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1. Introduction
Text normalization is a crucial step in both natural language processing (NLP) and
automatic speech recognition (ASR) systems. Text normalization converts text to
a uniform format to facilitate better model performance. While the steps in NLP
primarily involve the removal of case distinctions, punctuation removal, and lexical
simplification through stemming or lemmatization, ASR faces unique challenges that
require additional steps like converting numerals and dates into text, and standardizing
abbreviations.

For the practical use of ASR systems, the reverse process called Inverse Text Nor-
malization (ITN) is essential because it converts the machine-generated, verbalized
speech transcription into a format resembling standard written text. This is important
for ensuring that downstream NLP models can process the transcribed text without
performance degradation. The key subtasks of ITN include converting numeric expres-
sions to digits, standardizing date formats, and formatting other specialized entities
like monetary amounts and addresses to their conventional written forms. Addition-
ally, ITN may involve the removal of spoken disfluencies and even style adjustments to
align with written language norms.

Speech-informed ITN represents an advancement in ITN systems by incorporating
the original ASR audio input into the inverse normalization process. This approach
utilizes acoustic cues from speech, such as intonation, pauses, and pitch, to enhance
punctuation inference, sentence boundary detection, and the removal of disfluencies like
self-corrections and repetitions. By integrating these audio cues, the resulting ASR-
ITN chain can produce more accurate and contextually appropriate text transcriptions.

However, the development of neural speech-informed ITN systems is challenging,
primarily due to the specificity of the required training and evaluation data. Consider
the case of punctuation restoration with capitalization, for the traditional text-only ITN
models, we can create training data from any written text by treating all capital letters
and punctuation marks as labels to be restored from the normalized version of the same
text. In contrast, speech-informed ITN models require training data that includes
both text and corresponding audio inputs. This dual requirement complicates data
collection, as most available datasets are text-only or specifically tailored for ASR with
aligned sentence boundaries and possibly pre-normalized text (e.g., lowercased without
punctuation). These constraints partly explain why text-only approaches remain more
popular than their speech-informed counterparts.

The goal of this thesis is to investigate the impact of the speech signal for the
ITN task, in terms of punctuation restoration and capitalization, by comparing it with
text-only methods. An important prerequisite for our work will be to create a suit-
able multimodal dataset that includes unnormalized, natural text—text complete with
casing and punctuation—along with corresponding speech recordings. This dataset
will be derived from ParCzech 3.0 [Kopp et al., 2021], chosen for its extensive size in
terms of hours and the availability of unnormalized transcriptions. Additionally, we
will modify ParCzech 3.0 to better meet the requirements of the ITN task. During this
modification we will train our ASR model to recognize all the audio files in ParCzech
3.0 and align the recognized transcripts with the original transcripts. After creating
the dataset, we will develop a text-only ITN baseline model and perform experiments
to integrate sound information. The key result of this thesis will be a multimodal
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cross-attention model component to fuse sound and text inputs. Moreover, we will
evaluate various audio encoders to select the one that best fits the ITN task. Finally,
we propose implementing multimodal positional embeddings that will result in soft
attention alignment between text tokens and audio frames.

The structure of the thesis is as follows. Chapter 2 introduces the key concepts
necessary for understanding the thesis and reviews recent research in the ITN field.
In Chapter 3, we discuss ParCzech 3.0 and create a custom dataset for training and
evaluating ITN neural models. Chapter 4 describes the training of an ASR model used
to create the ITN-oriented dataset. In Chapter 5, we develop a text-only ITN baseline
model and experiment with integrating audio information into the ITN neural model,
concluding with an evaluation of all configurations using the previously created test
set. Chapter 6 discusses the results and potential further improvements of our best
multimodal ITN model. Finally in Appendix A, we provide a very brief summary of
the code released with this thesis on Github.
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2. Background
The following chapter outlines the key concepts relevant for the thesis.

2.1 Approaches to ITN
In a broader sense, inverse text normalization includes many subtasks: punctuation and
case restoration, conversion of verbalized numerical expressions into their digit form
(“twenty twenty-one” into “2021”), standardization of dates and times (“the first of
January” becomes “January 1”), general conversion of special words to their symbolic
equivalents (“section sign” into “§”), removal of disfluencies, and even style transfer.
Because of its complexity the ITN task is often reduced to only part of its subtasks,
e.g. punctuation and case restoration, or disfluency removal or style transfer.

An important aspect of ITN is the restoration of punctuation in textual inputs.
Specifically, the PunKtuator work [Chordia, 2021] is dedicated to punctuation restora-
tion task for high-resource (German, English, French) and low resource languages
(Hindi and Tamil). PunKtuator’s architecture combines Transformer’s encoder part
[Vaswani et al., 2017] with BiLSTM [Graves and Schmidhuber, 2005] and Neural Con-
ditional Random Field components [Do and Artieres, 2010], further incorporating lan-
guage classifiers and text mode classification (distinguishing between “Spoken” and
“Written” text). This composite model effectively restores punctuation by treating
the task as sequence labeling, jointly trained across multiple languages to reduce the
dependency on monolingual data.

Another text-only work [Huang et al., 2021] uses multi-task objective to improve
punctuation restoration by addressing data imbalance in punctuation classes. The
paper proposes a novel method that utilizes token-level supervised contrastive learn-
ing (SCL) [Khosla et al., 2020], aiming to enhance the differentiation of punctuation
marks in the latent space. The SCL loss is then combined with cross-entropy loss
for the sequence labeling. This approach achieved a significant improvement in test
set performance, demonstrating the effectiveness of supervised contrastive learning in
handling imbalanced data for punctuation restoration tasks comparing to the models
trained with cross-entropy loss only.

Additionally, punctuation restoration task can be efficiently coupled with case
restoration task. Specifically, the paper “Robust Prediction of Punctuation and True-
casing for Medical ASR” [Sunkara et al., 2020b] describes usage of pre-trained masked
language models like BERT [Devlin et al., 2019a] and RoBERTa [Liu et al., 2019] in
medical domain and proposes a novel approach by jointly learning punctuation and cap-
italization as a sequence labeling problem. Moreover, to counteract the issues related
to ASR errors, the authors propose a data augmentation approach utilizing n-best lists
from ASR outputs, improving the model’s ability to deal with speech recognition inac-
curacies. The proposed model achieves approximately a 5% absolute improvement in
F1 score on ground truth text and approximately a 10% improvement on ASR outputs
over baseline models.

Moving forward to the multi-modal approaches, the paper “Attentional Parallel
RNNs for Generating Punctuation in Transcribed Speech” [Öktem et al., 2017] intro-
duces an innovative approach to generating punctuation in transcribed speech using
recurrent neural networks (RNNs) [Rumelhart et al., 1986]. The paper proposes a novel
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method that incorporates both prosodic (e.g., pauses, speech rate, pitch) and lexical in-
formation through parallel processing with RNNs to predict punctuation marks in raw
ASR output. By using an attention mechanism over parallel sequences of prosodic cues
aligned with transcribed speech, the model can improve the accuracy of punctuation
generation. The experiments show that including an attention mechanism that focuses
on both prosodic and lexical inputs significantly improves the model’s performance in
punctuation restoration.

Another multi-modal approach is presented in the paper “Multimodal Punctuation
Prediction with Contextual Dropout” [Silva et al., 2021]. The model is built upon a
transformer architecture for text-based features, combined with a CNN [LeCun et al.,
1989] for encoding spectrogram features from audio into a latent representation. An
attention mechanism is used to fuse text and audio features before passing through
fully-connected layers to predict the punctuation class. Additionally, a unique training
scheme named contextual dropout is introduced to handle variable amounts of future
context at test time, improving model performance with varying future information.
As the result, the multimodal model, which incorporates both text and audio, demon-
strated an 8% improvement over the text-only model on an internal dataset.

In the similar vein, the paper “Multimodal Semi-supervised Learning Framework
for Punctuation Prediction in Conversational Speech” [Sunkara et al., 2020a] explores
an approach for improving punctuation prediction in conversational speech through
a multimodal semi-supervised learning method. The proposed model, referred to as
MuSe, incorporates three primary components: an acoustic encoder, a lexical encoder,
and a fusion block. The acoustic encoder processes audio signals to generate frame-level
embeddings, while the lexical encoder deals with textual input to produce word-level
embeddings. These embeddings are then combined using either forced alignment or
an attention mechanism to predict punctuation marks accurately. The proposed semi-
supervised learning architecture pre-trains lexical and acoustic encoders on extensive
unpaired text and audio data, improving upon conventional supervised methods that
rely solely on labeled data. Finally, to improve the model’s robustness to ASR errors,
the paper utilizes data augmentation techniques with n-best lists from ASR outputs.
The MuSe model achieves approximately 6-9% absolute improvement in F1 score on
reference transcripts and about 3-4% on ASR outputs over the baseline BiLSTM model
on the Fisher corpus [Cieri et al., 2004].

2.2 Sequence Labeling
Sequence labeling is a fundamental task in NLP where the goal is to assign a label to
each element in a sequence of tokens. This task is used in a variety of NLP applications,
including part-of-speech tagging and named entity recognition. In essence, sequence
labeling involves processing a sequence of words and annotating each word with a tag
or category that describes its role or meaning within the context of the sentence.

The core challenge of sequence labeling lies in capturing the dependencies between
tokens and labels, taking into account the fact that the appropriate label for a given
token often depends on the labels of surrounding tokens. For instance, in named
entity recognition, the identification of a multi-word entity requires understanding the
relationship between consecutive words to classify them as part of the same entity.

Models designed for sequence labeling tasks typically generate a probability dis-
tribution over possible labels for each token in the input sequence. To train these
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models effectively, we need a loss function that can compare the predicted sequence of
labels with the true sequence of labels and provide a measure of how well the model is
performing. Cross-entropy loss is the most common measure used for these purposes.

2.2.1 Cross-Entropy Loss
Cross-entropy loss is a widely used loss function in classification tasks, including se-
quence labeling. It measures the dissimilarity between the true distribution of labels
and the predicted distribution. For sequence labeling, cross-entropy loss is applied at
each position in the input sequence, comparing the predicted probability distribution
over labels for each token against the true label. The loss for a single token t is given
by:

−
M∑︂

c=1
yt,c log(pt,c) (2.1)

where M is the number of labels, yt,c is a binary indicator of whether label c is the
correct classification for token t, and pt,c is the predicted probability of token t being
of class c.

The total loss for a sequence is then the sum of the losses for each token, normal-
ized by the sequence length. This ensures that the model’s performance is measured
consistently across sequences, providing a clear objective for the model to minimize
during training.

By minimizing the cross-entropy loss across all sequences in the training data, the
model learns to predict the most likely label for each token, taking into account the
context provided by the entire sequence. This process not only helps the model to
correctly label individual tokens but also to learn the patterns and dependencies that
define the structure of the sequence.

2.3 Automatic Speech Recognition
Automatic Speech Recognition (ASR) is a computational task that involves converting
spoken language into text. The primary goal of ASR systems is to accurately and
efficiently transcribe human speech, regardless of the speaker’s accent, speech rate, or
background noise, making it accessible for further processing or direct use. Modern
ASR systems leverage deep learning models, which are trained on large datasets of
spoken audio paired with corresponding transcriptions to learn the complex mappings
from audio features to textual representations.

Training ASR models involves significant challenges due to the variability in hu-
man speech, including differences in pronunciation, dialects, and language features, as
well as the presence of background noises and overlapping speech in real-world set-
tings. Techniques such as unsupervised pre-training, where models learn from vast
amounts of unlabelled audio data, followed by supervised fine-tuning on smaller, la-
beled datasets, have shown promising results in improving the robustness and accuracy
of ASR systems. The main objective is to develop models that can perform with high
accuracy across diverse conditions, enabling natural human-machine communication
through speech.
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2.3.1 Word Error Rate
Word Error Rate (WER) is a common metric in the evaluation of automatic speech
recognition systems, providing a quantitative measure of the transcription accuracy of
a given model. Essentially, WER compares the sequence of words produced by the
ASR system against a reference transcription considered to be the ground truth. By
doing so, it captures the performance of the system in terms of its ability to accurately
recognize and transcribe spoken language.

The calculation of WER involves counting the number of substitutions (S), dele-
tions (D), and insertions (I) of words that are needed to transform the ASR-generated
transcription into the reference transcription. These errors are then summed up and
divided by the total number of words (N) in the reference transcription. The formula
for WER is expressed as:

WER = S + D + I

N
. (2.2)

This formula results in a ratio that gives the percentage of words that were incor-
rectly transcribed by the ASR system.

WER is particularly valuable because it offers a straightforward and interpretable
assessment of an ASR system’s accuracy. A lower WER indicates better performance,
with a WER of 0% representing perfect transcription accuracy. However, it is important
to note that while WER is a useful indicator of overall performance, it does not account
for the variability in the seriousness of errors. For instance, misrecognizing a key word
could be more harmful to understanding than misrecognizing a less critical word, but
both errors contribute equally to the WER.

2.3.2 CTC Loss
In the field of automatic speech recognition, Connectionist Temporal Classification
(CTC) loss [Graves et al., 2006] serves as a key component in training models to convert
audio signals into textual transcriptions. CTC loss was developed to help overcome
the difficulties of perfectly matching audio frames with their text outputs. It allows for
the training of end-to-end deep learning models without having to line up the audio
and text exactly.

CTC introduces an augmented set of characters, adding a CTC blank symbol to the
standard character set. This extended set serves as the label space, allowing each input
frame to be probabilistically associated with a label by the ASR model. To illustrate
CTC’s functionality, consider the task of transcribing the phrase “small hat”, which
consists of 9 characters, from an audio input with N ≥ 9 frames. The label set for
this task includes the English alphabet, a whitespace symbol, and the special blank
symbol, represented as “-”. Given that the number of frames exceeds or equals the
length of the transcription, multiple frames may be assigned the same label, leading to
various possible extensions of the original phrase. For instance, valid extensions such
as “sss-m-aaal-ll[ws]-hhhaa–tt-” or “–sm-aa-lll-l[ws][ws]–hhh-aaa-t” can be condensed
back to the original phrase by collapsing consecutive identical labels and then elimi-
nating the blank symbols. This process might reintroduce certain repetitions, such as
the double “l” in “small”. This is intentional in CTC design to handle uncertainties
and separate repeated letters in transcriptions. Note that sometimes letter repetitions
may change the meaning of the word, such as the Czech words “raci” (crayfish) vs.
“racci” (seagulls).
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For an input with N frames, the CTC loss considers MN potential extensions of
the target transcription, where M denotes the size of the augmented CTC vocabulary.
The ASR model outputs a probability distribution over this augmented vocabulary for
each frame, which can be represented as a matrix P ∈ [0, 1]M,N . This matrix, similar
to a grid, allows for the tracing of paths from the initial to the final frame. Each path
can lead to a longer transcription that might match an extended version of the target
phrase. Given that P is a matrix of probabilities, the likelihood of any given path can
be easily calculated. The goal of the CTC loss will be to force the model to output
such matrix P that maximizes the likelihood of all possible extensions of the target
transcription.

To compute the likelihood of extensions efficiently, CTC uses dynamic program-
ming. It employs the forward-backward algorithm to calculate the sum of probabilities
of all possible paths that lead to a given transcription. This approach ensures that
every valid extension, contributes to the final probability of the transcription, enabling
the model to learn from the full spectrum of temporal variations in speech.

2.3.3 Decoding Strategies
In the field of Automatic Speech Recognition, decoding strategies play a crucial role
in translating the probabilistic outputs of a model into clear, readable text. Among
the various approaches, greedy decoding and beam search decoding are two widely
employed methods, each with its own advantages.

Greedy decoding is the simplest form of decoding used in ASR systems. At each
step of the sequence, it selects a token with the highest probability according to the
model’s predictions. This process is repeated for each step in the sequence until a ter-
mination condition is met, such as completing a predefined sequence length. The main
advantage of greedy decoding is its computational efficiency, as it does not consider
multiple ASR hypotheses at a time. However, this simplicity comes at a cost. Greedy
decoding can often lead to suboptimal choices because it does not consider the overall
sequence probability and can not revise past decisions. In scenarios where the context
significantly influences the meaning or the choice of words, greedy decoding may fail
to capture the best transcription.

Beam search decoding [Sutskever et al., 2014], on the other hand, offers a more
advanced method to overcome the limitations of the simpler greedy strategy. Instead of
selecting the single best token at each step, beam search considers multiple hypotheses
simultaneously. The beam width parameter defines the number of hypotheses kept at
each step of the decoding process. At every step, the model expands each hypothesis in
the beam by one additional token, calculates the likelihood of these extended sequences,
and retains only the most probable hypotheses within the defined beam width. This
process continues until the termination condition is reached for all hypotheses in the
beam.

Beam search effectively balances between the brute-force exploration of all possi-
ble sequences and the overly simplistic approach of greedy decoding. By considering
multiple hypotheses, it increases the chance of finding a more accurate transcription,
especially in complex or ambiguous situations where context plays a significant role.
The beam width parameter allows for control over the trade-off between decoding ac-
curacy and computational complexity: a wider beam increases the chances of finding
a better sequence but requires more computational resources.
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Despite its advantages, beam search is not without drawbacks. The choice of beam
width significantly impacts performance and computational cost. A small beam width
might not sufficiently explore the space of possible sequences, leading to errors similar
to those seen with greedy decoding. Conversely, a very large beam width can make
the decoding process computationally expensive and slow, canceling out the benefits
of increased accuracy.

Additionally, beam search decoding can be enhanced by integrating a language
model to improve the accuracy of ASR transcriptions. A language model predicts the
likelihood of a sequence of words occurring together in a given language, providing
contextual information that can guide the decoding process towards more grammati-
cally correct and semantically meaningful transcriptions. This is particularly effective
for resolving ambiguities in speech recognition, where multiple interpretations of an
audio signal are possible. This integration leverages the strengths of both the acoustic
model, which interprets the audio signals, and the language model, which understands
the linguistic patterns.

A statistical n-gram language model is a common type of language model used in
this context. It estimates the probability of a word based on the occurrence of the pre-
ceding n − 1 words, where n represents the size of the “window” of words considered.
For example, a trigram (3-gram) language model would predict the probability of a
word occurring given the two preceding words. These models are trained on large cor-
pora of text data, allowing them to capture common linguistic patterns and structures
found in a language.

When beam search is used with a language model, the decision at each step in the
decoding process is influenced not only by the acoustic model’s predictions but also by
the language model’s scoring. For each candidate sequence in the beam, the language
model’s probability score is combined with the acoustic model’s score to evaluate the
overall likelihood of the sequence. This combination typically involves a weighted sum,
where weights can be adjusted to balance the influence of the acoustic and language
models based on the task or domain.

In practice, the choice between greedy decoding and beam search decoding, as well
as the configuration of parameters like beam width, depends on the specific require-
ments and constraints of the ASR task at hand. For tasks where speed is crucial and
the linguistic context is restricted to a specific domain, greedy decoding might suffice.
In contrast, for tasks requiring high accuracy and where contextual clues are important
for disambiguating the speech signal, beam search decoding is often preferred.

2.4 Transformer Architecture
The Transformer is a neural network architecture [Vaswani et al., 2017] designed for
processing sequences on the input and also returning sequences on the output. Since
2017 it has become the foundation of many state-of-the-art models in natural language
processing and beyond.

The Transformer architecture, as depicted in Figure 2.1, consists of an encoder and
a decoder, each constructed from a series of identical layers. The encoder processes
the input sequence of tokens, converting it into a continuous representation that en-
capsulates the interrelations among all components of the input. This representation
is subsequently utilized by the decoder to iteratively generate the output sequence.
Notably, each layer within both the encoder and decoder consists of two principal sub-

10



Figure 2.1: Transformer architecture overview from Figure 1 in the original research
paper [Vaswani et al., 2017].

components: a multi-head self-attention mechanism and a position-wise fully connected
feed-forward network.

At its core, self-attention mechanism operates on a set of queries, keys, and values,
which are all derived from the same input sequence. Given an input sequence of N
tokens, we obtain an input matrix X ∈ RN,dx , from which queries (Q ∈ RN,dk), keys
(K ∈ RN,dk), and values (V ∈ RN,dv) are derived through linear projections using
learned weight matrices W Q ∈ Rdx,dk , W K ∈ Rdx,dk , and W V ∈ Rdx,dv , respectively.
Specifically, for the input sequence X , we compute: Q = XW Q, K = XW K , V =
XW V . Here, the variables dx, dk, and dv denote the latent dimensionality for the
original tokens, keys, and values, respectively, with the dimensions for keys and queries
being identical.

The core of the self-attention mechanism is to compute the attention scores, which
indicate how much focus elements of the input sequence should put on the rest of
the sequence. The attention scores are calculated by taking the dot product of the
query with all keys, followed by a scaling factor of 1/

√
dk. This scaling factor is used
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to prevent the dot product from growing too large in magnitude, which could lead
to computational difficulties during training. The attention scores are then passed
through a softmax function to obtain the attention weights, which are probabilities
representing the importance of each value:

Attention(Q, K, V ) = softmax
(︃

QKT

√
dk

)︃
V (2.3)

The softmax operation ensures that the weights sum to 1, allowing them to be
interpreted as probabilities. Each output element is a weighted sum of the values,
where the weights are determined by the attention scores. This allows each position
in the output sequence to dynamically attend to all positions in the input sequence,
thereby capturing their contextual relationships.

Multi-head attention further extends the self-attention mechanism by paralleling
multiple attention heads, each with its own set of weight matrices W Q, W K , and W V .
This design enables the model to capture information from different representation
subspaces at different positions. The outputs of all heads are concatenated and linearly
transformed to produce the final output:

MultiHead(Q, K, V ) = Concat(head1, . . . , headh)W O, (2.4)
where headi = Attention(XW Q

i , XW K
i , XW V

i ), parameter h represents the number of
heads, and W O ∈ Rhdv ,dx is a weight matrix used to combine the outputs of different
heads. In the source paper the parameters set as follows h = 8 and dk = dv = dx/h =
64.

For the decoder part, during the training time the self-attention computations
slightly differs from Equation (2.3). At a closer look, the self-attention allows each
token in the input query every other preceding or subsequent token. This behaviour
is undesired in the decoder component that during inference generates one token at a
time and has acces only to the previously generated tokens. That is why during train-
ing we multiply attention scores by binary lower triangular matrix, that ensures that
each token has access to only previous positions. The modified multi-head attention
for the decoder part is called masked multi-head attention, and this masking strategy
is usually denoted as causal masking.

Also to fuse encoded input into the decoder, Transformer architecture utilize multi-
head cross attention between decoder and encoder. In this slight modification matrix
Q = XdW Q, where Xd stands for the decoded output sequence and the other matrices
K = XeW

K , V = XeW
V are generated from the encoded input sequence. After this

we compute attention scores similar to Equation (2.3) on these matrices.
The feed-forward network applies two linear transformations with a ReLU activation

in between, processing the output of the multi-head attention mechanism. Specifically,
we have FFN(Z) = max(0, ZW1 + b1)W2 + b2, where Z ∈ RN,dx is the output of the
multi-head block and Wi, bi are learnable parameters of the linear transformations. Also
the first transformation usually maps the input to higher dimension and the second
one transforms it back.

This gives us all the components for the transformer building blocks. Encoder
consists of N layers were each layer has a multi-head self-attention part and the feed
forward part. Decoder also consists of M layers, where each has masked multi-head
attention part followed by multi-head cross attention and feed forward part. Original
Transformer architecture offers making decoder and encoder of the same size, with both
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having 6 layers. Additionally, additive skip connections with Layer Normalization [Ba
et al., 2016] are used inside each layer between all its parts.

Positional encoding is another important component of the Transformer, as it injects
information about the order of the sequence into the model. Since the self-attention
mechanism does not inherently consider the sequence order, positional encodings are
added to the input embeddings of the encoder and decoder. This ensures that the
model can take into account the position of each word or element in the sequence.

One of the key benefits of the Transformer’s design is that it allows effective paral-
lelization during training compared previous approaches, drastically reducing training
times for large models. The other one is that its design makes it easy to scale the
the network size, making the architecture applicable in situations with tight require-
ments and also in tasks where large computation is traded for better results. In general
making it possible balance performance and computational requirements. Finally, as
we will see in the following chapters, the architecture was so successful, that even its
components, specifically decoder and encoder, can be used alone to solve more specific
tasks. On the other hand, the major drawback of Transformers is the quadratic memory
requirement with respect to the sequence length. The source of high memory utiliza-
tion is the self-attention mechanism. As can easily be seen from Equation (2.3), the
product QKT , will consume quadratic memory with respect to the input length. This
drawback leads to application limitations of the Transformer architecture on longer
input sequences.

2.5 BERT Architecture
BERT (Bidirectional Encoder Representations from Transformers) [Devlin et al., 2019a]
is a neural network architecture for natural language processing introduced by Google
in 2018. BERT leverages the Transformer architecture, specifically its encoder mech-
anism, to achieve state-of-the-art performance on a wide range of NLP tasks without
task-specific architectural modifications. Since Transformer was designed to support
model scaling by changing various hyper-parameters, BERT architecture offers two
versions: base with total of 12 layers, dx = dv = dk = 768 and 12 attention heads; and
large with 24 layers, dx = dv = dk = 1024 and 16 attention heads.

Unlike previous models that processed context in a sequential manner (from left to
right, from right to left or from both directions), in BERT each token has access to every
other token in the sequence in constant time, which directly follows from the attention
mechanism Equation (2.3), specifically from QKT product. This made possible to
introduce “masked language modeling” (MLM) pre-training objective, where a certain
percentage of the input tokens are randomly masked out and the model is trained to
predict these masked tokens based the unmasked context. This approach allows BERT
to capture a deep, bidirectional understanding of language context.

BERT’s architecture consists of multiple layers of Transformer encoder stacked on
top of each other. The model is pre-trained on a large corpus of text, e.g. the entire
Wikipedia, using the MLM task alongside a next sentence prediction (NSP) task. The
NSP task trains the model to predict whether two given segments of text naturally
follow each other, which helps BERT understand the relationships between sentences.

The MLM and NSP tasks allowed models with BERT architicture to be pre-trained
without any supervised data, afterwards the pre-trained model, that already gained
solid knowledge of the natural language, could be fine-tuned for specific NLP tasks, by
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adding a signle linear layer on top of BERT. During fine-tuning, the pre-trained BERT
model is adapted to a specific NLP task with relatively minimal additional training,
leveraging the deep contextual representations learned during pre-training.

However, since BERT at its core relies on the attention mechanism, the architecture
suffers from the same limitations as Transformer architecture. Specifically, because of
the quadratic memory requirements with respect to the input length, BERT models
work on sequences with limited length and can not directly generalize to arbitrary
sequence lengths.

In summary, BERT’s introduction marked a significant milestone in NLP research,
showing the power of pre-trained models and the effectiveness of bidirectional context
understanding. By using the Transformer architecture’s encoder and adding the MLM
objective, BERT has set a new standard for NLP models, enabling more effective
language understanding applications.

2.5.1 RoBERTa
RoBERTa (Robustly optimized BERT approach) [Liu et al., 2019] builds upon BERT’s
foundation, keeping its architecture but incorporating several key modifications to the
training procedure that significantly improve its performance across a wide range of
natural language processing tasks.

One of the primary improvements in RoBERTa is the removal of the next sentence
prediction task during pre-training. The original BERT model was pre-trained using
both the MLM task and the NSP task. However, the RoBERTa team found that
eliminating the NSP task and focusing solely on a more thoroughly optimized MLM
task led to better performance.

Additionally, RoBERTa significantly increases the size of the pre-training data and
the overall scale of pre-training. It is trained on a dataset that is ten times larger
than that used for BERT, and with longer training sequences. This extensive pre-
training enables RoBERTa to develop a deeper understanding of language nuances
and complexities. Furthermore, RoBERTa uses dynamic masking rather than static
masking, meaning that the masked tokens are changed during the training iterations,
providing a more diverse training signal. The model also benefits from larger batch
sizes and more training steps, which contribute to its improved performance.

2.5.2 RobeCzech
RobeCzech [Straka et al., 2021] is introduced as a Czech contextualized language rep-
resentation model built upon the RoBERTa architecture, exclusively trained on Czech
data, making it a monolingual model. RobeCzech was trained using a large collection
of Czech texts that includes newspaper and magazine articles, web corpus documents,
and texts extracted from Czech Wikipedia, totaling approximately 4.9 billion tokens.

In comparison to existing models such as multilingual BERT [Devlin et al., 2019b],
XLM-RoBERTa [Conneau et al., 2020], Slavic BERT [Arkhipov et al., 2019] and Czert
[Sido et al., 2021], RobeCzech demonstrated superior performance across five evaluated
NLP tasks, including morphological tagging, dependency parsing, named entity recog-
nition, semantic parsing, and sentiment analysis. Notably, it set new state-of-the-art
results in four of these tasks and showed significant improvements in sentiment analy-
sis, where it was only outperformed by the significantly larger XLM-RoBERTa model.
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Figure 2.2: Wav2vec 2.0 architecture overview from Figure 1 in the original research
paper [Baevski et al., 2020].

These results highlight RobeCzech’s effectiveness and its potential as a powerful tool
for Czech language processing applications.

2.5.3 Wav2Vec 2.0
Wav2vec 2.0 [Baevski et al., 2020], introduced by Facebook AI, represents a significant
advancement in the domain of speech processing. The core idea behind wav2vec 2.0 is
to train the model in two stages: pre-training and fine-tuning. During pre-training, the
model learns valuable representations of the audio signal in an unsupervised manner.
It does this by masking parts of the audio input and predicting the masked portions
based on the unmasked context similar to idea of MLM objective in NLP domain. A
key aspect of wav2vec 2.0 unsupervised pre-training is its use of contrastive loss. This
loss function encourages the model to distinguish between the true audio signal and a
set of negative samples (i.e., incorrect audio pieces). The pre-training phase enables the
model to understand the underlying structure and features of speech without requiring
labeled data.

Figure 2.2 illustrates wav2vec 2.0 framework, that learns contextualized speech
representation using Transformer’s encoder component and a usage of the discretized
speech units. The wav2vec 2.0 architecture is primarily composed of two parts: the
feature encoder and the context network. The feature encoder takes raw audio wave-
forms as input and apply several blocks of convolutions coupled with non-linearities
and normalization producing latent representations of the audio samples. The context
network, which is built upon the Transformer’s encoder architecture, processes these
latent representations to capture the temporal context from the audio sequence. Addi-
tionally, unlike the NLP domain where the input is a sequence of a discrete elements,
namely tokens, in speech domain the input is continuous signal, so to model unsuper-
vised MLM-like objective the speech should be discretized. That is why during the
unsupervised pre-training phase the output of the feature encoder is quantized to a
finite set of speech representations via product quantization [Jégou et al., 2011], that
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amounts to choosing discrete representations from multiple codebooks and concatenat-
ing them together.

For fine-tuning, wav2vec 2.0 applies a supervised approach where the model is
further trained on a set of labeled data, e.g. with CTC loss function. The combination
of unsupervised pre-training and supervised fine-tuning allows wav2vec 2.0 to leverage
the strengths of both learning paradigms. By learning general audio representations in
an unsupervised manner and then fine-tuning on task-specific labeled data, the model
achieves remarkable accuracy in speech recognition tasks, requiring less data for the
supervised phase.

Unsupervised pre-training, as employed in the wav2vec 2.0 architecture, is partic-
ularly advantageous when dealing with low-resource languages. As in case of BERT
architecture with invented MLM objective, the authors show that the large amount of
unsupervised pre-training makes possible to achieve high performance in ultra-low re-
source fine-tuning scenario. Specifically, for English language and Librispeech dataset
[Panayotov et al., 2015] with 960 hours of transcribed data used for pre-training with-
out transcriptions, the wav2vec 2.0 Base (95M parameters) with 4-gram LM achieves
5.5/4.3/3.4 WER on the clean test set while using only 1/10/100 hours of labeled data.
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3. Data
In this chapter, we explore available data for punctuation and case restoration, create
a new dataset that will be more suitable for training and evaluating future speech-
informed ITN models.

3.1 Data Requirements for Speech-Informed ITN
Consider a model capable of restoring punctuation and casing for an arbitrary sequence
of words. The primary use case for such a model comes from speech recognition tasks,
where the output is often an unsegmented, lowercase text stream without punctuation.
While humans can generally understand these textual outputs, their utility dimin-
ishes when used as inputs for downstream tasks such as summarization or translation.
Typically, models for these text-to-text tasks are trained on well-structured written
text, complete with casing and punctuation, as these elements significantly impact
downstream model performance. The absence of casing and punctuation in inputs can
lead to substantial performance degradation. This issue becomes more pronounced in
streaming scenarios, where input speech is not divided into distinct segments. Consider
a streaming case in a spoken language translation task, where the solution consists of a
cascade of neural models: a speech recognition model followed by a translation model.
If the translation model, likely trained on text pairs, receives unsegmented, lowercase
text without punctuation as input, the quality of the translation will be severely af-
fected. In summary, an ITN model serves to adapt recognized spoken language into a
written text format, thereby providing downstream models with better-quality inputs.

Ideally, punctuation and case restoration model should also perform effectively in
streaming scenarios, independent of initial text segmentation provided by audio. The
streaming scenario can be modeled by a small buffer that accumulates recognized text.
Consequently, the model operates only on a small window of text at a time. The
buffer size introduces a trade-off between model accuracy and overall latency of the
predictions. A larger buffer corresponds to more accurate results but with higher
latency.

Following the discussion of the suitable model for the task of punctuation and case
restoration, now we focus on the desired data for this model. Since the model should
function independently of audio-based segmentation of input text, the training data
should not be aligned with sentence or paragraph boundaries. Ideally, the golden-truth
text should represent a segment of recognized audio, without further assumptions. In
this scenario, the resulting model will be capable of functioning in both offline and
online scenarios (assuming a small window). This approach also eliminates bias, where
the input invariably starts with a capital letter and ends with punctuation denoting
sentence ending. Notably, such an environment will be more challenging compared to
situations with complete sentences as inputs, but it represents a more realistic scenario
for the model’s use case.

Having access to a large amount of well-structured text, such as paragraphs from
Wikipedia, can help in the creation of the previously described dataset. However,
these textual data lack corresponding audio representations, making it impossible to
estimate the importance of sound for punctuation and case restoration. The desired
experimental setup forces reliance solely on available speech recognition data. Ideally,
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the data should be created from large textual fragments spoken by various speakers. If
the words have corresponding timestamps, we can create textual segments of varying
sizes, independent of sentence boundaries, and extract the underlying audio. Segment-
ing data into windows of different sizes will train the model to work in an online-like
scenario with short inputs.

3.2 Exploring ParCzech 3.0
A potential dataset that has most of the desired characteristics is ParCzech 3.0 [Kopp
et al., 2021]: A Large Czech Speech Corpus with Rich Metadata. ParCzech 3.0 includes
a speech corpus of Czech parliamentary speech recordings from The Czech Chamber
of Deputies, spanning from 25th November 2013 to 1st April 2021.

We contributed to ParCzech 3.0 by creating this large speech dataset, suitable for
developing and evaluating speech recognition neural models. This dataset includes seg-
ments aligned with sentence boundaries derived from the official transcriptions. Each
segment included was recognized by a speech recognition model to ensure consistency
with the official transcript. The detailed process of creating this speech dataset will be
described in the upcoming section.

The official website of The Czech Chamber of Deputies includes stenographic texts
from the chamber’s sittings, organized into terms, meetings, sittings, and agenda items.
These texts and corresponding audio files were extracted through web scraping. How-
ever, the data encoding across the website is not consistent. In cases where data is
missing on a page, the downloading procedure attempts to locate it in the list of audio
files.1 If not listed, the script infers the missing URL from the date and time mentioned
on the imperfect web page, thereby maximizing the extraction of audio data.

Subsequently, all stenographic transcripts were automatically annotated with UD-
Pipe 2 [Straka, 2018], providing tokenization, morphological, and syntactic analysis.

It is important to note that the official transcripts may not always perfectly align
with the audio files’ content. Discrepancies are noticeable when playing audio files
alongside their corresponding transcriptions. This divergence results from the fact
that the transcribed texts were sometimes modified during transcription to enhance
formality and eliminate factual errors.

Table 3.1 presents the original data statistics. The number of stenographic tran-
scripts slightly exceeds that of the audio files, with 100 documents lacking a corre-
sponding transcript. Additionally, the total length of the audio files stated in Table 3.1
includes overlaps, as the audio data from consecutive meetings slightly overlap to en-
sure no information loss due to the division of audio into multiple files. This implies,
that the actual useful duration will be smaller than the sum of all durations.

3.2.1 Speech Recognition Data
We processed the stenographic texts from ParCzech 3.0 to extract word timings from
the audio using a GMM-based ASR system [Kr̊uza, 2020]. The ASR model gener-
ates a time-stamped sequence of words, which, while closely resembling the expected
transcript, may not be identical due to either corrections in the data or actual ASR
errors. Consequently, we aligned the recognized text and official transcripts using the

1e.g., https://psp.cz/eknih/2013ps/audio/index.htm
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Number of unique persons 486
Number of source audio files 20 674
Number of steno source web pages 20 775
Source audio length (hours incl. overlaps) 4 815.31
Time period 25th Nov 2013 – 1st Apr 2021

Table 3.1: Original data statistics of ParCzech 3.0. This table is reprinted from [Kopp
et al., 2021].

Original data Filtered data
Hours 3 071.57 1 332.38
Segments 1 391 785 606 540
Average segment duration in seconds 7.94±11.53 7.90±7.14
Average number of words in a segment 15.91±16.32 16.72±13.73
Words 22 153 778 10 146 591
Aligned words percentage 89.6% 96.3%
Unique Speakers 475 474
Segment size range [1, 1058] [2, 138]
Duration range [0.0, 720.76] [0.82, 53.99]

Table 3.2: Comparative statistics of the original and filtered ParCzech 3.0 [Kopp et al.,
2021] data.

Needleman-Wunsch algorithm with affine gap penalties [Needleman and Wunsch, 1970],
treating each word as an atomic unit. This alignment strategy aims to maximize the
length of contiguous sequences between the recognized words and their corresponding
stenographic transcripts, rather than aligning each recognized word individually. This
approach effectively minimizes the number of small gaps in aligned sequences, where a
gap means either a recognized or transcribed word aligned to a blank.

Each recognized word is associated with specific start and end times. After the
alignment, the original audio files are segmented to match sentence boundaries of the
original transcript.

Given that segment-level alignment may not be perfect, we equip each segment
with a file containing statistics for potential corpus filtering. These statistics include
the number of words and characters, the percentage of missed words and characters,
and sound coverage, calculated as the percentage of sound duration where words were
recognized.

Additionally, we provide the global statistics for each audio file, reflecting the over-
all alignment quality. These statistics include the percentage of missed words, median
normalized edit distance, the 80th percentile of normalized edit distance, and normal-
ized continuous gap count. In the continuous gap count a sequence of gaps is counted
as a single continuous gap, number of continuous gaps allows to detect transcripts with
a highly fragmented alignment.

ParCzech 3.0 offers both the original and a filtered version of the data, with one
training set and distinct test and validation splits. The corpus is also available in
an unfiltered form, allowing for custom filtering to balance corpus size and quality.
Table 3.2 presents the data statistics before and after filtering. Notably, the hours listed
in the table no longer include starting and ending overlaps, which gave approximately
15% in the total length of all audio files.
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3.2.2 Discussion of Data in ParCzech 3.0
Referring to Table 3.2, it is observed that after filtering, only 44% of the original audio
data remains. This significant reduction, amounting to 56% of the original data size
in terms of hours, suggests that differences between the transcripts and the sound may
not be the sole factor. The errors introduced by the GMM-based ASR model could
also contribute to this reduction. Another potential reason for the data reduction is
the segmentation strategy, which focuses on complete sentences or smaller groups of
sentences. Consequently, accurately recognized text segments within larger sentences
might be disregarded due to recognition errors in other parts of the sentences. The
table further illustrates that, despite the filtering process, the cleaned data still have
some misalignment with the official stenographic transcript.

As outlined in the data requirements section Section 3.1, an ideal dataset for our
purposes would consist of extensive texts with punctuation and casing, spoken by di-
verse speakers. Each word in these texts should ideally have its associated timestamps,
enabling segmentation into various lengths independent of sentence boundaries. Par-
Czech 3.0 nearly fulfills these criteria. However, a notable limitation is that the dataset
is segmented in alignment with sentence boundaries. Despite this, the release of the
corpus with original, unsegmented data allows for custom segmentation and filtering
according to our specific requirements.

This flexibility in processing the original data of ParCzech 3.0 allows us to modify
the dataset to better suit the needs of our work. By re-segmenting and filtering the
data, we can create a corpus that more closely aligns with the desired characteristics
for effective training and evaluation of punctuation and case restoration models.

3.3 Development of a Segment-Based Dataset from
ParCzech 3.0

Building upon the original data of ParCzech 3.0, our objective is to construct a dataset
containing segments that disregard sentence boundaries. To achieve this, we replicate
the steps used in ParCzech 3.0 but employ a custom-trained ASR model based on
wav2vec 2.0, coupled with a beam search decoding to enhance speech recognition ca-
pabilities. The specifics of training of the wav2vec 2.0 model with beam search will be
described in Chapter 4. For the present discussion, it is assumed that we have at our
disposal a trained Czech ASR model capable of processing the input audio files.

3.3.1 Preparing the Data
The initial phase involves performing speech recognition on the provided audio files.
Given that each file averages 13 minutes in length, direct recognition may be imprac-
tical due to the wav2vec 2.0 model’s quadratic memory requirements. Therefore, we
segment the audio files into shorter fragments, approximately 30 seconds each. During
segmentation, we also implement a 5-second overlap between consecutive segments to
mitigate the risk of splitting words. This overlap is sufficiently large to enable connec-
tion of adjacent audio parts by identifying overlapping recognized words at the segment
boundaries.
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Speech Recognition and Timestamp Extraction

The first step in speech recognition involves processing the audio fragments through
the wav2vec 2.0 model to obtain unnormalized scores, or logits, for each grapheme
at every timestamp. To convert logits into recognized text, we employ beam search
decoding augmented with an N -gram statistical language model. This model is used
in rescoring the recognition hypotheses generated by wav2vec 2.0.

Following the speech recognition phase, our next step is to extract corresponding
timestamps for the recognized text. The algorithm employed for this purpose is based
on the methodology outlined in the paper [Kürzinger et al., 2020] and the implemen-
tation provided in a torchaudio’s [Yang et al., 2021] IPython notebook.2 The setup for
the algorithm is as follows:

• An extended set of graphemes G = G′ ∪ {b}, where G′ is the set of graphemes
derived from the lower-cased Czech alphabet, including white-space. This set, of
size N − 1, is extended with a special CTC-blank symbol denoted as b.

• The recognized transcript C, of length M , where ci ∈ G′, for i ∈ {1, . . . , M}.

• The input sound S, of length T ′.

• The logits matrix L ∈ RT,N , where T ≤ T ′ represents the number of audio frames
after processing through the wav2vec 2.0 model.

The first step is to create a probability matrix Pt,i = p(ci, |t, S), ci ∈ G, i ∈
{1, . . . , N}, t ∈ {1, . . . , T} and a trellis matrix K ∈ [0, 1]T +1,M+1. The probability
matrix P is computed from the logits by applying softmax, Pt,• = softmax(Lt,•), t ∈
{1, . . . , T}. The elements of the trellis matrix, denoted as kt,j, t ∈ {0, . . . , T}, j ∈
{0, . . . , M} are computed using the following rule:

kt,j =

⎧⎪⎪⎨⎪⎪⎩
max

{︂
kt−1,j · p(b|t, S), kt−1,j−1 · p(cj|t, S)

}︂
if t > 0 and j > 0

0 if t = 0 and j > 0
1 if j = 0

. (3.1)

As the rule suggests, kt,j represents the joint probability of emitting the first j
characters of the transcript C up to time t. When moving to time t, we select the most
probable scenario between emitting a CTC-blank b and staying at the same grapheme
in the transcript, or emitting the next grapheme from the transcript. The transition
cost for staying at the first character is set to zero to align the transcription start with
an arbitrary point in the audio file.

Upon computing the trellis, we create the character-wise alignment A, such that
at ∈ {1, . . . , M} for t ∈ {1, . . . , T}. The alignment process starts from the most
probable temporal position for the last grapheme in the transcript cM , denoted as
tstart = arg maxτ kτ,M . Subsequently, we sequentially decrease t towards 0. For t ≤
tstart, the alignment is determined using the following rule:

at =

⎧⎪⎪⎨⎪⎪⎩
M − 1 if t ≥ arg maxτ kτ,M−1

at+1 if kt,at+1 · p(b|t + 1, S) > kt,at+1−1 · p(cj|t + 1, S)
at+1 − 1 else

. (3.2)

2https://pytorch.org/audio/stable/tutorials/forced_alignment_tutorial.html
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Given the established alignment, we can calculate the starting and ending times for
each grapheme relative to the audio by collapsing consecutive identical graphemes in
the alignment. This approach allows us to determine timestamps for each grapheme.
To obtain timestamps for each word, we consider the timestamps of the first and last
graphemes of the word. It is important to note, that these timestamps are initially
computed with respect to the latent audio frames. To translate these timestamps to
the original audio of length T ′, as opposed to its latent representation of length T ≤ T ′,
we employ the following steps:

1. Calculate the ratio between the number of frames in the original waveform and
the number of frames in the latent waveform.

2. Multiply the index of each latent audio frame by this ratio.

3. Round the result to obtain the indices of the word timestamps in the original
audio.

By dividing these indices by the sample rate, we convert them into time measure-
ments within the original part of an audio file.

Merging Partial Transcripts with Timestamps

After computing timestamps for the recognized text in each audio fragment, our next
step involves merging these partial transcripts to reconstruct the recognized text with
timestamps for the entire original audio file. Consider two consecutive fragments, fi and
fi+1, with an overlap of a few seconds, and their corresponding recognized transcripts
ri and ri+1. The objective is to merge these transcripts at the midpoint of the overlap,
ensuring that the final words from ri and the initial words from ri+1 are recognized
with sufficient audio context from both segments.

In instances where the audio split occurs in the middle of a word, the last recognized
word in ri (denoted as ri[−1]) and the first recognized word in ri+1 (denoted as ri+1[1])
may not align. It is possible that this mismatch extends to k words, such that ri[−1 :
−k] ̸= ri+1[1 : k]. In such cases, the non-matching words are discarded, and in the
worst-case scenario, we retain the last word of ri before the overlap and the first word
of ri+1 after the overlap. Data observations indicate that length of the problematic
part is 3 or less. Complete discarding of the overlap is not typically necessary.

If the original audio was divided during a brief interword pause, the recognized
transcripts ri and ri+1 will exhibit minimal or no mismatched words. This scenario is
handled similarly to the previous case.

In situations where the split occurs during a prolonged silence exceeding the overlap
duration, there will be no overlapping similar words. However, we can be confident that
the last word of ri and the first word of ri+1 both have adequate audio context on either
side. In such cases, the transcripts are simply concatenated, taking the recognized text
with timestamps as they are.

Through this approach, we sequentially join the recognized transcripts with their
corresponding timestamps, yielding the full transcript for the original audio file.
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Aligning Recognized Transcripts with Official Stenographic Transcripts

At the current stage of processing, each original audio file is accompanied by a recog-
nized transcript with timestamps and an official stenographic transcript. The recog-
nized transcript is an unsegmented, lowercased text without punctuation but includes
timestamps, in contrast to the official transcript, which contains both punctuation
and casing. To effectively utilize both punctuation and casing labels along with the
timestamps, it is necessary to align these two sequences.

We process and tokenize the official transcripts using the UDPipe 2.0 tool. Conse-
quently, each word, punctuation mark, and number is treated as an individual token.
In the original transcript, containing a wide range of punctuation marks, we replace
less common punctuation marks (e.g., [\], [’], [@], [´], [|], [’]) with whitespaces,
and the substitute [(] and [)] with commas, and [...] with periods. Symbols rep-
resenting words (e.g., [§] for “paragraph” or [%] for “procento”) and numbers are
kept unchanged. Additionally, both lower and upper quotes are standardized to upper
quotes. To make possible token classification for the punctuation and case restoration
tasks, sequences with consecutive punctuation marks are simplified. For example, a se-
quence like w0 w1 w2 : “ w3 w4 w5 , w6 w7 . ” is reduced to w0 w1 w2 : w3 w4 w5 , w6 w7 .,
ensuring each word is followed by at most one punctuation mark. After the processing,
each word wi is assigned its punctuation class by appending the trailing punctuation
mark. In our example, the labels for w2, w5 and w7 are [:], [,] and [.], respectively,
while the remaining wi will be assigned [blank].

The alignment method, inspired by the original ParCzech 3.0 strategy, employs
a two-level edit distance procedure. The sequence level operates on words, ideally
aligning identical words in both recognized and official texts. This implies a default
exact similarity measure at the word level, assigning a score of 0 to non-identical word
pairs and 1 to identical words. This strict match can result in aligning similar words
to the blanks, specifically, say the word ti from the official transcript and word rj from
the recognized transcript are not identical and have small edit distance, but instead
of aligning the words to each other, (ti, rj), the current similarity measure will force
alignment (ti, b), (b, rj), with b representing blank symbol. To fix this, we introduce a
character-level edit distance as a softened version of the exact match similarity.

For better understanding of the alignment procedure, Figure 3.1 demonstrates final
alignment between recognized transcript and the official one. The official transcript is
presented in its original form, complete with punctuation and uppercasing. For ease of
visual comparison, both columns include an edit distance metric that disregards casing
and punctuation.

A significant challenge in our data creation strategy and the data itself is the pres-
ence of numbers, special symbols, and abbreviations in the official stenographic tran-
script, or generally unnormalized official texts. This issue is evident in Figure 3.1,
where the model correctly recognizes numbers and the [/] symbol, but proper align-
ment with the corresponding words in the official text is problematic. This challenge
underscores the reason for extracting timestamps based on the recognized text rather
than the official transcripts.

3.3.2 Dataset Statistics
Upon successfully aligning recognized texts with official transcripts, where each aligned
official word is timestamped, we proceed to select segments with perfect alignment.
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Audio 2017041211181132
(12.04.2017 11:18-11:32)

Audio 2014021816581712
(18.02.2014 16:58-17:12)

Recognized
word

Official
word

Edit
dist.

Recognized
word

Official
word

Edit
dist.

který který 0 na na 0
vám vám 0 zvyšováńı zvyšováńı 0
byl byl 0 d̊uchodu d̊uchod̊u, 1
doručen doručen 0 na na 0
šestého (blank) 7 slušné slušné 0
(blank) 6. 1 př́ıdavky př́ıdavky 0
března března 0 pro pro 0
tohoto tohoto 0 děti děti, 0
roku roku. 0 na na 0
usneseńı Usneseńı 0 aktivńı aktivńı 0
garančńıho garančńıho 0 politiku politiku 0
výboru výboru 0 zaměstnanosti zaměstnanosti, 0
pak pak 0 investice investice, 0
bylo bylo 0 tak tak 0
doručeno doručeno 0 dávat dávat 0
jako jako 0 nyńı nyńı 0
sněmovńı sněmovńı 0 až až 0
tis tisk 1 neuvěřitelně neuvěřitelně 0
devět (blank) 5 velké velké 0
set (blank) 3 finančńı finančńı 0
dvanáct (blank) 7 náhrady náhrady 0
lomeno (blank) 6 ćırkv́ım ćırkv́ım 0
třemi (blank) 5 je je 0
(blank) 912 3 mimořádný mimořádný 0
(blank) / 0 hazard hazard 0
(blank) 3. 1 s s 0
nyńı Nyńı 0 veřejnými veřejnými 0
se se 0 financemi financemi! 0
táži táži 0 jistě Jistě 0
navrhovatelky navrhovatelky, 0 každý každý 0
zda zda 0 alespoň alespoň 0
má má 0 trochu trochu 0
zájem zájem 0 informovaný informovaný 0
vystoupit vystoupit 0 člověk člověk 0
před před 0 v́ı v́ı, 0
otevřeńım otevřeńım 0 že že 0

Figure 3.1: Two examples of the resulting alignment for different audio files. The
(blank) words in the verticals identify places where words were aligned to blanks.
The third column in each example shows the edit distance between aligned words
disregarding punctuation and special symbols.
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Statistics Before After
Speakers 475 475
Words 22 067 968 19 370 266
Hours 3 071.6 2 817.2
Files 20 421 20 421

Table 3.3: Dataset properties before and after filtering for zero edit distance. Files
represent the number of official transcripts.

This is done by discarding words with non-zero edit distances, yielding segments where
every word is accurately recognized and timestamped. This strict criterion is essen-
tial as errors in alignment could stem from either inaccuracies in ASR recognition or
modifications in the official transcript. A notable limitation of this approach is the
exclusion of alignments between abbreviations and their expansions or between num-
bers and their verbal forms. This is a necessary compromise due to the unnormalized
nature of the official transcript and the potential for misalignment.

Table 3.3 presents dataset characteristics before and after filtering for zero edit
distance. It is important to note, that the word count here excludes punctuation,
differing from the counts in Table 3.2. After the filtering, a significant portion of the
data (92% in duration and 88% in word count) is preserved, despite the unnormalized
and corrected nature of the official transcript. Recognition with our ASR system
allowed us to preserve all speakers and all official transcripts, excluding parts with
a positive edit distance. Also, our filtered dataset retains all original speakers and
transcripts.

3.3.3 Construction of Training and Evaluation Items
We now further process the aligned data to create appropriate training and evaluation
entries for the punctuation restoration and capitalization tasks. Specifically, the data
must be segmented into varying lengths, thereby simulating a streaming scenario with
a constrained audio window. Additionally, segments that are excessively brief, lacking
sufficient textual and auditory context, should be excluded. Due to the absence of
human supervision, we must filter the segments based on various statistical measures
to ensure the cleanliness of the data. While this filtering process may eliminate some
viable segments, the primary objective is to remove those segments that are potentially
misleading for the model. Subsequently, the refined pool of segments will be split into
training, testing, and validation sets following the original speaker-based partitioning
in ParCzech 3.0.

The quantitative effects of our processing are summarized in Figure 3.2. The left
column of the figure presents statistics calculated on the dataset with zero edit distance,
while the right column depicts the data after the cleaning. The initial dataset, as shown
in the left column, predominantly consists of shorter segments, with approximately
40% containing five words or fewer. Furthermore, about a quarter of the data has a
duration of less than one second. The subsequent filtering process involves discarding
segments with inadequate textual and auditory context. This includes eliminating
words with an average character duration below 0.015 or above 0.25, indicative of
incorrect timestamp assignments, where character duration is measured by summing all
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word lengths in a segment a dividing this sum by the segment duration. For the test and
validation sets, segments containing multiple speakers are excluded to ensure unique
speakers not present in the training set. Conversely, for the training set, segments with
multiple speakers are retained. Segments exceeding 15 seconds in duration are divided
into smaller parts. This segmentation is governed by a binomial distribution with
parameters n = 9 and p = 0.6, determining the length of each segment. The process
involves sampling a new segment length and retaining the corresponding prefix as a
new, shorter segment. This procedure is repeated until the remaining segment is less
than 15 seconds long. Segments lacking punctuation or uppercase characters, except
the initial position, are subsequently filtered out. Finally, all segments comprising fewer
than five words or shorter than 1.5 seconds in duration are discarded.

The right column of Figure 3.2 displays the statistics of the dataset following this
filtering process. The filtering effectively eliminates outliers in terms of average word
and character durations. It is important to note that the average character duration
depicted in the figure slightly deviates from the metric used in the filtering process, as
the former includes gaps between words and is calculated at the segment level. Addi-
tionally, some discrepancies may arise due to the binomial distribution-based splitting
of longer segments into shorter ones. The primary aim of this filtering approach is
to remove edge cases arising from the data and speech recognition procedure while
maintaining a data distribution that closely resembles the original.

Moving forward, we present an analysis of the dataset’s distribution across training,
testing, and validation sets, as detailed in Table 3.4. The comparison between the data
volume before any processing, as shown in the first column of Table 3.3, and the final
dataset reveals that the latter preserves 56.7% of the original audio’s duration and
64.3% of the words. This reduction underscores the significant impact of employing
a more advanced speech recognition model in the data processing pipeline, compared
to the ASR model used in the original ParCzech 3.0. Specifically, the new speech
recognition model contributes to a dataset that is not only larger in terms of audio
duration and word count but also of a higher reliability, because we required the perfect
alignment with the official transcript. It is important to note, however, that this
comparison may not fully account for the constraints of the original ParCzech 3.0
dataset, which was limited to segments aligning with sentence boundaries. On the
other hand, the current version of the dataset discards the segments without any casing
or punctuation marks.

Table 3.4 further shows the distribution of data across the train, validation, and
test sets, with 1711 hours for the training part and 15 and 13 hours for testing and
validation, respectively. As indicated in Figure 3.2, approximately 35% of the dataset,
by segment count, consists of segments shorter than 4 seconds, enabling models trained
on this data to effectively process brief inputs, suitable for scenarios requiring rapid
response. The inclusion of 30 unique and unseen speakers in each of the test and
validation sets provides a robust basis for evaluating model performance on previously
unheard speakers, ensuring a comprehensive assessment of the model’s generalization
capabilities.

We now examine the distribution of labels across the subsets, focusing on punc-
tuation and case classes for each segment at the word level, as detailed in Table 3.5.
The dataset exhibits a significant imbalance in both tasks, with a predominant share
of labels falling under the [blank] class, indicating the absence of punctuation or cap-
italization. Specifically, for the train set 84.1% of labels are [blank], with dots and
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Figure 3.2: Statistical analysis of the dataset before and after the filtering process. All
the statistics are collected on the set of segments. For each plot the corpus is sorted
according to the selected statistic and the x axis presents percents of the segments.
The statistics are displayed in log scale.
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Set Segments Words Duration (hours) Speakers
Train 1 098 721 13 949 207 1711.43 415
Val. 9 657 126 874 15.62 30
Test 8 083 103 670 13.63 30
Total 1 116 461 14 179 751 1740.68 475

Table 3.4: Distribution of data across training, validation, and testing sets. The last
row aggregates statistics for all the subsets.

Set [blank] [,] [.] [!] [?] [:] [-] [”] [;] [blank] [cap]
Train 84.1 10.6 4.6 0.03 0.17 0.09 0.34 0.06 0.008 91.77 8.23
Val. 85.0 9.8 4.3 0.02 0.29 0.10 0.29 0.07 0.019 92.43 7.57
Test 86.0 9.2 4.2 0.01 0.14 0.08 0.25 0.10 0.026 92.30 7.70

Table 3.5: Distribution of punctuation and case labels across the train, validation, and
test sets. The left part of the table represents label distribution for the punctuation
restoration task and the two rightmost columns give label distribution for the case
restoration task. The blank class is task specific. The percents are counted on the
word level.

commas collectively accounting for about 15.2% of labels—commas alone constitute
10.6%. Consequently, the remaining six punctuation classes, including exclamation
marks, question marks, colons, semicolons, quotation marks, and dashes, comprise a
mere 0.7% of the dataset. Semicolons and exclamation marks are notably the rarest
classes. In absolute terms, within the train set, around 4200 words are labeled with
[!], and merely 1110 words with [;]. Given the smaller size of the test set compared
to the train set, it contains only 10 exclamation marks and 27 semicolons. The case
restoration task presents a slightly more balanced scenario, with the capitalization class
representing over 7.5% of words on average.
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4. Training Speech Recognition
Model
This section outlines the development of a custom speech recognition model, which
will be utilized for generating datasets for punctuation and case restoration tasks, as
well as for constructing a speech-informed model to address these tasks. The basis of
this model is the unsupervised pre-trained wav2vec 2.0 base model, which comprises
approximately 95 million parameters. To enhance speech recognition capabilities, this
ASR model is integrated with a KenLM [Heafield, 2011] statistical N -gram language
model within a beam search decoding framework. For convenience, we employ pre-
trained weights for the wav2vec 2.0 model and utilize ASR datasets available through
HuggingFace Datasets1 [Lhoest et al., 2021].

4.1 Speech Recognition Data
For the speech recognition task, we leverage two datasets accessible via HuggingFace:
the Czech version of the VoxPopuli dataset [Wang et al., 2021] and the Czech version
of the Common Voice dataset [Ardila et al., 2020].

The Common Voice corpus is a multilingual collection of transcribed speech de-
signed for research and development in speech technology, with a primary focus on
speech recognition. This dataset is generated by contributors recording their voices
as they read sentences displayed on the Common Voice website or application. These
recordings are subsequently verified by other contributors through a voting mecha-
nism. The latest release encompasses 29 languages, with data collection ongoing in 38
languages as of November 2019.

For our purposes, we only utilize the Czech portion of the Common Voice dataset,
which is pre-segmented into training, validation, and testing subsets. The dataset
statistics are presented in Table 4.1, indicating that approximately half of the dataset
is allocated for training, with the remainder nearly equally split between validation and
testing. Overall, the dataset comprises almost 40 hours of transcribed Czech speech,
distributed across approximately 35 000 segments.

VoxPopuli is a comprehensive multilingual speech corpus designed for research in
representation learning, semi-supervised learning, and speech interpretation. This
dataset, derived from recordings of European Parliament events between 2009 and
2020, encompasses a wide range of activities including plenary sessions, committee
meetings, and other parliamentary events. VoxPopuli provides an extensive collection
of 400K hours of unlabeled speech data across 23 languages, rendering it an invaluable
resource for unsupervised and semi-supervised learning methodologies. In addition to
the unlabeled data, the corpus includes 1.8K hours of transcribed speeches in 15 lan-
guages, along with their oral interpretations into 15 target languages, totaling 17.3K
hours of data.

The segmentation of speech data was performed using an energy-based voice activity
detection algorithm. The dataset’s compilation involved speaker diarization to amend
inaccuracies in official timestamps and the application of automatic speech recognition

1https://huggingface.co/docs/datasets/index
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Set Segments Duration in hours Words
Train 14 612 19.19 115 739
Val 7 543 9.59 54 612
Test 7 714 9.66 54 276

Table 4.1: Statistics of the Czech Common Voice dataset.

(ASR) systems for force-alignment of speech segments with their transcriptions.
The processed Czech part of the VoxPopuli dataset, as outlined in Table 4.2, demon-

strates the volume of data earmarked for training our ASR model. In comparison to the
Common Voice dataset, VoxPopuli provides a significantly larger volume of transcribed
data, both in terms of hours and word count. Notably, the increased data volume does
not correspond to a higher segment count, indicating that VoxPopuli segments are, on
average, longer both in duration and word count compared to those in Common Voice.

A key observation regarding VoxPopuli concerns its approach to digit normaliza-
tion. The dataset offers two transcript variants for each entry: the original and a
normalized version. Occasionally, the original transcript features numbers in their
written form, while the normalized version may inappropriately convert all numbers to
English. Moreover, VoxPopuli includes segments exceeding 68 seconds in length, that
are not always suitable for training. Table 4.2 reports the data volume affected by
English digit normalization and excessive segment length, with numbers in parenthesis
indicating the impacted data volume. For training purposes, segments exceeding 24
seconds in length or featuring incorrect digit transcriptions were excluded. However,
the validation set retains longer segments, excluding only those with improper digit
normalization. The test set encompasses all data, including segments with English digit
normalization, allowing for separate evaluation of model performance on segments with
digits.

Furthermore, VoxPopuli contributes an additional 18.7K hours of unlabeled Czech
speech data without transcripts, suitable for unsupervised ASR pretraining.

The final datasets for training, validation, and testing were compiled by merging the
respective parts of the Common Voice and the refined VoxPopuli datasets. Additionally,
all punctuation was removed, and texts were converted to lowercase across all dataset
splits.

Set Segments Duration in hours Words
Train 17 787 (886/275) 48.27 (3.58/2.17) 374 017
Val 1 022 (66/15) 2.69 (0.25/0.13) 20 946
Test 1 068 (44/12) 2.84 (0.17/0.08) 21 696

Table 4.2: The VoxPopuli dataset statistics after cleaning the data. The first number
in the parenthesis displays the amount of data with incorrect normalization and the
second one shows the amount of the data with long duration.
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4.2 ASR Pipeline Training
The VoxPopuli corpus comes with ASR baselines for the 14 languages that have more
than 10 hours of transcribed speech. This includes the Czech portion of the cor-
pus. These ASR baselines utilize wav2vec 2.0 models with the original hyperparameter
settings and are trained utilizing both the unsupervised wav2vec 2.0 loss and the su-
pervised Connectionist Temporal Classification (CTC) loss. For the Czech language,
both the unsupervised pre-trained model2 and the CTC fine-tuned model3 are avail-
able on Hugging Face. Each model is a base variant of the wav2vec 2.0 model with
approximately 95M parameters.

The unsupervised model was pre-trained exclusively on 18.7K hours of unlabeled
Czech data from the VoxPopuli corpus, learning robust contextualized representations
of spoken Czech without exposure to any transcriptions. Conversely, the CTC fine-
tuned model underwent pre-training on a 10K unlabeled subset of the VoxPopuli corpus
before being fine-tuned on transcribed Czech data. Experimentation revealed that the
primary limitation of the fine-tuned model stems from the normalization of digits in
the Czech portion of the VoxPopuli corpus. Namely, due to the fine-tuning process
employing digit normalization as English words, the model inconsistently recognizes
spoken numbers in either English or Czech. This limitation significantly constrains the
model’s applicability in use cases involving the recognition of unlabeled data. However,
initiating our efforts with the unsupervised model and subsequently training it on
accurate transcripts presents a viable pathway forward.

4.2.1 Fine-Tuning the Unsupervised Model
Motivated by the preliminary findings, we start with fine-tuning the unsupervised
model, which was pre-trained on 18.7K hours of unlabeled Czech audio from the Vox-
Populi corpus. Without exposure to transcriptions, the model has previously only
acquired an internal representation of speech. Our objective is to fine-tune this model
using the CTC loss, employing a dataset previously constructed for this purpose.

We ran the training for 30 epochs with a batch size of 20, equating to an average of
over one minute of audio per batch. Throughout the training process, the convolutional
feature encoder remained fixed. A linear decay learning rate schedule was employed,
starting with a peak learning rate of 4 × 10−5 and incorporating a warm-up phase over
the initial 3000 steps. The last 12th layer of the wav2vec 2.0 model was reinitialized
with random weights, adhering to a truncated normal distribution with a mean of 0.0
and a standard deviation of 0.02. Additionally, a linear head was appended atop the
wav2vec 2.0 model to map the latent frame representations to the CTC vocabulary.

Figure 4.1 details the model training progress, with the upper graph depicting the
trajectory of CTC loss across both training and validation datasets. Notably, the
training loss demonstrates a consistent decline over the course of the training, whereas
the validation loss reaches its local minimum within the first 8,000 updates before
diverging — an indicator of potential overfitting to the training data. However, the
overfitting is not confirmed by the lower graph, which shows the model’s performance
on the validation set in terms of Word Error Rate (WER). Utilizing greedy decoding for
faster evaluation, a continual decrease in WER is observed, signifying that the model

2https://huggingface.co/facebook/wav2vec2-base-cs-voxpopuli-v2
3https://huggingface.co/facebook/wav2vec2-base-10k-voxpopuli-ft-cs
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Figure 4.1: Dynamics of the ASR training metrics, illustrating the change of CTC loss
and Word Error Rate (WER) over training and validation sets.

does not overfit and maintains generalizability across the validation set. Furthermore,
the WER trajectory suggests that extended training could yield further enhancements.
The minimal WER of 14.46 was achieved during the last updates, suggesting that
longer training might lead to better model performance.
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4.2.2 KenLM Training
Improving the performance of ASR models can be effectively achieved by employing
beam search in conjunction with a language model for rescoring ASR hypotheses.
In this context, we utilize open-source implementation4 of KenLM, a word n-gram
language model renowned for its efficiency. KenLM estimates the probability of an
n-gram sequence and incorporates backoff-smoothed models, where the probability of
an n-gram is determined based on the longest observed contiguous history.

For training the KenLM model, we utilize transcripts from the training subset of our
dataset, augmented by the complete official transcripts of ParCzech 3.0. As detailed
in the Data chapter, transcripts from ParCzech 3.0 were processed using UDPipe 2.0,
facilitating sentence segmentation. Subsequently, all punctuation marks were removed
from these sentences, reflecting the absence of punctuation in recognized transcripts.
The integration of ParCzech data yields a total of 1,391,785 segments encompassing
22,104,659 words, resulting in a large training corpus for the KenLM model consisting
of 1,409,572 segments and 22,478,676 words.

Beam search with KenLM is implemented using the pyctcdecode open-source pack-
age.5 To refine model performance, we conduct a hyperparameter grid search aimed
at minimizing the Word Error Rate (WER) on the validation set. The search en-
compasses four parameters: beam width bw ∈ {150, 200, 250}, language model weight
α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, length score adjustment β ∈ {0.33, 0.66, 1, 1.33, 1.66, 2, 3},
and the order of n-grams for KenLM n ∈ {2, 3}. Our experiments identify the config-
uration bw = 250, α = 0.5, β = 0.66, and n = 3, which effectively reduces the WER
on the validation set to 11.7%.

4.3 Evaluation
In this section, we evaluate the performance of our custom fine-tuned model on the test
set using both greedy and LM-based beam search decoding strategies. Additionally,
we compare it to the original fine-tuned VoxPopuli model. The test subset created in
the Data section serves as our evaluation dataset.

Table 4.3 presents the WER of the models on the test set, excluding the seg-
ments with English-normalized numbers. Our fine-tuned ASR model, which shares
the wav2vec 2.0 architecture and decoding strategy with the VoxPopuli Czech model,
demonstrates a significant performance improvement. Specifically, under greedy decod-
ing, our model achieves nearly halves WER compared to the VoxPopuli model. The
implementation of LM-based beam search decoding further enhances performance, re-
ducing WER by 19.5% against the greedy decoding strategy. Notably, performance
on the test set is marginally lower than on the validation set. This discrepancy can
be attributed to the optimization of the model using the validation set, through se-
lecting the best checkpoint and configuring beam search decoding, which led to slight
overfitting to the validation data. The test set, having not been used in the model
improvement process, provides a more reliable assessment.

Since we excluded segments with English-normalized numbers from our evaluation,
we can now visually compare the performance of different models on test segments
that contain numbers verbalized in English. Table 4.4 shows same parts of recognized

4https://github.com/kpu/kenlm
5https://github.com/kensho-technologies/pyctcdecode
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Metric VoxPopuli Greedy Custom Greedy Custom Beam LM
WER 30.98 15.52 12.49

Table 4.3: Comparison of ASR models performance on the previously created test
set. VoxPopuli Greedy is CTC fine-tuned model from the VoxPopuli corpus, Custom
Greedy is our trained model with greedy decoding strategy and Custom Beam LM is
the same model with beam search and KenLM rescoring.

Models Texts
Orig ten je již vězněn fourteen měśıc̊u a je obviněn z údajné podpory ...
VPGr ten jejiž vězněn čtrnáct měśıc̊u a je obviněn z údajné podpory ...
CusGr ten je již vězněn čtrnáct měśıc̊u a je obviněn z údajné podpory ...
CusB ten je již vězněn čtrnáct měśıc̊u a je obviněn z údajné podpory ...
Orig ... opětovné využit́ı a recyklaci na seventy celkového ...
VPGr ... opětovné využit́ı a recyklaci na sevenstyn celkového ...
CusGr ... opětovné využit́ı a recyklaci na sedmdesát procent celkového ...
CusB ... opětovné využit́ı a recyklaci na sedmdesát procent celkového ...
Orig ... vyplývá že v́ıc než ninety respondent̊u chce aby byl p̊uvod ...
VPGr ... vyplývá že v́ıclež ninty spondent̊u chce aby byl p̊uvod ...
CusGr ... vyplývá že v́ıce než devadesát respondent̊u chce aby byl p̊uvod ...
CusB ... vyplývá že v́ıce než devadesát respondent̊u chce aby byl p̊uvod ...
Orig ... text směrnice z roku two thousand and four je třeba modernizovat ...
VPGr ... text směrnice z roku two thousand and four je třeba modernizovat ...
CusGr ... text směrnice z roku dvatiśıce čtyři je třeba modernizovat ...
CusB ... text směrnice z roku dvatiśıce čtyři je třeba modernizovat ...

Table 4.4: Predictions of different models on the examples with detected English digit
normalization. The first row in each example is the original normalized transcript
from VoxPopuli corpus. VPGr is the Czech fine-tuned VoxPopuli model with greedy
decoding, CusGr is our custom fine-tuned model with greedy decoging and CusB is the
same model with LM-fused beam search decoding. The examples can be cut on both
sides, to better fit the table.

transcripts for different models, with the original transcript displayed in the first row.
Evaluating on the subset with identified incorrect digit verbalization, we noted that
the fine-tuned VoxPopuli model tends to misinterpret Czech pronounced numbers as
English words. In contrast, both our models, regardless of the decoding strategy em-
ployed, accurately recognize and transcribe numbers in Czech. Notably, the first and
third examples highlight minor errors in the VoxPopuli model, whereas our models,
employing both beam search and greedy decoding strategies, exhibit correct recogni-
tion across all provided examples. This observation underscores our models’ capability
in correct number recognition.

In conclusion, we have successfully trained an ASR model employing LM-fused
beam search decoding that markedly surpasses the baseline provided by the VoxPopuli
corpus in performance. This model holds potential for further application in speech
recognition tasks and can serve as an effective sound encoder when integrating text
and sound modalities.
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5. Experiments
In this chapter, we dive into the process of utilizing audio data for punctuation predic-
tion and capitalization. The first step involves the creation of a textual baseline using
RobeCzech model. This baseline is then progressively transformed into a multimodal
model that integrates both audio and textual data. During the construction of this
multimodal neural network, a comparative analysis of various models is performed on
the development set. Finally, the evaluation is performed on the test set.

To gain an understanding of the final model that will be developed through the
forthcoming experiments, a visual representation of the resulting neural network is
provided on Figure 5.1.

5.1 General Setup
As stated above the model will be sequentially developed from a textual baseline,
however some of the model architectural and parameter choices will be fixed for all
the experiments. All components were implemented in Python using PyTorch [Paszke
et al., 2019] with PyTorch Lightning [Falcon and The PyTorch Lightning team, 2019]
for multi-gpu scaling.

Each model that will occur in the experiments will implement a linear decay with
linear learning rate warm-up. During the initial 20% of steps, the learning rate will
progressively rise to its peak before reducing to zero. All models will be trained on two
GPUs, each with a minimum of 16GB RAM, giving a batch size of 200 examples per
GPU, thus achieving an effective batch size of 400. Models with this effective batch
size will employ a peak learning rate of 6.0 × 10−5 and will be trained for 15 epochs.

The training of all models will be performed with the sum of cross-entropy losses,
denoted as L = 0.5Lp + 0.5Lc, where Lp represents the punctuation loss averaged over
the batch size and sequence length, and Lc signifies the case loss, averaged in the same
manner.

Each model will feature two classification heads, one for punctuation classification
and the other for case classification. The architecture of these heads will be identical,
consisting of a dropout layer with a dropout probability of 0.2, a linear layer of size
768 followed by a tanh activation function, and a final linear layer of size determined
by the number of classes for each task. With this architecture, each classification head
has approximately 590,000 trainable parameters.

5.2 Metrics
In order to compare our models, we will use a range of different metrics. Firstly, the
unweighted average F1 metric will be used independently for punctuation prediction
and case prediction. This involves calculating the F1 metric for each class of a given
task and then taking an unweighted average. An unweighted method is used to prevent
metric boosting by most frequent classes.

Additionally, we will define the Punctuation Detection Precision (PDP) and Punc-
tuation Detection Recall (PDR) metrics. These metrics simulate precision and recall
performance on a binary classification task where the model must identify potential
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Figure 5.1: Final structure of the multimodal model, which integrates both audio and
textual inputs to generate outputs for punctuation and case classes.

punctuation placement locations. Specifically, in both of these tasks, any non-blank
punctuation label is considered as the positive class resulting in binary labels. The task
is to detect the punctuation locations without considering punctuation mismatches.
Using the binary labels, the PDP reduces to the classical precision formulation, i.e.,
PDP = TP

TP+FP , and for the PDR, we have PDR = TP
TP+FN , where TP stands for true

positives, FP for false positives, and FN for false negatives. Assuming that model
performance is highly influenced by the available textual context, PDP and PDR will
be also evaluated on the shortest 25% of the sequences and the longest 25% of the
sequences.

In addition to these metrics, we will employ non-numeric methods such as plotting
attention matrices and showing models’ predictions in the textual form.

These methods will collectively provide a comprehensive evaluation of each model’s
performance. All metrics will be computed on the validation set every 500 training
updates.
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Figure 5.2: The text-only baseline architecture, which contains a pre-trained
RobeCzech model along with two classification heads.

5.3 Text-Only Baseline
We create a text-only baseline using a method known as fine-tuning. In essence, fine-
tuning is a process that begins with a model that has undergone pre-training on a
broad task, such as next token prediction or masked language modeling. In natural
language processing this pre-training phase enables the model to construct a robust
internal representation of the written language.

Following this, the general-purpose language model is trained on a specific task.
In our context, the specific task is punctuation and case restoration. The primary
advantage of this approach lies in its efficiency. After the pre-training phase, the model
requires fewer data and update steps to achieve satisfactory results when training on
the specific task.

The structure of the text baseline, as illustrated in Figure 5.2, is based on the
RobeCzech model, which is a monolingual RoBERTa language representation model
that has been trained on Czech data. As previously mentioned, the model incorporates
two classification heads, one for each task. The training process contains of 15 epochs,
with a peak learning rate of 6.0×10−5. Under this configuration, the text-only baseline
has approximately 125 × 106 parameters for the RobeCzech model and around 1 × 106

parameters for both classification heads.
Figure 5.3 presents different losses throughout the training phase of the model. As

previously indicated, the average loss is an average of punctuation and case losses.
Additionally, it is observed that the overall training loss decreases faster than the vali-
dation loss, maintaining a steady gap throughout the training process. Typically, such
a gap might imply the overfitting of the model, and we will revisit this discussion about
overfitting later, once we present model performance on other metrics. This gap could
potentially be attributed to the inadequate size of the text training corpus, resulting in
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Figure 5.3: Plot with loss curves of the text-only baseline model.

certain lexical patterns present in the validation set not being sufficiently represented
in the training data. Nonetheless, the uniform decline in both losses indicates that
overfitting does not prevent overall successful training. Interestingly, this plot confirms
the intuitive observation that restoring punctuation is more challenging than restor-
ing the correct casing. Evidently, case restoration encounters difficult samples tied to
Named Entity Recognition (NER), but punctuation restoration also faces challenging
examples, such as exclamation marks, quotation marks, and semicolons. The analysis
of this loss plot suggests that the text-only baseline continues to learn even beyond 15
epochs, with the potential to converge towards better results.

5.3.1 Punctuation Restoration
As illustrated in Figure 5.4, we evaluate the model’s performance in terms of punctu-
ation detection through three separate evaluations: on the shortest 25% of sequences,
the longest 25% of sequences, and the entire validation set. Generally, a consistent
pattern is observed where recall continually improves over the first 20, 000 steps. Once
the recall peaks, precision begins a slight decline, with a one-point drop at the end of
the training compared to its maximum value. It is also noticed that when precision
reaches its highest points, recall often drops, and the reverse is also true. Both Punc-
tuation Detection Precision (PDP) and Punctuation Detection Recall (PDR) metrics
highlight the importance of context length in punctuation detection; the model demon-
strates better performance with a longer context, a trend that is consistent throughout
the training process. In general, shorter sequences pose a greater challenge for the
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Figure 5.4: Performance of the text-only baseline on the punctuation detection task in
terms of precision and recall.

model. However, when comparing precision for long and short sequences, the differ-
ence is small compared to recall, where performance on shorter sequences is significantly
poorer. This pattern is easily explained for by the observation that, once the model de-
tects punctuation placement, it is generally correct, with a higher error rate for shorter
sequences. Nonetheless, punctuation detection can be challenging, and additional con-
text can be beneficial. When we look at the numbers, the best combination of PDP
and PDR, 0.91 and 0.945 respectively, was attained around the 19,000th step. Overall,
it can be concluded that punctuation detection is not a very difficult task, as the model
demonstrates good performance while being trained with different objectives.

The analysis of the punctuation restoration task continues by referring to Figure
5.5. This figure provides a detailed evaluation of the model’s performance on each punc-
tuation mark, in terms of the F1 score. The plot shows that the model learns different
classes in sequence, starting with the most frequent and well-represented, and finishing
with the most challenging ones. This can be easily explained by the punctuation class
imbalance in the training data outlined in Table 3.5, specifically, model rapidly learns
to detect commas and periods which are the most frequent classes, and only after ap-
proximately 8,000 steps starts to recognize classes with the lowest frequency, namely
exclamation marks and semicolons. However, after approximately 25, 000 or 30, 000
training steps, the model’s performance slightly declines for less exemplified punctua-
tion marks, including quotations, dashes, semicolons, and even periods. However, the
non-blank average remains steady, staying at a level of 0.45 after about 15, 000 steps.
Considering the model’s performance on various metrics, such as PDP, PDR and F1
scores, it is noted that after approximately 20, 000 steps, the performance either main-
tains or slightly decreases. A revisit to the punctuation task validation in Figure 5.3
reveals the consistent decline in loss throughout the training process. This difference
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Figure 5.5: The performance of the text-only model, evaluated in terms of F1 scores
for each punctuation mark.

suggests that the cross-entropy loss may not perfectly correspond with the actual model
performance. For instance, in a scenario where the true label is [A] and the model
predicts [B], the model can still reduce its cross-entropy loss by slightly redistributing
scores among classes, while retaining [B] as its most probable prediction. In this case,
the metrics remain unchanged, but the loss decreases.

Figure 5.6 presents various confusion matrices for punctuation restoration during
the training process. In these matrices, the rows sum to 100%, representing the distri-
bution of model predictions given true punctuation labels. The steps were chosen to
demonstrate the change of model performance during training. Initially, it is observed
that during the first 10, 000 steps, the model progressively learns to distinguish between
different punctuation marks, commencing with the most common and concluding with
the most rare and challenging. Unsurprisingly, the most difficult punctuation mark
to infer is the exclamation mark, which is essentially challenging to predict without
the corresponding audio inputs and a sufficiently long textual context. As might be
expected, exclamation marks are frequently misclassified as periods, which can be indis-
tinguishable for some inputs without audio. Another challenging case for the text-only
baseline involves question marks, which are also frequently misclassified as periods.
This could be due to the limited context, particularly in situations where the begin-
ning of the sentence is missing. Furthermore, the free word order in Czech does not
indicate questions as clearly as it does in English. Throughout training, the model
constructs robust representations for the most popular punctuation classes, such as
periods and commas, and even in the early stages of training, the model can differ-
entiate between these two classes. Notably, as commas are the second most common
punctuation class in the data, the model continues to learn to distinguish commas from
periods. However, for periods, the situation is the opposite, and as training progresses,
the model increasingly misclassifies periods as commas. In general, it can be concluded
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that model performance stabilizes after 15, 000 to 20, 000 steps, with minor improve-
ments thereafter. This generally aligns with the observations from Figure 5.4, where a
similar stabilization in performance is seen after 20, 000 steps.

5.3.2 Capitalization
In regards to the case restoration task, we can perform an equivalent analysis using con-
fusion matrices and F1 scores. Essentially the task corresponds to binary classification
with highly imbalanced classes.

We start with the F1 scores as illustrated in Figure 5.7. It is no surprise that the
model rapidly learns to detect uppercase words within the initial 5,000 steps and retains
this local optimum for approximately the next 20,000 steps. Similar the punctuation
restoration task, we observe a small decrease in metric performance after 25,000 steps.

To verify our assumptions on the model’s performance in the case restoration task,
we refer to Figure 5.8, which plots various confusion matrices for selected iterations.
Notably, even after 2,000 updates, the model manages to learn a valuable internal
representation of the capitalization class. As previously observed, starting from the
5,000th step, the performance does not alter significantly, with a minor decline after
22,000 iterations.

Given the two previous observations, we can conclude that the model reaches peak
performance approximately at the 22,000th training step.

Revisiting Figure 5.3, we can now observe that even though the gap between the
training loss and validation loss is visible from the initial training steps, slight overfit-
ting only emerges after the 25,000th step. However, we observe that this overfitting
arises more from the inherent task structure than from the model employed. The high
imbalance towards the [blank] class complicates the learning of useful representations
for other classes.

5.4 Multimodal Encoder
The most straightforward method of integrating audio information with textual in-
put is to manually construct a set of features and append them to the corresponding
words. This strategy, however, has several drawbacks. The primary limitation is that
it demands expert knowledge in audio processing and laborious feature engineering.
Moreover, given the alignment of words and their audio representations, we may risk
losing global context in the audio; for instance, consider questions where the intonation
gradually rises towards the end of the sentence. Finally, appending audio features to
the textual input may harm pretraining approach.

A way to bypass feature engineering and allow the model to discern the pertinent
factors is to employ an attention mechanism. This approach can be seen as a more gen-
eralized method of fusing different modalities, where the model is free to autonomously
generate useful features without relying on manually extracted information. Further-
more, this setup enables the model to attend to every sound feature in the audio input,
not just the one corresponding to the current word.

Our multimodal encoder block takes inspiration from the decoder block in the
original Transformer architecture, particularly the cross-attention component of this
block. In cross-attention, the keys and values stem from the encoder portion and queries
are provided by the decoder block. However, in our context, we lack a decoding part;
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Figure 5.6: Confusion matrices for text-only model on the punctuation classes. The
chosen steps serve to better depict the different phases of model training.

instead, we have two encoders one for audio and one for text. Given that punctuation
and case labels are naturally tied to the text rather than the sound, queries in the
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Figure 5.7: The performance of the text-only model, evaluated in terms of F1 scores
for case restoration task.

multimodal cross-attention will come from the text part, while keys and values will
be supplied by the sound. The intention is that for certain ambiguous cases in text,
the model can seek additional information in the audio input. Also, since we do not
perform decoding, we can avoid causal attention masking in both attention parts. This
architectural decision imposes limitations on the online application of the multimodal
model, when the input is still growing. In practice, we can simulate the online scenario
by using a small buffer to balance performance and latency. The architecture of the
multimodal encoder block is illustrated on Figure 5.9.

Before starting experiments that combine audio and text, we need to set the pa-
rameters for the multimodal encoder. We start with setting the number of heads for
both the multi-head self-attention and multi-head multimodal cross-attention at 8.
Furthermore, we need to specify the dimensions of the key, value, and query projection
matrices in the multi-head self-attention layer, which will be identical to the dimen-
sions of RobeCzech, specifically 768. For the sake of simplicity, the dimensions for
the multi-head multimodal cross-attention will be kept consistent with those of the
multi-head attention layer.

For data normalization, we have opted for Layer Normalization with ϵ = 6.0×10−5,
mirroring the ϵ value used in RobeCzech. The feed forward layer in the encoder is a
compact fully connected network that includes a linear layer that projects the incoming
tensors from 768 to 2048 dimensions. This is followed by dropout [Srivastava et al.,
2014] with a probability of 0.2 and the application of the GELU [Hendrycks and Gimpel,
2023] activation function. Finally, a reverse linear projection is performed to revert the
tensors to 768 dimensions.

All add-norm blocks in the encoder utilize skip connections. The previous state is
initially passed through a dropout layer with a probability of 0.2 and then added to
the current state. The result of this addition is subsequently normalized using Layer
Normalization with the same ϵ.

The multimodal encoder will consist of two stacked blocks. In total, the multimodal
encoder comprises two stacked blocks, which yields approximately 20×106 parameters.
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Figure 5.8: Case restoration confusion matrices for text-only model. The chosen steps
serve to visually depict the different phases of model training.

It is crucial to note, that the architecture and parameters of the multimodal encoder
will remain constant throughout the forthcoming experiments.

5.5 Audio Encoder Baseline
The first attempt of integration of audio into the multimodal model is achieved by
employing a trained Automatic Speech Recognition (ASR) model as an audio encoder.
For the creation of our corpus, we had previously trained a wav2vec 2.0 speech recog-
nition model in Chapter 4, which we now incorporate into our first multimodal neural
network. At this stage both of the input encoders have been pretrained on previous
tasks and are now fine-tuned for the task of punctuation and case prediction. This
multimodal baseline solution has 126 × 106 parameters for the RobeCzech model with
two classification heads, 20 × 106 parameters for the multimodal encoder, and approx-
imately 95 × 106 parameters for the wav2vec 2.0 model, giving a total of 243 × 106

parameters. Consequently, this model is approximately twice the size of the preced-
ing text-only baseline. The hyper-parameters for the audio and text encoders remain
unchanged.

We also note that, given the kernel sizes and strides of the convolutional part of
wav2vec 2.0, we are able to compute the receptive field of each frame in the audio
encoder, which is approximately 25 ms per frame. The window size of the audio
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encoder is determined by the original task for which it was designed, namely speech
recognition. Such a small window size is common in speech recognition tasks, where
the goal is for one frame to capture only one specific sound without any overlap with
neighboring sounds. Later in this section, we will estimate how well this window size
suits the punctuation and case restoration task.

However, due to the model’s size of 243×106 parameters and the quadratic memory
complexity of wav2vec 2.0 with respect to the processed audio input, which is usually
longer than the textual input, we had to dramatically reduce the batch size from 200
to 4 per GPU, given the 16GB of GPU RAM. As a consequence of the smaller batch
size, the learning rate was decreased from 6 × 10−5 to 1 × 10−5. With these settings,
training for just 4 epochs was roughly 7 times longer than the training time of the
text-only baseline.

Observe that during training, the text-only baseline model undergoes one update
for every 200 × 2 examples. In contrast, the multimodal model updates once for every
4 × 2 examples. This translates to the multimodal model undergoing 50 updates for
every single update of the text-only baseline. For example, after 20,000 updates, the
multimodal model has seen only 160,000 examples, whereas the text-only baseline
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has encountered 8,000,000 examples for the same number of updates. However, if we
invert our perspective, the multimodal model executes 12,500 updates for every 100,000
examples, while the text-only model performs a mere 250 updates. Summing up, during
their respective training periods, the text-only model processes approximately 16M
examples, whereas the multimodal model processes around 4.4M examples. In an ideal
scenario, comparing these two models would require training the text-only baseline
with identical batch sizes and learning rates. However, limiting the text-only baseline
artificially might unfairly lead to worse results. A better comparison would be between
the best text-only model and the multimodal counterpart. However, different batch
sizes make this comparison tricky, forcing us to compare the absolute performance
values of models using various metrics.

5.5.1 Punctuation Restoration
In Figure 5.10, we observe the performance of the audio model in terms of punctu-
ation detection. Interestingly, the difference in performance between short and long
sequences is not very pronounced and diminishes as training progresses. Notably, pre-
cision plateaus after the initial 200,000 steps, staying in the fixed interval, while recall
steadily increases. It is intriguing that upgoing trend in recall does not compromise
precision, suggesting the model progressively identifies new punctuation places while
maintaining detection quality.

When we compare the performance of the text-only model PDP-PDR (depicted on
Figure 5.4) with our audio baseline (Figure 5.10) — which, although trained over a
longer duration, encountered less data — the differences are evident. Primarily, the
performance distinction between short and long sequences is nearly eliminated, imply-
ing the audio model’s improved capability in punctuating even short sequences. There
are multiple explanations to rationalize this behavior. The optimistic perspective cor-
responds to the model’s utilization of audio features to improve punctuation detection.
In contrast, a more skeptical view infers that the larger size of the multi-modal model
enables better punctuation detection independent of audio. To dive deeper into this,
we will perform experiments incorporating random audio input. Another visible trend
is the improvement in recall over the text-only baseline. In quantifiable terms, the text-
only model registers the best PDR and PDP combination of 0.91 and 0.945 respectively
at the 20,000th step. Conversely, around the 450,000th step for the audio-fused model,
we record a PDR of 0.92 and a PDP of 0.945, showing a recall improvement with same
precision.

We extend our discussion to the punctuation performance of the multimodal model,
focusing on F1 scores as depicted in Figure 5.11. Similar to what we saw with PDP and
PDR, we notice steady improvements in the metrics throughout the training process.
The model gradually learns to discern among different punctuation classes, starting
the most represented classes( Table 3.5), namely commas and periods. The subsequent
learning phases involve quotation marks, colons, dashes, and question marks, culmi-
nating in the learning semicolons. Regrettably, the model does not show proficiency
with exclamation marks. A common trend observed across all punctuation types is
the gradual improvement of the non-blank average F1 score over the entire training
duration.

When comparing the performance of the multimodal model (Figure 5.10) with that
of the text-only model, as depicted in Figure 5.5, we see distinct differences. Foremost,

46



0 100000 200000 300000 400000 500000
Steps

0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

Pr
ec

iso
in

/R
ec

al
l

Punctuation Detection Precision (PDP) and Punctuation Detection Recall (PDR)

PDP total
PDP 25% shortest
PDP 25% longest

PDR total
PDR 25% shortest
PDR 25% longest

Figure 5.10: Performance of the audio model with wav2vec 2.0 encoder in punctuation
detection during training.

the multimodal model demonstrates a superior overall average F1 score in comparison
to the text-only baseline. Specifically, a score of approximately 0.482 is achieved at
the 500,000th step, contrasted with 0.473 at the 30,000th step for the baseline model.
Evaluating each class separately reveals the multimodal model’s advantage over the
text-only baseline, especially in the period class; it attains an F1 score of 0.806 com-
pared to 0.735 for the baseline. Both commas and semicolons register higher scores for
the multimodal model, whereas other classes maintain scores relatively similar to those
of the text-only counterpart. Intriguingly, neither the question marks nor the excla-
mation marks show any significant improvements. This is counterintuitive, given the
intuition that audio would be particularly beneficial for these classes. In conclusion,
mirroring the trends observed with PDP and PDR, the multimodal model surpasses
the text-only baseline in the punctuation restoration task.

5.5.2 Capitalization
Now, we turn our attention to the model’s performance on capitalization restoration,
starting from F1 scores, depicted in Figure 5.12. We observe that throughout the
training process, the model manages to improve its performance on the capitalization
task without getting stuck at local optima. Further, it is likely that if we continued to
train this multimodal model for a few additional epochs, the score may increase even
further.

A comparison of the F1 scores for the capitalization class of the multimodal model
and the text-only baseline reveals that the multimodal model also outperforms the
baseline in this area. In absolute terms, the highest F1 score for the capitalization
class for the text-only model is about 0.837, as can be seen on Figure 5.7, whereas the
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Figure 5.11: F1 scores of the multimodal model with wav2vec 2.0 encoder for all
punctuation classes over the course of training.

multimodal model shows a solid performance of 0.863. A possible explanation could be
that, as previously observed, the multimodal model improved its F1 score on periods
compared to the textual baseline. Given the natural correlation between capitalization
and periods, this could have led to an improvement in the capitalization task as well.
However, such a large difference between the audio model and the text-only baseline
is somewhat surprising with this explanation alone. As previously suggested, it would
be interesting to investigate whether such an improvement could be achieved solely by
increasing the model size without utilizing sound.

5.5.3 Multimodal Attention Analysis
To understand the utilization of audio in this multimodal setup, we can examine the
attention weights of the cross-attention layer. Figure 5.13 plots the average attention
weights of the cross-attention layer within the final multimodal block. Having extracted
timestamps for every word in the audio, it becomes feasible to find the approximate
position of a word within the audio’s latent space. The illustrated examples were
obtained by segmenting the validation set into quartiles based on text length, subse-
quently selecting the instance with the highest loss in each quartile. This stratification
was motivated by the model’s different performance across short and long sequences.

The text dimension corresponds to the y-axis and sound to the x-axis, forming a
rectangular matrix where the element at position (i, j) indicates the degree of attention
text token j pays to sound frame i. The texts and sounds are presented in their
complete forms, including all punctuation and casing, allowing for an assessment of
whether a word that should be assigned a particular punctuation or casing class is
actually focusing on the correct word in the sound space. It is important to note that
in these plots, timestamps for words in the latent sound space indicate the start but
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Figure 5.12: The performance of the multimodal model with wav2vec 2.0 encoder,
evaluated in terms of F1 scores for case restoration task.

not the end of a word. This can imply a silence or the end of a word if the subsequent
frame lacks an assigned word. In the text representation, some rows do not contain any
word due to the splitting of words into multiple tokens, with word labels indicating the
end of a word, unlike the sound representation that marks word starts. Due to the large
receptive field for each frame in the audio hidden space, a single frame may contain
multiple words, contrasting with speech recognition approaches where each grapheme
is represented in multiple frames to prevent overlap.

Primarily, an evident trend across the samples is the striking similarity observed
in most rows, telling that each text token consistently examines audio features in
an almost identical manner. This could be a marker indicating that audio features
might not be particularly representative, potentially lacking any information needed
for determining punctuation or casing. Another observation is low magnitude of the
attention weights, further showing the possibility that audio features may not provide
any significant relative information. On closer inspection, while certain parts of the
plot appear dark or light, the actual difference between these regions is small since the
attention values belong to a small interval.

In summary, the attention plot demonstrates that, for this multimodal technique,
audio features might not provide any meaningful information. Thus, it seems that the
primary gains of the model are likely attributable to the added parameters.

In conclusion, the multimodal model exhibited notable enhancements over the text-
only baseline in terms of F1 scores for both punctuation and capitalization tasks.
Specifically, the model demonstrated significant improvements in identifying periods
and correctly capitalizing words. However, it also highlighted certain limitations pre-
sented in the current approach. The audio encoder, originally designed as an ASR
model, operates on small audio segments. This characteristic may not be ideal for
punctuation or capitalization restoration tasks, where longer frames may be necessary
to capture temporal changes such as pauses and variations in intonation. Additionally,
the audio encoder, based on the BERT architecture, has quadratic memory complexity
with respect to the length of the audio input, forcing to use a very small batch size.
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Figure 5.13: Attention weights averaged across heads of the last cross-attention layer
in multimodal model with wav2vec 2.0 encoder. Note that, although the differences in
the attention scores are generally very small, the colour visualization highlights them.

Overall, these limitations may hinder the multimodal model’s ability to effectively
utilize the audio information.
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Figure 5.14: Architecture of the MFCC-based convolutional sound encoder.

5.6 MFCC Convolutional Sound Encoder
In the preceding section, we observed the potential enhancement in model performance
by integrating audio. Yet, due to the architecture of the audio encoder, we confronted
challenges, particularly in drastically reducing the batch size from 200 to 4 in compar-
ison with the text-only baseline. Also the utility of the sound input, given the archi-
tecture of the audio encoder, was arguable. Our focus now shifts to supplanting the
prior wav2vec 2.0 audio encoder with a lighter version grounded in mel spectrograms
complemented by convolutional processing layers followed by two Transformer encoder
blocks. The structure of the new MFCC convolutional sound encoder is illustrated in
Figure 5.14.

The mel spectrogram input preprocessor diminishes the frequency to 61 Hz, append-
ing a new feature dimension consisting of 128 Mel filter-banks. We employ torchaudio’s
[Yang et al., 2021] existing implementation to derive the mel spectrogram from raw
audio, facilitating the extraction of Mel features on GPUs. The preprocessor is set
with a window length of 512 and a hop length of 256. Subsequently, to augment the
receptive field of each latent audio frame and learn novel features, we incorporate a
compact convolutional network. This design draws inspiration from wav2vec 2.0 au-
dio processing, encompassing several identical basic convolutional blocks. Every block
comprises a convolution, Layer Normalization layer, GELU activation function, and a
dropout. With a dropout rate of 0.1 and ϵ set at 1 × 10−5 for the Layer Normalization,
there are seven blocks in total. The strides for convolutions are as follows: [2, 2, 2, 2,

51



1, 2, 1], with all kernels sized at 2, and the outgoing features from each convolution are
[128, 256, 256, 512, 512, 768, 768]. Neither mel spectrogram processing nor convolution
blocks employ padding, which curtails the audio sequence length while amplifying the
hidden dimension. Audio preprocessing through mel spectrogram and convolutional
blocks amplifies the receptive field of each latent audio frame to roughly 1.3 seconds,
a marked improvement from the 0.025 seconds via the wav2vec 2.0 audio encoder.

As earlier mentioned, following convolutional block processing, the refined audio
traverses two Transformer encoder blocks. While convolutional processing should dis-
till pertinent details from audio waves, the attention mechanism within Transformer
encoder blocks primarily addresses interactions amongst latent audio frames. Each
block is uniformly structured, comprising 8 attention heads, a linear projection layer
that upscales latent audio frames from 768 to 2048, a dropout rate of 0.1, and layer
normalization with ϵ = 1×10−5. The final Transformer encoder block’s output is chan-
neled into the multimodal attention block, akin to the prior wav2vec 2.0 framework.

The driving principle of this revised audio encoder is improving the wav2vec 2.0
encoder to better suit punctuation and casing restoration tasks. Where wav2vec 2.0
integrated a full-sized Transformer encoder model with 12 blocks and a small con-
volutional preprocessor to represent input audio, the new encoder applies more con-
volutional layers to further compress audio, simultaneously reducing the Transformer
encoder block count. Given that Transformer encoder blocks present quadratic mem-
ory demands with respect to the sequence length, compressing audio allows to apply
larger batch size. This sequence length reduction reinstated our batch size to 200 per
GPU. Furthermore, we reverted to the original learning rate of 6×10−5 and the original
number of epochs of 15.

Contrasting the two, the novel audio encoder has only 14×106 parameters compar-
ing to the 95 × 106 in wav2vec 2.0. Also, in total the new multimodal model integrates
just 34 × 106 (from the audio encoder and multimodal encoder) additional parame-
ters compared to the text-only baseline, approximating 26.5% of the text-only model’s
parameters.

The loss of the multimodal model equipped with the MFCC Convolutional Sound
Encoder is illustrated in Figure 5.15. Initially, both the validation and training losses
diminish throughout the training, suggesting that further training for several more
epochs could potentially enhance the model’s performance, particularly in terms of
the loss metric. Contrasting punctuation restoration with the casing task in terms of
cross-entropy loss, the model exhibits superior performance in capitalization relative
to punctuation restoration. This discrepancy is manifested across both training and
validation sets. Intriguingly, as training progresses, the disparity between training
losses narrows. This could imply that beyond a certain point, there is minimal room
for improvement in the casing task. Furthermore, a discernible gap exists between
the training and validation losses for both tasks. As previously noted, such a gap
could be indicative of model overfitting, yet it should not be solely relied upon for
decision-making. When juxtaposed with the loss trajectory of the text-only baseline,
as depicted in Figure 5.3, the novel multimodal methodology registers analogous loss
values for both tasks.
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Figure 5.15: Loss dynamics of the multimodal model with MFCC-based convolutional
sound encoder.

5.6.1 Punctuation Restoration
We now turn our attention to the model’s efficacy on the punctuation detection task, as
illustrated in Figure 5.16. As observed previously, the model’s performance varies based
on sequence length. Nevertheless, during training, the disparity between long and short
sequences diminishes for both precision and recall metrics. Another discernible trend is
the stabilization of precision and recall after approximately 20,000 training steps, both
metrics fluctuating within a narrow band centered around 0.95 and 0.93 respectively.
Potential marginal advancements are noticeable after the 35,000th step. The model’s
peak in terms of PDP and PDR is attained around the 38,000th step, recording values
of 0.945 and 0.93 respectively. Contrasting these metrics with the peak values from
the wav2vec 2.0 based variant, plotted in Figure 5.10—specifically 0.945 for PDP and
0.92 for PDR—it becomes evident that the novel audio encoder empowers the model to
pinpoint a greater number of punctuation locations, while maintaining the consistent
precision. Broadly speaking, when solely appraising the PDP and PDR metrics, it is
clear that despite a reduction in the parameter count of the audio encoder, the new
strategy outperforms its predecessor.

In this study, we extend our analysis of the model’s performance in the punctua-
tion prediction task, focusing on F1 scores as illustrated in Figure 5.17. The model
demonstrates commendable performance in the initial 28,000 steps, achieving a peak
non-blank average F1 score of 0.496 at the 27,400th step, followed by a marginal decline
towards the end of the training period. A detailed examination of performance across
individual punctuation classes reveals that the model’s best performance, particularly
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Figure 5.16: Precision and recall performance of the MFCC-based multimodal model
on the punctuation detection task.

in recognizing exclamation marks and achieving peak performance for semicolons and
quotation marks, occurs between the 18,000th and 28,000th steps. After the 28,000th
step, a downward trend is observed for semicolons and quotation marks, while the per-
formance on exclamation marks remains stable throughout the training. Consequently,
it appears improbable that continued training in the same manner would yield signifi-
cant improvements.

Comparing the performance of the multimodal model, which uses an MFCC-based
audio encoder, with our prior model that utilized a wav2vec 2.0 sound encoder, no-
table enhancements are evident. The previous multimodal approach’s F1 scores for
punctuation marks are depicted in Figure 5.11 for reference. The new model attains
a non-blank average F1 score of 0.496, surpassing the previous model’s peak score of
0.482. Analysis of the two plots indicates that the primary improvements are in the
recognition of exclamation marks and quotation marks, while the F1 scores for other
punctuation classes are comparable to those achieved with the wav2vec 2.0 sound en-
coder. In summary, the new model with a more compact sound encoder outperforms
the previous approach.

Further discussion on the model’s performance in punctuation restoration is facil-
itated by Figure 5.18, which presents confusion matrices for each punctuation class,
computed on the entire validation set at selected training steps. As observed in Fig-
ure 5.17, the model progressively learns to detect each punctuation mark type, influ-
enced by its frequency in the training data, starting with the most common (commas
and periods) and concluding with the least represented (exclamation mark). Notably,
despite the higher frequency of commas in the data, the model more frequently mis-
classifies other classes as periods rather than commas. The possible explanation is
that, other classes like exclamation marks, question marks and semicolons are usually

54



0 5000 10000 15000 20000 25000 30000 35000 40000
Steps

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

F1

F1 metrics

[blank]
[,]

["]
[-]

[.]
[!]

[;]
[?]

[:]
non-blank average

Figure 5.17: F1 score performance of the MFCC-based multimodal model on punctu-
ation prediction.

correspond to the end of the sentence, unlike commas that usually follow strict gram-
mar rules in Czech. Contrary to the observations in Figure 5.17, where no significant
improvement was noted after the 25,000th step, Figure 5.18 indicates continued op-
timization in performance for all classes towards the end of training, with the model
achieving its best performance at the 36,100th step.

5.6.2 Capitalization
Turning to the model’s performance in the capitalization restoration task, Figure 5.19
displays the F1 scores for each capitalization class. The primary focus is on the class
representing capitalization. The model commences with a relatively high F1 score of
0.625, which then incrementally increases to 0.868 around the 24,500th step, maintain-
ing this level for most of the training duration with a slight decline towards the end.
Intriguingly, the F1 score for the capitalization class correlates with the model’s per-
formance on the period class (as shown in Figure 5.17), where the model also achieves
its best results around the 23,000th step. Comparing these results with the previ-
ous multimodal approach (Figure 5.12), the highest F1 score attained by the previous
model was 0.863 at approximately the 470,000th step, which is lower by 0.005 points
compared to the current solution.

Our analysis of the model’s performance in the case restoration task ends with an
examination of confusion matrices at various training stages, as depicted in Figure 5.20.
Initially, the model achieves a 77% accuracy in detecting missing casing after the first
2,000 steps. This accuracy stabilizes at around 85% after 10,000 steps, with a minor
improvement observed at the 22,000th step. These results exhibit slight discrepancies
with the F1 score for the capitalization class, where a progressive improvement was
noted until the 23,000th step. The confusion matrices, however, show only marginal
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Figure 5.18: Visualization of confusion matrices for each punctuation class at selected
training steps for the MFCC-based approach.

improvement after the 10,000th step. This discrepancy may be attributed to the limited
number of steps visualized in the confusion matrices plot, suggesting that the results
might not be as straightforward as they appear.
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Figure 5.19: F1 scores of the MFCC-based multimodal model for the capitalization
and blank classes in the capitalization restoration task.

5.6.3 Multimodal Attention Analysis
In our final analysis of the new multimodal model featuring an MFCC-based audio
encoder, we turn to the attention plots in Figure 5.21. As we can see, some sound
frames exhibit relatively high attention scores, suggesting their potential utility in
addressing punctuation and case restoration challenges. While certain text tokens
focus on specific audio frames, others disregard the same frames, indicating a refined
ability of text tokens to discern the relevance of a given frame. This results in a shift
from vertical patterns in the attention matrices to more diagonal or lower triangular
patterns. Attention clustering at the beginning of a segment is also noted, possibly due
to a lack of positional information in the sound features, caused by the large number of
convolutional blocks, making the audio latent representation to act as a bag of audio
tokens. Alternatively, this clustering could indicate a less versatile audio latent space,
incapable of effectively conveying sound events, leading text to focus on segments with
the most representative audio frames.

Comparing this with the attention plot for the previous wav2vec 2.0 based approach
(Figure 5.13), we observe significant improvements. In the new model, attention scores
reach up to 0.2 for selected frames, whereas in the previous model, attention scores
were tightly clustered with a maximum value of 0.0045. This suggests that in the new
approach, text can identify useful information in sound while disregarding irrelevant
segments. Additionally, unlike the previous model, we do not observe pronounced ver-
tical patterns in the attention plots, indicating that each text token can independently
navigate the audio latent space and select token-specific information, although this
information is apparently not corresponding between sound and text quite monotoni-
cally. Interestingly, both models exhibit higher attention scores for shorter sequences,
suggesting that with limited textual context, models utilize more sound information.
However, as textual context increases, the reliance on sound diminishes, as inferred
from lower attention scores for longer sequences.

In summary, the new multimodal approach has led to multiple improvements. Most
notably, the text representation now effectively utilizes the audio latent representation,
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Figure 5.20: Confusion matrices of the MFCC-based model for case restoration at
various training stages.

as demonstrated in the attention plots (Figure 5.21). Additionally, the MFCC-based
approach outperforms the previous model in various metrics, including F1 scores for
both punctuation and capitalization restoration classes, and shows increased recall
in punctuation detection while maintaining precision comparable to the wav2vec 2.0
scenario. Another technical advancement is the model’s ability to operate on larger
batches, with fewer parameters and reduced training time compared to the first mul-
timodal approach. The larger batch size also aligns well with our text-only baseline,
which now shares the same batch size as the MFCC-based multimodal approach.

However, potential areas for improvement remain. The attention plots (Figure 5.21)
reveal attention clusters at the beginning of some sequences, suggesting that the audio
features may be somewhat unordered, making it challenging for text features to follow
words in the audio space. This issue is more pronounced in longer sequences, where high
attention scores are not consistently observed near the diagonal. Our next approach
will aim to address these challenges.
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Figure 5.21: Attention plots for the MFCC-based multimodal model. The plot struc-
ture is described in Section 5.5.3.
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5.7 Adding Positional Embeddings
In this section, we aim to augment the previous multimodal model, which utilized
an MFCC-based audio encoder, by integrating positional information into the audio
encoder. This initiative is motivated by the challenge in weak correlation of text tokens
with their corresponding audio representations in the previous model, a difficulty that
exacerbated with an increasing number of words in the input. Our objective is to
establish a more robust connection between text and sound representations of words.
This will be achieved by introducing a positional embedding layer, shared between the
sound and text encoders. The schematic of the new model with positional embeddings
is illustrated in Figure 5.22.

The dataset’s construction inherently provides starting and ending times for all rec-
ognized words, determined by the wav2vec 2.0 ASR model. Utilizing these timestamps,
we extracted segments with a zero word error rate, ensuring alignment with the words
in the original transcript. Consequently, we have segments with known starting and
ending times. Given the parameters of the MFCC transformation and each convolution
layer, we can approximate timestamps for each word in the latent space. Since convolu-

60



tional blocks aim to reduce audio sequence length and extract positionally independent
information about speech segments, the insertion of learnable positional information
is most effective before the Transformer encoder blocks. The self-attention mechanism
in the Transformer encoder blocks, which processes the entire sequence, benefits from
positional information, unlike the convolutional blocks that focus on local features. In
the text encoder, same positional embeddings are added to the outputs of the final
layer, thereby facilitating a more coherent connection between sound and text features
for the multimodal encoder.

Learnable positional embeddings assign each frame a textual ordinal position, im-
plicitly creating a linkage between text and sound. For longer words, multiple frames
will share the same positional embedding, while very short words may correspond to
one or even zero frames, particularly in cases where multiple words overlap in a single
frame in the latent space. Consider a word wi appearing in frames fl, . . . , fl+m ; we add
the positional embedding e(i) to each frame and then pass this sum to the Transformer
encoder blocks of the sound encoder. On the text side, the number of positional embed-
dings for a given word depends on its token count. For a word wi represented by tokens
tj, . . . , tj+k, we add the positional embedding e(i) to each token. Ideally, this embed-
ding strategy should reinforce a diagonal pattern in the multimodal cross-attention
layer, particularly when no words are omitted in the hidden audio representation.

Our model analysis commences with an examination of the loss curves, as depicted
in Figure 5.23. As observed in previous iterations, a significant gap exists between
each task and between the training and validation phases. While this could typically
indicate overfitting, it is not a concern in our context, based on prior experiments.
More importantly, there is a consistent decay pattern for each task in both training and
validation, suggesting continuous performance improvement throughout the training.
Furthermore, the absence of plateaus in the plots suggests that further training could
yield further improvements.

Comparing the loss performance of the current model with the previous model
without positional embedding, as shown in Figure 5.15, reveals few differences. Both
models exhibit large gaps between different tasks, with superior performance in case
restoration and notable gaps between training and validation sets. Additionally, both
models demonstrate continual improvement in their loss scores throughout the training.
The only minor distinction is that the embedding-enhanced model shows slightly better
performance in the capitalization task, though the improvement is not substantial.
Based solely on the loss curves, it is challenging to ascertain whether the extension of
the MFCC-based model offers significant advantages for the tasks.

5.7.1 Punctuation Restoration
We proceed with the analysis of the model’s performance on the punctuation restora-
tion task by examining the Punctuation Detection Precision (PDP) and Punctuation
Detection Recall (PDR) curves, plotted in Figure 5.24. The model appears to con-
verge to a local maximum within the first 25,000 steps, after which the performance
plateaus, with PDP oscillating around 0.95 and PDR around 0.93. Notably, there is
no discernible gap between overall performance and performance on the shortest se-
quences, while performance on the longest sequences is comparatively better. This
indicates that while predictions on the longest sequences still benefit from a large con-
text, sequences with smaller and medium context lengths perform similarly. The best
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Figure 5.23: Loss curves for the multimodal model with positional embeddings.

pair of PDP and PDR values, specifically 0.945 and 0.935, was achieved at the 38,800th
step, suggesting potential benefits from prolonged training.

To assess whether positional embeddings enhance the performance of the MFCC-
based multimodal model on the punctuation detection task, we refer to the results
of the previous model depicted in Figure 5.16. The overall behavior of the models
appears quite similar, stabilizing in the second half of the training. However, it is
noteworthy that the gap between long and short sequences is smaller for the model
without embeddings, primarily because the new model exhibits improved results for
longer sequences. Fixing the precision on long sequences at 0.95, we observe that
the best PDR on long sequences of the current model is 0.943 at the 39,000th step,
whereas the previous model only reaches 0.937 of PDR at the 40,000th step, having
same precision. In general, the previous best total PDP-PDR value pair is 0.945 and
0.93 at the 38,000th step, which is marginally inferior to the current best pair of 0.945
and 0.935. Consequently, we infer that positional embeddings have enabled the current
model to enhance its results on the punctuation detection task, likely due to improved
performance on longer sequences.

To gain a deeper understanding of the model’s behavior in punctuation restora-
tion task, we now examine the model’s performance in terms of F1 scores for each
punctuation type. The corresponding curves are depicted in Figure 5.25. Initially, the
non-blank average F1 score shows improvement over the first 27,000 steps, peaking at
0.502 at the 26,000th step, before oscillating around 0.47. Notably, after approximately
the 28,000th step, we observe a decline in performance for periods and quotation marks.
However, the model consistently improves its F1 score for the less represented types,
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Figure 5.24: PDP and PDR curves for the multimodal model with positional embed-
dings.

namely exclamation marks and semicolons, suggesting potential benefits from further
training.

In contrast to the PDP and PDR curves, we can now assess which punctuation
types benefit most from the introduction of positional embeddings. The F1 curves of
the preceding model, which lacked positional embeddings, are shown in Figure 5.17.
A significant difference is observed in the classification of exclamation marks. The
new model achieves a peak F1 score of 0.24 at the 40,000th step, compared to 0.15
in the previous model. This improvement, though seemingly counterintuitive, can be
attributed to the natural similarity between exclamation marks and periods, differing
primarily in emotional coloring and intonation. Given the rarity of exclamation marks
in the dataset, even minor improvements can lead to substantial changes in their F1
score. The new model with positional embeddings also demonstrates enhanced perfor-
mance in the period class, achieving an F1 score of 0.82 at the 24,500th step, compared
to 0.803 at the 21,500th step in the previous model. While the improvement is not as
marked as in the case of exclamation marks, it is notable given the high representation
of the period class in the dataset. The performance of the new model in other classes,
such as question marks, commas, and semicolons, remains similar to the previous ap-
proach. However, we observe a decline in F1 scores for quotation marks, colons, and
dashes, the reasons for which are not immediately apparent. One hypothesis is that
these classes, unlike exclamation marks, are not typically accompanied by distinctive
audio features that could aid in differentiation from periods and commas. Alterna-
tively, having positional information of potential punctuation places, the model may
default to predicting more frequently represented classes when faced with uncertainty.

Comparing the overall non-blank F1 averages of the two approaches, the model
with positional embeddings achieves a best average of 0.502 at the 28,000th step,
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Figure 5.25: F1 score trends for punctuation classes for the model with positional
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outperforming the previous model’s 0.496 at the 27,400th step.
Finally, we conclude our analysis of the new multimodal model with positional em-

beddings by examining the confusion matrices presented in Figure 5.26. The model
demonstrates its best performance at the 24,400th step, with subsequent slight de-
creases in most classes, except for dashes, semicolons, and colons. This training dy-
namic aligns with previous experiments, where at first the model learns well-represented
classes before gradually improving in less represented ones. Consequently, the high-
est accuracy scores of 83 and 87 are observed for periods and commas, respectively.
The exclamation mark class, being the least represented, shows the lowest accuracy
at 16 points. Notably, at the 24,400th step, exclamation marks and periods exhibit
the lowest misclassification rates with the blanks. Moreover, since exclamation marks
are expected to be followed by richer audio signal, e.g. higher intonation, they are
never misclassified with blank class. However, this rationale does not fully explain
the high misclassification rate of question marks with the blank class, where we would
expect similarly salient audio information. The discrepancy may arise from the struc-
tural differences in questions compared to statements, coupled with the model’s limited
exposure to complete questions.

When comparing the current approach with its predecessor without positional em-
beddings in terms of confusion matrices (Figure 5.18), we observe higher accuracy
scores for exclamation marks in the new model, consistent with the F1 score analysis.
However, the new model also shows higher accuracy for quotation marks, suggesting
a higher false negative rate for this class. The overall pattern indicates that the new
approach is less prone to misclassifying punctuation marks as blanks, particularly for
colons, semicolons, and periods. The notable exception is the question mark, which the
current model often confuses with periods and commas, a tendency less pronounced in
the previous model.
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In conclusion, the results from the confusion matrices corroborate our earlier find-
ings: the introduction of positional embeddings enhances the model’s ability to ac-
curately identify punctuation marks, with a few notable exceptions, and generally
improves differentiation from blank spaces.

5.7.2 Capitalization
With the punctuation restoration analysis complete, we delve into the model’s perfor-
mance on the casing task, with a specific focus on the F1 scores depicted in Figure 5.27.
Similar to the punctuation restoration task, particularly in terms of F1 scores, the
model exhibits peak performance between the 18,000th and 28,000th steps, achieving
the best F1 score of 0.875 at the 24,400th step. After the 28,000th step, a decline in
performance on the capitalization class is observed, stabilizing at an F1 score of ap-
proximately 0.875. Recalling the model’s results on the punctuation restoration task,
as illustrated in Figure 5.25, a parallel can be drawn with the performance on the
period class, which also demonstrates a performance decay after the 28,000th step.

After examining Figure 5.27 for the results of the multimodal model with positional
embeddings, we proceed to contrast this with the previous model’s outcomes, which are
displayed in Figure 5.19. The previous model, employing an MFCC-based audio en-
coder devoid of additional positional information, achieved its best F1 score of 0.868 on
the capitalization class at the 23,000th step. The integration of positional information
in the current model yielded an incremental improvement of 0.007 F1 points on this
task. Furthermore, a comparison of the two models’ performance trajectories reveals a
more rapid convergence in the enhanced model, reaching an F1 score of 0.85 within the
initial 7,000 steps, as opposed to approximately 12,000 steps in the preceding model.
Both models exhibit a similar trend of slight F1 score reduction after reaching their
respective peaks, akin to the trend observed in the punctuation restoration task.

Transitioning to the analysis of the model’s performance on the case restoration
task via confusion matrices, as depicted in Figure 5.28, the model with positional em-
beddings demonstrates a swift proficiency in differentiating between blank and capital-
ization classes, attaining its highest performance around the 22,000th step. However,
a plateau is observed post this point, accompanied by a marginal performance decline
indicative of overfitting. In contrast, the confusion matrices of the previous model,
shown in Figure 5.20, underscore the benefits of positional information. Notably, the
model with positional embeddings exhibits higher accuracy and a reduced misclassi-
fication rate at each evaluated step. The faster convergence facilitated by positional
information is evident, with the new model achieving an accuracy of 85 points in the
capitalization class within the first 2,000 steps, a milestone that took approximately
10,000 steps for the previous model to reach.

In summary, the integration of positional embeddings has enhanced the model’s
performance on the case restoration task, paralleling the improvements observed in
the punctuation restoration task. It appears that these advancements can be predomi-
nantly attributed to the model’s improved handling of the period class, which exhibits
a strong correlation with uppercase words.
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Figure 5.26: Confusion matrices for punctuation classes for the model with positional
embeddings.
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5.7.3 Multimodal Attention Analysis
Concluding the analysis of the model’s performance on punctuation and case restora-
tion tasks, we now turn our attention to the model’s attention matrices, as presented
in Figure 5.29. The attention plots affirm the model’s effective utilization of audio
information, evidenced by the absence of degenerate patterns, such as uniform vertical
columns, which would suggest a lack of informative value in the audio frames. The
attention scores span a considerable range, from 0.02 to 0.25, and maintain consistency
across longer sequences. However, the absence of pronounced diagonal patterns in the
attention matrices, despite the introduction of positional embeddings, suggests that
our initial hypothesis regarding text-audio alignment may require refinement. This
observation does not necessarily imply a deficiency in the latent audio representation,
as indicated by the absence of vertical attention patterns. Additionally, the upper right
corners of the attention matrices generally exhibit lower values, mitigating the risk of
early text tokens disproportionately influencing the latter audio frames.

To facilitate cross-comparison between the current model and the previous ap-
proach, we revisit Figure 5.21 for the attention matrices associated with the previous
approach without positional embeddings. Overall, we observe same large ranges of at-
tention scores, with similar attention patterns. To mitigate selection bias in attention
comparison, we can refer to Figure 5.30. This plot displays the maximum attention
score at each audio frame for each validation example, followed by averaging the re-
sults across the validation dataset. Considering the varying durations of audio inputs,
we compute the average score for frame i using only audios with m ≥ i latent audio
frames. This implies that every example contributes to the statistic at the first frame,
while only the longest ones contribute to the average score at the last frame. The
light bands around each line represent an interval of [−σi, +σi], where σ denotes the
standard deviation of the maximum attention scores for the ith frame.

Upon inspection, we note that in most audio frames, the average attention score
of the new model with positional embeddings surpasses that of the previous approach
without positional information. This aligns with our rationale for integrating shared
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Figure 5.28: Confusion matrices illustrating the performance of the model with posi-
tional embeddings in the case restoration task.

positional information, allowing the model to navigate more effectively in the latent
audio space and better leverage audio information. Interestingly, both models exhibit
a descending trend in attention scores, with higher scores for the initial frames and
approximately half the scores for the final ones. This pattern matches with the notion
that audio information holds greater relevance for the initial tokens due to the absence
of textual context.

In summary, the new model benefits from the shared positional information between
audio and text encoders, particularly evident in longer sequences, as indicated by the
observations on confusion matrices and PDP-PDR curves.

5.8 Training with Random Audio
In retrospect, the experiments demonstrated that each subsequent approach led to
some improvements in model performance over its predecessors. However, as new ex-
periments were conducted, the model architecture became increasingly complex, raising
the possibility that gains might be attributable to additional model parameters. To
discern the actual benefits of the added sound information, we juxtapose the best
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Figure 5.29: Attention matrices for the multimodal model with positional embeddings.
The plot structure is described in Section 5.5.3.

model—specifically, the multimodal model with an MFCC-based audio encoder and
positional embeddings—against an equivalent model in terms of parameters and archi-
tecture but with corrupted audio on the input.
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One viable method for corrupting the sound involves permutating audio frames prior
to their input into the model, thereby disrupting all temporal connections between the
frames. The effects of this frame permutation on two distinct audio sequences are
visualized in Figure 5.31. The plot demonstrates the impact of frame reordering by
displaying both the original and mixed audio signals alongside their spectrograms.
After the permutation, the resulting sound closely resembles white noise, indicating
successful disruption of temporal frame connections. Additionally, it is worth noting
that the final spectrograms and waveforms slightly differ from each other, as they
were generated from different audio inputs. This variation can be attributed to the
assignment of different samples of white noise to the original audio sequences. However,
these different samples of white noise do not convey any meaningful information to the
model.

Following the examination of frame permutation effects, we turn our attention to
a comparative analysis of previous models against the model with distorted audio
sequences. This examination will utilize various F1 scores, specifically the average F1
score on non-blank classes for the punctuation restoration task and the F1 score for the
capitalization class, denoted as [cap], for the casing task. Accordingly, four models
will be compared: a text-only model, a multimodal model with an MFCC-based audio
encoder, and a multimodal model with an MFCC-based audio encoder and positional
embeddings for both normal and permutated sound. The corresponding F1 score curves
for all mentioned models are depicted in Figure 5.32. These results, measured during
training on the validation set, align with previous analyses.

We start the discussion with an analysis of the punctuation restoration task results,
as shown in the upper plot of Figure 5.32. The data indicates that the model with
corrupted audio input marginally outperforms the text-only baseline, yet falls short of
the multimodal models. For instance, the highest non-blank average F1 score for the
model with shuffled audio is 0.477, achieved at the 28,500th step, compared to 0.474
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Frame permutation examples
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Figure 5.31: Impact of audio frame permutation on signal characteristics.

at the 29,500th step for the text-only model. Furthermore, at most training steps, the
multimodal model with positional embeddings exhibits higher scores than the text-only
baseline, despite its inability to extract anything useful from the sound. Notably, the
peak F1 score for the multimodal model with positional embeddings is 0.502, utilizing
the same architectural framework but with meaningful audio input. Therefore, in the
punctuation restoration task, the model evidently benefits from a larger architecture
with more trainable parameters, although this alone is insufficient to match the results
of the sound-informed model.

Turning to the casing task, we examine the F1 scores for different models on the
[cap] class, as depicted in the lower plot of Figure 5.32. Similarly to the punctuation
restoration task, the data suggests that a larger model architecture can be advanta-
geous. Specifically, the model with permutated audio input consistently achieves a
higher F1 score on the [cap] class compared to the text-only baseline. The peak F1
score for the model with shuffled audio is 0.841, recorded at the 32,000th step, versus
0.837 for the text-only model at the 21,000th step. The F1 curves further illustrate that,
for most of the training duration, the larger model with corrupted sound surpasses its
smaller text-only counterpart by a significant margin. Nonetheless, all sound-informed
models demonstrate superior results, with the best multimodal model with positional
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Model comparison on F1 scores
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Figure 5.32: Comparative F1 score analysis of different model configurations.

embeddings and true sound input achieving a 0.874 F1 score on the [cap] class. Al-
though the influence of sound on casing task results may seem counterintuitive, a
plausible explanation is that enhanced performance in punctuation restoration enables
the model to better comprehend the input text, thereby achieving higher scores in the
casing task.

As confirmed by the experimental data, we can further enhance the performance
of the text-only model by employing a more complex architecture with additional
trainable parameters. Nevertheless, with the same architecture, multimodal models
consistently outperform text-only models by a significant margin on both punctuation
restoration and capitalization tasks.
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5.9 Evaluation on the Test Set
In the final section, the discussion will be dedicated to comparing the models on the
test set, as all contrastive analyses thus far were performed on the validation set. Since
all improvements were made using the validation set, the objective is to verify if the
same trends hold for an independent test set, which was not used in model training or
selection.

We start the comparison of the models with the punctuation restoration task,
namely the F1 scores for each punctuation class. The F1 scores for each class and
model are presented in Table 5.1, with the highest scores highlighted in bold. Addi-
tionally, the table includes the 95% confidence intervals for each score, with intervals
computed using bootstrap with 1000 resamplings. Beginning with the comma class, we
observe that the multimodal MFCC model with positional embeddings (MM MFCC
PE) achieves the highest score, significantly surpassing the text-only baseline and the
multimodal model with wav2vec audio encoder. However, compared to the multimodal
MFCC model (MM MFCC) without positional information, the improvement is not
statistically significant. Shifting to the period class, we note that the MM MFCC PE
model significantly outperforms all other models, as their scores fall below its 95%
confidence interval. Another punctuation class where we observe significant results is
the question mark. Here, all multimodal models outperform the text-only baseline, un-
derscoring the importance of audio features in question mark detection. Interestingly,
the text-only model excels only in the quotation mark performance, significantly out-
performing the multimodal model with wav2vec 2.0 audio encoder. For the remaining
punctuation types, the differences in the results are not statistically significant. It is
worth noting that, as commas and periods are the most well-represented punctuation
types, each model has relatively tight confidence intervals. However, as the frequency
of punctuation classes decreases, the confidence intervals become wider, potentially
masking significant results. Another important factor is that remaining punctuation
types such as hyphens, semicolons, colons, and possibly quotation marks, are highly
style-specific and often interchangeable.

Following the comparison of results on the punctuation restoration task, the sub-
sequent discussion will focus on the comparative evaluation of models on the casing
task. As before, due to data imbalance, the F1 metric was chosen for comparison,
specifically the F1 score on the capitalization class denoted as [cap]. The resulting F1
values are presented in Table 5.1 in the last row. The text-only model has the lowest
F1 score, namely 85.25, compared to the other models. Notably, the inclusion of sound
modality helps multimodal models achieve significantly better results. Similarly to the
experiments on the validation set, the MM MFCC PE model demonstrates the best
performance on the capitalization task, although the results are not significantly better
compared to the other multimodal approaches. A possible explanation for how sound
information can enhance capitalization performance lies in the improved detection of
sentence boundaries by multimodal models, i.e., better recognition of periods, question
marks, and exclamation marks.

To better understand when our models actually rely on sound information, we
compare the performance of the MM MFCC PE model with a text-only baseline across
various input lengths. Figure 5.33 shows the F1 scores for the positive class between
these two models in the punctuation detection task, where the presence of a punctuation
mark is considered a positive label and its absence a negative one. The plot illustrates
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Classes Text Only MM w2v MM MFCC MM MFCC PE
[,] 85.84 (85.3, 86.4) 86.84 (86.3, 87.4) 87.38 (86.9, 87.9) 87.71 (87.2, 88.2)

[.] 75.26 (74.3, 76.3) 81.47 (80.6, 82.4) 82.12 (81.2, 83.1) 83.17 (82.3, 84.0)

[-] 41.30 (34.2, 47.8) 43.31 (37.3, 49.9) 44.31 (37.8, 50.7) 43.47 (36.2, 48.9)

[?] 35.94 (28.0, 44.3) 48.62 (41.1, 55.8) 46.09 (38.0, 54.1) 50.42 (42.7, 58.7)

[:] 34.48 (23.8, 45.0) 38.46 (28.4, 48.0) 39.73 (29.6, 49.7) 36.12 (26.2, 45.5)

["] 45.50 (33.5, 56.2) 32.43 (18.8, 44.8) 40.00 (25.5, 52.1) 40.90 (26.2, 52.6)

[!] 5.41 (0.0, 27.2) 8.07 (1.1, 36.3) 13.33 (4.2, 42.9) 14.28 (4.7, 43.1)

[;] 45.45 (28.1, 59.4) 39.13 (20.5, 56.6) 50.00 (34.4, 63.2) 54.28 (40.0, 66.7)

[cap] 85.25 (84.6, 85.9) 87.54 (87.0, 88.2) 87.83 (87.3, 88.4) 88.18 (87.5, 88.6)

Table 5.1: F1 scores of the models on the capitalization class [cap] and punctuation
classes. The best results are shown in bold. Numbers in parenthesis give 95% confidence
interval of the F1 score. The classes are sorted according to their frequencies in the
training set.
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Figure 5.33: Comparison of F1 scores between multimodal and text-only models at
varying input lengths, highlighting the impact of audio information on punctuation
detection.

the models’ performance as a depending on input length, measured by the number of
input words. It is clear that our best multimodal model outperforms the text-only
baseline across all input length groups. Both models demonstrate better performance
with longer input context. Interestingly, as the input length increases, the differences
between the models tend to diminish. This trend may be explained by the decreasing
value of audio information with larger textual context. This observation shows the
importance of additional audio information in scenarios where the input is limited,
such as in online cases where the lowest possible latency is desired.

Transitioning to the analysis of the outputs, we present the predictions of the pre-
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viously mentioned models in Table 5.34. Punctuation predictions of the models are
emphasized by square brackets. Note that if a punctuation class appears after the first
word in predictions, it is not emphasized, as the models were not trained to predict
punctuation or casing after the first word; hence, the true punctuation is simply copied
from the data due to the lack of context. The first row always displays the true text
with punctuation marks and casings.

Moving forward, the general picture presents some examples where all or the major-
ity of the models make the same mistakes. Starting from the first example, all models
managed to detect the end of the sentence and uppercased the next word. However,
the text-only model likely missed the end of the sentence and did not uppercase the
second word. This sentence illustrates the challenge of predicting the correct punc-
tuation mark at the end of a sentence, as it can be interpreted as both a question
and an affirmative proposition, hence the sound input can provide the model with
additional information. Consider the second example, where all models predicted a
period instead of a dash. This example perfectly demonstrates the importance of left
context for correct predictions and the ambiguity of the punctuation restoration task;
without left context, a period naturally fits the data. As evidenced by the predictions
in the third example, all models were misled by the word “kolegu” and uppercased the
word “čunětem”; additionally, only models with better sound processing detected the
exclamation mark at the end of the sentence. This example illustrates that models do
not fully comprehend Czech grammar and sentence semantics, as the word “čunětem”
following “kolegu” likely indicates an insult but not a name. Moving to the fourth ex-
ample, we observe that models can reliably identify frequent patterns, such as placing
a comma after “aby” and uppercasing the word “Poslaneckou” in the phrase “Posla-
neckou sněmovnu”. However, they still struggle with semicolons. Specifically, only the
multimodal model with positional embeddings managed to place a semicolon and did
not uppercase the subsequent word, while other models uppercased the word “za”. A
possible reason is that the forced diagonal attention pattern provided by the positional
embeddings enabled the model to better extract the meaning of the punctuation mark
before the word “za” and thus did not uppercase it.

Concluding our evaluation on the test set, the results observed on the validation
set during experiments align well with the performance on the test set. Specifically,
the multimodal model with positional embeddings demonstrated the best performance
compared to previous experiments. That said, as the analysis of the predictions indi-
cates, there is still room for further improvement.
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Models Texts
True negativně? Zvýš́ı se riziko daňových únik̊u? Ministerstvo
Text-only negativně? zvýš́ı se riziko daňových únik̊u[.] Ministerstvo
MM wav2vec negativně? Zvýš́ı se riziko daňových únik̊u[?] Ministerstvo
MM MFCC negativně? Zvýš́ı se riziko daňových únik̊u[.] Ministerstvo
MM MFCC PE negativně? Zvýš́ı se riziko daňových únik̊u[?] Ministerstvo
True zase neodpust́ım - když jsme tady měli vodńı zákon, tak
Text-only zase neodpust́ım[.] Když jsme tady měli vodńı zákon[,] tak
MM wav2vec zase neodpust́ım[.] Když jsme tady měli vodńı zákon[,] tak
MM MFCC zase neodpust́ım[.] Když jsme tady měli vodńı zákon[,] tak
MM MFCC PE zase neodpust́ım[.] Když jsme tady měli vodńı zákon[,] tak
True lid́ı - vymytými mozky a našeho kolegu čunětem! Pokud
Text-only lid́ı - vymytými mozky a našeho kolegu Čunětem[.] pokud
MM wav2vec lid́ı - vymytými mozky a našeho kolegu Čunětem[.] Pokud
MM MFCC lid́ı - vymytými mozky a našeho kolegu Čunětem[!] Pokud
MM MFCC PE lid́ı - vymytými mozky a našeho kolegu Čunětem[!] Pokud
True schválit v předloženém zněńı; za třet́ı zmocňuje zpravodajku

výboru, aby s usneseńım seznámila Poslaneckou sněmovnu
Text-only schválit v předloženém zněńı[;] Za třet́ı zmocňuje zpravodajku

výboru[,] aby s usneseńım seznámila Poslaneckou sněmovnu
MM wav2vec schválit v předloženém zněńı[.] za třet́ı zmocňuje zpravodajku

výboru[,] aby s usneseńım seznámila Poslaneckou sněmovnu
MM MFCC schválit v předloženém zněńı[;] Za třet́ı zmocňuje zpravodajku

výboru[,] aby s usneseńım seznámila Poslaneckou sněmovnu
MM MFCC PE schválit v předloženém zněńı[;] za třet́ı zmocňuje zpravodajku

výboru[,] aby s usneseńım seznámila Poslaneckou sněmovnu
True nejmı́ň subjekt̊u. Protože nedokážu si představit tu kritiku, kdyby

náhodou se něco nepovedlo, tak co asi sklid́ıme. Tak to
Text-only nejmı́ň subjekt̊u[,] protože nedokážu si představit tu kritiku[,]

kdyby náhodou se něco nepovedlo[,] tak co asi sklid́ıme[.] Tak
to

MM wav2vec nejmı́ň subjekt̊u[.] Protože nedokážu si představit tu kritiku[.]
Kdyby náhodou se něco nepovedlo[,] tak co asi sklid́ıme[?] Tak to

MM MFCC nejmı́ň subjekt̊u[,] protože nedokážu si představit tu kritiku[,]
kdyby náhodou se něco nepovedlo[.] Tak co asi sklid́ıme[?] Tak to

MM MFCC PE nejmı́ň subjekt̊u[.] Protože nedokážu si představit tu kritiku[,]
kdyby náhodou se něco nepovedlo[,] tak co asi sklid́ıme[?] Tak to

Figure 5.34: Predictions of the models on the test set. Predictions on the punctuation
classes are presented with brackets. The first punctuation marks or capitalization were
not used in training and is copied from the data.
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6. Conclusion
In this thesis, we explored combining audio input with the corresponding automatic
text transcripts to improve performance on the inverse text normalization task, focusing
specifically on punctuation restoration and capitalization. To compare text-only and
multimodal approaches, we adapted the existing ParCzech 3.0 dataset. Particularly, to
address certain limitations of ParCzech 3.0, such as the constrainedness of transcripts
to sentence boundaries and imprecise alignment with the official transcript, we trained
an ASR model and used it to recognize all the original audio files available in the
dataset. Following the ParCzech 3.0 methodology, we aligned our recognized version of
the transcripts with the official ones. This recognition and alignment process allowed us
to extract more data from the official transcripts in comparison to ParCzech 3.0, even
though we required a perfect match between the recognized and official transcripts.
Also, the created segments were no longer aligned to sentence boundaries, offering a
more realistic scenario for ITN use cases.

To enable integration of the sound information into the ITN neural model, we de-
veloped a multimodal cross-attention module inspired by the original Transformer ar-
chitecture. This module utilizes the attention mechanism to establish a soft alignment
between text input and corresponding audio input. We experimented with various
methods of integrating audio input into the ITN model. The simplest method was
motivated by the pretraining framework, where we used an already trained ASR model
as a trainable sound encoder. However, attention plots indicated that this integration
of audio information was not particularly beneficial for the ITN task. To enhance
audio utilization, we created a custom audio encoder inspired by the wav2vec 2.0 ar-
chitecture, adding more convolutional blocks and reducing the number of Transformer
encoder blocks. This architecture showed promising results, improving the utility of
the corresponding sound input. To further assist the multimodal model in navigating
the audio latent space, we introduced multimodal positional embeddings that enhanced
audio utilization by the multimodal model.

Evaluation on the test set showed that the speech-informed models achieved statis-
tically significant improvements in the detection of capitalization class and detection
of the most exemplified punctuation classes, specifically periods, commas, and ques-
tion marks. These punctuation marks are generally more deterministic compared to
others like dashes, colons, quotation marks, and exclamation marks, which are heavily
influenced by stylistic choices. Furthermore, the differences in performance on less rep-
resented classes were not statistically significant. Our experiments also demonstrated
that the value of audio information varies with input length. For instance, in shorter
inputs (fewer than 10 words), the multimodal model relies heavily on sound informa-
tion due to limited textual context. As input length increases, the relevance of sound
information diminishes.

For future work, we plan to address certain limitations we encountered in the data
and model the ITN task as a sequence-to-sequence generation problem. Currently, our
approach requires perfect alignment between the recognized and official transcripts,
allowing us to treat the ITN problem in a sequence labeling framework and address
punctuation restoration and capitalization tasks as token classification tasks. How-
ever, this approach excludes certain ITN subtasks, such as inverse number normaliza-
tion (converting verbalized numbers to digit form), inverse abbreviation normalization
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(converting verbalized abbreviations to their shorter written forms), removal of disflu-
encies (like self-corrections or repetitions), and potentially correcting ASR errors. To
incorporate all these aspects into our training and evaluation dataset, we would need
a deeper analysis of ParCzech 3.0 with a more sophisticated alignment procedure and
detailed benchmarks on the ASR system to ensure accurate recognition of digits and
abbreviations and precise transcription of disfluencies. With such a dataset, we would
be able to model the ITN problem within machine translation framework, where the
goal would be to modify the recognized transcript so that it better corresponds to the
provided official transcript.
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A. Attachments
The URL https://github.com/Stanvla/ThesisITN contains the source codes used
to create the dataset and perform the experiments. The scripts are organized into the
following folders.

wav2vec ctc

This folder contains scripts for generating the specialized ITN dataset from ParCzech
3.0.

• wav2vec ctc/wav2vec inference.py: Runs inference using a trained wav2vec
2.0 model to produce recognized transcripts and alignment.

• wav2vec ctc/dataset-review.py: Filters and modifies aligned segments. Fi-
nally, generates training, validation, and testing sets from clean segments.

punc restoration

This folder includes scripts for training and evaluating the ITN models.

• punc restoration/sequence labeling.py: Contains code for training and run-
ning inference on text-only and multimodal models.

• punc restoration/multi modal attn.py: Implements the multimodal cross-
attention module.

• punc restoration/load data.py: Defines the structure for multimodal and
text-only datasets.
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