl.handle.net/11858/00-097C-0000-0022-FE82-7
http://hdl.handle.net/11234/1-3186
http://hdl.handle.net/11234/1-3186

falls. Bohemistyka, 22(1):122–134, mar. 2022. doi: 10.14746/bo.2022.1.7. URL
https://pressto.amu.edu.pl/index.php/bo/article/view/31758.

Satoru Katsumata and Mamoru Komachi. Stronger baselines for grammatical
error correction using a pretrained encoder-decoder model. In Kam-Fai Wong,
Kevin Knight, and Hua Wu, editors, Proceedings of the 1st Conference of the
Asia-Pacific Chapter of the Association for Computational Linguistics and the
10th International Joint Conference on Natural Language Processing, pages
827–832, Suzhou, China, December 2020. Association for Computational Lin-
guistics. URL https://aclanthology.org/2020.aacl-main.83.

Vojtěch Kovář. Partial grammar checking for czech using the set parser. In
International Conference on Text, Speech and Dialogue, 2014. URL https:
//api.semanticscholar.org/CorpusID:36173250.

Vojtěch Kovář, Aleš Horák, and Miloš Jakub́ıček. Syntactic analysis using fi-
nite patterns: A new parsing system for czech. In Human Language Tech-
nology. Challenges for Computer Science and Linguistics, pages 161–171,
Berlin/Heidelberg, 2011. Springer. ISBN 978-3-642-20094-6. URL http:
//dx.doi.org/10.1007/978-3-642-20095-3_15.

Vojtěch Kovář, Jakub Machura, Kristýna Zemková, and Michal Rott. Evaluation
and improvements in punctuation detection for czech. In Petr Sojka, Aleš
Horák, Ivan Kopeček, and Karel Pala, editors, Text, Speech, and Dialogue 19th
International Conference, TSD 2016 Brno, Czech Republic, September 12–16,
2016 Proceedings, pages 287–294, Cham (CH), 2016. Springer. ISBN 978-3-
319-45509-9. doi: http://dx.doi.org/10.1007/978-3-319-45510-5 33.

Michal Křen, Václav Cvrček, Tomáš Čapka, Anna Čermáková, Milena Hnátková,
Lucie Chlumská, Tomáš Jeĺınek, Dominika Kovář́ıková, Vladimı́r Petkevič,
Pavel Procházka, Hana Skoumalová, Michal Škrabal, Petr Truneček, Pavel
Vondřička, and Adrian Zasina. SYN v4: large corpus of written czech, 2016.
URL http://hdl.handle.net/11234/1-1846. LINDAT/CLARIAH-CZ digi-
tal library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty
of Mathematics and Physics, Charles University.

David Kubeša and Milan Straka. DaMuEL 1.0: A large multilingual dataset
for entity linking, 2023. URL http://hdl.handle.net/11234/1-5047.
LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied
Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University.

Vladimir Iosifovich Levenshtein. Binary codes capable of correcting deletions,
insertions and reversals. Soviet Physics Doklady, 10(8):707–710, February 1966.
Doklady Akademii Nauk SSSR, V163 No4 845-848 1965.

57

https://pressto.amu.edu.pl/index.php/bo/article/view/31758
https://aclanthology.org/2020.aacl-main.83
https://api.semanticscholar.org/CorpusID:36173250
https://api.semanticscholar.org/CorpusID:36173250
http://dx.doi.org/10.1007/978-3-642-20095-3_15
http://dx.doi.org/10.1007/978-3-642-20095-3_15
http://hdl.handle.net/11234/1-1846
http://hdl.handle.net/11234/1-5047

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Jakub Machura. Automatické doplňováńı a korekce interpunkce v češtině. Dis-
ertačńı práce, Masarykova univerzita, Filozofická fakulta, 2022. URL https:
//is.muni.cz/th/xcpso/.

Jakub Náplava and Milan Straka. Grammatical error correction in low-resource
scenarios. In Wei Xu, Alan Ritter, Tim Baldwin, and Afshin Rahimi, ed-
itors, Proceedings of the 5th Workshop on Noisy User-generated Text (W-
NUT 2019), pages 346–356, Hong Kong, China, November 2019. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/D19-5545. URL
https://aclanthology.org/D19-5545.

Jakub Náplava, Milan Straka, Pavel Straňák, and Jan Hajič. Diacritics
restoration using neural networks. In Nicoletta Calzolari, Khalid Choukri,
Christopher Cieri, Thierry Declerck, Sara Goggi, Koiti Hasida, Hitoshi Isa-
hara, Bente Maegaard, Joseph Mariani, Hélène Mazo, Asuncion Moreno,
Jan Odijk, Stelios Piperidis, and Takenobu Tokunaga, editors, Proceedings of
the Eleventh International Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan, May 2018. European Language Resources As-
sociation (ELRA). URL https://aclanthology.org/L18-1247.

Jakub Náplava, Milan Straka, Jana Straková, and Alexandr Rosen. Czech
grammar error correction with a large and diverse corpus. Transactions
of the Association for Computational Linguistics, 10:452–467, 2022. doi:
10.1162/tacl a 00470. URL https://aclanthology.org/2022.tacl-1.26.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian Hadiwinoto, Raymond Hendy
Susanto, and Christopher Bryant. The CoNLL-2014 shared task on grammat-
ical error correction. In Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Chris-
tian Hadiwinoto, Raymond Hendy Susanto, and Christopher Bryant, editors,
Proceedings of the Eighteenth Conference on Computational Natural Language
Learning: Shared Task, pages 1–14, Baltimore, Maryland, June 2014. As-
sociation for Computational Linguistics. doi: 10.3115/v1/W14-1701. URL
https://aclanthology.org/W14-1701.

Jakub Náplava. Natural language correction with focus on czech, 2022.

Jakub Náplava, Milan Straka, and Jana Straková. Diacritics restoration using
bert with analysis on czech language. Prague Bulletin of Mathematical Linguis-
tics, 116(1):27–42, April 2021. ISSN 0032-6585. doi: 10.14712/00326585.013.
URL http://dx.doi.org/10.14712/00326585.013.

58

https://is.muni.cz/th/xcpso/
https://is.muni.cz/th/xcpso/
https://aclanthology.org/D19-5545
https://aclanthology.org/L18-1247
https://aclanthology.org/2022.tacl-1.26
https://aclanthology.org/W14-1701
http://dx.doi.org/10.14712/00326585.013

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem Chernodub, and Oleksandr
Skurzhanskyi. GECToR – grammatical error correction: Tag, not rewrite.
In Jill Burstein, Ekaterina Kochmar, Claudia Leacock, Nitin Madnani, Ildikó
Pilán, Helen Yannakoudakis, and Torsten Zesch, editors, Proceedings of the
Fifteenth Workshop on Innovative Use of NLP for Building Educational Ap-
plications, pages 163–170, Seattle, WA, USA → Online, July 2020. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2020.bea-1.16. URL
https://aclanthology.org/2020.bea-1.16.

Anna Plocková. Automatické opravy chyb v psańı mně, mě. Diplomová práce,
Masarykova univerzita, Filozofická fakulta, 2019. URL https://is.muni.cz/
th/cqhkg/.

Michal Richter, Pavel Straňák, and Alexandr Rosen. Korektor – a system for
contextual spell-checking and diacritics completion. In Martin Kay and Chris-
tian Boitet, editors, Proceedings of COLING 2012: Posters, pages 1019–1028,
Mumbai, India, December 2012. The COLING 2012 Organizing Committee.
URL https://aclanthology.org/C12-2099.

Alexandr Rosen. Building and using corpora of non-native czech. In Brona
Brejová, editor, Proceedings of the 16th ITAT Conference Information Tech-
nologies - Applications and Theory, Tatranské Matliare, Slovakia, September
15-19, 2016, volume 1649 of CEUR Workshop Proceedings, pages 80–87. CEUR-
WS.org, 2016. URL https://ceur-ws.org/Vol-1649/80.pdf.

Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebastian Krause, and Aliaksei
Severyn. A simple recipe for multilingual grammatical error correction. In
Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli, editors, Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 702–707, Online, August 2021. Association for
Computational Linguistics. doi: 10.18653/v1/2021.acl-short.89. URL https:
//aclanthology.org/2021.acl-short.89.

Pavel Rychlý. Czaccent - simple tool for restoring accents in czech texts.
In RASLAN, 2012. URL https://api.semanticscholar.org/CorpusID:
3595966.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sub-
linear memory cost, 2018.

Milan Straka, Jakub Náplava, and Jana Straková. Character transformations
for non-autoregressive GEC tagging. In Wei Xu, Alan Ritter, Tim Baldwin,

59

https://aclanthology.org/2020.bea-1.16
https://is.muni.cz/th/cqhkg/
https://is.muni.cz/th/cqhkg/
https://aclanthology.org/C12-2099
https://ceur-ws.org/Vol-1649/80.pdf
https://aclanthology.org/2021.acl-short.89
https://aclanthology.org/2021.acl-short.89
https://api.semanticscholar.org/CorpusID:3595966
https://api.semanticscholar.org/CorpusID:3595966

and Afshin Rahimi, editors, Proceedings of the Seventh Workshop on Noisy
User-generated Text (W-NUT 2021), pages 417–422, Online, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.wnut-1.46.
URL https://aclanthology.org/2021.wnut-1.46.

Jana Straková, Milan Straka, and Jan Hajič. Open-source tools for morphol-
ogy, lemmatization, POS tagging and named entity recognition. In Kalina
Bontcheva and Jingbo Zhu, editors, Proceedings of 52nd Annual Meeting of the
Association for Computational Linguistics: System Demonstrations, pages 13–
18, Baltimore, Maryland, June 2014. Association for Computational Linguis-
tics. doi: 10.3115/v1/P14-5003. URL https://aclanthology.org/P14-5003.

Toshikazu Tajiri, Mamoru Komachi, and Yuji Matsumoto. Tense and as-
pect error correction for ESL learners using global context. In Haizhou Li,
Chin-Yew Lin, Miles Osborne, Gary Geunbae Lee, and Jong C. Park, ed-
itors, Proceedings of the 50th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers), pages 198–202, Jeju Is-
land, Korea, July 2012. Association for Computational Linguistics. URL
https://aclanthology.org/P12-2039.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
CoRR, abs/1706.03762, 2017. URL http://arxiv.org/abs/1706.03762.

Jonáš Vidra, Zdeněk Žabokrtský, Lukáš Kyjánek, Magda Ševč́ıková, Šárka
Dohnalová, Emil Svoboda, and Jan Bodnár. DeriNet 2.1, 2021. URL
http://hdl.handle.net/11234/1-3765. LINDAT/CLARIAH-CZ digital li-
brary at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of
Mathematics and Physics, Charles University.

Klára Vostřelová. Automatická detekce chyb v psańı velkých ṕısmen v češtině.
Diplomová práce, Masarykova univerzita, Filozofická fakulta, 2019. URL
https://is.muni.cz/th/r89h9/.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya
Siddhant, Aditya Barua, and Colin Raffel. mT5: A massively multilingual
pre-trained text-to-text transformer. In Kristina Toutanova, Anna Rumshisky,
Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cot-
terell, Tanmoy Chakraborty, and Yichao Zhou, editors, Proceedings of the 2021
Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pages 483–498, Online,
June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
naacl-main.41. URL https://aclanthology.org/2021.naacl-main.41.

60

https://aclanthology.org/2021.wnut-1.46
https://aclanthology.org/P14-5003
https://aclanthology.org/P12-2039
http://arxiv.org/abs/1706.03762
http://hdl.handle.net/11234/1-3765
https://is.muni.cz/th/r89h9/
https://aclanthology.org/2021.naacl-main.41

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock. A new dataset and method
for automatically grading ESOL texts. In Dekang Lin, Yuji Matsumoto, and
Rada Mihalcea, editors, Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Language Technologies, pages
180–189, Portland, Oregon, USA, June 2011. Association for Computational
Linguistics. URL https://aclanthology.org/P11-1019.

Zheng Yuan and Ted Briscoe. Grammatical error correction using neural ma-
chine translation. In Kevin Knight, Ani Nenkova, and Owen Rambow, editors,
Proceedings of the 2016 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, pages
380–386, San Diego, California, June 2016. Association for Computational
Linguistics. doi: 10.18653/v1/N16-1042. URL https://aclanthology.org/
N16-1042.

Zheng Yuan and Mariano Felice. Constrained grammatical error correction using
statistical machine translation. In Hwee Tou Ng, Joel Tetreault, Siew Mei Wu,
Yuanbin Wu, and Christian Hadiwinoto, editors, Proceedings of the Seventeenth
Conference on Computational Natural Language Learning: Shared Task, pages
52–61, Sofia, Bulgaria, August 2013. Association for Computational Linguis-
tics. URL https://aclanthology.org/W13-3607.

Zdeněk Žabokrtský, Magda Ševč́ıková, Milan Straka, Jonáš Vidra, and Adéla
Limburská. Merging data resources for inflectional and derivational morphology
in Czech. In Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Sara Goggi,
Marko Grobelnik, Bente Maegaard, Joseph Mariani, Helene Mazo, Asuncion
Moreno, Jan Odijk, and Stelios Piperidis, editors, Proceedings of the Tenth
International Conference on Language Resources and Evaluation (LREC’16),
pages 1307–1314, Portorož, Slovenia, May 2016. European Language Resources
Association (ELRA). URL https://aclanthology.org/L16-1208.

Karel Šebesta. Korpusy čestiny a osvojováńı jazyka. Studie z
aplikované lingvistiky [Studies in Applied Linguistics], pages 11–33,
2010. URL https://sites.ff.cuni.cz/studiezaplikovanelingvistiky/
wp-content/uploads/sites/19/2016/03/karel_sebesta_11-33.pdf.

Dana Šmatová. Nejčastěǰśı pravopisné chyby žák̊u na 2. stupni ZŠ a jak jim
předcházet. Bakalářská práce, Západočeská univerzita v Plzni, 2015. URL
http://hdl.handle.net/11025/19677.

Jan Švec, Jan Lehečka, Luboš Šmı́dl, and Pavel Ircing. Automatic correction of
i/y spelling in czech asr output. In TDS, pages 321–330, Cham, 2020. Springer

61

https://aclanthology.org/P11-1019
https://aclanthology.org/N16-1042
https://aclanthology.org/N16-1042
https://aclanthology.org/W13-3607
https://aclanthology.org/L16-1208
https://sites.ff.cuni.cz/studiezaplikovanelingvistiky/wp-content/uploads/sites/19/2016/03/karel_sebesta_11-33.pdf
https://sites.ff.cuni.cz/studiezaplikovanelingvistiky/wp-content/uploads/sites/19/2016/03/karel_sebesta_11-33.pdf
http://hdl.handle.net/11025/19677

International Publishing. ISBN 9783030583224. URL http://hdl.handle.
net/11025/43118.

62

http://hdl.handle.net/11025/43118
http://hdl.handle.net/11025/43118

	Introduction
	Background
	Evaluation
	Datasets
	AKCES-GEC
	GECCC

	GEC Systems
	Korektor
	Opravidlo
	Encoder-Decoder Systems
	Non-Autoregressive GEC Tagging
	Systems Focused on the Specific Error Type

	Methods for Data Generation
	Wikipedia Corpus Extraction
	Synthetic Corpus Generation

	Description of Our System
	Model
	Data Generation
	Artificial Errors
	Typical Errors

	Analysis of Czech Typical Errors
	Technical Solution of the Pipeline

	Experiments
	Synthetic Data Generation for Model Pre-training
	Fine-tuning vs. Pre-training
	Fine-tuned Model – AKCES
	Finetuned Model – GECCC
	Domains
	Oversampling

	Corpora Comparison
	Pre-training
	Fine-tuning

	Model Comparsion
	Pre-training
	Fine-tuning

	Conclusion
	Bibliography

