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Introduction
Spatial point processes are useful models when we want to capture the randomness
of the positions of the observed units. They are extensively used in geography,
epidemiology, astronomy, forestry or computational neuroscience and biology. By
using point processes, we can model the spreading of a disease, stars in galaxies,
the distribution of plant species in varied terrain or even the distribution of cells
of a patricular type in the human or animal body. Since clustering is a natural
phenomenon in all of the aforementioned, cluster point processes are still widely
studied today.

Let us introduce some examples of the use of point processes in real life examples.
The dataset used in Figure 1 (left) is from Møller and Toftaker (2014). We can
see the locations of 110 Welsh chapels rescaled to the unit square. As we can see
in the figure, the chapels are clustered in the smaller scale and also show signs of
dependence on direction in the larger scale. While the clustering may be a sign
that there is a larger town or a city nearby, the dependence on the direction could
be caused by the terrain or water bodies. Another example of the usage of point
processes is illustrated in Figure 1 (right), where there are crimes recorded over
the course of approximately two weeks near the University in Chicago. These
crimes can also be divided according to the type of the offence into several smaller
groups, and one could ask for example whether most of the serious offences took
place near some specific locations.

We are particulary interested in point processes that show signs of dependence on
direction, which is called anisotropy. Realization of two cluster point processes can
be seen in Figure 2. Here, the left picture shows a cluster point process without
any directional dependence. On the other hand, the right picture shows a strong
directional dependence in the horizontal direction and one can also see that the
more on the right in the picture we are, the more points there are in the clusters.
This is a property that we can try to explain using available covariates.

In the analysis we do, Bayesian statistics plays a significant role. It is a relatively
new way on how to view statistical methods. While the Bayes’ Theorem comes
from the 18th century, the Bayesian view on probability did not come to life
up until the 20th century. It is an interesting way how to interpret unknown
parameters that is widely used in business and stock markets.

We use the Bayesian approach to show how one can explore the model parameters.
We first give a brief description of Bayesian methods and then describe how we
use them in our setting. In the next part, we talk about the Markov Chain
Monte Carlo methods, which are a popular extension to the Bayesian statistics.
One of the most popular techniques used by statisticians up until today is the
Metropolis-Hastings algorithm, which can be traced back to Metropolis et al. (1953)
and Hastings (1970). We use this particular algorithm as a tool for our analysis,
combined with the Gibbs sampler, the foundations of which were also laid in the
aforementioned articles.

In this thesis, we focus on exploring a model that generalizes the model introduced
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Figure 1 Locations of Welsh chapels in rescaled to the unit square [0, 1]2 (left) and
crimes reported in the period of circa two weeks near the University of Chicago (right).

Figure 2 Two realizations of cluster point processes in the unit square window [0, 1]2.
An isotropic cluster point process (left) and an anisotropic cluster point process (right).

in Dvořák et al. (2022). In this article, the main focus is on introducing complex
inhomogeneities into cluster point process models and explaining how the package
binspp for the software R can be used. We focus on adding possible anisotropy
into this model and explore how one can extend the methods described therein
onto anisotropic point processes.

One of the objectives of this thesis is to create a model from which one could
simulate realizations of spatial anisotropic cluster point processes, which are
possibly dependent on covariates. Using these simulations, we then examine the
properties of the Bayesian inference and MCMC methods in detail. We show the
results from several simulated datasets, as well as a result from real-life data. We
also introduce the dependence on a covariate and show how the algorithm could
be used for testing hypotheses about the significance of the dependencies.
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1. Point Processes in ℝ𝑑

In this chapter we recall the definition of the point processes in ℝ𝑑. We then
describe the particular model that we are going to be studying in this thesis, the
anisotropic cluster point process. We then give some examples of point processes
closely related to the topic of this thesis. Lastly, we explain the model we are
going to work with and introduce parametrizations that will be subsequently used.
Both Section 1.3 and 1.4 are based on the article Dvořák et al. (2022) as they
generalize the model described therein.

1.1 Definition of anisotropic cluster point process
The aim of this section is to properly define an anisotropic cluster point process.
Most of the definitions in this section are taken from Rataj (2006). To be able
to define such object, we first have to introduce sets of measures with specific
properites. By ℝ𝑑, we denote the 𝑑-dimensional Euclidean space, 𝑑 ∈ ℕ. In what
follows, we use the notation on the space ℝ𝑑:

ℬ(ℝ𝑑) Borel 𝜎-algebra on ℝ𝑑

ℬ0(ℝ𝑑) bounded Borel subsets of ℝ𝑑

𝒦(ℝ𝑑) compact sets on ℝ𝑑.

We shall abbreviate these, for example we write ℬ instead of ℬ(ℝ𝑑).

Definition 1. A measure 𝜇 (i.e. a nonnegative 𝜎-additive set function) on (ℝ𝑑, ℬ)
is said to be locally finite if it is finite on ℬ0.

By ℳ ≡ ℳ(ℝ𝑑) we denote the space of all locally finite measures on (ℝ𝑑, ℬ) and
by

ℳ𝑓 ≡ ℳ𝑓(ℝ𝑑) = {𝜇 ∈ ℳ ∶ 𝜇(ℝ𝑑) < ∞} ,

we denote the space of all finite measures on (ℝ𝑑, ℬ). Moreover, we denote

𝒩 ≡ 𝒩(ℝ𝑑) = {𝜇 ∈ ℳ ∶ 𝜇(𝐵) ∈ ℕ ∪ {0, ∞} ∀𝐵 ∈ ℬ}

the space of all locally finite counting measures on (ℝ𝑑, ℬ) and 𝒩𝑓 = ℳ𝑓 ∩ 𝒩
the space of all finite counting measures.

Notation. By 𝜎 {𝜇 ↦ ℎ(𝜇) 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒, ℎ ∈ 𝐻} we denote the smallest 𝜎-algebra
on ℳ with respect to which all the functions ℎ from the system of functions 𝐻
on ℳ are measurable.

Definition 2. Let us introduce the following 𝜎-algebras on ℳ and 𝒩:

𝔐 = 𝜎 {𝜇 ↦ 𝜇(𝐵) 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒, 𝐵 ∈ ℬ} ,
𝔑 = {𝑀 ∩ 𝒩 ∶ 𝑀 ∈ 𝔐} .

Definition 3. Let (Ω, 𝒜, ℙ) be a probability space. A measurable mapping

Ψ ∶ (Ω, 𝒜, ℙ) → (ℳ, 𝔐)
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is called a random measure on ℝ𝑑. The probability measure 𝑄 = ℙ Ψ−1 is the
distribution of the random measure Ψ and the measure Λ(⋅) = 𝔼 Ψ(⋅) is the
intensity measure of the random measure Ψ.

Remark. The probability measure 𝑄 can be alternatively defined as

𝑄(𝒰) = ℙ ({𝜔 ∈ Ω ∶ Ψ(𝜔) ∈ 𝒰}) , 𝒰 ∈ 𝔐.

Now we have all the ingredients to define a point process.

Definition 4. A point process on ℝ𝑑 is a measurable mapping

Φ ∶ (Ω, 𝒜, ℙ) → (𝒩, 𝔑) .

A point process is simple if ℙ [Φ ∈ 𝒩∗] = 1, where

𝒩∗ = {𝜈 ∈ 𝒩 ∶ 𝜈 ({𝑥}) ≤ 1 for every 𝑥 ∈ ℝ𝑑} .

Remark. Correctness of the definition of a simple point process is guaranteed by
Lemma 4.2 in Rataj (2006), which states that 𝒩∗ is measurable in 𝔑.

Remark. A point process is a special case of a random measure.

Remark. A simple point process could be understood as a measurable mapping
Φ ∶ (Ω, 𝒜, ℙ) → (𝒩∗, 𝔑∗), where 𝔑∗ = {𝒰 ∩ 𝒩∗ ∶ 𝒰 ∈ 𝔑} is the trace of the
𝜎-algebra 𝔑 on 𝒩∗.

Definition 5. Let Λ ∈ ℳ and Φ be a point process on ℝ𝑑 such that for all 𝑛 ∈ ℕ
and 𝐵1, … , 𝐵𝑛 ∈ ℬ0 pairwise disjoint it holds that

i. random variables Φ(𝐵1), … , Φ(𝐵𝑛) are independent,

ii. Φ(𝐵𝑖) has a Poisson distribution with parameter Λ(𝐵𝑖).

Then Φ is called a Poisson point process with intensity measure Λ.

Remark. The existence and uniqueness of random variables from Definition 5 is
given by Theorem 3.2 and Corollary 3.1 in Rataj (2006).

Definition 6. For 𝑧 ∈ ℝ𝑑 we denote 𝑡𝑧 the shift operator on ℳ, i.e.

(𝑡𝑧𝜇)(𝐴) = 𝜇(𝐴 − 𝑧), 𝜇 ∈ ℳ, 𝐴 ∈ ℬ.

We say that a random measure Φ on ℝ𝑑 is stationary if 𝑡𝑧Φ 𝑑= Φ for all 𝑧 ∈ ℝ𝑑,
i.e., if its distribution 𝑄 satisfies 𝑄𝑡−1

𝑧 = 𝑄 for all 𝑧 ∈ ℝ𝑑. We say that 𝑄 is
translation invariant.

These next two definitions are taken from Pawlas (2023).

Definition 7. Denote by 𝒩∗
𝑓 = 𝒩𝑓 ∩ 𝒩∗ the space of all simple finite counting

measures on ℝ𝑑.

Definition 8. Let Φ̃ be a simple point process on ℝ𝑑 × 𝒩∗
𝑓. Assume that the

point process Φ𝑝(⋅) = Φ̃(⋅ × 𝒩∗
𝑓) is a simple point process (so-called parent point

process). Define

Φ(𝐵) = ∑
(𝑋,𝜁)∈𝑠𝑢𝑝𝑝Φ̃

(𝑡𝑋𝜁) (𝐵) , 𝐵 ∈ ℬ,
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and assume that Φ(𝐾) < ∞ for all 𝐾 ∈ 𝒦 with probability 1. Then Φ is a point
process a.s. and it is called a cluster point process. For (𝑋, 𝜁) ∈ 𝑠𝑢𝑝𝑝 Φ̃, we refer
to 𝑡𝑋𝜁 as the daughter point process associated with the parent point 𝑋.

Definition 9. Let Ψ be a random measure with intensity measure Λ. If there
exists a density 𝜆 of Λ w.r.t. the Lebesgue measure, i.e.,

Λ(𝐵) = ∫
𝐵

𝜆(𝑥) 𝑑𝑥, 𝐵 ∈ ℬ,

then 𝜆 is called the intensity function. If it is a constant, we call it intensity.

Lastly, we define anisotropy.

Definition 10. For a rotation 𝒪 around the origin, we denote by 𝑅𝒪 the rotation
operator on ℳ as

(𝑅𝒪𝜇)(𝐴) = 𝜇(𝒪−1𝐴), 𝜇 ∈ ℳ, 𝐴 ∈ ℬ.

A random measure Ψ on ℝ𝑑 is called isotropic if 𝑅𝒪Ψ and Ψ have the same
distribution for any rotation 𝒪, i.e., the distribution of the random measure is
rotation-invariant. Otherwise, the measure Ψ is said to be anisotropic.

1.2 Examples of point processes
In this section, we show some interesting examples of point processes and briefly
mention their usage in modelling real life situations. Most of the examples in this
section are taken from Møller and Waagepetersen (2004).

One of the most widely used point process models is the Poisson point process
from Definition 5. It is a useful model widely used in geography, as it is the most
natural model when considering complete spatial randomness. This essentialy
means that if we have an observation window, then the number of points in every
bounded subwindow also follows a Poisson distribution and is independent of the
number of points in all the other subwindows, which are all mutually disjoint. It
is a very natural setting in situations where we do not observe any dependence of
our observations. With this process, we can model for example the incidence of
non-contagious diseases, but it is mostly used as a theoretical tool, for reference
values, since we mostly observe some kind of dependence in practical use. Three
different realizations of Poisson point process can be seen in Figure 1.1.

Because of the fact that the points in the Poisson point process are independent,
it is not of use in situations where dependencies can be detected. To model these
situations, cluster point processes may be of great use.

We are now going to introduce a widely used type of a cluster point process
from Definition 8, which is the Neyman-Scott process first introduced in Neyman
and Scott (1958). A realization of this process can be seen in Figure 1.2 on the
left.

Definition 11. Let 𝐶 be a stationary Poisson process on ℝ𝑑 with intensity 𝜅 > 0.
Conditional on 𝐶, let 𝑋𝑐, 𝑐 ∈ 𝐶, be independent processes on ℝ𝑑 where 𝑋𝑐 has

7



Figure 1.1 Three different realizations of a homogeneous Poisson point process in
the unit window 𝑊 = [0, 1]2 with intensities 𝜆 = 10, 50, 100 respectively. The true
numbers of observed points are 10, 46 and 110.

intensity function
𝜌𝑐(𝜉) = 𝛼 ⋅ 𝑘(𝜉 − 𝑐), 𝜉 ∈ ℝ𝑑

where 𝛼 > 0 is a parameter and k is a kernel, i.e., for all 𝑐 ∈ ℝ𝑑, 𝜉 ↦ 𝑘(𝜉 − 𝑐)
is a probability density function. Then 𝑋 = ⋃𝑐∈𝐶 𝑋𝑐 is a Neyman-Scott process
with cluster centres 𝐶 and clustres 𝑋𝑐, 𝑐 ∈ 𝐶.

This is the model that we are going to be working with later on. In this model,
the parent point process is not observed and we observe the union of the daughter
point processes. This model was suggested as a way to model the clustering of
galaxies but can also be used in medicine for modelling the spread of contagious
diseases or in biology for modelling populations of trees or plants. A special
example of this family of point processes is the Thomas point process firstly
introduced in Thomas (1949). Two different realizations of Thomas process are
depicted in Figure 1.2 (middle and right).

Definition 12. The Thomas process is a Neyman-Scott point process where

𝑘(𝜉) = 𝑒𝑥𝑝 {−‖𝜉‖2/(2𝜔2)} /(2𝜋𝜔2)𝑑/2, 𝜉 ∈ ℝ𝑑,

is the density for 𝑁𝑑(0, 𝜔2𝐼𝑑), where 𝜔 > 0 is the standard deviation of random
displacement of a daughter point from its parent point.

8



Figure 1.2 Realizations of cluster point processes in the unit window 𝑊 = [0, 1]2.
A Neymann-Scott process with daughter points distributed uniformly in a circle around
each parent point (left) with 𝜅 = 10, 𝛼 = 10 and radius of the circle is 0.07. Two
realizations of Thomas point process with 𝜅 = 20, 𝜔 = 0.04 and 𝛼 = 40 (middle) and
𝜅 = 10, 𝜔 = 0.02 and 𝛼 = 15 (right).

1.3 Anisotropic Thomas point process
In this section, we are going to introduce the anisotropic cluster point process
model. We do this in the general way, introducing possible dependence on
covariates for each of the considered model components.

The model can be understood as a so-called doubly stochastic model: firstly,
we construct a Poisson point process which represents the parent point process
and secondly, given the positions of the parent points, we construct independent
clusters around each parent point. We will denote 𝑋 the observed point process
of daughter points and we will write 𝑋 = ⋃𝑐∈𝐶 𝑋𝑐, where 𝐶 is the parent point
process being Poisson point process with intensity function 𝜅 ⋅ 𝑙(𝑢; 𝛽), 𝑢 ∈ ℝ2,
where 𝜅 > 0. The daughter point processes 𝑋𝑐, 𝑐 ∈ 𝐶, are mutually independent
Poisson point processes with intensity function 𝛼 ⋅ 𝑘(𝑢 − 𝑐; 𝜎1, 𝜎2, 𝜌), 𝛼 > 0,
𝑢 ∈ ℝ2, where 𝑘 is the probability density function determining the displacement
of the daughter points around its parent point and 𝛼 stands for the expected
number of daughter points per cluster. In our case, function 𝑘 represents bivariate
normal distribution centered at 0 with standard deviations 𝜎1 > 0, 𝜎2 > 0 in the
directions of the 𝑥-axis and 𝑦-axis, respectively, and the correlation coefficient
𝜌 ∈ (−1, 1). Let us denote (𝑐1, 𝑐2) coordinates of the parent point 𝑐, then we can
write

𝑘 ((𝑥 − 𝑐1
𝑦 − 𝑐2

) ; 𝜎1, 𝜎2, 𝜌) =

𝑒𝑥𝑝 {− 1
2(1−𝜌)2 [(𝑥−𝑐1

𝜎1
)

2
− 2𝜌 (𝑥−𝑐1

𝜎1
) (𝑦−𝑐2

𝜎2
) + (𝑦−𝑐2

𝜎2
)

2
]}

2𝜋𝜎1𝜎2√1 − 𝜌2
,

where (𝑥, 𝑦)𝑇 ∈ ℝ2.

Remark. The daughter point process can be viewed as a Cox process, see Definition
5.1 in Møller and Waagepetersen (2004), because we view it, conditionally on the
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parent point process, as an inhomogeneous Poisson point process with intensity
function 𝛼 ⋅ 𝑘(⋅ − 𝑐; 𝜎1, 𝜎2, 𝜌).

As we previously mentioned, we are particularly interested in anisotropic cluster
point processes. That means that we are interested in point processes that show
signs of dependence on direction. In our study, we are not trying to investigate
whether the cluster point process exhibits stationarity, i.e. shift-invariance, or not;
although we will asume stationarity of the parent point process.

To introduce anisotropy into our model, we have several options how to do so:
to have different standard deviations 𝜎1, 𝜎2, to have 𝜌 ≠ 0 or to introduce the
anisotropy via covariates.

1.4 Parametrization of model components
We want to express the possible dependence of the model components on some
spatial covariates, that could conceivably cause the process to be anisotropic.
In real-life situations, this could be for example the influence of wind, altitude,
terrain slope or distance from a water source.

Firstly, let us introduce the generalized model. Let us have the process of cluster
centres 𝐶 being the Poisson point process with its intensity function equal to
𝜅 ⋅ 𝑙(𝑢; 𝛽), where 𝜅 > 0, 𝛽 ∈ ℝ𝑘, 𝑢 ∈ ℝ2. For every cluster center 𝑐 ∈ 𝐶,
we have a cluster 𝑋𝑐 that is the Poisson point process with intensity function
𝛼(𝑐; 𝜇) ⋅ 𝑘(𝑢 − 𝑐; 𝜎1(𝜈1, 𝑐), 𝜎2(𝜈2, 𝑐), 𝜌(𝜉, 𝑐)), 𝑢 ∈ ℝ2. Here, 𝛼(𝑐; 𝜇) represents the
expected number of points per cluster around parent point 𝑐 and 𝜇 ∈ ℝ𝑙+1 is
a parameter. The daughter point processes follow a bivariate normal distribution
centered around the parent point and the covariance matrix is formed with
parameters 𝜎1(𝜈1, 𝑐), 𝜎2(𝜈2, 𝑐), 𝜌(𝜉, 𝑐). Here, 𝜈1 ∈ ℝ𝑚+1, 𝜈2 ∈ ℝ𝑛+1, 𝜉 ∈ ℝ𝑜+1 are
parameters. Therefore, we will introduce the following parametrization of the
intensity function of the parent point process, 𝛼, 𝜎1, 𝜎2 and 𝜌. For the intensity
function, 𝛼, 𝜎1 and 𝜎2, we will use exponentials which is a natural choice when
we want the parameters to be strictly positive. For 𝜌, we will use parametrization
via hyperbolic tangent, since we want this parameter to take values in the interval
(−1, 1). For the intensity function of the parent point process, we will write:

𝜅 ⋅ 𝑙(𝑢; 𝛽) = 𝜅 ⋅ 𝑒𝑥𝑝 {𝛽1𝑧1(𝑢) + … + 𝛽𝑝𝑧𝑝(𝑢)} ,

where 𝑝 ∈ ℕ0, 𝛽1, … , 𝛽𝑝 ∈ ℝ are regression coefficients and 𝑧1, … , 𝑧𝑝 are spatial
covariates influencing the parent point process. In the same manner, we define
the following three parametrizations:

𝛼(𝑐; 𝜇) = 𝑒𝑥𝑝 {𝛽𝛼
0 + 𝛽𝛼

1 𝑧𝛼
1 (𝑐) + … + 𝛽𝛼

𝑞 𝑧𝛼
𝑞 (𝑐)}

𝜎1(𝑐; 𝜈1) = 𝑒𝑥𝑝 {𝛽𝜎1
0 + 𝛽𝜎1

1 𝑧𝜎1
1 (𝑐) + … + 𝛽𝜎1𝑚 𝑧𝜎1𝑚 (𝑐)} (1.1)

𝜎2(𝑐; 𝜈2) = 𝑒𝑥𝑝 {𝛽𝜎2
0 + 𝛽𝜎2

1 𝑧𝜎2
1 (𝑐) + … + 𝛽𝜎2𝑛 𝑧𝜎2𝑛 (𝑐)} , (1.2)

where 𝑞, 𝑚, 𝑛 ∈ ℕ0, 𝜇 = (𝛽𝛼
0 , … , 𝛽𝛼

𝑞 ) ∈ ℝ𝑞+1, 𝜈1 = (𝛽𝜎1
0 , … , 𝛽𝜎1𝑚 ) ∈ ℝ𝑚+1

and 𝜈2 = (𝛽𝜎2
0 , … , 𝛽𝜎2𝑛 ) ∈ ℝ𝑛+1 are parameters, 𝑧𝛼

1 , … , 𝑧𝛼
𝑞 are spatial covariates

influencing the cluster size, 𝑧𝜎1
1 , … , 𝑧𝜎1𝑚 are spatial covariates influencing the
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standard deviation in the direction of the 𝑥-axis and 𝑧𝜎2
1 , … , 𝑧𝜎2𝑛 are spatial

covariates influencing the standard deviation in the direction of the 𝑦-axis.

For the correlation coefficient we define the parametrization

𝜌(𝑐; 𝜉) = 𝑡𝑎𝑛ℎ {𝛽𝜌
0 + 𝛽𝜌

1𝑧𝜌
1(𝑐) + … + 𝛽𝜌

𝑜𝑧𝜌
𝑜(𝑐)} ,

where 𝑜 ∈ ℕ0, 𝜉 = (𝛽𝜌
0 , … , 𝛽𝜌

𝑜) ∈ ℝ𝑜+1 is a parameter and 𝑧𝜌
1 , … , 𝑧𝜌

𝑜 are spatial
covariates influencing the correlation coefficient.

Remark. We want to emphasise here that no intercept in the parametrization of
the function 𝑙(𝑢; 𝛽) is needed since its role is taken by the additional parameter 𝜅.

We would like to mention here that we are able to simulate realizations of point
processes for every choice of 𝑝, 𝑞, 𝑚, 𝑛, 𝑜. If all of them are equal to 0, and
moreover 𝜎1 = 𝜎2, we end up with the stationary Neymann-Scott point process. If
𝜎1 ≠ 𝜎2, the possible anisotropy is introduced purely by the relative distribution
of daughter points in each cluster, as they form the so-called ’Gaussian ellipses’.
By adding covariates that could possibly also introduce different anisotropic
behaviour, one could create a rather complex structure and construct anisotropic
cluster point processes in the most general way.

We are going to restrict ourselves to the model where the parent point process
is a homogeneous Poisson point process. We will denote its intensity by 𝜅 > 0.
We also consider 𝛼 to be a real one-dimensional parameter, i.e., independent of
any covariates. We assume that the correlation coefficient 𝜌 is equal to zero. We
have chosen this model as it is the simplest anisotropic model to be constructed
for which the functionality of the Bayesian inference could be explored. This also
leads to the conclusion that only the standard deviations can be modelled using
spatial covariates in our analysis.

1.4.1 Identifiability issues
As mentioned in Dvořák et al. (2022), there may be some issues when exploring
the dependence on covariates. The problem is that the intensity function of the
daughter points is very closely related to the intensity function of the parent
points. If there were a covariate, say 𝑧1, that would possibly influence both the
mean value of daughter points per cluster and the intensity function of the parent
point process, we would not be able to compute the corresponding regression
parameters 𝛽1 and 𝛽𝛼

1 correctly. That is because we would have to estimate the
vector 𝛽 first, and that would lead to 𝛽1 being completely different from what it
should be, as it would cover also the influence of this covariate in the clusters. If
the true value of 𝛽1 were 0, 𝛽𝛼

1 were a non-zero value, we would then estimate
𝛽1 with approximately 𝛽𝛼

1 , which could lead to false conclusions when testing
whether a covariate influences the components or not.
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2. Bayesian Inference
In this chapter, we are going to discuss the Bayesian approach to obtain some
information about the model parameters. To begin with, we are going to introduce
the basics of Bayesian statistics compared to frequentist statistics. Then we
describe in detail how Bayesian inference is used in the model we are working
with. Finally, we discuss how we can sample from the joint distribution of the
parameters of interest.

2.1 Bayesian statistics
In this section, we state the basics of Bayesian statistics. Most of the terminology
and principles are taken from Chapter 1 of the book Watanabe (2018).

Let us have a random element 𝒳 on (ℝ𝑑, ℬ) and its one realization 𝑥. Let
us assume that the random element depends on a vector of parameters, say
𝜃 ∈ Θ ⊆ ℝ𝑑. In Bayesian statistics, we assume that the vector 𝜃 is random, i.e.,
it has a probability density function w.r.t. some 𝜎-finite measure 𝜐. In such a
case, the distinction between parameter estimation and prediction is blurred. On
the other hand, frequentist approach views parameters as fixed (but still possibly
uknown). In other words, Bayesian approach views parameters as random variables
(or random vectors), whereas frequentist approach views them as non-random
values (or vectors). The advantage of Bayesian approach is that it can model
uncertainty about the parameters to be estimated.

The conditional probability density function 𝑓(𝑥|𝜃) of 𝒳 is called the statistical
model. The probability density function 𝑝(𝜃) is then called prior. The aim of the
Bayesian inference is to estimate the unknown true distribution of the parameters
using the observations we have.

The Bayes’ Theorem for conditional probability density functions says that if
∫
Θ

𝑓(𝑥|𝜃)𝑝(𝜃)𝜐(𝑑𝜃) > 0, then we can write

𝑝(𝜃|𝑥) = 𝑓(𝑥|𝜃)𝑝(𝜃)
∫
Θ

𝑓(𝑥|𝜃)𝑝(𝜃)𝜐(𝑑𝜃)
, 𝜃 ∈ Θ, 𝑥 ∈ ℝ𝑑. (2.1)

Here, 𝑓(𝑥|𝜃) corresponds to the probability density function of the observed data,
and 𝑝(𝜃) is the prior probability density function of parameter 𝜃. In Bayesian
inference, we are interested in 𝑝(𝜃|𝑥), i.e., the probability density function of the
unknown parameters conditionally on the observed realization 𝑥 of 𝒳. Since we
cannot observe this distribution directly, we can use the Bayes’ Theorem and
rewrite the relation (2.1) as

𝑝(𝜃|𝑥) ∝ 𝑓(𝑥|𝜃)𝑝(𝜃),

where ∝ denotes equality up to a multiplicative constant. We refer to the left
hand side of the expression (2.1) as the posterior distribution, 𝑝(𝜃) is referred to
as prior distribution and 𝑓(𝑥|𝜃) is called the likelihood. The prior distribution
essentially represents our knowledge of the parameters before we see the data,
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whereas the posterior distribution represents our knowledge of the parameters
after we see the data.

2.2 Inference for anisotropic Thomas point pro-
cess

We are going to apply the Bayesian approach to the model we are studying, see
Section 1.3. Let us recall that 𝐶 is the parent point process, which is assumed
to be a homogeneous Poisson point process with intensity 𝜅. We work on an
observation window 𝑊 ⊆ ℝ2.

We are interested in the joint distribution of the parent point process 𝐶 and the pa-
rameters, given the observed point process 𝑋 of daughter points. The parameters
of interest are:

𝜅 intensity of the parent point process 𝐶

𝛼 the expected number of daughter points per cluster

𝜈1 parameter of the standard deviation 𝜎1 in the bivariate normal distribution
determining the relative displacement of daughter points around its parent
point, see relation (1.1)

𝜈2 parameter of the standard deviation 𝜎2 in the bivariate normal distribution
determining the relative displacement of daughter points around its parent
point, see relation (1.2).

Remark. In Bayesian statistics, the parent point process is usually taken as
a nuisance parameter as it is not of particular interest in the inference about the
model.

We use the so-called modified Bayesian method, which was proposed in Kopecký
and Mrkvička (2016), where we do not take 𝜅 as a standard parameter for which we
set prior distribution and then compute the joint distribution of all the parameters
including 𝜅, but rather ’fix’ it in every step and recompute it from the other
estimated parameters. Let us denote 𝑀 the number of daughter points. For its
expectation 𝔼 𝑀 it holds that

𝔼 𝑀 = 𝜅 ⋅ 𝛼 ⋅ |𝑊|. (2.2)
This means that everytime we get a new 𝛼, we can estimate

𝜅 ≈ 𝔪
𝛼 ⋅ |𝑊|

, (2.3)

where 𝔪 denotes the observed number of daughter points. This method does not
include 𝜅 in any probability density function from the Bayes’ Theorem, as it does
not have the same properties as other parameters.

We will denote 𝜃 = (𝛼, 𝜈1, 𝜈2). Let us assume that (𝐶, 𝜃) has a probability density
function w.r.t. some 𝜎-finite measure 𝜄. From Bayes’ Theorem, we have for the
anisotropic Thomas point process that

𝑝(𝐶, 𝜃|𝑋) = 𝑓(𝑋|𝐶, 𝜃)𝑝(𝐶|𝜃)𝑝(𝜃)
∫
𝑊×Θ

𝑓(𝑋|𝐶, 𝜃)𝑝(𝐶|𝜃)𝑝(𝜃)𝜄(𝑑(𝐶, 𝜃))
. (2.4)
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The model parameters 𝛼, 𝜈1 and 𝜈2 are taken a priori mutually independent,
and so we can break down the vector 𝜃 and rewrite (2.4) up to a multiplicative
constant as

𝑝(𝐶, 𝛼, 𝜈1, 𝜈2|𝑋) ∝ 𝑓(𝑋|𝐶, 𝛼, 𝜈1, 𝜈2)𝑝(𝐶|𝛼)𝑝(𝛼)𝑝(𝜈1)𝑝(𝜈2). (2.5)

On the right hand side of (2.5), 𝑝(𝐶|𝛼) stands for the probability density function
of the parent point process 𝐶 given the parameter 𝛼 w.r.t. the homogeneous unit
Poisson point process, that is a Poisson point process with 𝜆 = 1, see Definitions
5 and 9. It is in fact a probability density function parametrized by 𝜅, but
since we have the relation (2.2), we can view this probability density function
as parametrized by 𝛼. The functions 𝑝(𝛼), 𝑝(𝜈1) and 𝑝(𝜈2) are prior probability
density functions of the respective parameters.

From the assumptions of the model, we have that in (2.5), 𝑓(𝑋|𝐶, 𝛼, 𝜈1, 𝜈2) is
the probability density function of the observed point process, 𝑝(𝐶|𝛼) is the
probability density function of a homogeneous Poisson point process with intensity
𝜅, which can be recomputed from 𝛼 (see below) and 𝑝(𝛼), 𝑝(𝜈1) and 𝑝(𝜈2) are
prior densities of the respective parameters.

2.3 Simulations from the joint posterior distri-
bution

We want to sample from the joint posterior distribution 𝑝(𝐶, 𝜇, 𝜈1, 𝜈2|𝑋) since
its normalizing constant is analytically intractable. That is because to be able to
compute the normalizing constant, one would need to integrate over the space
of locally finite point configurations. Therefore, the posterior distribution is
approximated by the samples from a Markov chain, whose stationary distribution
and limiting distribution are both equal to the posterior distribution we want to
study. To construct the Markov chain, we are going to use Markov Chain Monte
Carlo (hereafter referred to as MCMC) methods. These methods are widely used
in the Bayesian inference as they give us a tool that can satisfactorily solve this
issue.

We use iterative procedures for updating both the parent point process and the
parameters altogether, which we are going to describe in detail in the next chapter.
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3. MCMC methods
In this chapter, we discuss the MCMC algorithms that we used in our method
in detail. If not stated otherwise, all the concepts and characteristics of MCMC
algorithms in this chapter are taken from Møller and Waagepetersen (2004). Core
of Algorithm 1 is also taken from Møller and Waagepetersen (2004), Algorithm 2
is taken from Robert (2016) and Algorithm 3 is taken from van Ravenzwaaij et al.
(2016).

Let us have 𝐵 ⊂ 𝑆 ⊂ ℝ𝑑 such that 0 < |𝐵| < ∞. Let 𝑌 denote a point process
on 𝐵 with an unnormalised density ℎ w.r.t. a unit Poisson point process on 𝐵.
The process 𝑌 may also be defined on 𝑆 and be additionally conditioned on 𝐵
to obtain ℎ, see e.g. Proposition 6.1 and Remark 6.6 in Section 6.3.3. in Møller
and Waagepetersen (2004).

An appropriately set up and built MCMC algorithm generates a Markov chain
𝑍1, 𝑍2, … with a specified limiting distribution, which in our case is the posterior
distribution. For two states 𝑍𝑖 and 𝑍𝑖+𝑗, we want their possible dependence to
be eliminated as 𝑗 increases. In such a case, the Markov chain is said to be well
mixing.

In our situation, 𝑌 correspond to the joint posterior distribution 𝑝(𝐶, 𝜇, 𝜈1, 𝜈2|𝑋)
and we iteratively construct a Markov chain with the state space 𝒩∗

𝑓(𝑊) × Θ,
where 𝒩∗

𝑓(𝑊) is the space of all simple finite counting measures on 𝑊, which is the
observation window we are working on. Each 𝑍𝑖, 𝑖 = 1, 2, … then corresponds to
the joint distribution of a point process 𝐶𝑖 and a vector parameter 𝜃𝑖, conditionally
on the observed point process 𝑋.

The next definition is taken from Meulen and Schauer (2022).

Definition 13. Let 𝑆 = (𝐸, 𝔅), 𝑆′ = (𝐸′, 𝔅′) be Borel measurable spaces.
A Markov kernel between 𝑆 and 𝑆′ is denoted by 𝐾 ∶ 𝑆 → 𝑆′, where 𝑆 is the
’source’ and 𝑆′ the ’target’. That is, 𝐾 ∶ 𝐸 × 𝔅′ → [0, 1], where

i. the map 𝑥 ↦ 𝐾(𝑥, 𝐵) is 𝔅-measurable for every 𝐵 ∈ 𝔅′ and

ii. the map 𝐵 ↦ 𝐾(𝑥, 𝐵) is a probability measure on 𝑆′ for every 𝑥 ∈ 𝐸.

Let 𝑄 be a Markov kernel, 𝑄(𝑥, 𝑑𝑦) = 𝑞(𝑥, 𝑦)𝜐(𝑑𝑦) for some density function
𝑞(𝑥, ⋅) defined on 𝐵. We call 𝑞(𝑥, ⋅) the proposal density.

The following two algorithms in Sections 3.1 and 3.2 below consist of two main
steps. Firstly, they make a proposal (of either an update of the population of
parent points or an update of the vector parameter 𝜃) and secondly, they accept
the proposal with some probability, computed from the current and proposed
state. This probability is then called the acceptance probability of the proposal.

3.1 Birth-Death-Move step
We first introduce the algorithm that is used to update the population of the parent
points. In every step, the algorithm randomly proposes one of the three possible
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updates, first of which is birth, that adds a new point to the current population
of parent points (so-called birth update), the second is then death, which removes
an existing parent point (so-called death update) and finally move, which means
changing the location of an existing parent point (so-called move update). Let
𝑛 ∈ ℕ. Let 𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑛} be the current state of the parent point process.
We denote 𝑝𝑏𝑖𝑟𝑡ℎ(𝑥) the probability of proposing birth, if the current state of the
algorithm is 𝑥. In a similar way, we define 𝑝𝑚𝑜𝑣𝑒(𝑥) and 𝑝𝑑𝑒𝑎𝑡ℎ(𝑥). Now we are
ready to introduce the Birth-Death-Move Step in Algorithm 1.

In Algorithm 1, 𝑅𝑚 and 𝜁𝑚 or 𝜂𝑚 or 𝑥𝑖 are mutually conditionally independent
given the random variables used for the generation of 𝑌0, … , 𝑌𝑚 and 𝐼𝑚. Also 𝐼𝑚
and 𝑅𝑚 are mutually independent. The matrix Σ in the move step determines
the possible shift of the chosen point 𝑥𝑖. A natural choice is a diagonal matrix

(𝜎2
∘ 0

0 𝜎2
•
)

with hyperparameters 𝜎∘, 𝜎• > 0 that we a priori specify.

Let ̄𝑥 be the current state of the parent point process and ̄𝑦 the proposed state of
this process. The acceptance probabilities of the move, birth or death update are
all of the form

𝛾 ( ̄𝑥, ̄𝑦) = {
𝑚𝑖𝑛 { ℎ( ̄𝑦)𝑞( ̄𝑦,𝑥̄)

ℎ(𝑥̄)𝑞(𝑥̄, ̄𝑦) , 1} , if ℎ( ̄𝑥)𝑞( ̄𝑥, ̄𝑦) > 0
1, otherwise,

(3.1)

where 𝑞( ̄𝑥, ̄𝑦) is the probability that we go from the current state ̄𝑥 to the new
state ̄𝑦 and ℎ( ̄𝑥), ℎ( ̄𝑦) are joint conditional probability density functions of the
parameters and the parent point process in the states ̄𝑥 and ̄𝑦, which we compute
as in (2.5), since we assume ℎ to be unnormalised. We work under the assumption
that all the parent points lie in the observation window 𝑊. Let us illustrate the
densities 𝑞( ̄𝑥, ̄𝑦), resp. 𝑞( ̄𝑦, ̄𝑥) on each of the possible proposals in the 𝑚th step.
We denote the number of parent points in the state ̄𝑧 as 𝑛( ̄𝑧). Let 𝑛( ̄𝑥) = 𝔫.

birth proposal ̄𝑥 ↦ ̄𝑥 ∪ 𝜂, 𝑛( ̄𝑥 ∪ 𝜂) = (𝔫 + 1), the proposal densities are
𝑞( ̄𝑥, ̄𝑦) = 𝑝𝑏𝑖𝑟𝑡ℎ( ̄𝑥) ⋅ 1

|𝑊| , 𝑞( ̄𝑦, ̄𝑥) = 𝑝𝑑𝑒𝑎𝑡ℎ( ̄𝑥) ⋅ 1
𝔫+1

death proposal ̄𝑥 ↦ ̄𝑥 ∖ 𝜉, 𝑛( ̄𝑥 ∖ 𝜉) = 𝔫 − 1, the proposal densities are
𝑞( ̄𝑥, ̄𝑦) = 𝑝𝑑𝑒𝑎𝑡ℎ( ̄𝑦) ⋅ 1

𝔫 , 𝑞( ̄𝑦, ̄𝑥) = 𝑝𝑏𝑖𝑟𝑡ℎ( ̄𝑥) ⋅ 1
|𝑊|

move proposal ̄𝑥 ↦ ̄𝑥 ∖ 𝑥𝑖 ∪ 𝜁, 𝑛( ̄𝑥 ∖ 𝑥𝑖 ∪ 𝜁) = 𝔫, the proposal densities are
𝑞( ̄𝑥, ̄𝑦) = 𝑝𝑚𝑜𝑣𝑒( ̄𝑥) ⋅ 1

𝔫 ⋅ 𝑓𝑚𝑜𝑣𝑒( ̄𝑥), 𝑞( ̄𝑦, ̄𝑥) = 𝑝𝑚𝑜𝑣𝑒( ̄𝑥) ⋅ 1
𝑛 ⋅ 𝑓𝑚𝑜𝑣𝑒( ̄𝑦),

where 𝑓𝑚𝑜𝑣𝑒( ̄𝑥) and 𝑓𝑚𝑜𝑣𝑒( ̄𝑦) are the densities for the move update in the current
state ̄𝑥 and proposed state ̄𝑦, respectively, which we choose to be bivariate normal
distribution. Since we work under the condition that all the parent points lie
inside the observation window 𝑊, the prior density for the parent point process is
equal to 0 outside of 𝑊, and so ℎ( ̄𝑦) in equation (3.1) is equal to 0 if the proposed
move update moves the chosen point out of the observation window, i.e., the
proposed state has a point outside the observation window, and the acceptance
probability in this case is 0.
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Algorithm 1: Birth-Death-Move Step
Input: Point pattern 𝑌𝑚 = 𝑥 = {𝑥1, … , 𝑥𝑛}
Output: Point pattern 𝑌𝑚+1
Set 0 ≤ 𝑝𝑚𝑜𝑣𝑒(𝑥) < 1, 0 ≤ 𝑝𝑏𝑖𝑟𝑡ℎ(𝑥) < 1, 0 ≤ 𝑝𝑑𝑒𝑎𝑡ℎ(𝑥) < 1 such that
𝑝𝑚𝑜𝑣𝑒(𝑥) + 𝑝𝑏𝑖𝑟𝑡ℎ(𝑥) + 𝑝𝑑𝑒𝑎𝑡ℎ(𝑥) = 1;

Draw 𝑅𝑚 ∼ 𝑈𝑛𝑖𝑓 ([0, 1]);
if 𝑅𝑚 ≤ 𝑝𝑚𝑜𝑣𝑒(𝑥) then

Draw 𝐼𝑚 ∼ 𝑈𝑛𝑖𝑓 ({1, … , 𝑛}) and further assume 𝐼𝑚 = 𝑖;
Generate 𝜁𝑚 ∼ 𝑁 (𝑥𝑖, Σ);
Calculate the acceptance probability 𝛾𝑚𝑜𝑣𝑒(𝑥, 𝜁𝑚);
Generate 𝑈 ∼ 𝑈𝑛𝑖𝑓 ([0, 1]);
if 𝑈 < 𝛾𝑚𝑜𝑣𝑒(𝑥, 𝜁𝑚) then

Set 𝑌𝑚+1 = {𝑥1, … , 𝑥𝑖−1, 𝜁𝑚, 𝑥𝑖+1, … , 𝑥𝑛};
else

Set 𝑌𝑚+1 = 𝑥;
end

else
if 𝑅𝑚 ≤ 𝑝𝑚𝑜𝑣𝑒(𝑥) + 𝑝𝑏𝑖𝑟𝑡ℎ(𝑥) then

Generate uniformly at random 𝜂𝑚 in the observation window W;
Calculate the acceptance probability 𝛾𝑏𝑖𝑟𝑡ℎ(𝑥, 𝜂𝑚);
Generate 𝑈 ∼ 𝑈𝑛𝑖𝑓 ([0, 1]);
if 𝑈 < 𝛾𝑏𝑖𝑟𝑡ℎ(𝑥, 𝜂𝑚) then

Set 𝑌𝑚+1 = {𝑥1, … , 𝑥𝑛, 𝜂𝑚};
else

Set 𝑌𝑚+1 = 𝑥;
end

else
Draw 𝐼𝑚 ∼ 𝑈𝑛𝑖𝑓 ({1, … , 𝑛}) and further assume 𝐼𝑚 = 𝑖;
Calculate the acceptance probability 𝛾𝑑𝑒𝑎𝑡ℎ(𝑥);
Generate 𝑈 ∼ 𝑈𝑛𝑖𝑓 ([0, 1]);
if 𝑈 < 𝛾𝑑𝑒𝑎𝑡ℎ(𝑥) then

Set 𝑌𝑚+1 = {𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛};
else

𝑌𝑚+1 = 𝑥;
end

end
end
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Let us have 𝐶 = ̄𝑥 the current parent point pattern and 𝐶′ = ̄𝑦 the proposed one.
For ℎ( ̄𝑥) and ℎ( ̄𝑦), we have that

ℎ( ̄𝑥) = 𝑓(𝑋|𝐶, 𝛼𝑚, 𝜈𝑚
1 , 𝜈𝑚

2 )𝑝(𝐶|𝛼𝑚)𝑝(𝛼𝑚)𝑝(𝜈𝑚
1 )𝑝(𝜈𝑚

2 ), (3.2)

and
ℎ( ̄𝑦) = 𝑓(𝑋|𝐶′, 𝛼𝑚, 𝜈𝑚

1 , 𝜈𝑚
2 )𝑝(𝐶′|𝛼𝑚)𝑝(𝛼𝑚)𝑝(𝜈𝑚

1 )𝑝(𝜈𝑚
2 ). (3.3)

Here, 𝑓(𝑋|𝐶, 𝛼𝑚, 𝜈𝑚
1 , 𝜈𝑚

2 ) is the density of the observed point process 𝑋 given the
current state of the parent point process and the current state of the parameters
𝛼𝑚, 𝜈𝑚

1 , 𝜈𝑚
2 . Then 𝑝(𝐶|𝛼𝑚) denotes the probability density function for the

homogeneous Poisson point process in the observation window 𝑊 given 𝛼𝑚 and
𝑝(𝛼𝑚), 𝑝(𝜈𝑚

1 ), 𝑝(𝜈𝑚
2 ) are the prior probability density functions evaluated in

the respective parameters. Further 𝑓(𝑋|𝐶′, 𝛼𝑚, 𝜈𝑚
1 , 𝜈𝑚

2 ) is the density of the
observed point process 𝑋 given the proposed state of the parent point process
and the current state of the parameters. Since we do not propose any change to
the parameters all the factors 𝑝(𝛼𝑚), 𝑝(𝜈𝑚

1 ) and 𝑝(𝜈𝑚
2 ) in (3.2) cancel out with

the corresponding factors in (3.3) when computing the acceptance probability in
(3.1) and we are left with the ratio

𝑓(𝑋|𝐶′, 𝛼𝑚, 𝜈𝑚
1 , 𝜈𝑚

2 )𝑝(𝐶′|𝛼𝑚)𝑞( ̄𝑦, ̄𝑥)
𝑓(𝑋|𝐶, 𝛼𝑚, 𝜈𝑚

1 , 𝜈𝑚
2 )𝑝(𝐶|𝛼𝑚)𝑞( ̄𝑥, ̄𝑦)

.

Let us now derive the formula for 𝑓(𝑋|𝐶, 𝛼𝑚, 𝜈𝑚
1 , 𝜈𝑚

2 ), from which we can anol-
ogously derive the formula for 𝑓(𝑋|𝐶′, 𝛼𝑚, 𝜈𝑚

1 , 𝜈𝑚
2 ). Let 𝔪 denote the number

of observed daughter points in the observation window 𝑊. Conditionally on the
parent point process 𝐶, we view the daughter point process as an inhomogeneous
Poisson point process with the intensity function given by the current values of
𝛼𝑚, 𝜈𝑚

1 and 𝜈𝑚
2 as

𝜆𝑚(𝑥) = ∑
𝑐∈𝐶

𝛼𝑚 ⋅ 𝑘(𝑥 − 𝑐; 𝜈𝑚
1 , 𝜈𝑚

2 ), (3.4)

where 𝑘(𝑥 − 𝑐; 𝜈𝑚
1 , 𝜈𝑚

2 ) is the probability density function corresponding to the
relative displacement of the daughter points in the clusters, given the values of
parameters in the current step, and 𝛼𝑚 represents the mean number of daughter
points per cluster. Then we can write

𝑓(𝑋|𝐶, 𝛼𝑚, 𝜈𝑚
1 , 𝜈𝑚

2 ) = exp {|𝑊| − ∫
𝑊

𝜆𝑚(𝑥)𝑑𝑥} ⋅ ∏
𝑥∈𝑋

𝜆𝑚(𝑥). (3.5)

After the substitution of the intensity function (3.4) into (3.5), the right hand
side can be rewritten as

exp {|𝑊| − 𝛼𝑚 ⋅ ∫
𝑊

∑
𝑐∈𝐶

𝑘(𝑥 − 𝑐; 𝜈𝑚
1 , 𝜈𝑚

2 )𝑑𝑥}⋅ ∏
𝑥∈𝑋

(𝛼𝑚 ⋅ ∑
𝑐∈𝐶

𝑘(𝑥 − 𝑐; 𝜈𝑚
1 , 𝜈𝑚

2 )) .

Using the relations

𝜎𝑚
1 = exp {𝜈𝑚

1 } , 𝜎𝑚
2 = exp {𝜈𝑚

2 } ,
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see Section 1.3, the fact that 𝑛(𝑋) = 𝔪, properties of the exponential and the
definition of the function 𝑘, we obtain

𝑓(𝑋|𝐶, 𝛼𝑚, 𝜈𝑚
1 , 𝜈𝑚

2 ) =

exp {|𝑊| − 𝛼𝑚

2𝜋𝜎𝑚
1 𝜎𝑚

2
⋅ ∫

𝑊
∑
𝑐∈𝐶

exp {−1
2

[(𝑥1 − 𝑐1)2

𝜎𝑚
1

+ (𝑥2 − 𝑐2)2

𝜎𝑚
2

]} 𝑑𝑥}

⋅ ( 𝛼𝑚

2𝜋𝜎𝑚
1 𝜎𝑚

2
)

𝔪

⋅ ∏
𝑥∈𝑋

(∑
𝑐∈𝐶

exp {−1
2

[(𝑥1 − 𝑐1)2

𝜎𝑚
1

+ (𝑥2 − 𝑐2)2

𝜎𝑚
2

]}) . (3.6)

For the ratio 𝑝(𝐶′|𝛼𝑚)𝑞( ̄𝑦,𝑥̄)
𝑝(𝐶|𝛼𝑚)𝑞(𝑥̄, ̄𝑦) , we have to distinguish between the possible proposed

updates. If we propose the move update, we obtain 1, since all the points lie
inside the observation window. For the birth update, the ratio simplifies to

𝑝(𝐶′|𝛼𝑚)𝑞( ̄𝑦, ̄𝑥)
𝑝(𝐶|𝛼𝑚)𝑞( ̄𝑥, ̄𝑦)

=
exp {|𝑊|(1 − 𝜅𝑚)} (𝜅𝑚)𝔫+1 𝑝𝑑𝑒𝑎𝑡ℎ( ̄𝑦) 1

𝔫+1

exp {|𝑊|(1 − 𝜅𝑚)} (𝜅𝑚)𝔫 𝑝𝑏𝑖𝑟𝑡ℎ( ̄𝑥) 1
|𝑊|

= 𝜅𝑚|𝑊|
𝔫 + 1

⋅ 𝑝𝑑𝑒𝑎𝑡ℎ( ̄𝑦)
𝑝𝑏𝑖𝑟𝑡ℎ( ̄𝑥)

,

and for the death update, we obtain

𝑝(𝐶′|𝛼𝑚)𝑞( ̄𝑦, ̄𝑥)
𝑝(𝐶|𝛼𝑚)𝑞( ̄𝑥, ̄𝑦)

=
exp {|𝑊|(1 − 𝜅𝑚)} (𝜅𝑚)𝔫−1 𝑝𝑏𝑖𝑟𝑡ℎ( ̄𝑦) 1

|𝑊|

exp {|𝑊|(1 − 𝜅𝑚)} (𝜅𝑚)𝔫 𝑝𝑑𝑒𝑎𝑡ℎ( ̄𝑥) 1
𝔫

= 𝔫
𝜅𝑚|𝑊|

⋅ 𝑝𝑏𝑖𝑟𝑡ℎ( ̄𝑦)
𝑝𝑑𝑒𝑎𝑡ℎ( ̄𝑥)

,

where we used the fact that the parent point process is assumed to be a homo-
geneous Poisson point process on 𝑊, i.e., its probability density function for the
value of 𝜅 being 𝜅𝑚 is

(𝜅𝑚)𝔫𝑒(1−𝜅)|𝑊|. (3.7)

3.2 Metropolis-Hastings step
In this section, we introduce the algorithm used for updating scalar parameters. As
we mentioned in Section 2.2, we update 𝜅 differently than other parameters, since
we recompute it in each step from 𝛼 and do not generate it from any distribution.

For the Algorithm 2, the acceptance probabilities are generally of the form

𝛾 (𝜃, 𝜗) = {
𝑚𝑖𝑛 {𝑓(𝜗)𝑞(𝜗,𝜃)

𝑓(𝜃)𝑞(𝜃,𝜗) , 1} , if 𝑓(𝜃)𝑞(𝜃, 𝜗) > 0
1, otherwise,

where 𝑓(𝜃) is the joint conditional probability density function of the parent point
proces with the parameters in the current state with the components of 𝜃 being
equal to the current values of the parameters and 𝑓(𝜗) is the probability density
function with the components of 𝜗 being equal to the proposed values of the
parameters. The function 𝑞(𝜃, 𝜗) stands for the probability density function of
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Algorithm 2: Metropolis-Hastings Step With Kappa Update
Input: 𝜃𝑚 = (𝛼𝑚, 𝜈𝑚

1 , 𝜈𝑚
2 ) , 𝜅𝑚

Output: 𝜃𝑚+1 = (𝛼𝑚+1, 𝜈𝑚+1
1 , 𝜈𝑚+1

2 ) , 𝜅𝑚+1

Generate 𝜗 = (𝛼𝑝𝑟𝑜𝑝, 𝜈𝑝𝑟𝑜𝑝
1 , 𝜈𝑝𝑟𝑜𝑝

2 ) from 𝑄(𝜃𝑚, ⋅);
Compute

𝜅𝑝𝑟𝑜𝑝 = 𝔪
𝛼𝑝𝑟𝑜𝑝 ⋅ |𝑊|

;
Calculate the acceptance probability 𝛾 (𝜃𝑚, 𝜅𝑚, 𝜗, 𝜅𝑝𝑟𝑜𝑝);
Generate 𝑈 ∼ 𝑈𝑛𝑖𝑓 ([0, 1]);
if 𝑈 < 𝛾 (𝜃𝑚, 𝜅𝑚, 𝜗, 𝜅𝑝𝑟𝑜𝑝) then

𝜃𝑚+1 = 𝜗𝑚, 𝜅𝑚+1 = 𝜅𝑝𝑟𝑜𝑝;
else

𝜃𝑚+1 = 𝜃𝑚, 𝜅𝑚+1 = 𝜅𝑚 ;
end

the update from 𝜃 to 𝜗 and analogously 𝑞(𝜗, 𝜃) is the probability density function
of the update back from 𝜗 to 𝜃.

Let us assume that the current number of parent points is 𝔫 and that we observe
𝔪 daughter points. For the vector 𝜃 = (𝛼, 𝜈1, 𝜈2) and parameter 𝜅, we have that

𝑓(𝜗) 𝑞(𝜗, 𝜃)
𝑓(𝜃) 𝑞(𝜃, 𝜗)

= 𝑓(𝑋|𝐶, 𝜗) 𝑝(𝐶|𝛼𝑝𝑟𝑜𝑝) 𝑝(𝛼𝑝𝑟𝑜𝑝) 𝑝(𝜈𝑝𝑟𝑜𝑝
1 ) 𝑝(𝜈𝑝𝑟𝑜𝑝

2 )
𝑓(𝑋|𝐶, 𝜃) 𝑝(𝐶|𝛼𝑚) 𝑝(𝛼𝑚) 𝑝(𝜈𝑚

1 ) 𝑝(𝜈𝑚
2 )

= 𝑓(𝑋|𝐶, 𝜗) (𝜅𝑝𝑟𝑜𝑝)𝔫 𝑒(|𝑊|−𝜅𝑝𝑟𝑜𝑝|𝑊|) 𝑝(𝛼𝑝𝑟𝑜𝑝) 𝑝(𝜈𝑝𝑟𝑜𝑝
1 ) 𝑝(𝜈𝑝𝑟𝑜𝑝

2 )
𝑓(𝑋|𝐶, 𝜃) (𝜅𝑚)𝔫 𝑒(|𝑊|−𝜅𝑚|𝑊|) 𝑝(𝛼𝑚) 𝑝(𝜈𝑚

1 ) 𝑝(𝜈𝑚
2 )

,

where we used the fact that the parent point process is assumed to be a homo-
geneous Poisson point process on 𝑊, i.e., its probability density function for the
value of 𝜅 being 𝜅𝑚 is given by the relation (3.7).

In the nominator, 𝑓(𝑋|𝐶, 𝜗) is the probability density function of the observed
point process 𝑋 given C, the current state of the parent point proces, and the
proposed values of the parameters 𝛼𝑝𝑟𝑜𝑝, 𝜈𝑝𝑟𝑜𝑝

1 and 𝜈𝑝𝑟𝑜𝑝
2 , 𝑝(𝐶|𝛼𝑝𝑟𝑜𝑝) is the

probability density function for the parent point process given the proposal
𝛼𝑝𝑟𝑜𝑝, which is a homogeneous Poisson process with intensity equal to 𝔪/𝛼𝑝𝑟𝑜𝑝.
Lastly, 𝑝(𝛼𝑝𝑟𝑜𝑝), 𝑝(𝜈𝑝𝑟𝑜𝑝

1 ) and 𝑝(𝜈𝑝𝑟𝑜𝑝
2 ) are the prior distribution functions for the

parameters evaluated in the proposed values. For the denominator, 𝑓(𝑋|𝐶, 𝜃) is
the probability density function of the observed point process given C and the
current value of the parameters, 𝑝(𝐶|𝛼𝑚) is the probability density function of
the parent point process given the current value 𝛼𝑚, i.e., homogeneous Poisson
point process with intensity 𝔪/𝛼𝑚 and 𝑝(𝛼𝑚), 𝑝(𝜈𝑚

1 ) and 𝑝(𝜈𝑚
2 ) are the values

of the prior density function in the current values of parameters.

Analogously as in the previous section, we can derive that 𝑓(𝑋|𝐶, 𝜃) is equal to
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exp {|𝑊| − 𝛼𝑚

2𝜋𝜎𝑚
1 𝜎𝑚

2
⋅ ∫

𝑊
∑
𝑐∈𝐶

exp {−1
2

[(𝑥1 − 𝑐1)2

𝜎𝑚
1

+ (𝑥2 − 𝑐2)2

𝜎𝑚
2

]} 𝑑𝑥}

⋅ ( 𝛼𝑚

2𝜋𝜎𝑚
1 𝜎𝑚

2
)

𝔪

⋅ ∏
𝑥∈𝑋

(∑
𝑐∈𝐶

exp {−1
2

[(𝑥1 − 𝑐1)2

𝜎𝑚
1

+ (𝑥2 − 𝑐2)2

𝜎𝑚
2

]}) ,

and we could also analogously derive 𝑓(𝑋|𝐶, 𝜗).

We generate the updates of each component of 𝜃 independently of other com-
ponents, and we use normal distribution centered in the current value of the
component with some standard deviation. More precisely, 𝑞(𝜃𝑚, ⋅) is a trivariate
normal distribution 𝑁3(𝜃𝑚, Σ), where

Σ = ⎛⎜
⎝

𝜎2
𝛼 0 0
0 𝜎2

𝜈1
0

0 0 𝜎2
𝜈2

⎞⎟
⎠

.

Here, 𝜎𝛼, 𝜎𝜈1
, 𝜎2

𝜈2
> 0 are hyperparameters which we a priori specify. We set

the prior for 𝛼 to be some uniform distribution on an interval on the positive
semi-axis of ℝ, and so if there is a proposal for a negative value of 𝛼, 𝑝(𝛼𝑝𝑟𝑜𝑝) is
equal to 0, therefore the acceptance probability is 0 in this case. In Chapter 4, we
update directly 𝜎1 and 𝜎2 instead of 𝜈1 and 𝜈2, since we assume there that 𝜈1 and
𝜈2 are scalar, i.e., there are no covariates influencing 𝜎1 and 𝜎2. Then we set their
priors to be uniform on some intervals on the positive semi-axis of ℝ, hence if the
proposal for one of these parameters is negative, then either 𝑝(𝜎𝑚

1 ) or 𝑝(𝜎𝑚
2 ) is

also equal to 0, and so the acceptance probability of such cases becomes 0.

3.3 Metropolis-within-Gibbs algorithm
Now, we are going to combine the two update steps into the Metropolis-within-
Gibbs algorithm, given heuristically in Algorithm 3. This algorithm alternates
between updating the parameters and updating the parent point process. As
stated in Chapter 2, the parent point process is taken as a nuisance parameter
and we are interested only in the inference about the model parameters.

Algorithm 3: Metropolis-within-Gibbs Algorithm
Input: Vector of initial values 𝜃0, initial parent point pattern 𝐶0,

observed point process 𝑋 consisting of 𝔪 points
Output: samples from the posterior distributions of the components of 𝜃,

corresponding values of 𝜅 and locations of the parent points
for 𝑛 = 0, 1, … , 𝑁 do

STEP 1: update of scalar parameters;
with 𝜃𝑛, 𝜅𝑛 do Metropolis-Hastings step with kappa update to obtain
𝜃𝑛+1, 𝜅𝑛+1;

if 𝑛 mod 100 = 0 then save the values 𝜃𝑛+1, 𝜅𝑛+1;
STEP 2: update of the parent point process;
with 𝐶𝑛 do Birth-Death-Move step

end
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After the algorithm has finished, we obtain samples from the posterior distribution
after the convergence of the chain to the limiting distribution. We are interested in
the posterior distributions of each parameter. To obtain those, we plot histograms
of the aposterior values. To obtain a point estimate, we use median of the
aposterior values.

Remark. We want the neighbouring obtained values of parameters to be inde-
pendent (or at least less dependent), and that is why we save and use only the
information from every 10th iteration. This procedure is called thinning of the
Markov chain.

3.3.1 Burn-in
To obtain reasonable values for the aposterior distributions, one has to take
the convergence into consideration. The burn-in is a number of the steps that
are deleted from the beginning of the chain to obtain only the values from the
algorithm that are close to the coveted values. To be able to set the burn-in, one
has to estimate it from the traceplots of parameters describing the states of the
Markov chain and determine the step from which the trace seems to stabilize, i.e,
does not show any major deviations. The burn-in depends on the complexity of
the model, as well as the prior distributions, and therefore there is no universal
recommendation.

3.3.2 Mean vs. median
It is both natural and reasonable to consider both mean and median as a possible
point estimate. We have performed a few simulations to see whether these two
would differ significantly. We introduced the prior distributions on bounded
intervals and as we can see from the posterior distributions in Chapter 4, these
distributions are approximately symmetrical. Hence the two estimates, mean
and median of the posterior sampled values, are very close and do not differ
significantly. Therefore we opted for median as it is a more robust estimate.
Because of these reasons, we do not include the mean in our tables and further
calculations.

3.3.3 Recommended choice of initial values
In the first step, the parent point process is created using no information about
the location of the observed daughter points. This can lead to the logarithm
of the acceptance probability being very small which runs into the problem of
machine precision when simulating in R. In such cases, an error ocurrs, because
the inequality log(𝑈) < log(𝛾⋅) from Algorithm 1 cannot be properly evaluated
(that is because log(𝛾⋅) in this case is computed by R as −∞). To avoid such
errors, we recommend using a lower initial value for 𝛼, which causes the initial
number of parent points to be higher than anticipated. This causes the distances
from the observed points to the closest parent point to be smaller and we can
therefore avoid this problem.
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4. Simulation study for
anisotropic Thomas cluster point
processes without covariate
dependencies
In this chapter, we are going to discuss the results of the simulations in the
case where all the model parameters are one-dimensional, i.e., no covariates were
considered to influence the models. For the daughter point processes, we are
interested in their standard deviations 𝜎1 and 𝜎2 which determine the relative
displacement of these points around the parent point, their mean number in each
cluster 𝛼 and the intensity of the parent point process 𝜅, as we described in
Section 1.3.

We would like to mention that we use the software R (version 4.3.2) for all the
calculations. We use packages spatstat (version 3.0 − 7) and mvtnorm (version
1.2 − 4). The source codes are available in the electronic attachments of this
thesis.

In Section 4.1, we verify that the algorithm works well and gives reasonable values.
Next, in Section 4.2, we illustrate the method on simulated data, and give the
numerical and graphical outputs that can be obtained from the analysis. In the
next Section 4.3, we show the results of the analysis on real data and the obtained
numerical and graphical outputs. Finally, in Section 4.4, we discuss the issue of
parameter identifiability.

4.1 Performance of the MCMC algorithm
In this section, we show how well the algoritm works. To do so, we performed 10
independent runs of the algorithm with 100 000 steps and 50 000 step burn-in. 3
realizations out of these 10 are shown in the Figure 4.1.

In each run, we generated an anisotropic Thomas point process using 𝜅 = 25,
𝛼 = 10, 𝜎1 = 0.04 and 𝜎2 = 0.02, independent of all the other generated point
processes. We used uniform priors 𝑈𝑛𝑖𝑓([0.003, 30]) for 𝛼 and 𝑈𝑛𝑖𝑓([0.001, 0.2])
for both 𝜎1 and 𝜎2 and set the initial values of 𝛼 to be 5, both 𝜎1 and 𝜎2 to
be 0.01. From the initial value of alpha, we computed the initial value of 𝜅
from the total number of daughter points. The proposal distributions for 𝛼, 𝜎1
and 𝜎2 were normal distributions centered in the current value of the parameter
with the standard deviations equal to 𝜎𝛼 = 0.25, 𝜎𝜎1

= 0.005 and 𝜎𝜎2
= 0.005,

respectively, see Section 3.2.

The initial parent point patterns were created as Poisson point processes in the
observation window 𝑊 with the intensity equal to the initial value of 𝜅. The
probabilities of suggesting move, birth or death were all equal to 1/3. For the
move proposal, we used the bivariate normal distribution centered in the point
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Figure 4.1 3 realizations out of a total of 10 used for testing the performance of the
algorithm.

that we wanted to move, with 𝜎∘ = 𝜎• = 0.01, see Section 3.1.

To evaluate how well the algorithm performs, we computed the point estimates
of the parameters, the relative mean squared error and relative bias. We also
computed the 95% credibility intervals. Let us first give the definition of the
relative mean squared error and the relative bias.

Definition 14. Let ̂𝜃 be an estimator of parameter 𝜃. The mean squared error
(𝑀𝑆𝐸) is defined as

𝑀𝑆𝐸( ̂𝜃) = 𝔼 [(𝜃 − ̂𝜃)
2
] .

The relative mean squared error (𝑟𝑀𝑆𝐸) is then defined as

𝑟𝑀𝑆𝐸( ̂𝜃) = 𝑀𝑆𝐸( ̂𝜃)
𝜃2 .

Moreover, we define the bias as

𝑏𝑖𝑎𝑠( ̂𝜃) = 𝔼 [ ̂𝜃 − 𝜃] ,

and the relative bias as

𝑟. 𝑏𝑖𝑎𝑠( ̂𝜃) = 𝑏𝑖𝑎𝑠( ̂𝜃)
𝜃

.

Credible intervals are a Bayesian counterpart of the confidence intervals. A 95%
credibility interval of a scalar parameter is obtained as an interval between 0.025
and 0.975 quantiles of the posterior distribution of this parameter.

The results for 𝑟𝑀𝑆𝐸 and the relative bias for each parameter are presented in
Table 4.1. As we can see, we did not observe any large 𝑟𝑀𝑆𝐸s or large bias in
any of the model parameters. The values of 𝑟𝑀𝑆𝐸 are very small and the relative
bias is also satisfactory. Therefore we can conclude that the method used gives
sensible results.

For the analysis using credible intervals, we plotted a 95% credibility interval
for each parameter combined with the point estimate obtained as the posterior
median. For reference, we also plotted the parameter value used for simulation
of the point patterns considered here. We can examine the results in Figure 4.2.
From there we can see that the real value of the parameter 𝛼 lies inside 9 out of
the 10 credible intervals. For 𝜎1 and 𝜎2, all of the credible intervals cover the real
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parameter 𝑟𝑀𝑆𝐸 relative bias
𝜅 0.033 −0.103
𝛼 0.010 0.039
𝜎1 0.002 0.031
𝜎2 0.003 0.008

Table 4.1 𝑟𝑀𝑆𝐸 and relative bias for each parameter computed from 10 independent
runs of the algorithm rounded to 3 decimals.

value of the parameters. From this, we can conclude that the algoritm works well
and gives satisfactory results.

For parameter 𝜅, 6 intervals cover the real value of the parameter, as we can see
in Figure 4.3. This is a much smaller value than anticipated, as we wanted 95%
credibility intervals and this gives us only 60%, but we assume that by changing
the prior distribution for 𝛼, one could obtain wider credibility intervals with
possibly better coverage if necessary. That is because since we set the prior for
𝛼 to be 𝑈𝑛𝑖𝑓([0.003, 30]), the prior for 𝜅 can be determined from this using the
Monotone transformation theorem. The prior probability density function for 𝜅 is
then equal to

𝑓𝜅(𝑥) = 12 500
999

⋅ 1
𝑥21(𝑥) [25

2
, 12 500] , 𝑥 ∈ ℝ,

which we can also observe in Figure 4.4. As we can see, larger values are therefore
suppressed and we believe that this is the reason why the credibility intervals
which do not contain the used value of 𝜅 are under this value.
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Figure 4.2 95% credibility intervals for parameters 𝛼, 𝜎1 and 𝜎2. Green squares
are the estimated values from each run of the algorithm, red line is the value of the
parameters used for the simulations: 𝛼 = 10, 𝜎1 = 0.04 and 𝜎2 = 0.02.
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Figure 4.3 95% credibility intervals for 𝜅. Green squares are the estimated values
from each run of the algorithm, red line is the value of the parameter used for the
simulations 𝜅 = 15.

Figure 4.4 Prior probability density function of 𝜅 restricted to 𝑥 ∈ [25
2 , 60].
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4.2 Analysis and outputs for a simulated dataset
In this section, we present the results from one run of the algoritm. We show the
results that we can obtain from the run combined with graphic outputs.

First, we simulated a realization of an anisotropic Thomas point process in
a unit square window 𝑊 = [0, 1]2 using 𝜅 = 15, 𝛼 = 25, 𝜎1 = 0.02 and
𝜎2 = 0.04. We can see the realization in the top left picture in Figure 4.5.
The initial value of parameter 𝛼 was 10, for both 𝜎1 and 𝜎2 we set the initial
value as 0.01. We set the prior distribution for 𝛼 to be 𝑈𝑛𝑖𝑓([0.003, 30]), for 𝜎1
and 𝜎2 we used 𝑈𝑛𝑖𝑓([0.001, 0.2]). For updates, we chose normal distributions
centered in the current value of the parameter with standard deviations 𝜎𝛼 = 3,
𝜎𝜎1

= 𝜎𝜎2
= 0.003.

The choice of the standard deviations for the updates can be based on the
examination of shorter pilot runs and the preliminary estimates of credible intervals.
We try to set the standard deviation to be of the same order as the length of
the credible interval for the parameter. By doing this, we control the fraction of
accepted updates and also the correlations in the sequence of the saved samples
from the posterior distribution. From the experience of the previous section, we
have used larger standard deviation for 𝛼 in this section. We will discuss the
fractions of accepted updates and the correlations between the samples later on
in this section.

Since we simulated the data that we analyse, we also have the information about
the real number of parent points and their locations, which we can see in Figure
4.5 in the top right picture. We can see that there were 13 parent points in total
which were randomly scattered around the observation window 𝑊. In the bottom
left picture, we can see the initial locations of the 31 parent points, which were
created as a homogeneous Poisson point process with intensity 300

10 = 30, which
is the estimate from relation (2.3), as we observed 300 daughter points and set
the initial value of 𝛼 to be 10. We set the probabilities for birth, death and move
update as 1/3. In the move update, we move the chosen point using normal
distribution centered in this chosen point with 𝜎∘ = 𝜎• = 0.01. As we can see
in the bottom right picture from this figure, there are estimated to be 14 parent
points very close to their exact locations in the last step of the algorithm. The
fact that there were estimated to be 14 parent points should not be given much
weight as it represents only one sample from the posterior distribution of the
parent point process. There were also many populations of parent points where
there were 15 or 13 parent points. We performed 250 000 steps of the algorithm
with a 100 000 step burn-in and saved every 100th value.

Next, we provide the pictures of the intensity function of the daughter point
process conditional on the parent point process in Figure 4.6. First, we plotted
the conditional intensity function, given the chosen parameters for the simulations,
of the daughter point process

𝜆(𝑥) = ∑
𝑐∈𝐶

𝛼 ⋅ 𝑘(𝑥 − 𝑐; 𝜎1, 𝜎2) (4.1)

28



Figure 4.5 Realization of an anisotropic Thomas point process used for analysis (top
left). Parent point locations: the real locations (top right), the initial locations from
the first step of the algorithm (bottom left) and the final locations from the last step
(bottom right).

and then the estimated conditional intensity function of the daughter point process

𝜆(𝑥) = ∑
𝑐∈𝐶

̂𝛼 ⋅ 𝑘(𝑥 − 𝑐; 𝜎1, 𝜎2), (4.2)

where 𝐶 are the locations of the parent points in the last step of the algorithm
and ̂𝛼, 𝜎1 and 𝜎2 are the values of the respective parameters from the last step.
Although we obtain posterior distributions for the parent point process, as well
as the posterior distributions for parameters after the algorithm has finished,
we chose the last population of parent points and the last accepted values of
parameters purely for illustrative purposes. As we can see, the intensity functions
are very similar, and we can see that the estimates are very close to the used
values of the parameters and to the original locations of the parent points.

Next, we have a look at the posteriors of parameters. In Figure 4.7, we can see
the four histograms of the samples from the posterior distributions, which give us
estimates of the posterior probability density functions of the model parameters.
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Figure 4.6 Real intensity function of the daughter point processes (left) and the
estimated intensity function computed at the end of the algoritm (right).

𝜅 𝛼 𝜎1 𝜎2

used value 15 25 0.020 0.040
estimated value 12.037 24.923 0.020 0.041

lower credibility bound 10.680 21.933 0.018 0.038
upper credibility bound 13.680 28.090 0.022 0.045

Table 4.2 Real and estimated values of the parameters for a simulated dataset.

We also plotted the prior probability density functions (dark blue lines). As we can
see in the figure, all the histograms represent reasonable unimodal distributions
which are significantly different from the prior distributions. We can see that the
distributions are close to being symmetrical, and therefore in connection with
the discussion in Subsection 3.3.2, we can conclude that the posterior median is
a reasonable point estimate of the parameters. The estimated posterior values
combined with corresponding credibility intervals, rounded to three decimals, are
shown in Table 4.2. We can see that the obtained values and credibile intervals
are reasonable and give good estimates of the used values.

In Figure 4.8 we can see the traceplots describing the current state of the parameter
in the MCMC algorithm together with the point estimate (solid red line) and the
end points of the credible intervals (dashed red lines). Let us recall that we use
every 100th observed value of parameters. As we can see in the plots, most of
the values in the chain after the burn-in stay in the credibility intervals and no
significant deviation from the intervals were detected. We can also see that the
chains have converged to their limiting distributons. We also plotted the traceplot
for log-likelihood, which we can see in Figure 4.9. We can examine that there
were no significant deviances and that it remains quite stable.

In order to find the sampling frequency, i.e., how often we should save the
computed value, we first saved every computed value and then had a look at
the autocorrelation function of the posterior values. From that, we estimated
the frequency so that the neighbouring values would be as little correlated as
possible, while still having enough observations to perform the analysis of the
output. A reasonable choice is 100, meaning that we save every 100th value. We
can examine the corresponding plots of autocorrelation functions of the posterior
values thinned like this for 𝛼 and 𝜎1 in Figure 4.10.
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Figure 4.7 Histogram of the samples from the posterior distribution (estimating the
posterior probability density function) with prior density lines (dark blue lines) for the
simulated data.

Lastly, we had a look at the fractions of accepted updates. To do that, we
computed throughout the run of the algorithm the fraction of accepted proposals
always in the last 1 000 steps. We can examine the results in Figure 4.11. For
better clarity, we ommited larger values from the beginning of the algorithm where
more updates were accepted, as the algorithm starts from point in the state space
that is rather extreme with respect to the limiting distribution. The optimal
acceptance rate should not be too large, as that would indicate that the chain
is not in a ’good’ state and still changes a lot, on the other hand it should not
be too small, as this would lead to the chain remaining on certain values, which
would mean that it does not explore the entire state space sufficiently. Values
around 20% are generally considered to be acceptable.
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Figure 4.8 Traceplots for model parameters describing the state of the MCMC
algorithm for simulated data. We saved the values after the burn-in of 100 000 steps.
Only every 100th value of each parameter is recorded.
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Figure 4.9 Traceplot for log-likelihood during the MCMC algorithm after the burn-in
while saving every 100th value for simulated data.

Figure 4.10 Estimated autocorrelations for posterior values of 𝛼 and 𝜎1 for simulated
data where we save every 100th computed value.
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Figure 4.11 Fractions of accepted proposals in the last 1000 steps in the birth-death-
move update and the Metropolis-Hastings update for simulated data.
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4.3 Analysis for real life data
In this section, we are going to present the results of the algorithm on a real-life
data set. For this purpose we chose the dataset redwoodfull available in the R
package spatstat. These data contain information about the locations of 195
seedlings and saplings of California Giant Redwood rescaled to the unit square
window. We can see the whole data in Figure 4.12 (left). As we can see in this
picture, there is not a clustering pattern all over the observation window, but
rather in the left upper half of the picture, whereas below the diagonal, there are
no visible clusters. Moreover, since we work under the assumption that 𝜌 = 0,
i.e., the covariance matrix describing the relative displacement of the daughter
points in the clusters is diagonal, we cannot properly test the situation where
the dependence on the direction is diagonal rather than horizontal or vertical.
Because of these two fact, we made some transformations for the dataset used.

First of all, we have to introduce a special type of directional 𝐾-function. For
more information, see Møller and Waagepetersen (2004).

Definition 15. For −𝜋/2 ≤ 𝜚 ≤ 𝜋/2, 𝜚 ≤ 𝜓 ≤ 𝜚 + 𝜋, and 𝑟 > 0, define
𝐾′(𝜚, 𝜓, 𝑟) = 𝐾(𝐵(𝜚, 𝜓, 𝑟)), where K is the K-function and

𝐵(𝜚, 𝜓, 𝑟) = {𝑡(cos𝜄, sin𝜄) ∶ 0 ≤ 𝑡 ≤ 𝑟, 𝜙 ≤ 𝜄 ≤ 𝜓 𝑜𝑟 𝜙 + 𝜋 ≤ 𝜄 ≤ 𝜓 + 𝜋}
is the union of the two sectors of 𝑏(0, 𝑟) with the angles of the first sector between
𝜚 and 𝜓, and the angles of the second sector between 𝜚 + 𝜋 and 𝜓 + 𝜋. We call
the above defined function the sector K-function.

Thanks to the sector 𝐾-function, one can investigate possible anisotropy in the
data by investigating several directions in the picture and determining whether
or not there is a significantly larger value in some of the directions. Thanks to
this, we can also determine the direction where the strongest anisotropy can be
detected. We computed the sector 𝐾-function for several directions and several
different values of 𝑟 to obtain the direction where the most anisotropy can be
detected. We found out that the direction that shows the largest anisotropy is
around 5𝜋/18. We then rotated the dataset accordingly and cut out a rectangle
of the dimensions 0.29 × 0.5 where we observed clusters. The final dataset that
we used for testing can be seen in Figure 4.12 (middle). This rectangle was cut
out of the lower right corner of the original dataset after the rotation. This is
for illustrative purposes only; analyzing a dataset with a general direction of
anisotropy would require large changes in the computer codes.

Since we worked on a much smaller window than in the previous examples,
where we worked on the unit square window, we had to make changes to the
hyperparameters of the model to obtain the results which would have satisfying
properties, mainly the fraction of accepted updates of both the parent point
process and parameters around 20%. We began with the initial values 𝛼 = 5,
𝜎1 = 𝜎2 = 0.01 and used the same prior distribution for these parameters as in the
previous sections. For the updates, we again used normal distributions centered
in the current value with 𝜎𝛼 = 0.91, 𝜎𝜎1

= 𝜎𝜎2
= 0.0065. For the parent point

process, we used 𝜎∘ = 𝜎• = 0.1 in the move update and proposed birth, death and
move update all with probability 1/3. We did 250 000 steps with 100 000 step
burn-in and saved every 100th value.
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Figure 4.12 Redwoodfull dataset (left), used realization of the dataset (middle),
estimated conditional intensity function (right)

𝜅 𝛼 𝜎1 𝜎2

estimated value 87.082 3.881 0.011 0.025
lower credibility bound 55.691 2.137 0.008 0.014
upper credibility bound 158.104 6.068 0.016 0.039

Table 4.3 Table of estimated values and credible intervals for redwood data.

The results of the analysis rounded to 3 decimals are summed up in Table 4.3.
It is worth mentioning that the credible intervals are much larger than in the
previous simulated examples, since we are working with real data with not many
observations on a much smaller window. We also plotted the conditional intensity
function of the daughter point processes in Figure 4.12 (right), where we can see
the estimated locations of the parent points. Let us recall that we expect all the
parent points to lie inside the window.

We can observe the posterior distributions estimating the posterior probability
density functions in Figure 4.13. Compared to the histograms obtained in Figure
4.7, we can see that the histograms in this case are more skewed to the right. But
nevertheless, the distributions are still unimodal and for 𝛼, 𝜎1 and 𝜎2, they differ
from the uniform priors significantly.

Lastly, we take a look at the traceplots of the Markov chain, after the burn-in
with every 100th value of parameter. The results can be seen in Figure 4.14.
We also ploted the corresponding credible intervals (dashed red lines) and the
estimated value of the parameter (full red line). Compared to the simulated data,
we can see that the traces tend to leave the credible intervals to very high values.
Nevertheless, the sampler seems to mix well and the chain has converged to its
limiting distribution. We can also observe the traceplot for log-likelihood in Figure
4.15. There we also observe somewhat larger dispersion of the values compared to
the simulated dataset.
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Figure 4.13 Histogram of the samples from the posterior distribution (estimating
the posterior probability density function) for redwood dataset.
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Figure 4.14 Traceplots for model parameters describing the state of the MCMC
algorithm for redwood dataset. We saved the values after the burn-in of 100 000 steps.
Only every 100th value of each parameter is recorded.
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Figure 4.15 Traceplot for log-likelihood during the MCMC algorithm for redwood
dataset.
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4.4 Identifiability of 𝜅 and 𝛼
As we mentioned in Section 1.4, there may be some indentifiability issues with
covariates influencing the parent point process and the mean number of the
daughter points per cluster.

When performing the MCMC algorithm described in Chapter 3, one has to keep in
mind that the result may be influenced by the relationship between the parameters
𝜅 and 𝛼, as we estimate 𝜅 using the relation (2.3). To put it simply, the algorithm
cannot distinguish between one cluster with many daughter points and more
overlapping clusters, each with a smaller number of daughter points.

As an extreme case where the results are far from the real values of the parameters,
we computed the point estimators of the parameters 𝜎1, 𝜎2, 𝜅 and 𝛼, where 𝛼 is
20 times larger than 𝜅. To be precise, we used 𝛼 = 100, 𝜅 = 5, 𝜎1 = 0.02 and
𝜎2 = 0.03. We used 100 000 steps with a 50 000 steps of burn-in. We computed the
real conditional intensity function of the daughter point process and the estimated
conditional intensity function of the daughter point process as in relations (4.1)
and (4.2), and plotted them as pictures in Figure 4.16. We also ploted the exact
locations of the parent points in the picture with the real intensity function and
the parent points estimated in the last step of the algorithm in the picture with
the estimated intensity of the daughter point process. Although we estimate the
locations of the parent points from the run of the MCMC algorithm, we chose
their location from the last step of the algorithm for illustrative purposes. As we
can see, the intensity functions are very similar, but the number of parent points
in the estimated case is larger. The real number of the parent points is 4, but the
algorithm estimated the number to be 12 and clustered them.

The used values and their estimates rounded to 3 decimals are presented in Table
4.4. As we can see in the table, the estimates of 𝜅 and 𝛼 are very different from the
actual values of the parameters. That is again because of the strong relationship
between these two parameters.

As a solution to this problem we would recommend the user to set the number
of the parent points after these 100 000 steps to 4, as from the Figure 4.16 we
can see that there are 4 ’bumps’ in the intensity function, and continue with the
algorithm with this number of parent points thereafter. To set the 4 new parent
points, one could for example find the center of gravity of each cluster of parent
points. A more in depth analysis of this issue is beyond the scope of this thesis.
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𝜅 𝛼 𝜎1 𝜎2

used value 5 100 0.02 0.03
estimated value 14.604 29.649 0.016 0.026

Table 4.4 Real and estimated values of the parameters in a situation where 𝛼 is 20
times larger than 𝜅.

Figure 4.16 The real intensity function of the daughter point processes with the exact
locations of the parent points (left). The estimated intensity function of the daughter
point processes with the locations of the parent points extracted from the 100000th step
of the MCMC algorithm (right).
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5. Simulation study for
anisotropic Thomas cluster point
processes with covariate
dependencies
In this chapter, we are going to present the results for the situation where there
might be a covariate present. We perfomed two analyses, one for a situation where
we simulated a point process dependent on a covariate, and we show how well the
algorithm estimates the effect of the covariate, and the second one for a situation
where no covariate is present, but set the algorithm as if there were a covariate
influencing the process.

In both cases, we assume that the possible dependence on a covariate lies within
𝜎1, which is one of the standard deviations describing the relative displacement of
the daughter point processes around their parent points. That is, we assume that
𝜎1 is of the form

𝜎1(𝑐; 𝜈1) = exp {𝛽𝜎1
0 + 𝛽𝜎1

1 𝑧𝜎1
1 (𝑐)} ,

where 𝑐 = (𝑐1, 𝑐2) denotes a parent point and 𝜈1 = (𝛽𝜎1
0 , 𝛽𝜎1

1 ) ∈ ℝ2 corresponds
to the regression coefficients of the parametrization.

5.1 Analysis for covariate dependent process
We are first going to analyse the situation where a covariate is present in the data.
The covariate used is a function 𝑧𝜎1

1 (𝑢1, 𝑢2) = 𝑢1, (𝑢1, 𝑢2) ∈ 𝑊. We simulated
a Thomas cluster point process with parameters 𝜅 = 25, 𝛼 = 10, 𝜎2 = 0.015,
𝛽𝜎1

0 = −4.605 (if no covariate was observed, this would correspond to 𝜎1 being
equal to 0.01, as log(0.01) ≐ −4.605) and 𝛽𝜎1

1 = 2. The used realization can be
seen in the top left picture in Figure 5.1. We can see that the clusters on the
left side of the window are tighter, whereas the clusters on the right side of the
picture are more dispersed.

For the initial values, we chose 𝛼 = 5, 𝛽𝜎1
0 = −3, 𝛽𝜎1

1 = 1, 𝜎2 = 0.02. As the prior
distributions, we again used uniform priors 𝑈𝑛𝑖𝑓([0.03, 30]) and 𝑈𝑛𝑖𝑓([0.001, 0.2])
for 𝛼 and 𝜎2, respectively. Since both 𝛽𝜎1

0 and 𝛽𝜎1
1 may reach negative values, we

set their priors to be 𝑁(0, 5) in both cases. For the update of the parameters, we
used normal distributions centered in the current value with standard deviations
for 𝛼, 𝜎2, 𝛽𝜎1

0 and 𝛽𝜎1
1 to be 0.15, 0.003, 0.003 and 0.15, respectively. For the move

update of the parent point process, we used a diagonal matrix with 𝜎∘ = 𝜎• = 0.01.
We again propose birth, death, and move with probability 1/3 for all the possible
updates. We performed 250 000 steps with 100 000 step burn-in.

As there is an additional parameter to be estimated compared to the previous
chapter, the convergence of the algorithm may therefore be somewhat slower. In
order to start the algorithm from a reasonable part of the state space, we start
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Figure 5.1 Point process dependent on a covariate (top left), corresponding parent
point process (top right), initial parent point process (bottom left) and the final point
process from the last step of the algorithm (bottom right).

with the parent point pattern generated as a Poisson point process with intensity
function equal to the kernel estimate of the intensity function of the daughter
point process with Diggle’s edge correction. This helps the parent point pattern to
converge faster, since the parent points in the first step are generated in realistic
positions, rather than completely at random.

In Figure 5.1 we can see the point process observed in the top left picture and
the corresponding parent points in the top right picture. The initial parent point
process is in the bottom left picture, and we can see that the points are scattered
around the positions of the clusters, but there are a lot more parent points than
anticipated. The final parent point process from the last step of the algorithm is
in the bottom right picture. We can see that the locations of the points are very
close to the exact locations.

We are now going to present the outputs of the algorithm. The estimated values
of the parameters rounded to 3 decimals with their respective credible intervals
are presented in Table 5.1. As we can see, all the credibility intervals contain
the used values of the parameters and the estimated values are also close to the
used ones. In Figure 5.2, we can examine the histograms of the samples from the
posterior distribution, which estimate the posterior probability density functions.
As we can see, all of them are reasonable unimodal distributions. The value 0 is
not present in the posterior samples of 𝛽𝜎1

0 , and the influence of the covariate is
well estimated.
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𝜅 𝛼 𝛽𝜎1
0 𝛽𝜎1

1 𝜎2

used value 25 10 −4.605 2 0.015
estimated value 21.873 9.281 −4.662 2.117 0.015

lower credibility bound 18.687 7.722 −4.900 1.625 0.014
upper credibility bound 26.287 10.863 −4.413 2.571 0.017

Table 5.1 Real and estimated values of the parameters for a simulated dataset with a
covariate.

Figure 5.2 Histogram of the samples from the posterior distribution (estimating the
posterior probability density function) for simulated data with a covariate present.

Lastly, we take a look at the traceplots of the parameters in Figures 5.3 and 5.4.
As we can see, the chains converged to their limiting distribution and the sampler
is well mixing. We can also see the traceplot for log-likelihood in Figure 5.5. As
we can see, the values do not show significant deviances and are quite stable.
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Figure 5.3 Traceplots for model parameters describing the state of the MCMC
algorithm for simulated data with a covariate. We saved the values after the burn-in of
100 000 steps and only every 100th computed value is used.
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Figure 5.4 Traceplot for 𝜎2 describing the state of the MCMC algorithm for simulated
data with a covariate. We saved the values after the burn-in of 100 000 steps and only
every 100th computed value is used.

Figure 5.5 Traceplot for log-likelihood during the MCMC algorithm for simulated
data with a covariate.
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5.2 Analysis for a process not depending on the
covariate

In this section, we analyse the situation where we fit the model depending on
the covariate from the previous section, but simulate a realization of a process
that does not depend on it. If the algorithm works well, the credible interval for
𝛽𝜎1

1 should contain 0. Thanks to this, we could then test the dependence of the
model on covariates, as we would not reject the null hypothesis that the regression
parameter 𝛽𝜎1

1 is equal to zero.

For this example, we generated a Thomas cluster point process with 𝜅 = 10,
𝛼 = 20, 𝜎2 = 0.06, 𝛽𝜎1

0 = −3.507 (if no covariate is present, this would correspond
to 𝜎1 being equal to 0.03, as log(0.03) ≐ −3.507), 𝛽𝜎1

1 = 0. We can examine the
point pattern generated from the model in the top left picture of Figure 5.6. The
corresponding parent point pattern can be seen in the top right picture of this
figure.

The initial values of the parameters were 𝛼 = 5, 𝜎2 = 0.02, 𝛽𝜎1
0 = −3, 𝛽𝜎1

1 = 1.
We used the same prior densities as in the previous section, i.e., 𝑈𝑛𝑖𝑓([0.03, 30]),
𝑈𝑛𝑖𝑓([0.001, 0.2]), 𝑁(0, 5) and 𝑁(0, 5) for 𝛼, 𝜎2, 𝛽𝜎1

0 and 𝛽𝜎1
1 , respectively. For

the parent point process, we again used the kernel estimate of the intensity function
of the daughter point process as the intensity function of the initial parent point
process. We can examine the initial parent point pattern in the bottom left picture
in Figure 5.6. For the move update, we used standard deviations 𝜎∘ = 𝜎• = 0.01,
where move, birth and death updates are proposed with probabilities 1/3 each.
We performed 250 000 steps with 100 000 step burn-in.

The estimated values of the parameters rounded to 3 decimals can be seen in
Table 5.2. As we can see, the credibility interval for 𝛽𝜎1

1 covers the value 0, and
so the algorithm correctly estimated that the dependence on a covariate is not
present. For the other parameters, we see that posterior medians are reasonable
estimates of the values of the parameters that we used. We would like to remind
here that we discussed the lower estimates for 𝜅 and the corresponding credible
intervals in Section 4.1. We can also see the parent point pattern from the last
step of the algorithm in Figure 5.6 in the bottom right picture. We can compare
this result with the picture above with the real parent point pattern. We see that
they are quite similar, we once again have an extra parent point in the window,
but since this is only one sample from the posterior distribution, it should not be
given much focus.

In Figure 5.7 we can see the histograms of the samples from the posterior distribu-
tions of the parameters. As we can see, all of them are unimodal distributions and
although some of them are skewed a little, they are still approximately symmetrical.
For 𝛽𝜎1

1 , we see that 0 is a typical value in the posterior distribution.

Finally, we take a look at the traceplots in Figure 5.8 and Figure 5.9. We see that
the sampler is well mixing, the values are stabilized and the chains have converged
to their limiting distributions. In Figure 5.10, we can see the log-likelihood
during the algorithm. As we can see, it also gives nice values that do not change
significantly.
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Figure 5.6 Point process not depending on the covariate (top left), corresponding
parent point process (top right), initial parent point process (bottom left) and the final
point process from the last step of the algorithm (bottom right).

𝜅 𝛼 𝛽𝜎1
0 𝛽𝜎1

1 𝜎2

used value 10 20 −3.507 0 0.06
estimated value 7.280 19.093 −3.326 −0.315 0.058

lower credibility bound 6.047 15.287 −3.738 −0.927 0.050
upper credibility bound 9.093 22.987 −2.922 0.282 0.067

Table 5.2 Real and estimated values of the parameters for a simulated dataset without
a covariate.

48



Figure 5.7 Histograms of the samples from the posterior distribution (estimating the
posterior probability density function) for a process not depending on a covariate.

49



Figure 5.8 Traceplots for model parameters describing the state of the MCMC
algorithm for simulated data without a covariate. We saved the values after the burn-in
of 100 000 steps and only every 100th computed value is used.
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Figure 5.9 Traceplot for 𝜎2 describing the state of the MCMC algorithm for simulated
data without a covariate. We saved the values after the burn-in of 100 000 steps and
only every 100th computed value is used.

Figure 5.10 Traceplot for log-likelihood during the MCMC algorithm for simulated
data without a covariate.
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6. Convergence properties
In this chapter, we are going to study the convergence properties of the algorithm
described in Chapter 4 in a simplified setting where all the parameters are
assumed to be known and the only unknown object of interest is the parent point
process. The Metropolis-within-Gibbs algorithm is then simplified and we only do
Birth-Death-Move steps. We will use the probability of proposing birth, death
or move update equal to 1/3, since we used these values in all of our previous
examples. Similarly as in Section 2.2, we can derive that the probability density
function of the parent point process is of the form

𝑝(𝐶|𝑋) ∝ 𝑓(𝑋|𝐶)𝑝(𝐶), (6.1)

where 𝑋 denotes the point process of daughter points and 𝐶 denotes the parent
point process.

Since all the parameters are assumed to be known, we do not include them in
the densities nor the likelihood. We work on a unit square window 𝑊, where we
assume that all the parent points are inside the observation window and that we
observe at least one daughter point, i.e., 𝑛(𝑋) ≥ 1.

6.1 Definitions and results
To be able to study the properties of the resulting Markov chain, we first need
to state several results from the Markov chain theory on a general state space.
The definitions and results presented in this section are taken from Roberts
and Rosenthal (2004), Durrett (2019), Levin and Peres (2017), Meyn et al. (2009)
and Møller and Waagepetersen (2004).

Let 𝒳 be a general set and let ℬ(𝒳) be a countably generated 𝜎-field on 𝒳, which
we will shortly denote as ℬ. Let us denote 𝔛 = ∏∞

𝑖=1 𝒳, where ∏ stands for the
Cartesian product. Let 𝔅 denote the product 𝜎-algebra ⊗∞

𝑖=1ℬ.

Let us recall the Definition 13 of a Markov kernel. We will use it in a situation
where the source and the target are both equal to the space (𝒳, ℬ), i.e., the kernel
is a mapping 𝑃 ∶ 𝒳 × ℬ → [0, 1] .

Proposition 1. For any initial measure 𝜇 (i.e. a measure governing the random
variable 𝑋0) on ℬ and any Markov kernel 𝑃 = {𝑃(𝑥, 𝐴), 𝑥 ∈ 𝒳, 𝐴 ∈ ℬ}, there
exists a stochastic process 𝑋 = {𝑋0, 𝑋1, …} on 𝔛 measurable with respect to 𝔅
and a probability measure 𝒫𝜇 on 𝔅 such that 𝒫𝜇(𝐵) is the probability of the event
{𝑋 ∈ 𝐵} for 𝐵 ∈ 𝔅; and for 𝐴𝑖 ∈ ℬ and any 𝑛 ∈ ℕ0

𝒫𝜇(𝑋0 ∈ 𝐴0, 𝑋1 ∈ 𝐴1, … , 𝑋𝑛 ∈ 𝐴𝑛)

= ∫
𝐴0

⋯ ∫
𝐴𝑛−1

𝑃(𝑦𝑛−1, 𝐴𝑛)𝑃 (𝑦𝑛−2, 𝑑𝑦𝑛−1) ⋯ 𝑃(𝑦0, 𝑑𝑦1)𝜇(𝑑𝑦0). (6.2)

Proof. See Theorem 3.4.1. in Meyn et al. (2009).
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Definition 16. A stochastic process 𝑋 = (𝑋0, 𝑋1, …) is called time-homogeneous
Markov chain with initial distribution 𝜇 and Markov kernel P, if the equation (6.2)
is satisfied for finite dimensional distributions of X for every 𝑛 ∈ ℕ0.

Definition 17. We define the 𝑛-step Markov kernel iteratively. We set

𝑃 0(𝑥, 𝐴) = 𝛿𝑥(𝐴),

where

𝛿𝑥(𝐴) = {
1 𝑥 ∈ 𝐴
0 𝑥 ∉ 𝐴.

For 𝑛 ≥ 1, we define inductively

𝑃 𝑛(𝑥, 𝐴) = ∫
𝒳

𝑃 𝑛−1(𝑦, 𝐴)𝑃(𝑥, 𝑑𝑦), 𝑥 ∈ 𝒳, 𝐴 ∈ ℬ.

We write 𝑃 𝑛 for the 𝑛-step Markov kernel {𝑃 𝑛(𝑥, 𝐴), 𝑥 ∈ 𝒳, 𝐴 ∈ ℬ}.

Definition 18. A measure 𝜋 on (𝒳, ℬ) is said to be a stationary measure of
a Markov chain with Markov kernel 𝑃 if

∫
𝒳

𝑃(𝑥, 𝐴)𝜋(𝑑𝑠) = 𝜋(𝐴), 𝐴 ∈ 𝔅.

If 𝜋 is a probability measure, we call 𝜋 a stationary distribution.

Definition 19. A Markov chain is said to have a limiting distribution, if there
exists a probability measure 𝜋 such that for all 𝐴 ∈ ℬ, we have that

lim
𝑛→∞

𝑃 𝑛(𝑥, 𝐴) = 𝜋(𝐴) for 𝜋-almost all 𝑥 ∈ 𝒳.

Definition 20. A chain is 𝜙-irreducible if there exists a non-zero 𝜎-finite measure
𝜙 on (𝒳, ℬ) such that for all 𝐴 ∈ ℬ with 𝜙(𝐴) > 0, and for all 𝑥 ∈ 𝒳, there
exists a positive integer 𝑎 = 𝑎(𝑥, 𝐴) such that 𝑃 𝑎(𝑥, 𝐴) > 0.

Definition 21. A Markov chain with Markov kernel P on the state space 𝒳 is
reversible with respect to a probability distribution 𝜋(⋅) on 𝒳, if

𝜋(𝑑𝑥)𝑃(𝑥, 𝑑𝑦) = 𝜋(𝑑𝑦)𝑃 (𝑦, 𝑑𝑥), 𝑥, 𝑦 ∈ 𝒳.

Proposition 2. If a Markov chain is reversible with respect to 𝜋(⋅), then 𝜋(⋅) is
stationary for the chain.

Proof. See Proposition 1 in Roberts and Rosenthal (2004).

Definition 22. A Markov chain with stationary distribution 𝜋(⋅) is aperiodic if
there do not exist 𝑑 ≥ 2 and disjoint sets 𝐴1, 𝐴2, … , 𝐴𝑑 ∈ ℬ with 𝑃(𝑥, 𝐴𝑖+1) = 1
for all 𝑥 ∈ 𝐴𝑖, 1 ≤ 𝑖 ≤ 𝑑 − 1, and 𝑃(𝑥, 𝐴1) = 1 for all 𝑥 ∈ 𝐴𝑑, such that
𝜋(𝐴1) > 0 (and hence 𝜋(𝐴𝑖) > 0 for all 𝑖). Otherwise, the chain is periodic with
period 𝑑 and periodic decomposition 𝐴1, … , 𝐴𝑑.

53



Definition 23. We define the total variation norm

‖𝜇 − 𝜈‖𝑇 𝑉 = sup
𝐴⊆𝒳

|𝜇(𝐴) − 𝜈(𝐴)|

for any two probability measures 𝜇 and 𝜈 defined on (𝒳, ℬ).

Theorem 1. If a Markov chain on (𝒳, ℬ) is 𝜙-irreducible and aperiodic, and has
a stationary distribution 𝜋(⋅), then for 𝜋-almost all 𝑥 ∈ 𝒳,

lim
𝑛→∞

‖𝑃 𝑛(𝑥, ⋅) − 𝜋(⋅)‖𝑇 𝑉 = 0.

In particular, lim𝑛→∞ 𝑃 𝑛(𝑥, 𝐴) = 𝜋(𝐴) for all 𝐴 ∈ ℬ.

Proof. See Theorem 4 in Roberts and Rosenthal (2004).

6.2 Properties of the chain
Let us note that the parent point process is assumed to be a finite point process
on 𝑊 ⊂ ℝ2, which we set to be the unit square window [0, 1]2. We can take
𝑑(𝜉, 𝜂) = ‖𝜉 − 𝜂‖ the Euclidean distance between the two points in 𝑊. By doing
this, we ensure that 𝑊 is a Polish space. Let us equip 𝒩∗

𝑓(𝑊), the space of all
simple finite counting measures on 𝑊, with the 𝜎-algebra

𝔑∗
𝑓(𝑊) = 𝜎 ({ ̄𝑥 ∈ 𝒩∗

𝑓 ∶ ̄𝑥(𝐵) = 𝑚} , 𝐵 ∈ ℬ0(𝑊), 𝑚 ∈ ℕ0) ,

where ℬ0(𝑊) denotes the class of bounded Borel sets on 𝑊. Now thanks to the
Proposition 𝐵.1 in Møller and Waagepetersen (2004), we know that 𝔑∗

𝑓(𝑊) is
countably generated, and hence the theory from Section 6.1 applies here.

We now have everything ready to show some properties of the Markov chain
generated by the Birth-Death-Move Algorithm. We denote ℎ the unnormalized
density of the parent point process with respect to a unit Poisson process, i.e., it
corresponds to 𝑓(𝑋|𝐶)𝑝(𝐶) in the relation (6.1).

Proposition 3. The Markov chain generated by the Birth-Death-Move algorithm
is reversible with respect to ℎ.

Proof. See Proposition 7.15 in Møller and Waagepetersen (2004).

From Proposition 3, we have that Algorithm 1 is reversible with respect to the
(unnormalized) posterior distribution of the Markov chain it generates. Moreover,
Proposition 2 guarantees that the (normalized) posterior distribution is a stationary
distribution of the chain.

We shall show that the resulting chain is also aperiodic.

Proposition 4. The Markov chain generated by the Birth-Death-Move algorithm
is aperiodic.
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Proof. We will prove this by contradiction. Let 𝜋 be the stationary distribution of
the chain. Let us assume that there exist disjoint sets 𝐴1, 𝐴2, … 𝐴𝑑 ∈ 𝔑∗

𝑓, 𝑑 ≥ 1,
such that 𝑃(𝑥, 𝐴𝑖+1) = 1 for all 𝑥 ∈ 𝐴𝑖, 1 ≤ 𝑖 ≤ 𝑑, and 𝑃(𝑥, 𝐴1) = 1 for all
𝑥 ∈ 𝐴𝑑, such that 𝜋(𝐴1) > 0. Let ̄𝑥 = {𝑥1} ∈ 𝐴𝑘, for some 𝑘 ∈ ℕ, be a state
of the Markov chain where there is only one parent point 𝑥1 in 𝑊. Then the
death update is proposed with probability 1/3. But we know that at least one
parent point must be present, since we have that 𝑛(𝑋) ≥ 1, hence the acceptance
probability of such update is zero. To show that, let us first denote 𝐶 the current
point pattern, i.e., 𝐶 = ̄𝑥 = {𝑥1}, and 𝐶′ the proposed parent point pattern,
i.e., 𝐶′ = ∅. Then the the acceptance probability of the death update under the
assumptions we made is of the form

𝑓(𝑋|𝐶′)
𝑓(𝑋|𝐶)

⋅ 1
𝜅

,

and 𝑓(𝑋|𝐶′) = 0 since in the product in (3.6), the factor

∏
𝑥∈𝑋

( ∑
𝑐∈𝐶′

exp {−1
2

[(𝑥1 − 𝑐1)2

𝜎𝑚
1

+ (𝑥2 − 𝑐2)2

𝜎𝑚
2

]})

is equal to 0. This means that 𝑃( ̄𝑥, 𝐴𝑘+1) < 1 and therefore the chain is
aperiodic.

Now we will discuss the proof of 𝜙-irreducibility.

We assume that 𝑛(𝑋) ≥ 1, which means that at least one parent point must
be present in the observation window 𝑊, otherwise no daughter points could be
generated. Since the acceptance probability of the proposal of deleting the last
parent point is 0, which we proved in Proposition 4, we know that 𝑃 𝑚(𝑥, ∅) = 0
for all 𝑚 ∈ ℕ, 𝑥 ∈ 𝒩∗

𝑓 such that 𝑛(𝑥) ≥ 1. It is interesting that because of this,
we cannot derive the 𝜙-irreducibility analogously as in Proposition 7.13 in Møller
and Waagepetersen (2004). The main issue is that we are unable to construct
a measure 𝜙 in a similar way as in the aforementioned proposition, since the
empty set plays a significant role there and cannot be replaced with any other
configuration so that the proof would have come through similarly. Therefore we
cannot use the proof technique that we are familiar with.

If we change the Birth-Death-Move Algorithm so that in the birth update, the
proposal distribution would be of the form

𝜀 ⋅ 𝛿𝑥0
(⋅) + (1 − 𝜀) ⋅ 1

|𝑊|
1 [⋅ ∈ 𝑊] ,

for some 𝑥0 ∈ 𝑊, 1 > 𝜀 > 0, then we could set

𝜙(𝐴) = 1 [{𝑥0} ∈ 𝐴] , 𝐴 ∈ 𝔑∗
𝑓,

and we could proceed with the proof similarly as in the proposition. We would
also need to verify that we did not generate the point 𝑥0 if this point is already in
the point pattern. We would then need to prove the aperiodicity and reversibility
in such a case, because we would not be able to refer to the proofs given in Section
7.3.2. in Møller and Waagepetersen (2004) since they rely on the assumption of
the proposal distribution being continuous.
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Conclusion
In this thesis we discussed a new method that can be used to estimate model
parameters for anisotropic point processes.

In the first chapter, we gave a brief summary of basic definitions concerning point
processes on ℝ𝑑. We also mentioned a few particular examples of point processes
and described a general model for anisotropic cluster point processes.

In the second chapter, we gave a description of the basics of Bayesian statistics
and then derived the specific situation which we used for the model studied.

In the third chapter, we outlined the algorithm used, giving in depth description
of each part and derived all the functions featured there for the studied model.
We also did a short discussion of possible changes to the algorithm.

The main contribution of this work lies within two simulation studies, which were
described in Chapter 4 and 5. We verified that the presented method provides
reasonable estimates and provided a full analysis of a simulated dataset with
all the possible outputs from the algorithm that one could have a look at. We
also discussed the problems when specific parameters are used and showed the
limitations of the algorithm on another example. We also applied the method
to a real-life dataset. Afterwards, we presented a situation in which the method
can be used for hypothesis testing and did one test ourselves. We therefore
demonstrated that the method works well, if the problematic parts are adequately
controlled. We illustrated the use of the algorithm on the most straightforward
examples and with only one possible covariate present in the parametrization.
It is therefore possible to extend this method onto more complex examples and
study its properties there.

We also proved some properties of the algorithm when the model is simplified and
discussed the issues we encounter when exploring the convergence properties of
the Markov chain. No available literature provides suitable theorems or results
for such complex problems, but as this area has been studied in the past years
intensively, we can expect some general results for such models in the future.
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A. Attachments

A.1 Electronic attachments
The electronic version of this thesis contains 3 R scripts with implemented method
destribed here. The first one contains the implementation of the function gener-
ating anisotropic cluster point processes described in full generality in Chapter
1, Sections 1.3 and 1.4. The second one contains the implementation for the
situations from Chapter 4 and the third one contains the implementation for the
situations from Chapter 5.
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