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Abstract: This thesis explores stochastic cooperative games, viewed here as
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Notation and Abbreviations
To avoid ambiguity and ensure clarity, we introduce some notations and abbre-
viations that require no further explanation.
The expressions below are presented in a more succinct form on the left-hand
side to simplify the notation of coalitions and characteristic function:

• v(i) = v({i}),

• v(ijk) = v({i, j, k}),

• x(S) = ∑︁
i∈ xi,

• S \ i instead of S \ {i},

• S ∪ i instead of S ∪ {i}.

Models of stochastic TU-games have the following abbreviations:

• SB model. . . Suijs and Borm model,

• CG model . . . Charnes and Granot model,

• SHS model . . . Sun et al. (optimization) model.

The following terms are listed in no specific order:

• The first derivative of a function f : f ′(x),

• The second derivative of a function f : f ′′(x),

• Marginal contribution of i to S: v(S ∪ i) − v(S),

• If A is a matrix Aij is entry in i−th row and j-th column,

• x ∈ C≤(v) if ∀S ⊆ N : x(S) ≥ v(S),

• uX
α is the α-quantile of X,

• Correlation between xi and xj: ρi,j = cov(xi, xj)√︂
Var(xi)Var(xj)

.

We use the following distributions with standard notation:

• Uniform distribution on [a, b] denoted by U [a, b],

• Normal distribution denoted by N(µ, σ2),

• Gamma distribution denoted by Γ(k, θ).
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Introduction
This thesis explores solution concepts within stochastic cooperative games, fo-
cusing on stochastic TU-games, i.e., when deterministic assumptions are inad-
equate. Specifically, the thesis surveys models and solution concepts for the
stochastic TU-games and contributes to the theory with the solution concepts,
namely those incorporating stability by using the second order stochastic domi-
nance. The second order stochastic dominance allows for modeling a risk aversion
in a general and structured manner, without needing specific assumptions about
the players’ levels of the risk aversion. As a practical application, the thesis
extends the newsvendor problem to a multi newsvendors context, using solution
concepts based on the second order stochastic dominance. A summarized content
structure of the thesis is outlined below.

The first chapter provides a comprehensive survey of stochastic TU-games
and introduces deterministic cooperative games, exploring their connections with
noncooperative games and it defines stochastic dominance. It further surveys
models of stochastic TU-games, spanning from 1973, the year the first model was
introduced, to the present. The survey covers the most influential and studied
models, namely those developed by Charnes and Granot [1], Suijs and Borm [2],
Habis and Herings [3], and Sun et al. [4].

The second chapter provides an overview of the solution concepts developed
for stochastic TU-games, as introduced in the first chapter, and discusses their
properties and reasonableness. The solution concepts include generalization of
both the core and the Shapley value. Subsequent chapters present the original
results of this thesis.

The third chapter, which consists of the main contribution of this thesis,
introduces a generalization of the core from deterministic TU-games to stochastic
TU-games, assuming players are risk averse. This chapter focuses on the so
called SSD-dominating core and SSD-undominated core. The distinction between
the undominated and dominating aspects of the SSD-core arises because the
SSD framework induces a partial ordering on random variables. We primarily
examine the SSD-dominating core, deriving conditions for its nonemptiness across
various distributions of the characteristic function v, including normal, uniform
continuous, uniform discrete, and gamma distributions. These conditions are also
explored through several types of payoffs.

The brief fourth chapter investigates the concepts of individual stability for
coalition structures in stochastic TU-games. We present findings regarding the
existence of an individually stable coalition structure for risk-averse players under
a normally distributed characteristic function. Additionally, we explore the rela-
tionship between this stability and the stability induced by the SSD-undominated
core.

The final chapter applies the concept of the SSD-dominating core to the multi-
ple newsvendors game. Initially, the classical newsvendor problem is revisited, fol-
lowed by an overview of its extension, as detailed in the literature, to the multiple
newsvendors game, providing context for the application of the SSD-dominating
core. Subsequently, the chapter derives the conditions for the nonemptiness of
the SSD-dominating core when the demand is uniformly distributed.
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1. Cooperative game theory
The main purpose of the first chapter of this thesis is to recall fundamental model
of cooperative games under both deterministic payoffs and stochastic payoffs and
to define terms needed further. In the survey of already existing results, we
discuss a few ways to incorporate randomness of the characteristic function. Let
us begin with preliminaries, formally introducing the notions of preferences and
second-order stochastic dominance.

1.1 Preliminaries
Definition 1 (Preferences). A binary relation ⪯ over the set X is:

• a partial order preference if it is reflexive, antisymmetric and transitive,

• a total order preference if for any a, b ∈ X holds a ⪯ b or b ⪯ a.
Definition 2 (Utility function). Utility function u is a function u : R → R
satisfying the following two conditions:

• u is continuous,

• u is nondecreasing.
The continuity of the utility function u serves as a technical assumption.

The key assumption is that of monotonicity, which ensures that the utility u
function does not decrease as the value increases. This property is essential for
guaranteeing that higher values are always preferred or valued equally, reflecting
rational preference behavior.
Definition 3 (Risk aversion, neutrality and lovingness). Let x be a random vari-
able with a finite expected value, ui be a utility function of a player i and ⪯i his
preferences over the random variables with the finite expected value.
The player i is:

• risk averse if ui is a concave function or x ⪯i Ex,

• risk neutral if ui is a linear function or x ∼i Ex,

• risk loving if ui is a convex function or x ⪰i Ex.
Remark. We use the symbol ∼ to denote indifference between two outcomes.
In the context of a total order, this indifference implies that the two compared
objects are equivalent in value or utility. In the case of a partial order, however,
∼ indicates that the objects are either incomparable due to the lack of a clear
preference hierarchy or that they are equivalent.

The utility function directly specifies a preference relation; however, as we
can see, for instance, in the notion of stochastic dominance, we may use more
utility functions at once to describe a preference. Constructing a utility function
for each player can sometimes be an impossible or too complex task. It is thus
beneficial to have a method to order payoffs without the need for explicit utility
functions. Stochastic dominance offers a framework for this purpose. In the book
of Wolfstetter et al. [5] can be found the following definitions.
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Definition 4 (First order stochastic dominance (FSD)). Let X, Y be random
variables and FX , FY their cumulative distribution functions. We say X stochas-
tically dominates Y if

∀u ∈ R : FX(u) ≤ FY (u),
or equivalently if for all utility functions u:

E[u(X)] ≥ E[u(Y )]. (1.1)

Definition 5 (Second order stochastic dominance (SSD)). Let X, Y be random
variables and FX , FY their cumulative distribution functions. We say X stochas-
tically dominates Y in second order sense if

∀u ∈ R :
∫︂ u

−∞
(FX(z) − FY (z)) dz ≤ 0,

or equivalently if for all concave utility functions u, i.e., utility functions for which
∀x ∈ R : u′′(x) ≤ 0:

Eu(X) ≥ Eu(Y ). (1.2)

Remark. We can similarly define the notion of the higher order stochastic dom-
inance by restricting the set of utility functions in the definition of stochastic
dominance even more.

For the derivation of our results, we use only the second order stochastic
dominance. The first order stochastic dominance is defined for the sake of com-
pleteness. For the interpretation of the stochastic dominance notion, we use (1.1)
and (1.2). First-order stochastic dominance occurs when all players, regardless
of their individual utility functions, agree that one outcome is consistently better
than or at least as good as another across all possible states. SSD is a slightly
weaker condition since there are fewer utility functions that satisfy (1.2). Con-
trary to FSD, the condition for SSD considers only concave utility functions,
hence SSD occurs when all risk averse players, i.e., utility maximizers with con-
cave utility function, prefer one outcome over the other one. There is a useful
property directly following from the definition of SSD and the fact that a linear
function is also concave.

Claim 1. If X ⪰SSD Y then EX ≥ EY .

Both SSD and FSD induce partial orderings on random payoffs. Although
partial orders present challenges, the insight provided by SSD into the preferences
of risk averse players outweighs these issues.

1.2 Noncooperative vs cooperative games
This section serves as an introduction to cooperative game theory, primarily for
those familiar with its noncooperative counterpart.

We can divide games into two main branches which are cooperative and non-
cooperative games. Most of the people familiar with mathematics, economics
or computer science know the concept of noncooperative game (we can think
of normal form games or more specifically matrix games), e.g., the game called
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Rock-paper-scissors. One of the most famous solution concepts is the Nash equi-
librium. The Nash equiblibrium can be vaguely described as a set of strategies
of players, under which no player wants to deviate, e.g., in Rock-paper-scissors
such a set of strategies is to uniformly randomize over all three possibilities. The
Nash equilibrium describes a stable outcome of the game. Ideas of stability are
also present in the cooperative game theory. In cooperative game theory, the
solution concept known as the core is famous; it can also be viewed as a stable
solution concept. However, let us focus on differences in the cooperative and
noncooperative approach to games.

Cooperative and noncooperative games follow two different approaches to
model strategic situations. Noncooperative games are mainly interested in ac-
tions that players can take. Such a framework enables us to model vast majority
of situations and analyze sets of actions leading to adequate solutions in given
terms (equilibria, efficient solutions, solutions maximizing social welfare). How-
ever, a cooperative game does not use explicitly sets of actions and strategies.
The actions are rather inherently given in the game itself in the form of values
of groups of players. We aim to understand the cooperation outcomes by values
given to coalitions, i.e., to groups of players. From this perspective, we can model
situations that are not addressable using solely noncooperative models. Given the
differences in the model, the questions asked within the cooperative framework
also differ from those in noncooperative models. In cooperative game theory, the
focus shifts to questions about how to reasonably distribute value or determine
which coalitions are likely to form, rather than concentrating on the strategies
individual players might play.

The last thing we mention regarding the relationship is the Nash Program.
It was initiated by John Nash in 1953, and it pursuits bridging of the disciplines
of cooperative and noncooperative game theory for over 70 years. A survey of
contributions made in this field over the last seven decades can be found in [6].

1.3 Cooperative games
This section seeks to provide fundamental definitions of cooperative games and
should be used to get to know them together with the notation used further. It
is not meant to be introductory text on general cooperative games. Thorough
introduction with various solution concepts can be found in the book by Peters [7]
together with all definitions from this section. Let us begin by recalling the
fundamental deterministic model of transferable utility game.

Definition 6 (TU-game). TU-game is a pair (N, v), where N = {1, 2, . . . , n} is
a set of players and v is a function assigning a real value to each subset (coalition)
S ⊆ N and v(∅) = 0. The function v is called characteristic function.

TU-game and its characteristic function serves as a tool for modelling worths
of groups of players. Apart from this, we can also define the cooperative coali-
tional model in other ways. One of these lead to nontransferable utility game or
just NTU-game. The main difference is that in the NTU-game, we can not freely
distribute payoff in a coalition but there are some constraints for the payoffs of
the players. For more information on NTU-games, we refer to [8].
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The following example illustrates a representation of a problem as a coopera-
tive game, namely the Bankruptcy problem, a specific game whose study Aumann
and Maschler initiated, as detailed in [9].
Example 1 (Bankruptcy problem). Suppose there is a value E > 0 which we
want to distribute among n people (after a bankruptcy of a firm) who have their
demands di on the value they should get. Then the characteristic function of
TU-game (N, v) is defined for every nonempty coalition S as follows:

v(S) = max{0, E −
∑︂

i∈N\S

di}.

For a specific example, let us have 3 players with the value E = 30 and demands
d1 = 10, d2 = 25 and d3 = 25. Values of coalitions are the following:

• v({1, 2, 3}) = 30,

• v({1, 2}) = v({1, 3}) = 5,

• v({2, 3}) = 20,

• v({1}) = v({2}) = v({3}) = 0.
The bankruptcy problem is about how to distribute the value E among the

players. To answer that, we need to get a bit more notation and definitions. We
denote payoff vector or allocation by (x1, x2, . . . , xn) = x ∈ Rn, which can be
assigned to players. We can then say that solution concept is a set of payoffs
X ⊆ Rn given by some condition or rule, e.g., xi ≥ v(i). There are three useful
terms relating to allocations:

• Payoff vector x is individually rational if ∀i ∈ N : xi ≥ v(i).

• Payoff vector x is efficient if x(N) = v(N).

• Payoff vector x is imputation, if it is individually rational and efficient.
Following is the definition of the core; the most studied solution concept, which
is considered to be stable.
Definition 7 (Core). Let (N, v) be TU-game. The core of (N, v) denoted by C(v)
is the following set of payoffs:

C(v) = {x ∈ Rn : x(S) ≥ v(S) & x(N) = v(N)}.

The core is a set of efficient payoff vectors with additional property, so called
coalition rationality, i.e. every coalition is guaranteed to receive at least the value
of its worth. The following property of balancedness characterizes when is the
core nonempty.
Definition 8 (Balancedness of TU-game). Let (N, v) be a TU-game. The game
(N, v) is balanced if for every µ : 2N → [0, 1], where

∀i ∈ N :
∑︂

S∈2N :i∈S

µ(S) = 1,

the following condition holds:∑︂
S∈2N

µ(S)v(S) ≤ v(N).
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Remark. Function µ is called balanced map.
The following theorem, independently proved by Shapley in [10] and Bon-

dareva in [11], characterizes games with nonempty core as precisely those that
are balanced.

Theorem 2 (Bondareva-Shapley theorem). Let (N, v) be a TU-game. The game
has nonempty core C(v) ̸= ∅ if and only if (N, v) is balanced.

Let us recall Example 1 with the bankruptcy game. In this game, the for-
mation of the grand coalition is built into its structure. The primary objective
is to distribute the total value v(N) = E among all players. The demands of
individual players are used exclusively to determine the allocation of this total
value. If the core of the bankruptcy game is empty, it indicates that any proposed
distribution of payoffs violates condition for at least one S ⊆ N , i.e. x(S) < v(S).
By the definition of v(S), either x(S) < 0, in which case some of the players in
S have to pay something, or 0 ≤ x(S) < E −∑︁

i∈N\S di, in which case it is more
beneficial for players in S to pay the demands di to players i ∈ N \ S, and they
are still left with more than x(S). However, it is also worth noting that there are
scenarios where dividing the set of players into disjoint coalitions and assigning
each a specific value, v(S), for redistribution is reasonable even though it may
not be in the bankruptcy problem. These situations are explored further in this
thesis when dealing with coalition structures.

The bankruptcy problem does not inherently adapt to such cooperative struc-
tures. Consequently, when the core of the bankruptcy game is empty, a different
type of solution, allocating the value of the grand coalition, is required. The
following solution concept addresses this challenge:

Definition 9 (Shapley value). Shapley value ϕ of TU-game (N, v) of i-th player
is a solution concept given by the following formula:

ϕi =
∑︂

S⊆N\i

(|N | − |S| − 1)!(|S|!)
|N |! (v(S ∪ i) − v(S)).

Remark. The Shapley value is efficient, i.e., ∑︁i∈N ϕi = v(N).
Equivalently, the Shapley value can be characterized by a few axioms, which

gives us means to understand its behaviour. The most known axiomatization is
due to Shapley [12]. We can see that the value is given by the sum of weighted
marginal contributions of a player to coalitions. The weight can be described as
follows:

1. players are ordered according to a random permutation,

2. coalition S is created from the first |S| players of the permutation,

3. the weight corresponds to the probability of player i being (|S| + 1)-th in
the ordering of uniformly random permutation of the n players.

There is a clear distinction between the core and the Shapley value as one is
single valued and the other might not be. A natural question to ask is whether
the Shapley value lies within the core of a game? Before we answer this question,
let us first define various families of games.
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Definition 10 (Classes of games). Let (N, v) be a TU-game. We say (N, v) is

• simple if ∀S ⊆ N : v(S) ∈ {0, 1},1

• additive if ∀S ⊆ N : v(S) = ∑︁
i∈S v(i),

• monotone if ∀S ⊆ T ⊆ N : v(S) ≤ v(T ),

• superadditive if ∀S, T ⊆ N, S ∩ T = ∅ : v(S) + v(T ) ≤ v(S ∪ T ),

• convex if ∀S, T ⊆ N : v(S) + v(T ) − v(S ∩ T ) ≤ v(S ∪ T ).

These families are interesting enough to study on their own. Simple games
form a well studied family of games. Its simple structure helps to establish in-
teresting results and the family has its applications in social choice theory; it is
studied in problems regarding establishing voting power, or preference aggrega-
tion. The family of monotone games has quite a straightforward interpretation.
Every player in any coalition does have nonnegative impact on the worth of the
coalition. There is no strict relation between superaditive and monotone or con-
vex and monotone games contrary to superadditive and convex games, where
the former is a subset of the latter. An important fact about the core and the
Shapley value is that for convex games, the Shapley value always stays within
the core. However, this might not be true for nonconvex games. There is another
way to define convex games, which helps to understand them more easily: in
a convex game, the marginal value that a player i brings to a coalition S, i.e.,
v(S ∪ i) − v(S), increases as more players join the coalition S.
Remark. The game (N, v) is convex if and only if ∀i ∈ N, ∀S ⊆ T ⊆ N \ i:

v(S ∪ i) − v(S) ≤ v(T ∪ i) − v(T ).

The following result by Shapley [13] resolves the question of core nonemptiness
for convex games.

Theorem 3 (Core of a convex game). Let (N, v) be a convex game. Then (N, v)
has nonempty core C(v) ̸= ∅.

Surprisingly, superadditivity is not sufficient condition for nonemptiness of
the core. A counterexample can be obtained already for 3 players.

Example 2. Let (N, v) be a TU-game, where N = {1, 2, 3} and the values are
as follows:

• v({1, 2, 3}) = 10,

• v({1, 2}) = v({1, 3}) = 8,

• v({2, 3}) = 5,

• v({1}) = 5,

• v({2}) = v({3}) = 2.
1In the literature, simple games are usually assumed to be also monotone.
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This game is superadditive and has an empty core. To see this, we consider the
following inequalities for x1, x2, and x3, given by the core conditions:

1. By combination of xi ≥ v({i}) for i ∈ N , together with v(N) = x(N), we
get inequalities:

• 5 ≥ x2 + x3,
• 8 ≥ x1 + x3,
• 8 ≥ x1 + x2.

2. From the worths of coalitions of two players and the already established
inequalities, we can extract the following equalities:

• 5 = x2 + x3

• 8 = x1 + x3,
• 8 = x1 + x2.

3. It follows x2 = x3 = 2.5 and, together with the grand coalition value, we
get x1 = 5.5. This is a contradiction with the efficiency of the core because
2.5 + 2.5 + 5.5 ̸= 10. Therefore, the core is empty.

A lot of research on cooperative game theory often assumes games to be super-
additive, which can be usually justified by results connected to the superadditive
cover of a game (see [14]). To every TU-game, one can assign a superadditive
game, which is called the superadditive cover. This game has interesting proper-
ties, which connect it to the original one; its core is nonempty if and only if the
core of the original game is nonempty. Therefore, if we are interested in games
with nonempty cores, we can assume they are superadditive. As we do not need
the superadditive cover later in our text, we omit its formal definition.

Except for the two main solution concepts we have already introduced, there
are many others that are not in the scope of this thesis. Examples are the
nucleolus, the kernel, the Webber set, to mention a few. We refer the reader to [8]
to learn more about these. We shall say a few words about the nucleolus, though,
since it is together with the core and the Shapley value the most studied solution
concept. It is defined by a lexicographic ordering on excesses2 of coalitions. The
nucleolus resolves one of the issues of the core, and that is, how to choose a payoff
vector from the core. Specifically, the nucleolus lies always within the core if the
core is nonempty and might exist even if the core is empty. There are also other
possibilities for choosing a vector from the core like the center of gravity of the
core. However, this payoff vector does not exist when the core is empty.

So far, we interpreted value v(S) as worth of coalition S, however, there might
be scenarios, where it is more beneficial to view it as a joint cost of coalition.
We refer to such games as TU-cost games and denote them (N, c), stressing the
characteristic function c represents costs. For scenarios with cost games, modified
variants of solution concepts are considered.
Definition 11 (Core of a cost game). Let (N, c) be TU-cost game. The core of
cost game (N, c), denoted by Ccost(c), is the following set of payoffs:

Ccost(c) = {x ∈ Rn : x(S) ≤ c(S) & x(N) = c(N)}.
2Excess of coalition S ⊆ N is given as v(S)−x(S). It is formally introduced in Definition 24.
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Before we conclude this section, we want to mention one last notion.

Definition 12 (Coalitional structure). Coalitional structure of a game (N, v) is
a partition (S1, S2, . . . , Sk) of the set of players N , i.e., it is a set of disjoint
coalitions Sl ∩ Sp = ∅, l ̸= p, where ⋃︁i∈{1,...,k} Si = N .

The coalition structure is natural to consider in situations, when the core is
empty, i.e., when it is not beneficial for the players to form the grand coalition
but rather to split into smaller groups. We make use of this concept in Chapter 4
of this thesis.

Questions to ask in coalitional model. Depending on the structure of the
game, there are two main key questions to consider:

• How should the total value, v(N), be distributed among all players?

• Which coalition structures are likely to form?

1.4 Cooperative games with stochastic charac-
teristic function

Most of this thesis focuses on games that incorporate elements of randomness.
There are several methods for integrating randomness into these models, primarily
driven by the need to create a payoff distribution that reflects the uncertainty
of outcomes. We explore four most studied and established models from the
literature. Each model introduces randomness through the characteristic function
but approaches the problem from a unique angle. Additionally, the aim of this
section is to present these stochastic models in a clear and structured manner.
Following is the definition of stochastic TU-game, which is fundamental for the
definitions of the rest of the models.

Definition 13 (Stochastic TU-game). Stochastic TU-game is a pair (N, v),
where N = {1, 2, . . . , n} is a set of players and v = (v(S)S⊆N) is a multivariate
random variable, i.e., v : (Ω, F) −→ (R2n

, B2n) is a measurable map on the prob-
ability space (Ω, F , P ), where Ω is the sample space, F the sigma-algebra on Ω,
P the probability measure on (Ω, F) and B2n is the Borel sigma-algebra on R2n.

Remark. We usually assume values v(S) to be stochastically independent and
v(∅) = 0, if not specified otherwise.

Stochastic payoff x of players in N is a probability distribution over possible
payoffs. A term we shall also use is a correlation structure.

Definition 14 (Correlation structure or covariance structure). The correlation
structure of the stochastic TU-game (N, v) is the following set of covariances:

{cov(v(S), v(T )); T ⊆ N, S ⊆ N}.

Specially, H-correlation structure is correlation structure with respect to only one
coalition H ⊆ N :

{cov(v(S), v(H)); S ⊆ N}.
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A way of defining a specific stochastic TU-game is to assign random variables
to all the coalitions and a correlation structure, i.e., specify the multivariate dis-
tribution of the characteristic function v. For example, we might assign each
coalition a distinct random variable such that all these variables are independent.
Another example might be to create scenarios within the game to establish vari-
ous possible outcomes and their implications. Regardless of the chosen approach,
it is essential to either understand the structure of the problem or incorporate
additional information about the situation and the players. This additional in-
sight is crucial for determining how to appropriately redistribute payoffs under
the randomness.

Interpretation of the stochastic model Let us discuss how the interpre-
tation of a cooperative game changes, when ∀S ⊆ N , v(S) is a nondegenerate
random variable. In deterministic scenario, we usually distribute the value of
the grand coalition, however, in the stochastic model, since v(N) is a random
variable, the value to distribute is not known until it is realized. This introduces
a significant challenge: decisions about cooperation have to be made before the
actual value of v(N) is known, requiring an ex-ante approach to decision-making.
In contrast, if the value of the grand coalition is deterministic and known as a real
value, and at the same time v(S) is a random variable for the rest of the coalition,
the interpretative focus shifts. Under these conditions, we might analyze the sit-
uation through a model aimed at studying the robustness of solution concepts
when there is noise in the values of smaller coalitions. This approach is explored
in the recent work by Pantazis et al. [15], which examines the implications of such
stochastic elements on strategic decision-making.

1.4.1 Scenario model
This model, as its title suggest, depend on a set of scenarios with given proba-
bilities. We do not provide a formal definition, however, we illustrate it on an
example, which is an adjustment of Example 1.

Example 3 (Stochastic bankruptcy game). Stochastic bankruptcy problem is a
tuple (S, E, d), where

• S = {1, 2, . . . , k} is a finite set of states of nature or just scenarios,

• E = {E1, . . . , Ek} is the set of values to be distributed among the players
based on the scenario,

• d = {di,s}i∈N,s∈S is the set of demands of players, where di,s represents the
demand of player i under scenario s.

The stochastic bankruptcy game (N, v) is stochastic TU-game, where Ω = S and
for every scenario s ∈ S which is equally probable to occur, we get deterministic
game (N, vs) defined as follows:

vs(T ) = max{0, Es −
∑︂

i∈N\T

di,s}, ∀T ⊆ N.

The goal of this game is to come up with a rule to distribute the payoffs be-
fore the scenario is realized. This example is motivated by [16], where stochastic
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bankruptcy games are studied. The solution concept used in the paper is the weak
sequential core, which is generally designed for stochastic games in the form of
finite states. The weak sequential core for the stochastic games in the form of
scenarios is introduced in [3].

There is an obvious difference between the stochastic and the non-stochastic
bankruptcy problem. In the latter, there are two stages of the game: one stage
before the realization of the scenario and the second one after the realization.

For the scenario model, one can develop reasonable solution concepts as il-
lustrated in the example. However, requiring uncertainties to fit into specific
scenarios might be too limiting for some applications. Consequently, it might
be necessary to assume less about the values of coalitions and at the same time
assume additional information to be able to describe a broader range of situa-
tions. Models developed by Charnes and Granot, as well as by Suijs and Borm,
extend the basic stochastic model of a TU-game (N, v) by incorporating extra
details. These models either assume independence among the values of differ-
ent coalitions or do not model the covariances at all. Hence, v is characterized
by its marginal distributions v(S). Nevertheless, these models require types of
information beyond just the correlation structure such as preferences of players.

1.4.2 CG model
This is the oldest model, which incorporates randomness into the TU-game, devel-
oped by Charnes and Granot in the 1970s (the first paper mentioning the model
dates back to 1973 [1]). Their approach is based mainly on chance-constrained
optimization, i.e., constraints involving probability. This is a technique well es-
tablished in the field of stochastic optimization. The model is based on two stage
solutions:

1. Payoffs that are considered realizable are promised to the players.

2. After realization of the randomness, there are adjustments of the payoffs of
players.

Let us summarize the model formally:

Definition 15 (CG model). CG model is an ordered triple (N, v, α), where N =
{1, 2, . . . , n}, v(S) has an associated cumulative distribution function FS ∀S ⊆ N
and α is the set of fixed assurances (confidence levels) α(S) and α(S) for ∀S ⊆ N .

Remark. For the prior core, payoff x ∈ Rn is considered realizable, if it satisfies
probability inequalities in the form of P [x(S) ≥ v(S)] ≥ α(S), however, after
the realization of the randomness, it is further adjusted to satisfy efficiency. We
discuss the prior core in detail in Chapter 2.

The CG model is relatively simple in terms of the number of components re-
quired: only a stochastic TU-game and levels of assurance are necessary. These
assurance levels model the risk behavior of the coalitions in a sense. Solutions
derived from the CG model, known as prior solutions, are based on the zero-order
decision rule in chance-constrained programming. Consequently, such solutions
do not incorporate the full spectrum of probabilistic information. They are de-
signed primarily to guarantee the payoffs before the realization of the random
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variable v(N), allocations are adjusted in specific ways, for example, to preserve
ratios between pairs of players’ payoffs.

1.4.3 SB model
The model presented by Suijs, Borm, Waegenaere, and Tijs [2] is similar to the
CG model in that it models the values of coalitions as independent random vari-
ables; that is, the values are determined marginally. This model extends the
stochastic TU-game by introducing preferences over random variables. We de-
scribe the model that incorporates preferences and, as a special case, the SB
model as outlined in their paper, with one minor modification: we do not define
the actions of coalitions within this model, as they are not essential for further
discussion. Their inclusion would only complicate the model unnecessarily and
introduce additional notation. We elaborate on potential adjustments to the
model, specifically regarding the players’ preferences and allocation types.

Definition 16 (Model with preferences). Model of a stochastic TU-game with
preferences is a triple (N, v, (⪰i)i∈N) where (N, v) is a stochastic TU-game and
⪰i is a preference of player i over set X of random variables.

Remark. To be able to define preferences over X, we may restrict the set X for
instance to variable with the finite expected value.

Definition 17 (SB model). SB model is a model with preferences (N, v, (⪰i)i∈N)
where the preference ⪰i is defined in the following way: For any random variables
X, Y and given αi ∈ (0, 1), ∀i ∈ N it holds:

X ⪰i Y ⇐⇒ F −1
X (αi) ≥ F −1

Y (αi).

Remark. In [2], the authors implicitly assume a special type of stochastic payoff
x associated with the SB model, where xi = di + ri(v(N) − E[v(N)]) and:

• ∑︁
i∈S di = E[v(N)],

• ∑︁
i∈S ri = 1 and ∀i ∈ N, ri ≥ 0.

We refer to these stochastic payoffs as stochastic payoffs with transfer payments
and denote them by (d, r+) (see Definition 26 in Chapter 3).

Preferences used in the SB model can be altered. Suijs and Borm also dis-
cussed preferences in the form of E[X] + b · Var(X) for b ∈ R. The choice of
stochastic payoffs with transfer payments improves the computational proper-
ties of solution concepts; however, it sacrifices generality due to this restriction.
For this payoff type, in the case of forming the grand coalition, there are two
possibilities based on the realization z(N) of the v(N)):

z(N) ≤ E[v(N)] (1.3)
z(N) ≥ E[v(N)] (1.4)

According to the definition of an allocation, players receive a fixed amount
di and a variable amount based on ri. The greater the ri the greater the po-
tential profit or loss for the given player. If the realization of v(N) corresponds
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to the scenario described in 1.3, the player receives less than di which is deter-
mined before the realization. If the realization of v(N) corresponds to the second
scenario in 1.4, the player receives more than di which is determined before real-
ization.The greater the ri of a given player, the higher his loss/gain corresponding
to the realized value of v(N).

Let us explore the motivation for the SB model using an example of an insur-
ance game. More specifically, we shall illustrate the reason for a payoff structure
in the form of (d, r+). The application of the stochastic model in an insurance
game, as introduced by Suijs et al. in [17], serves as an almost perfect example
of a scenario where such types of payoffs are justified.

Example 4 (Non-life insurance games). Let NI represent the set of insurers and
NP the set of individual persons. The objective for individuals in NP is to obtain
insurance coverage, which requires making a deterministic payment, specifically
a premium, to an insurer. Insurers assume the risk of a potential insured event
occurring. Although the occurrence of such events is uncertain, insurers are guar-
anteed to receive the premium payments from the individuals. Such a situation
can be modeled using the model with random payoffs, more specifically by a slightly
adjusted SB model with stochastic payoffs with transfer payments (d, r+), however,
its form is slightly modified. Rather than xi = di + ri(v(N) − E[v(N)]), it is in
the form of xi = di − ri · L, where L is a random loss. We aim to determine
from the model how much the players in NP pay to the insurer, hence, di < 0 for
i ∈ NP . The insurers receive what the persons pay as premiums, thus di > 0 for
i ∈ NI . The random part ri ≥ 0 for i ∈ NP indicates the proportion of the realized
loss that the insurer is required to pay in the event of its realization. Individual
persons pay usually lower portion of the realized loss but there is also assigned
ri ≥ 0 to all the individual persons.

The original model used for an insurance game by Suijs et al. differs slightly
and includes a few more components than those described in our example. The
main idea motivating the type of payoff does not depend on the other components
of the original model that are not described in the example. Hence, for the sake
of clarity, we will not go into the technical details.

1.4.4 Optimization model
In the final model we discuss incorporating of a new idea and a slight general-
ization. The generalization lies in modelling the correlation structure of v and in
the type of payoff which is inspired by the SB model. This model is based on the
recent paper by Sun et al.[4], and we refer to it as the SHS model, named after
the authors.

Definition 18 (SHS model). SHS model is a stochastic TU-game (N, v), where
v has specified the N-correlation structure, i.e., the set {cov(v(S), v(N)); S ⊆ N}
is given.

Remark. In [4], the authors implicitly assume a special type of stochastic payoff
x associated with the generalization of the type from the SB model, where xi =
di + ri(v(N) − E[v(N)]) and:

• ∑︁
i∈S di = E[v(N)],
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• ∑︁
i∈S ri = 1 and ∀i ∈ N, ri ∈ R.

We refer to these stochastic payoffs as stochastic payoffs with transfer payments
and general risk part and denote them by (d, r) (see Definition 26 in Chapter 3).

The main contribution of the SHS model lies in its approach to payoff dis-
tribution, which uses an optimization model with a specified objective function.
We elaborate on this aspect in Chapter 2 about payoff distribution in stochastic
TU-games.

Conclusion of models We have presented models from the literature that
can be used to model stochastic TU-games. Each of the models is requiring
additional information either directly (covariance structure, assurance levels or
preferences) in the model definition or implicitly (types of payoff and objective
functions) in the definition of its payoff distribution. The scenario model employs
scenarios, thereby giving v a straightforward structure. In the CG model, it is
the levels of assurances of coalitions. The SB model incorporates preferences over
random variables and implicitly a given allocation type. The SHS model provides
framework for general covariance structure of v.
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2. Payoff distribution
This chapter provides a survey of solution concepts proposed in the literature
and builds on the first chapter, where models were introduced. The purpose of
this chapter is not only to conduct a survey but also to explore which questions
might be posed about TU-games with stochastic payoffs in general. Additionally,
this chapter aims to motivate some of the questions that are addressed later in
the thesis.

2.1 Core and Shapley like solutions
Let us begin with solution concepts motivated by the core and Shapley value,
which are adjusted for the stochastic setting. There are two models previously
mentioned that introduce the core and the Shapley value in this context: the CG
model and the SB model.

2.1.1 Prior core and Shapley value
So called prior solution concepts are defined in [1] for the CG model. Recall
CG model is a triple (N, v, α) where (N, v) is a stochastic TU-game and α are
measures of assurance for all coalitions. The characteristic function is given by
its marginal distributions v(S), i.e., for all S ⊆ N there is a given cumulative
distribution function FS of a random variable v(S). We present 2 types of core-
like solution concepts and a Shapley-like value. In [1], the cores are called the
first and the second prior core. To be more descriptive, we call them the prior
core and the ε−prior core, respectively.

Definition 19 (Prior core). Let (N, v, α) be a CG model. The prior core C1
α(v)

is the following set:

C1
α(v) = {x ∈ Rn : FS(x(S)) ≥ α(S), ∀S ⊆ N, α(N) ≤ FN(x(N)) ≤ α(N)} ,

The parameters α(S) for S ̸= N are not used in any of the solution concepts
we introduce but could allow more general definitions of the solution concept
where some characteristic of a coalition would be constrained not only from below
but also from above. To summarize the definition, the prior core is well defined
if the stochastic TU-game is well defined and levels of assurance are α(S) ∈
(0, 1), ∀S ⊆ N and α(N) ∈ (0, 1], α(N) ≤ α(N). The following claim, proved
in [1], gives a characterization for the nonemptiness of the prior core C1

α(v). It
uses the following notation:

• F −1
s (α(S)) = inf{x(S) : FS(x(S)) ≥ α(S)} for S ⊆ N ,

• F̂
−1
s (α(S)) = sup{x(S) : FS(x(S)) ≤ α(S)} for S ⊆ N .

Claim 4 (Nonemptiness of C1
α(v)). Let (N, v, α) be a CG model. The prior core

is nonempty if and only if µ > F̂
−1
N (α(N)), where µ is the optimal solution of the
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following program:

min x(N)
s.t. F −1

s (α(S)) ≤ x(S), ∀S ⊆ N,

F̂
−1
N (α(N)) ≤ x(N).

What might ask what to do when the prior core is empty. The ε-prior core
is always nonempty and at the same time, its definition is motivated by the
characterization given in Claim 4.

Definition 20 (The ε-prior core). Let (N, v, α) be a CG model. The ε-prior core
Cε

α(v) is a set of optimal solutions of the following optimization program:

min ε

s.t. P [x(S) ≥ v(S)] ≥ α(S) ∀S ⊆ N,

P [x(N) ≥ v(N) − ε] ≥ α(N),
P [x(N) ≥ v(N)] < α(N),
ε ≥ 0.

It was shown in [1] that Cε
α(v) is always nonempty when levels of assurance are

well defined, i.e., α(S) ∈ (0, 1), ∀S ⊆ N and α(N) ≤ α(N). They also showed
that ε-prior core can be rewritten equivalently as the following program:

min δ

s.t. x(S) ≥ F −1
S (α(S)) ∀S ⊆ N,

−δ ≤ x(N) − δ0 ≤ δ,

δ ≥ 0,

where δ0 = 1
2

(︃
F −1

N (α(N)) + F̂
−1
N (α(N))

)︃
.

The advantage of the ε-prior core over the prior core is that it is always nonempty.
We can also see that for a fixed stochastic TU-game in the CG model (N, v, α),
the prior core coincide with the ε-prior core if the minimum of the optimization
problem in Definition 20 is 0. If the minimum is not 0, but something greater
then 0 the prior core is empty and ε−prior core is nonempty.

Let us now look at a straightforward generalization of the Shapley value for
stochastic TU-games, also introduced in [1].

Definition 21 (Prior Shapley value). Let (N, v) be a stochastic TU-game. The
prior Shapley value ϕE ∈ Rn for such a game is defined as follows:

∀i ∈ N : ϕE
i (v) =

∑︂
S⊆N,S∋i

(|S| − 1)!(|N | − |S|)!
|N |! [E[v(S)] − E[v(S \ i)]] .

The prior Shapley value is expressed through the weighted marginal contribu-
tions of players to the expected value; therefore, it can be also applied to models
other than the CG model. There are multiple reasons why this solution concept,
the prior Shapley value, is well defined. One of these reasons, discussed in [1],
is that the value satisfies the axioms that define the deterministic Shapley value,
such as:
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• (Permutation invariance): For any permutation π on N , and any game such
that v(π(S)) = v(S) for all S ⊆ N : ϕE

π(i)(v) = ϕE
i (v),

• (Dummy player): if v(S \ i)+v(i) = v(S), ∀S ⊆ N, i /∈ S then ϕE
i (v) = v(i),

• (Additivity): for any two games (N, v) and (N, w) holds the following:
ϕE(v + w) = ϕE(v) + ϕE(W ).

Another reason the prior Shapley value is well-defined is that it can be derived
from a weighted L2 optimization problem (see [1] for details).

Comment on prior solutions The prior solutions provide only prior payoffs
x. Even though these payoffs are essentially promises, there is a possibility that
the realization of v rule these out to be unfeasible since they might not be efficient.
In the prior core and the ε-prior core, the allocation is chosen in such a way that
it is highly probable that players will receive what is specified in the solution
concept. The prior Shapley value almost always requires adjustment since it
represents a single point in Rn and it is unlikely that the realization of v(N) will
exactly match E[v(N)]. If this happens, adjustments have to be made according
to rules such as keeping the payoffs relatively the same (see [1] for a discussion of
adjustments).

2.1.2 Preferential core
This section provides an overview of the solution concepts within the model with
preferences, as detailed in Definition 16. Specifically, we discuss the SB model
from Definition 17, which incorporates specific preferences and payoff types. In
the SB model, preferences are based on quantile preferences; for each player,
there is an αi ∈ (0, 1) representing the quantile according to which the player
makes decisions. The α-quantile of a random variable X is denoted by uX

α .
The payoff considered are stochastic payoffs with transfer payments (d, r+), (see
Definition 17). We explore the solution concept known as the preferential core,
which was presented in [2].

Definition 22 (Preferential core). Let (N, v, (⪰i)i∈N) be model with preferences.
Preferential core is a set of stochastic payoffs x satisfying:

• ∀S ⊆ N : x(S) ⪰i v(S), ∀i ∈ S,

• x(N) = v(N).

The following lemma, proved in [2], enables us to calculate the preferential
core of a game.

Lemma 5 (Conditions for preferential core). Let Γα = (N, v, (⪰i)i∈N) be SB
model. The preferential core is nonempty if and only if there is a stochastic
payoff with transfer payments x, which satisfies ∀S ⊆ N ,∑︂

i∈S

(di + ri(uv(N)
αi

− E[v(N)])) ≥ max
i∈S

uv(S)
αi

.
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Suijs et al. [2] also characterized nonemptiness of the preferential core using
conditions which are based only on the values of the α-quantiles. The character-
ization makes use of generalization of balancedness of SB model.

Definition 23 (Balancedness in SB model). Let Γα = (N, v, (⪰i)i∈N) be SB
model. A game Γα is called balanced if for each balanced map,

max
i∈N

uvN
αi

≥
∑︂

S⊆N

µ(S) max
i∈N

uvS
αi

.

This definition is just a generalization of balancedness to the SB model because
maxi∈N uvS

αi
is equal to v(S) for deterministic games.

Theorem 6 (Nonemptiness of the preferential core). Let Γα = (N, v, (⪰i)i∈N) be
SB model. The preferential core of Γα is nonempty if and only if the game Γα is
balanced.

Comment on core solutions in SB model. The preferential core in the SB
model can be generalized to accommodate other types of preferences, such as
ordering according to the E[X] + b · Var(X), where b ∈ R is constant. This
type of preference relation, like the quantile preference, induces a total ordering.
Suijs et al. [2] also discussed usage of first-order stochastic dominance as a pref-
erence relation but they do not explore it extensively. They argue that using the
first-order dominance as a preference could result in an overly large core. They
discuss its form, which would correspond to our notion of the undominated core
in Chapter 3. A major contribution of the SB model is not only the incorporation
of specific preferences but also the selection of a stochastic allocations with tran-
fer payments (d, r+), which restricts feasible payoffs. This approach simplifies
the problem by reducing a stochastic problem to finding numerical values for the
vectors d and r, making it computationally more tractable but at the same time
less general, as it does not account for all random allocations.

2.2 Program solutions
Another solution concept, recently proposed in the literature, is based on the
SHS model, which is detailed in Definition 18. This model extends the payoff
structure introduced for the SB model, generalizing it stochastic payoffs with
transfer payments and general risk part (d, r); this generalization involves relaxing
the conditions on the ri part of the allocation; in this model, can be any real
number. Negative ri indicates that the player i benefits more with the realization
of v(N) being below its expected value E[v(N)] (see Definition 26). Unlike the
SB model, where covariances between different coalitions are set to zero because
the model assumes independent marginal distribution of v, the N -correlation
structure of the game is more significant for solutions in this section.

The main idea of the paper [4] is to describe the solution concepts as solu-
tions to optimization problems with a given objective, which captures the desired
properties of the solution. A term heavily used in cooperative game theory, and
particularly in the objective function for the subsequent solution concept, is the
excess and marginal excess.
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Definition 24 (Excess and average excess). Let (N, v) be a stochastic TU-game
and x a stochastic payoff. The excess e(S, x, v) of a coalition S ⊆ N and stochas-
tic payoff x in game (N, v) is defined as

e(S, x, v) = v(S) − x(S),
and the average excess e(x, v) of stochastic payoff x in game (N, v) is defined as

e(x, v) = 1
2n − 1

∑︂
S⊆N

e(S, x, v).

Definition 25 (Marginal excess and avarage marginal excess). Let (N, v) be a
stochastic TU-game and x a stochastic payoff. The marginal excess mi(S, x, v)
of a player i, coalition S, and stochastic payoff x is defined as

mi(S, x, v) = [v(S) − v(S \ i)] − xi,

and the average marginal excess m(x, v) of stochastic payoff x in game (N, v) is
defined as

m(x, v) = 1
n · 2n−1

∑︂
i∈N

∑︂
S∋i

mi(S, x, v).

We provide a list of functions used as objective functions by Sun et al. [4] and
we show solution concepts for 2 of them to see the approach.

min
∑︂

S⊆N

Var[e(S, x, v)] (2.1)

min
∑︂

S⊆N

E[(e(S, x, v) − e(x, v))2] (2.2)

min
∑︂
i∈N

∑︂
S∋i

E[(mi(S, x, v) − E[mi(S, x, v)])2] (2.3)

min
∑︂
i∈N

∑︂
S∋i

E[(mi(S, x, v) − m(x, v))2] (2.4)

min
∑︂

S⊆N

wSVar[e(S, x, v)] (2.5)

The idea of the last function is using weights wS for coalitions. Let us present a
results about the first function, as shown in [4].
Theorem 7. Let (N, v) be SHS model and X be the set of stochastic payoffs with
transfer payments and general risk part and finite expectation for (N, v). Then
the optimal solution of the following program:

min
x∈X

∑︂
S⊆N

Var[e(S, x, v)]

s.t. d(N) = E[v(N)],
r(N) = 1,

r, d ∈ Rn

is a stochastic payoff with transfer payments and general risk part x∗ described by
corresponding vectors d∗ and r∗ as follows:

x∗
i = d∗

i +
(︄

1
n

+
nai(v) −∑︁

j∈N aj(v)
n2n−2Var[v(N)]

)︄
(v(N) − E[v(N)]), (2.6)

where ai(v) = ∑︁
S:i∈S cov(v(S), v(N)) and ∑︁i∈N d∗

i = E[v(N)].
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As we can see in (2.6), the term r∗
i of the payoff xi is explicitly expressed

as a function of the covariances between the grand coalition and the coalitions
that include the given player, as well as a function of the number of players and
coalitions. Consequently, it is not immediately clear how to distribute the value
of E[v(N)] among the d∗

i terms for each player in N . Nevertheless, specifying
d∗

i for all players may be feasible through some external constraints that are not
explicitly stated within the objective funtion.

Idea of the proof. In Sun et al. [4], the theorem is proved by correctly rewriting
the objective function into the following form:

min
∑︂

S⊆N

(r2(S)Var[v(N)] − 2r(S)cov(v(S), v(N))), s.t. r(N) = 1.

Then, a typical approach to the constrained optimization of a nonlinear function
is applied, namely, the construction of the Lagrangian function; subsequently, the
Karush-Kuhn-Tucker conditions are used to derive the optimal solution.

Let us show a similar result for (2.2). Averaging over all coalitions yields
explicit results for the entire payoff, i.e., for both the d ∈ Rn and r ∈ Rn parts.
This is achieved by substituting E[e(S, x, v)], the expected value of the excess for
a given coalition S, in (2.1), with the average excess. This value E[e(S, x, v)] is
implicitly represented in the expression Var[e(S, x, v)].

Theorem 8. Let (N, v) be SHS model and X be the set of stochastic payoffs with
transfer payments and general risk part for (N, v). Then the optimal solution of
the following program:

min
x∈X

∑︂
S⊆N

E[(e(S, x, v) − e(v, x))2]

s.t. d(N) = E[v(N)]
r(N) = 1
r, d ∈ Rn,

is a stochastic payoff with transfer payments and general risk part x∗ described by
corresponding vectors d∗ and r∗ as follows:

x∗
i = d∗

i + r∗
i (v(N) − E[v(N)])),

d∗
i = 1

n
E[v(N)] +

nei(v) −∑︁
j∈N ej(v)

n2n−2 ,

r∗
i = 1

n
+

nai(v) −∑︁
j∈N aj(v)

n2n−2Var[v(N)] ,

where ai(v) = ∑︁
S:i∈S cov(v(S), v(N)) and ei(v) = ∑︁

S:i∈S E[v(S)].

This solution represents a modified egalitarian approach1. Under vector d∗,
each player receives almost 1

n
fraction of E[v(N)] as this value is modified for every

player i based on the sum of expected values of coalitions, ei = ∑︁
S:i∈S E[v(S)].

Specifically, if ei is smaller than the average over all players, i.e., ei < (∑︁j∈N ej)/n,
1An egalitarian solution is a payoff where all players receive the same amount.
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he receives less than 1
n

fraction and if ei is larger than the average, he receives
more. Similarly, under r∗, each player receives almost 1

n
part of v(N)−E[v(N)] as

this value is modified for every player i, this time based on the sum of covariances
of coalitions, ai = ∑︁

S:i∈S cov(v(S), v(N)). If ai is smaller for i than the average
sum, he receives less than the fraction 1

n
and if ai is larger, he receives more.

Comments on optimization solutions Solution concepts proposed by Sun
et al. in [4] can be particularly useful in certain situations. These solution con-
cepts are applicable whenever SHS model (N, v) is well defined, which includes a
correlation structure among components. Understanding the covariances within
this structure can be the most challenging aspect of formulating the model. In
the absence of a correlation structure, the random component r∗

i would be uni-
formly 1

n
for any player i, making it an egalitarian payoff. Hence, the correlation

structure is crucial if the egalitarian solution for the random part of the payoff is
not desirable. When this correlation structure is present, these solution concepts
are well justified, as discussed below Theorem 8, although optimizing functions
such as the average excess may initially appear to be an ad hoc approach. How-
ever, in scenarios where this structure is absent or independence is assumed, i.e.,
covariances are set to zero, the optimization method results in r∗

i equal for all
players ∀i ∈ N .

Discussion of solution concepts In this chapter, we discussed solution con-
cepts for models introduced in Chapter 1. We did not define the solution concept
of the weak sequential core mentioned in Chapter 1 as it arises from sequence
game setting, which do not contribute to a better understanding of our results
within cooperative game theory. Solution concepts in 2.1.1 represent pioneering
work in stochastic cooperative games, employing a chance constraint program-
ming approach. However, a major limitation of these concepts is in deterministic
payoffs, which are initially promised and later adjusted post-realization. It is
important to note that the probability of these promised payoffs can be very low,
even when assurance measures are near one.

The SB model provides a framework to incorporate preferences over random
variables. While it employ stochastic payoffs with transfer payments, which may
seem restrictive, in Chapter 3, we justify the suitability of this type of payoff.
Approach taken in the SB model significantly influences our discussion about the
SSD-dominating core in the same chapter.

Furthermore, we examined the SHS model, whose method of optimizing a well-
defined objective function is particularly insightful. This model offers explicitly
given single-point payoffs (at least for some of the objective functions) for players
based solely on the value of v(N). Nevertheless, the assumptions of SHS model,
especially the expected N -correlation structure cov(V (S), V (N)), ∀S ⊆ N , might
be an overly strict assumption. If these assumptions can be satisfied, then the
solution concepts of SHS model are viable.

In conclusion, each solution concept presents its own set of advantages and
drawbacks, which are essential to consider when applying them to real-world
problems.
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3. Stochastic dominance core
In this chapter, we propose solution concepts motivated by the core, specifically
for players with risk averse behaviour. We mainly develop later defined SSD-
dominating core for various distributions such as uniform, normal or discrete
uniform. Motivated by the SB model we propose a solution concept which in-
corporates second order stochastic dominance to model players preferences. This
approach is inspired by the preferential core in the SB model, where player’s pref-
erences are quantiles of random variables. By integrating SSD we aim to address
decision-making process of risk averse players to provide a robust framework for
such players. In the SB model, the quantile preferences can be exchanged for
preferences of type E[X] + b · Var(X), where b ∈ R represents a risk parameter.
This modification preserves the result about preferential core in the SB model, al-
lowing us to model different risk attitudes. Specifically, for a given player a value
of b = 0 model risk neutrality, b < 0 risk aversion and b > 0 risk lovingness .
Despite usefulness of this approach, determining an appropriate b for every player
may be impractical or resource intensive. Moreover, the analysis and outcomes
depend on the choice of b for each player. In scenarios where it is challenging
to specify or uncover the exact utility function of each player, especially when
wanting to understand broadly the risk averse behaviour without being too spe-
cific, adopting SSD as a preference relation proves to be advantageous. A notable
limitation of SSD is that it is only partial ordering of random payoffs contrary
to ”quantile” preferences or ”expected value plus variance” preferences which are
total orders. Despite this limitation, SSD offers a robust framework that effec-
tively uses the risk aversion characteristic of players. This strength can become
useful, particularly in scenarios where robustness is required over the ability to
rank all possible probability distributions completely.

Definition 26 (Type of stochastic payoff of a player and coalition). Let (N, v)
be a stochastic TU-game and x be a stochastic vector. We say x is a stochastic
payoff:

• without transfer payments if ∀i ∈ N : xi = ri · v(N), where ri ≥ 0,

• with transfer payments if ∀i ∈ N : xi = di + ri(v(N) − E[v(N)]), where
di ∈ R and ri ≥ 0,

• with transfer payments and general risk part if
∀i ∈ N : xi = di + ri(v(N) − E[v(N)]), where di ∈ R and ri ∈ R,

• without structure (unstructured) if xi is a random variable.

A stochastic payoff of a coalition S is a sum of payoffs of individual players
x(S) = ∑︁

i∈S xi.

Remark. In the following text we use the term the type of allocation which just
refers to a type of stochastic payoff. Different types of payoffs are denoted as
follows:

• with transfer payments which is denoted by (d, r+),
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• with transfer payments and general risk part which is denoted by (d, r),

• without transfer payments which is denoted by r+
1.

We also refer to the allocated numbers vectors d, r or r as allocations of players.
Remark. We usually refer to the type of payoff with respect to a grand coalition.
If we want to refer to a type of stochastic payoff with respect to a given coalitions
S, then we write for instance for payoff without transfer payments (d, r+)S. Such
a notion is useful when we talk about coalition structure.

Definition 27 (Feasible payoff of a coalition S). Let (N, v) be a stochastic TU-
game. The stochastic payoff x with transfer payments is feasible for a coalition S
if:

• d(S) = E[v(S)],

• r(S) = 1.

The stochastic payoff x without transfer payments is feasible for a coalition S if:

• r(S) = 1.

The unstructured stochastic payoff x is always feasible.

Remark. The definition also defines feasible payoff for payoffs with transfer pay-
ments and general risk part even though it is not explicitly stated.

All of the four payoff types are random variables. An allocation with and
without transfer payments determine what exactly the player gets after the real-
ization. The unstructured payoff does not specify straightforwadly what should
the player get after the realization. In the section about the unstructured type of
allocation we discuss why the types of allocation (d, r) and (d, r+) are reasonable.
Assuming players preferences being modelled by SSD, there is a straightforward
generalization of the core to stochastic TU-games.

Definition 28 (SSD-dominating core). Let (N, v) be a stochastic TU-game. The
SSD-dominating core is a set of feasible stochastic payoffs x of players in N
denoted by DC(v) for which it holds that

∀S ⊆ N : x(S) ⪰SSD v(S) & x(N) has the same distribution as v(N).

Remark. If we want to stress that the partial order is SSD we can write DCSSD(v).
Since no other partial order is assumed in this thesis we write just DC(v) for the
SSD-dominating core as it was defined.
Remark. To distinguish between types of allocations we denote the SSD domi-
nating core by:

• DC(r+)(v) if the payoff is without transfer payments,

• DC(d,r+)(v) if the payoff is with transfer payments,

• DC(d,r)(v) if the payoff is with transfer payments and general risk part.
1this type of payoff is motivated by the work of Timmer et al. [18]
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For partial orderings we can also define slightly weaker concept called undom-
inated core.

Definition 29 (SSD-undominated core). Let (N, v) be a stochastic TU-game.
The SSD-undominated core is a set of feasible stochastic payoffs x denoted by
UDC(v) for which it holds that

̸ ∃S ⊆ N : x(S) ≺SSD v(S) & x(N) has the same distribution as v(N).

Remark. Similarly to the dominating core we can distinguish multiple types of
allocations or various partial orders.
Remark. The solution concepts of the dominating and the undominated core do
not work at all with covariances between coalitions even if they can be present.
That is a drawback of the core-like solution concepts in general, however, it also
simplifies the analysis.

There is no need to differentiate between the concepts of the undominated and
the dominating core when preference order is complete since they are the same.
However, for the partial order preferences like SSD, differentiation is neccesary.
We shall discuss the properties of both. The interpretation of the dominating
core is straightforward as it aligns with what we are used to in the deterministic
games or games with total order preferences. Each coalition gets at least what
its worth. However, the interpretation of the undominated core is as follows: no
coalition can receive a strictly better payoff. We shall discuss the undominated
core in more details. We present an example demonstrating that the concept is
far from perfect and then we present interpretation under special circumstances.

Example 5. We consider the following example of a game involving 2 players.
Let (N = {1, 2}, v) be a stochastic TU-game. The characteristic function is
normally distributed with independent marginals, i.e., v(S) ∼ N(µS, σ2

S). We
prescribe random variables to each coalition:

• v(1) ∼ N(10, 1),

• v(2) ∼ N(10, 1),

• v(N) ∼ N(2, 10).

It is apparent that the SSD-dominating core with the type (d, r+) is empty since
there are no pairs allocations (d1, r1) and (d2, r2) satisfying

d1 + d2 = 2 & d1 ≥ 10 & d2 ≥ 10.

However, the undominated SSD core is not empty. The problem is symmetric, so
it is possible to swap roles of player 1 and 2. The following set of payoffs lies in
the SSD-undominated core:

(d1, d2, r1, r2) = (x, 2 − x, t, 1 − t), where x > 10, t >
9
10 .

Thus, the first player receives payoff from normal distribution N(d1, r2
1 · 10) with

a much greater expected value than the second player and much higher variance
than that of the second player. The solution of this particular example could be
coalitional structure, i.e., no cooperation, where each of the players receives their
payoff according to their singleton value v(i).
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Remark. The undominated core is not necessarily nonempty in general. Suppose
the same example as above, with v(i) ∼ N(10, 20). In this case the undominated
core is empty.

In conclusion, we would not advise to use the SSD-undominated core every
time when the SSD-dominating core is empty. However, there is a situation in
which the undominated core seems reasonable. We illustrate it with the following
example.

Example 6 (Undominated core interpretation). Let (N, v) be a stochastic TU-
game and we question the undominated core UDC(d,r+)(v). For simplicity, we
assume v(S) ∼ N(µS, σ2

S) is normally distributed. Suppose we already allocated
di part of the allocation, i.e., di part of the payoff is already established for all
the players. In such cases, we do not even need to know the whole distribution.
It suffices to specify σS for all coalitions to be able to determine the undominated
core. Knowing µS would suggest that the dominating core is nonempty at best,
which directly follows from the type of allocation and Claim 10 which is proved
further in the thesis, since d(S) ≥ µS is necessary for the dominating core to be
nonempty. However, without any information about µS and with no possibility
of changing payments di we do not really need to model the entire distribution,
the variance suffices at least for the case of normal distribution. Thus, we find ri

part of an allocation for each player in such a way that:
σS

σN

> r(S), ∀S ⊆ N.

Then such a pair of vectors d, r is at least in the undominated core.

The following lemma present the conditions for various distributions under
which stochastic dominance occurs. These conditions to compare two distribu-
tions differing only in parameters helps with the analysis of SSD-dominating core.
This lemma is crucial since two sufficiently different distributions can be often
incomparable by SSD, e.g., if one distribution is normal with positive variance
and the second is uniform. The following conditions can be either found in [5] or
can be easily straightforwardly derived.

Lemma 9 (SSD conditions). Let X, Y be random variables. The following con-
ditions are characterization of the relation X ⪰SSD Y for various distributions:

• µX ≥ µY and σ2
X ≤ σ2

Y if X and Y are normally distributed as X ∼
N(µX , σ2

X) and Y ∼ N(µY , σ2
Y ).

• aX ≥ aY and bY ≤ bX + (aX − aY ), or the latter equivalently E[X] ≥ E[Y ],
if X and Y are uniformly distributed as X ∼ U [aX , bX ] and Y ∼ U [aY , bY ].

• kX · θX ≥ kY · θY and θX ≥ θY if X and Y are gamma distributed as
X ∼ Γ(kX , θX) and Y ∼ Γ(kY , θY ), where k is the shape parameter and θ
is the scale parameter.

• ∑︁k
i=1 xi ≥ ∑︁k

i=1 yi if X and Y are discretely uniformly distributed with real-
izations x1 ≤ x2 ≤ . . . , xK and y1 ≤ y2 ≤ . . . , yK and each of the realization
having probability 1

K
.
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The following definitions are used in the following sections to consider TU-
games which are given as a function of v.

Definition 30 (Mean, deviation and variance games). Let (N, v) be a stochastic
TU-game. We denote E[v(S)] by µS,

√︂
Var([v(S)]) by σS and Var([v(S)]) by

σ2
S. We say:

• (N, µ) is called the mean game with characteristic function given by expected
values of v(S), i.e., µ(S) = µS.

• (N, σ||·||) is called the normalized standard deviation game with cost function
given by σ||·||(S) = σS

σN
.

• (N, σ2) is called the variance game with cost function given by σ2(S) = σ2
S.

To clarify, the characteristic function in the standard deviation game is de-
noted by σ||·||, with normalization performed relative to σN . In the mean game,
there is no ambiguity in the notation of characteristic function, as µS represents
E[v(S)]. Consequently, the symbols µ(S) and µS can be used interchangeably. A
similar notation approach applies to other games where characteristic function is
some function of v.

3.1 Allocations with transfer payments
In this section, we focus on payoffs with transfer payments, i.e., where payoff of
a player i is given as xi = di + ri(v(N) − E[v(N)]. Primarily, we provide neces-
sary and sufficient conditions for the SSD-dominating core to be nonempty for
normal and continuous uniform distribution. Further, for the discrete distribu-
tion we only provide a way how to find a payoff from the SSD-dominating core.
The section is divided into two parts, one dealing with stochastic payoffs with
transfer payments and the other one dealing with stochastic payoffs with transfer
payments and a general risk part.

We restrict our analysis to distributions from the scale-location family, where
linear transformations change only parameters of the distributions. This makes
the comparison much simpler, specifically for distributions from Lemma 9. Com-
paring two different distributions, even from scale-location family, can lead to
useless results, for example, if x(S) is normally distributed with a positive vari-
ance and v(S) uniformly distributed within the finite bounds, then neither x(S)
dominates v(S) nor does v(S) dominate x(S) in the terms of SSD.

Let us begin with a general observation about the relationship between the
stochastic dominance and the expected value.

Claim 10 (Stochastic dominance and expected value). Let (N, v) be a stochastic
TU-game. Let x be a stochastic payoff without transfer payments, i.e., (d, r+). If
x(S) ⪰SSD v(S), then d(S) ≥ E[v(S)].

Proof. The proof straightforwardly follows from Claim 1.

This observation provides one of the conditions for the SSD-dominating core.
Moreover, primarily it serves as a neccesary condition for the nonemptiness of
the dominating core.
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3.1.1 Nonnegative risk part
Here, we derive conditions describing the SSD-dominating core for stochastic
payoffs with transfer payments, specifically when the risk part is positive, i.e.,
type of allocation is (d, r+).

Theorem 11 (SSD dominating core under normal distribution). Let (N, v) be
a stochastic TU-game. Suppose v(S) ∼ N(µS, σ2

S), ∀S ⊆ N be normally dis-
tributed, where parameters µS ∈ R, σ2

S ∈ R+ are known. Then DC(d,r+)(v) is
nonempty if and only if C(µ) ̸= ∅ and Ccost(σ||·||) ̸= ∅.

Proof. A payoff x ∈ DC (d,r+)(v) needs to satisfy x(S) ⪰SSD v(S), ∀S ⊆ N . To
be able to use Lemma 9, we need to calculate moments of x(S) at first for any
S ⊆ N . The first moment

E[x(S)] = d(S) + r(S)(E[v(N)] − E[v(N)]) = d(S),
and the second central moment, i.e., variance
Var[x(S)] = Var[d(S) + r(S)(v(N) − Ev(N)] = Var[r(S)v(N)] = (r(S))2σ2

N .

According to Lemma 9 and the calculations of moments such a payoff needs to
satisfy the following inequalities:

d(S) ≥ µS, (3.1)

σ2
S ≥ σ2

N(r(S))2 ⇐⇒ σS

σN

≥ r(S), if σ2
N > 0. (3.2)

Inequalities of the core payoffs of the game (N, µ) and the core of the cost game
(N, σ||·||) correspond precisely to those in (3.1) and (3.2) respectively. The same
applies to the equality constraints µN = d(N) and 1 = r(N) = σN

σN
(efficiency of

the core payoffs).

Claim 12 (Nonemptiness of the standard deviation game). Let (N, σ||·||) be a
standard deviation game. The core Ccost(σ||·||) is nonempty if and only if for any
balanced map µ : 2N −→ [0, 1], where

∀i ∈ N :
∑︂

S∈2N :i∈S

µ(S) = 1

the following condition holds:∑︂
S∈2N

µ(S)v(S) ≤ 1, where v(S) = 1 − σ||·||(N \ S).

Proof. The statement follows from Theorem 2, after transforming the cost core
inequalities of the standard deviation game to a classical profit game (N, v) as
follows: v(S) = 1−σ||·||(N \S). The conditions of the cost core are r(S) ≤ σ||·||(S)
leading to 1 − r(N \ S) ≤ σ||·||(S), which yields 1 − σ||·||(S). By substituting
v(N \ S) = 1 − σ||·||(S), we formulate a profit game (N, v) for which we can
already use Theorem 2.

Remark. In the broader setting of cooperative games, (N, v) is a so called dual
game of (N, σ||·||) and the property characterizing nonemptiness of Ccost(σ||·|| is
referred to as balancedness.
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We proceed with uniform distribution and the definition of lower bound game
and statement of a lemma. Similarly to mean value game, we arbitrarily switch
between a(S) and aS.

Definition 31 (Lower bound game). Let (N, v) be a stochastic TU-game and
v(S) ∼ U [aS, bS], ∀S ⊆ N be uniformly distributed. Then lower bound game is
a TU-game (N, a), defined as a(S) = aS. We denote the core of such a game by
C(a).

Lemma 13. Let (N, a) be a TU-game, r ∈ Rn, K ∈ R and (N, vr) additive TU-
game, i.e., vr(S) = ∑︁

i∈S r(i). Then C(a + K · vr) = C(a) + K · r, i.e., payoffs in
the core of the game (N, a + K · vr) are just shifted vectors by K · r of the core of
the game (N, a).

Proof. Let us begin by noting that C(K · vr) = K · r for an additive game (N, vr)
and K ∈ R. For the clarity of the notation, we denote a payoff in the core of game
(N, a) by x, in the core of game (N, v) by y and in the core of game (N, a+K ·vr)
by z . We show both inclusions. The first one C(a + K · vr) ⊇ C(a) + K · r holds
directly since a(S) ≤ x(S), r(S) ≤ y(S) imply a(S)+r(S) ≤ x(S)+y(S) = z(S).
The second inclusion is more intricate. Suppose z ∈ C(a + K · vr), then

z(S) ≥ a(S) + K · r(S) & z(N) = µN .

The core of the additive game is a single point, i.e., C(K · vr) = K · r. We define
y as z(S) − K · r(S) = y(S). It is left to show that y ∈ C(a). The inequality
z(S) ≥ a(S) + K · r(S) directly yields y(S) ≥ a(S), thus, confirming the second
inclusion.

Theorem 14 (SSD-dominating core under uniform distribution). Let (N, v) be a
stochastic TU-game. Suppose ∀S ⊆ N, v(S) ∼ U [aS, bS] is uniformly distributed,
where parameters aS, bS ∈ R are known and distributions are not degenerated,
i.e., aS < bS. Then the following implications hold:

DC (d,r+)(v) ̸= ∅ =⇒ C(µ) ̸= ∅ & C(a) ̸= ∅,

(N, a) is a convex game & C(µ) ̸= ∅ =⇒ DC (d,r+)(v) ̸= ∅,

where (N, µ) is the mean game and (N, a) is the lower bound game of (N, v).

Idea of the proof. We reformulate the problem of finding a payoff in the dom-
inating core to a problem of finding a payoff vector in an intersection of two
deterministic TU-games. We can further restate this as a problem of finding vec-
tors x ∈ C(a) and y ∈ C(µ) such that the vector y − x has nonnegative entries.
The sufficient condition tells us that finding such x is possible for an arbitrary
y ∈ C(µ) if the convexity of the game (N, a) is assumed. The idea of the proof
of the sufficient condition is as follows: We take a payoff y ∈ C(µ) and we iterate
the following process: We decrease the value of one arbitrary entry of y in such
a way that the new vector does not violate inequalities given by C≤(a). Then
we iterate by choosing another entry till we end up with a vector from the core
C(a).
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Proof. Let us begin the proof with a preparatory part before proving the im-
plications. A stochastic payoff in x ∈ DC (d,r+)(v) needs to satisfy x(S) ⪰SSD

v(S), ∀S ⊆ N . To be able to use Lemma 9, we calculate the distribution of every
x(S) as a linear transformation of v(S). The distribution of x(S) is uniform:

x(S) ∼ U [d(S) + r(S)(aN − µN), d(S) + r(S)(bN − µN)],

where µS = E[v(S)]. Then by using Lemma 9, we get the following conditions
for a stochastic payoff with transfer payments to be in the DC (d,r+)(v):

d(S) ≥ µS, (3.3)
d(S) ≥ aS + r(S)(µN − aN). (3.4)

A stochastic payoff satisfies (3.3) if the game (N, µ) has a nonempty core, i.e.,
C(µ) ̸= ∅. Both (3.3) and (3.4) have d(S) on the left hand side. Thus, we
can view these conditions for d as the conditions for cores of two games (N, µ)
and (N, a + vr(µN − aN)), where (N, vr) represents an additive game given as
vr(S) = r(S). Then the vectors d, r satisfy both inequalities if and only if the
corresponding stochastic payoff vector x ∈ DC (d,r+)(v) and that is equivalent to
vector d being in the intersection of two cores d ∈ C(µ)∩C(a+vr(µN −aN)). By
Lemma 13, we can reformulate the problem of the nonemptiness of the intersection
of the two cores to the problem of finding d ∈ C(µ) ∩ (C(a) + r(µN − aN)), i.e.,
finding d in the intersection of C(µ) and C(a) shifted by r · (µN − aN). We can
observe that for any d ∈ C(µ) it also holds d ∈ C≤(a) from the fact that µS ≥ aS

for any uniform distribution.
Now that we established the preparatory part we can move to the neccesary

and sufficient condition of the nonemptiness of DC (d,r+)(v). Let us prove the first
implication. Since DC (d,r+)(v) ̸= ∅, therefore, there ∃d, and ∃r ≥ 0 such that
d ∈ C(µ) ∩ (C(a) + r(µN − aN)). We can see that such a vector d can exists
only if there is a vector in both C(a) and C(µ). Therefore, we proved the first
implication.

Let us prove the first implication, i.e., the sufficient condition for the dom-
inating core to be nonempty. Suppose C(µ) ̸= ∅ and (N, a) is a convex game.
Since the game (N, a) is convex, it holds C(a) ̸= ∅ from Theorem 3. We want to
show that then C(µ)∩(C(a)+r(µN −aN)) ̸= ∅ for some non-negative r satisfying
r(N) = 1. We show that for y ∈ C(µ) there exists an x ∈ C(a) and non-negative
vector r : ri ≥ 0, r(N) = 1 such that x + r(µN − aN) = y. Any such r satisfies
the condition of the dominating core for the grand coalition, i.e,

x(N) + r(N)(µN − aN) = aN + (µN − aN) = µN .

Let us now prove that we can find such r by finding a vector x such that xi ≤
yi, ∀i ∈ N . For that we use the following process P :

1. Set x0 = y.

2. At step m, select player km defined as:

km = min{k ∈ N : aS < xm−1(S), ∀S ⊆ N, k ∈ S}.

The player km is only included in the coalitions where xm−1(S) exceeds the
bound aS, i.e., aS < xm−1(S), ∀S ⊆ N, S ∋ km. If multiple players meet
this condition, choose the one with the smallest index km ∈ N .
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3. Set xm = xm−1 − ekmtm, where ek is a vector of canonical basis in Rn and
tm is a length of step m given by:

tm = min
S⊆N,S∋km

[xm−1(S) − aS].

We denote Sm = arg minS⊆N,S∋km [xm−1(S) − aS].

4. If xm(N) ̸= aN then go to the step m + 1. If xm(N) = aN , we are done.
We denote the final step as mend.

Notice that at each step m, xm is in C≤(a). However, we still need to verify that
xmend(N) = aN , i.e., the process P provides a vector within the core C(a). A key
observation for the verification is that Sm is closed under union, or equivalently,
that ⋃︁S∈Sm

S is equal to the inclusion-wise maximal element in Sm. Suppose
that S, T ∈ Sm. Thus, aS = xm(S) and aT = xm(T ). Given the convexity
of the game (N, a), it follows that aS + aT ≤ aS∪T + aS∩T . Since x ∈ C≤(a),
we also have aS∪T ≤ x(S ∪ T ) and aS∩T ≤ x(S ∩ T ). From these inequalities,
it straightforwardly follows that aS∪T = x(S ∪ T ). Let us follow the process P
assuming the convexity of (N, a).

• At step m = 1: We can easily see x1(S1) = aS1 from the definition of the
process P .

• At step m = 2: Let S2 be the inclusion-wise maximal coalition from S2.
We have x2(S2) = aS2 . Possibly the coalition S1 and S2 have nonempty
intersection, i.e., S1 ∩ S2 ̸= ∅. Thus, due to the convexity of (N, a),

x2(S1 ∪ S2) + x2(S1 ∩ S2) = aS1 + aS2 ≤ aS1∪S2 + aS1∩S2 .

Since x2(S) is always in C≤(a), we know that aS ≤ x2(S), ∀S ⊆ N . Thus,

x2(S1 ∪ S2) + x2(S1 ∩ S2) = aS1∪S2 + aS1∩S2 ,

and specifically x2(S1 ∪ S2) = aS1∪S2 and x2(S1 ∩ S2) = aS1∩S2 .

• At step m > 2: Let Sm be the inclusion-wise maximal coalition from Sm.
We have xm(Sm) = aSm . The general step follows the argument of m = 2.
It holds

xm(S1 ∪ . . . ∪ Sm) + xm((S1 ∪ . . . ∪ Sm−1) ∩ Sm) = a(S1∪...∪Sm−1) + aSm ,

and at the same time from the convexity of (N, a),

a(S1∪...∪Sm−1) + aSm ≤ a((S1∪...Sm−1)∩Sm) + a(S1∪...∪Sm).

Similar to m = 2, we get xm(S1 ∪ . . . ∪ Sm) = a(S1∪...∪Sm).

• If (S1 ∪ . . . ∪ Sm) ̸= N , we can continue with the process by choosing a
player i ∈ N \ ⋃︁m

i=1 Si, because if there exists a player i which is not in
any of the coalitions Si, i.e., i /∈ ⋃︁m

i=1 Si = ⋃︁m
i=1 Si, then for such a player

and every coalition S, i ∈ S, we still obtain xm(S) ≥ µS > aS since the
distribution of v(S) is not degenerated, i.e., aS < bS. On the other hand, if
(S1 ∪ . . . ∪ Sm) = N then xm(N) = aN and since xm ∈ C≤(a), we also get
xm ∈ C(a).
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The payoff xmend lies in C(a). By setting

r =
mend∑︂
m=1

tmekm ,

we get feasible r, because ri ≥ 0 and the construction of r and the choice of tm

yield r(N) = 1 which follows from the fact that xmend(N) − y(N) = (µN − aN).
Hence, xmend + r(µN − aN) = y.

From the theorem, we obtain a sufficient condition for the nonemptiness of
the SSD-dominating core. The following example shows that superadditivity of
(N, a) together with nonemptiness of C(µ) is not a sufficient condition.

Example 7 (Process failure for a superadditivity). In the example, we show that
superadditivity of (N, a) is not sufficient together with the nonemptiness of C(µ)
for the nonemptiness of the SSD-dominating core. Let (N, a) be the following
superadditive game:

• a12 = 3,

• a23 = 3,

• aN = 3,

• aS = 0, otherwise.

Hence, C(a) = {(0, 3, 0)}. Let (N, µ) be the mean game, which together with
(N, a) define stochastic TU-game where v(S) ∼ U [aS, bS]:

• µ1 = µ3 = 5,

• µ12 = 3,

• µ23 = 3,

• µN = 12,

• µS = 1, otherwise.

Notice that for all S ⊆ N , the random variable v(S) is not degenerated. For these
values of µ, the core C(µ) is one point in R3, specifically C(µ) = {(5, 2, 5)}. Thus,
according to the proof of Theorem 14, we need to find d ∈ C(µ) ∩ (C(a) + r(µN −
aN)), however, such r with nonnegative entries does not exist since (0, 3, 0) ∈ C(a)
has the second entry greater than any entry in the C(µ). Therefore, superaddi-
tivity of (N, a) does not suffice.

In the previous example, the convexity of (N, a) is violated on the pair of
coalitions {1, 2} and {2, 3}. Specifically, the following inequality a12+a23 > a123+
a2 is violating the convexity of (N, a). We can extend this idea by showing that
when the convexity of (N, a) is violated for a pair of coalitions with a singleton
intersection, then there exists a game (N, µ) such that the SSD-dominating core
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is empty. In the following claim, we investigate this idea while using the standard
property of the core of convex games:

If a game (N, a) is convex then ∀S ⊆ N, ∃x ∈ C(a) : a(S) = x(S).

Derivation of this result is a straightforward exercise based on results connecting
the core of a convex game with the Weber set (see [13] for details on the relation).
This further points out the difference between convexity and superadditivity of
(N, a) in the sufficient condition of Theorem 14. The following claim determines
a situation which yields the empty SSD-dominating core.

Claim 15. Let (N, v) be a stochastic TU-game, where v(S) ∼ U [aS, bS], ∀S ⊆ N
follows uniform distribution ∀S ⊆ N with aS, bS ∈ R and aS < bS. If there exists
a player i ∈ N such that for any payoff x ∈ C(a) in the lower bound game (N, a)
holds xi > ai, then there exist values bS, ∀S ⊆ N such that DC (d,r+)(v) = ∅.

Proof. Instead of constructing the values bS, we construct values of the mean
game (N, µ), from which the values bS follow. We set µi = ai + ε, ε > 0, where ε
is chosen small enough to ensure µi < xi for every x ∈ C(a). Then by defining
µN\i = µN − µi, we ensure that for every y ∈ C(µ), we have yi = µi. We set the
rests of the values of (N, µ) in such a way that for every remaining coalition S,
aS < µS. It is immediate by Theorem 14, that DC (d,r+)(v) = ∅.

Let us now consider uniform discrete distribution, where realizations are
equiprobable. We denote realizations by ωi and for the analysis of the SSD,
we also assume the realizations are ordered ω1 ≤ ω2 ≤ . . . ≤ ωT . Each of the
realizations has the assigned probability 1

T
. We also note that this distribution

is able to describe situation where some realizations are identical, i.e., ωi = ωj.
In what follows, we have a uniform discrete distribution v(S), ∀S ⊆ N . We thus
use ωS

i to denote the i-th realization of coalition S.
Let us derive conditions for the nonemptiness of the SSD-dominating core

under discrete distribution with equiprobable realizations. Since the distribution
is part of scale-location family, the distribution of x(S) = d(S) + r(S)(v(N) −
E[v(N)]) is also discrete with equiprobable realizations. Let us describe the re-
lation x(S) ⪰SSD v(S). For such a discrete distribution, the criteria for SSD
are based on partial sums thanks to Lemma 9 of the ordered realizations of the
random variable. Hence, x(S) ⪰SSD v(S) if

k · d(S)+r(S)(
k∑︂

i=1
ωN

i − E[v(N)]) ≥
k∑︂

i=1
ωS

i , k = 1, 2, . . . , T . (3.5)

For such conditions, we can find vectors d and r by solving corresponding linear
program. The number of conditions for establishing the SSD-dominating core
under the discrete uniform distribution is exactly (2n − 1) · T . Solving a linear
program with this number of conditions can become untractable even for a small
number of players and a moderate number of realization. In the case of a larger
number of realizations, the approximation by continuous distribution is more
suitable, however, if we insist on using the discrete distribution, we can implement
heuristics to improve the computational complexity. Both of the heuristics use
compute one of d, r first and then compute the other vector. Let us start with
the heuristic computing vector r first:
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1. Identify feasible vector r: By setting d(S) = µS in (3.5), compute a
feasible r, i.e., vector r satisfying r(N) = 1 and (3.5).

2. Compute corresponding d: Compute a feasible vector d, i.e., d(N) = µN

and d(S) ≥ µS.

Such an approach yields only a subset of the dominating core. However, each step
of the heuristic can be solved by a linear program with half of the inequalities and
half of the variables, which might lead to a significant reduction of computational
complexity, at least in some instances. Specifically, to determine the vector r in
the first step, the following set of conditions needs to be satisfied:

∀S ⊂ N : r(S) ≥ max
k∈{1,...,T }

∑︁k
i=1(ωS

i − E[v(S)])∑︁k
i=1(ωN

i − E[v(N)])
.

This vector r, together with any feasible d, corresponds to a random payoff from
the SSD-dominating core. It is possible that the heuristic fails to find a solution
even though the SSD-dominating core is nonempty.

The second heuristic finds a feasible vector d first and subsequently finds all
feasible r corresponding to that given vector d:

1. Identify feasible vector d: Find one feasible vector d, i.e., d(N) =
E[v(N)], satisfying d(S) ≥ E[v(S)].

2. Compute corresponding r: Find all feasible r for a given vector d. It re-
sults in pairs (d, r) corresponding to feasible payoffs within SSD-dominating
core.

Once again, we divide the problem into two subproblems, each of half the size,
which might lead to reduction of computational complexity. It is also crucial to
note that the vectors r are guaranteed to be feasible only with respect to the
initially set feasible vector d and not necessarily for any other feasible d.

3.1.2 General risk part
The stochastic payoff with transfer payments and general risk parts enhances the
ability to model a wider range of scenarios. This generalization allows to capture
situations where players have conflicting expectations regarding the outcome. For
instance, consider a player predicting that the realization of the random variable
will be lower than its expectation. Such a player would prefer higher payoff if the
actual realization is less than expected, effectively desiring negative correlation,
corr(xi, v(N)) = −1, between their payoff and the value of the grand coalition.
This approach enables to model conflicting interest among players, reflecting a
negative linear relationship between the random payoff and value of the grand
coalition.

We present a few results concerning this type of stochastic payoff. Proofs of
the propositions are straightforward or at least similar to the proofs of already
proved theorems for the stochastic payoff with transfer payments and nonnegative
risk part, i.e., type of payoff (d, r+).
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Claim 16. Let (N, v) be a stochastic TU-game, where v(S) ∼ N(µS, σ2
S), ∀S ⊆

N follows normal distribution with parameters µS ∈ R, σ2
S ∈ R+. It holds

DC (d,r)(v) is nonempty if and only if there are d ∈ Rn, r ∈ Rn
+:

• d(S) ≥ µS, ∀S ⊆ N and d(N) = µN ,

• |r(S)| ≤ σS

σN
, ∀S ⊆ N and r(N) = 1.

Proof. This follows from Lemma 9 and the proof can proceed in a similar manner
to the proof of Theorem 11 with the difference that vector r does not necessarily
have all nonnegative entries.
Claim 17. Let (N, v) be a stochastic TU-game. Suppose ∀S ⊆ N, v(S) ∼
U [aS, bS] is uniformly distributed, where parameters aS, bS ∈ R ∀S ⊆ N are known
and aS < bS. Then DC (d,r)(v) is nonempty if and only if C(a) ̸= ∅ & C(µ) ̸= ∅.
Proof. Similarly to the proof of Theorem 14, we can derive the conditions for
nonemptiness of the SSD-dominating core under uniform distribution of v(S):

d(S) ≥ µS, (3.6)
d(S) ≥ aS + r(S)(µN − aN). (3.7)

The crucial part is again using Lemma 13 to reformulate the problem of the non-
emptiness of the SSD-dominating core to the non-emptiness of the intersection
of cores of two deterministic TU-games. Again, we only need to find d ∈ (C(a) +
r(µN − aN)) ∩ C(µ). This is equivalent to showing that for some x ∈ C(a) and
y ∈ C(µ), we can find r ∈ Rn, r(N) = 1 such that the intersection is nonempty.
Notice, this is always possible since r has to satisfy y = x + r(µN − aN), thus
r = 1

µN −aN
(y − x). For such r the condition r(N) = 1 is satisfied.

3.2 Allocations without transfer payments
In this section, we analyze games for a given distribution of v where the allocation
type for each player is xi = ri ·v(N), where ri ≥ 0 ∀i ∈ N . To be able to directly
apply Lemma 9 and simplify the analysis of the stochastic dominance, we assume
that v(S) belongs to a scale family of distributions. In such family, multiplication
by a constant only changes the parameters of the probability distribution and does
not change the underlying distribution. Given that this type of allocation can be
used well for scale family of distributions, we show conditions for the dominating
core not only for the distributions already assumed before, however, we also derive
conditions for the gamma distribution, which is outside the scale-location family.

Before we proceed with results concerning allocations without transfer pay-
ments, we discuss the difference between (d, r+) and r+ types of allocation. It
is observable that in the case of scale-location distribution, the allocation type
(d, r+) is slightly more general than r+. Let us illustrate this on the following sit-
uation. The conditions for the SSD-dominating core for the stochastic TU-game
under normally distributed values of coalitions and payoff with transfer payments
are presented in Theorem 11 as follows:

d(S) ≥ µS, (3.8)

σ2
S ≥ σ2

Nr2(S) ⇐⇒ σS

σN

≥ r(S), if σ2
N > 0. (3.9)
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Similarly, we can derive the conditions for the SSD-dominating core when the
allocation type is r+:

r(S) ≥ µS

µN

, (3.10)

σ2
S ≥ σ2

Nr2(S) ⇐⇒ σS

σN

≥ r(S), if σ2
N > 0. (3.11)

The difference lies in (3.8) and (3.10), while (3.9) and (3.11) remain the same.
Condition (3.10) significantly restricts the feasible vector r in the case of the
allocation type r+. Thus, the type of allocation (d, r+) shows more generality at
least for the normal distribution. However, for the distribution characterized
by the first 2 moments, the generality of (d, r+) becomes apparent from the
calculation of the moments of x(S). A payoff xi of player i with transfer payments
has the moments as follows: E[xi] = di and Var[xi] = r2

i · Var[v(N)] as opposed
to a payoff without transfer payments: E[xi] = ri · E[v(N)] and Var[xi] = r2

i ·
Var[v(N)]. The variance for both types of allocations is the same and it depends
on ri. However, the expected value is determined by di for the type (d, r+) and
by ri for r+ which suggests the allocation (d, r+) is more general for distributions
determined by the first two moments. We do not provide rigorous argument as
well as an argument for general distributions.

Let us now present some of the conditions for distributions we already as-
sumed. These were normal and uniform, both discrete and continuous, distri-
butions. We also propose the conditions for a distribution outside scale-location
family; the gamma distribution, which lies within scale family. Since the argu-
ments are basically the same as for the allocation with transfer payments (d, r+),
we do not provide complete proofs but only the conditions for the SSD-dominating
core. For a more detailed analysis and a derivation of the conditions, we refer to
the previous section on the allocation with transfer payments.

Theorem 18 (SSD-dominating core conditions). Let (N, v) be a stochastic TU-
game. A feasible stochastic payoff vector x = r · v(N) lies in the SSD-dominating
core, DC r+(v), if and only if the following conditions are met:

• If v(S) ∼ N(µS, σ2
S), ∀S ⊆ N is normally distributed, where parameters

µS ∈ R, σ2
S ∈ R+ then

r(S) ≥ µS

µN

& r(S) ≤ σS

σN

, ∀S ⊆ N.

• If v(S) ∼ U [aS, bS], ∀S ⊆ N is uniformly distributed, where parameters
aS, bS ∈ R are known and distributions are not degenerated, i.e., aS < bS

then
r(S) ≥ max{ µS

µN

,
aS

aN

}, ∀S ⊆ N.

• If v(S) has a discrete uniform distribution with equiprobable realizations
ω1 ≤ ω2 ≤ . . . ≤ ωT , ∀S ⊆ N , then

∀S ⊂ N : r(S) ≥ max
k∈{1,...,T }

∑︁k
i=1 v(S, ωi)∑︁k
i=1 v(N, ωi)

, ∀S ⊆ N.
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Remark. The conditions in Theorem 18 are given in the form of fractions which
needs the assumption of the denominator to be nonzero. If the denominator is
zero than the condition simply says that the numerator of the fraction needs to
be less than or equal to 0. The case of σS does not need this discussion since
σS > 0.

Let us now derive conditions for gamma distributed v(S).

Theorem 19 (SSD-dominating core under gamma distribution). Let (N, v) be a
stochastic TU-game. Suppose ∀S ⊆ N, v(S) ∼ Γ(kS, θS) is gamma distributed,
where parameters k, θ ∈ (0, ∞) are known and k is called the shape parameter
and θ is called the scale parameter. Then DC r+(v) ̸= ∅ if and only if

r(S) ≥ kS · θS

kN · θN

& r(S) ≥ θS

θN

.

Proof. The distribution of x(S) when v(S) is gamma distributed can be expressed
as x(S) ∼ Γ(kS, r(S) · θS). The conditions for the DC r+(v) ̸= ∅ follow directly
from Lemma 9.

3.3 Unstructured allocation
In this section, we assume the most general setting, i.e., stochastic payoff x is a
multivariate random variable. We call the allocation unstructured since we do
not assume any covariance structure of x as we do for the other allocation types,
where |ρi,j| = 1. In Theorem 20, we state a result concerning the nonemptiness of
the SSD-dominating core for a normal distribution and unstructured allocation.
In the corollary following this theorem, we highlight the connection between The-
orem 20 and Theorem 11; namely that one can view Theorem 11 as a special case
of Theorem 20, where the covariances are ±1. This allows to view allocations
with transfer payments and with or without general risk part (d, r+) and (d, r) as
a reasonable framework for a payoff allocation of players in a coalition, which is
in detail discussed in the rest of this section. We specifically employ normal dis-
tribution due to its structural properties. Notably, linear transformation does not
change the normal distribution (only parameters), and importantly, the sum of
normally distributed random variables remains normally distributed, irrespective
of the covariance relationship among these random variables.

Theorem 20 (Unstructured allocation under normal distribution). Let (N, v) be
a stochastic TU-game, where v(S) ∼ N(µS, σ2

S), ∀S ⊆ N is normally distributed,
where parameters µS ∈ R, σ2

S ∈ R+. We assume that x has a multivariate normal
distribution x ∼ Nn(µ, Σ), where µ ∈ Rn, Σ ∈ Rn×n and Var(xi) = Σii = σ2

i .
Then DC(v) ̸= ∅ if and only if C(µ) ̸= ∅ and C(σ2) ̸= ∅. Specifically, x ∈ DC(v)
if and only if it satisfies the following conditions:

∀S ⊆ N : µS ≤
∑︂
i∈S

µi,

∀S ⊆ N : σ2
S ≥

∑︂
i,j∈S

ρi,jσiσj = Σij.
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Proof. We can proceed similarly as in the proof of Theorem 11. We just need to
work straight with the variance instead of standard deviation game. We compute
only the variance of x(S), S ⊆ N to get the second inequality:

Var[x(S)] =
∑︂

i,j∈S

cov(xi, xj) =
∑︂

i,j∈S

ρi,jσiσj.

Corollary (Transfer payments are special case). Consider two stochastic TU-
games, the first denoted by (N, z) is the one defined in Theorem 20, i.e., payoff
x is a multivariate random variable. The second game denoted by (N, v) , i.e.,
game follows the model assumed in Theorem 11. In this setup, when the correla-
tion coefficient ρi,j = 1, ∀i, j ∈ N , i.e., xi and xj are perfectly correlated for any
players i, j ∈ N , and the variance of each xi is defined as Var(xi) ≡ σ2

i = r2
i σ2

N ,
where ri ≥ 0 ∀i ∈ N and r(N) = 1, then DC(z) = DC (d,r+)(v).

The corollary demonstrates that under the assumption of fully correlated pay-
offs, i.e., ρi,j = 1, ∀i, j ∈ N , the model employing the general allocation type
can be described by the model with the allocation with transfer payments. This
assumption is intuitively aligned with the notion of coalition formation (in the
core the formation of N), where cooperating players are likely to exhibit cor-
related payoffs. Such a reasoning can be extended to allocation with transfer
payment and general risk part (d, r), where the pairwise correlations can be −1,
which indicates perfectly inversely correlated payoffs. This corollary supports our
focus on studying coalitions where all players within the group exhibit strongly
correlated values, with the pairwise correlations absolute value 1. Such a setting
helps in understanding the dynamics and payoff distributions within cooperating
groups.

Further exploration into the stochastic payoffs in cooperative games might
consider the implications of arbitrary correlations among the marginal distribu-
tions of the random payoffs. This approach, although potentially less tractable,
raises interesting questions about the definition of coalition formation and the
appropriate methods for distributing profits among various coalitions. The com-
plexity of arbitrary correlations presents challenges in precisely defining what it
means for a coalition to form and how its profits should be allocated.
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4. Coalition structures under risk
aversion
The previous chapters are centered around solution concepts for grand coalition.
In this chapter, we change our focus to coalition structure formation. Specifically,
we target questions of stability of coalition structures. We have already encoun-
tered important stability concept in the cooperative game theory, which is the
coalition rationality of the core. We defined the core as a stability concept for the
grand coalition, however, it can be also generalized for the coalition structures.
There are a few concepts for studying questions regarding stability in the coop-
erative game theory, such as the cost of stability [19], which studies stability by
adding external payment to the grand coalition, or concepts based on coalition
structures and coalition formation which are studied broadly and research from
last decades is well summarized from different perspectives in [20] and [14] or in
one older publication from the previous century [21].

In this chapter, we aim to describe a stability concept where no player can
change the coalition within the coalition structure to which he belongs in a manner
that is profitable for himself, his current coalition, and the coalition he joins.
We motivate when this notion of stability is more reasonable then the stability
given by the SSD-undominated core from the previous chapter. Due to a great
number of results in the area of coalition structures, and the existence of the
aforementioned surveys, we do not provide an exhaustive overview.

We generalize the notion of individually stable contractual equilibrium, which
was initially discussed in [22] in the setting of so called hedonic games. The
definition is based upon a possibility of a player to deviate from a coalition,
where the possibility is represented by an existence of feasible payoffs for a given
coalition structure. We must, therefore, generalize our notion feasibility from
Definition 32 to feasible payoff for a coalition structure.

Definition 32 (Feasible payoff for a coalition structure). Let (N, v) be a stochas-
tic TU-game. Stochastic payoff x with transfer payments is feasible for a coalition
structure Π(N) = (S1, . . . , SK) if xSj

is feasible ∀Sj ∈ Π(N). A feasible payoff
for a coalition Sj with respect to Π(N) is denoted by xSj

.

Remark. A feasible payoff can be similarly defined for other types of allocations
like allocations with transfer payments and with general risk part (d, r) or allo-
cations without transfer payments r+.

The idea behind this notion of stability follows the view of an individual
player. It says that coalition structure is stable if no player can change coalitions
in a way, which is feasible and at the same time profitable for him and both the
coalition he leaves and the coalition he joins. To evaluate the profitability of the
transfer under the stochastic setting, we employ SSD.

Definition 33 (Credible deviation of a player). Let (N, v) be a stochastic TU-
game and x a stochastic payoff with transfer payments. Further, let Π(N) =
(S1, . . . , SK) be a coalition structure. A player i ∈ Sj has a credible contractual
deviation from Π(N) if for all payoff vectors y feasible for Π1(N) = (S1, . . . , Sk \
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i, . . . , Sp ∪ i, . . . , SK) and for all payoff vectors x feasible for Π(N) satisfying the
following condition

xSk
(Sk \ i) ⪯SSD v(Sk \ i) &

ySp∪i(Sp) ⪰SSD v(Sp) &

holds the following condition for a player i: ySp∪i(i) ⪰SSD xSk
(i) and at least

one of the relations is strict, i.e., ≺.

Definition 34 (S1 stability). Let (N, v) be a stochastic TU-game and x stochas-
tic payoff with transfer payments. We say Π(N) is S1 stable if no player has
a credible deviation and there exists an individually rational payoff for Π(N).
Stochastic payoff x is individually rational for Π(N) if ∀S ∈ Π(N) : ∃xS, ∀i ∈ S :
xS(i) ⪰i v(i)

Remark. We do restrict ourselves to a coalition structures where individually
rational payoff exists. We use the term S1 stability to refer to this concept since
it concerns only one player deviations from a given coalition structure.

Let us now state the theorem for S1 stability for a normally distributed values
of coalitions v(S), ∀S ⊆ N .

Theorem 21. Let (N, v) be a stochastic TU-game and x be a stochastic payoff
with transfer payments. Let v(S) ∼ N(µS, σ2) be normally distributed random
variables with parameters µS ∈ R and σ2 ∈ R+. The game (N, v) has S1 stable
partition.

Proof. In the first step, we prove that it is not possible to obtain a sequence of
credible deviations which starts and finishes with the same coalition structure.
The second step is to prove that by executing a credible deviation from the
partition where individually rational payoffs exist, individually rational payoffs
also exist in the new coalition structure. Let us begin by rewriting conditions for
existence of the credible deviation for a normal distribution from Definition 33. As
in the definition, we denote a feasible payoff in Π(N) by x and it is represented by
(d, r) ∈ R2n (see Definition 32). A feasible payoff in Π1(N), which is the coalition
structure created from Π(N) by one player changing a coalition, is denoted by y
and represented by (c, q) ∈ R2n.

xSk
(Sk \ i) ⪯SSD v(Sk \ i) ⇐⇒

d(Sk \ i) ≤ µSk\i & σSk\i

σSk

≤ r(Sk \ i) ⇐⇒

µSk
− µSk\i ≤ d(i) & r(i) ≤ 1 −

σSk\i

σSk

.

To rewrite we used Lemma 9 and Definition 32. We continue analogically with
the payoff y:

ySp∪i(Sp) ⪰SSD v(Sp) ⇐⇒

c(Sp) ≥ µSp & σSp

σSp∪i

≤ q(Sp) ⇐⇒

µSp∪i − µSp ≥ c(i) & q(i) ≥ 1 −
σSp

σSp∪i

.
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The last preference relation concerning only the player i is the following:

ySp∪i(i) ⪰SSD xSk
(i) ⇐⇒

c(i) ≥ d(i) & r(i)σSk
≥ q(i)σSp∪i.

Let us now combine the resulting inequalities about d(i), r(i), c(i) and q(i):

µSp∪i − µSp ≥ c(i) ≥ d(i) ≥ µSk
− µSk\i &

σSk
− σSk\i ≥ r(i)σSk

≥ q(i)σSp∪i ≥ σSp∪i − σSp .

Hence, if the player i has the credible deviation then µSp∪i +µSk\i ≥ µSk
+µSp

and σSk
+ σSp ≥ σSp∪i + σSk\i, where at least one the inequalities is strict. Let

us now define functions which we call stochastic social welfare of the coalition
structure. For a coalition structure Π(N) = (S1, . . . , SK):

• U(Π(N)) = ∑︁K
i=1 µSi

,

• Σ(Π(N)) = ∑︁K
i=1 σSi

.

If there is a credible deviation from Π(N) to Π1(N) then

• Σ(Π1(N)) ≤ Σ(Π(N)),

• U(Π1(N)) ≥ U(Π(N)),

where at least one of the inequalities is strict. Thus, reaching the initial coalition
structure through any number of credible deviations is not possible, as U − Σ,
increases strictly following the sequence of a credible deviations.

In the second step, we prove that an individually rational payoff exists in the
coalition structure Π1(N) when it existed in Π(N). The proof is trivial for the
player i since ySp∪i(i) ⪰ xSk

(i) ⪰ v(i). For the rest of the players, we distinguish
two cases, one for the coalition Sp ∪ i and the second for the coalition Sk \ i. We
show the proof only for the case of Sp ∪ i since the line of reasoning is the same
for the other coalition. We know that c(Sp) ≥ µSp , q(Sp) ≤ σSp

σSp∪i
, d(Sp) = µSp ,

and r(Sp) = 1 since the payoff needs to be feasible. Therefore, if x is feasible
and individually rational payoff represented by (d, r) ∈ R2n for Π(N) then the
individually rational payoff for players of Sp in coalition structure Π1(N) can be
expressed as follows:

c(i) = d(i) + ε, ∀i ∈ Sp &
q(i)σSp∪i = r(i)σSp − δ, ∀i ∈ Sp,

where ε > 0 or δ > 0.

In other words, there is an payoff in the coalition structure Π(N) in which no
player is worse off then in an individually rational payoff from Π(N).

This result motivates several other questions concerning the S1 stability. Let
us name a few:

• Does S1 stable coalition structure always exist for any distribution of v?

• How many credible deviations are required in the iterative process to find
an S1 stable coalition structure?
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• What is the longest sequence of credible deviations yielding an S1 stable
solution?

• How can we find an efficient1 S1 stable solution in terms of stochastic social
welfare functions U and Σ?

Now we want to motivate where it might be more reasonable to choose an
individually rational payoff given by a S1 stable coalition structure instead of
payoff from the undominated core. Take Example 5, where the undominated
core leads to unreasonable payoffs and strongly asymmetric payoffs even though
players are identical with respect to the values of v. The only S1 stable coali-
tion structure in Example 5 is Π(N) = {{1}{2}}. In S1 stable coalition structure
players can obtain individually rational payoffs contrary to the SSD-undominated
core, where in Example 5 no payoff from the SSD-undominated core is individ-
ually rational. This discussion may motivate using some solution concept for
some S1 stable coalition structure rather then choosing a payoff from the SSD-
undominated core.

Although, we do not present many results in this chapter, understanding the
concept of coalition structures remains crucial. This is particularly important
when core-like solutions are absent, meaning no stability is achieved within the
grand coalition. In such cases, exploring alternative concepts of stability tailored
to specific coalition structures becomes invaluable. We discuss possible ideas for
stability concepts in the conclusion of the thesis. We also need to emphasize that
modeling the game solely with a characteristic function might be inadequate or
impractical, and employing the partition function could be more advantageous.
The partition function considers the value of coalitions within specific coalition
structures, thus dealing with a larger set of values compared to the characteristic
function. This method more effectively captures the interrelationships among
different coalitions. However, the approach of using a stochastic partition function
within the stochastic cooperative game theory has not been extensively explored.

1We mean the efficient solution in the context of multi-criteria optimization.
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5. Multiple newsvendor problem
In this chapter, we apply the notion of the SSD-dominating core to the multiple
newsvendors game. At first, we recall the classical newsvendor problem, which
involves determining the optimal number of newspapers a newsboy should pur-
chase at the beginning of the day to maximize the profit when the demand is
random. Afterwards, we survey the generalization of the newsvendor problem to
multiple players who can cooperate; by cooperation, we mean that players not
only order newspapers together but also cover the demand of other newsvendors
from their coalition. Lastly, we present conditions for the SSD-dominating core
for the specific multiple newsvendors game under uniformly distributed demand.

5.1 Classical newsboy problem
Newsvendor or newsboy problem is a problem with a long tradition in the liter-
ature with variety of settings. Ideas of the newsvendor problem can be found in
already more than a century old paper of Edgeworth [23] or in slightly younger
paper of Arrow et al. [24]. In the basic setting, there is a newsboy selling newspa-
pers in one place. Before the start of the day, he can buy a number of newspapers
and for the rest of the day, he cannot buy more. We assume there is a random
demand for the newspapers. The newsboy problem is then to decide how many
newspapers to buy. Let us formulate this as an optimization problem where the
newsboy wants to maximize the expected profit.
Definition 35 (Newsboy problem). Let c be the unit purchase price and p the
unit selling price for newspapers. Further, denote by ω the random demand for
newspapers. The quantity which the newsboy buys at the beginning of the day is
denoted by q. Then the newsboy problem is the optimization program maximizing
the profit and is defined as follows:

max
q∈R

p · E[min{ω, q}] − c · q. (5.1)

The optimal order q∗ for a continuous demand can be derived in terms of the
inverse cumulative distribution function F −1. The optimal order quantity for the
profit function in the example can be quite straightforwardly derived and is as
follows:

q∗ = F −1(p − c

p
).

The newsboy problem, even under a more general setting, is well studied. For
more, we refer the reader to [25]. The cited book includes wide range of prob-
lems related to the newsboy problem from a multi-item newsboy problem to a
multiple newsboys problems. We maintain our focus on the foundational con-
cept illustrated by the classic newsboy problem, choosing not to complicate the
scenario further. This approach allows us to concentrate on understanding the
core of the problem rather than exploring its variants. Although these modified
models might be more applicable to real-world scenarios, our priority is to grasp
the essential principles that underlie the basic structure of the issue.

We can outline assumptions of the newsboy problem, which are typical for
newsvendor-like situations:
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1. Single period planning,

2. Random demand,

3. Products are delivered prior the demand,

4. Products do not have any value in the next period.

These assumptions can be adjusted or some other may be added to correspond to
a given situation we want to model. To conclude, we presented the fundamentals
of the newsboy problem, where the decision is made only for one newsboy.

5.2 Multiple newsvendors
In this section, we present a literature review of multiple newsvendor problems
to get a grasp of what can be done and, at the same time, to put our approach
to the context of already established results in the literature. It also helps us
to motivate the construction of the problem in Section 5.3 using the cooperative
game theoretic approach.

In multiple newsvendors problems, contrary to the newsboy problem, we de-
fine the optimization function for the whole coalition of players. Then the opti-
mum of v(S) of coalition S represents the worth that the given coalition is able
to obtain on their own. This gives rise to modelling the problems as questions
in cooperative games. Most of sources try to formulate the multiple newsvendors
problems in this way. These games are special cases of a cooperative inventory
game simply asking questions about how to work with inventory in multiple
player or multiple location settings. We focus mostly on these results. In what
follows, when we talk about multiple newsvendors game, we mean the respective
cooperative game.

The paper of Özen et al. [26] studies convexity of a special construction of
a multiple newsvendors game under several distributions of the demand. This
model is an immediate generalization of the newsboy problem and the multiple
newsvendor game (N, v) is defined in the following way. The demand of S is
YS, p is the unit selling price, c is the unit purchasing price and qS the ordered
quantity for S. They construct the characteristic function in 3 steps. At first,
the random variable describing the profit of a coalition S depending on the order
quantity q is defined as rS(q, YS). In the second step, the function πS(q) is defined
as the expected value of rS(q, YS). The last step is the actual construction of
the characteristic function v(S) as the maximum of πS(q) over all possible q.
Formally:

rS(q, YS) = p · min{q, YS} − c · q,

πS(q) = EYS
[rS(q, YS)],

v(S) = max
q

πS(q), ∀S ⊆ N.

When we construct the characteristic function in Section 5.3, we do it in the
similar manner. We provide the interpretation of this construction of (N, v)
when discussing the next paper [27], where we compare different possibilities for
modelling the multiple newsvendors games.
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Figure 5.1: Systems of inventories and orders from [27].

The following paper of Yang et al. [27] assumes risk aversion in a special sense
which we do not discuss deeply. More importantly, the paper examines various
scenarios involving different strategies for inventory pooling or centralization of
orders and proposes models for these configurations. The four systems, which
they discuss, are based on a centralization of the order and a pooling of an
inventory and understanding of them enhances the clarity of the approach one
can take on in such problems:

• System D (Independent newsvendors): This is the basic model where
each newsvendor independently places orders. In this system, newsvendors
operate autonomously, meaning no newsvendor can fulfill the demand of
another. Each newsvendor’s orders are solved and optimized independently.

• System C (Centralized ordering): In this model, a single order is placed
for all newsvendors collectively. Once the order is received, it is divided
among the newsvendors. Despite the centralized ordering, each newsven-
dor cannot meet the excess demand of others; surplus or shortage at one
newsvendor remains unaddressed by others.

• System DP (Decentralized with pooling): Each newsvendor orders in-
dependently, similar to System D. However, unlike System D, if a newsven-
dor’s actual demand is lower than their ordered quantity, they can transfer
the surplus to satisfy the demand of another newsvendor. This system
allows for some level of flexibility and mutual support among newsvendors.

• System CP (Centralized ordering with pooling): Orders are made
collectively for all newsvendors as in System C, but with a significant dif-
ference: newsvendors can satisfy each other’s demands, thanks to a pooled
inventory approach. The specific quantity each newsvendor initially receives
after the order is less crucial because of the shared inventory dynamics.
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This list is particularly useful for our setting as it provides a clearer framework
for understanding the scenarios we intend to model. To articulate the differences
even better, we present a figure of a scheme of these, which was taken directly
from [27]. To conclude, the distinction between these systems is present and
assuming various systems we need to adjust questions and models for that.

Among these models, those featuring pooled inventory are particularly rele-
vant to the application of cooperative game theory. Systems such as DP (De-
centralized with Pooling) and CP (Centralized Ordering with Pooling) naturally
embody cooperative dynamics because they eliminate distinctions between indi-
vidual players’ inventories, encouraging a shared approach to demand satisfaction.
Conversely, in the centralized ordering model (System C), cooperation looks dif-
ferent. Here, the cooperation is not through shared inventory, but through the
decision-making process, where a central planner determines the collective order
for all players, as opposed to each player ordering independently.

In conclusion, the significant differences between these systems require that we
develop specific questions and models specialized to each one. When assuming
different systems, it is crucial to adjust the analytical models accordingly to
capture the unique elements of cooperation and competition inherent in each
setup.

The next model of Zhang et al. [28] describes a way to incorporate risk averse
behaviour in the multiple newsvendors problem, specifically, they use exponen-
tial and power utilities to deal with that. The survey of Dror and Hartman [29]
presents several models for joint-replenishment games, dynamic lot sizing games,
or multiple newsvendors problem and is useful for fuller picture about inventory
games. In one of these models [30], Hartman et al. formulated the multiple
newsvendors problem as a cost game, adding penalty to the profit formulation1.
They showed a characterization of the nonemptiness of the core of the multiple
newsvendors game, under several demand distributions such as symmetric, nor-
mal, etc. Mentioned papers [29] and [30] motivate our approach to use a specific
distribution to deal with the multiple newsvendors problem. Finally, we mention
the work of Slikker et al. [31], which extends the model originally presented in [30]
to scenarios where the unit selling and unit purchasing prices among players vary
and the costs of transshipment among players are included. These adjustments
not only broadens the original model but also opens up potential for further
generalization in our own research, leading to new research questions.

5.3 Multiple risk-averse newsvendors
In this section, we study risk-averse behavior of players in the multiple newsven-
dors problem. We restrict our analysis to a single-period setting, i.e., only one
order is placed. We follow the system CP from the previous section, which in-
volves a centralized order decision for the pooled inventory of players. To model
risk-averse behaviour, we use the second-order stochastic dominance, which was
not, to the best of our knowledge, considered in the literature. The main question
we ask is under which conditions the SSD-dominating core is nonempty.

1Newsvendor-like problems are often formulated also like cost minimization problems.
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Description of the parts of the model follows:

c . . . unit purchasing price for players,
p . . . unit selling price,

qS . . . a quantity of ordered units for coalition S,

YS . . . a random demand of a coalition S for a single period.

These parts enable us to construct characteristic function for a simple model of
multiple newsvendors situation with centralized order and pooled inventories. We
define the characteristic function describing the profit of a coalition S for a given
qS and it is defined as follows:

v(S, qS) = p · min(YS, qS) − c · qS.

As we can see, it is slightly generalized objective function from the single newsven-
dor problem. At this point v(S, q) is not only random but it also depends on a
parameter q. Therefore, we define v(S, q∗) with the optimal value of order q∗

under expected value for a coalition S:

v(S) = v(S, q∗
S) , where q∗

S = arg max
qS

E[v(S, qS)].

Value v(S) describes the random profit of a coalition S under the optimal order
quantity q∗

S which is derived under expectation.

Definition 36 (Stochastic multiple newsvendors game). Let c ∈ R and p ∈ R,
0 < c < p be the unit purchasing price and the unit selling price. Further, let qS

be the order quantity of coalition S and YS ∼ U [aS, bS] the random demand of
coalition S. Finally, let v(S, qS) = p · min(YS, qS) − c · qS. Stochastic TU-game
(N, v) is a stochastic multiple newsvendors game if v is defined as follows:

v(S) = v(S, q∗
S) = p · min(YS, q∗

S) − c · q∗
S,

where q∗
S is defined as optimal value of the following function:

q∗
S = arg max

qS
E[v(S, qS)].

Remark. We already assume the random demand to be uniformly distributed.
Other distributions can be also used in this definition.

Stochastic multiple newsvendors game from Definition 36 is almost identical to
the one by Özen et al. [26] discussed in the previous section. The main difference
between our and their approach is that we use random characteristic function with
optimal value of the parameter q∗

S, v(S) = v(S, q∗
S), while they use deterministic

characteristic function with value of S being equal to maxqS
E[v(S, qS)].

Further, we remark on mathematical soundness of our construction. Under
SSD, the choice of q∗

S for defining v(S) is reasonable, since no v(S, qS) dominates
v(S, q∗

S) when qS ̸= q∗
S if the maximum v(S, q∗

S) is unique. This is due to Claim 1.
In practice, Definition 36 covers several scenarios. For instance, newsvendors

order newspaper from a specified firm, and the unit purchasing price c already
includes the company’s transportation cost for transferring newspaper from one
newsvendor to another. In another scenario, the transportation costs may be
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)-cut uniform distributions.

negligible, or it might be assumed that there are none. In the last of the mentioned
scenarios, it is assumed that if a newsvendor cannot meet the demand, he can
refer the customer to another newsvendor with whom he cooperates.

Now that the stochastic multiple newsvendors game is defined, we are prepared
to tackle the questions about the SSD-dominating core. Usually, the random
demand is assumed to follow a given distribution and due to primary motivation of
multiple newsvendors, these distributions should be discrete. However, for greater
demand quantities, the problem might become intractable. Approximating the
problem by continuous distributions has several advantages. First, as we already
discussed in Chapter 3, the conditions for nonemptiness of the SSD-dominating
core can be more easily derived for continuous distributions. Second, assuming
demand to be continuous leads to a generalization of the problem to possibly
not discrete commodities. In this section, we consider only continuous uniform
distributions.

Derivation of the SSD dominating core conditions To derive conditions
for the SSD-dominating core to be nonempty we can not directly use neither
Theorem 14 for the payoffs with transfer payments nor Claim 18. However, we
can derive the distribution of v(S) in terms of the demand distribution for a given
S ⊆ N and then obtain the conditions for the SSD-dominating core as in the proof
of Theorem 14. Recall (5.1), from which q∗

S = F −1
YS

(p−c
p

). For a given uniform
distribution U [aS, bS], we are able to express precisely q∗

S = aS + p−c
p

(bS − aS).
The distribution of v(S) is a combination of a continuous uniform and a discrete
distribution and can be described using the outcomes ω of distribution YS as
follows:

v(S, ω) =
⎧⎨⎩p · ω − c · q∗

S if ω ∈ [aS, q∗
S)

(p − c)q∗
S if ω ∈ [q∗

S, bS]
, (5.2)

The cumulative distribution function is ”uniform” up to F −1
YS

(p−c
p

) and then there
is a jump to 1. We provide Figure 5.2 to enhance the clarity of what a cumulative
distribution function of this form looks like. In general, we call such distributions
α-cut uniform distribution.
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Definition 37 (α-cut uniform distribution). Let aZ , bZ ∈ R real parameters,
where aZ < bZ and α ∈ (0, 1). A random variable Z follows α-cut uniform
distribution when it has the following cumulative distribution function:

FZ(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x < aZ

x−aZ

bZ−aZ
· α if x ∈ [aZ , bZ)

1 if x ≥ bZ

, (5.3)

To compare two α-cut uniform distributions for stochastic dominance, we
cannot directly use Lemma 9. In the following lemma, we derive the conditions
for SSD dominance for two α-cut uniform distributions with the same α.

Lemma 22 (SSD condition for α-cut uniform distribution). Let X and Y be
random variables both possessing a α-cut uniform distribution for the same α ∈
(0, 1) and let aX , aY , bX , and bY be the corresponding parameters. Then X ⪰SSD

Y if an only if

aX ≥ aY & (2 − α) · bX + α · aX ≥ (2 − α) · bY + α · aY .

Proof. To derive the conditions, we use the formulation of SSD from Definition 5
concerning cumulative distribution function, i.e.,

∀u ∈ R : I(u) =
∫︂ u

−∞
(FX(z) − FY (z)) dz ≤ 0. (5.4)

To abbreviate, we denote the integral by I(u). We can easily see that for any
u ≤ min{aX , aY }, I(u) = 0, thus we only need to analyze situation, where
u > min{aX , aY }. We can further see that if aX < u < aY then I(u) > 0, which
means X cannot dominate Y . Hence, a necessary condition for X to dominate
Y is aX ≥ aY . For aX ≥ aY , we derive further conditions for X to dominate
Y . We can simply see that for bX ≥ bY , FX(u) ≤ FY (u) for every u ∈ R, thus,
the variable X dominates Y (actually, in the first order stochastic dominance).
Let the relation between bX and bY be bX ≤ bY . Then the distribution function
FX and FY intersect on interval (aY , bY ) at a point denoted by h. The crucial
observation is that I(u) is decreasing on interval (aY , h) and increasing on the
interval (h, bY ). This enables us to calculate the other condition for dominance
just as I(bY ) ≤ 0 because if I(bY ) ≤ 0 then I(u) ≤ 0, ∀u ∈ R. We just need to
calculate I(bY ):

I(bY ) =
∫︂ bY

−∞
(FX(z) − FY (z)) dz = (bY − bX) + α · bX − aX

2 − α · bY − aY

2
= −bX · (1 − α

2 ) − α

2 · aX + (1 − α

2 ) · bY + α

2 · aY

Therefore, the second condition, which together with aX ≥ aY make the condi-
tions for X ⪰SSD Y , is as follows

bX · (2 − α) + α · aX ≥ (2 − α) · bY + α · aY .

Notice, that the condition works for bX > bY .
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Remark. For α = 1, the dominance conditions for the α-cut uniform distribution
corresponds in terms of lower and upper bound aX and bX to the conditions for
uniform distribution, see Lemma 9.

Now that we have conditions for two α-cut uniform distributions, we can
derive conditions for the payoffs from the SSD-dominating core for the stochastic
multiple newsvendors game.
Theorem 23. Let YS ∼ U [aS, bS], ∀S ⊆ N be a uniformly distributed demand
with parameters aS, bS ∈ [0, ∞), where aS < bS. Further, let (N, v) be a stochastic
multiple newsvendors game with random demand YS. Then DC r+(v) ̸= ∅ if and
only if

r(S)(aN · (p + c) + bN(p − c) ≥ aS · (p + c) + bS · (p − c) &
r(S)(aN · p − (bN − aN) · c) ≥ (aS · p − (bS − aS) · c).

Proof. To derive the SSD-dominating core conditions based on the distribution
of the demand YS ∼ U [aS, bS], recall the distribution of x(S) looks as follows:

x(S) = r(S) · v(N) ∼ U [r(S) · av(N), r(S) · bv(N)].

To distinguish between the bounds of the uniform distribution of YS and p−c
p

-cut
uniform distribution v(S) we write YS ∼ U [aS, bS] and v(S) has α-cut distribution
with parameters av(S) and bv(S), respectively. These are the bounds representing
the v(S) at points aS and q∗

S. Let us begin with the derivation of the distribution
of v(S) to obtain its bound av(S) and bv(S) to be in terms of the parameters aS

and bS. We recall that the distribution is described in (5.2). We can easily
see that the lower bound av(S) is obtained when ω = aS, thus the lower bound
av(S) = p · aS − c · q∗

S. The upper bound is exactly the point where the cumulative
distribution function is not continuous, i.e., for ω = q∗

S. Thus, the upper bound
bv(S) is (p − c) · q∗

S. Together, the distribution of v(S) is as follows:

v(S) ∼ U [p · aS − c · q∗
S, (p − c) · q∗

S].

Let us now finally derive the nonemptiness conditions for the SSD-dominating
core DC r+(v). To do this, we use Lemma 22. We begin with the condition
aN · r(S) ≥ aS. It can be equivalently rewritten as

r(S)(aN · p − q∗
N · c) ≥ aS · p − q∗

S · c.

This can be rewritten using q∗
S = aS + (bS − aS)(p−c

p
) as follows:

r(S) ·
(︄

aN(p − c + p − c

p
· c) − bN

p − c

p
· c

)︄
≥ aS(p − c + p − c

p
· c) − bS

p − c

p
· c.

We can simplify this to:

r(S)(aN · p − (bN − aN) · c) ≥ (aS · p − (bS − aS) · c).

Let us derive the second condition for the stochastic dominance of x(S) over
v(S). It can be rewritten as follows:

r(S)
(︄

p + c

p
· (p − c) · q∗

N + (aN · p − c · q∗
N) · p − c

p

)︄
≥

p + c

p
· (p − c) · q∗

S + (aS · p − c · q∗
S) · p − c

p
.
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This can be further simplified to:

q∗
S + aS ≥ r(S)(q∗

N + aN).

By plugging in the optimal value q∗
S = aS + (bS − aS)(p−c

p
) we obtain:

r(S)(aN
p + c

p
+ bN

p − c

p
) ≥ aS

p + c

p
+ bS

p − c

p
.

Theorem 23 provides conditions for the nonemptiness of the SSD-dominating
core in the stochastic multiple newsvendors game with continuous uniform de-
mand. These conditions can be interpreted as promoting cooperation among all
players in the game. Since we use the SSD-dominating core, this cooperation
occurs under the assumption that all players are risk averse.

Let us now move to the interpretation of the conditions to better understand
the crucial points of interest for risk averse players in the stochastic multiple
newsvendors game. The first and simpler condition to discuss is as follows:

r(S)(aN · p − (bN − aN) · c) ≥ (aS · p − (bS − aS) · c).

In this case, players within coalition S want to cooperate within the grand coali-
tion, if their guaranteed profit is less than or equal to the portion of the grand
coalition’s guaranteed profit that they can obtain. The second condition is a bit
more intricate to interpret:

r(S)(aN · (p + c) + bN(p − c) ≥ aS · (p + c) + bS · (p − c).

We rewrite it to the following form:

r(S)
(︄

p · aN + bN

2 − c · bN − aN

2

)︄
≥ p · aS + bS

2 − c · bS − aS

2 .

The first expression, p · (aS + bS)/2, represents the expected net income of
coalition S. The second term, c · (bS − aS)/2, can be interpreted as a potential
expected loss from choosing q∗

S instead of bS. These two terms, the expected net
income and the potential loss from choosing q∗

S, collectively represent the market
quality within coalition S, i.e., players within S want to cooperate within the
grand coalition, if their portion of market quality in N is better than or equal to
the market quality within the coaltion S. The SSD-dominating condition suggests
that such market quality is important for risk averse players when deciding on
cooperation in the stochastic multiple newsvendors game.

To summarize the findings on the SSD-dominating core conditions, risk averse
newsvendors consider the following questions when deciding whether to cooperate
with other newsvendors in the already thoroughly explained situation:

• Is the portion of the guaranteed profit in N better or at least not worse
than the guaranteed profit within S?

• Is the quality of the market within S, specifically, its expected net profit and
expected loss from buying the optimal quantity q∗

S instead of the maximal
quantity bS, worse than a portion of the quality of the market within N?
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Concluding remark to newsvendors problem We derived conditions for
the nonemptiness of the SSD-dominating core for the given type of payoff. We
modeled the problem of multiple newsvendors in an unconventional way by as-
suming a random characteristic function rather than one defined by the expected
profit under optimal ordering. Conversely, we applied the concept of optimal
ordering as is standard in other multiple newsvendors models, but in a mathe-
matically sound manner appropriate for second order stochastic dominance. The
results and insights have the potential to be generalized for bounded distributions
of demand, such as discrete distributions with a finite number of realizations.
However, they are likely not applicable to distributions with unbounded support,
like the normal distribution.

The last remark concerns stochastic payoffs with tranfer payments (d, r+),
which, according to Theorem 14, seemed promising for use when the demand is
continuous and uniform in the stochastic multiple newsvendors problem. How-
ever, the outcome was the opposite. We do not present the derivation of the
condition for nonemptiness of DC (d,r+)(v) since it did not prove to be insightful,
and also due to the extensive number of calculations that would not yield more
usable results than those in Theorem 23, even though DC r+(v) should encompass
fewer stochastic payoffs than DC (d,r+)(v) which was discussed in Chapter 3.
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Conclusion
This thesis studying the stochastic TU-games contibutes to the game theory
research in several aspects. It surveys already established models not only to
provide context for its own results, but also to provide a unified overview of
the known results. Then it defines solution concepts, motivated by the core of
deterministic games, called the SSD-dominating core and the SSD-undominated
core; the latter might be viewed as an alternative when the former is empty.
The main focus is on the SSD-dominating core; however, examples of situations
where the SSD-undominated core is more suitable, along with discussions on its
drawbacks, are also provided. The SSD-dominating core is thoroughly studied
for several distributions and types of stochastic payoff. The conditions for the
SSD-dominating core to be nonempty often restate the problem as one of the
nonemptiness of the cores of two deterministic games. Particularly interesting
conditions can be derived for v(S) ∼ U [aS, bS], where the SSD-dominating core
is nonempty if the game induced by the expected values E[v(S)] of v(S) has a
nonempty core and together with that the game induced by lower bounds aS

is convex. However, this is only a sufficient condition. Although we do not
provide a characterization in this case in terms of games (N, a) and (N, µ), we
discuss that superaddivity of (N, a) is not even sufficient, which suggests that
a more complicated relationship between (N, a) and (N, µ) is needed for the
characterization.

In exploring a broader range of payoffs, we also discuss the reasonableness of
the type of payoffs used in the thesis by presenting results for normally distributed
payoffs without assumption on covariance among payoffs of individual players. In
this context, we justify the use of payoffs with transferable payments, specifically,
those characterized by an absolute value of correlation being 1. This discussion
on types of payoffs generates numerous new research questions. These questions
may target completely different types of payoffs, which could be more suitable for
preferences other than SSD, or they may focus on generalizing the payoff type to
accommodate a general covariance matrix of the stochastic payoff x. Particularly
interesting is the potential interpretation in such a context of a general covariance
matrix of the stochastic payoff.

The results concerning the SSD-dominating core can be seen as strong because
of the reformulation of the problem of the nonemptiness of the SSD-dominating
core as a problem of the nonemptiness of cores in deterministic games. Although
the results are satisfactory, the SSD-dominating core presents a significant draw-
back: deriving conditions for distributions beyond the scale-location or scale fam-
ilies proves highly impractical or unfeasible.

We also examine stability concepts for coalition structures, a brief yet signif-
icant part of the thesis deserving close attention. We introduce a stability con-
cept that identifies individually stable coalition structures for risk averse players.
Building on potential research questions highlighted in that chapter, our propos-
als primarily focus on computational aspects of stability, such as the maximum
possible number of credible deviations and the possibility of evaluating efficiency
in stochastic social welfare among different coalition structures. Besides studying
individual stability, other stability concepts for risk-averse players could be devel-
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oped using second-order stochastic dominance. This includes stability concerning
union and division of coalitions, defined by the inability of coalitions to profitably
merge or split. Such concepts could extend the SSD-undominated core to coali-
tion structures, potentially offering greater utility than the SSD-undominated
core itself.

Lastly, we apply the notion of the SSD-dominating core to the multiple
newsvendors game, deriving conditions for its nonemptiness in a simple game
with uniformly distributed demand among risk averse newsvendors. Future re-
search could extend this to a wider range of demand distributions, although the
limitations of stochastic dominance concerning distribution options remain. An-
other way of research could involve adapting the model to more realistic scenarios
through the introduction of additional parameters.

Generally, the study of stochastic TU-games can also be approached through
the development of single-point solution concepts. Research in this area holds
the potential to yield significant insights and practical solutions for stochastic
TU-games. This thesis did not explore this line of research due to differing
objectives. Future research could build on the ideas from the SHS model and its
solution concepts, which are based on the optimization of the objective function.

To conclude, this thesis primarily integrates stochastic dominance (SSD) into
stochastic cooperative games, examining it across various distributions. Addition-
ally, it contextualizes the results within cooperative game theory and cooperative
inventory management.
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