
MASTER THESIS

Marek Nagy

Methods of genetic programming for
classification

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the master thesis: Mgr. Roman Neruda, CSc.
Study programme: Computer Science

Study branch: Artificial Intelligence

Prague 2024

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank all those who are related to this project.
First of all, I want to thank my supervisor, Mgr. Roman Neruda CSc. under

whose guidance I learned a lot while working on this project. His directions and
suggestions have helped in the completion of this thesis.

Finally, I would like to thank my parents, girlfriend and friends who have
helped me with their valuable suggestions and guidance and have been very help-
ful in various stages of project completion.

ii

Title: Methods of genetic programming for classification

Author: Marek Nagy

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: Mgr. Roman Neruda, CSc., Department of Theoretical Computer
Science and Mathematical Logic

Abstract:

This thesis examines using different genetic programming encodings and analy-
ses if they can be used for classification machine learning tasks. We introduce
Evolutionary Algorithms and their basic concepts as well as define our specific
branch Genetic Programming that is used to generate formulas instead of a dif-
ferently encoded parametric solution. We introduce Cartesian and Tree-Based
encodings and operations on them needed for the algorithm to function properly.
The proposed algorithms are implemented and their performance is tested and
their results compared on multiple datasets. We then describe how to build and
run our solution and discuss the results of the experiments.

Keywords: evolutionary algorithms genetic programming classification

iii

Contents

Introduction 3

1 Evolutionary algorithms and genetic programming 4
1.1 Basic terminology . 4

1.1.1 Chromosome . 4
1.1.2 Fitness . 4
1.1.3 Selection . 4
1.1.4 Crossover . 5
1.1.5 Mutation . 5
1.1.6 Environmental Selection 6

1.2 Basic Genetic algorithm . 6
1.3 Genetic programming . 7

1.3.1 Terminology . 7
1.3.2 Basic operations used in Genetic programming 8

1.4 Classification . 10

2 Different encodings for Genetic programming 11
2.1 Cartesian encoding . 11

2.1.1 Chromosome . 12
2.1.2 Fitness . 13
2.1.3 Selection . 13
2.1.4 Crossover . 14
2.1.5 Mutation . 14

2.2 Tree-based encoding . 15
2.2.1 Chromosome . 15
2.2.2 Fitness . 15
2.2.3 Selection . 15
2.2.4 Crossover . 16
2.2.5 Mutation . 16

2.3 Nodes’ functionalities . 16
2.3.1 Non-terminal . 16
2.3.2 Terminal . 18

3 Our solution proposal 19
3.1 Shared library (GASharp) . 20

3.1.1 Creating GA class . 23
3.1.2 Other class properties . 25

3.2 Cartesian GP . 26
3.2.1 Chromosome implementation 26
3.2.2 Fitness . 27
3.2.3 Crossover . 27
3.2.4 Mutations . 28

3.3 Tree-based GP . 29
3.3.1 Chromosome implementation 29
3.3.2 Fitness details . 31

1

3.4 Combined Tree-based GP . 31
3.4.1 Chromosome implementation 31
3.4.2 Fitness details . 31
3.4.3 Mutations . 32

4 How to build and run GPs 33
4.1 How to build . 33

4.1.1 Requirements . 33
4.1.2 Setting up . 33

4.2 How to run . 35
4.2.1 Cartesian GP . 35
4.2.2 Combined TreeBased GP 39
4.2.3 Python scripts . 42

5 Experiments 44
5.1 Datasets used . 44

5.1.1 Iris dataset . 44
5.1.2 Breast cancer dataset . 47
5.1.3 Wine dataset . 50
5.1.4 MNIST dataset . 53

Conclusion 58

Bibliography 59

List of Figures 60

A Attachments 62
A.1 First Attachment . 62

2

Introduction
In our day-to-day life everyone has a few challenges to solve: what is the best order
of taking partner to work and children to school and what is the best possible
price of tomatoes when grocery shopping. Although these problems may sound
easy to resolve, at bigger scales of multi-national companies and/or countries they
become much harder to solve due to the sheer number of possible solutions. At
such extreme sizes we need optimization algorithms to help us find the solution.

However, finding the very best result may not be worth the effort for many
companies. The reasons may include algorithm uses too much storage or algo-
rithm is too complex (the tools have to be programmed first), but most often
the reason is the computation is slow or too slow to be worth the time required.
This is where approximate algorithms come in. They allow for ”good enough”
result without worrying about the fact that there may be a better one yet to be
found. Approximate algorithms have to be implemented specifically for a given
problem which can still be very expensive for the company. This is exactly the
reason behind existence of evolutionary algorithms (EAs) which while still be-
ing problem-specific are much easier to define. They rely heavily on probability
of choosing a better solution more often and further modifying it to hopefully
achieve a better solution. While EAs generally try to find the best solution and
end there, there is also a subclass of EAs, genetic programming, that specializes
in evolving programs in some kind of formalism.

We live in an era where artificial intelligence (AI) is at every corner: in smart-
phones, in laptops, personal computers (PCs) and in many web browser-based
services: from Google search, Tesla’s intelligent electric cars, OpenAI’s ChatGPT
website to online version of Microsoft’s Office suite. The more products use AI
the more there is a question about how these system actually work. For the
most part we have a general intuition of how the machine learning (ML) model
is thinking, but this is still only intuition nonetheless. For the majority of people
AI is just a black box equivalent to mostly reliable magic.

The main goal of the paper is to implement and run experiments of using
genetic programming as a supervised machine learning model for classification and
generate equations that the models have learned so that we have a better chance
to analyse the model and how it works ”behind the curtain”. Also, a by product
of having these equations is that we can only run the equations instead of the
whole model (for example neural network) and this way reducing computational
power once we want to use them.

In the first chapter we introduce theory behind our paper: evolutionary al-
gorithms, genetic programming and classification. In the second chapter we ac-
quaint ourselves with different encodings of programs and ideas behind them. In
the third chapter, we offer our solution proposal including fitness function. In
the fourth chapter we provide instructions on how to both build and run the
software tool with documentation of all command-line arguments included. In
the fifth chapter we design, run and evaluate the experiments to determine if
using genetic programming as a machine learning model for classification can be
a feasible option in practice.

3

1. Evolutionary algorithms and
genetic programming
Evolutionary algorithms (further marked as EAs) is a group of optimization algo-
rithms used to search for best-possible solutions to a problem that is generally to
acquire a solution to, but it is hard to find the best solution (quite a few NP-hard
problems belong here). These algorithms were first mentioned by John Holland,
his colleagues and students at the University of Michigan. Holland [1992]

They closely mimic process of natural selection, also known as evolution. To
be exact, they use several ideas: population of encoded solutions, selection of
parents, reproduction (crossover) and mutating individuals and combination of
populations. EAs are used in many fields: optimization, automatic programming,
immune systems just to name a few. It is usual that the result is not the best
possible solution, but that the approximate solution is good enough.

1.1 Basic terminology
Let us first define the terms we need in order to communicate effectively in this
thesis.

1.1.1 Chromosome
Representation of a individual is called a chromosome. Encoding typically varies
from problem to problem and can affect how effective and fast the EA is.

Holland’s original proposal suggests that the only encoding should be binary
string. While technically possible, this is not recommended anymore since more
complicated problems require different encoding type for mutations, crossovers
and fitness computations to be effective on population scale.

The most popular types of encoding for discrete problems are binary, tree,
permutation. The most popular types of encoding for continuous problems are:
floating-point numbers, integers.

1.1.2 Fitness
Fitness is a function that gives us the idea of how good the solution is. It can be
precise or heuristic, used as a standalone meaningful value or just for comparison
against other solutions in the population.

General rule is that the higher the fitness the better the solution is, but it can
be changed to minimization for more human-understandable fitness value.

It is also critical that this function does not take too long to evaluate, since
it will typically be computed thousands of times during single run of EA.

1.1.3 Selection
The process of selecting parents for next generation is called selection. Basic
idea is that the better the individual is the more often it should be chosen, but

4

worse individuals still have to have a chance of being selected. This mechanism
is important for avoiding convergence to the local optima.

Selection function is highly dependent on the fitness function and its proper-
ties. For example: when it is hard to find numerical fitness function, selection
can be a comparison of solutions in a “duel” of sorts. It is also common that
one solution can be chosen multiple times thus raising its chance to survive (in a
modified version) for more generations.

The most popular a widely-used selections are roulette-wheel and tournament
selections.

Roulette-wheel selection is inspired by a popular game with the same name
often found in casinos. The main idea is that the better individuals have larger
part of the roulette wheel. It requires that the fitness values of all individuals are
non-negative since there is no way to represent negative part of the wheel. As
such, it relies on ratio between the fitness values.

Tournament selection is based on tournament spider used in sports. We choose
k uniformly-random chromosomes from population. Then we construct binary
tree with k leafs and compare the pairs. The better node continues to the next
”match” and this continues until the top node where the best chromosome will
win. In reality, most of the time we simply choose individual with the highest
fitness from the chosen solutions.

1.1.4 Crossover
Generating new solution (child) from 2 (or more) previous solutions (parents)
is called a crossover. It is common that from 2 parents we create 2 children
in a single function. Both offsprings contain features from both parents. For
example, we will use binary-encoded chromosome with fixed length. The most
popular crossovers are: one-point and uniform. One-point crossover is very fast
and widely used. Its process can be described as:

1. choose an index that will split both chromosomes into 2 parts

2. take the first part of chromosome 1 and add the second part from chromo-
some 2 making the first child chromosome

3. take the first part of chromosome 2 and add the second part from chromo-
some 1 making the second child chromosome

1.1.5 Mutation
Randomly changing a small part of a chromosome is called mutation. This part
imitates the same named process in nature where something causes a small change
of changing DNA a therefore change individuals and their offsprings.

The simplest mutation on binary string is called bit-flip since binary string can
also be thought of as an array of bits in informatics. By changing one uniformly-
randomly chosen digit to the opposite one (thus flipping it) we change the chro-
mosome in the least way possible, but this may have big enough impact on the
fitness.

5

The second most popular is called swap. As the name suggests, we choose 2
indices and swap the values stored on these indices in the chromosome (binary
string).

1.1.6 Environmental Selection
Environmental selection is process of combining 2 consecutive populations. There
are 2 most popularones, denoted as: (µ + λ) and (µ, λ). µ represents the size of
a population and λ signifies amount of candidates passed to the next generation.

(µ + λ) focuses on combining both populations and choosing the best in-
dividuals of size of population since we want the size to stay constant in most
cases. It generally converges faster compared to other strategies, but it is also
quite probable that it will get stuck in local optima and so not getting the best
result possible.

(µ, λ) always chooses the newer population. This means that the fitness is
not guaranteed to improve, but the selection ensures that it should not be the
case too often.

There is also a strategy we can use with any environmental selection strategy
called elitism. This method ensures that no matter the strategy chosen the k best
individuals from the previous population survive. This also means that the best
solution cannot get worse over time.

1.2 Basic Genetic algorithm
Since we talked about necessary terms, we combine them together into an algo-
rithm representing a basic version of EA, the so-called Simple Genetic algorithm.
(presented in figure 1.1)

6

Input: Amount of generations GENAMOUNT , size of population
POPSIZE, probability of crossover CROSSPROB, probability
of mutation MUTPROB

Output: Last population
/* Create population with random valid solutions */

1 for i← 1 to POPSIZE do
2 populationi ←− GetAV alidSolution()
3 for g ← 1 to GENAMOUNT do
4 for i← 1 to POPSIZE do

/* Select parents for next generation */
5 parentsi ←− Selection(population)

/* Crossover parents with given probability, else copy
from previous generation */

6 if random(0, 1) < CXPROB then
7 nextPopulationi ←− Crossover(parentsi)
8 else
9 nextpopulationi ←− populationi

/* Mutate with given probability */
10 if random(0, 1) < MUTPROB then
11 nextPopulationi ←−Mutate(nextgeni)

12 population←− EnvSelection(population, nextPopulation)
13 return population

Figure 1.1: Simple Genetic algorithm example

1.3 Genetic programming
Genetic programming is a branch of evolutionary algorithms that focuses on cre-
ating formulae and/or programs that can produce an algorithm that given the
inputs can return values representing the solution. Therefore, during fitness, in-
stead of evaluating a solution we need to run this algorithm, so the evaluation of
the algorithms may take longer.

The most common encoding is tree-based encoding since all formulae are
quite simple to represent using tree data structure inspired by syntactic trees
from programming languages.

1.3.1 Terminology
Since we are creating a tree we have to differentiate between two types of nodes:

• Terminal nodes.

• Non-terminal nodes.

Terminal nodes represent nodes with no children. In our program these are
constants and input nodes, but they can be also random nodes.

7

Non-terminal nodes, as the name suggests, are node with children. These
nodes can represent simple functions like addition or multiplication, but also
more complicated function requiring some numbers to work. Examples of complex
functions are power (xy), sin(x) or condition node (if [x > 0] then [y] else [z]).

1.3.2 Basic operations used in Genetic programming
Chromosome

Since algorithms in computer science generally follow a tree-like structure, data
structure called tree is a natural way to represent them.

Crossover

Since trees are specific type of graphs, there are many ways of combining them.
We chose one of the easier ones:

1. Choose a node (and so its whole sub-tree) from tree representing chromo-
some in both parts at random

2. Swap the chosen sub-trees between trees

Figure 1.2: Example of crossover

8

Mutation

We have implemented 2 different mutations:

1. Node change

Figure 1.3: Example of Node Change mutation

2. Children shuffle

Figure 1.4: Example of Children Shuffle mutation

Node change chooses one node uniformly randomly and then changes its func-
tionality, for example from addition to multiplication. Each functionality has
configurable weight so we can also control the ratio of different functionalities
used.

Children shuffle randomly chooses a node with children and changes their
order and so different sub-trees can end up in different part of the multi variable
function.

9

Fitness

To compute the fitness of the individual is very straightforward: for each test case
we change input nodes’ values according to the test case (list of input values) and
run the algorithm. This can be sped up by using multi-threading, but is still con-
sidered quite slow compared to other EA types’ fitness evaluation, although some
other methods of machine learning (neural networks, reinforcement learning) can
run even slower.

1.4 Classification
Since we apply genetic programming on classification tasks, let us first define
what classification is. Classification is one of the most widely known tasks for
machine learning (ML): regression and classification.

Regression is used as a way of computing a value/values on output using
different ML methods. Most common models used for regression task are linear
regression, neural networks. There are quite a few ways of evaluating performance
of a model, but the basic function used is mean squared error usually denoted as
MSE :

MSEmodel =

⌜⃓⃓⎷ 1
N

N∑︂
i=1

(model.predict(xi)− yi)2

where N represents amount of input patterns, yi represents ith result and xi

represents ith input.
Classification is used to categorize input patterns into predefined categories.

It is also possible (and used) to instead of prediction to get probability of in-
put belonging to each of the categories. There is plenty of ways of evaluating
classification models, but the simplest one is accuracy defined as

accuracymodel =
∑︁N

i=1 compare(model.predict(xi), yi)
N

compare(z, y) = 1 if z = y else compare(z, y) = 0
where N represents amount of input patterns, yi represents ith result and xi

represents ith input. Value of model’s accuracy is always in interval [0, 1]. There
are also more complicated method of evaluation, but since we are running this
method hundreds to thousands of times per each run of the algorithm we decided
to use the simplest one.

10

2. Different encodings for
Genetic programming
In this thesis, we are trying to use genetic programming as classification model
generator so we are using 2 most known GP encodings: tree-based and cartesian.

2.1 Cartesian encoding
Cartesian encoding uses idea that we can arrange nodes in cartesian coordinate
space or a 2D grid and then let the nodes themselves choose a parent. This way
we can have multiple outputs with all having chance to use the same mid-level
results and by that avoiding re-evolving them and speeding up the evolution in
theory.

This type of GP encoding was discovered independently by multiple people:
Sushil Louis and R. Poli. ”Louis described a binary genotype that encodes a
network of digital logic gates, in which gates in each column can be connected
to the gates in the previous column.” Miller [2011] ”R. Poli, inspired by neural
networks, proposed a graph-based form of GP called parallel distributed GP
(PDGP).” Miller [2011]

Figure 2.1: Louis’ genotype representation from Miller [2011]

There are two definitions on what a Cartesian GP (further CGP) exactly is.
Both definitions state that it is a way of evolving a graph structure and thus being
able to evolve more complex systems than its tree counterpart. It uses the idea of

11

placing nodes on a grid and connecting them in a layered manner Miller [2011].
We implement an iteration on this idea that can dynamically change amount of
layers of nodes and number of nodes in each layer.

2.1.1 Chromosome
In our implementation we can imagine the following: our chromosome consists of
layers of nodes where each node is connected to several parent nodes. The node
can (but does not have to) use any number of these parents. Each of these parent
nodes has to be from one of the previous layers while not all parent nodes have
to be from the same previous layer. Layers themselves are also not the same size
during the run of the GP algorithm. Every node has layer index. The first layer
is made up of input nodes. Every other node has a reference to functionality
class so that we can change behaviour of the node without creating new instance.
We have several types of nodes where each type refers to a specific operation.
Every node type also has an associated weight (later normalized for probability)
for easier way of preferring a specific node.

12

Figure 2.2: CGP chromosome example (coloured paths go across 1+ layers)

2.1.2 Fitness
For fitness function, we are using accuracy calculated on predictions in one-hot
encoding (calculated in (1 − accuracy) to maintain ”lower is better” approach).
Calculating predictions can be done in parallel, but since we don’t use very large
datasets we did not implement parallel computation in order to simplify the code
and increase its readability.

2.1.3 Selection
Our choice for selection is tournament selection. We pick uniformly-randomly K
individuals from the last population, skip trying to build a tournament spider
and we simply pick the individual with the best fitness.

13

2.1.4 Crossover
For crossover, we went with what we call a fixed index crossover.

Since we are crossing individuals of potentially different amount of layers
(“chromosome’s length” further) we find minimum of the lengths of the individ-
uals and randomly choose an index i from interval [1, i] ∩ N. Afterwards, we
split layers into 2 parts and exchange those parts between chromosomes like in
one-point crossover. Then we fix possible errors in connections that might have
happened.

It is possible that the node refers to ith (parent) node in jth layer but in the
new chromosome |layersj| < i and therefore we would get an index error if not
corrected. We fix this by referring the node to last node in jth layer.

2.1.5 Mutation
We implement multiple mutations and the EA library ensures that each of the
mutations has a probability of being run for each individual.

Change node mutation

In this mutation, we change the node type in order to try to achieve better
accuracy. New type of node is chosen randomly according to the weights specified
using command line arguments.

Add layer mutation

We choose an index of a layer between inputs and outputs and insert a new layer
into this index. For all nodes we choose their parents randomly from previous
layers. All nodes’ parents’ indices from new layer to outputs are fixed after the
insert.

Remove layer mutation

This mutation removes a random layer (excluding input and output layer) from
the chromosome and restores indices to correct ones if possible, otherwise chooses
new random parent for node.

Change parents mutation

This mutation has an internal probability of changing parents of each node on
the chromosome except the first (inputs) layer of nodes. Each parent is chosen
using uniform random choice of a layer (from layers prior to the layer of the node
we are changing the parents of) and then a random uniform choice of a node in
the chosen layer.

Add node from layer mutation

This mutation chooses a random layer of nodes (excluding input and output layer)
and adds a new random node based on weights of each node type. Parents are
chosen the same way as in Change parents mutation mentioned above in 2.1.5.

14

Remove node from layer mutation

This mutation uniformly randomly chooses a layer of nodes (excluding input and
output layer) and then also uniformly randomly chooses a node to remove. Then
it checks if any nodes from latter node layers pointed to the removed node (if
yes, we choose new parent) and if they pointed to the nodes ”above” the removed
node int he same layer (if yes, we fix node index).

2.2 Tree-based encoding
Tree-based encoding focuses on encoding presented by John Koza (Koza [1992])
and it is most widely known for genetic programming’s purposes.

2.2.1 Chromosome
Basic structure represents a tree where tree is a specific kind of graph from discrete
mathematics. This represents entry point into the structure and most functions
(both mathematical and programmatic) are called on this node and computed
recursively on the whole structure.

Chromosome is implemented in the following way: we create an output tree
for each of the output classes and it returns a real number. The main idea being
”the higher the number the more likely it is we should use the given output class”
without restricting the output into interval [0, 1]. Then we can use softmax func-
tion to convert these numbers to probabilities. We also implemented a tertiary
tree since we want to use functions with at most 3 children required.

2.2.2 Fitness
For fitness we choose a modified accuracy score calculated on train set. The mod-
ification consists of adding formula 2∗individual.Depth()

|inputs| representing soft restriction
on depth of trees. So the final formula is

min
∀ind∈population

(1− ind.accuracy) + 2 ∗ ind.depth

|inputs|
where the first part (1− accuracy) will be referred to as score. We do this so

we have a more describable number to watch and understand how the algorithm
evolves through time.

We choose the class of which respective tree generated the highest number.
We can first calculate probabilities using softmax but since it is monotone and
rising function choosing max before and after using softmax does not change the
outcome.

2.2.3 Selection
For selection we choose tournament selection since we want to choose the better
individuals and don’t regard the ratio of the fitness values.

15

2.2.4 Crossover
We choose to implement a sub-tree swap crossover on each of the trees. We
take the 2 trees representing class number 1 (one from each chromosome), pick
a random node with children, take a child node (and with it the whole sub-tree)
and swap them. We repeat this process for each output class.

2.2.5 Mutation
In this mutation we change functionality of a node in order to try to achieve
better accuracy. New functionality is chosen randomly according to the weights
specified using command line arguments.

This mutation can also change terminal node to non-terminal and vice versa.
If we are changing terminal to non-terminal node we generate a new sub-trees for
children with specified maximal depth. If we are changing non-terminal one to
terminal, we remove the children.

For example, if we have a node that is used to sum results of its children,
we can swap its functionality for product without changing the structure of the
chromosome.

2.3 Nodes’ functionalities
We implemented several functions for both encodings so here is a brief explanation
of each of them. Although in cartesian encoding we refer to nodes that are used
as source of values for other nodes as parents, in this part we are calling them
children just to unify terminology of encodings and to not repeat ourselves.

2.3.1 Non-terminal
Non-terminal functionalities require 1 or more values from children nodes to func-
tion properly.

Sin

We take the first child’s result and apply sin function to it.

sin node.result = sin(child1.result)

ReLU

We take the first child’s result and apply ReLU function to it.

1 if child1.result > 0 then
2 ReLU node.result = child1.result

3 else
4 ReLU node.result = 0

16

Sigmoid

We take the first child’s result and apply sigmoid function to it.
Sigmoid function is defined as

σ(x) = 1
1 + e−x

so

sigmoid node.result = σ(child1.result) = 1
1 + e−child1.result

Unary minus

We take the first child’s result and multiply it by -1.

unary minus node.result = −child1.result

Sum

We add the results of node’s 2 children together.

sum node.result = child1.result + child2.result

Product

We multiply the results of node’s 2 children together.

product node.result = child1.result ∗ child2.result

Power

We take result of the first child and raise it to the second child’s result.

power node.result = child1.result(child2.result)

This also has its problems: 00 or (−1) 1
2 =
√
−1. In both of these cases, we

set result to infinity. Since this rule follows our fitness and intuition behind it
(lower fitness means better individual), the resulting fitness of the chromosome
will be infinity and therefore will be the worst candidate in population. Only way
a chromosome with infinite fitness can be chosen is if in tournament selection all
chosen nodes have infinite fitness which we assume is extremely unlikely.

Condition

This represents a simple if ... then ... else ... concept from computer science.
We compute its result in the following way:

17

1 if child1.result > 0 then
2 condition node.result = child2.result

3 else
4 condition node.result = child3.result

2.3.2 Terminal
Terminal functionalities can be as function that returns value with no input value
or unrelated to the input, such as constants or input values.

Value

We fix value of node during its creation. The value nodes are specified in the
beginning of EA and the values do not change and we do not add more value
nodes during algorithm.

Input

This is a special type of value node that changes value according to the input when
computing result for it. It can also remember which index of input it references
and when getting representation, it prints it out in form xindex.

18

3. Our solution proposal
Since our task is highly dependent on the performance of our code we decided
against the “industry standard” programming language Python in favour of C#
and .NET platform. This way we can use multi-threading more effectively which is
severely limited in Python due to global interpreted lock (GIL). In addition, C# is
compiled into intermediate language (further IL) [Microsoft [a]] and having static
type system means the runtime or compiler can make the program run faster
than in Python which is an interpreted language.

In order to reuse as much code as possible, we implemented a simple framework
for running general genetic algorithms, but can be used for GP as well. It uses
many advanced concepts and techniques including generics, thread-pools and
LINQ that help us to create more robust and performant but still very flexible
framework.

We have created multiple projects to keep functionality separated and we can
use command ’dotnet build’ to build all target projects including the ones they
depend on (also called dependencies). We defined a dependency graph (figure 3.1)
excluding external dependencies that is easier to read and faster to understand
than looking at the dotnet solution files.

Figure 3.1: C# project dependency graph

HelperClasses is a simple library which includes classes and methods used
in other projects from this solution. GASharp is a library that includes impor-
tant generic classes for running the GA in general (more details in the following
section). CartesianGP is the project where we create executable for GP using
cartesian encoding. TreeBasedGP is the project where we implement GP using
tree-based encoding. This is meant as stepping stone for the following project and

19

not to be run. In this project, each chromosome is only one tree. CombinedTree-
BasedGP is the project where we create executable for GP using an ensemble of
chromosomes with tree-based encoding.

3.1 Shared library (GASharp)
We implemented a framework based on algorithm described in section 1.2 for
easier prototyping and to ensure the basis of algorithm stays the same in both
our encodings. It also includes basic templates for classes:

• Chromosome

Figure 3.2: Base Chromosome class

• Crossover

Figure 3.3: Base Crossover class

• Mutation

20

Figure 3.4: Base Mutation class

• Fitness

Figure 3.5: Base Fitness class

• Population Combination Strategy

21

Figure 3.6: Base PopulationCombinationStrategy class

• Selection

Figure 3.7: Base Selection class

GASharp, this library, utilizes generic programming so the developer using this
library is not constrained by predefined methods and can fully use the custom
classes defined. Prefix Max- means it can be used in GA that maximizes fitness
whereas Min- is used for GA that minimizes fitness. It contains a few most used
selections:

• MinTournament

• MaxTournament

• MinRouletteWheel

• MaxRouletteWheel

and population combinations:

• Take New (also known as (µ, λ))

• MinElitism (with given number of elites)

22

• MaxElitism (with given number of elites)

• MinCombineBest (also known as (µ + λ))

• MaxCombineBest (also known as (µ + λ)).

Min- and MaxElitism also include argument for creating a given amount of
new individuals to preserve diversity of the population during the run of the
algorithm.

It supports setting additional parameters via public properties (these are set
from command line arguments or json file in concrete GPs):

• MinThreads (mapped into .NET’s ThreadPool corresponding method)

• MaxThreads (mapped into .NET’s ThreadPool corresponding method)

• MaxGenerations

• PopulationSize

• CrossoverProbability

• MutationProbability

However, the meaning of MutationProbability and CrossoverProbability is dif-
ferent in our framework. While the MutationProbability signifies probability
for each of the defined mutations to occur, the CrossoverProbability denotes if a
crossover is applied and if it is, uniformly randomly choose a crossover class. This
way we ensure we use at most one crossover, but we may use multiple mutations.

3.1.1 Creating GA class
Since the GA class is generic and takes quite a few parameters and argument,
this section is made as a guide to creating it.

Figure 3.8: Code snippet of GA constructor

We will go through each argument one-by-one and explain what each argument
does and when and how it is used.

23

Func<T> createNewFunc

As the name implies, this argument is used for creating a new individual of
class T representing the chromosome class. It is needed mainly for creating a
new population in the beginning, but can be also used in Min- and MaxElitism
population combination strategy to preserve diversity throughout the run of the
GA.

IList<Mutation<T>> mutations

This argument represents a list of initialized mutation classes’ instances. The
IList inteface is used so that this variable can be altered during the algorithm is
already running.

Each mutation has a MutationProbability to be applied for each individual
independently of other mutations and has to implement a method Mutate(T ind,
int genNum) that returns T and inherits from the main Mutation<T> class (see
Figure 3.4).

Crossover<T>[] crossovers

This argument represents ordered list of initialized crossover classes. Each of them
has to inherit from main Crossover<T> class (see Figure 3.3) and implement
method Cross(T ind1, T ind2) that returns Tuple<T, T>.

Fitness<T> fitness

This argument represents our fitness function to be used in the GA. The main
methods used are called ComputeFitness(T ind) and ComputeFitnessPopula-
tion(T[] population).

ComputeFitness(T ind) is the default implementation of evaluating fitness for
a single individual. This implementation should be implemented in all imple-
mentations since single-threaded implementation running of GA is the fallback
(in case of using single thread for both MinThreads and MaxThreads parameters)
of the multi-threaded method.

ComputeFitnessPopulation(T[] population) is used in multi-threaded version
of GA in order to optimize computation and take advantage of additional threads
on the system. The recommended approach is to utilize .NET’s PLINQ technol-
ogy.

Selection<T> selection

This argument represents our chosen selection function used to choose parents
from previous generation to create a new generation. It has to inherit from main
Selection<T> class and implement method ChooseParents(IReadOnlyList<T>
population, IReadOnlyList<double> probabilities) that returns Tuple<T, T>.

PopulationCombinationStrategy<T> popCombination

This argument represents class responsible for combining previous population
with the next one.

24

Figure 3.9: Example of initializing GA class from Cartesian GP main function

3.1.2 Other class properties
Our GA class GeneticAlgorithm also has a few public properties that can be
changed any time after initialization of a variable. These properties include:
CrossoverProbability, MaxGenerations, PopulationSize, MinThreads, and Max-
Threads.

MinThreads and MaxThreads

These parameters need to be positive integers with additional condition of
MinThreads ≤MaxThreads

These properties are directly passed to .NET’s static ThreadPool [Microsoft [c]]
class and the algorithm uses MaxThreads as DegreeOfParallelism1 internally via
.NET’s PLINQ technology [Microsoft [b]].

MaxGenerations

This parameter represents the maximum amount of generations to run. That is
also a way to send a stop condition function into method running the GA.

PopulationSize

This parameter represents a size of population throughout the algorithm. This
size is constant and does not change neither can it change.

1https://learn.microsoft.com/en-us/dotnet/api/system.linq.parallelenumerable.withdegreeofparallelism?view=net-
8.0

25

3.2 Cartesian GP

3.2.1 Chromosome implementation
Our implementation of encoding from section 2.1 focuses on grouping nodes into
layers (similarly to neural network Multi-Layer Perceptron [Haykin [1994]], but
in this case neurons themselves can choose a parent from any of the previous
layers of neurons.

In the class itself we distinguish between input layer of nodes and all others.
This is to make sure to not change input layer’s behaviour or size. Each of the
nodes has number reference to its 3 parents where for each parent it stores global
layer index and node index within that layer. This means that we can change the
parent node without altering the child node’s attributes or data.

Each node contains the index references to its parents (excluding input nodes)
and implements a Compute and GetRepresentation functions. Compute func-
tion is responsible for computing the result and returning it whereas GetRep-
resentation adds representation of the node into a StringBuilder class for more
effective creating of the representation string.

Figure 3.10: Visualization of Cartesian GP chromosome from Spryn

Difference between our implementation and the image above is that we allow
parents to be from more layers than only a previous layer.

Chromosome also has method for computing prediction on given input. This
is achieved via setting input nodes to their respective values and then using DFS
(depth-first search) from output nodes to compute the result. Then we compute
one-hot encoding on the resulting array.

The chromosome contains method to compute probabilities from the values

26

using the softmax function

softmax(x)i = exi∑︁N
j=1 exj

for N inputs. This is inspired by neural network’s way of computing probabilities
for classification using the aforementioned function [Bridle [1989]]. Although this
method is not used in computing fitness, it can be used in production code after
expanding our code with methods for saving and loading the instance of the class.
We do not implement such methods since the main idea of this thesis is to product
resulting formulas and not the instances of the class.

3.2.2 Fitness
Fitness is calculated using accuracy on a train set (specify using CLI argument
--train-csv). Train set is loaded into memory and is stored there for the whole
length of the GA. After running the GA, accuracy is evaluated on a test set and
stored in .txt file in output directory created by the program. If we do not specify
test set, accuracy is calculated on the train set.

If we use multi-threading, we can quite simply parallelize fitness computation
of the whole population since input values are set internally for each individual of
the population. Our implementation uses .NET’s PLINQ technology so that the
framework can take care of details while we specify flow in functional manner.

We are computing accuracy based on predicted values for each class and then
encoding it into one-hot encoding where 1 denotes the given class had the highest
number. Afterwards, we compare it to the desired output that is also expected to
be encoded in one-hot encoding. We also added attribute Score to chromosome’s
implementation. Score represents (1 − accuracy) metric while Fitness includes
both Score and penalty for depth of the chromosome in order to control bloat.
Explicitly:

∀ind ∈ population

ind.Score = 1− ind.accuracy

ind.F itness = ind.Score + ind.Depth() ∗ 2
|total inputs|

3.2.3 Crossover
Since chromosomes can have different amount of layers of nodes we decided to do
a variant of one-point crossover over the smaller of their two depths:

1. Find common depth of the two chromosomes (the smaller of the two)

2. Choose an index for separation

3. Create new chromosomes by switching the parts after index

• First new chromsome from 1st part of 1st chromosome and 2nd part of
2nd chromosome

• Second new chromsome from 1st part of 2nd chromosome and 2nd part
of 1st chromosome

27

4. Check indexing and fix if needed

• Node can have parent from a layer that has more nodes than
in a new chromosome. If so, replace with parent on index
previous index mod |new layer|.

Figure 3.11: Example of crossover chromosomes from Cartesian GP

3.2.4 Mutations
Add node to layer mutation

With a given probability add a node to a uniformly randomly chosen layer and
randomly choose its parents.

Add layer mutation

With a given probability add a new layer on uniformly randomly chosen index,
then for all nodes from this new layer choose parents randomly. Afterwards fix
indices in layers after generated layer so that they reflect the previous state of
chromosome.

Remove layer mutation

With a given probability remove a single layer (except input and out layer) from
chromosome. Afterwards, fix parents’ indices on nodes that are pointed to layers
after the removed layer. For nodes that previously pointed to node in the removed
layer, randomly choose new parents.

Remove node from layer mutation

With a given probability uniformly randomly choose a layer (excluding input and
output layer) and the uniformly randomly choose a node from the chosen layer. If
any node pointed to the removed node, uniformly randomly choose a new parent
from uniformly random layer and uniformly random node from that layer.

28

Change node mutation

With a given probability go over all nodes, except input nodes and randomly
change --percentage-to-change percent of the chromosomes’ class and because of
it, their functionality. This changes functionality of the node and does not create
a new node.

Change parents mutation

With a given probability go over all nodes expect input nodes and randomly
change --percentage-to-change percent of the chromosomes’ parents and because
of it, their input nodes. This changes functionality of the node and does not
create a new node.

3.3 Tree-based GP

3.3.1 Chromosome implementation
We are implementing encoding from section 2.2 using a tree graph structure
consisting of nodes that we don’t expect to be very deep (explained further), it
makes sense to use recursive version of the structure.

We can quite simply compute result of the tree using DFS from root node
where children nodes represent potential inputs for the node’s function meaning
that when computing only nodes on path from root node to the node computing
(worst case leaf node) are on the stack and thus we (practically) don’t have to
worry about problems with too deep recursion.

Technically, trees can grow during the algorithm, but based on our testing we
will run out of memory far sooner than hitting the recursion limit.

29

Figure 3.12: Visualization of TreeBased GP chromosome from Spryn with pro-
duced formula

The visualization above comes from Spryn, but this visualization contains a
few differences:

• We use tertiary tree instead of binary to allow for use of conditional node

• Our nodes have only either 3 children or none (unary operator still has 3
subtrees)

• In our implementation, we use functionality class (sum, product, condition
...) separated from the node class to avoid creating new nodes and thus
reducing usage of memory.

Input functionality class’ instances remember their input index and are
“global” variables meaning that setting input values and evaluating an individual
from population are separate actions that depend on each other.

30

3.3.2 Fitness details
Since this project is only a stepping stone for the combined tree-based GP, we
decided to not describe fitness of the chromosome. For more information, the
theory behind computing fitness can be seen in section 2.2.2.

3.4 Combined Tree-based GP

3.4.1 Chromosome implementation
This chromosome represents a special ensemble of TreeBasedGP’s chromosomes
from section 3.3 where for each output class of classification we build one such
chromosome. When computing prediction, we compute argmax of results of tree
for each output. Explicitly:

model.predict(x) = argmax
i∈output classes

treei.GetResult()

With regards to how mutation operations are made, we create a class for
each of the mutations provided in TreeBasedGP project and use them on each
of the trees in the chromosome. Crossover is made similarly: if the GA runs the
crossover we apply crossover on each pair of trees (one tree from each chromosome
for the same output class) and return the result.

3.4.2 Fitness details
Fitness is calculated using accuracy on a train set (specify using CLI argument
--train-csv). Train set is loaded into memory and is stored there for the whole
length of the GA. After running the GA, accuracy is evaluated on a test set and
stored in .txt file in output directory created by the program. If we do not specify
test set, accuracy is calculated on the train set.

If we use multi-threading, we can quite simply parallelize fitness computation
of the whole population by running computation of each individual in separate
thread. One difference compared to the CartesianGP is that here Input nodes are
global variables so that they can be used wherever in the trees, but to also allow
for simple and fast change of value when computing fitness and going through
many different inputs. Our implementation uses .NET’s PLINQ technology so
that the framework can take care of details while we specify flow in functional
manner.

We are computing accuracy based on predicted values for each class and then
encoding it into one-hot encoding where 1 denotes the given class had the highest
number. Afterwards, we compare it to the desired output that is also expected to
be encoded in one-hot encoding. We also added attribute Score to chromosome’s
implementation. Score represents (1 − accuracy) metric while Fitness includes
both Score and penalty for depth of the chromosome in order to control bloat.
Explicitly:

∀ind ∈ population

ind.Score = 1− ind.accuracy

31

ind.F itness = ind.Score + ind.Depth() ∗ 2
|total inputs|

We implement crossover already mentioned in section 1.3.2, but applied to
consecutive pairs (1st tree from 1st chromosome with 1st tree from 2nd chromosome
and so on):

1. We find all nodes that have children for both chromosomes

2. We choose one node from each chromosome uniformly randomly

3. We switch their places in their respective chromosomes

• By changing their place we also switched whole subtrees

3.4.3 Mutations
Change node mutation

We implement mutation number 1 from section 1.3.2 on each of the trees from our
combined chromosome. This is implemented for the whole tree using --percentage-
to-change command-line argument. We implement it in recursive manner since we
don’t expect the trees to be deep enough to cause problems in recursion. Once
the node is selected for mutation, we choose whether we are replacing it with
uniformly randomly chosen terminal node or uniformly randomly chosen non-
terminal node based on --terminal-nodes-probability command-line argument. If
non-terminal node was chosen, we also create new subtrees as its children using
full tree of depth specified by --depth command-line argument.

Shuffle children mutation

We implement mutation number 2 from section 1.3.2 on each tree from our com-
bined chromosome.

32

4. How to build and run GPs
This chapter includes information how to build and run the main algorithms
written in C#. In 4.1, we cover compilation of C# programs and creation and
activation of virtual environment for Python. In 4.2, we provide user manual for
running the most important Python scripts and the C# programs with explana-
tion for its command-line flags.

4.1 How to build

4.1.1 Requirements
First of all, we need to clone our GitHub online repository from its publicly
available URL 1. This way we actually have the code we need to build the program.

We also need .NET 8 framework (newer releases might work but it is not
guaranteed) installed on our operating system (further OS). This framework is
open-source and cross-platform for all major systems: Windows, Mac and all
Linux-based OS.

We also included Python scripts for preparing input CSV (comma-separated
values, not neccessary separated by comma) files generating graphs about
algorithm’s evolving over time. These are not essential to the algorithm itself,
but are of great help if we choose to use them. These use Python 3.9 so we can
download it from Python’s official website2. We saved requirements.txt containing
names of installed modules with their versions. Our recommendation is to create
new virtual environment and install the modules there. Since we used module
virualenv for creating the virtual environment we will use it to create the envi-
ronment, but there are multiple choices for creating it (conda, poetry, installed
directly onto the system [not recommended]), so if we want to we can choose
another tool.

We also expect for all building and publishing to be taking place on Win-
dows, on Windows 10 to be exact, although this method should work just fine on
Windows 11 as well. We also expect you to have administrator’s rights meaning
you can install new software on your machine.

4.1.2 Setting up
.NET and C#

After downloading, we navigate to directory MasterProject,
1https://github.com/marnagy/MastersProject
2https://python.org

33

Figure 4.1: Example of path to MasterProject

and run prepared script (build win release.bat for Windows, build linux release.bat
for Linux and Apple’s OSX [not tested]) that will generate executable files) for
Windows (outputs to directory Windows x64), binary files for Linux (outputs
to Linux x64) and Mac together with all of the libraries needed into respective
directory. For Mac, we included both x86 and arm (outputs to OSX x64 and
OSX arm respectively) architecture versions since at the time of writing this
thesis both architectures are supported on Mac’s OS. These directories will be
available as a RAR file for download as attachment with this paper.

It is also possible to publish the programs for other architectures and systems
(for more, see dotnet publish command documentation3), but we included these
scripts for easier building for users on the currently most used OSs.

In the resulting directory (name depends on the target OS) we will find many
files with extension .dll that represent all the libraries that the executables need
to properly run and the executables themselves.

For Windows we can find executables CartesianGP.exe and CombinedTree-
BasedGP.exe. For Linux and OSX the generated executables are generated with-
out an extension, i.e. CartesianGP and CombinedTreeBasedGP.

Python

In this part, we will cover creating virtual environment, its activation and instal-
lation of modules from requirements.txt file.

First, we need to navigate to python scripts directory using command line or
terminal.

Figure 4.2: Example of path to MastersProject\python scripts

Then we create virtual environment using module virtualenv. We download
the module using command

pip install virtualenv

and now we are ready to create our virtual environment.
Type the following commands into the command line/terminal:

3https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-publish

34

1. virtualenv venv

2. activate environment

• venv\Scripts\activate.bat (Windows specific)
• source venv/bin/activate (Linux specific)

3. pip install -r requirements.txt

The first command (1) creates and stores the virtual environment into venv
directory together with scripts used to activate and deactivate the environment.
This way we can use pip as if we installed module onto the system.

The second command (2) activates the environment on Windows OS. The
other command (2) show the way of activating the environment in Linux OS.
Apple’s OSX is absent since we were unable to test this during development.
The command line/terminal should now start with ”(venv)” as can be seen on
figure below.

Figure 4.3: Example of command line after activating the environment

The last command (3) installs modules into the environment as described in
requirements.txt from PyPi index4, the official public repository of modules.

4.2 How to run
In this chapter we provide user guide on how to run GP programs including their
command-line flags that change functionality of the program without the need to
recompile it.

4.2.1 Cartesian GP
Command-line arguments

All command-line arguments with their description and default values can be seen
when running the executable with --help flag. These arguments provide options
of changing the algorithm’s functionality without the need of recompiling it or
understanding the code. This program implements Cartesian encoding described
in 3.2.

• --multi-threaded is a boolean flag to enable running algorithm using multiple
threads. Default is false.

• --json is used for loading arguments from JSON file. If used in combination
with other arguments, arguments from command-line are prioritized.

4https://www.pypi.org

35

• --train-csv specifies path to CSV file used for training the model. It is
required and expects the file to have headers.

• --test-csv specifies path to CSV file used for testing the model. It expects
the file to have headers. If not provided, --train-csv is used to calculate
final accuracy.

• --csv-inputs-amount specifies number of inputs. Due to loading dataset
from single CSV file, we need to be able to distinguish between inputs and
outputs per each line. This argument is required.

• --csv-delimiter is used to parse data from CSV files. CSV file does not
have to separate values by comma, so we provided option to change the
delimiter/separator. Default value is comma “,”.

• --min-threads is used to specify minimum a number of threads used by
.NET’s ThreadPool class. It expects positive integer. Default is two.

• --max-threads is used to specify maximum a number of threads used by
.NET’s ThreadPool class. It expects positive integer. Default is four. This
is also used in in PLINQ as Degree of parallelism.

• --population-size describes the size of population of a generation. It is ex-
pected to be even and greater than 10. Default value is 50.

• --max-generations describes amount of generations to evolve. Excepts pos-
itive integer greater or equal to hundred.

• --repeat-amount is used to run the GA algorithm multiple times. The main
usecase is to test general performance of the algorithm since we are using
multi threading, we are not able to use seed effectively.

• --crossover-probability is used to describe a probability with which any
crossover occurs. Expects real number between zero and one. Default is
0.4.

• --layer-sizes describes starting sizes of each layer in Cartesian chromosome
excluding input and output layer. Expects a list of integers separated by
space. Default is “50 50”.

• --population-combination is used to choose a strategy of combining previous
and next generation. We have options “take-new” (take only the genera-
tion), “elitism” (take the best from previous generation and (population−1)
from new generation) and “combine” (take the best individuals from both
generations combined). Default is “take-new”.

• --change-node-mutation-probability is used as probability of using ChangeN-
ode mutation. Expects positive real number. Default is zero.

• --change-parents-mutation-probability is used as probability of using
ChangeParents mutation. Expects positive real number. Default is zero.

36

• --add-node-to-layer-mutation-probability is used as probability of using
AddNoteToLayer mutation. Expects positive real number. Default is zero.

• --add-layer-mutation-probability is used as probability of using AddLayer
mutation. Expects positive real number. Default is zero.

• --remove-node-to-layer-mutation-probability is used as probability of using
RemoveNoteToLayer mutation. Expects positive real number. Default is
zero.

• --remove-layer-mutation-probability is used as probability of using Remove-
Layer mutation. Expects positive real number. Default is zero.

• --percentage-to-change describes how much of an individual should change
if the mutation takes place. Expects real positive number in interval (0, 1).
Default is 0.2.

• --terminal-nodes-probability describes probability of choosing a terminal
node instead of non-terminal node. Expects real number in interval (0, 1).
Default is 0.2.

• --value-node-weight is used to describe weight of choosing Value node. Ex-
pects real positive value. Default is 0.2.

• --sum-node-weight is used to describe weight of choosing Sum node (x + y).
Expects real positive value. Default is 0.2.

• --prod-node-weight is used to describe weight of choosing Product node
(x ∗ y). Expects real positive value. Default is 0.2.

• --sin-node-weight is used to describe weight of choosing Sin node (sin(x)).
Expects real positive value. Default is 0.2.

• --pow-node-weight is used to describe weight of choosing Power node (xy).
Expects real positive value. Default is 0.2.

• --unary-minus-node-weight is used to describe weight of choosing UnaryMi-
nus node (−x). Expects real positive value. Default is 0.2.

• --sig-node-weight is used to describe weight of choosing Sigmoid node
(σ(x)). Expects real positive value. Default is 0.2.

• --relu-node-weight is used to describe weight of choosing ReLU node
(ReLU(x)). Expects real positive value. Default is 0.2.

• --cond-node-weight is used to describe weight of choosing Condition node
(if x > 0 then y else z). Expects real positive value. Default is 0.2.

37

Figure 4.4: Example of script running CartesianGP with arguments

Outputs

Each execution of CartesianGP program generates a new directory in format
”cartesian-[year]-[month]-[day] [hour]-[minute]-[second]”. It also stores JSON file
containing values of command-line arguments for future reference (config.json)
and a short text file (info.txt) containing name of CSV file used for training
with amount of output classes. If the algorithm runs multiple times (--repeats-
amount argument is bigger than 1) it also creates subfolders in format ”run [run
index]”. Each of these directories contains files result formulas.txt and run.csv.
File result formulas.txt contains final formulas for each of the output classes and
accuracy separated by an empty line and run.csv contains statistics from the run
of the algorithm needed for its analysis.

38

Figure 4.5: Example of output directory structure

4.2.2 Combined TreeBased GP
Command-line arguments

All command-line arguments with their description and default values can be seen
when running the executable with --help flag. All arguments (except --multi-
threaded boolean flag) expect value after the flag. This program implements
tree-based encoding described in 3.3 in an ensemble (for each output class we
create one tree).

• --multi-threaded is a boolean flag to enable running algorithm using multiple
threads. Default is false.

• --json is used for loading arguments from JSON file. If used in combination
with other arguments, arguments from command-line are prioritized.

• --train-csv specifies path to CSV file used for training the model. It is
required and expects the file to have headers.

• --test-csv specifies path to CSV file used for testing the model. It expects
the file to have headers. If not provided, --train-csv is used to calculate
final accuracy.

• --csv-inputs-amount specifies number of inputs. Due to loading dataset
from single CSV file, we need to be able to distinguish between inputs and
outputs per each line. This argument is required.

39

• --csv-delimiter is used to parse data from CSV files. CSV file does not
have to separate values by comma, so we provided option to change the
delimiter/separator. Default value is comma “,”.

• --min-threads is used to specify minimum number of threads used by .NET’s
ThreadPool class. It expects positive integer. Default is two.

• --max-threads is used to specify maximum number of threads used by
.NET’s ThreadPool class. It expects positive integer. Default is four. This
is also used in in PLINQ as Degree of parallelism.

• --population-size describes the size of population of a generation. It is ex-
pected to be even and greater than 10. Default value is 50.

• --max-generations describes amount of generations to evolve. Excepts pos-
itive integer greater or equal to hundred.

• --repeat-amount is used to run the GA algorithm multiple times. The main
usecase is to test general performance of the algorithm since we are using
multi threading, we are not able to use seed effectively.

• --crossover-probability is used to describe a probability with which any
crossover occurs. Expects real number between zero and one. Default is
0.4.

• --population-combination is used to choose a strategy of combining previous
and next generation. We have options “take-new” (take only the genera-
tion), “elitism” (take the best from previous generation and (population−1)
from new generation) and “combine” (take the best individuals from both
generations combined). Default is “take-new”.

• --depth describes default depth of tree when creating it. Expects positive
integer. Default is three.

• --change-node-mutation-probability is used as probability of using ChangeN-
ode mutation. Expects positive real number. Default is zero.

• --shuffle-children-mutation-probability is used as probability of using Shuf-
fleChildren mutation. Expects positive real number. Default is zero.

• --percentage-to-change describes how much of an individual should change
if the mutation takes place. Expects real positive number in interval (0, 1).
Default is 0.2.

• --terminal-nodes-probability describes probability of choosing a terminal
node instead of non-terminal node. Expects real number in interval (0, 1).
Default is 0.2.

• --value-node-weight is used to describe weight of choosing Value node. Ex-
pects real positive value. Default is 0.2.

• --input-node-weight is used to describe weight of choosing Input node. Ex-
pects real positive value. Default is 0.2.

40

• --sum-node-weight is used to describe weight of choosing Sum node (x + y).
Expects real positive value. Default is 0.2.

• --prod-node-weight is used to describe weight of choosing Product node
(x ∗ y). Expects real positive value. Default is 0.2.

• --sin-node-weight is used to describe weight of choosing Sin node (sin(x)).
Expects real positive value. Default is 0.2.

• --pow-node-weight is used to describe weight of choosing Power node (xy).
Expects real positive value. Default is 0.2.

• --unary-minus-node-weight is used to describe weight of choosing UnaryMi-
nus node (−x). Expects real positive value. Default is 0.2.

• --sig-node-weight is used to describe weight of choosing Sigmoid node
(σ(x)). Expects real positive value. Default is 0.2.

• --relu-node-weight is used to describe weight of choosing ReLU node
(ReLU(x)). Expects real positive value. Default is 0.2.

• --cond-node-weight is used to describe weight of choosing Condition node
(if x > 0 then y else z). Expects real positive value. Default is 0.2.

Figure 4.6: Example of script running CombinedTreeBasedGP with arguments

Outputs

Each execution of CartesianGP program generates a new directory in format
”combined-[year]-[month]-[day] [hour]-[minute]-[second]”. It also stores JSON file
containing values of command-line arguments for future reference (config.json)
and a short text file (info.txt) containing name of CSV file used for training
with amount of output classes. If the algorithm runs multiple times (--repeats-
amount argument is bigger than 1) it also creates subfolders in format ”run [run
index]”. Each of these directories contains files result formulas.txt and run.csv.
File result formulas.txt contains final formulas for each of the output classes and

41

accuracy separated by an empty line and run.csv contains statistics from the run
of the algorithm needed for its analysis.

Figure 4.7: Example of output directory structure

4.2.3 Python scripts
Dataset creation

The following scripts are used to load a dataset from scikit-learn library and save
it as CSV file in the current directory:

• iris prepare.py creates file iris sklearn.csv.

• breast cancer prepare.py creates file breast cancer sklearn.csv

• wine prepare.py creates file wine sklearn.csv

• mnist prepare.py creates file mnist sklearn.csv

prepare input.py

This script is used to prepare dataset to be used by C# program. When running
this script with command-line flag --help we can see explanation of all command-
line arguments including their default values. This script also needs a positional
argument of path to CSV files of input dataset.

42

• -d or --delimiter is used when loading CSV file since the separator can be
different. Default is ”,”.

• -s or --seed is used to set seed splitting method for separating dataset into
train and test datasets.

• --index-col can be specified for loading dataset from CSV file.

• --one-hot is a boolean flag that converts all categorical columns to one-hot
encoded columns. This also expects last column to be categorical. It is
expected to be used when creating dataset/-s for C# programs.

• --include-index signals if index column should be present in output CSV
files.

• --train-ratio indicates how much of dataset should be used as dataset for
training. This argument expects number in interval [0,1) Test ratio is com-
plement to this number (1− train ratio).

Figure 4.8: Example of running script prepare input.py

We need the underlined information for running the C# programs (--csv-inputs)

show multiple runs.py

This script builds and shows graphs that describe how fitness, score and depth
changed over time of running the GA. We can use the following command-line
flags:

1. -d or --directory should contain a path to directory with all output files
from a GA that has run.

2. -s or --save is a boolean flag where instead of showing them, the script
will save the figures to the directory specified in flag --directory as files
fitness progress.png, score progress.png and depth progress.png.

Figure 4.9: Example of running script show multiple runs.py

43

5. Experiments
We run both cartesian and combined tree-based GP on multiple classification
datasets and evaluate their performance both overall and against each other. We
also show graph of evolution of populations over runtime of a specified algorithm
where the line is mean across multiple runs (--repeat-amount) and shade is 95%
confidence interval over the mentioned runs.

Regarding reproducibility, these programs were designed to function using
multi-threading and so we chose to use .NET’s Random.Shared global object
that is secure to use in this kind of environment, but we loose the ability to
exactly reproduce these experiments and so we run experiments multiple times
(default is 5) in order to achieve statistical relevance.

We also omit graph of depth for CartesianGP in all experiments and men-
tion it in the text. This decision was made since we achieved satisfactory re-
sults without using mutations modifying of the architecture of the chromosomes
(AddNodeToLayer, AddLayer, RemoveNodeFromLayer, RemoveLayer).

5.1 Datasets used
We are using datasets included in Python scikit-learn1 library in its submodule
datasets. We are using all provided datasets used for classification: iris, breast
cancer, wine, and MNIST.

We have divided these datasets into train and test datasets using provided
script prepare input.py with train-ratio being 70%, i.e. train dataset contains
70% of the original stratified dataset. We show multiple graphs where on each
the X axis represents number of generation and therefore evolution of solutions
through time. First, we show the evolution of fitness, then depth and at the end
of each experiment’s section we show the best evolved results.

5.1.1 Iris dataset
This dataset is considered very small and it is used primarily as a check that the
ML method developed actually works at all. It consists of four input variables
that are real positive numbers and we classify into three classes. It has 150 total
samples, 50 for each class.

We are using population size of 50 individuals and maximum generations of
1000. For more details about configuration, CartesianGP was run using Windows
command-line script run cartesian iris.bat and for CombinedTreeBasedGP we
used run treebased combined iris.bat, both provided in the attachment to this
thesis.

1https://scikit-learn.org/stable/

44

Figure 5.1: Fitness progress in CartesianGP on Iris dataset.
Axis X represents number of generations, axis Y is logarithmically scaled

fitness.

Figure 5.2: Fitness progress in CombinedTreeBasedGP on Iris dataset with log
scaling.

Axis X represents number of generations, axis Y is logarithmically scaled
fitness.

We can clearly see that CartesianGP (figure 5.1) is improving during the al-
gorithm and converges in about 800 generations. CombinedTreeBasedGP (figure
5.2) in about 200 generations and does not significantly improve beyond this

45

value. Since the fitness is combined using multiple factors (accuracy, depth of the
models) it is not clear what algorithm results in better results. In the next part,
we analyse depth of evolved individuals during run of the algorithm.

Figure 5.3: Depth evolution for CombinedTreeBasedGP on Iris dataset.
Axis X represents number of generations, axis Y is depth of the deepest tree in

an individual.

Since we decided to not include mutations that modify architecture of Carte-
sianGP chromosomes, depth of CartesianGP is constant throughout the algo-
rithm, five to be exact. This includes input and output layers. We can see that
CombinedTreeBasedGP’s depth (figure 5.3) lowered over time and settled be-
tween four and five while maintaining similar fitness. Now, we take a look at the
results themselves where each formula represents one output class (the class with
the biggest value is chosen as prediction), and the accuracy is computed on test
dataset.

46

Figure 5.4: The best results for CartesianGP on Iris dataset.

Figure 5.5: The best results for CombinedTreeBasedGP on Iris dataset.

CartesianGP (figure 5.4) achieves better results then CombinedTreeBasedGP
(figure 5.5) achieved on test dataset. CombinedTreeBasedGP evolved clearer and
shorter formulas compared to CartesianGP. The CombinedTreeBasedGP does not
steadily improve over multiple runs so we can see from fitness graph it has a big
variance between runs. The end result is: CombinedTreeBasedGP can achieve
better result, but CartesianGP is more stable algorithm.

5.1.2 Breast cancer dataset
This dataset is still considered small and it is used as a next step in increasing
difficulty for our ML model. It consists of 30 input variables that are real posi-
tive numbers and we classify into two classes. It has 570 total samples, 212 for
malignant class and 357 for benign class.

We are using population size of 50 individuals and maximum generations
of 1000. For more details about configuration, CartesianGP was run using Win-
dows command-line script run cartesian breast cancer.bat and for CombinedTree-
BasedGP we used run treebased combined breast cancer.bat, both provided in the
attachment to this thesis.

47

Figure 5.6: Fitness progress in CartesianGP on Breast cancer dataset.
Axis X represents number of generations, axis Y is logarithmically scaled

fitness.

Figure 5.7: Fitness progress in CombinedTreeBasedGP on Breast cancer dataset.
Axis X represents number of generations, axis Y is logarithmically scaled

fitness.

We again see that CartesianGP (figure 5.6) is more consistent in achieving
better fitness values with a smaller variance between the performance of chro-
mosomes from different runs when compared to CombinedTreeBasedGP (figure
5.7). Next, we analyse depth evolution of the same runs.

48

Figure 5.8: Depth evolution for CombinedTreeBasedGP on Breast cancer dataset.
Axis X represents number of generations, axis Y is depth of the deepest tree in

an individual.

For CartesianGP we use depth of nine including input and output layers.
CombinedTreeBasedGP (figure 5.8) on average tends to stay around the depth
of five, but with some variance between runs of the algorithm. Interesting is also
the initial spike in depth values across runs and almost immediately return to
the original depth of around five. In the next part, we take a look at results
themselves with accuracies on test datasets.

Figure 5.9: The best result formulas.txt for CartesianGP on Breast cancer
dataset.

49

Figure 5.10: The best result formulas.txt for CombinedTreeBasedGP on Breast
cancer dataset.

We see that CartesianGP (figure 5.9) achieves higher accuracy, but only by
about 2% on test dataset and CombinedTreeBasedGP provides a simpler formula.
CombinedTreeBasedGP also has bigger variance between runs and between av-
erage fitness and minimal fitness in each generation (figures 5.6 and 5.7).

5.1.3 Wine dataset
This dataset is used as a next step in increasing difficulty for our ML model. It
consists of 13 input variables that are real positive numbers and we classify into
two classes. It has 178 total samples, 59 for the first class, 71 for the second class
and 48 for the third class.

We are using population size of 50 individuals and maximum generations of
1000. For more details about configuration, CartesianGP was run using Windows
command-line script run cartesian wine.bat and for CombinedTreeBasedGP we
used run treebased combined wine.bat, both provided in the attachment to this
thesis.

50

Figure 5.11: Fitness progress in CartesianGP on Wine dataset.
Axis X represents number of generations, axis Y is logarithmically scaled

fitness.

Figure 5.12: Fitness progress in CombinedTreeBasedGP on Wine dataset.
Axis X represents number of generations, axis Y is logarithmically scaled

fitness.

Again, we see that CartesianGP (figure 5.11) improves over the whole time
of the evolution whereas CombinedTreeBasedGP (figure 5.12) experiences initial
jump in fitness and then does not experience significant improvement during the

51

whole run of the algorithm. In the next part, we analyse the evolution of the
depth of the chromosomes over the run of the algorithms.

Figure 5.13: Depth evolution for CombinedTreeBasedGP on Wine dataset.
Axis X represents number of generations, axis Y is depth of the deepest tree in

an individual.

CartesinGP has a constant depth of six. We see that CombinedTreeBasedGP’s
average depth (figure 5.13) stays around five initially, but in around generation
300 the variance over runs widens significantly. In the next part, we take a look
at the best result out of the five runs of the algorithm.

52

Figure 5.14: The best results for CartesianGP on Wine dataset.

Figure 5.15: The best results for CombinedTreeBasedGP on Wine dataset.

We see that on Wine dataset, CombinedTreeBasedGP generates result (figure
5.15) with lower accuracy on test dataset when compared to CartesianGP’s result
(figure 5.14). In this instance, both sets of generated formulas are easy to read.

5.1.4 MNIST dataset
This dataset is the hardest one we used for testing. It is a basic image recognition
dataset for 8x8 greyscale picture where each pixel is represented by a value from
0 up 16 (included). It consists of 64 integer inputs from interval [0, 16] and it has
10 output classes. It contains 1800 total samples, 180 for each class.

CartesianGP was run using Windows command-line script
run cartesian mnist.bat and for CombinedTreeBasedGP we used
run treebased combined mnist.bat, both provided in the attachment to this
thesis.

53

Figure 5.16: Fitness progress in CartesianGP on MNIST dataset.
Axis X represents number of generations, axis Y is logarithmically scaled

fitness.

Figure 5.17: Fitness progress in CombinedTreeBasedGP on MNIST dataset.
Axis X represents number of generations, axis Y is logarithmically scaled

fitness.

We can see that CartesianGP (figure 5.16) steadily improves and we can see
that its fitness regularly achieves values around 0.4. We again see that variance
of the best chromosomes across runs out of the population varies by about 0.1

54

fitness which is big. In the next part, we analyse the evolution of the depth of
the chromosomes over the run of the algorithms.

Figure 5.18: Depth evolution for CombinedTreeBasedGP on MNIST dataset.
Axis X represents number of generations, axis Y is depth of the deepest tree in

an individual.

CartesianGP was set to constant depth of nine including input and output
layers. CombinedTreeBasedGP’s depth (figure 5.18) again varied a lot, but we
see that in the beginning chromosomes got deeper to achieve better results and
afterwards came back to average depth of 10. In the next part, we take a look at
the best produced results from each GP algorithm.

55

Figure 5.19: The best results for CartesianGP on MNIST dataset.

Figure 5.20: The best results for CombinedTreeBasedGP on MNIST dataset.

56

We see that CartesianGP (figure 5.19) achieves significantly better accuracy
on test dataset when compared to CombinedTreeBasedGP (figure 5.20). Since
this is more complicated dataset, it is hard to argue which formulas are simpler
or concise.

57

Conclusion
In the first chapter, we discussed theory behind Evolutionary algorithms, Genetic
programming and classification including smaller parts necessary to be design for
a specific problem the algorithm is trying to solve. In the second chapter, we
introduced cartesian and tree-based encodings with functions specific for them:
crossover, mutation, fitness function. We also described all node types we use
and how they function. Chapters three to five present our original work and
complete the goal of this thesis. In the third chapter, we presented our proposal
of implementing both encodings with details regarding chromosome itself, fitness
function, crossovers and mutations, and shared library responsible for handling
the running of genetic algorithm. In the fourth chapter, we described how to
compile, create a virtual environment and run implementation provided in at-
tachments of this thesis including explanation of all command-line arguments. In
the fifth chapter, we show results of our experiments on selected datasets and
discuss the results.

In this thesis, we wanted to see if using GP as a machine learning classification
model is a viable option, if we want more understandable results and/or formulas
meaning this model is not a “black box” and after training we can analyse the
models formulas. These solutions are represented by relatively simple formulas
and are fast to compute once the training has ended. This has been achieved in
chapter 5 and completed the goal of this thesis.

Possible future work in this area is testing these encodings for classification
on larger datasets. Another possible improvement might come from adding more
mutations, crossover functions and node types. and also if building on our im-
plementation, take a look at efficiency or a possible data leak in implementation
of CombinedTreeBasedGP (during experiments can take upto seven gigabytes of
memory)

58

Bibliography
John Bridle. Training stochastic model recognition algorithms as net-

works can lead to maximum mutual information estimation of pa-
rameters. In D. Touretzky, editor, Advances in Neural Informa-
tion Processing Systems, volume 2, page 215. Morgan-Kaufmann, 1989.
URL https://proceedings.neurips.cc/paper_files/paper/1989/file/
0336dcbab05b9d5ad24f4333c7658a0e-Paper.pdf.

Simon Haykin. Neural networks: a comprehensive foundation. Prentice Hall PTR,
1994.

John H. Holland. Genetic algorithms. Scientific American, 267(1):66–73, 1992.
ISSN 00368733, 19467087. URL http://www.jstor.org/stable/24939139.

John R. Koza. Genetic programming: On the programming of computers by means
of natural selection. The MIT Press, 1992.

Microsoft. dotnet build, a. URL https://learn.microsoft.com/en-us/
dotnet/core/tools/dotnet-build#description.

Microsoft. Introduction to plinq, b. URL https://learn.microsoft.com/
en-us/dotnet/standard/parallel-programming/introduction-to-plinq.

Microsoft. Threadpool class, c. URL https://learn.microsoft.com/en-us/
dotnet/api/system.threading.threadpool?view=net-8.0.

Julian F. Miller. Cartesian Genetic Programming. Natural Computing Series.
Springer, 2011. ISBN 978-3-642-17309-7. doi: 10.1007/978-3-642-17310-3.
URL https://doi.org/10.1007/978-3-642-17310-3.

Mitchell Spryn. Cartesian genetic programming for image pro-
cessing. URL https://www.mitchellspryn.com/2021/01/06/
Cartesian-Genetic-Programming-For-Image-Processing.html.

59

https://proceedings.neurips.cc/paper_files/paper/1989/file/0336dcbab05b9d5ad24f4333c7658a0e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/0336dcbab05b9d5ad24f4333c7658a0e-Paper.pdf
http://www.jstor.org/stable/24939139
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-build#description
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-build#description
https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/introduction-to-plinq
https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/introduction-to-plinq
https://learn.microsoft.com/en-us/dotnet/api/system.threading.threadpool?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.threading.threadpool?view=net-8.0
https://doi.org/10.1007/978-3-642-17310-3
https://www.mitchellspryn.com/2021/01/06/Cartesian-Genetic-Programming-For-Image-Processing.html
https://www.mitchellspryn.com/2021/01/06/Cartesian-Genetic-Programming-For-Image-Processing.html

List of Figures

1.1 Simple Genetic algorithm example 7
1.2 Example of crossover . 8
1.3 Example of Node Change mutation 9
1.4 Example of Children Shuffle mutation 9

2.1 Louis’ genotype representation from Miller [2011] 11
2.2 CGP chromosome example (coloured paths go across 1+ layers) . 13

3.1 C# project dependency graph . 19
3.2 Base Chromosome class . 20
3.3 Base Crossover class . 20
3.4 Base Mutation class . 21
3.5 Base Fitness class . 21
3.6 Base PopulationCombinationStrategy class 22
3.7 Base Selection class . 22
3.8 Code snippet of GA constructor 23
3.9 Example of initializing GA class from Cartesian GP main function 25
3.10 Visualization of Cartesian GP chromosome from Spryn 26
3.11 Example of crossover chromosomes from Cartesian GP 28
3.12 Visualization of TreeBased GP chromosome from Spryn with pro-

duced formula . 30

4.1 Example of path to MasterProject 34
4.2 Example of path to MastersProject\python scripts 34
4.3 Example of command line after activating the environment 35
4.4 Example of script running CartesianGP with arguments 38
4.5 Example of output directory structure 39
4.6 Example of script running CombinedTreeBasedGP with arguments 41
4.7 Example of output directory structure 42
4.8 Example of running script prepare input.py 43
4.9 Example of running script show multiple runs.py 43

5.1 Fitness progress in CartesianGP on Iris dataset. 45
5.2 Fitness progress in CombinedTreeBasedGP on Iris dataset with log

scaling. 45
5.3 Depth evolution for CombinedTreeBasedGP on Iris dataset. . . . 46
5.4 The best results for CartesianGP on Iris dataset. 47
5.5 The best results for CombinedTreeBasedGP on Iris dataset. . . . 47
5.6 Fitness progress in CartesianGP on Breast cancer dataset. 48
5.7 Fitness progress in CombinedTreeBasedGP on Breast cancer dataset. 48
5.8 Depth evolution for CombinedTreeBasedGP on Breast cancer

dataset. 49
5.9 The best result formulas.txt for CartesianGP on Breast cancer

dataset. 49
5.10 The best result formulas.txt for CombinedTreeBasedGP on Breast

cancer dataset. 50

60

5.11 Fitness progress in CartesianGP on Wine dataset. 51
5.12 Fitness progress in CombinedTreeBasedGP on Wine dataset. . . . 51
5.13 Depth evolution for CombinedTreeBasedGP on Wine dataset. . . 52
5.14 The best results for CartesianGP on Wine dataset. 53
5.15 The best results for CombinedTreeBasedGP on Wine dataset. . . 53
5.16 Fitness progress in CartesianGP on MNIST dataset. 54
5.17 Fitness progress in CombinedTreeBasedGP on MNIST dataset. . . 54
5.18 Depth evolution for CombinedTreeBasedGP on MNIST dataset. . 55
5.19 The best results for CartesianGP on MNIST dataset. 56
5.20 The best results for CombinedTreeBasedGP on MNIST dataset. . 56

61

A. Attachments

A.1 First Attachment
Electronic attachments to this thesis include the software implementation, data
and results of the experiments from chapter 5. They are also available at GitHub:
https://github.com/marnagy/MastersProject.

62

https://github.com/marnagy/MastersProject

	Introduction
	Evolutionary algorithms and genetic programming
	Basic terminology
	Chromosome
	Fitness
	Selection
	Crossover
	Mutation
	Environmental Selection

	Basic Genetic algorithm
	Genetic programming
	Terminology
	Basic operations used in Genetic programming

	Classification

	Different encodings for Genetic programming
	Cartesian encoding
	Chromosome
	Fitness
	Selection
	Crossover
	Mutation

	Tree-based encoding
	Chromosome
	Fitness
	Selection
	Crossover
	Mutation

	Nodes' functionalities
	Non-terminal
	Terminal

	Our solution proposal
	Shared library (GASharp)
	Creating GA class
	Other class properties

	Cartesian GP
	Chromosome implementation
	Fitness
	Crossover
	Mutations

	Tree-based GP
	Chromosome implementation
	Fitness details

	Combined Tree-based GP
	Chromosome implementation
	Fitness details
	Mutations

	How to build and run GPs
	How to build
	Requirements
	Setting up

	How to run
	Cartesian GP
	Combined TreeBased GP
	Python scripts

	Experiments
	Datasets used
	Iris dataset
	Breast cancer dataset
	Wine dataset
	MNIST dataset

	Conclusion
	Bibliography
	List of Figures
	Attachments
	First Attachment

