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Introduction

Interest rates of all kinds are the basic and common concept of financial theory
and practice, important for understanding economical situations, expressing the
time value of money, and pricing. It is very advantageous to be able to know
how interest rates can behave in the future. For this purpose, there exist various
stochastic processes that describe the dynamics of an interest rate. Our aim is
to introduce, estimate, and simulate the Hull-White process. The calibration
process is not only about estimating the constant parameters but also about the
derivation of the form of a time-dependent parameter.

In the first chapter, we need to define the basic concepts of stochastic processes
and financial mathematics. The most important is to set tools for expressing the
Hull-White model. We need to rigorously introduce the definition of a stochastic
process with emphasis on the Wiener process. It is also necessary to define
stochastic integrals and recall Itô’s lemma for solving a stochastic differential
equation (SDE) because the Hull-White model is given by an SDE. We define
the term structure, which determines the form of interest rates. We introduce
the definitions of both spot and forward rates. Finally, we adopt the definitions
of interest rate financial derivatives used in calibration.

In the second chapter, we show the general model of an interest rate dy-
namics, then introduce the Hull-White model, and briefly discuss a few related
models. With the help of Itô’s lemma, we derive a solution to the Hull-White
model SDE. Most importantly, we derive the form of the time-dependent pa-
rameter θ(t) of the Hull-White model in detail. In the end of the chapter, we
discuss several approaches on how to calibrate our model. There are mainly
two possibilities: the forward-looking approach based on a calibration of mar-
ket prices on implied prices of interest rate derivatives from the model and the
backward-looking approach based on comparing characteristics of historical data
with theoretical characteristics.

In the last chapter, we perform our simulation study on the input data from
Česká spořitelna. First, we describe them and then introduce market and model
pricing formulas of caplets, caps, and swaptions for the forward-looking approach.
We briefly describe the theory on which optimization functions from used soft-
ware are based and verify assumptions for their usage. We comment and try
to interpret the results of all calibration procedures. After that we simulate the
Hull-White model for each possibility of calibration to easily illustrate what such
results mean. To conclude, we recommend which procedures may be considered

3



as a preferable calibration and which may not be appropriate.
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Chapter 1

Basic theory

We introduce necessary definitions from the theory of stochastic processes con-
nected also with stochastic integrals and stochastic differential equations to work
with the Hull-White model in the first chapter. In the unified notation, we also
define elementary concepts from financial mathematics.

1.1 Stochastic processes

Firstly, we choose a common probability space and then define a stochastic
process as a set of random variables on the respective space according to Prášková
[2016].

Notation. The common probability space (Ω,F ,P) is as a trio of a set of ele-
mentary events Ω, a σ-algebra of subsets of Ω denoted by F and a measurable
function P : F → [0, 1] called probability.

Let (R,B) be a real state space with Borel σ-algebra R and T = [0, T ], T ≥ 0
be an index set representing time. A set of random variables {Xt, t ∈ [0, T ]} with
values in R is called a stochastic process.

We denote B[0, t] the Borel σ-algebra in the interval [0, t], t ∈ [0, T ]. The
notation I{y ∈ (y1, y2)} is used as an indicator that takes on 1 if y belongs to the
interval (y1, y2) and 0 otherwise.

Next, we need to introduce a filtration as a system of specific σ-algebras
to be able to define the measurability of a stochastic process with respect to this
system. In addition, we introduce the type of measurability called progressive.
These definitions and the following examples are taken from Karatzas and Shreve
[1991].

Definition 1 (Filtration). A filtration on a probability space (Ω,F ,P) is a non-
decreasing system {Ft, t ≥ 0} of σ - algebras of Ω such that Fs ⊂ Ft ⊂ F
∀t > s ≥ 0.

5



Definition 2 (Measurability). The stochastic process X = {Xt, t ∈ [0, T ]} is
called measurable if the mapping

(ω, t) → Xt(ω) : (Ω × [0, T ],F ⊗ B[0, T ]) → (R,B)

is measurable.

Definition 3 (Progressive measurability). The stochastic process
X = {Xt, t ∈ [0, T ]} is called Ft-progressively measurable if the mapping

(ω, s) → Xs(ω) : (Ω × [0, t],Ft ⊗ B[0, t]) → (R,B)

is measurable for every t ∈ [0, T ].

We show two basic examples of stochastic processes that are important for our
further work. First of them is the simple process defined on a division of a chosen
interval easily by suitable random variables and indicators that the particular
variable is in the respective subinterval of the division. The paths of such a process
are piecewise constant.
Example (Simple Process). Let F = {Ft, t ≥ 0} be a filtration and {0 = t0 <
< t1 < · · · < tn = T} be a division of an interval [0, T ]. Let (ξj, j = 0, . . . , n − 1 )
be a sequence of random variables such that ξj is a Ftj

-measurable random vari-
able for all j. The stochastic process G = (Gt, t ∈ [0, T ]) is called a simple
stochastic process in the interval [0, T ] if

Gt = ξ0I{t = 0} +
n−1∑︂
j=0

ξjI{t ∈ (tj, tj+1]}. (1.1)

We denote by L0(F , [0.T ]) (shortly L0) the set of all simple processes in the
interval [0, T ]. The second example is the Wiener process. The Wiener process
is important to define stochastic integrals and an SDE and is a special Gaussian
process defined as follows.
Example (Wiener Process). A stochastic process W = {Wt, t ∈ [0, T ]} on a prob-
ability space (Ω,F ,P) satisfying the following properties

W1 W0 = 0,

W2 for 0 ≤ s < t ≤ T the random variable Wt −Ws is Gaussian with zero mean
and variance t− s,

W3 for each 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4 the random variables Wt2 −Wt1 and Wt4 −Wt3

are independent,

W4 the paths are continuous for P-almost all ω ∈ Ω,

is called a Wiener process.
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Our next goal is to introduce the stochastic integral with respect to the Wiener
process. It is done by taking an L2 limit of a sequence of integrals of simple
processes. These are defined with the use of sums from the equation (1.1) with
increments of the Wiener process instead of the indicators. The following part is
taken from Øksendal [2003].

Definition 4 (Itô’s stochastic integral of a simple process). Let W = {Wt, t ∈ [0, T ]}
be the Wiener process and G = {Gt, t ∈ [0, T ]} be the simple process. The process

∫︂ t

0
GdW =

k−1∑︂
j=0

ξj(Wtj+1 −Wtj
) + ξk(Wt −Wtk

), t ∈ [0, T ], tk ≤ t < tk+1

is called Itô’s stochastic integral of a simple process G.

It is also necessary to define metrics that describe the limit behaviour of each
simple process from the sequence of stochastic integrals from Definition 4. For
this purpose, we need to describe a space of Ft-progressively measurable processes
where this limit behaviour works.

We set a space L2(Ft, [0.T ]) (shortly L2) as the set

{X = (Xt, t ∈ [0, T ]) : X is Ft progressively measurable,

E
∫︂ t

0
X2

s ds < ∞ ∀t ∈ [0, T ]}. (1.2)

Analogously, we denote the space J2 for only simple processes in L2.

Definition 5 (Metric l). Let X, Y ∈ L2. Then we define the metric l(X, Y ) by

l(X, Y ) = E
∫︂ T

0
(X − Y )2 ds.

It is important to note that the space J2 is dense in the space L2 which means
that ∀X ∈ L2 there exists a sequence {Gn}n∈N ⊂ J2 such that Gn

l→ X. Due
to this fact, we can give a meaning to the general Itô’s stochastic integral of every
process (not only simple) with respect to the Wiener process.

Definition 6 (Itô’s stochastic integral). Itô’s stochastic integral
∫︁
X dW of a pro-

cess X ∈ L2 is the L2 limit of a sequence of {
∫︁
Gn dW}n∈N where Gn ∈ J2 is such

a sequence of simple processes for which l(Gn, X) → 0 for n → ∞.

We introduce the general definition of an SDE and its solution. The Hull-
White model and its dynamic are then described by a concrete form of the linear
SDE for a process of interest rates. Then it is followed by examples of SDE such
as a linear SDE and a linear SDE in the narrow sense. This part is taken from
Panik [2017].

Definition 7 (SDE and its solution). The stochastic differential equation is
a stochastic differential of an unknown process X of the form

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, t ∈ (0, T ) (1.3)
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with an initial condition X0 where X0 is required to be a random variable inde-
pendent of an increment of the Wiener process Wt − W0 such as E [|X0|2] < ∞.
Then a solution to this SDE is an R-valued stochastic process X satisfying

Xt = X0 +
∫︂ t

0
b(s,Xs) ds+

∫︂ t

0
σ(s,Xs) dWs, t ∈ [0, T ],

where
∫︁ t

0 b(s,Xs) ds is understood in the Lebesgue sense P-a.s while
∫︁ t

0 σ(s,Xs) dWs

is an integral from Definition 6.

We also add a theorem about the conditions under which a solution to a gen-
eral SDE exists and is unique according to Panik [2017]. Later we show how it
translates to linear SDE’s.

Theorem 1 (Existence and uniqueness theorem for a general SDE). If the func-
tions b and σ from Definition 7 satisfy the uniform Lipschitz condition

|b(t, x) − b(t, y)| + |σ(t, x) − σ(t, y)| ≤ c1|x− y| ∀x, y

for some constant c1 and all t ∈ [0, T ] and satisfy also the linear growth condition

|b(t, x)|2 + |σ(t, x)|2 ≤ c2(1 + |x|2) ∀x

for some constant c2 and all t ∈ [0, T ], then there exists a (continuously adapted)
solution Xt of the equation (1.3) with the initial condition X0 and uniformly
bounded in the space of all real-valued processes X on the product space Ω× [0, T ].
Furthermore, if Xt and X̃ t are continuous and bounded solutions of the equation
(1.3) in the space described above, then

P
(︄

sup
0≤t≤T

|Xt − X̃ t| = 0
)︄

= 1

and thus the solution Xt is unique.

We present the following special examples of SDE because the Hull-White
model is described by these specific forms. This particular identification is very
useful for derivation purposes in our work.
Example (Linear SDE). Let the functions b and σ from Definition 7 be linear
of X on R × [0, T ], meaning that

b(t,Xt) = a(t) + A(t)Xt, t ∈ [0, T ], (1.4)
σ(t,Xt) = c(t) + C(t)Xt, t ∈ [0, T ], (1.5)

where a(t), A(t), c(t), C(t) are all mappings from [0, T ] to R. Then we define
a linear SDE

dXt = (a(t) + A(t)Xt)dt+ (c(t) + C(t)Xt)dWt, t ∈ [0, T ] (1.6)

with an initial condition X0.
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Example (SDE linear in the narrow sense). Let us have the linear SDE with the
formula (1.6) and let the function C(t) be set to 0 everywhere. We call the SDE
linear in the narrow sense if

dXt = (a(t) + A(t)Xt)dt+ c(t)dWt, t ∈ (0, T ). (1.7)

Specifically, if the functions a(t), A(t), c(t) and C(t) from equations (1.4) and
(1.5) are measurable and bounded on [0, T ] then the functions b and σ satisfy the
conditions of Theorem 1 and the solution exists. Furthermore, if X0 satisfies the
conditions from Definition 7, then the solution is continuous and unique over our
interval [0, T ]. In the next part of this section, we can declare famous Itô lemma
according to Friedman [2006] and Øksendal [2003].
Theorem 2 (Itô lemma). Let V be a function twice continuously differentiable
on [0, T ] ×R and assume that the process (Xt)t∈[0,T ] is given by the stochastic dif-
ferential (1.3), where b(t,Xt) and σ(t,Xt) are both an R - valued (Ft) - progressive
process that satisfies ∫︂ T

0
|b(t,Xt)| dt < ∞ P − a.s., (1.8)∫︂ T

0
|σ(t,Xt)|2 dt < ∞ P − a.s.

Then the process Yt = V (t,Xt) has a stochastic differential

dYt =
⎡⎣∂V
∂t

(t,Xt) + b(t,Xt)
∂V

∂x
(t,Xt) + 1

2σ(t,Xt)2∂
2V

∂x2 (t,Xt)
⎤⎦dt+

+ σ(t,Xt)
∂V

∂x
(t,Xt)dWt. (1.9)

Remark 1. We can see that the conditions of Itô’s lemma on Lebesgue integrability
for the linear SDE are satisfied, provided there exists solution of such an SDE
under assumptions of Theorem 1. This is true because we need measurable and
bounded processes b and σ according to their definition in equations (1.4) and
(1.5) for the existence of the solution. Hence, they are Lebesgue integrable over
a finite interval P-a.s.

In order to differentiate a stochastic Itô integral with respect to its upper
bound during later derivations, Theorem 3 can be useful. It is stated in Propo-
sition 1.3 in Hess [2023].
Theorem 3 (Stochastic Leibniz formula). Assume that the deterministic function
ψ : (0,∞) × (0,∞) → R is continuous in the first variable and continuously
differentiable in the second. Also suppose that for all t ∈ (0,∞) it holds∫︂ t

0

[︄
ψ2(s, t) +

(︄
∂ψ(s, t)
∂t

)︄2]︄
ds < ∞, t ≥ s ≥ 0. (1.10)

Then for all t ∈ (0,∞) we have

d

⎛⎝∫︂ t

0
ψ(s, t)dWs

⎞⎠ =
⎛⎝∫︂ t

0

∂ψ(s, t)
∂t

dWs

⎞⎠+ ψ(t, t)dWt, (1.11)

where d denotes the stochastic differential from Definition 7.
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1.2 Financial Mathematics

In this section, we introduce some basic definitions from the point of view
of financial mathematics. While doing so, we aim to respect the notation from the
previous section. These definitions are taken from Brigo and Mercurio [2006]. We
introduce the first two to explain the pricing mechanism of financial derivatives
used in our simulation study. We start with a definition of a zero-coupon bond
which we use as a numeraire (any positive non-dividend-paying asset).

Definition 8 (Zero-coupon bond). A T-maturity zero-coupon bond is a contract
that guarantees its holder the payment of one unit of currency at time T , with-
out intermediate payments. The contract value at time t < T is denoted by P (t, T )
and, therefore, P (T, T ) = 1 for all T .

The basic concepts for financial mathematics are spot and forward interest
rates. For creation of a yield curve in a pricing mechanism for our purpose
of the estimate of the Hull-White model and for our data, we use continuously
compounded spot interest rate and then we define yield curve through it.

Definition 9 (Continuously compounded spot interest rate). The continuously
compounded spot interest rate prevailing at time t for the maturity T is denoted
by R(t, T ) and it is the constant rate at which an investment of P (t, T ) units
of currency at time t accrues continuously to yield a unit amount of currency
at maturity T . In formulas:

R(t, T ) = − logP (t, T )
T − t

. (1.12)

From Definition 9 it is clear that with the use of a continuously compounded
spot interest rate, we can express a zero-coupon bond at time t with maturity T
as

P (t, T ) = e−R(t,T )(T −t). (1.13)

Definition 10 (Instantaneous spot interest rate). The instantaneous spot interest
rate or the short rate rt is a limit of the spot rate

rt := lim
T →t+

R(t, T ).

Definition 11 (Term structure of interest rates). The term structure of interest
rates at time t (also called a zero-coupon curve or yield curve) is the graph of the
function

T ↦→ R(t, T ) for t < T.

The function in Definition 11 at time t = 0 is also called the initial term
structure of interest rates. We can see an example of this curve constructed from
our data from the Czech financial market in Figure (1.1). We present an inverted
yield curve that displays a higher yield for shorter maturities than for longer.
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This situation is not standart from the point of view of yield curves. Our yield
curve shows that in the Czech market it is expected that short-term PRIBOR
(Prague Interbank Offered Rate) based on the Czech National Bank repo rate
will decrease in future years.

Figure 1.1: Initial term structure (yield curve at time t = 0) from our study data
starting January 31, 2023 and ending on the last maturity date after 30 years.

All interest rate models considered in this work, mainly the Hull-White model,
belong to the special group of the so-called affine term structure models, which
possess an affine term structure of an interest rate.

Definition 12 (Affine term structure of an interest rate). We call the term struc-
ture of an interest rate affine if the countinuously compounded spot interest rate
R(t, T ) from Definition 11 is an affine function of a short rate rt

R(t, T ) = β(t, T ) + γ(t, T )rt,

where β and γ are deterministic functions of time and maturity.

We can use Definition 9 and the relationship between R(t, T ) and P (t, T )
in the equation (1.13) to show that this condition of the affine term structure is
satisfied when

P (t, T ) = e−(β(t,T )+γ(t,T )rt)(T −t)

and it equals
P (t, T ) = B(t, T )e−Γ(t,T )rt (1.14)

with

B(t, T ) = e−β(t,T )(T −t),

Γ(t, T ) = γ(t, T )(T − t).

The next two definitions are dealing with forward interest rates, which are
important for adopting the Hull-White model and its parameters and charac-
teristics. Specifically, an instantaneous forward rate also gives us the possibility
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to consider SDE describing dynamics of the Hull-White model and formulate
an exact solution to it.

Definition 13 (Simply compounded forward interest rate). The simply com-
pounded forward interest rate prevailing at time t for the expiry T > t and matu-
rity S > T is denoted by F (t;T, S) and is defined by

F (t;T, S) = 1
S − T

⎛⎝P (t, T )
P (t, S) − 1

⎞⎠. (1.15)

Definition 14 (Instantaneous forward interest rate). The instantaneous forward
interest rate prevailing at time t for the maturity T > t is denoted by f(t, T ) and
is defined as

f(t, T ) = lim
S→T +

F (t;T, S) = −∂ logP (t, T )
∂T

. (1.16)

For practical simulations, it is important to define some real products. The
purpose is that we estimate the parameters of the Hull-White model with a usage
of the calibration mechanism on specific financial derivatives. We use caps and
swaptions in our case.

Definition 15 (Cap). Let {T1, . . . , Tk} be a set of prespecified dates, τi be a tenor
(year fraction between the dates Ti−1 and Ti, i ∈ {2, . . . , k}), N be the nominal
value of a product, K be a fixed strike price (interest rate) and L(Ti−1, Ti) be
a floating LIBOR rate between the dates Ti−1 and Ti, i ∈ {2, . . . , k}. Then a cap
is an interest rate derivative contract that pays out

N τi (L(Ti−1, Ti) −K)+ (1.17)

at each of the prespecified dates (positive only if floating LIBOR exceeds the strike
price K).

Remark 2. An interest rate derivative at only one prespecified date is called
a caplet. For each caplet, time Ti−1 is called the fixing date and time Ti is called
the maturity date in the equation (1.17).
Example. Caps then consist of individual caplets with the same strike price. We
show an example of a payoff function based on the equation (1.17) of one caplet
with nominal value 1 currency unit, tenor 0,5 year and strike price 5% as the
function of an underlying interest rate z given by

pcaplet(r) = 1 ∗ 0,5 ∗ (r − 0,05, 0)+. (1.18)

We can see that caplet products serve as hedging against exceeded interest rates
above the strike price. For example, if we have a caplet product with the strike
price 5% and the floating rate exceeds this strike price, we get a payment from
the caplet to cover the higher interest rate than we want. That means we only
pay the interest rate in maximal value of the strike price.
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Figure 1.2: The payoff function for one caplet from the equation (1.18) for
z ∈ [0, 0,1].

Definition 16 (Swaption). Let {T1, . . . , Tk} be a set of the prespecified dates,
T1 is considered to be the expiry date. Tk − T1 be a tenor, τi is a year fraction
between the dates Ti−1 and Ti, i ∈ {2, . . . , k}, N be a nominal value of a product,
K be a fixed strike price (interest rate) and F (T1;Ti−1, Ti) be forward interest
rates from Definition (13), i ∈ {2, . . . , k}. Then a payer swaption is an option
on a payer interest rate swap which exchanges payments

N τi K

(paid) with
N τi F (T1;Ti−1, Ti)

(received) at each of the prespecified dates.

Remark 3. Swaption cannot be decomposed into smaller derivatives at each pre-
specified date, contrary to caps. Thus, we have to consider all exchange payments
for discounted payoff functions of the interest rate swap at the expiry date T1 and
of swaption at time t:

N D(t, T1)
(︄

k∑︂
i=2

P (T1, Tk) τi(F (T1;Ti−1, Ti) −K)
)︄+

,

where D(t, T1) is a discount factor for swaption from the expiry date to time t
and P (T1, Ti) is a discount factor for each exchange payment from time Ti to the
expiry date where the interest rate swap starts. Swaption pays out only if a value
of the interest rate swap is positive.
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Chapter 2

Hull-White model

In this chapter, we introduce a one-factor interest rate Hull-White model.
We start with the general version and then show a specific form of this model.
Our goal is to estimate parameters in the backward and forward sense, and we
introduce possible options to provide the final estimate.

2.1 General model

We start this chapter by introducing general dynamics for the instantaneous
short-term interest rate so as to be able to show examples and describe a model
which we are mainly interested in. This chapter is based on the knowledge from
[Brigo and Mercurio, 2006].

Definition 17 (General model for instantaneous short-term interest rate). A gen-
eral model for the dynamics of the instantaneous short-term interest rate rt under
the risk neutral measure is described by a linear SDE

drt = (θ(t) − α(t)rt))dt+ σ(t)dWt, (2.1)

where the interest rate rt is reverted to a long-term mean level θ
α

at a reversion
rate α, parameter σ determines the overall level of volatility, and Wt is the Wiener
process. Here, all parameters are allowed to be functions of time t.

Remark 4. An interesting concept is the mean reversion effect. This principle has
no general approach to how to define it. It is widely discussed by Exley et al.
[2004]. We know that the mean reversion effect is given by the long-term mean
level and the reversion rate, as is said in Definition 17. Alternatively, we may
rewrite (2.1) as follows

drt = α(t)
(︄
θ(t)
α(t) − rt

)︄
dt+ σ(t)dWt (2.2)

to have a better intuition for the mean reversion level θ(t)
α

. This formula gives us
a hint that the stochastic process for a short interest rate in this form is driftless
at the mean reversion level.

14



In our work, we use the definition of the mean reversion recommended in Exley
et al. [2004].

Definition 18 (Mean reversion effect). Let us take times t1 < t2 < t3 < t4.
A process Xt is mean reverting if its increments over disjoint intervals Xt2 −Xt1,
Xt4 −Xt3 are negatively correlated.

This definition works with our intuition that after an increase of an interest
rate above the long-term mean level it comes a decrease and vice versa. It is clear
that when the interest rate model is constructed as driftless at the mean reversion
level, the model has a negative drift above this level and it has a positive drift
below this level.

We explore a few models implied from the model given by the equation (2.1)
as examples, such as Vašíček, Hull-White, and Ho-Lee models. Later on, we
restrict our interest only to the Hull-White model.
Example (Vašíček model). The Vašíček model is the basic model for the short-
term interest rate rt with the mean reversion effect. It is described by the
Ohrnstein-Uhlenbeck process

drt = α(θ − rt)dt+ σdWt, (2.3)

where all parameters are positive constants and the interpretation of parameters
stays the same as in Definition 17. We can also see that this formula is given
exactly the same way as in the formula (2.2). It is constructed in the sense that
a constant parameter θ is the mean reversion level directly.
Example (Hull-White model). It is the direct extension of the Vašíček model
from the previous example with the mean level θ(t) as a function of time t given
by a process

drt = (θ(t) − αrt))dt+ σdWt. (2.4)

Example (Ho-Lee model). The Hull-White model from the equation (2.4) can also
be considered as an extension of the Ho-Lee model with an added mean reversion
effect. Therefore, the SDE for the Ho-Lee model is given by

drt = θ(t)dt+ σdWt (2.5)

with the mean reversion parameter α = 0 and θ(t) = ∂f(0,t)
∂t

+ σ2 t.

Those are three particular examples of the general dynamics model. As was
said earlier, we want to estimate parameters α and σ of the Hull-White model
from the equation (2.4). This model is very used and an important interest rate
model. Oppositely to the Vašíček model, the Hull-White and Ho-Lee models are
able to provide the exact fit of the initial term structure of interest rates from
Definition 11.

The exact fit provides a match of the initial term structure given by the
model and observed in the market including a perfect match between volatility
term structure. This is a certain advantage and leads to the creation of models
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such as the Hull-White and the Ho-Lee. The Hull-White model is also more
advantageous in comparison to the Ho-Lee model in the sense of preserving the
mean reversion effect.

Next, in our work, we prefer the Hull-White model over the general model
because all parameters as functions of time hide some practical disadvantages.
The easier model with fewer parameters (only one time-varying) is advantegous
than the general model with three time-varying parameters with respect to our
desirable feature of a possibility of the exact fit. Namely, it is important to also
fit volatility term structure and there are some less liquid, not relevant volatilities
for less traded maturities on a market on which the general model is sensitive.
Modelled rates may then be affected.

On the other hand, the model from the equation (2.1) enables rt to be negative
through the normal distribution given by the Wiener process, and it is the general
problem of this model. To ensure rt being only nonnegative, one has to try
different models, for example, the geometric Brownian motion based on lognormal
distribution.

The Vašíček model (2.3) is in the form of the linear SDE according to the
formula (1.7), hence we can try to express an analytical form of a solution to the
equation given by (2.3) as the short-term interest rate rt with the initial condition
r0 being a random variable r0 satisfying the conditions in Definition 7. We apply
Itô’s lemma from Theorem 2 on the transformation of rt in the form

V (t, rt) = rte
αt. (2.6)

Then, we can express a unique solution to the Vašíček model after integrating
the transformed differential from 0 to t, t ≥ 0:

rt = r0e
−αt + θ(1 − e−αt) + σ

∫︂ t

0
e−α(t−u)dWu.

The Hull-White model (2.4) is also written as the linear SDE. The way we
express a solution to this SDE is the same, through Itô’s lemma used on the
transformed differential (2.6), and with the same initial condition as in the case
of the Vašíček model. Based on our main interest in this model, we try to verify
assumptions of Itô’s lemma rigorously.

The transforming function in the equation (2.6) fulfills the assumption of The-
orem 2 about its continuous first and second derivatives on [0, T ]×R. In the sense
of Remark 1 we need to verify the measurability and boundedness of functions

a(t) = θ(t),
A(t) = α,

c(t) = σ.

We can immediately say that constant functions α and σ are measurable
and bounded, hence satisfying the integrability assumptions of the Itô’s lemma.
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The constant σ also satisfies the other assumption of progressivity of the process
σ(t,Xt). The conditions put on a process b(t,Xt) and a function θ(t) will be
discussed and verified later after the derivation of an analytical form of θ(t)
in the Hull-White in Section 2.2. After integrating the differential given by Itô’s
lemma, we get the solution

rt = r0e
−αt +

∫︂ t

0
θ(u)e−α(t−u)du+ σ

∫︂ t

0
e−α(t−u)dWu. (2.7)

Thanks to the Wiener process involved in the Itô integral in the solution (2.7),
the interest rate rt in the Hull-White model is normally distributed conditioned
on σ-algebra Fs with mean and variance

E [rt|F0] = r0e
−αt +

∫︂ t

0
θ(u)e−α(t−u)du, (2.8)

var[rt|F0] = σ2

2α(1 − e−αt). (2.9)

The structure of F0 is generated by the information about the interest rate rv

at time 0, which means that F0 is the σ-field σ{r0}.

2.2 Derivation of θ(t)

The advantage of the Hull-White model is that it can fit exactly the initial
term structure of interest rates. It means that this model can handle simula-
tions of interest rates better from an unbiased origin. We achieve this by setting
a specific form of the function θ(t).

Theorem 4 (θ(t) for the Hull-White model). The function θ(t) such that the
Hull-White model (2.4) can exactly fit the initial term structure of an interest
rate has the following form:

θ(t) = ∂f(0, t)
∂t

+ αf(0, t) + σ2

2α(1 − e−2αt), (2.10)

where f is given by Definition 14.

Corollary. With the formula for θ(t) given by Theorem 4, we can express rt

as a solution of the Hull-White model from the equation (2.7):

rt = rse
−α(t−s) + ω(t) − ω(s)e−α(t−s) + σ

∫︂ t

s
e−α(t−u)dWu,

where
ω(t) = f(0, t) + σ2

2α2 (1 − e−αt)2.

Remark 5. We need to set the functions B(t, T ) and Γ(t, T ) in the affine term
structure from the equation (1.14) for the Hull-White model because we take
advantage of the affine term structure in the proof of Theorem 4. According
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to Brigo and Mercurio [2006], those functions are given in the Hull-White model
by

Γ(t, T ) = 1
α

(︄
1 − e−α(T −t)

)︄
, (2.11)

logB(t, T ) = logP (0, T ) − logP (0, t) + Γ(t, T )f(0, t) − σ2

4α

(︄
1 − e−2αt

)︄
Γ(t, T )2.

(2.12)

Proof of Theorem 4. The derivation is based on Hull [2017a] and its technical
report Hull [2017b] and we comment and show each step S1 – S5 in a more
detailed way.

S1 We derive a differential dP (t, T ) using Itô’s lemma on transformed rt fol-
lowing the Hull-White model.

S2 We express a differential dF (t;T, S) in terms of the differential dP (t, T ) .

S3 We obtain an instantaneous spot rate rt by taking a limit of the spot rate
expressed by the forward rate.

S4 We derive θ(t) by differentiating rt with respect to t and modifying drt

in the form of the Hull-White model from the equation (2.4).

S5 We verify retrospectively the assumptions of Itô’s lemma on θ(t).

The first step is to establish an SDE for P (t, T ) under the risk-neutral measure
with a function u(t, T ) such as u(t, t) = 0 which will be explicitly delivered later.
The technical report Hull [2017b] proposes the normal choice of dP (t, T ) under
the risk-neutral measure with a return equal to the short rate rt:

dP (t, T ) = rt P (t, T )dt+ u(t, T )P (t, T )dWt, (2.13)

where rt follows the Hull-White model. We try to connect the form of the Hull-
White model from the equation (2.4) with the term structure of an interest rate
represented by the spot rate R(t, T ) in this derivation. Therefore, when we get
a short rate rt taking the limit of a spot rate, we can find a formula for θ(t) which
links the model with the term structure of an interest rate.

The dynamics from the equation (2.13) is implied by the affine term structure
in Definition 12 secured by the Hull-White model. Then we can use P (t, T )
in a form of the equation (1.14) and use Itô’s lemma on

V (t, rt) = P (t, T ) = eln B(t,T )−Γ(t,T )rt . (2.14)

It is important to realize what form the functions b(t, rt) and σ(t, rt) take
in Itô’s lemma. They are given by the stochastic process of rt (the Hull-White
model) in the equation (2.4) such that

b(t, rt) = θ(t) − αrt,

σ(t, rt) = σ.
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The verification of the assumptions on these two functions was already discussed
earlier during the derivation of the solution of the Hull-White SDE above the
equation (2.7)

We can show that the counterparts of the stochastic process generated by Itô’s
lemma there are given by

∂V

∂t
(t, rt) = P (t, T )

[︄
∂ lnB(t, T )

∂t
− ∂Γ(t, T )

∂t
rt

]︄
,

b(t, rt)
∂V

∂r
(t, rt) = −P (t, T )(θ(t) − αrt)Γ(t, T ),

1
2σ(t, rt)2∂

2V

∂r2 (t, rt) = 1
2P (t, T )σ2Γ(t, T )2,

σ(t, rt)
∂V

∂r
(t, rt) = −P (t, T )σΓ(t, T ).

By plugging this into (1.9) we get the SDE

dP (t, T ) = P (t, T )
⎡⎣(︄∂ lnB(t, T )

∂t
− ∂Γ(t, T )

∂t
rt − (θ(t) − αrt)Γ(t, T )+

+ 1
2σ

2Γ(t, T )2
)︄
dt− σΓ(t, T )dWt

⎤⎦. (2.15)

The function u(t, T ) is then easy to derive from (2.15). From a comparison
of the coefficients by dWt in equations (2.13) and (2.15) we can see that

u(t, T ) = −σΓ(t, T ) = −σ

α

(︄
1 − e−α(T −t)

)︄
, (2.16)

which satisfies the condition u(t, t) = 0.

We are unable to see without knowledge about the form of θ(t) that a drift
part of the equation (2.13) is given by the short rate rt itself. On the other hand,
we know that the Hull-White model is a generalization of the Vašíček model and
dP (t, T ) for these two models differs only in the stochastic term according to Hull
[2017a] and Hull [2017b]. The Vašíček model is also an affine term structure
model, therefore we can derive dP (t, T ) in the same way as in the case of the
Hull-White model using Itô’s lemma on a transformation (2.14) with the same
function Γ(t, T ) and different lnB(t, T ).

The reason why lnB(t, T ) is different in the Vašíček model is mainly given
by the fact that this model works on a different principle with respect to an initial
term structure and a mean reversion level is given by a constant parameter, not
a function. In the case of constant parameters, we can get rt P (t, T )dt in dP (t, T )
with some basic algebra from the equation (2.15). From that we finish step S1
and get for the Hull-White model

dP (t, T ) = rt P (t, T )dt− σΓ(t, T )P (t, T )dWt.
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Our next goal is to obtain the forward rate F (t;T, S), since we need to repre-
sent the spot rate R(t, T ) by the forward rate. It is possible to see from Definition
14 that we can work with a formula

F (t;T, S) = − logP (t, S) − logP (t, T )
S − T

, S > T, (2.17)

which is more advantageous than the formula from Definition 13. That is because
we easily create a differential for the forward rate and with the usage of Itô’s
lemma, we substitute for a differential of the logarithm of zero-coupon bond
value from the equation (2.13).

The differential for the forward rate is

dF (t;T, S) = d logP (t, T )
S − T

− d logP (t, S)
S − T

. (2.18)

We obtain differentials of logarithms of the zero-coupon bond value with ma-
turities S and T from Itô’s lemma used on V (t, P ) = logP , where P = P (t, T )
follows the process from the equation (2.13). We need to verify the assumptions
for the function V and

b(t, P ) = rt P,

σ(t, P ) = −σ

α

(︄
1 − e−α(T −t)

)︄
P (t, T ).

The transformation function V as a logarithmic function of P , P > 0, is twice
continuously differentiable on [0, T ] × (0,∞). Then according to Remark 1, it is
enough to show that the functions

A(t) = rt,

C(t) = −σ

α

(︄
1 − e−α(T −t)

)︄

from the linear SDE are measurable and bounded on [0, T ]. This is true because
the first one is the solution of the Hull-White model from the equation (2.7) and
the second one is an exponential function.

Then we can use Itô’s lemma and we get differentials of logarithms of zero-
coupon bond value with maturities S and T in the form

d logP (t, T ) =
⎛⎝rt − u(t, T )2

2

⎞⎠dt+ u(t, T )dWt,

d logP (t, S) =
⎛⎝rt − u(t, S)2

2

⎞⎠dt+ u(t, S)dWt.
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After substition, we complete Step S2 and get

dF (t;T, S) = 1
S − T

⎡⎣(rt − u(t, T )2

2 − rt + u(t, S)2

2 )dt+ (u(t, T ) − u(t, S))dWt

⎤⎦,
=
⎛⎝u(t, S)2 − u(t, T )2

2(S − T )

⎞⎠dt−

⎛⎝u(t, S) − u(t, T )
S − T

⎞⎠dWt.

Next, we define the zero-coupon bond return (yield) by the forward rate.
We rewrite formula (1.12) from Definition 9 with a use of the relation between
the zero-coupon bond value P (t, T ) and the forward rate in the equation (2.17)
for F (t, t, T ):

R(t, T ) = F (0; t, T ) +
∫︂ t

0
dF (τ ; t, T ).

We substitute for the differential from the equation (2.18) and we earn the
following formula

R(t, T ) = F (0; t, T ) +
∫︂ t

0

u(τ, T )2 − u(τ, t)2

2(T − t) dt−
∫︂ t

0

u(τ, T ) − u(τ, t)
T − t

dWt.

Now, by the definitions of rt, f(0, t) and the derivation, we take a limit

lim
T →t+

R(t, T ) = rt = f(0, t) +
∫︂ t

0

∂

∂t

u(τ, t)2

2 dτ −
∫︂ t

0

∂

∂t
u(τ, t)dWτ ,

= f(0, t) +
∫︂ t

0
u(τ, t)∂u(τ, t)

∂t
dτ −

∫︂ t

0

∂u(τ, t)
∂t

dWτ (2.19)

and get a solution to a stochastic process describing the Hull-White model. Step
S3 is thus completed.

By differentiating rt with respect to t, we reach the stochastic process and after
a substitution of u(t, T ) from the equation (2.16), we can find the formula for θ(t).
We need to verify that the first derivative of u(t, T ) with respect to the second
variable satisfies the assumption of Theorem 3. The function ∂u(t,T )

∂T
= ψ(t, T )

is a mapping ψ : (0,∞) × (0,∞) → R and is obviously continuous in the first
variable and continuously differentiable in the second as we can see below:

∂u(t, T )
∂T

= −σe−α(T −t), (2.20)

∂2u(t, T )
∂T 2 = σαe−α(T −t). (2.21)

Clearly, it also satisfies condition (1.10) for all T ∈ (0,∞) because
∫︂ T

0

⎡⎣σ2e−2α(T −τ) + σ2α2e−2α(T −τ)

⎤⎦dτ =

= (σ2 + σ2α2)e−2αT
∫︂ T

0
e−2α(T −τ)dτ
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and e−2α(T −τ) is integrable in the interval [0, T ].

Then we can use Theorem 3 to differentiate the Itô’s integral in the equation
(2.19). For the deterministic part, it is possible to use the deterministic Leibniz
rule. Then after differentiation, drt looks as

drt =
⎡⎣∂f(0, t)

∂t
+ u(t, t)∂u(τ, t)

∂t
|τ=t +

∫︂ t

0

[︄
∂

∂t
(u(τ, t)∂u(τ, t)

∂t
)
]︄
dτ−

−
∫︂ t

0

∂2u(τ, t)
∂t2

dWτ

⎤⎦dt−
[︄
∂u(τ, t)
∂t

|τ=t

]︄
dWt.

We can simplify the symbolic differentiation and use u(t, t) = 0, so that

drt =
[︄
∂f(0, t)
∂t

+
∫︂ t

0

[︄
u(τ, t)∂

2u(τ, t)
∂t2

+ ∂u(τ, t)
∂t

2]︄
dτ −

∫︂ t

0

∂2u(τ, t)
∂t2

dWτ

]︄
dt−

−
[︄
∂u(τ, t)
∂t

|τ=t

]︄
dWt. (2.22)

The equation (2.22) is prepared for the substitution of derivatives of u(t, T )
in equations (2.20) and (2.21) and then from the equation (2.22) we get the
following

drt =
⎡⎣∂f(0, t)

∂t
+
∫︂ t

0

[︂
−σ2(1 − e−α(t−τ))e−α(t−τ) + σ2e−2α(t−τ)

]︂
dτ−

−
∫︂ t

0

(︂
σαe−α(t−τ)

)︂
dWt

⎤⎦dt+ σdWt.

After simple integration, we have almost a required form of the Hull-White
model:

drt =
⎡⎣∂f(0, t)

∂t
+ σ2

α
(e−αt − e−2αt) − α

∫︂ t

0
σe−α(t−τ)dWt

⎤⎦dt+ σdWt. (2.23)

We can express
∫︁ t

0 σe
α(t−τ)dWt from the equation (2.19) after substituting for

function v and its derivative meaning that

−
∫︂ t

0
σeα(t−τ)dWt = f(0, t) +

∫︂ t

0

(︃
σ

α
(1 − e−α(t−τ))

)︃ (︂
σe−α(t−τ)

)︂
dτ − rt,

= f(0, t) + σ2

α2 (1 − e−αt) − σ2

2α2 (1 − e−2αt) − rt.

Using this expression in the equation (2.23) we get the following:

drt =
⎡⎣∂f(0, t)

∂t
+ αf(0, t) + σ2

2α(1 − e−2αt) − αrt

⎤⎦dt+ σdWt.
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From the comparison of our resulting Hull-White model and the Hull-White
model in the form from the equation (2.4) we get the formula for θ(t) from the
equation (2.10) and Step S5 is completed.

Now with the derived equation of the function θ(t), we can retrospectively
verify the assumptions of Itô’s lemma 2 used during the search for a solution
of the Hull-White SDE and also used in Step S1. We declared the verification
of the assumption on the transformation function V and the process σ(t,Xt),
respectively, the constant function σ above the equation of the solution of the
Hull-White model (2.7). It remains to verify the assumptions on the stochastic
process b(t,Xt) = θ(t) − αrt and the function θ(t) itself. The process b must be
R - valued (which holds true) and progressively measurable. The function θ(t)
need to be measurable (which holds true) and bounded.

We can see from the form of θ(t) −αr(t) that it is a progressively measurable
stochastic process. Now, it is necessary to verify the boundedness of the function
θ(t) from the equation (2.10). The boundedness of the first and second sum-
mands can be said through Definition 14 of the instantaneous forward interest
rate by P (t, T ) and the relation (1.13). Then we can express the first and second
summands as follows

∂f(0, t)
∂t

= t
∂2R(0, t)
∂t2

+ 2∂R(0, t)
∂t

,

αf(0, t) = αt
∂R(0, t)
∂t

+ αR(0, t).

The yield curve R(0, T) from our data in Figure (1.1) is constructed as a natural
cubic spline interpolation function. Spline interpolation is often used as a method
to give data points (knots) such that it yields an analytical functional form. For
the natural cubic spline holds that it is a bounded function on a bounded time
interval [0, T ] because it is assumed that the cubic spline is a cubic polynomial
in each interval between 2 knots and those polynomials are equal at each inner
knot up to the second derivative.

This also gives us a twice continuously differentiable function, except for time
0 and T , which is bounded. Composition of bounded functions on the bounded
time interval [0, T ] such as a linear function and, in this case, a partial derivative
of the first and second order leads to the fact that those summands are bounded.
We can easily see that the third summand in the equation (2.10) is also bounded
on that time interval.

In total, θ(t) is a composition of bounded functions, therefore, it is a bounded
function in the interval [0, T ] and fulfills the assumption of Itô’s lemma. Now, it
is shown that we can use Itô’s lemma to solve the Hull-White linear SDE.
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2.3 Parameter estimation of the Hull-White model

When we have the given formula for the Hull-White model and the derived
formula for the function θ(t) which depends on two unknown parameters α and
σ, we can start with a process of estimation of those parameters. After we
estimate the values of α and σ, the model is determined up to the given initial
term structure of the interest rates. We describe two approaches to parameter
estimation and later show them and their results on our data in Chapter 3.

2.3.1 Forward-looking approach

One of approaches is the forward-looking approach which uses prices of in-
terest rate derivatives (mostly caps/floors or swaptions) with respect to a future
maturity and paying date discounted to the present. We take advantage of the
market expectation about the future and estimate the parameters of the Hull-
White model accordingly. On the other hand, we know nothing about what
happened on the market historically. This subsection is based on the calibration
methods in Russo and Torri [2019] and Gurrieri et al. [2009].

Generally, a model calibration is a non-convex optimization problem when we
minimize an objective function D

arg min
x
D(p(x),pM ) (2.24)

dependent on the theoretical prices p and the market prices pM of the N in-
terest rate derivatives with respect to a vector of the parameters x = (α, σ)⊤.
We try to calibrate the theoretical price given by the Hull-White model to the
market expectation. It is clear that the function D should be based on some kind
of a difference of the prices p and pM .

The first of possible approaches is to calibrate both parameters simultaneously.
We give examples of the objective function D. We minimize a sum of squares
in principle in all 3 examples.
Example. A basic example of the function D is the sum of the distances between
the theoretical and market prices of the N interest rate derivatives. We do not
want to explore a sum of absolute positive distances, but only a sum of squares
of distances

D(p(x),pM ) =
N∑︂

i=1

(︄
pi(x) − pM

i

)︄2

. (2.25)

Example. A different method is to choose a relative difference of theoretical and
market prices of the N interest rate derivatives, and we use it inside a sum
of squares:

D(p(x),pM ) =
N∑︂

i=1

(︄
pi(x) − pM

i

pM
i

)︄2

. (2.26)
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Example. We can also modify the previous example taking a square root of the
equation (2.27):

D(p(x),pM ) =

⌜⃓⃓⎷ N∑︂
i=1

(︄
pi(x) − pM

i

pM
i

)︄2

. (2.27)

There is another possibility of how to estimate the Hull-White model using
swaptions. It consists of 2 steps. First, we calibrate α independently on the
volatility parameter by a minimization of difference of a market implied volatilities
for swaptions and approximative swap market model implied volatilities from
Definition 19. The definition is based on Brigo and Mercurio [2006]. Then in the
second step, we calibrate σ by minimizing the objective function D with a known
α.

Definition 19 (Swap market model). Let T1 be expiry time, {T2, . . . , Tk} be a set
of the prespecified payment dates and τi for i ∈ {2, . . . , k} be a tenor. Then a swap
market model (SMM) describing the dynamics of forward swap rates

S1,k(t) = P (t, T1) − P (t, Tk)∑︁k
i=2 τiP (t, Ti)

(2.28)

is given by an SDE
dS1,k(t) = σ1,k(t)S1,k(t)dW 1,k

t , (2.29)

where a deterministic function σ1,k(t) is an instantaneous percentage volatility
of the forward swap rate and dW 1,k

t is the Wiener process under the forward swap
rate measure.

Remark 6. The forward-swap rate measure is a measure associated with a specific
numeraire given by a denominator ∑︁k

i=2 τiP (t, Ti) in the equation (2.28). Also,
it is important to note that the forward swap rates S1,k(t) follow the log-normal
distribution.

We use SMM to approximate the Hull-White model for the purpose of deriving
theoretical implied volatilities. Forward swap rates implied by the Hull-White
model do not follow the log-normal distribution, but we can find that P (t,Ti)

P (t,Ti+1)
with some fixing time Ti and paying time Ti+1 follows log-normal distribution.

We can see it from the fact that P (t, T ) in the Hull-White model has the
affine structure from the equation (1.14) and thus the ratio of zero-coupon bond
prices is an exponential of a normal variable rt. From that we can approximate
implied volatility for swaptions in the Hull-White model with a bond ratio and
it leads into formula

vsw(T1, Tk) =
(︄

P (0, T1)
P (0, T1) − P (0, Tk)

)︄2

vp(0, T1, Tk), (2.30)

where vp(0, T1, Tk) is an implied volatility for the bond ratio given by a formula

vp(0, T1, Tk) = var[rT1|F0]Γ(T1, Tk)2.
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Now we can describe what the calibration of the model looks like. To reach
a variable independent of σ, we need to take a ratio of implied swaptions volatili-
ties with the same expiry and different maturities. The reason is that the implied
swaption volatility in the equation (2.30) depends only on σ in var[rT1|F0] which
is the same for different payment times (k,1) and (k,2). Thus, the ratio is inde-
pendent of σ:

vsw(T1, Tk,1)
vsw(T1, Tk,2)

=
⎡⎣
(︂
P (0, T1) − P (0, Tk,2)

)︂
Γ(T1, Tk,1)(︂

P (0, T1) − P (0, Tk,1)
)︂
Γ(T1, Tk,2)

⎤⎦2

.

Then it is easy to formulate the objective function of this optimization problem
with respect to the parameter α only with nm expiry times and np maturities
according to Example (2.3.1)

D(α) =
∑︂

1≤i≤nm,1≤j≤np

⎛⎝
⌜⃓⃓⎷vsw(T1,i, Tk,j+1)

vsw(T1,i, Tk,j)
(α) − IVi,j+1

IVi,j

⎞⎠2

, (2.31)

where we consider the ratio of implied swaptions volatilities as a function of the
single parameter α and IVi,j is the implied market volatility for the swaption with
expiry time T1,i and payment time Tk,j. After that, we minimize the objective
function only with respect to the second parameter σ

arg min
x
D(p(σ),pM ).

2.3.2 Backward-looking approach

A different way to estimate parameters α and σ is to use historical data
from an interest rate time structure given by the spot rates R(t, T ). We want
to minimize the sum of squares of the differences of the theoretical and observed
variance of daily spot rate changes. This estimation was shown in Sivertsen
[2016]. Firstly, we need to describe the dynamics of spot rates implied by the
Hull-White model.

We get an SDE

dR(t, T ) =
1
2σ

2Γ(t, T )2 − rt

T − t
dt+ σΓ(t, T )

T − t
dWt,

where a function Γ is given by the equation (2.11).

We work with spot rate changes in discrete historical data, hence, it is natural
to discretize the SDE into

∆R = R(tk+1, T ) −R(tk, T ) =
1
2σ

2Γ(tk, T )2 − rtk

T − tk
∆t+ σΓ(tk, T )

T − tk

√
∆twk+1,

where it is taken in discrete times t0, t1, . . . , tp, discrete version of dt is ∆ t = tk+1 − tk
and wk+1 is a standard normal random variable with zero mean and unit variance.
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Then it is obvious that the theoretical variance for a spot rate change with unit
variance of wk+1 is

σt
∆R(tk) = σΓ(tk, T )

T − tk

√
∆t = σ(1 − e−α(T −tk))

α(T − tk)
√

∆t. (2.32)

We take a sample variance of daily spot rate changes from historical observa-
tions ∆R1, . . . ,∆RN for time tk as observed variance:

σo
∆R(tk) = 1

N − 1

N∑︂
j=1

(︄
∆Rj − E [∆R]

)︄2

(2.33)

with a sample mean

E [∆R] = 1
N

N∑︂
j=1

∆Rj,

where ∆Rj = R(tj, T ) −R(tj−1, T ).

Now we can show that estimated parameters are a solution to a minimization
problem with a recommended assumption ∆t = 1

251 for 251 trading days with
equations (2.32) and (2.33):

arg min
α,σ

p∑︂
k=1

(︄
σ(1 − e−α(T −tk))

α(T − tk)
1√
12

− σo
∆R(tk)

)︄2

,

where p is the number of historical yield curves with a different tenor of the spot
rate.
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Chapter 3

Simulation study

We described the theoretical background of the Hull-White model and its
estimation. Now we show this process practically on given data from Česká
spořitelna. We set prices of caplets, caps and swaptions and then calibrate the
Hull-White model based on the corresponding methods in Subsection (2.3.1).
Then, we use a set of historical yield curves to estimate the model based on
the methods in Subsection (2.3.2). After that, simulations of estimated versions
of the Hull-White model are performed.

The estimated Hull-White model is used for several needs in Česká spořitelna.
One of them is to set the interest rates for a mortgage. The original purpose is
to price exotic non-standardized interest rate derivatives without any analytical
pricing formula. In this situation, it is useful to simulate the underlying interest
rate with the help of the estimated Hull-White model and then derive the price
of that specific interest rate derivative from the simulated values for a given time
characteristic (maturity or expiry). It depends on the definition of the derivative.

All of the following calculations, data edits, and optimization problems solu-
tions via minimizing objective functions are performed in Python software. Simu-
lations of the estimated Hull-White model and their illustrations are also created
in Python. Some easier graphs are made in Wolfram Mathematica software. The
code with explanatory comments is provided in the attachement of this thesis.

3.1 Data describtion

Our input data given by Česká spořitelna contains a present yield curve,
historical yield curves, and different volatility curves for each financial derivative.
The present yield curve was displayed in Figure (1.1) as data points interpolated
by a natural cubic spline. We have yields forward to 30 years and it was said
that it is the inverted yield curve.

It describes 6 month interest rates for Czech currency with continuous com-
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pounding and the ACT/365 day count convention. It means that we take a real
difference between two dates counted in days, and the year is supposed to have
365 days. Definition 11 also describes this curve as a zero-coupon curve. It is
a reference on a zero-coupon bond which pays no coupon payments (no interest)
in a lifetime of bond, and an investor receives a face value at bond’s maturity.

On the same basis without interpolation, we have historical daily yields data
from 31 January 2018 to 31 January 2023 for various tenors of interest rates. We
show only selected yield curves because of the large amount of data that we have
to historically estimate parameters of the Hull-White model. They are shown
in Figure (3.1). We can see the increasing trend of yields in the last 5 years.

In 2018, yields were as expected lower for shorter interest rates and higher for
longer interest rates, which resulted from added different premiums for increas-
ing risk in a longer time period. This changed in the last two years for many
economical reasons, and now we generally have higher yields.

Moreover, shorter interest rates have higher yields than longer ones. It may
be partly caused by a slower reaction of shorter interest rates on what the present
yield curve expects (decreasing trend) in future years. It can be seen in the whole
graph that longer interest rates are more reactive to expected trends.

Figure 3.1: Historical yield curves starting at time t = 0 (in days) and ending
at time t = 1826 (in days) for seven different tenors of the interest rates and the
displays yields in %.

We present volatility curves for caplets on two separated graphs in Figure (3.2)
and (3.3). The provided caplet dataset contains shifted strikes corresponding
to the market valuation which will be introduced later. It is done for a clearer
visualisation with a lot of data points which are connected only with lines for
a data presentation. The volatility curves for given strikes have different values
and shapes for the shortest maturities. The reason is that higher strikes can
be far from the real value of a caplet. The value of such caplets is then zero
in a majority of cases for a short period of time, and the caplets have less volatile
prices.
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We can see a mostly decreasing trend of volatilities for maturities up to 8
years, except for three volatility curves for the highest strikes in Figure (3.3)
and then quite a consistent behaviour of all volatility curves around 0,18. With
longer maturity, the distance between a strike price and a real price becomes
less relevant and that is why caplets with different strikes have similarly volatile
prices. Volatility curves are constructed for strikes shifted by 3 %. These volatility
curves and the present yield curve are meant to be used for the forward-looking
approach.

Figure 3.2: Volatility curves starting at the first maturity date 31 July 2023
at time t = 0,5 (in years) and ending at the last maturity date at time t = 30
(in years) for six different strikes (in %) shifted by 3 % with the same initial
volatility.

Figure 3.3: Volatility curves starting at the first maturity date 31 July 2023
at time t = 0,5 (in years) and ending at the last maturity date at time t = 30
(in years) for seven different strikes (in %) shifted by 3 % with the different initial
volatilities than the strikes in Figure (3.2).
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Figure 3.4: Volatility curves starting at the first maturity date 31 January 2024
at time t = 1 (in years) and ending at the last maturity date at time t = 30
(in years) for six different selected strikes (in %) shifted by 3 %.

Cap volatility curves display similar behaviour because caps consist of caplets.
Only for illustration, we show volatility curves for the selected shifted strike prices
in Figure (3.4), including the lowest and highest strike price. There are greater
differences in volatilites for longer maturities, but it is still consistent behavior
between 0,18 and 0,24. In the case of caps, it is better to see that a cap with
higher strike price has less volatile price even for longer maturities. We need
to point out that due to the fact that a cap consists of at least two caplets (in our
case at least two half a year caplets) volatility curves start on 31 January 2024.

Swaptions with their different structure in comparison to caps have volatilities
for a given expiry time and for a given tenor at date 31 January 2023. We plot
the volatilities against expiry times for different tenors in Figure (3.5). There are
some interesting points to comment on. Swaptions with shorter tenors have less
volatile prices than those with longer tenors for expiry time up to 1 year. On the
other side swaptions with longer tenors have rather less volatile prices than the
ones with shorter tenors for expiry time after 10 or 15 years.

Inside the swaption dataset, there are strong dependent relations. When we
look at the sample correlation coefficients between different tenors or expiries
from historical volatility quotations, we can see that neighboring tenors for the
same expiry or neighboring expiries for the same tenor are strongly positively
correlated. This relationship weakens slowly. The sample correlation coefficients
show that even relatively time-distanced tenors or expiries are still positively
correlated. The shortest and the longest tenors or expiries can be said to be
weakly correlated.

31



Figure 3.5: Volatilities on 31 July 2023 plotted against expiry times from 1 month
to 30 years (in years) for seven selected different tenors (in years) including the
shortest and the longest tenor.

3.2 Results for the forward-looking approach

In this section, we perform step by step an estimate of the Hull-White model
according to the forward-looking approach of an estimate of the model. We set the
prices of the respective financial derivatives for a model calibration in a market
view and in the Hull-White model. Then we can use different objective functions
(see examples in Section 2.3.1) for the calibration process and try to compare
the estimated parameters. Finally, we show the estimated simulated Hull-White
models.

3.2.1 Pricing of financial derivatives

The principle of model calibration is to compare and minimize the difference
between a market price and a price given by the Hull-White model. For this
purpose, we suppose that pricing with the Black-Scholes model is consistent with
the financial market. Consequently to the input data with volatilities modelled
for shifted strikes, we use the shifted Black-Scholes model where we shift forward
rates and strike prices and Φ as a distribution function of normal distribution
with zero mean and unit variance is used.

Firstly, we show the pricing formula for the shifted Black-Scholes model for
caplets discounted to time 0 according to Brigo and Mercurio [2006]:

pBS
caplet(0, N, T1, T2, K, σBS,s) = N P (0, T2) τ [(F (0;T1, T2)+s)Φ(d1)−(K+s)Φ(d2)],

(3.1)
where N is the nominal value taken for our work as N = 1, T1 and T2 are the fixing
and maturity dates, P (0, T2) a zero-coupon bond price is taken as a continuous
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discounting factor from the maturity date to beginning at 0 given by the equation
(1.13), τ is a tenor as a difference T2 − T1, σBS is a volatility from the volatility
curve for a given strike price K as the quoted volatility in the market, s is a shift
for the shifted Black-Scholes model taken as s = 3%, F (0;T1, T2) is a forward
rate given by the equation (1.15), and d1 and d2 are given by the formulas

d1 =
log

(︄
F (0;T1,T2)+s

K+s

)︄
+ σ2

BST1
2

σBS

√
T1

,

d2 = d1 − σBS

√︂
T1.

Then it is easy to show how to use the price of a caplet to set a price of a cap
according to Definition 15. Caps consists of caplets with the same strike price
with different fixing and maturity dates, hence we can price caps in the following
way:

pBS
cap =

k∑︂
i=2

pBS
caplet(0, 1, Ti−1, Ti, K, σBS, 3%), (3.2)

where the indices of the first and the last summands are consistent with the set
of prescribed dates in Definition 15.

We set the tenor for each caplet as τ = 0,5 which means that a lifetime
of a caplet from a fixing date to a maturity date is half a year. Our first pre-
scribed date T1 is taken as 0 according to our yield curve from Figure (1.1) and,
analogously, we take Tk = 30 as the last maturity date. Hence we have the set
of prescribed dates {0, 0,5, 1, 1,5, . . . , 29,5, 30}.

Next, we introduce similar formulas for caplets and caps in the sense of the
Hull-White model. We express prices also according to Brigo and Mercurio [2006]
where the fact that a caplet is equivalent to a European put option on zero-coupon
bond with modified nominal value and strike price is used. Then, a fixing date
of the caplet is a maturity date of the put option, and a maturity date of the
caplet is a maturity date of the zero-coupon bond. We start to show the pricing
formula for caplet discounted to time 0:

pHW
caplet(0, N, T1, T2, K) = N [P (0, T1)Φ(−h+σp)−(1+K τ)P (0, T2)Φ(−h)], (3.3)

where a nominal value N is consistent with the market setup N = 1, T1 and
T2 are the fixing and maturity dates, P (0, T1) a zero-coupon bond price is taken
as a continuous discounting factor from the maturity date of the put option (from
the fixing date of the caplet) to the starting date at 0 given by the equation (1.13),
P (0, T2) a zero-coupon bond price determining the put option, thus determining
the caplet. Next, τ is a tenor as a difference T2 − T1, also taken as τ = 0,5, K
is the strike price of the caplet, 1 + K τ is the modified strike price of the put
option. It remains to set h and σp which are given by the following formulas:

h = 1
σp

log
(︄
P (0, T2)(1 +K τ)

P (0, T1)

)︄
+ σp

2 ,

σp = σ

α
(1 − e−α(T2−T1))

√︄
1 − e−2αT1

2α ,
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where α and σ are parameters of the Hull-White model.

After that we can write down a pricing formula for caps which (as in case
of the Black-Scholes model) consists of a sum of caplet prices for different fixing
and maturity dates but with the same strike price:

pHW
cap =

k∑︂
i=2

pHW
caplet(0, 1, Ti−1, Ti, K), (3.4)

where the indices of the first and the last summands are consistent with the set
of prescribed dates in Definition 15.

It is important to describe the situation when there is a possibility of no mean
reversion effect according to the model calibration process. This is expressed
by the Ho-Lee model from the example model in the formula (2.5). This situation
is given by α = 0. Only σp is dependent on the parameter α in pricing caplets or
caps, thus, we take a limit

lim
α→0

σp(α, σ, T1, T2) = σ(T2 − T1)
√︂
T1 := σHL

p .

Last, we set prices for swaptions. Setting a swaption price is not as straightfor-
ward as in the case of caps because we do not have individual financial derivative
at each prescribed date. According to the Black-Scholes model, we set market
price of a payer swaption discounted to time 0 from Brigo and Mercurio [2006]:

pBS
swaption(0, N, T , K, σ1,k) = N (S1,k(0) Φ(d1) −K Φ(d2)) τ

k∑︂
i=2

P (0, Ti), (3.5)

where a nominal value N = 1, T is a set of an expiry date T1 and exchange
payment dates {T2, . . . , Tk}, τ = 0,5 is a fraction of a year between the exchange
payment dates, a strike K is taken as a forward swap rate (at-the money) at time
0 S1,k(0) for a swaption with an expiry date T1, a tenor Tk −T1, and with a quoted
swaption volatility σ1,k given by the formula

S1,k(0) = P (0, T1) − P (0, Tk)∑︁k
i=2 P (0, Ti)

.

A zero-coupon bond price P (0, Ti), i ∈ {1, . . . , k} is taken as a continuous dis-
counting factor from time Ti to the valuation time 0 given by the equation (1.13).
We need to take the sum of zero-coupon bond prices because of our decision
about the option on a whole swap made at an expiry date. Numbers d1 and d2
are given by formulas

d1 =
log

(︄
S1,k(0)

K

)︄
+ σ2

1,kT1

2

σ1,k

√
T1

,

d2 = d1 − σ1,k

√︂
T1.
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Remark 7. With respect to our choice of the strike K, our formula for pricing
swaptions in the Black-Scholes model gets easier:

pBS
swaption(0, 1, T , S1,k(0), σ1,k) = (P (0, T1) − P (0, Tk)) (Φ(d1) − Φ(d2)),

d1 = σ1,k

√
T1

2 ,

d2 = −d1.

It remains to set the price of a swaption in the Hull-White model according
to Brigo and Mercurio [2006]:

pHW
swaption(0, N, T , K,X ) = N

k∑︂
i=2

[︄
ci

(︄
Ki P (0, T1) Φ(−h+ σp) − P (0, Ti) Φ(−h)

)︄]︄
,

(3.6)
where a nominal value N = 1, T is a set of only exchange payment dates, a strike
K and a zero-coupon bond price P (0, Ti) are taken in the same way as in the
equation (3.5), ci = K τ , i = 2, . . . , k − 1, ck = 1 + K τ , in both cases τ = 0,5 is
a fraction of a year between exchange payment dates, X is a set of bond prices
(discounting factors to expiry date T1) with maturity at some exchange payment
date Ti with given a interest rate r∗ such that

k∑︂
i=2

ci B(T1, Ti) e−Γ(T1,Ti) r∗ = 1.

We can see that the discounting factors Xi are implied by the affine structure:

Xi = B(T1, Ti) e−Γ(T1,Ti) r∗
, i = 2, . . . , k.

There are still variables h and σp given by the formulas

σp = σ

√︄
1 − e−2α T1

2α Γ(T1, Ti),

h = 1
σp

log P (0, Ti)
P (0, T1)

+ σp

2 .

3.2.2 Model calibration

In this subsection, we apply and describe software methods to solve a non-
convex optimization problem as a model calibration by the formula (2.24) where
pM = pBS and p(x) = pHW ((α, σ)⊤) with the i-th price for financial derivative
with a set of prescribed dates Ti, a strike Ki and for market prices with volatility
σi, i = 1, . . . , I, where I is a number of caplets, caps, or swaptions.

We use the objective function from the equation (2.25) consistent with the
methodology in Česká spořitelna. Estimation of α in swaption calibration is done
by minimizing the objective function from the equation (2.31). In all procedures,
we set bounds for estimates. We minimize the objective function on the space
(0.01, 5) × (0.0001, 0.5) (the first interval is for α, the second for σ).
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We can implement different tactics according to the functions the software pro-
vides us. We have two functions in Python, differential_evolution and curve_fit,
which offer different optimization procedures. The advantage of differential_evolution
is that we can set a required objective function and it does not put any require-
ments on our optimization problem but it can be a less intuitive way.

On the other side, the function curve_fit only works with predefined objective
function from the equation (2.25) but we can set initial parameter guesses with
estimates from differential_evolution and thanks to the nonlinear least squares
estimator the estimation can be more straightforward. The main disadvantage
of curve_fit lies in the following important assumption.

According to Jennrich [1969], the nonlinear least squares estimator works
under the assumption that a vector of market prices pBS has the structure

pBS = pHW ((α, σ)⊤) + ϵ, (3.7)

where pHW is the vector of known continuous nonlinear functions of the param-
eters α and σ and ϵ is the vector of independent identically distributed errors
(residuals) with zero mean and finite positive constant variance.

Figure 3.6: Diagnostical plots to verify the assumption of iid residuals with zero
mean and constant finite variance from the vector ϵ for caplets. There are plotted
residuals and absolute value of standartized residuals against fitted values and
QQ-plot of sample quantiles against theoretical quantiles of standartized normal
distribution.

We can look at the diagnostic plots for caplets in Figure (3.6). We plot
residuals against fitted values, and we want to analyse the red smoother. If
the residuals have zero mean, the red curve should be close to zero. When we
omit spare right-tail data, the assumption can be taken as fulfilled. Then we
plot absolute values of standartized residuals against fitted value which can be
diagnostic plot for constant variance when the red smoother is constant. Even
with the omitted spare right-tail data, there is some uncertainty.

36



But the last diagnostic QQ-plot shows that sample quantiles of residuals cor-
respond (except for right tail) to the theoretical quantiles of the standardized
normal distribution. The result is that assumptions on residuals for the nonlin-
ear least square estimator can hold true for caplets.

However, the diagnostic plots for the caps in Figure (3.7) lead to different
results. The first plot indicates that the mean value can be shifted up from 0,
the second one mainly shows that there can be heteroskedasticity in the residuals
and the assumptions on the residuals are violated. In the case of swaptions, the
assumptions are also violated. That means that the calibration tactic with the
initial guesses from differential_evolution for curve_fit minimization can be used
only for caplets.

Figure 3.7: Diagnostical plots to verify the assumption of iid residuals with zero
mean and constant finite variance from the vector ϵ for caplets. There are plotted
residuals and absolute value of standartized residuals against fitted values.

In this work, we perform two possible estimation procedures. The first one
involves estimation of the parameters α and σ through differential_evolution.
The second one uses estimates from differential_evolution as initial guesses for
curve_fit, which enables us to estimate parameters only under assumption de-
scribed below the equation (3.7). Then we can compare both ways with respect
to SSE (sum of squared errors or residuals). In the case where we cannot fulfill
the assumption of nonlinear least squares estimate method, we use the value from
differential_evolution as the final estimate of the parameter.
Remark 8. In the case of differential_evolution, we can compare the quality of es-
timates through the value of an objective function (OF). We need to reach the
lowest possible value. When we use curve_fit, the natural way to compare esti-
mates is with respect to SSE. Again, the estimates with lower SSE are better.
Specifically, for the objective function from the equation (2.25), the value of the
objective function at estimated parameters from differential_evolution is the same
as the SSE from curve_fit.

We briefly introduce both functions. First, we describe a principle of dif-
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ferential_evolution according to Qiang et al. [2016]. It is an implemenation
of a stochastic based evolution algorithm for global optimization. The algorithm
starts with a population initialization of S solutions, which can be done by a gen-
eration from a uniform distribution on a D dimensional parameter space even
without any given information about the solution of the optimization process.
In general, it is performed in three steps.

Each mutation step is about to create S mutant vectors vi from existing
members xi, i ∈ {i = 1, 2, . . . , S} of a current generation. Mutation is provided
by the so-called best1bin strategy in the function differential_evolution which is
given by the formula

vi = xb +M(xr1 − xr2), (3.8)
where xb is the best solution from the current generation, r1 and r2 are random
integers from the interval [1, S] and are not equal to index i and M ∈ [0,5, 1] is
a mutation weighting factor.

The next crossover step combines each vi and xi into a new trial vector
Ui = (ui,1, . . . , ui,D)⊤, i ∈ {i = 1, 2, . . . , S} in the following way

ui,j = vi,j, if randj ≤ CR or j = mbrj,

= xi,j, otherwise,

where CR is crossover probability and represents a benchmark for selection of mu-
tant vectors and existing members, randj is a randomly chosen real number from
[0, 1] for each ui,j and mbri is a random chosen integer from [1, D] for the whole
Ui.

The last is the selection step. Members of the new generation are selected
on the basis of a boundary check and a comparison with the member of the current
generation. If the trial solution Ui is outside the boundary of the parameter space,
the new trial vector is created within the parameter space. We select Ui for the
new generation if it has a lower value of the objective function than xi, otherwise
we stay with xi. The algorithm ends after reaching a convergence condition
or after a given maximum number of iterations.

In the next part, we describe how the function curve_fit works for our data.
According to the documentation of the SciPy package in Python software, sub-
space trust region interior reflective (STIR) method of nonlinear least squares is
used to minimize our optimization problem

min
x
f(x) : l ≤ x ≤ u, (3.9)

where x = (α, σ)⊤ is the vector of model parameters and l and u are vectors
of lower and upper bounds for parameters.

The STIR method generally formulated by Branch et al. [1999] is an iterative
method with given steps. First, our chosen objective function f(xk) is approxi-
mated by the quadratic function

κk(s) = g⊤
k s + 1

2s⊤(Hk + Ck)s,
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where s is a step that can improve a solution of the optimization problem from
the kth iteration, gk and Hk are gradient and Hessian matrix for the objective
function in the kth iteration and Ck is a diagonal scaling matrix in the kth
iteration.

This quadratic function enables to define a trust region subproblem which is
solved with respect to step s to determine possible improvement of an optimal
solution:

min
s
κk(s) : ||Dks|| ≤ δk, s ∈ Sk,

where Dk is a positive diagonal scaling matrix, δk is a positive scalar, ||.|| is the
Euclidean norm, and Sk is a given two-dimensional subspace in Rn, all for the
k-th iteration. We then compare the values of the objective function f(xk + sk)
and f(xk). If we improve the value of the objective function in the process
of minimization, we take

xk+1 = xk + sk ∈ {x : l ≤ x ≤ u},

otherwise, we stay with xk for the next iteration. The last step is to decide δk+1
based on the comparison of the values of the objective function. This iterative
algorithm in the function curve_fit ends after satisfying the first-order optimality
condition given by a drop of κk(sk) below a certain level.

3.2.3 Parameters estimation

In this section, we present the collected estimates forward-calibrated by the
described methods on each financial derivative. First, we calibrated the Hull-
White model on caplets. The results are given in Table (3.1). The important fact
is that the curve_fit minimization function does not give any significant improve-
ment in estimates according to no significant change in either SSE or estimate
values.

While σ has a reasonable value for the standard deviation of the model, the
fact that the mean reversion speed rate paramater α has a similar value can
indicate that such calibrated model is relatively volatile against the low speed
rate of return of the interest rate rt to the long-term mean reversion level.

Parameter Initial guess OF value Estimate SSE
α 0.0152 0.0000340 0.0153 0.0000340
σ 0.0118 0.0118

Table 3.1: Estimates of the parameters α and σ of the Hull-White model cali-
brated on caplets from the curve_fit function with the initial guesses from the
differential_evolution function both rounded to 3 significant figures. The quality
of the estimates from differential_evolution are compared according to the value
of the objective function at the estimated parameters and from curve_fit are
compared according to SSE.
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It leads us to think about the possibility of a model without the mean reversion
effect for caplets, thus the Ho-Lee model from the equation (2.5). There is only
an estimated σ parameter since α = 0. The estimation is provided in the same
way as in the case of Hull-White and the results are in Table (3.2).

Initial guess OF value Estimate SSE
0.0107 0.0000375 0.0107 0.0000375

Table 3.2: Estimates of the parameter σ of the Ho-Lee model calibrated on caplets
with the curve_fit function with the initial guesses from the differential_evolution
function both rounded to 3 significant figures.

Again, there is no improvement after using the curve_fit function and the
value of σ is very similar to that from the Hull-White model. The main difference
is in the interpretation of θ parameter and it gives another option to see how
simulations can be seen. We comment on this in Subsection 3.2.4.

Secondly, we present estimates calibrated on caps and swaptions from differ-
ential_evolution function in Table (3.3). There are written values of the objective
function from the equation (2.25) for comparability. It means that for swaptions
it is the value of the objective function from calibration of σ with single calibrated
α from the objective function in the equation (2.31).

Minimal values of the objective function are much higher than for caplets. It
does not necessarily mean that caplets are the best for calibration. The better fit
can be caused by the easier structure of individual caplets and may be the reason
why caplets are not as good for calibration as other complex financial derivatives.
Swaptions and caps capture longer time-dependent behaviour, which can lead
to better calibration of the dynamics of interest rates.

Parameter Estimate OF value

Caps α 3.17 0.0277
σ 0.155

Swaption α 0.384 1.37
σ 0.0157

Table 3.3: Estimates of the parameters α and σ of the Hull-White model cal-
ibrated on caps and swaptions with the differential_evolution function both
rounded to 3 significant figures. The quality of the estimates from differen-
tial_evolution are compared according to the value of the objective function at the
estimated parameters.

There are two important observations. The first is that the values of estimated
α are an order of magnitude greater than the values of σ for both derivatives.
It is more expected than similar values in the case of caplets, because a mean
reversion speed rate higher than the effect of a standard deviation may prevent
a wider spread of simulated paths of interest rates. On the other hand, if we look
at the great absolute values of estimates α and σ for caps, they can lead to a less
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realistic model. The second observation is that the calibration procedure for caps
leads to a lower value of the objective function than for the calibration procedure
for swaptions.

The recommendation should be that the usage of caps for calibration proce-
dure of the Hull-White model can be better than swaptions and caplets. Notice
that with different input datasets, the result could be different and it is also not
intuitive to understand the dynamics of interest rates just from estimated values.
That is the reason why we want to look at simulations.

3.2.4 Simulations

Finally, we create simulations of the estimated models from Subsection 3.2.3
to display behavior of the Hull-White model and show some characteristics. We
use 1000 simulations of each model. We simulate in Python software with func-
tions from Quantlib library. We first introduce technically the simulation proce-
dure.

We need to start with creating an interest rate term structure with a natu-
ral cubic spline of the zero-curve input data based on Actual/Actual day-count
convention (actual number of days in months and in whole year) and the Czech
calendar in the specific format for Quantlib library. Then we define the Hull-
White model through the built-in function with the processed interest rate term
structure and the estimated parameters α and σ. Thanks to generators of ran-
dom sequences and process paths, we create simulated paths for 30 years in 360
discrete timespans (one for each month).

Figure 3.8: Plot of 1000 simulations of the Hull-White model calibrated on caplets
with α and σ from Table (3.1) from time 0 to time 30 (in years) with highlighted
the red line of means of all simulated values in given time t, the dashed blue line
θ(t)/α and the green line representing one example of the simulated path.
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We recall that the estimates from the calibration on caplets fit market data
relatively well, but values of mean reversion speed rate and of overall standard
deviation are similar and the process is slowly mean reverting. Figure (3.8) shows
that it creates a relatively reasonable range of simulated paths, but the sample
mean of these paths and its relation to the long-term mean reversion level θ(t)/α
is difficult to interpret with respect to the mean reversion effect.

It is expected that the sample mean should be close to the long-term mean or
at least around the long-term mean as the simulated process is mean reverting.
Since the function θ(t) is divided by the small α, the mean reversion effect is
logically weak with a low mean reversion speed rate and can cause a wider spread
in longer time. The highlighted path displays an example of such a weak mean
reversion effect not even going below the sample mean and having a confusing
relation with the blue dashed line.

That is another reason why we attempted to calibrate the Ho-Lee model
on our caplets data. If we look at Figure (3.9), the sample mean line and the
simulated paths are not very different from Figure (3.8), but now we display only
θ(t) for the Ho-Lee model, which has a different meaning here. The function θ(t)
can be taken as the average future direction of interest rates, and even it can
be approximated by the slope ∂f(0,t)

∂t
from the equation (2.5) according to Hull

[2017a] which corresponds to the movements of the sample mean line.

Figure 3.9: Plot of 1000 simulations of the Ho-Lee model calibrated on caplets
with α = 0 and σ from Table (3.2) from time 0 to time 30 (in years) with
highlighted the red line of means of all simulated values in given time t and the
dashed blue line θ(t) from the equation (2.5).

However, caplet is not the main financial derivative to examine according
to results and also simulations. We move on to the caps. Unlike caplets, there
is a high mean reversion speed rate and an order of magnitude lower but still
relatively high standard deviation. Altogether, it creates the mean reverting
process almost symmetric around long-term mean level, which collides with the
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sample mean line in Figure (3.10).

We can see there that the spread of the paths is consistent and relatively
wide and contains highly negative interest rates. For illustration, there are added
boundary lines for the 95% confidence interval around the sample mean line. The
confidence interval is based on empirical quantiles of 97,5% and 2,5% of simulated
values at each time t. The low boundary line is slightly above value -10 %, which
is a very low value in terms of interest rates.

The quality of estimates calibrated on caps is greater than of those calibrated
on swaptions according to the minimized value of the objective function in Table
(3.3) but the question is whether the dynamics of the interest rates given by caps
is realistic or reasonable. We might be sceptical about the caps calibration based
on the listed reasons, such as high volatility of the model or the significantly
negative interest rates with relatively high probability.

Figure 3.10: Plot of 1000 simulations of the Hull-White model calibrated on caps
with α and σ from Table (3.3) from time 0 to time 30 (in years) with highlighted
the red line of means of all simulated values in given time t, the yellow lines
defining 95 % confidence interval around the mean line, the dashed blue line
θ(t)/α and the green line representing one example of the simulated path.

The next step is to look at simulations of the Hull-White model calibrated
on swaptions in Figure (3.11). We need to compare it to caps, and we can see
improvement in the width of spread of simulated paths and in the possibility
of reaching negative interest rates. The low boundary line for 95% confidence
interval drops below the zero level only between years 20 and 25 and even there
not significantly. The sample mean red line and the example of the simulated
path are close to the long-term mean reversion level excluding the first 3 years
of initial drop of the yield curve and times t ∈ {20, 25} probably caused by a low
liquidity of such swaptions with the long expiry.
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Figure 3.11: Plot of 1000 simulations of the Hull-White model calibrated on swap-
tions with α and σ from Table (3.3) from time 0 to time 30 (in years) with high-
lighted the red line of means of all simulated values in given time t, the yellow
lines defining 95 % confidence interval around the mean line, the dashed blue line
θ(t)/α and the green line representing one example of the simulated path.

We might be willing to use swaptions rather than caps for the calibration pro-
cedure based on these conclusions. It is important to point out that a different
usage of the calibrated and simulated Hull-White model can require different in-
put datasets containing specific lengths of tenors, maturities, and expiries. There
are two main conclusions based on our result. We should choose swaptions or
caps for the forward-looking approach of the calibration of the Hull-White model
based on our requirements. According to the overall calibration with all avail-
able tenors, maturities, and expiries for caps and swaptions, we recommend using
swaptions because of their reasonable estimated value of parameters and the cor-
responding behaviour of the simulations.

3.3 Results for the backward-looking approach

Now we want to follow backward-looking approach methods based on histor-
ical data to estimate the Hull-White model. We described theoretically in Sub-
section 2.3.2 how to define the objective function to use historical data directly.
There is no need to create other data such as prices of financial derivatives in the
case of the forward-looking approach. We are immediately able to minimize the
objective function and estimate the Hull-White model. The simulations are then
performed.
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3.3.1 Parameters estimation

We introduce the estimates of the Hull-White parameters from the backward-
looking approach in Table (3.4). We can see that the minimal value of the ob-
jective function is even lower than the value in Table (3.1) and α is an order
of magnitude larger than σ. On the other hand, the estimated value of α is at the
edge of the space where we minimize the objective function.

Parameter Estimate OF value
α 0.0100 0.00000565
σ 0.00895

Table 3.4: Estimates of the parameters α and σ of the Hull-White model based
on the backward-looking approach from differential_evolution rounded to 3 sig-
nificant figures. The quality of the estimate from differential_evolution is given
by the value of the objective function at the estimated parameters.

Such a low mean reversion speed can cause worse behavior and interpretability
of simulations of the Hull-White model, such as those of caplets. Furthermore,
the backward-looking approach can be limiting in the sense of setting θ parameter
by forward rates and may cause such small values of the parameters, especially
α.

3.3.2 Simulations

We illustrate results from historical calibration on the same simulations as in the
case of the forward-looking approach, therefore, we simulate 1000 paths of the
Hull-White model with α and σ from Table (3.4) for 30 years in 360 timespans
(one for each month). We can see in Figure (3.12) that the simulations based
on historical data are similar to that based on caplet calibration because there
are similar results, as low mean reversion speed but even less volatile. This leads
to a narrower spread of paths.

There are also similar problems to those with the simulations calibrated
on caplets because low α indicates a lack of the mean reversion effect. This
observation can explain the misleading display of the long-term mean reversion
level θ(t)/α which obviously has no senseful relation with the simulated process
and the sample mean line. Despite a very good fit of market data through the
minimization of the objective function, the conclusion is that this approach may
not be the best for estimating the Hull-White model. Again, it is possible to per-
form the Ho-Lee model, but it is not our goal here.

The explanation could be that we calibrate the model connected through
θ(t) with forward rates on historical data, which can cause mismatch even if we
minimize the objective function based on comparing theoretical volatilities and
observed volatilities on daily yield changes not based on prices. The solution
could be found in the subsequent work in comparing different characteristics
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or in choosing the way how to combine the forward and the backward-looking
approach more properly.

Figure 3.12: Plot of 1000 simulations of the Hull-White model estimated from the
backward-looking approach with α and σ from Table (3.4) from time 0 to time
30 (in years) with the red line of means of all simulated values in given time t
and the dashed blue line θ(t)/α.
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Conclusion

The aim of the thesis was to introduce the Hull-White model and to study the
corresponding stochastic process and parameters. In particular, we derived the
formula for the time-dependent parameter θ(t). Next, we set different calibration
procedures with the forward and backward-looking approach and the necessary
tools such as interest rate derivative prices, a theoretical volatility for swaptions
and theoretical volatilities of historical daily changes of a spot rate. Finally, we
performed the calibration in terms of the nonlinear optimization problem in the
simulation study and simulated the Hull-White model for each founded result.

We formalized the general form of the model that describes the dynamics
of the instantaneous spot rate rt for our thesis. As one of special examples, we
introduced the Hull-White model as a stochastic mean reverting process with
constant parameters α and σ and the time-dependent parameter θ(t) standing
for the long-term mean reversion level. We solved this model as an SDE with the
usage of Itô’s lemma.

After that, we derived step by step the form of θ(t) implied by the Hull-
White model and determined not only with the parameters of the model, but
also with the instantaneous forward rate that provides the ability of good future
simulations. We took the stochastic process for the zero-coupon bond prices and
the relations between the forward and the spot rates to derive θ(t) in the way
that it linked the model with the initial term structure of the interest rates. The
derivation is based on Hull [2017b]. We performed this derivation in more detail
in five structured steps in the thesis.

In the simulation study, we calibrated the Hull-White model on caplets, caps,
and swaptions in the framework of the forward-looking approach and then cal-
ibrated the model on comparing theoretical and observed volatilities of daily
changes of historical spot rates. For each of this approach, we simulated the esti-
mated model and compared them based on combined results of the estimates and
the simulations. There are conclusions and recommendations of the calibration
procedure that should be used and why and what can be done differently for
various requirements.

The historical estimate and the caplet calibration performed a good fit of the-
oretical and market characteristics on implied characteristics by the model, but
the simulations had a lack of the mean reversion effect important for the Hull-
White model, since α parameter describing the mean reversion speed was very
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low and therefore there was a lack of a reasonable interpretability.

The calibrations on swaptions and caps demonstrate a senseful fit in terms
of the optimization procedure, and simulations worked better based on the esti-
mated mean reversion and the standard deviation. The cap simulations unfortu-
nately offered the wide spread of the interest rates with non-negligible probabil-
ity of reaching extremely negative values, which does not seem very reasonable.
The swaption simulations did not contain the disadvantages of the previously
mentioned simulations, and the concluding recommendation should be that the
calibration on swaptions may estimate the Hull-White model best based on our
input dataset.
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