
MASTER THESIS

Bc. Ondřej Komora

Scenario generation methods for
discrete data

Department of Probability and Mathematical Statistics

Supervisor of the master thesis: Ing. Vı́t Procházka, Ph.D.
Study programme: Probability, Mathematical Statistics

and Econometrics
Study branch: Econometrics

Prague 2024

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank the supervisor Ing. Vı́t Procházka, Ph.D. for valuable
feedback, insights, and inspiration which helped me shape the thesis into its final
form.

Thank me.

ii

https://www.youtube.com/watch?v=wGRF3GQ4Wdk&ab_channel=LATINAINCA

Title: Scenario generation methods for discrete data

Author: Bc. Ondřej Komora

Department: Department of Probability and Mathematical Statistics

Supervisor: Ing. Vı́t Procházka, Ph.D., Department of Probability and Mathe-
matical Statistics

Abstract: Stochastic optimization relies heavily on scenario generation, which
has a large impact on the tractability of optimization methods and the quality of
obtained solutions. Despite its importance, scenario generation for discrete data
is rarely studied and even when it is, it often involves a problem-oriented method.
However, the development of these methods is resource-intensive, resulting in a
situation where viable easy-to-use alternatives to sampling are missing. In this
work, we attempt to remedy the situation by proposing a new copula-based sce-
nario generation method for discrete data. The method is based on extending
discrete random variables and subsequent use of the so-called extension copula.
We demonstrate the effectiveness of this method on the stochastic knapsack prob-
lem by using several metrics like in-sample stability, out-of-sample evaluation gap,
and optimality gap. The results show that our method outperforms sampling and
can serve as a more challenging benchmark for problem-oriented methods.

Keywords: stochastic optimization, scenario generation, discrete data, copula

iii

Contents

Introduction 2

Preliminaries 4

1 Copulas and discrete extensions 5
1.1 Introduction to copulas . 5
1.2 Discrete extensions . 6
1.3 Extension copula . 11

1.3.1 Estimation of extension copula 15

2 A copula-based scenario generation method 17
2.1 Copula samples . 17
2.2 Generation of copula samples . 19

2.2.1 Heuristic for bivariate copula samples 20
2.2.2 Description of the algorithm 20
2.2.3 Additional comments . 21

2.3 Transformation of copula samples 22

3 Extension of copula-based method for discrete data 24
3.1 Necessity of extension for discrete data 24
3.2 Intuition for choice of extension copula 25
3.3 Generation of copula samples . 27
3.4 Discrete transformation of copula samples 28

3.4.1 Case of a reasonable number of realizations 30
3.4.2 Case of a large or infinite number of realizations 31
3.4.3 Concluding remarks . 31

4 Case study 33
4.1 Methodology . 33

4.1.1 Quality measures of scenario generation methods 33
4.1.2 Problem-oriented method 35

4.2 Stochastic knapsack . 36
4.2.1 Data generation . 36
4.2.2 Problem formulation . 37
4.2.3 Problem-oriented scenario generation 39
4.2.4 Analysis results . 39

Conclusion 44

A Simulated annealing algorithm 45

Bibliography 46

1

Introduction
Scenario generation methods play a crucial role in stochastic optimization.

The choice of scenario generation method has a large impact on the tractability
of optimization methods and the quality of obtained solutions. A large amount of
scenarios in stochastic optimization problems may render solving these problems
impossible. This is especially the case for optimization methods with exponen-
tially increasing complexity, as an example we may take the branch-and-bound
algorithm for solving mixed integer programs, or multi-stage stochastic programs.
In such cases, it is necessary to condense information about the randomness,
which can be represented via historical data or exact distributions, into as few
scenarios as possible. This process, however, is not easy. There are several ways
the scenario generation may go wrong. For example, the newly created scenarios
may provide biased estimates of the “true” value of the objective function, or sub-
sequent optimization may produce solutions that are far from optimal in terms
of expectation or any other selected objective. Careful assessments of quality are
therefore necessary when evaluating a scenario generation method.

The scenario generation methods can be broadly classified into two classes:
distribution-oriented and problem-oriented. Distribution-oriented methods cre-
ate scenarios solely by taking into consideration the underlying distribution of
randomness in stochastic problems. Examples of distribution-oriented methods
are sampling, moment-matching (Høyland et al. [2003]), minimizing Kantorovich-
Rubinstein distance (Pflug and Pichler [2012]), or copula-based methods (Kaut
[2014]).

However, neglecting the optimization problem may not always be appropriate.
For example, in portfolio optimization problems, distribution-oriented methods
struggle to represent rare events using scenarios. This is an undesirable behavior
because rare events are the main source of risks associated with portfolio selection.
A good problem-oriented method considers this and creates scenarios specifically
tailored for each optimization problem. Therefore, it is expected that a well-
constructed problem-oriented method will always outperform any distribution-
oriented method. For an example of a successful problem-oriented method for
scenario generation in portfolio selection problems, we refer to Fairbrother et al.
[2018]. Another example of a problem-oriented method in the literature is pre-
sented in Prochazka and Wallace [2020] where scenario sets are obtained by mini-
mizing the discrepancy between so-called in-sample and out-of-sample evaluations
on a pool of heuristic solutions.

Despite the obvious advantages of problem-oriented methods, they require a
significant investment of time, knowledge, and resources to develop. Due to these
reasons, easy-to-use distribution-oriented methods like sampling are widely used
when solving stochastic optimization problems, and even when the ultimate goal
is to use a problem-oriented approach, sampling and other simple methods are
used as benchmarks on which the approaches are compared. In this context, we
believe that the development of easy-to-use distribution-oriented methods is still
sensible.

Scenario generation for discrete data is usually considered a difficult problem
and despite many real-world problems where discrete data naturally appears, for

2

example network failures (Ball et al. [1995]) and stochastic customers (Bent and
Van Hentenryck [2004]), it is relatively rarely studied. Even when scenario genera-
tion for discrete data is studied, a problem-oriented approach is often used, caus-
ing problems with complicated development. Also, most distribution-oriented
methods are constructed for continuous random variables. As a consequence,
to the extent of our knowledge, there are no viable easy-to-use alternatives to
sampling when discrete data is involved.

In this thesis, we propose a new distribution-oriented scenario generation
method for discrete data. The method is based on a copula-based method intro-
duced in Kaut [2014]. This method was proven successful for continuous data as
shown by Zhang et al. [2021] on the stochastic shortest path problem in real road
networks. Unfortunately, the method struggles to create reasonable scenarios
when discrete data is encountered. We shall demonstrate this fact in Section 3.1.
The principal idea of the newly proposed method is to extend discrete random
variables into continuous ones, and subsequently use so-called extension copula
in the method proposed by Kaut [2014].

The thesis is structured as follows. Chapter 1 starts with an overview of
copula theory. We introduce copulas and Sklar’s theorem. Then, we define so-
called discrete extensions and provide some related theoretical properties. We
finish this chapter by deriving the expression for extension copula, defined as a
copula of a random vector with extended discrete margins. The summary of the
method from Kaut [2014] is presented in Chapter 2. In Chapter 3 we describe
in detail the adjustments we propose to the aforementioned method. We start
by providing an example of why the adjustments are necessary and why the base
method fails to provide reasonable scenarios in discrete cases. Then we motivate
and describe these adjustments in detail. We also provide a discussion about
the practical aspects of using the algorithm and about potential difficulties. The
content of Chapter 4 is a case study in which we demonstrate the effectiveness
of the newly proposed method using several metrics and assessments of quality,
which we describe in detail. The comparison will be performed with sampling and
one problem-oriented method. We conclude the thesis in the Conclusion chapter,
discussing the drawbacks and advantages of the developed method, together with
the potential areas of further research.

3

Preliminaries
In this thesis, we work exclusively with real-valued random variables. We

shall work extensively with distribution functions, which we define for a random
variable X as FX(t) = P (X ≤ t), t ∈ R, and FX(−∞) = 0, FX(∞) = 1. The
range of distribution function FX is defined as

Ran FX :=
{︂
u ∈ [0, 1]

⃓⃓⃓
∃t ∈ R : FX(t) = u

}︂
.

Observe that {0, 1} ⊆ Ran FX with this definition. Also, we need to define
quantile functions as F −1

X (u) = inf{t ∈ R : FX(t) ≥ u}. Notice that F −1
X (0) = −∞

and F −1
X (1) = sup(supp X). Additionally, we define joint distribution function F

of vector (X1, . . . , Xn) as

F (t1, . . . , tn) = P (X1 ≤ t1, . . . , Xn ≤ tn)

where t1, . . . , tn ∈ R.
A support of a random variable X, denoted by supp X, is the smallest closed

set RX ∈ B satisfying P (X ∈ RX) = 1. We define continuous random variables
as random variables which have continuous distribution functions. For discrete
random variables we impose that support is countable. Furthermore, we assume
that the support of a discrete variable X satisfies supp X = N0 for an infinite
number of realizations, or supp X = {0, . . . , K} for some K ∈ N. Discrete random
vectors have all margins discrete, mixed random vectors have at least one margin
discrete and at least one continuous, and continuous random vectors have all
margins continuous. Cases where the random variable is neither discrete nor
continuous are not considered in this thesis.

For the purposes of this thesis, we define the median of a random variable X
as med(X) := F −1

X

(︂
1
2

)︂
even when the X is discrete, ensuring that the median is

always integral. Finally, for x ∈ R we define the lower integer part as ⌊x⌋ and
the upper integer part as ⌈x⌉.

4

1. Copulas and discrete
extensions

1.1 Introduction to copulas
The principal idea of copulas is to model relationships between margins of ran-

dom vectors without taking into consideration their actual distributions. Proba-
bly the simplest random vector on which we can measure dependence is a random
vector with uniform margins.

Definition 1.1 (Copula). Let (U1, . . . , Un) be a random vector with uniform mar-
gins on interval [0, 1]. Copula is a function [0, 1]n → [0, 1] such that

C(u1, . . . , un) = P (U1 ≤ u1, . . . , Un ≤ un).

In other words, copula C is distribution function of random vector (U1, . . . , Un).

Arguably the most important result in copula theory is Sklar’s theorem first
presented in Sklar [1959]. The theorem states that every random vector can be
decomposed into marginal distributions and copula.

Theorem 1.1 (Sklar’s theorem). Let F be a joint distribution function of random
vector X = (X1, . . . , Xn). Then there exists copula C such that for t1, . . . , tn ∈ R
it holds

F (t1, . . . , tn) = C (FX1(t1), . . . , FXn(tn)) . (1.1)
Copula C is uniquely determined on×n

i=1 Ran FXi
. Alternatively, this equation

could be expressed in terms of marginal quantile functions as

C(u1, . . . , un) = F
(︂
F −1

X1 (u1), . . . , F −1
Xn

(un)
)︂

, (1.2)

where (u1, . . . , un) ∈×n

i=1 Ran FXi
.

Proof. See for example Moore and Spruill [1975], Nelsen [2006], or Durante et al.
[2013].

Remark. From now onwards, whenever we say that copula C satisfies Sklar’s
theorem for random vector X = (X1, . . . , Xn), we mean that the copula satisfies
(1.1). With reference to Sklar’s theorem, all such copulas C are uniquely defined
on×n

i=1 Ran FXi
.

Notice that when all margins of X are continuous, vector

(FX1(X1), . . . , FXn(Xn))

has uniformly distributed margins [0, 1] and copula C is the distribution function
of this vector. Therefore, the information about margins of X is removed when
computing the right-hand side of (1.1). In this context, the theorem allows us
to isolate dependencies within the random vectors using copulas. Broad classes
of random vectors can have the same dependence structure but differ in their

5

marginal distributions. Sklar’s theorem allows us to model marginal distributions
and dependence structures independently.

The theorem states that the copulas satisfying Sklar’s theorem are uniquely
determined on×n

i=1 Ran FXi
. If the vector X is continuous, the region becomes

[0, 1]n and there exists only one copula satisfying Sklar’s theorem. On the other
hand, if margins of X are discrete, the copula is only uniquely defined on a grid
of points. In these cases, there could be infinitely many copulas satisfying Sklar’s
theorem. The question that naturally arises is how to deal with these situations.
One of the possible solutions is to use extensions of discrete random variables.
The purpose of extensions is to make discrete random variables continuous.

1.2 Discrete extensions
The following definition appeared in Denuit and Lambert [2005] or in Genest

and Nešlehová [2007] for discrete random vectors, but we extend it for general
mixed random vectors.
Definition 1.2. Assume that X is a discrete random variable and U is a contin-
uous random variable on [0, 1] which is independent of X. Furthermore, assume
that U has a strictly increasing distribution function on the unit interval. Then
we define the extension of X as a random variable X∗ := X + U − 1.

Let Z = (X1, . . . , Xn) be a mixed random vector and let U = (U1, . . . , Un)
be a random vector independent of Z with independent continuous margins on
[0, 1]. Assume that marginal distribution functions of U are strictly increasing
on unit intervals. Then for Z we define its extension as a random vector Z∗ =
(Y1, . . . , Yn) where

Yj =
⎧⎨⎩Xj + Uj − 1 if Xj is discrete,

Xj if Xj is continuous.

In other words, we replace all discrete margins of Z with their extensions.
By extending a discrete random variable, we obtain a continuous one. A simi-

lar assertion holds for mixed and discrete random vectors, which get transformed
into continuous random vectors. The choice of extensions with strictly increasing
distribution functions will be explained later.

Before investigating the properties of extended discrete random variables, we
need to define the following.
Definition 1.3. Let X be a discrete random variable and u ∈ [0, 1]. Then for
u ̸∈ Ran FX we define

F −1
X (u) = sup{n ∈ Z : FX(n) ≤ u},

F
−1
X (u) = inf{n ∈ Z : FX(n) ≥ u}

and otherwise F −1
X (u) = F

−1
X (u) = F −1

X (u). We call F −1
X (u) lower quantile and

F
−1
X (u) upper quantile. Additionally, we define the lower step u−

X and the upper
step u+

X as

u−
X = FX(F −1

X (u)),
u+

X = FX(F −1
X (u)).

6

Observation. Some observations immediately follow from Definition 1.3.

1. The lower and upper steps can coincide, i.e. u−
X = u+

X . This occurs when-
ever there exists n ∈ Z such that FX(n) = u, or in other words u ∈ Ran FX .
Then it also follows u−

X = u+
X = u.

2. If u ̸∈ Ran FX , and we observe u−
X , u+

X ∈ Ran FX , according to the definition
above we can obtain whenever u−

X > 0

F −1
X

(︂
u−

X

)︂
= F −1

X

(︂
FX(F −1

X (u))
)︂

= F −1
X (u) .

We can derive F −1
X

(︂
u+

X

)︂
= F

−1
X (u) similarly.

Remark. In the definition above, we used the name of the random variable as
a bottom-right index. We will sometimes omit this index if it is clear from the
context to which random variable it is associated.

To better grasp Definition 1.3, consider a discrete random variable X defined
as

P (X = n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.3 n = 0,

0.15 n = 1,

0.1 n = 2,

0.4 n = 3,

0.05 n = 4,

0 otherwise.

(1.3)

For u = 0.65 it can be easily computed F −1
X (u) = 2, F

−1
X (u) = 3, u−

X = 0.55 and
u+

X = 0.95. These values, along with the distribution function of X, are plotted
in Figure 1.1. The figure can be interpreted as follows. The lower quantile is the
highest possible realization n with a non-zero probability such that the probability
P (X ≤ n) does not exceed u. Similarly, the upper quantile is the lowest possible
realization n with non-zero probability such that P (X ≤ n) ≥ u. A similar inter-
pretation could be used for the lower and upper steps. The lower and upper steps
are the highest and lowest numbers of set Ran FX , such that those steps bound u.
More formally, the lower step u−

X is the supremum of set {v ∈ Ran FX : v ≤ u},
and the upper step u+

X is the infimum of {v ∈ Ran FX : v ≥ u}.
Let us now investigate the properties of extended discrete random variables.

We begin by demonstrating that the distribution function of an extended discrete
random variable can be viewed as an interpolation of the steps of a discrete
distribution function.

Theorem 1.2. Let X be a discrete random variable and X∗ = X + U − 1 its
extension. Then for the distribution function of X∗, it holds

FX∗(t) = FX(⌊t⌋) + FU(t− ⌊t⌋) · [FX(⌈t⌉)− FX(⌊t⌋)] , t ∈ R.

Proof. The theorem follows from a straight-forward calculation

FX∗(t) = P (X + U − 1 ≤ t) =
∑︂

n∈supp X

P (U ≤ t + 1− n|X = n)P (X = n) =
∑︂

n∈supp X:n≤⌊t⌋
P (X = n) + FU(t− ⌊t⌋)P (X = ⌈t⌉),

7

Figure 1.1: Visualization of Definition 1.3.

where we utilized independence of U from X and

P (U ≤ t + 1− n) =

⎧⎪⎪⎨⎪⎪⎩
1 n ≤ ⌊t⌋,
FU(t− ⌊t⌋) n = ⌈t⌉, t ̸∈ Z,

0 n > ⌈t⌉.

Now we just need to observe

FX(⌊t⌋) =
∑︂

n∈supp X:n≤⌊t⌋
P (X = n)

and P (X = ⌈t⌉) = FX(⌈t⌉)− FX(⌊t⌋). By combining these observations we have
proved the theorem.

We defined extension in a general manner, meaning that we can use any
continuous distribution on [0, 1] independent of X, which has a strictly increasing
distribution function. A natural choice might be the uniform distribution on
[0, 1]. The uniform extension of discrete random variable defined with (1.3) is
shown in Figure 1.2. The interpolation of a discrete distribution function is
visible. This is a general property of all extensions. They all interpolate steps of
distribution functions, although the interpolation might be non-linear, depending
on the chosen distribution of the extension.

Similarly to the extended distribution function, the extended quantile function
is also an interpolation of the discrete quantile function.

Theorem 1.3. Consider a discrete random variable X and its extension X∗ =
X + U − 1. Fix u ∈ [0, 1], then the quantile function of X∗ can be computed as

F −1
X∗ (u) =

⎧⎪⎨⎪⎩
F −1

X (u) u ∈ Ran FX ,

F −1
X (u) + F −1

U

(︃
u−u−

X

u+
X−u−

X

)︃
u ̸∈ Ran FX .

(1.4)

8

Figure 1.2: Comparison of a discrete distribution function and its extension.

Proof. When u = 0, the theorem follows trivially from the definition of a quantile
function. Also, when u = 1, from Theorem 1.2 we have F −1

X∗ (1) = sup(supp X) =
F −1

X (1).
Now consider u ∈ (0, 1). According to Theorem 1.2, the X∗ has strictly in-

creasing continuous distribution function on the interval (−1, sup(supp X)). The
image of this set, when projected by FX∗ , is (0, 1). Therefore it suffices to find a
unique t such that FX∗(t) = u.

Case u ∈ Ran FX , u ̸∈ {0, 1}, follows easily, because in such case there exists
a uniquely defined t ∈ N0 such that FX∗(t) = FX(t) = u and the equality of
quantiles follows.

Now consider the case when u ̸∈ Ran FX . We can observe according to Theo-
rem 1.2 that t ̸∈ N0 and

F −1
X (u) = sup{n ∈ Z : FX(n) ≤ FX∗(t)} = ⌊t⌋

and similarly F
−1
X (u) = ⌈t⌉. Then it also follows u−

X = FX(⌊t⌋) and u+
X = FX(⌈t⌉).

With use of Theorem 1.2 we get

u = FX∗(t) = u−
X + FU

(︂
t− F −1

X (u)
)︂
· (u+

X − u−
X).

The theorem can be then easily derived using the fact that FU is continuous and
strictly increasing, and therefore F −1

U exists and is uniquely defined.

The reason why we required extension U to have a strictly increasing distribu-
tion function becomes clear now. If FU was not continuous and strictly increasing,
F −1

U would not be uniquely defined and the extended quantile function would not
be calculable.

The principal idea of the algorithm we shall describe in Chapter 3 is the
replacement of discrete variables with their extensions. At this point, we fore-

9

shadow that the algorithm works with pairs of margins and their associated cop-
ula. More specifically, if we have input random vector Z = (X1, . . . , Xn), the
algorithm works with margin pairs (Xi, Xj), 1 ≤ i < j ≤ n. We might won-
der how extension affects the dependence structure and associations within these
margin pairs. Take probabilistic definitions of Kendall’s and Spearman’s rank
correlation coefficients from Nelsen [2006].

Definition 1.4. Let (X, Y) be a pair of random variables and define
(︂
X(c), Y (c))

)︂
as an independent vector from (X, Y), but with the same distribution. Addition-
ally, let

(︂
X(c1), Y (c2)

)︂
be an independent random vector from (X, Y), but with

the same marginal distributions that are mutually independent. Then we define
Kendall’s τ and Spearman’s ρ of (X, Y) as

τX,Y = P
[︂
(X −X(c))(Y − Y (c)) > 0

]︂
− P

[︂
(X −X(c))(Y − Y (c)) < 0

]︂
,

ρX,Y = 3
{︂
P
[︂
(X −X(c1))(Y − Y (c2)) > 0

]︂
− P

[︂
(X −X(c1))(Y − Y (c2)) < 0

]︂}︂
.

Remark. In the presence of a sample (xi, yi), i = 1, . . . , m, from the distribution
of vector (X, Y), estimates of these coefficients attain more familiar forms

τ̂ =
∑︁m

i=1 1[xi > yi]− 1[xi < yi]
m(m− 1)/2 ,

ρ̂ = 1− 6∑︁m
i=1 d2

i

m(m2 − 1) ,

where di = r(xi)− r(yi). We denote r(xi) the index of xi in the sequence {xi}m
i=1

sorted in ascending order. Similiary, we define r(yi).
Interestingly, these coefficients get preserved when the pair (X, Y) is extended.

Theorem 1.4. Let (X, Y) be a pair of discrete random variables. Then Kendall’s
τ and Spearman’s ρ coefficients are preserved when (X, Y) is extended.

Proof. When both X and Y are continuous, there is nothing to prove since the
extension has the same distribution as (X, Y). If X and Y are discrete, the proof
can be found in Denuit and Lambert [2005] or Mesfioui and Tajar [2005]. The
final option is if X is discrete and Y is continuous, or vice-versa. However, the
proof from Denuit and Lambert [2005] can be easily adjusted to this case.

This result is particularly important in terms of scenario generation. It is
vital to capture dependencies in the data when generating scenarios. If we use
extensions of discrete random variables, we have a guarantee of preserving de-
pendencies and associations, at least in terms of Kendall’s and Spearman’s rank
correlation coefficients.

The properties of extensions go even further, as they preserve a wide variety
of so-called concordance orders. An example of concordance order is positive
quadrant dependence (PQD). We say that (X, Y) is positive quadrant dependent
if for s, t ∈ R it holds

P (X ≤ s)P (Y ≤ t) ≤ P (X ≤ s, Y ≤ t).

This property is preserved as well by extending discrete random variables. In
other words, if (X, Y) is PQD, its extension is also PQD. This claim was proven

10

for the bivariate case in Denuit and Lambert [2005], but a generalization for the
mixed case is straightforward. For more examples of concordance orders that are
preserved by extending a discrete random pair, we refer to Genest and Nešlehová
[2007]. We believe these results can be generalized for mixed random pairs, but
a formal proof would have to be provided.

Having established the basic properties of extended discrete random variables,
we might focus on the properties of the copula of an extended random vector,
which we call extension copula. The next section provides an explicit formula for
its calculation.

1.3 Extension copula
The ultimate goal of this section is to obtain a closed expression for the

extension copula. An explicit equation for extension copula is presented in Genest
et al. [2014] for random vectors with all margins discrete. Unfortunately, detailed
derivation is missing. In Denuit and Lambert [2005] and Nelsen [2006], we have
seen an analytical description of extension copula for the bivariate case with
discrete margins. However, we have not encountered an explicit formula for
extension copula of mixed random vectors, let alone its derivation.

We consider our contribution in this section two-fold. Firstly, we adjust the
formula for extension copula to the case of a general mixed random vector with
any number of margins. Secondly, we present our derivation of extension copula,
which was inspired by proof in Denuit and Lambert [2005] for the bivariate case
of discrete margins. However, this proof had to be significantly updated and
expanded for a general mixed random vector case. During the process, we also
use some of the notation from Genest et al. [2014].

The following theorem serves as a staging point for the derivation of an explicit
formula for extension copula. It is a generalization of Theorem 1.2 for extended
random vectors.

Theorem 1.5 (Distribution function of extended random vector). Consider a
mixed random vector Z = (X1, . . . , Xk, Y1, . . . , Yp) with Xi being continuous and
Yj discrete margins. We choose an extension of Z in the form

Z∗ = (X1, . . . , Xk, Y1 + U1 − 1, . . . , Yp + Up − 1).

Denote distribution functions of vectors Z and Z∗ as F and F ∗, respectively. Let
x1, . . . , xk ∈ R and y1, . . . , yp ∈ R. Then F ∗ can be calculated using

F ∗(x1, . . . , xk, y1, . . . , yp) =∑︂
S⊆{1,...,p}

F
(︂
x1, . . . , xk, yS

1 , . . . , yS
p

)︂∏︂
i∈S

FUi
(yi − ⌊yi⌋)

∏︂
j ̸∈S

(1− FUj
(yj − ⌊yj⌋)),

(1.5)

where we define yS
i = ⌈yi⌉ if i ∈ S and yS

i = ⌊yi⌋ if i ̸∈ S.

Proof. Notice that whenever for any i it holds xi = −∞, then

F ∗(x1, . . . , xk, y1, . . . , yp) = F
(︂
x1, . . . , xk, yS

1 , . . . , yS
p

)︂
= 0

11

and the theorem holds. Hence, we may assume xi ̸= −∞. We prove this theorem
by induction with respect to a number of extended discrete variables.

Base case p = 1. Let us introduce a new notation to increase readability.
Write W = (X1, . . . , Xk) and B =×k

i=1 Bi, where Bi is either R if xi = ∞ or
(−∞, xi] if xi ∈ R. Utilizing law of total probability, Y ∗

1 = Y1 + U1 − 1, and fact
that U1 is independent of W and Y1, we derive

P (W ∈ B, Y ∗
1 ≤ y1) =

∑︂
n∈supp Y1

P (W ∈ B, U1 ≤ y1 + 1− n|Y1 = n)P (Y1 = n) =
∑︂

n∈supp Y1

P (W ∈ B|Y1 = n)P (Y1 = n)P (U1 ≤ y1 + 1− n).

Similarly as in the proof of Theorem 1.2, separation into individual cases yields

P (U1 ≤ y1 + 1− n) =

⎧⎪⎪⎨⎪⎪⎩
1 n ≤ ⌊y1⌋,
FU1(y1 − ⌊y1⌋) n = ⌈y1⌉, y1 ̸∈ Z,

0 n > ⌈y1⌉.

Using this, we can continue with

P (W ∈ B, Y ∗
1 ≤ y1) =

P (W ∈ B, Y1 ≤ ⌊y1⌋) + FU1(y1 − ⌊y1⌋) · P (W ∈ B, Y1 = ⌈y1⌉). (1.6)
Finally, if we realize that

P (W ∈ B, Y1 = ⌈y1⌉) = P (W ∈ B, Y1 ≤ ⌈y1⌉)− P (W ∈ B, Y1 ≤ ⌊y1⌋)
and combine it with (1.6), we get

P (W ∈ B, Y ∗
1 ≤ y1) = P (W ∈ B, Y1 ≤ ⌈y1⌉) · FU1(y1 − ⌊y1⌋)+

P (W ∈ B, Y1 ≤ ⌊y1⌋) · (1− FU1(y1 − ⌊y1⌋)). (1.7)
Since

P (W ∈ B, Y1 ≤ t) = F (x1, . . . , xk, t),
this is exactly (1.5). In base case p = 1, we are summing in (1.5) over subsets
of {1}. The first summand in (1.7) is the case when S = {1}, and the second
summand is the case when S = ∅.

Induction step p − 1 → p. We define sets Bi in the same way as in the
proof of the base case and denote W = (X1, . . . , Xk, Y ∗

1 , . . . , Y ∗
p−1) and B =(︂×k

i=1 Bi

)︂
×
(︂×p−1

j=1(−∞, yj]
)︂

. Using the same arguments as when we derived
(1.7), we obtain

P (W ∈ B, Y ∗
p ≤ yp) = P (W ∈ B, Yp ≤ ⌈yp⌉) · FUp(yp − ⌊yp⌋)+

P (W ∈ B, Yp ≤ ⌊yp⌋) · (1− FUp(yp − ⌊yp⌋)) (1.8)
If we combine W and Yp we get a random vector with p − 1 extended discrete
variables. Therefore we may use induction assumption and obtain

P (W ∈ B, Yp ≤ ⌈yp⌉) · FUp(yp − ⌊yp⌋) =∑︂
S⊆{1,...,p}:p∈S

F
(︂
x1, . . . , xk, yS

1 , . . . , yS
p−1, yS

p

)︂
·
∏︂
i∈S

FUi
(yi − ⌊yi⌋)

∏︂
j ̸∈S

(1− FUj
(yj − ⌊yj⌋))

12

for the first summand in (1.8). We can obtain a similar expression for the second
summand, except we would sum over subsets that do not contain p. We now
have two sums: in one we sum over subsets of {1, . . . , p} which contain p, and in
other we sum over subsets of the same set which do not contain p. Adding these
together we sum over all subsets of {1, . . . , p} and we get (1.5) as desired.

Now we may proceed to the derivation of an explicit formula for extension
copula.

Theorem 1.6. Consider a mixed random vector Z = (X1, . . . , Xk, Y1, . . . , Yp)
with Xi being continuous and Yj discrete margins. We choose an extension of Z
in the form

Z∗ = (X1, . . . , Xk, Y1 + U1 − 1, . . . , Yp + Up − 1).
Let u1, . . . , uk, v1, . . . vp ∈ [0, 1] and v−

j , v+
j be lower and upper steps associated

with vj and Yj. Also let C be a copula satisfying Sklar’s theorem for vector Z.
Then we may express copula C∗ of extended vector Z∗ as

C∗(u1, . . . , uk, v1, . . . , vp) =∑︂
S⊆{1,...,p}

C
(︂
u1, . . . , uk, vS

1 , . . . , vS
p

)︂∏︂
i∈S

λi(vi)
∏︂
j ̸∈S

(1− λj(vj)) ,

where

λi(vi) =
⎧⎨⎩

vi−v−
i

v+
i −v−

i

vi ̸∈ Ran FYi
,

0 vi ∈ Ran FYi
,

and vS
i = v+

i if i ∈ S and vS
i = v−

i otherwise. Values of C∗ are uniquely deter-
mined on [0, 1]k+p.

Proof. Assume that vp ∈ Ran FYp , and subsequently vS
p = vp for any S ⊆

{1, . . . , p}. Then it holds λp(vp) = 0 and 1− λp(vp) = 1, yielding

C∗(u1, . . . , uk, v1, . . . , vp) =∑︂
S⊆{1,...,p−1}

C
(︂
u1, . . . , uk, vS

1 , . . . , vS
p−1, vp

)︂∏︂
i∈S

λi(vi)
∏︂
j ̸∈S

(1− λj(vj)) .

Inductively, we could reduce the sum in the same way for all other variables
vj such that vj ∈ Ran FYj

. Therefore, it suffices to prove the theorem for vj ̸∈
Ran FYj

for all j.
Denote xi = F −1

Xi
(ui) and yj = F −1

Y ∗
j

(vj). Note that vj ̸∈ Ran FYj
implies

yj ∈ R. Let F and F ∗ denote distribution functions of Z and Z∗, respectively.
Since vector Z∗ is continuous, we can use Sklar’s theorem on Z∗, and Theorem 1.5
(including the notation therein) to find copula C∗ uniquely defined on [0, 1]k+p

satisfying

C∗(u1, . . . , uk, v1, . . . , vp) Sklar=

F ∗
(︂
F −1

X1 (u1), . . . , F −1
Xk

(uk), F −1
Y ∗

1
(v1), . . . , F −1

Y ∗
p

(vp)
)︂ Theorem 1.5=∑︂

S⊆{1,...,p}
F (x1, . . . , xk, yS

1 , . . . , yS
p)
∏︂
i∈S

FUi
(yi − ⌊yi⌋)

∏︂
j ̸∈S

(1− FUj
(yj − ⌊yj⌋)).

(1.9)

13

Take any S ⊆ {1, . . . , p}. Since ui ∈ Ran FXi
= [0, 1] and v+

j , v−
j ∈ Ran FYj

,
all copulas satisfying Sklar’s theorem for random vector Z attain same values on
(u1, . . . , uk, vS

1 , . . . , vS
p). For any copula C satisfying Sklar’s theorem for random

vector Z we therefore get

C
(︂
u1, . . . , uk, vS

1 , . . . , vS
p

)︂
=

F
(︂
F −1

X1 (u1), . . . , F −1
Xk

(uk), F −1
Y1 (vS

1), . . . , F −1
Yp

(vS
p)
)︂

.

Assume for now that v−
j > 0 for every j. Consequently, we have v+

j > 0 and
vS

j > 0, since vj ̸∈ Ran FX . We may conclude according to Theorem 1.3 and
observation bellow Definition 1.3 that

yS
j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⌈︃
F −1

Y ∗
j

(vj)
⌉︃

=
⌈︃
F −1

Yj
(vj) + F −1

Uj

(︃
vj−v−

j

v+
j −v−

j

)︃⌉︃
= F

−1
Yj

(vj) = F −1
Yj

(v+
j) j ∈ S,⌊︃

F −1
Y ∗

j
(vj)

⌋︃
=
⌊︃
F −1

Yj
(vj) + F −1

Uj

(︃
vj−v−

j

v+
j −v−

j

)︃⌋︃
= F −1

Yj
(vj) = F −1

Yj
(v−

j) j ̸∈ S.

(1.10)
We also used observation

F −1
Uj

(︄
vj − v−

j

v+
j − v−

j

)︄
∈ (0, 1).

Equivalently, equation (1.10) means yS
j = F −1

Yj
(vS

j) whenever vS
j > 0, and

F
(︂
F −1

X1 (u1), . . . , F −1
Xk

(uk), F −1
Y1 (vS

1), . . . , F −1
Yp

(vS
p)
)︂

=

F
(︂
x1, . . . , xk, yS

1 , . . . , yS
p

)︂
.

However, notice that the expression holds even if v−
j = 0, because then necessarily

F −1
Yj

(v−
j) = −∞ and y−

j = −1. As the support of discrete random variables is
contained in N0, the joint distribution function F is zero whenever one of the
arguments is negative. Consequently

C
(︂
u1, . . . , uk, vS

1 , . . . , vS
p

)︂
= F

(︂
x1, . . . , xk, yS

1 , . . . , yS
p

)︂
(1.11)

holds for all possible values of vS
j .

Looking at Theorem 1.3 and (1.10), we may also derive by realizing yj > ⌊yj⌋
when vj ̸∈ Ran FYj

, that

yj − ⌊yj⌋ = F −1
Yj

(vj) + F −1
Uj

(︄
vj − v−

j

v+
j − v−

j

)︄
− F −1

Yj
(vj) = F −1

Uj

(︄
vj − v−

j

v+
j − v−

j

)︄
.

Consequently, using the properties of FUj
and F −1

Uj
we obtain

FUj
(yj − ⌊yj⌋) = FUj

(︄
F −1

Uj

(︄
vj − v−

j

v+
j − v−

j

)︄)︄
=

vj − v−
j

v+
j − v−

j

which is equivalent to FUj
(yj −⌊yj⌋) = λj(vj), because when vj ∈ Ran FYj

it also
holds yj ∈ N0, and thus FUj

(yj − ⌊yj⌋) = FUj
(0) = 0. Combining this, (1.9) and

(1.11) yields the theorem.

14

A key observation about Theorem 1.6 is that extension copula does not depend
on distributions we use to extend discrete margins, as long as they are mutually
independent. This result was mentioned, for example, in Denuit and Lambert
[2005] for the bivariate case of discrete margins. We have formally proven that
this result also holds for mixed random vectors of any number of margins. Also,
the Theorem 1.6 can be interpreted as a multi-linear interpolation of copula values
on points on which all copulas satisfying Sklar’s theorem are uniquely defined,
i.e. on set [0, 1]k ××p

i=1 Ran FYi
.

1.3.1 Estimation of extension copula
Suppose we have a theoretical random vector Z = (X1, . . . , Xn) and a sample

from the distribution of this vector in the form of historical data. In the pres-
ence of historical data, exact values of copula C associated with Z cannot be
determined exactly. We have to estimate them from the historical data. Assume
that we have m observations. The estimation is usually done using the empirical
joint distribution function of Z, which we denote as F̂m, and empirical marginal
quantile functions F̂ −1

m,Xi
. Then we can use (1.2) to compute estimate Ĉm of C, as

Ĉm(u1, . . . , un) = F̂m

(︂
F̂ −1

m,X1(u1), . . . , F̂ −1
m,Xn

(un)
)︂

, (1.12)

where u1, . . . , un ∈ [0, 1]. Since our goal is to compute extension copula C∗ of Z∗,
we require its estimation as well. Assume the setting of Theorem 1.6, namely the
separation of Z into continuous and discrete margins. Denote estimation of C∗

by Ĉ∗
m. We can use Theorem 1.6, together with the notion therein, to obtain it

using

Ĉ∗
m(u1, . . . , uk, v1, . . . , vp) =∑︂

S⊆{1,...,p}
Ĉm

(︂
u1, . . . , uk, v̂S

1 , . . . , v̂S
p

)︂∏︂
i∈S

λ̂m,i(vi)
∏︂
j ̸∈S

(︂
1− λ̂m,j(vj)

)︂
, (1.13)

where v̂S
i are the estimates of vS

i using the empirical marginal distribution func-
tions F̂m,Yi

and quantile functions F̂ −1
m,Yi

, and

λ̂m,i(vi) =
⎧⎨⎩

vi−v̂−
i

v̂+
i −v̂−

i

vi ̸∈ Ran F̂m,Yi
,

0 vi ∈ Ran F̂m,Yi
,

which serve as estimates of λi(vi).
The properties of estimates Ĉ∗

m were studied in Genest et al. [2014] for discrete
random vectors. In this article, the authors established a weak limit of Ĉ∗

m on
any compact subset of

n×
i=1

[0, 1] \ Ran FXi
,

although the limit is non-trivial. Notice that this set is dense on [0, 1]n. For more
details, see Genest et al. [2014], Theorem 3.1. The reason for the existence of
a weak limit only on compact subsets of this set is due to the non-existence of
i-th partial derivative of C∗ on Ran FXi

for all margins i = 1, . . . , n. Despite
this complication, the estimator Ĉ∗

m converges in probability to C∗. Formally,

15

⃦⃦⃦
Ĉ∗

m − C∗
⃦⃦⃦

P→ 0 as m→∞. See the aforementioned article for proof. We believe
these results could be generalized onto mixed random vectors. However, we state
this as a hypothesis without providing proof.

16

2. A copula-based scenario
generation method

The goal of this chapter is to provide a summary of the algorithm introduced
by Kaut [2014]. We credit all results presented in this chapter to Kaut [2014],
but we try to use alternative formulations and explanations. Interested readers
can look into this original article, or into a well-written summary of the method
in Zhang et al. [2021], Appendix A.

For the remainder of this chapter, we assume a setting where we obtained
copula C from random vector X = (X1, . . . , Xn), historical data, or a combina-
tion of both, and we aim to generate S scenarios. The method consists of two
steps. Firstly, it constructs so-called copula sample which models copula C. This
happens without reflecting the marginal distributions. In the second step, the
method transforms this copula sample to account for marginal distributions.

2.1 Copula samples
The copulas do not take into consideration marginal distributions of random

vectors. Instead, copulas focus on dependencies in terms of order. It is therefore
natural to work with ranks of data. The copula samples are defined using ranks
and they reflect that we want to represent copula C as closely as possible using
discretization into S scenarios.

Definition 2.1 (Copula sample). We define copula sample as

C = {(r1, . . . , rn) : 1 ≤ ri ≤ S, 1 ≤ i ≤ n},

where each value appears exactly once in each dimension. We denote a collec-
tion of copula samples as Λ and refer to elements of copula samples as copula
assignments.

Let us introduce a new notation. If C is a copula, then by Cr we mean
computation of copula value from ranks

Cr(r1, . . . , rn) := C
(︃

r1

S
, . . . ,

rn

S

)︃
, (2.1)

where r1, . . . , rn ∈ {1, . . . , S}. Bearing in mind this notation, we denote the
distribution function of copula sample C as Cr and define it as follows

Cr(r1, . . . , rn) = 1
S
|{(r′

1, . . . , r′
n) ∈ C : r′

i ≤ ri, 1 ≤ i ≤ n}| .

The expression means that we count the number of elements in copula sample C
which are element-wise lower than input vector (r1, . . . , rn), and then divide it by
S, which is the number of elements in the copula sample.

The principal idea is to find a copula sample that is as close as possible to the
copula C, measured by some metric. Two metrics were proposed by Kaut [2014]:

17

average deviance and maximum deviance. For copula sample C, they are defined
as follows

devavg(C, C) = 1
Sn

n∑︂
r1=1
· · ·

n∑︂
rn=1
|Cr(r1, . . . , rn)− Cr(r1, . . . , rn)| ,

devmax(C, C) = max
1≤ri≤S
1≤i≤n

|Cr(r1, . . . , rn)− Cr(r1, . . . , rn)| .

The problem of finding a copula sample that is as close as possible to the target
copula can be formally stated as

min
C∈Λ

devavg(C, C), (2.2)

or its respective version for maximum deviance.
We visualize the problem (2.2) in Figure 2.1. For illustration purposes, we

Figure 2.1: Example of copula sample laid over a sample from the two-dimensional
Gaussian copula with ρ = −0.7. Sampled values are represented with blue points
and an example of a copula sample with red squares.

assume the copula C is represented through a sample from bivariate Gaussian
copula with ρ = −0.7. The samples are plotted using blue points. The unit
square is divided into a 4× 4 grid where the number four represents the number
of scenarios we want to generate. Each copula assignment given by a pair of ranks
(i, j), 1 ≤ i, j ≤ 4, represents a square with rank coordinates (i, j), (i− 1, j), (i−
1, j−1) and (i, j−1), which could be easily scaled into the unit interval by diving it
by the number of scenarios to generate, in our example four. Notice that the same
transformation is performed in (2.1). The collection of all copula assignments
and their associated squares, one in each row and column of the constructed grid

18

constitutes a copula sample. In the figure, an example is shown using red squares.
Fix a pair of ranks (2, 3), or equivalently points

(︂
1
2 , 3

4

)︂
when scaled into the unit

square. Then, the distribution function of a copula sample is the number of
squares contained in the region surrounded by the red line, divided by the number
of elements in the copula sample, which is four. Therefore Cr(2, 3) = 1

2 . Similarly,
the Cr(2, 3) is the relative number of samples contained in the same region. If
the copula C was given exactly, we would compute this value using a distribution
function. The difference |Cr(2, 3)− Cr(2, 3)| could be then easily computed. By
repeating the same process for all rank grid points {1, 2, 3, 4}2, we are able to
compute the average or maximum deviation between the chosen copula sample
and copula C. Informally, the problem (2.2) is then equivalent to finding the most
optimal assignment of squares such that the deviation is minimized.

Unfortunately, it takes O(Sn) operations to evaluate a copula sample using
both deviance metrics for a general n-variate case. Furthermore, the collection of
copula samples Λ can be quite large. Therefore computation complexity grows
quickly and (2.2) can be solved directly only for small S and n, meaning that we
cannot solve reasonably sized problems using this approach. In the original arti-
cle, it was attempted to formulate (2.2) for bivariate copula C as a mixed integer
linear program. However, the computational study revealed this approach is not
tractable, since the computational times are rising exponentially quickly with an
increasing number of scenarios. The study was performed for both average and
maximum deviance.

To overcome this obstacle, Kaut [2014] proposed a heuristic algorithm that
builds copula samples iteratively margin by margin. From now on, we focus
only on the average deviation problem, although the algorithm could be easily
modified to the maximum deviance.

2.2 Generation of copula samples
The core concept of the algorithm is to build copula sample S incrementally.

Beginning with margin 2 ≤ m ≤ n, we assume S has been built up to the
(m− 1)-th margin in the form of

{(r1
s , . . . , rm−1

s) : s ∈ 1, . . . , S}.
Next, we aim to assign new ranks 1, . . . , S to the m-th margin of elements in S
in a certain order. Considering any permutation (i1, . . . , iS) of ranks (1, . . . , S),
we assign them to m-th margin of elements in S, constituting copula sample

{(r1
s , . . . , rm−1

s , is) : s ∈ {1, . . . , S}}
and bivariate copula samples Cj of margin pairs (j, m), 1 ≤ j ≤ m − 1, equal to
{(rj

s, is) : s ∈ {1, . . . , S}}. Now take margin pairs (Xj, Xm), j < m, and their
copula Cj. The heuristic then tries to find permutation (i1, . . . , iS) such that the
sum

m−1∑︂
j=1

devavg(Cj, Cj) (2.3)

is minimized. Then we proceed to the next margin. The process repeats until we
reach the last one, yielding the final copula sample

S = {(r1
s , . . . , rn

s) : s ∈ {1, . . . , S}}.

19

Unfortunately, the number of permutations is large, making it impossible to
solve problem (2.3) directly. We outline a potential solution later in this chapter,
along with a more detailed description of the algorithm.

By handling margins one by one, we no longer have to calculate deviation
for all margins, but just for two, reducing the complexity from O(Sn) to O(S2).
Fortunately, even this can be improved upon by using a simple observation.

2.2.1 Heuristic for bivariate copula samples
Heuristic is based on the observation that the distribution function of copula

sample Cr(i, j) depends only on grid points with coordinates less than i and j, i.e.
on points (i′, j′) such that i′ ≤ i, j′ ≤ j. We therefore try to construct bivariate
copula samples row-wise: for fixed row j we try to find column i such that the
deviation caused is minimized. Consider a bivariate copula sample C = {(ij′ , j′) :
j′ < j} which was built up until row j − 1, and denote Ci = C ∪ {(i, j)}. Then
problem of finding unused column i which minimizes deviation caused by pairing
it to j can be rewritten into an optimization problem

min
i∈I

δ(i, j) :=
S∑︂

l=1

⃓⃓⃓
Ci

r(l, j)− Cr(l, j)
⃓⃓⃓
, (2.4)

where I = {1, . . . , S} \ {ij′ : j′ < j} denotes the set of column indices that were
not used in copula sample. It can be derived that these values can be recursively
computed using the formula

δ(i, j) = δ(i− 1, j) + |Cr(i− 1, j − 1)− Cr(i− 1, j)|

−
⃓⃓⃓⃓
Cr(i− 1, j − 1) + 1

S
− Cr(i− 1, j)

⃓⃓⃓⃓
(2.5)

with initialization

δ(0, j) =
S∑︂

i=1

⃓⃓⃓⃓
Cr(i, j − 1) + 1

S
− Cr(i, j)

⃓⃓⃓⃓
.

Detailed derivation is included in Kaut [2014]. Calculating δ(i, j) from (2.4)
requires O(S) operations. Further, it has to be repeated for all i = 1, . . . , S to
decide which column minimizes deviation, totaling at O(S2). Using (2.5), we can
reduce it to O(S).

2.2.2 Description of the algorithm
We present the full algorithm for generating copula samples in Algorithm 1.

Let us describe the algorithm step-by-step. The algorithm commences with iter-
ation over every margin starting at m = 2. It is then followed by the initialization
of a set of unused copula assignment indices, empty bivariate copula samples Ck,
and copulas Ck of margin pairs (k, m).

The first inner loop starts at Line 5. It is an iteration over rows, starting at
j = 1. Then we compute the deviation caches for every margin pair (k, m), k < m.
Caches are computed using the recursive rule (2.5). This is allowed by the fact
that copula samples Ck cannot, at this point in the algorithm, contain rows with

20

Algorithm 1 Heuristic for generating copula samples
Input: Copula C.
Output: Copula sample C.
Initialize: r1

s ← s, s ∈ {1, . . . , S}
1: for m = 2, . . . , n do
2: S ← {1, . . . , S}
3: Ck ← ∅, 1 ≤ k ≤ m− 1
4: Compute copulas Ck of margin pairs (Xk, Xm), 1 ≤ k ≤ m− 1
5: for j = 1, . . . , S do
6: for k = 1, . . . , m− 1 do
7: δk ← computeDeviationCache(Ck, Ck, j)
8: end for
9: s∗ ← arg mins∈S

∑︁m−1
i=1 δi(ri

s, j)
10: S ← S \ {s∗}
11: rm

s∗ ← j
12: Ck ← Ck ∪ {(rk

s∗ , j)}, k < m
13: end for
14: end for
15: return Copula sample {(r1

s , . . . , rn
s) : s ∈ {1, . . . , S}}

an index higher or equal to j. The only update of copula samples happens at
Line 12, from which it is clear that they cannot contain rank pairs with row
index larger than, or equal to j.

Perhaps the most crucial part of the algorithm is happening at Line 9. From
the unused copula assignments, we select the one that causes the least amount
of deviance when extended on m-th margin by assigning it rank j. From another
perspective, for every rank j we select the copula assignment which causes the
least amount of deviance. Then, at Line 10 we make the selected copula assign-
ment unavailable in the next iteration. By doing this, we avoid the problem of
systemically searching through permutations of ranks.

The iteration over margins is concluded by setting m-th margin of copula
assignment with index s∗ to j and updating the bivariate copula samples. After
performing all iterations over margins, the final copula sample is returned.

2.2.3 Additional comments
Let us start by analyzing time and space complexity. Firstly, we restrict

ourselves to the iteration over m-th margin. In each margin iteration, we iterate
over S ranks. Furthermore, for each rank, we compute m − 1 deviation caches,
each taking S operations. Afterward, the selection of the best copula assignment
takes place, which requires O(S · (m − 1)) operations. Overall, the algorithm
totals at O((m − 1) · S2) operations when iterating over m-th margin. Because
we iterate over all n margins, the algorithm takes O(n2S2) operations to finish.

In terms of space complexity, we need to store in each iteration over m-th
margin O((m − 1)S) for deviation caches and O((m − 1)S) for bivariate copula
samples. However, these values do not have to be stored in the next iterations
over margins. Additionally, O(nS) is required for the output copula sample,

21

making the algorithm O(nS) in terms of space complexity. We omit from this
calculation requirements to store input data, copula C, and copulas of all margin
pairs.

The algorithm itself has a strong mathematical foundation. It is based on the
important results from the copula theory like Sklar’s theorem. Unfortunately,
due to the computational complexity of problem (2.2), it is necessary to resort
to a heuristic algorithm, at least until a new approach to model copula using S
scenarios is developed or until a new faster algorithm for solving (2.2) is found.
By resorting to the previously described heuristic algorithm, we obtained a com-
putationally feasible algorithm, but at the expense of losing multi-margin depen-
dencies, since the algorithm works with pairs of margins. However, the algorithm
can still capture dependencies in these margin pairs that can be non-linear.

Despite the heuristic nature of the algorithm, it was successfully applied to
real-world problems involving continuous data. For example, in Zhang et al.
[2021], the scenario generation for the stochastic shortest path problem on real
road networks was studied. The copula-based method outperformed sampling by
a significant margin using various objective functions and metrics. These results
were achieved in spite of highly temporarily and spatially correlated data of travel
speeds on real road networks.

2.3 Transformation of copula samples
Output from the first step of the algorithm is a copula sample which was

found without taking into consideration marginal distributions. However, copula
samples cannot be used in practice. Therefore we need to transform them to
reflect marginal distributions. Assume that we have generated a copula sample
{(r1

s , . . . , rn
s) : s ∈ {1, . . . , S}} running the Algorithm 1. These ranks can be

naturally scaled to the unit interval[︄
ri

s − 1
S

,
ri

s

S

]︄
.

Applying the marginal quantile functions on these regions, we obtain[︄
F −1

Xi

(︄
ri

s − 1
S

)︄
, F −1

Xi

(︄
ri

s

S

)︄]︄
, (2.6)

union of which over s ∈ {1, . . . , S} yields entire support of the margin Xi. It
is sensible to transform each rank ri

s into element which is contained in (2.6).
Denote such element xi

s. Or in other words, it is the final value of i-th margin
in scenario s after transformation from rank ri

s. Several transformations were
formulated in Kaut [2014], but we list only some of them. Approaches can be
split into three separate cases:

1. Distribution of i-th margin is known. Then we have the following reasonable
options

• xi
s = med

(︂
Xi

⃓⃓⃓
F −1

Xi

(︂
ri

s−1
S

)︂
≤ Xi ≤ F −1

Xi

(︂
ri

s

S

)︂)︂
.

• xi
s = E

[︂
Xi

⃓⃓⃓
F −1

Xi

(︂
ri

s−1
S

)︂
≤ Xi ≤ F −1

Xi

(︂
ri

s

S

)︂]︂
.

22

2. Distribution of i-th margin is unknown, but we have some historical data
at our disposal. Then we may take empirical quantile function F̂ −1

Xi
, or its

interpolation, and proceed similarly as in the previous case.

3. We have a procedure for generating values out of marginal distributions. For
example using other methods for generating scenarios (sampling, moment-
matching, etc.). However, we do not discuss the details of this approach in
our thesis. We refer to Kaut [2014] for more details.

From the aforementioned transformations, only conditional expectation guaran-
tees that the resulting scenarios are not biased. However, it can be quite difficult
to compute the conditional expectation. Probably due to this difficulty, in Kaut
[2014], the author opted for the conditional median approach.

23

3. Extension of copula-based
method for discrete data

The algorithm described in the previous chapter works well for continuous
data. However, as we shall see in Section 3.1, it struggles to create reasonable
scenarios when faced with discrete data. In this chapter, we propose an exten-
sion to this algorithm by utilizing discrete extensions and extension copula. We
provide further intuition for the choice of extension copula in Section 3.2. The
adjustments to the algorithm for copula sample generation are described in Sec-
tion 3.3. In Section 3.4, new transformations of copula samples for handling
discrete random variables are proposed. We claim contributions presented in this
chapter as our own.

3.1 Necessity of extension for discrete data
In the presence of continuous data, the values of copula C for continuous

random vector X = (X1, . . . , Xn) are usually calculated using (1.2) if exact dis-
tributions are known, or its empirical counterpart (1.12) if only historical data
is available. In either case, if the same equations are used for discrete data (i.e.
without the use of any kind of extension), we illustrate in the following example
that the method described in Kaut [2014] does not work properly.

Consider a simple example when we want to generate S scenarios for discrete
bivariate random vector X = (X1, X2) with independent uniform margins on
{0, 1}. If we compute values of copula C of X according to (1.2), we get

C(u, v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 u = 0 or v = 0,
1
4 0 < u < 1

2 , 0 < v < 1
2 ,

1
2 0 < u < 1

2 , 1
2 ≤ v or 1

2 ≤ u, 0 < v < 1
2 ,

1 otherwise.

As described earlier, the algorithm builds copula samples row-wise. Recall that
to each row we associate a column minimizing the metric defined by (2.4). For
simplicity, we assume S is odd. Then for S ≥ 4 we may write

δ(i, 1) =
S∑︂

l=1

⃓⃓⃓⃓ 1
S
· 1[l ≥ i]− C

(︃
i

S
,

1
S

)︃⃓⃓⃓⃓

=
S−1

2∑︂
l=1

⃓⃓⃓⃓ 1
S
· 1[l ≥ i]− 1

4

⃓⃓⃓⃓
+

S∑︂
l= S+1

2

⃓⃓⃓⃓ 1
S
· 1[l ≥ i]− 1

2

⃓⃓⃓⃓

=
⎧⎨⎩(i− 1)1

4 +
(︂

S+1
2 − i

)︂ (︂
1
4 −

1
S

)︂
+ S+1

2

(︂
1
2 −

1
S

)︂
i ≤ S−1

2 ,
S−1

2
1
4 +

(︂
i− S+1

2

)︂
1
2 + (S + 1− i)

(︂
1
2 −

1
S

)︂
i ≥ S+1

2 .

With some tedious work, it can be shown

δ(i, 1) = 3S − 7
8 + i− 1

S
. (3.1)

24

Hence, the derived deviance is monotonously increasing in i. Subsequently, the
expression is minimized for i = 1 and the first row would be paired with the first
column.

We proceed by induction with respect to j until we reach S−1
2 . The induction

assumption is that the copula sample consists of pairs (i′, i′), i′ ≤ j−1. Recursion
(2.5) can be also performed row-wise

δ(i, j) = δ(i, j − 1) + |Cr(i− 1, j − 1)− Cr(i, j − 1)|

−
⃓⃓⃓⃓
Cr(i− 1, j − 1) + 1

S
− Cr(i, j − 1)

⃓⃓⃓⃓
.

For more details see Kaut [2014]. Since we cannot select the same column again,
we need to limit our attention only to columns with an index larger than j − 1.
Plugging into the recursive formula yields

δ(i, j) = δ(i, j − 1) +
⎧⎨⎩
⃓⃓⃓

j−1
S
− 1

4

⃓⃓⃓
−
⃓⃓⃓

j
S
− 1

4

⃓⃓⃓
j ≤ i ≤ S−1

2 ,⃓⃓⃓
j−1

S
− 1

2

⃓⃓⃓
−
⃓⃓⃓

j
S
− 1

2

⃓⃓⃓
i ≥ S+1

2 .

The most important observation is that the new contribution does not depend on
column index i. As a consequence, δ(i, j) = δ(i, 1) + J for some J which does not
depend on i, meaning that the deviation is minimized for i = j due to monotony
of δ.

Let us summarize what we have found. We have proved that using (1.2) to
compute values of a copula, in the presence of discrete data, may lead to the
addition of rank pairs (i, i) up to i = S−1

2 to the copula sample. The evaluation
of bounds for the transformation region (2.6) yields only set {0} for both margins
of X, because when 2 ≤ i ≤ S−1

2 , we have

F −1
X1

(︃
i− 1

S

)︃
= F −1

X1

(︃
i

S

)︃
= 0,

and similarly for the second margin X2. Notice that the same observation holds
for i = 1 after restricting the evaluated bounds to N0 in which all realizations of
discrete random variables lie. As a consequence, pairs (i, i), i ≤ S−1

2 , would be
transformed into S−1

2 scenarios (0, 0). However, due to the algorithm construct-
ing pairs of ranks row-wise and the algorithm continuing to row index S+1

2 , we
completely lost the chance to produce more than one scenario (0, 1). This be-
haviour is definitely not desired because the probability of this realization is the
same as for (0, 0), and the discrepancy between the respective number of scenar-
ios (0, 0) and (0, 1) increases with the rising number of scenarios S. Therefore it
is expected that the resulting scenarios will form repeating sequences of realiza-
tions without a lot of variation. Our experiments confirmed this observation for
discrete random vectors with multiple margins.

3.2 Intuition for choice of extension copula
Sklar’s theorem states that all copulas are uniquely determined on the Carte-

sian product of ranges of marginal distribution functions. In the case of discrete
margins, it is a grid of points. These grid points naturally form cells into which

25

probability associated with each grid point is evenly distributed by extending
discrete variables, meaning that the density of associated extension copula with
respect to the Lebesgue measure is constant on these cells.

To elaborate further, consider discrete bivariate random vector (X, Y) with
joint distribution function F . Furthermore, let pn = P (X ≤ n), n ∈ supp X,
and qm = P (Y ≤ m), m ∈ supp Y . For convenience, also let p−1 = q−1 = 0.
We assume n ∈ supp X and m ∈ supp Y for the remainder of this section. All
copulas C satisfying Sklar’s theorem for (X, Y) are uniquely defined on grid points
(pn, qm) and it holds

C(pn, qm) = F
(︂
F −1

X (pn), F −1
Y (qm)

)︂
= F (n, m) = P (X ≤ n, Y ≤ m).

It easily follows

P (X = n, Y = m) = C(pn, qm)− C(pn−1, qm)− C(pn, qm−1) + C(pn−1, qm−1).

Take extension (X∗, Y ∗) of (X, Y) and its extension copula C∗. Since copulas C
and C∗ coincide on Ran FX × Ran FY , we get

P (n− 1 ≤ X∗ ≤ n, m− 1 ≤ Y ∗ ≤ m) = P (X = n, Y = m) =
C∗(pn, qm)− C∗(pn−1, qm)− C∗(pn, qm−1) + C∗(pn−1, qm−1).

Because the extension copula C∗ linearly interpolates values of copula C on grid
points {pn−1, pn} × {qm−1, qm}, the density of C∗ is constant on the Cartesian
product of intervals (pn−1, pn) and (qm−1, qm). Therefore, it is precisely this region
(pn−1, pn) × (qm−1, qm) into which discrete extensions spread probability P (X =
n, Y = m) evenly, measured by the density of extension copula C∗.

Similar arguments could be made for mixed random vectors. Let (X, Z) be a
random vector where Z is a continuous random variable and X is kept unchanged.
Then following the same thought process, we would arrive at

P (X = n, Z ≤ t) = C(pn, u)− C(pn−1, u), u = F −1
Z (t),

and

P (n− 1 ≤ X∗ ≤ n, Z ≤ t) = P (X = n, Z ≤ t) = C∗(pn, u)− C∗(pn−1, u).

Similarly, the extension copula linearly interpolates copula C between points
(pn−1, u) and (pn, u), rendering the density of C∗ constant along the first margin
on the interval (pn−1, pn). Hence, the probability P (X = n, Z ≤ t) is equally
spread by extension (X∗, Z) across first margin into (pn−1, pn) in terms of density
of C∗.

To illustrate this using graphical tools, consider two bivariate random vectors

P (X = i, Y = j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.7 i = j = 0,

0.05 i = 0, j = 1,

0.05 i = 1, j = 0,

0.2 i = j = 1,

0 otherwise.

26

(a) Discrete margins. (b) Mixed margins.

Figure 3.1: Example of extension copula densities for discrete and mixed random
vectors.

and Z ∼ Alt(0.7) with W |Z ∼ N (2Z, 1 + Z). We compute the extension copula
of those bivariate random vectors and then sample from this copula many times.
The result is shown in Figure 3.1. We can see a clear divide between regions
into which the probabilities are spread by extending random vectors. In the case
of discrete margins, we can see that the divide is along value 0.75 for both axes
since in both cases it holds P (X ≤ 0) = P (Y ≤ 0) = 0.75. These lines divide the
unit square into four cells, with the lowest density being in cells corresponding to
observations (0, 1) and (1, 0). It is worth noting that the size of the region and
the associated probability does not necessarily mean high density, as shown in
the left-hand side plot. In the right-hand side plot, we can see only one dividing
line at 0.3 of the discrete first margin. In this plot, we can nicely see how the
probability is evenly spread across discrete margins.

Observing the natural structure that discrete extensions impose on extension
copulas, we can see why it is such a natural choice for extending the algorithm
developed by Kaut [2014]. The splitting of unit squares into S×S grid for copula
samples, as described on Figure 2.1, relates nicely to the grid-like structure that
discrete extensions impose on extension copula, although the imposed grid is not
necessarily equally spaced. Therefore, alternative definitions of copula samples
are possible to reflect the possibly unequally spaced grids, an idea we shall pursue
in our future work.

3.3 Generation of copula samples
The idea is relatively simple. In Line 4 of Algorithm 1, we replace copulas Ck

of margin pairs (Xj, Xm), j < m, with their extension copula Ck∗. For clarity, let
us rephrase Theorem 1.6 for the bivariate case.

Theorem 3.1. Take X and Y random variables and their copula C satisfying
Sklar’s theorem. Let C∗ be extension copula of random vector (X, Y). Fix u, v ∈
[0, 1], then if u ∈ Ran FX and v ∈ Ran FY we have C∗(u, v) = C(u, v). Otherwise,
there are the following options

1. X and Y are continuous, then trivially C∗(u, v) = C(u, v).

27

2. X is continuous and Y discrete. Then if v ̸∈ Ran FY we have

C∗(u, v) = v − v−
Y

v+
Y − v−

Y

C(u, v+
Y) + v+

Y − v

v+
Y − v−

Y

C(u, v−
Y). (3.2)

3. X is discrete and Y continuous. The extension copula is similar to the
previous case, but the roles of X and Y are switched. In other words, when
u ̸∈ Ran FX then

C∗(u, v) = u− u−
X

u+
X − u−

X

C(u+
X , v) + u+

X − u

u+
X − u−

X

C(u−
X , v). (3.3)

4. Both X and Y are discrete. In this case when u ̸∈ Ran FX and v ̸∈ Ran FY ,
the extension copula has the most complicated, but still manageable form

C∗(u, v) = u− u−
X

u+
X − u−

X

v − v−
Y

v+
Y − v−

Y

C(u+
X , v+

Y) + u− u−
X

u+
X − u−

X

v+
Y − v

v+
Y − v−

Y

C(u+
X , v−

Y)+

u+
X − u

u+
X − u−

X

v − v−
Y

v+
Y − v−

Y

C(u−
X , v+

Y) + u+
X − u

u+
X − u−

X

v+
Y − v

v+
Y − v−

Y

C(u−
X , v−

Y).

Cases where u ∈ Ran FX and v ̸∈ Ran FY , or u ̸∈ Ran FX and v ∈ Ran FY

correspond to (3.2) and (3.3), respectively.

Proof. Results are just special cases of Theorem 1.6.

If the exact marginal distributions and values of copula C at grid points
Ran FX ×Ran FY are known, then the copula C∗ can be computed exactly using
this theorem. In this case, the types of X and Y can be determined easily and
the form of extension is chosen accordingly.

Whenever we deal with historical data, the exact calculation of C∗ is not possi-
ble and it is necessary to resort to estimation. The simplest approach is probably
using empirical joint distribution function and empirical marginal distribution
and quantile functions. We described this approach in Section 1.3.1. The types
of X and Y could be either specified by the user or automatically inferred from
the historical data. However, this may be prone to error.

Although the algorithm theoretically replaces discrete margins by their ex-
tensions, actual randomization is not necessary, meaning that the algorithm does
not transform the discrete values x into x + u− 1, where u is sampled from some
extension distribution. In reality, only the extended distribution and quantile
functions are used for deriving the extension copula, and in the following section,
we shall use them for the transformation of copula samples.

3.4 Discrete transformation of copula samples
Transformations mentioned in Section 2.3 work well for continuous random

variables. There is no reason to discuss this case further. Discrete random vari-
ables, however, are a little bit trickier. To illustrate issues that arise with trans-
formation, let X be a discrete random variable and X∗ = X +U−1 its extension.
Assume that we have obtained copula sample {(r1

s , . . . , rn
s) : s ∈ {1, . . . , S}} run-

ning the extended version of the Algorithm 1 and that X is i-th margin of input

28

random vector. Recall that the algorithm replaces discrete margins with their
extensions. As we have seen earlier, these ranks naturally form regions[︄

F −1
X∗

(︄
ri

s − 1
S

)︄
, F −1

X∗

(︄
ri

s

S

)︄]︄
. (3.4)

Suppose we want to investigate the probability that X∗ lies in this region. Exten-
sion X∗ is defined using underlying discrete random variable X. As a consequence,
the probability that X∗ lies in the region (3.4) is influenced by the distribution of
X. The following theorem identifies realizations of X contributing to this proba-
bility. These realizations could be interpreted as sensible choices into which ranks
ri

s can be transformed.
Theorem 3.2. Let LX be a function defined as

LX(u) =

⎧⎪⎪⎨⎪⎪⎩
0 u = 0,

F −1
X (u) + 1[u ∈ Ran FX] u ∈ (0, 1),

sup(supp X) u = 1.

Then only for the realizations n ∈ supp X fulfilling

LX

(︄
ri

s − 1
S

)︄
≤ n ≤ F −1

X

(︄
ri

s

S

)︄
(3.5)

it holds
P

(︄
F −1

X∗

(︄
ri

s − 1
S

)︄
≤ X∗ ≤ F −1

X∗

(︄
ri

s

S

)︄⃓⃓⃓⃓
⃓X = n

)︄
> 0.

Proof. Remembering X∗ = X + U − 1 and U is independent of X, we may write

P

(︄
F −1

X∗

(︄
ri

s − 1
S

)︄
≤ X∗ ≤ F −1

X∗

(︄
ri

s

S

)︄⃓⃓⃓⃓
⃓X = n

)︄
=

P

(︄
F −1

X∗

(︄
ri

s − 1
S

)︄
≤ X + U − 1 ≤ F −1

X∗

(︄
ri

s

S

)︄⃓⃓⃓⃓
⃓X = n

)︄
=

P

(︄
1− n + F −1

X∗

(︄
ri

s − 1
S

)︄
≤ U ≤ 1− n + F −1

X∗

(︄
ri

s

S

)︄)︄
. (3.6)

It suffices to decide under which conditions the derived probability for U is posi-
tive. If the lower bound is higher than or equal to one, the corresponding probabil-
ity is zero. Hence the n must satisfy F −1

X∗

(︂
ri

s−1
S

)︂
< n. Because n ∈ supp X ⊆ N0,

this is equivalent to

n ≥ LX

(︄
ri

s − 1
S

)︄
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 ri

s = 1,

F −1
X

(︂
ri

s−1
S

)︂
+ 1 ri

s−1
S
∈ Ran FX , ri

s ̸= 1,⌈︂
F −1

X∗

(︂
ri

s−1
S

)︂⌉︂
= F −1

X

(︂
ri

s−1
S

)︂
ri

s−1
S
̸∈ Ran FX , ri

s ̸= 1.

due to Theorem 1.3.
Using similar arguments, if the upper bound in (3.6) is non-positive, the

probability is also zero, obtaining the necessary condition for n that 1+F −1
X∗

(︂
ri

s

S

)︂
>

n, which in turn using Theorem 1.3 yields

n ≤

⎧⎨⎩F −1
X∗

(︂
ri

s

S

)︂
= F −1

X

(︂
ri

s

S

)︂
ri

s

S
∈ Ran FX ,⌊︂

F −1
X∗

(︂
ri

s

S

)︂
+ 1

⌋︂
= F −1

X

(︂
ri

s

S

)︂
ri

s

S
̸∈ Ran FX .

29

As a final piece of observation, notice that the size of the interval in (3.6) in
which U is contained is positive. This is provided by Theorem 1.3 because the
extended quantile function is increasing on (0, 1] and as consequence

F −1
X∗

(︄
ri

s − 1
S

)︄
< F −1

X∗

(︄
ri

s

S

)︄
,

meaning that the probability is positive for every realization satisfying the derived
bounds.

The region (3.5) is always non-empty, but it can also contain multiple ele-
ments. Consequently, there are multiple sensible choices of realizations n into
which transform copula sample ranks. Problems occur when the number of pos-
sible realizations is large or infinite. However, the only practical limit is if we are
able to iterate over every realization in a reasonable time. On a standard CPU,
millions or even billions of iterations can be performed in a reasonable time. For
our purposes, it suffices to define an arbitrary threshold, million for example,
above which we consider a number of realizations large and below which we con-
sider this number reasonable. We cover how to address these cases in separate
paragraphs.

3.4.1 Case of a reasonable number of realizations
We identify two possible approaches to tackle this case. First is to transform

ranks ri
s into a realization of X that maximizes contribution to

P

(︄
LX

(︄
ri

s − 1
S

)︄
≤ X ≤ F −1

X

(︄
ri

s

S

)︄)︄
,

and the second case is similar, except we work with extension X∗ and we select
realization of X with the greatest contribution to

P

(︄
F −1

X∗

(︄
ri

s − 1
S

)︄
≤ X∗ ≤ F −1

X∗

(︄
ri

s

S

)︄)︄
. (3.7)

The former case is the easier one since according to Theorem 3.2 it translates to
task

max
n∈N0

P (X = n)

s.t. LX

(︄
ri

s − 1
S

)︄
≤ n ≤ F −1

X

(︄
ri

s

S

)︄
,

(3.8)

which could be easily solved by iterating over all feasible solutions. This is possible
due to our assumptions.

Concerning the second case, expression (3.7) could be rewritten using the
familiar law of total probability and independence of U and X to

∑︂
n∈supp X

P

(︄
F −1

X∗

(︄
ri

s − 1
S

)︄
≤ X + U − 1 ≤ F −1

X∗

(︄
ri

s

S

)︄⃓⃓⃓⃓
⃓X = n

)︄
· P (X = n) =

∑︂
n∈supp X

P

(︄
1− n + F −1

X∗

(︄
ri

s − 1
S

)︄
≤ U ≤ 1− n + F −1

X∗

(︄
ri

s

S

)︄)︄
· P (X = n).

30

Summands can be easily computed using the distribution function FU . Utilizing
Theorem 3.2, we can transform ranks ri

s into the solution of the problem

max
n∈N0

P

(︄
1− n + F −1

X∗

(︄
ri

s − 1
S

)︄
≤ U ≤ 1− n + F −1

X∗

(︄
ri

s

S

)︄)︄
· P (X = n)

s.t. LX

(︄
ri

s − 1
S

)︄
≤ n ≤ F −1

X

(︄
ri

s

S

)︄
.

(3.9)

3.4.2 Case of a large or infinite number of realizations
We start by pointing out that if the number of realizations is infinite, there is

only one region in which there is potentially an infinite number of choices and this
happens at the tail of a discrete distribution. Such discrete distributions usually
have some structure that could be exploited. For example, probabilities of events
in the tail could be monotonously decreasing, making the selection according to
the previous section possible. If the number of realizations outside the tail is
reasonable in the sense we defined earlier, we can use the approaches described
in the previous section.

Unfortunately, in the case of general discrete distribution, we cannot exploit
any such property. When this happens, we believe the safest approach would be
to use conditional median or expectation of X on region defined by (3.5). Written
down in mathematical notation, it is possible to choose from

1. med
(︂
X
⃓⃓⃓
LX

(︂
ri

s−1
S

)︂
≤ X ≤ F −1

X

(︂
ri

s

S

)︂)︂
,

2. E
[︂
X
⃓⃓⃓
LX

(︂
ri

s−1
S

)︂
≤ X ≤ F −1

X

(︂
ri

s

S

)︂]︂
.

Conditional expectation can be non-integral and thus would have to be rounded,
or left unrounded if relaxation to real numbers is not an issue. However, calcu-
lating the conditional expectation can be quite difficult. In some rare cases, the
conditional expectation might be infinite. Because of this difficulty, we believe
the conditional median is the better option.

3.4.3 Concluding remarks
Up until now, we have worked with general extension U . We have shown

previously in Theorem 1.6 that the extension copula does not depend on exten-
sion types. However, if we decide to use approach (3.9), we need to choose the
distribution of U . We see no reason to select distribution other than uniform on
[0, 1]. Referring to the previous example, choosing another distribution would
mean that we assign greater weight to some portions of the transformation re-
gion (3.4). This contradicts the principle of extension copula which spreads the
probability associated with each realization evenly.

If the number of realizations is reasonable, the size of the region (3.4) con-
verges to zero as S →∞. As a consequence, number of realizations which satisfy
condition (3.5) is reduced to one for large enough S. Therefore the methods (3.8)
and (3.9) are almost equivalent for sufficiently large S.

Where we see the potential difference is when S is small. Imagine, for example,
that after evaluating bounds of (3.4) we arrive at an interval [1.2, 2.9]. Informally,

31

this would mean that we used 80% and 10% of probability associated with 2 and
3, respectively, to construct a scenario that is either 2 or 3. Yet, when using
approach (3.8), realization 3 could still be selected if its probability is larger than
that of 2, even if the difference in probabilities is small. The second suggested
approach (3.9) takes into consideration the proportions of probabilities used. It
weighs the probability of each realization with the proportion used. This leads
us to think that this approach can perform slightly better for smaller S, although
a computational study would have to be done to support this claim. Therefore,
we opt for the approach (3.9) in our implementation of the algorithm.

We added discussion about a large or infinite number of realizations mainly
due to completeness reasons. In reality, we expect these cases to be quite rare.
There are basically two options. Either the distribution is entered exactly into
the algorithm, or the historical data is used. If historical data is used, empirical
distribution and quantile functions are used and thus, each realization would
have to be accompanied by at least one data point which contains it. Hence,
we expect the case of a large amount of realizations to be rare. Even so, the
conditional median approach can be used without problem. An example of the use
of exact distribution could be when we want to estimate the parameter of Poisson
distribution from the historical data of a number of events, and then use a Poisson
distribution with the estimated parameter for scenario generation. The proposed
algorithm allows this option and described approaches for the transformation
of copula samples could be used. However, it is debatable if there is a benefit
to modeling such distributions with a large or infinite number of realizations as
discrete and not opting for relaxation to real numbers instead.

32

4. Case study

4.1 Methodology
To the extent of our knowledge, there are no other easy-to-use distribution-

oriented methods for scenario generation for discrete data other than sampling.
Therefore we aim to compare the developed method with sampling and one
problem-oriented method. We include the problem-oriented method in our anal-
ysis to see how the developed method compares to some problem-oriented ap-
proaches and if it can reach the same quality. Comparison will be performed
using metrics and visual assessment described in the following section.

4.1.1 Quality measures of scenario generation methods
The general approach we will follow is to generate several scenario sets of the

same size using different runs of the scenario generation method. Then, several
metrics will be defined to assess the quality of the scenario generation method.
Some methods are fundamentally random, a typical example being sampling. In
such cases, different runs of scenario generation method give different scenario
sets. However, some methods contain little to no randomness. The method
we have described and expanded in previous chapters has this property. Each
time we run these methods for a given number of scenarios, we obtain the same
or very similar scenario sets, making evaluation of such sets difficult, since any
defined metric will return the same or similar values for each generated scenario
set. To resolve this issue, we adopted the approach to split data into separate
folds of equal size, and then run the scenario generation method on each of these
folds. This ensures that variability is inserted into generated scenario sets, making
metric evaluation more sensible.

We define several metrics and one visual assessment to judge the quality of
scenario generation methods. We cover each separately in each paragraph. But
firstly let us introduce some notation.

Notation. Let f be an objective function and by f(x, τ) define evaluation
of solution x using objective f and scenario set τ. Our general setting is then
maxx∈M f(x, τ) for some set of feasible solutions M. Usually, the set of feasible
solutions is influenced by the choice of scenario set. However, very often violations
of the constraints are transferred to the objective function using penalization. For
our purposes, it suffices to assume that the set of feasible solutions is the same
regardless of the chosen scenario set.

In theory, we are trying to capture the “true” distribution of randomness
using some scenario set τ . In practice, this distribution is rarely known and we
can only approximate it, for example by using historical data. For our purposes,
we assume that this “true” distribution is captured by a scenario set η, and in the
context of this case study, it means exclusively all generated random data. We
refer to f(x, η) as out-of-sample evaluation and to f(x, τ) as in-sample evaluation
where τ is a generated scenario set which is supposed to approximate η.

33

For each number of scenarios from one to N , we run the scenario generation
method K-times to obtain scenario sets either by using different randomization
in each run or by splitting data into K folds. Collect these sets into sequence
{Ti}N

i=1, i.e. each Ti contains K scenario sets of size i. Some computational studies
only focus on properties of scenario sets at “true” optimal solution, i.e. solution
to problem maxx∈M f(x, η). However, such problems are usually unsolvable. In-
stead, heuristic solutions might be generated to attempt to solve this problem.
For this reason, we put emphasis on assessing the quality of scenario generation
methods using a collection of heuristic solutions X ⊆M. Such an approach was
advocated, for example, by Prochazka and Wallace [2020].

In-sample stability. A reasonable scenario generation method should create
scenario sets that provide similar in-sample evaluations, regardless of individual
runs. There are several options to measure the in-sample stability of scenario
sets. Sensible choices are variance, MSE, or RMSE. We use the maximum rela-
tive difference between the largest and lowest evaluations, averaged on a pool of
solutions

STn = 1
|X |

∑︂
x∈X

maxτ∈Tn f(x, τ)−minτ∈Tn f(x, τ)
minτ∈Tn f(x, τ) .

A similar measure appeared in Zhang et al. [2021], but we use different method-
ology to construct sets Tn and we focus also on heuristic solutions.

Out-of-sample evaluation gap. If approximation of the “true” distribution
is reasonable using generated scenario set τ , it should hold f(x, τ) ≃ f(x, η) for
a wide variety of solutions x ∈ X . To measure the discrepancy between those
evaluations, we use metric

EGn = 1
|X |

∑︂
x∈X

⌜⃓⃓⃓
⎷ 1

K

∑︂
τ∈Tn

(︄
f(x, τ)− f(x, η)

f(x, η)

)︄2

.

It is the root square error of relative differences between in-sample and out-of-
sample evaluations, averaged on a pool of heuristic solutions X . Convergence
of metric to zero for n → ∞ implies consistency and unbiasedness of scenario
generation method. In this context, the metric incorporates bias and consistency.

Optimality gap. If the size of the scenario set is reasonable, it is possible
to solve problems maxx∈M f(x, τ), τ ∈ Tn. Denote optimal solutions to these
problems x∗

τ and denote x∗ “true” optimal solution to maxx∈M f(x, η). Assuming
the scenario sets are constructed well, out-of-sample evaluations should be similar
for both solutions, i.e. f(x∗

τ , η) ≃ f(x∗, η). We can measure this gap using

OGn = 1
K

∑︂
τ∈Tn

f(x∗, η)− f(x∗
τ , η)

f(x∗
τ , η) .

This measure implicitly assumes that the optimal solution x∗ can be found. In
practical applications, this is not usually the case, otherwise, scenario generation
would not be necessary. However, we construct the case study such that it can be
found, as this measure provides important insight into the behaviour of a scenario
generation method.

34

Ranking and visual assessment. Suppose we have two solutions x, y ∈ X
satisfying relationship f(x, η) ≥ f(y, η). Reasonable scenario set τ should preserve
this ranking as many times as possible. In other words, we want f(x, τ) ≥ f(y, τ)
to be satisfied for as many pairs (x, y) satisfying f(x, η) ≥ f(y, η) as possible.

We follow the terminology used in Prochazka and Wallace [2020]. Let X con-
tain M ∈ N solutions. We rank elements of X by their out-of-sample evaluation
f(x(1), η) ≥ . . . ≥ f(x(M), η), assuming X = {x(1), . . . , x(M)}. We plot these out-
of-sample evaluations in decreasing order. Then, a scenario set τ is produced, and
in-sample evaluations f(x(i), τ), i = 1, . . . , M, are plotted in the same order as for
out-of-sample evaluations. We expect following to happen if τ is constructed well

1. In-sample evaluations f(x(i), τ) will form a generally decreasing sequence
with few breaks of monotony.

2. If monotony is broken for pair x(i) and x(i+1), difference in their in-sample
evaluations is not big. Equivalently, difference f(x(i+1), τ) − f(x(i), τ) is
small.

3. In-sample evaluations should approximate well out-of-sample evaluations.
This could be written as f(x(i), τ) ≃ f(x(i), η).

In theory, the last point is unnecessary if the ranking is perfect. This is because
the optimal solution to task maxx∈M f(x, τ) would also be the optimal solution
to maxx∈M f(x, η). Both problems would differ just by monotonic transformation
and the “true” objective value could be obtained by out-of-sample evaluation.
Therefore we also compute Kendall’s rank correlation coefficient, described below
the Definition 1.4, between in-sample and out-of-sample evaluations to assess how
the constructed scenario sets preserve ranking. Kendall’s τ focuses purely on the
order of the two sequences without taking into consideration whether the values
are close to each other or not. Ideally, this coefficient should be close to one.

For a given number of scenarios, we average this coefficient across multiple
generated scenario sets using the methodology as in the previous paragraphs.
In other words, for a given number of scenarios n, we take scenario set τ ∈ Tn

and use it to compute in-sample evaluations on a pool of solutions X . Then
we compute Kendall’s rank correlation coefficients between these evaluations and
their associated out-of-sample values. Finally, we average these coefficients across
all possible scenario set choices τ ∈ Tn.

4.1.2 Problem-oriented method
We employ a problem-oriented method for scenario generation based on the

framework introduced by Prochazka and Wallace [2020]. The core idea is to find a
scenario set that minimizes the discrepancy between in-sample and out-of-sample
evaluations on a pool of heuristic solutions. This is achieved by defining a metric
that should somehow encompass various properties that are desired of scenario
sets, and then finding a scenario set that minimizes it. Prochazka and Wallace
[2020] proposed selection of scenario set by solving the problem

min
τ

L(τ ;X) :=
∑︂
x∈X

(α · 1[f(x, τ) > f(x, η)] + β · 1[f(x, τ) < f(x, η)])

· (f(x, τ)− f(x, η))2 (4.1)

35

The minimized metric is essentially a weighted squared error between in-sample
and out-of-sample evaluations. Weights assign different importance to in-sample
evaluations which exceed or under-estimate out-of-sample evaluations. It was
argued in Prochazka and Wallace [2020] that the former case is less desirable.
Therefore more weight should be put on in-sample evaluations exceeding out-of-
sample evaluations, manifesting in α > β. Argument is that over-estimation of
out-of-sample evaluation may lead to optimization algorithm selecting solution
which is in reality worse than it appears. This, of course, happens at the expense
of selecting a solution that performs better in terms of out-of-sample evaluation
but appears to be worse due to the imprecision of in-sample evaluation.

Unfortunately, the proposed metric is usually non-linear and non-convex, ren-
dering it more difficult to solve this problem exactly. In the aforementioned
article, analysis was performed on a variant of the stochastic knapsack problem,
and the problem was solved using sub-gradient descent. Sub-gradient methods
work reasonably well for continuous variables, but for discrete variables, the in-
tegrality gets lost. In contrast to Prochazka and Wallace [2020], we would like
to preserve the integrality of scenario variables. Therefore we solve (4.1) heuris-
tically using simulated annealing algorithm. We shall see that solving (4.1) with
simulated annealing yields sufficiently good results. We describe the simulated
annealing in Appendix A.

Although the simulated annealing approach to solving (4.1) is fundamentally
random, the problem itself is the same. We thus expect individual runs of the
algorithm to produce similar scenario sets for a fixed scenario set size. Therefore
we have decided to adopt the same strategy of separating data into folds of equal
size, an approach we have discussed in the previous section for the copula-based
method.

4.2 Stochastic knapsack
The Knapsack problem is a traditional optimization problem where we want

to maximize the value of items we put into a knapsack such that the overall weight
of items does not exceed its capacity. We can modify this problem to a stochastic
one by making the appearance of items and prices uncertain. However, we have
to decide which items to put into the knapsack before the information whether
the item appeared or not is revealed. This constitutes a two-stage stochastic
optimization problem. In the first stage, we decide in advance what items we try
to put into the knapsack, and in the second stage the items appear or not, and
the overall value of the knapsack is calculated. We assume that we have historical
data of appearances and prices at our disposal to base our decisions.

The analysis will be performed on two versions of stochastic knapsack. In the
first version we consider that only the appearances of items are uncertain and in
the second that also prices of those items are uncertain. These versions represent
problems with discrete and mixed random data, respectively.

4.2.1 Data generation
We generate data for item appearances as follows. Assume we want to generate

n-dimensional random vectors with binary margins. We start by generating a

36

(n + 1)× (n + 1) positive-semidefinite matrix C with values in the range [−1, 1]
and ones on the diagonal. Let sign(x) denote sign of x, i.e. sign(x) = 1 when
x ≥ 0, and sign(x) = −1 otherwise. Then for a given number of samples to
generate, we do the following

• Sample (y1, . . . , yn+1) from the normal distribution Nn+1(0, C).

• Set xi = sign(yi) · sign(yn+1) for i = 1, . . . , n.

• Return (x1, . . . , xn).

Let f(x) = 2
π

arcsin x. We state that the resulting vectors (x1, . . . , xn) are samples
from the distribution of binary vector X with matrix of second moments equal to
f(Cn), where Cn denotes matrix C with deleted (n + 1)-th row and column, and
the function f is applied element-wise. We define the matrix of second moments of
X as a matrix consisting of elements E XiXj where i, j = 1, . . . , n. Furthermore,
for margins of X we have E Xi = f(ci,n+1) = f(cn+1,i). We do not provide
proof for this assertion, but the main idea follows the proof of Theorem 3.1 from
Goemans and Williamson [1995].

The margins of the resulting vectors are either plus or minus one. We can
easily obtain margins that are either zero or one by transforming minus one to
zero. These binary vectors are used as the historical data for item appearance.
The matrix C was generated such that the samples from Nn+1(0, C) are strongly
correlated. As a consequence, the item appearances are also strongly correlated.
Therefore, the described procedure ensures there are strong associations between
item appearances.

Prices of items were generated in two steps. The first stage is to sample
N (µ, Σ) with a priori specified means µ and covariance matrix Σ. Denote Xi

binary random variable of appearance of item i: 1 if item appears and 0 otherwise.
In the second stage, we transform C into

C̃i = Ci +
∑︁n

i=1(1−Xi)Ci

|{1 ≤ i ≤ n : Xi = 0}| · 1[Xi = 1],

where n is the target number of items for which we generate data. The main
idea is to split evenly prices of items that did not appear amongst items that
appeared. This inserts dependence into the relationship between appearances
and prices and also creates distributions of prices that are more complicated and
multi-modal.

4.2.2 Problem formulation
To formulate an optimization problem, we define scenario set S and variables

qs
i as

qs
i =

⎧⎨⎩1 if item i appears in scenario s,

0 otherwise,

and cs
i which has interpretation of price of item i in scenario s, and probabilities

ps associated with each scenario. Assume that we obtain these scenarios S using
some scenario generation method. Furthermore, we define the parameters of the
stochastic knapsack problem in Table 4.1. The number of items was set to 20 and

37

Notation Meaning
K Total number of items
ci Price of item i
wi Weight of item i
W Capacity of knapsack
Q Penalty for exceeded weight

Table 4.1: Notation for stochastic knapsack problem. Prices ci are only defined
for the case of certain prices.

the capacity of the knapsack was set to half of the total weight of all the items.
We present the formulation of the stochastic knapsack problem with uncertain

appearances and fixed prices using first-stage binary decisions xi (decision to try
put item i into knapsack) as

max
xi, es

∑︂
s∈S

ps

(︄
K∑︂

i=1
cixiq

s
i −Qes

)︄

s.t.
K∑︂

i=1
wixiq

s
i ≤ W + es s ∈ S,

xi ∈ {0, 1} i = 1, . . . , K,

es ≥ 0 s ∈ S.

(4.2)

A similar problem appeared in Prochazka and Wallace [2020]. The objective func-
tion of this problem is just the expected value of the knapsack over constructed
scenarios, penalized if the weight of the knapsack is exceeded. The crucial term
in the objective is xiq

s
i . It is equal to one if we try to put item i into the knapsack

and it becomes available under scenario s ∈ S. If we do not try to put it into
the knapsack or we do and the item does not appear, this term is zero, meaning
that the associated value of the item is not added to the value of the knapsack.
The first constraint checks the overall weight of items in the knapsack in scenario
s ∈ S. Whenever the maximum weight of the knapsack is exceeded in some sce-
nario, the objective function is penalized using exceeded weight es and penalty
Q. Objective is maximized using binary values xi and weight excesses es.

Formulation of the problem with uncertain prices is similar to (4.2), except
we replace ci by their scenario values cs

i

max
xi, es

∑︂
s∈S

ps

(︄
K∑︂

i=1
cs

i xiq
s
i −Qes

)︄

s.t.
K∑︂

i=1
wixiq

s
i ≤ W + es s ∈ S,

xi ∈ {0, 1} i = 1, . . . , K,

es ≥ 0 s ∈ S.

Heuristic solutions generation. Looking at the problem formulations, we
see that the decision vector x is binary. This is also the case for generated data
of item appearances. We therefore opt for generating a pool of item appearance

38

data from the same distribution and using it as a source of heuristic solutions.
This pool is separate from the item appearance data we used to generate scenarios
from.

4.2.3 Problem-oriented scenario generation
Let us now discuss details of how we approach solving problem-oriented task

(4.1) for the case of stochastic knapsack. In problem formulations, qs
i and cs

i

are variables representing information about item appearances and prices, re-
spectively, and thus, the problem is solved with respect to these variables. We
symbolically write metric (4.1) as L(qs, cs;X), meaning that it depends on the
variables qs

i and cs
i .

The most important part of the simulated annealing algorithm is the pertur-
bation of solutions. We first fix the number of scenarios S and sample S-times
without replacement from generated input data. We use this sample as the initial
solution to the algorithm. Perturbation of solutions can be summarized into three
steps

1. For 1% of variables qs
i perform negation q̃s

i ← 1− qs
i .

2. For 1% of variables qs
i select another variable in the same scenario qs

j and
switch them: q̃s

i ← qs
j and q̃s

j ← qs
i .

3. In the case of uncertain prices, compute the gradient of L with respect to
cs

i using the updated appearances q̃s
i and perform the update

c̃s
i ← cs

i − α
∂L(q̃s, cs;X)

∂cs
i

.

for all i = 1, . . . , K and predefined step size α.

The new perturbed solution q̃s
i and c̃s

i is then evaluated and the algorithm pro-
ceeds as described Appendix A. We repeat this perturbation in every iteration
of the simulated annealing algorithm.

4.2.4 Analysis results
The analysis is performed based on metrics and evaluations of the quality

of scenario generation methods presented in Section 4.1.1. For each number of
scenarios, we used 10 generated scenario sets. For the sampling method, they
were sampled from the input data without replacement. For copula-based and
problem-oriented methods we used separation into 10 separate folds. Evaluation
of in-sample stability and out-of-sample evaluation gap was performed over a
pool of 100 heuristic solutions. For ranking and visual assessment, we used 500
heuristic solutions. The pool of heuristic solutions used for evaluation is different
from the one we used to generate problem-oriented scenarios.

Let us start analyzing the quality of the copula-based method with the assess-
ment of in-sample stability. The evolution of in-sample stability measure with
an increasing number of scenarios is presented in Figure 4.1. First of all, we
see that sampling significantly lags behind copula-based and problem-oriented

39

Figure 4.1: In-sample stability measure of sampling, copula-based and problem-
oriented methods with an increasing number of scenarios.

methods in terms of in-sample stability. The initial (in)stability of sampling is
much higher compared to other methods. Convergence of sampling’s in-sample
stability is slow and it takes tens of times many scenarios to achieve the same
in-sample stability which copula-based and problem-oriented methods achieved
in two scenarios. This holds for both versions of the stochastic knapsack prob-
lem. Copula-based and problem-oriented methods are comparable in terms of
this measure. They quickly converge to the in-sample stability of under 10%.
For the case of uncertain prices, the problem-oriented methods perform slightly
better, but the difference is negligible.

A similar story occurs when we shift our attention to the out-of-sample eval-
uation gap. See Figure 4.2. The same observations apply. Sampling performs

Figure 4.2: Comparison of sampling, copula-based and problem-oriented methods
on out-of-sample evaluation gap.

significantly worse than both other methods. Convergence of sampling is slow,
meanwhile, it takes just four scenarios to reach an out-of-sample evaluation gap
under 5% for copula-based and problem-oriented methods for both variants of the
stochastic knapsack problem. For the uncertain item appearances, copula-based

40

and problem-oriented methods perform virtually the same. If we add uncertain
prices, we can see that the problem-oriented method converges faster to zero,
although not significantly. Still, the copula-based method outperforms sampling
in this area as well.

The third metric we mentioned in Section 4.1.1 is the optimality gap. This
metric is shown in Figure 4.3. Here we see that the convergence of the optimality

Figure 4.3: Optimality gap evolution for stochastic knapsack problem.

gap for sampling is faster than in the previous cases. Despite this, it is not enough
to reach the quality of copula-based and problem-oriented methods on a small
number of scenarios. The difference between one and two scenarios is striking
for these methods. In essence, these results indicate that both versions of the
stochastic problem can be solved using only two scenarios, while expecting that
the computed solutions will be within 3% and 5% of the true optimal solution,
respectively, for both variants of the stochastic knapsack problem. The same
optimality gap is achieved for sampling at the sixth scenario in both variants of
the problem. After the second scenario, the copula-based and problem-oriented
methods perform almost the same. But for a low number of scenarios they both
outperform sampling. For a large number of scenarios, the differences between
all methods were mitigated.

For ranking assessment, we provide Figure 4.4 and Figure 4.5 which were cre-
ated according to the methodology specified in Section 4.1.1. We can see that the
in-sample evaluations for the sampling method are quite noisy. Ranking is hardly
preserved and in-sample evaluations do not approximate well out-of-sample eval-
uations. Even when the number of scenarios is increased, the improvement is slow
compared to copula-based and problem-oriented methods. On the other hand,
copula-based and problem-oriented methods provide very good out-of-sample ap-
proximations, and ranking is well preserved. The fit is reasonably good even for
five scenarios and it gets better with an increasing number of scenarios. We can
observe an almost perfect fit for 15 scenarios. We conclude that the copula-based
method outperforms sampling and is on par with the problem-oriented method.

We conclude the analysis by presenting Table 4.2 and Table 4.3 with the aver-
age Kendall rank correlation coefficients between the in-sample and out-of-sample
evaluations on both versions of the stochastic knapsack problem. The coefficients
were computed for all described methods and various numbers of scenarios. We

41

Figure 4.4: Visual assessment of ranking for the stochastic knapsack problem
with uncertain appearances and fixed prices.

Figure 4.5: Visual assessment of ranking for the stochastic knapsack problem
with uncertain appearances and prices.

42

Number of Scenarios Sampling Copula-based Problem-oriented
5 scenarios 0.729 0.935 0.931
10 scenarios 0.750 0.952 0.953
15 scenarios 0.835 0.969 0.959
20 scenarios 0.898 0.968 0.961
25 scenarios 0.901 0.972 0.962

Table 4.2: Average Kendall’s τ between in-sample and out-of-sample evaluations
on the stochastic knapsack problem with uncertain item appearances.

Number of Scenarios Sampling Copula-based Problem-oriented
5 scenarios 0.758 0.905 0.939
10 scenarios 0.817 0.945 0.954
15 scenarios 0.844 0.954 0.961
20 scenarios 0.896 0.960 0.958
25 scenarios 0.900 0.961 0.962

Table 4.3: Average Kendall’s τ between in-sample and out-of-sample evaluations
on the stochastic knapsack problem with uncertain item appearances and prices.

can immediately see that sampling has the lowest coefficient values. Additionally,
the sampling cannot reach the same coefficient values with 25 scenarios as the
copula-based and problem-oriented methods achieved with just five. In the case of
the stochastic knapsack version with uncertain item appearances and fixed prices,
the copula-based method slightly outperforms the problem-oriented method in
terms of this measure. Concerning the second version of the stochastic knapsack
problem, the problem-oriented method beats initially the copula-based method.
Nonetheless, the copula-based method improved with an increasing number of
scenarios until it eventually reached the quality of the problem-oriented method.

43

Conclusion
In this work, we have presented a new copula-based algorithm for scenario

generation for discrete random data. This algorithm is based on the method
introduced by Kaut [2014] which we have covered in a separate chapter while
providing alternative formulations and explanations. We have introduced the
fundamentals of copulas theory and extensions of discrete random variables. We
have also contributed by introducing an explicit formula for the extension copulas
of mixed random vectors, which we have subsequently proven in detail. Following
the description of the new algorithm, we added an analysis that showed that
our method significantly outperforms sampling in terms of all the evaluations of
quality we have discussed, namely in-sample stability, out-of-sample evaluation
gap, optimality gap, ranking, and visual assessment. Additionally, we have shown
that the method can attain similar quality as some problem-oriented approaches,
although we admit more effort could have been invested into the development
of the problem-oriented method described in Section 4.1.2. However, this just
proves our argument that problem-oriented methods require careful handling and
a significant amount of resources to develop compared to distribution-oriented
methods.

Based on our analysis, the proposed algorithm appears to be promising for
scenario generation whenever discrete data is involved. This method is easy to
use once the algorithm is implemented, as it only requires processed data at the
input, making it in our opinion particularly promising for wider use in stochastic
optimization. This is even more pronounced when we take into consideration the
lack of better distribution-oriented alternatives to sampling when discrete data is
involved. The algorithm is, of course, what we consider to be the most important
contribution in this work.

A drawback of the proposed method is the computational complexity. We
mentioned that running the algorithm takes O(n2S2) operations. Therefore, the
algorithm is intractable when large datasets with many variables are involved,
or when the number of scenarios to generate is too large. Reducing the com-
putational complexity is a potential path for our future research. Alternative
definitions of copula samples are possible. For example, ranks no longer have
to be equally spaced. We believe this approach can capture more properly the
structure that extensions impose on extension copula, potentially reducing the
time complexity and improving performance.

The analysis was performed on an artificially created problem. Although the
introduced method outperforms sampling on this problem, real-world problems
are usually more complex and more difficult to solve. Therefore we believe that
comparing the newly developed method on real-world problems with sampling
and other scenario generation methods would provide more insight into the prop-
erties and performance of this method. We aim to perform such analysis in the
future. Also, we strive to make the implementation of the algorithm publicly
available.

44

A. Simulated annealing algorithm
We present the simulated annealing algorithm in Algorithm 2. The goal is to

minimize objective function f , starting with some initial solution S. The initial
and final temperatures, the number of iterations, and the dead-end counter have
to be specified at the start of the algorithm.

Algorithm 2 Simulated annealing algorithm
Input: Objective function f , initial solution S, initial temperature T0, final

temperature T1, number of iterations I, dead-end counter threshold D0.
Output: Solution Ŝ minimizing f

Initialize: Ŝ ← S, Ĉ ← f(S), γ ← I

√︂
T1/T0, D ← 0

1: for i = 1, . . . , I do
2: S̃ ← perturbate(S), C̃ ← f(S̃), ∆C ← C̃ − Ĉ
3: if ∆C < 0 then
4: Ŝ ← S̃, Ĉ ← C̃, S ← S̃
5: else
6: T ← T0γ

i

7: if U < e−∆C/T then
8: S ← S̃
9: else

10: D ← D + 1
11: if D ≥ D0 then S ← Ŝ, D ← 0
12: end if
13: end if
14: end for
15: return Solution Ŝ

We initialize the algorithm by setting the best-known solution Ŝ to S, and
the best-known objective Ĉ to f(S). We also initialize the dead-end counter and
cooling parameter γ. In each iteration of the algorithm, we use the perturbation
function on the currently accepted solution S, obtaining the candidate solution
S̃ and its objective value C̃. At Line 3, if the candidate solution is better, we
update the current best-known solution and objective and also set the currently
accepted solution S to the best-known solution. If the candidate solution fails
to outperform the currently best-known solution, we might still accept it. To
decide whether we accept it, a random sample from the uniform distribution on
[0, 1] is performed. If the sampled value is lower than the computed acceptance
probability, we accept this solution. Otherwise, we increase the dead-end counter.
Finally, if the dead-end counter exceeds the default threshold D0, we set the cur-
rently accepted solution to the best-known solution. This prevents the algorithm
from spending too many iterations on exploring unperspective solutions.

The acceptance probability decreases geometrically, meaning that the proba-
bility of accepting worse solutions than the currently best-known is also decreasing
geometrically. Rather informally, in initial iterations, we search through a wide
variety of solutions by temporarily accepting and exploring worse solutions. In
the later stages of the algorithm, we focus on improving the best-known solution,
as the probability that a worse solution is accepted converges to zero.

45

Bibliography
Michael O. Ball, Charles J. Colbourn, and J. Scott Provan. Chapter 11 network

reliability. 7:673–762, 1995. ISSN 0927-0507.

Russell Bent and Pascal Van Hentenryck. Scenario-based planning for partially
dynamic vehicle routing with stochastic customers. Operations Research, 52:
977–987, 12 2004.

Michel Denuit and Philippe Lambert. Constraints on concordance measures in
bivariate discrete data. Journal of Multivariate Analysis, 93(1):40–57, 2005.
ISSN 0047-259X.

Fabrizio Durante, Juan Fernández-Sánchez, and Carlo Sempi. A topological proof
of sklar’s theorem. Applied Mathematics Letters, 26(9):945–948, 2013. ISSN
0893-9659.

Jamie Fairbrother, Amanda Turner, and Stein W Wallace. Scenario generation
for single-period portfolio selection problems with tail risk measures: coping
with high dimensions and integer variables. INFORMS Journal on Computing,
30(3):472–491, 2018.

Christian Genest and Johanna Nešlehová. A primer on copulas for count data.
ASTIN Bulletin: The Journal of the IAA, 37(2):475–515, 2007.

Christian Genest, Johanna G. Nešlehová, and Bruno Rémillard. On the empirical
multilinear copula process for count data. Bernoulli, 20(3), August 2014. ISSN
1350-7265.

Michel X Goemans and David P Williamson. Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming.
Journal of the ACM (JACM), 42(6):1115–1145, 1995.

Kjetil Høyland, Michal Kaut, and Stein W Wallace. A heuristic for moment-
matching scenario generation. Computational optimization and applications,
24:169–185, 2003.

Michal Kaut. A copula-based heuristic for scenario generation. Computational
Management Science, 11:503–516, 2014.

Mhamed Mesfioui and Abdelouahid Tajar. On the properties of some nonpara-
metric concordance measures in the discrete case. Nonparametric Statistics, 17
(5):541–554, 2005.

David S. Moore and M. C. Spruill. Unified large-sample theory of general chi-
squared statistics for tests of fit. The Annals of Statistics, 3(3):599–616, 1975.
ISSN 00905364.

Roger B Nelsen. An introduction to copulas. Springer, 2006.

Georg Ch. Pflug and Alois Pichler. A distance for multistage stochastic optimiza-
tion models. SIAM Journal on Optimization, 22(1):1–23, 2012.

46

Vit Prochazka and Stein W Wallace. Scenario tree construction driven by heuris-
tic solutions of the optimization problem. Computational Management Science,
17(2):277–307, 2020.

M. Sklar. Fonctions de répartition à N dimensions et leurs marges. Annales de
l’ISUP, VIII(3):229–231, 1959.

Dongqing Zhang, Stein W. Wallace, Zhaoxia Guo, Yucheng Dong, and Michal
Kaut. On scenario construction for stochastic shortest path problems in real
road networks. Transportation Research Part E: Logistics and Transportation
Review, 152:102410, 2021. ISSN 1366-5545.

47

	Introduction
	Preliminaries
	Copulas and discrete extensions
	Introduction to copulas
	Discrete extensions
	Extension copula
	Estimation of extension copula

	A copula-based scenario generation method
	Copula samples
	Generation of copula samples
	Heuristic for bivariate copula samples
	Description of the algorithm
	Additional comments

	Transformation of copula samples

	Extension of copula-based method for discrete data
	Necessity of extension for discrete data
	Intuition for choice of extension copula
	Generation of copula samples
	Discrete transformation of copula samples
	Case of a reasonable number of realizations
	Case of a large or infinite number of realizations
	Concluding remarks

	Case study
	Methodology
	Quality measures of scenario generation methods
	Problem-oriented method

	Stochastic knapsack
	Data generation
	Problem formulation
	Problem-oriented scenario generation
	Analysis results

	Conclusion
	Simulated annealing algorithm
	Bibliography

