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Introduction
The Kerr spacetime, discovered in 1963 by Roy Kerr is one of the most impor-
tant solution’s of Einstein’s equations. It describes the geometry surrounding a
rotating black hole. Black holes are widely accepted by the scientific community
as real physical objects. Recent observations suggesting existence of black holes
with large rotational parameter a [1] bolster the importance of the Kerr solution.

One of crucial aspect of understanding the observations of black holes lies in
understanding behaviour of electromagnetic field around these objects. These
fields play a vital role in various phenomena like jets and accretion disks. The
electromagnetic field interacts with the underlying geometry in a fascinating and
non-trivial way. For example the rotation can induce electric fields from purely
magnetic fields and vice-versa.

A important consequence of this interaction lies in the Meissner-like effect.
The Meissner effect is usually understood as the expulsion of magnetic field lines
from a superconductor once its cooled below the critical temperature Tc. In
Kerr spacetime a similar Meissner-like effect was discovered, where the flux of
any stationary axially symmetric electromagnetic fields across the rotating black
hole horizon goes to zero when the black hole becomes extremal i.e. when it’s
rotational parameter a is equal to the mass of the black hole M .

This thesis leverages the so-called Newman-Penrose (NP) formalism. A for-
malism that reformulates the traditional tensorial expression in general relativity
into complex forms, it turns out that such a formalism allows one to perform
perturbations of the metric tensor in an elegant way. We build upon the work of
J. Bičák and L. Dvořák [2], who found the solution of arbitrary stationary elec-
tromagnetic test field in Kerr spacetime with the source located outside of the
black hole, by to deriving a new source — a non-axial current loop. Such complex
source should offer valuable insight into the intricate interaction of the test field
and the geometry. We also explore the Meissner effect, proving that non-only the
the flux vanishes for the extreme black hole in the axially symmetric case, but
also both invariants of electromagnetic field vanish.

Before presenting these results we briefly summarize the NP formalism, the
results of J. Bičak and L. Dvořák and any necessary mathematical tools.
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1. GR preliminaries
General relativity was introduced more than a hundred years ago by Albert Ein-
stein. Unlike in Newtonian theory, where the background is a fixed Euclidean
space (R3) with a separate time parameter (R), and gravity is treated as a force
acting on this manifold, general relativity relativity combines spacetime into a
four-dimensional Lorentzian manifold (M4). Gravity is then understood as the
curvature of spacetime itself, caused by the distribution of energy and matter in
the system.

Mathematically, the curvature in Einstein’s theory is described by the Einstein
field equations, in geometrized units where the speed of light in vacuum c and
the gravitational constants G are set to unity, the Einstein field equations are

Rµν − 1
2Rgµν + Λgµν = 8πTµν . (1.1)

Here, Rµν represents the Ricci curvature tensor, R is the Ricci scalar, gµν is the
metric tensor that describes the geometry of spacetime, Λ is the cosmological con-
stant, and Tµν is the stress-energy tensor representing the distribution of energy
and matter.

The stress-energy tensor Tµν describes the energy density, momentum density,
and pressure of the matter and non-gravitational fields present in the system. If
we consider consider an electromagnetic source, described by the current density
tensor Jµ and governed by the Maxwell equations

∇µF
µν = 4πJν ,

F [αβ;γ] = 0.
(1.2)

The stress-energy tensor for an electromagnetic field can then be written as

Tµν = 1
4π

(︃
FµιF

ι
ν − 1

4gµνFικF
ικ
)︃
. (1.3)

In general relativity, as in any field of physics, symmetries play an important
role. Symmetries are described by Killing vectors, which are vector fields that
satisfy the Killing equation

Lξgµν = ξµ;ν + ξν;µ = 0. (1.4)

Intuitively, this equation says that the metric is unchanged under the action of
the Killing field or in other words, the symmetries described by Killing vectors
are such that the geometry of spacetime remains invariant.
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1.1 Kerr Metric
In 1963, Roy Kerr discovered the so-called Kerr metric which depicts the space-
time geometry surrounding a rotating black hole asymptotically approaching flat
spacetime. This solution is determined by just two quantities, the black hole
mass M and the rotational parameter a, which is just the angular momentum
divided by mass a = J/M .

It’s important to note that there exist no Birkhoff theorem for rotating black
holes. Which states that any spherically symmetric vacuum solution of the Ein-
stein equations (1.1) must necessarily be the Schwarzschild solution. Thus ”it
is not true that the spacetime geometry in the vacuum region outside a generic
rotating star (or planet) is a part of the Kerr geometry. The best result one can
obtain is the much milder statement that outside a rotating star (or planet) the
geometry asymptotically approaches the Kerr geometry”. [3].

The metric takes a relatively simple form in the Boyer-Lindquist coordinates

ds2 = −
(︃

1 − 2Mr

Σ

)︃
dt2 − 4Mar sin2 θ

Σ dtdφ+ Σ
∆dr2 + Σdθ2 + A sin2 θ

Σ dφ2, (1.5)

where

∆ = r2 − 2Mr + a2,

Σ = r2 + a2 cos2 θ,

A = (r2 + a2)2 − ∆a2 sin2 θ = 2Mr(r2 + a2) + ∆Σ.

The Kerr metric is stationary: it has a Killing vector field that is timelike at
infinity, and the metric is axisymmetric: it has a Killing vector field which has
closed spacelike trajectories. These two commuting Killing vector fields are

tµ = ∂xµ

∂t
, φµ = xµ

∂φ
. (1.6)

For a → 0 the Boyer-Lindquist line element reduces to the Schwarzschild whereas
for M → 0 (while keeping a constant) the line element reduces to Minkowski’s
line element in oblate spheroidal coordinates.

The metric components have singularities at

Σ = 0 ⇐⇒ r2 + a2 cos2 θ = 0 =⇒ r = 0 ∧ θ = π

2 , (1.7)

∆ = 0 ⇐⇒ 1 − 2m
r

+ a2

r2 = 0 =⇒ r = r± = M ±
√
M2 − a2. (1.8)

The first corresponds to a real physical curvature since the Kretschmann invariant
K diverges,

K ≡ RαβγιR
αβγι = 48M2

Σ6

(︂
r2 − a2 cos2 θ

)︂ (︂
Σ2 + 16r2 cos θ(r2 − Σ)

)︂
. (1.9)

The ∆ = 0 surface are null hypersurfaces. Forming the horizons of the black hole
usually called the outer r+ and inner r− horizon. The coefficient gtt in the metric
(1.5) changes sign on the spacelike surfaces r0,1 where

r0,1 = M ±
√
M2 − a2 cos2 θ. (1.10)
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Figure 1.1: subsection of Kerr spacetime with a = 9/10 in units of Mass. Static
limits are red and event horizons are blue. The ergoregion is colored opaque red.

The outer surface where r = r1 is the surface of infinite redshift since gtt =
gµνt

µtν = 0. The outer/inner horizons and the outer/inner event horizons coincide
at the poles where θ = 0, π. In the region r+ < r < r1 the coordinates t and r
are both spacelike but it is still possible to escape to infinity, this region is called
the ergoregion. For the case of extremal black hole a → M the two horizons
coincide r+ = r− = M . Furthermore a ≥ M the black hole singularity becomes
naked. Since there exist no reals roots of (1.8), this means that no horizons are
present. Usually while not taking in mind theories like quantum loop theory
the naked singularities are thought to be non-physical since they, among others,
violate causality.

As we can see from (1.8) and (1.10), for the Schwarzschild case a → 0 there is
just one horizon for outside of the coordinate singularity and surface ∆ = 0 also
becomes the surface of infinite redshift.

Eddington-Finkelstein-type coordinates

The Boyer-Lindquist coordinates (1.5) do not behave nicely near the horizons.
For an infalling photon or test particle the coordinate time t → ∞ as r → r+,
exactly as in the Schwarzschild case. Moreover, an infinite twisting of worldlines
around the horizon happens since φ → ∞ [4]. To alleviate these problems we can
introduce Eddington-Finkelstein-type coordinates. Introducing an advanced null
coordinate v and a new angular coordinate ψ such that

dv = dt+ r2 + a2

∆ dr, dψ = dφ+ a

∆dr. (1.11)
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The metric (1.5) takes a new form in these coordinates

ds2 = −
(︃

1 − 2Mr

Σ

)︃
(dv − a sin2 θ dψ)2

+ 2(dv − a sin2 θ dψ)(dr − a sin2 θdψ) + Σ(dθ2 + sin2 θ dψ2).
(1.12)

Such a form of the metric is clearly non-singular at ∆ = 0.

Doran Coordinates

Relatively recently Doran [5] introduced a new form of the Kerr metric. This
form is particularly well adapted for analyzing the motion of free-falling time-like
observers. Making it useful for studying physical phenomena around rotating
black hole. The coordinates are also chosen such that the solution is well behaved
at the horizon unlike the Boyer-Lindquist coordinates. Consider the coordinate
transformation

dt̃ = dt+

√︂
2Mr(r2 + a2)

∆ dr,

dφ̃ = dφ+ a
√

2Mr√
r2 + a2∆

dr.
(1.13)

Then the line element (1.5) takes the form

ds2 = −dt̃+ Σ
r2 + a2

⎡⎣dr +

√︂
2Mr(r2 + a2)

Σ
(︂
dt̃− a sin2 θdφ̃

)︂⎤⎦2

+ Σdθ2 + (r2 + a2) sin2 θdφ̃.

(1.14)

Clearly, such coordinates are regular at the horizon ∆ = 0. For the vacuum case
a → 0,M → 0 we recover the Minkowski metric with spherical coordinates.

1.1.1 Embedding
Visualizing general relativistic solutions poses at least two major hurdles: first,
we’re not just dealing with three-dimensional space, but with the four-dimensional
space and time. Second, this spacetime is often described using specific coordi-
nates, which can mislead us and make it difficult to understand its true shape.
One of the more useful visualization is the use of embedding diagrams. Such
diagrams are created by choosing a surface and embedding this surface into a
flat-space metric. Such has been explored in [6].

Consider a 2D sub-manifold M rθ, defined by taking t = const., φ = const., of
the 4D manifold Kerr manifold M with the metric line element in Boyer-Lindquist
coordiantes (1.5). Taking the part of spacetime outside the outer horizon we get
the induced line element

dσ2 = Σ
(︄

dr2

∆ + dθ2
)︄
, (1.15)

since (1.15) is independent of t and φ, the sub-manifold is the same for any
value of t, φ and thus has the same intrinsic geometry. We further consider the
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Figure 1.2: Embedding of M rθ
Ω in R3 for a = 1/2 using the Boyer-Lindquist

coordinates. With highlighted curves of constant θ and r. The horizon r+ is
magenta.

conformal transformation of the manifold M rθ → M rθ
Ω defined by

dσ2
Ω = Ω2dσ2 = Ω2 Σ

r2

(︄
r2dr2

∆ + r2dθ
)︄
, Ω2 = r2

Σ . (1.16)

Since this is a conformal transformation, the angle of intersection of any curve is
the same in M rθ as in M rθ

Ω . We further consider the embedding of M rθ
Ω in R3, we

choose cylindrical coordinates (z,R,Θ), the line elements are then related by

r2dr2

∆ + r2dθ2 = dz2 + dR2 +R2dΘ. (1.17)

Taking z = z(r) and R = R(r) we get the set of equations

R(r)2 = r2,(︄
dz(r)

dr

)︄2

= r2

∆ −
(︄

dR(r)
dr

)︄2

.
(1.18)

One of the solutions of this is

z(r′) =
∫︂ r′

r+

√︄
r2 − ∆

∆ dr. (1.19)

Such an integral is always positive and well defined above the outer horizon.
It can be explicitly solved in terms of elliptic integrals. For the Schwarzschild
case we recover

z(r)a=0 = 2
√

2M
√︄

−2Mr + r2

Mr
. (1.20)

The embedding can be seen in Fig. 1.2. For the extremal case r → r+, a → M
the function z(r) → −∞, so that the horizon is moved to logarithmic infinity.
We embedded the part of the metric for which r > r+. The whole slices of the
metric t = const., φ = const. (1.5) cannot be embedded [7]. This is because the
Gaussian curvature changes sign in the Kerr metric. For the same reason it is
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not possible to embed the metric in the Doran coordinates (1.14) even thought
there is no coordinate singularity. We’ve explicitly provided the embedding of the
t = const., φ = const. space, the procedure for embedding t = const.θ = const.
is completely analogous.
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2. Tetrad Formalism
Sometimes, instead of dealing with a local coordinate basis, it is useful to proceed
by choosing a suitable tetrad basis of four linearly independent vector-fields. We
can then project relevant quantities on this chosen basis.

We will now introduce two formalism which we will later utilise: (a) the NP
formalism: which is useful for many calculations in GR, (b) the observer tetrad
formalism: which is useful to relating quantities in GR to actually measurable
quantities. Before that we quickly introduce general tetrad formalism. A more
exhaustive a rigorous introduction can be found in [8].

A tetrad basis is composed of four linearly independent vector-fields chosen
ideally to represent underlying symmetries of space-time. First we need to define
the tetrad basis. Consider four linearly independent vectors

e(a)
j, a = 0, 1, 2, 3. (2.1)

We have introduced new set of (tetrad) indices which are distinguished by being
in parentheses.

The associated covariant vectors to (2.1) are

e(a)j = e(a)
jgij. (2.2)

The tetrad indices behave as normal indices but they form a different basis

η(a)(b)e
(a)

j = e(b)j, η(a)(b)e(a)j = e(a)
j. (2.3)

We assume that the matrix η(a)(b) is constant. We also define the inverse relation
as

ei(a)e
(b)
i = δ

(b)
(a), ei(a)e

(a)
j = δij. (2.4)

It is clear that any tensor can be projected onto the tetrad frame as

T(a)(b)(c)...
(µ)(ν)(ζ)... = e(a)

ie(b)
je(c)

k . . . e(µ)
me

(ν)
ne

(ζ)
o . . . Tijk...

mno.... (2.5)

We also define derivatives as

A(a),(b) = e(a)
jAj;l e(b)

i + e(c)
ke(a)k;i e(b)

iA(c). (2.6)

This equation can be rewritten as

A(a),(b) = e(a)
jAj;l e(b)

i + γ(c)(a)(b)A
(c), (2.7)

where the definition of γ(a)(b)(c) called Ricci rotation-coefficients is clear from
comparison of equations (2.6) and (2.7).

2.1 Observer tetrad formalism
Let us first agree on convention for the observer tetrads, instead of numbering
the tetrad indices with numbers a = 0, 1, 2, 3 we will when possible denote the
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indices with appropriate coordinate symbols, this has the added advantage of
telling us against which basis we’re expressing the tensor. Thus for expression in
Boyer-Lindquist coordinates the indices take the values a = t, r, θ, ϕ.

As mentioned above sometimes the choice of a tetrad can simplify the problem,
but this it’s not it’s only application. If we want to relate covariant quantities to
actually measurable quantities we need to consider a family of physical observers
— a congruence of time-like world-lines with a tangent four-velocity field of the
observer eµ(0) = uµ, with uµuµ = −1, and a suitable orthonormal spatial bases
{eµ(i)}i=1,2,3. In such a physical tetrad the metric locally takes the form

ηµν = diag(−1, 1, 1, 1). (2.8)

The choice of tetrad is up to us, but the only sensible tetrad are the ones which
represent some kind of possibly real physical observer. After that we usually
choose the tetrad is the manner so that they represent the physical properties of
the system or can be written simply in some convenient coordinates so that the
resulting expression are not too complicated.

ZAMO

A somewhat common choice of an observer tetrad in Kerr spacetime this is the
zero angular momentum observers (ZAMO) tetrad. Such observers have zero
angular momentum with respect to infinity. Of course, since the rotation of
geometry imposes frame dragging, the observer will always have non-zero angular
velocity with respect to infinity near the horizon r+. These observer posses an
important geometrical property: they are orthogonal to hypersurfaces of constant
t [9].

Consider an observer with the four velocity

u = ut(∂t + ω̃∂φ), (2.9)

with ut being the normalization factor such that uµuµ = −1. The angular mo-
mentum per unit mass of such observer is

L̃ ≡ uφ = gφφu
t(ω̃ − 2Mar

A
), (2.10)

where A = Σ∆ + 2Mr(r2 + a2). The ZAMO observer are characterizes by
ω̃ = ω ≡ 2Mar

A
, then ut =

√︂
A

Σ∆ . The whole tetrad is then given by

e(t) = ut(∂t + ω∂φ),

e(r) =
√︄

∆
Σ ∂r,

e(θ) = Σ−1/2∂θ,

e(φ) =
√︄

Σ
A

1
sin θ∂φ.

(2.11)

Such observer move with φ = ωt + const and stay at r = const., θ = const. and
have a clear meaning anywhere above the outer horizon r+

By radially boosting the ZAMO observer it is possible to create a family of
free falling observers. These observers still have zero angular momentum and fall
along the coordinate lines θ = const. The whole tetrad is given in [10].
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Doran tetrad

The ZAMO tetrad has no physical meaning on the horizon r = r+. For inquires
about near horizon behaviour and even behaviour under the horizon it is more
appropriate to choose some more well defined tetrad. One of such is the Doran
tetrad [5]. Which is natural to the Doran coordinates (1.14).

The tetrad represents observers who are freely falling along radial trajectories,
starting at rest at radial infinity while maintaining φ̃ = const, θ = const.. This
tetrad has the four-velocity

ũ = −dt̃. (2.12)

It holds that
ũa∇aũ

b = 0, (2.13)

so the Doran observers really do form a congruence of free falling timelike ob-
servers. Such motion is almost Newtonian and the proper time of the observer
coincides with the coordinate time t̃. The whole tetrad in the Boyer-Lindquist
coordinates takes the form

ũ = ẽ(t) = −dt−

√︂
2Mr(r2 + a2)

∆ dr,

ẽ(r) =
√︄

2Mr

Σ (dr − a sin2 θdφ) +

√︂
Σ(r2 + a2

∆ dr,

ẽ(θ) =
√

Σdθ,

ẽ(φ) =
√

2Mra sin θ
∆ dr +

√
r2 + a2 sin θdφ.

(2.14)

2.2 Newman-Penrose Formalism
Newman-Penrose formalism [11] is a special case of tetrad formalism, where we
choose two real vectors and a complex-conjugate pair denoted l, n,m and m.
Which satisfy

lala = nana = mama = mama = lama = nama = lama = nama = 0, (2.15)

and
lana = −mama = 1. (2.16)

Under these conditions the metric tensor can be expressed as

gab = −lanb − lbna +mamb +mbma. (2.17)

The basis is identified as

e1 = l, e2 = n, e3 = m, e4 = m. (2.18)

It is also customary to define special symbols for the diractional derivatives

D ≡ la
∂

∂xa
, ∆ ≡ na

∂

∂xa
δ ≡ ma ∂

∂xa
, δ ≡ ma ∂

∂xa
. (2.19)
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If the (2.16) equations are to be satisfied the matrix η(a)(b) must take form

η(a)(b) =

⎛⎜⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞⎟⎟⎟⎠ . (2.20)

Usually twelve special symbols are defined for Ricci rotation coefficients
κ = γ(3)(1)(1), σ = γ(3)(1)(3), λ = γ(2)(4)(4), ν = γ(2)(4)(2),

ρ = γ(3)(1)(4) µ = γ(2)(4)(3), τ = γ(3)(1)(2), π = γ(2)(4)(3),

ϵ = 1
2(γ(2)(1)(1) + γ(3)(4)(1)), γ = 1

2(γ(2)(1)(2) + γ(3)(4)(2)),

α = 1
2(γ(2)(1)(4) + γ(3)(4)(4)), β = 1

2(γ(2)(1)(3) + γ(3)(4)(3)).

(2.21)

Finally the so called intrinsic derivative is also defined

A(a)|(b) = A(a);(b) − η(n)(m)γ(n)(a)(b)A(m). (2.22)

As we can see from the Einstein equations (1.1), the Riemann curvature tensor
is of prime importance in GR, the tensor describes the non-commutativity of
differentiation when applied to a dual vector field. The Ricci tensor, a derived
quantity from the Riemann tensor, describes the deformation of such an object.
Finally the Weyl tensor, which measures the tidal forces on an object moving
along geodesics, is defined as a trace-free part of Riemann tensor, i.e.

Cabcd = Rabcd − ga[aRd]b − 1
3Rga[cgd]b, (2.23)

where R is scalar curvature and Rab = Rabc
b is the Ricci tensor.

Projecting the Weyl tensor into tetrad basis we get [8].

C(a)(b)(c)(d) = R(a)(b)(c)(d) − η(a)[(a)R(d)](b) − 1
3Rη(a)[(c)η(d)](b), (2.24)

with R(a)(b) denoting the tetrad components of Ricci tensor and R the tetrad
components of the scalar curvature

R(a)(c) = η(b)(d)R(a)(b)(c)(d), R = η(a)(b)R(a)(b). (2.25)

In NP formalism Weyl tensor is represented by 5 complex scalars
ψ0 = −C(1)(3)(1)(3),

ψ1 = −C(1)(2)(1)(3),

ψ2 = −C(1)(3)(4)(2),

ψ3 = −C(1)(2)(4)(2),

ψ4 = −C(2)(4)(2)(4),

(2.26)

and the 10 independent components of Ricci tensor are represented by four real
scalars (Φ00,Φ11,Φ22,Λ) and three complex ones Ψ10,Ψ20,Ψ21 along with their
complex conjugates.

Ψ00 = 1
2R(1)(1), Ψ11 = 1

4(R(1)(2) −R(3)(4)), Ψ22 = 1
2R(2)(2),

Λ = R

24 , Ψ10 = 1
2R(1)(4), Ψ20 = 1

2R(4)(4), Ψ21 = 1
2R(4)(3).

(2.27)
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2.2.1 Petrov classification
In the NP formalism we can elegantly formulate the Petrov classification scheme
of the Weyl tensor, which describes possible algebraic symmetries of the tensor [4].
For non-conformally flat spacetime (Cabcd ̸= 0) we usually classify spacetimes by
the Petrov-Penrose classification of the Weyl tensor. Consider the transformation
(so called null rotation about n)

n′ = n, m′ = m + bn, l′ = l + b∗m + bm + bb∗n (2.28)
where b is a complex parameter, let us quickly note that multiple classes of
transformation of type (2.28) exist, for example Griffiths and Podolský [4] classify
the Weyl tensor by null rotations about l (class I), here we follow Chandrasekhar
[8] who classifies the Weyl tensor under the transformation (2.28) (class II). Under
this transformation the Weyl scalars (2.26) transform as

Ψ′
0 = Ψ0 + 4bΨ1 + 6b2Ψ2 + 4b3Ψ3 + b4Ψ4,

Ψ′
1 = Ψ1 + 3bΨ2 + 3b2Ψ3 + b3Ψ4,

Ψ′
2 = Ψ2 + 2bΨ3 + b2Ψ4,

Ψ′
4 = Ψ4.

We can immediately see that
Ψ′

0 = 0 ⇐⇒ Ψ0 + 4bΨ1 + 6b2Ψ2 + 4b3Ψ3 + b4 = 0. (2.29)
This quartic equation has four roots from which we can recover new l, which we
call the principal directions of Weyl tensor. Depending on the roots we classify
the spacetimes as

type I : four distinct roots
type II : two identical roots, two distinct
type D : two pairs of identical roots
type III : three identical, one distinct
type N : four identical roots

In type D spacetimes the we can have such a tetrad that
Ψ0 = Ψ1 = Ψ4 = Ψ3 = 0,Ψ2 ̸= 0 and κ = σ = ν = λ = 0 - this is content of
Golber-Sachs theorem [12].

We will later, by explicit calculation show, that the Kerr metric is of the
Type D. This will allow us to utilize special relation which hold in this type of
spacetime to completely solve the Maxwell equation for a given test field source.

2.2.2 Maxwell Equations in NP Formalism
For our purposes, Maxwell equations are most important. As with any tensor,
the EM tensor can be projected onto the null tetrad; since the EM tensor is
antisymmetric we get three complex scalars

ϕ0 = Fijl
imj,

ϕ1 = 1
2Fij(l

inj +mjmj),

ϕ2 = Fijm
inj.

(2.30)
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From these NP scalar we can reconstruct the Maxwell tensor as follows

Fij = 2
[︂
ϕ1 (n[ilj] +m[imj]) + ϕ0 l[imj] + ϕ2 m[inj]

]︂
+ c.c. (2.31)

Where square brackets over indices indicate antisymetrization and c.c is com-
plex conjugate.

The source free Maxwell equations are

F[ij;k] = 0, gijFik,j = 0 (2.32)

these take the form

ϕ1|(1) − ϕ0|(4) = 0, ϕ2|(1) − ϕ1|(4) = 0,
ϕ1|(3) − ϕ0|(2) = 0, ϕ2|(3) − ϕ1|(2) = 0.

(2.33)

The source-free Maxwell equations with zero four-current (3.3) can be written
explicitly in terms of directional derivatives and Ricci rotations coefficients as

Dϕ1 − δϕ0 = (κ− 2α)ϕ0 + 2ρϕ1 − κϕ2,

Dϕ2 − δϕ1 = −λϕ0 + 2πϕ1 + (ρ− 2ϵ)ϕ2,

δϕ1 − ∆ϕ0 = (µ− 2γ)ϕ0 + 2τϕ1 − σϕ2,

δϕ2 − ∆ϕ1 = −νϕ0 + 2µϕ1 + (τ − 2β)ϕ2.

(2.34)

We want to quickly note that the NP formalism in neatly implemented (al-
though with missing documentation) in the Mathematica package xAct [13].
We’ve used this package for nearly all tensorial and NP calculations
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3. Maxwell equations
Although we have already formulated the Maxwell equations in the so called
NP formalism. We still want to give a short review of Maxwell equations in
the more traditional tensorial formalism. A more exhaustive introduction to
electromagnetic theory can be found in [14]. From this we will be able to discuss
the invariants of the Maxwell field which are, as any invariant in GR, of prime
importance.

On a general four dimensional manifold M the Maxwell equations can be
formulated as

dF = 0
d ⋆ F = J

(3.1)

Where F = dA is the Maxwell tensor, d is the exterior derivative and J is the
current 3-form which satisfies the continuity equation

dJ = 0 (3.2)

In a coordinates basis ∂xµ the equations (3.1) (3.2) are

F [αβ;γ] = 0,
Fαβ

;β = 4πJα.
(3.3)

The electric field E and magnetic field B can be identified by defining an
appropriate observer four-velocity u and projecting the Maxwell tensor F onto
this four-velocity.

Bµ = −1
2ϵ

µνσρuνFσρ,

Eµ = F µνuν .
(3.4)

As we can see the equations are of course, in adherence to the principle of gen-
eral covariance, covariant. However it is important to remember that, although
the Maxwell tensor F is a physical quantity, we usually discuss the components
in relation to a specified coordinates. Thus the components can change depend-
ing on the coordinates we choose. It’s often useful to find some truly invariant
quantities — scalars. These can be easily constructed from the Maxwell tensor.

1
2F

αβFαβ = BαBα − EαEα = ||B||2 − ||E||2(︃1
4F

αβ ⋆ Fαβ

)︃2
= (BaEa)2 = (B · E)2

(3.5)

The square in the latter equation was taken to construct a true scalar. Otherwise
the expression B·E is a pseudoscalar since E is a tensor and B is an pseudotensor,
this can be seen at first glance since there is the Levi-Civita tensor in the definition
of the magnetic field.

We can understand these two scalars as follows. The latter of (3.5) states
that if the electric and magnetic field are perpendicular in any reference system,

15



then they are perpendicular in all systems and that we can always find a reference
system in which E = 0 or B = 0. The former clearly related that the comparative
magnitudes stays the same in all reference systems. Since the two invariants
(3.5) are fundamental, any other invariant of the electromagnetic field can be
constructed from these two. We will now illustrate by calculating other possible
invariants.

First we define the self-dual form.
∗F = F − i ⋆ F (3.6)

where ⋆ is the Hodge dual. Such form is convenient since it allows us to encode the
electric and magnetic field into a single complex vector. Consider some observer
four-velocity u · u = −1 we then get

∗F abub = Ea + iBa (3.7)

We can now encode the invariant into a single complex scalar
1
4

∗F ab∗F ab = 1
2(F abFab + iF ab ⋆ Fab) = 2iBaEa +BaBa − EaEa (3.8)

If the scalar above is zero we say that the electromagnetic field is null [4] which is
equivalent to formulation above that the electric and magnetic fields are orthog-
onal, have equal magnitude and propagate at the speed of light.

When analytic results are not available, we use numeric results usually ac-
companied with graphic visualization. For this real invariants are preferred, we
can make the invariant (3.8) real by taking the hermitian conjugate

1
16

∗F ab∗F ab
∗F

cd∗F cd = (||B||2 − ||E||2)2 + 4(B · E)2, (3.9)

Even thought the scalar above is real, it should be noted that it still holds that
the field is null only if the scalar ∗F ab∗F ab

∗F
cd∗F cd is zero, since it’s split into two

non-negative parts. To infer the meaning of the scalar (3.9) we will now express
some identities in the NP basis, we can do this since all basis are equally good
for invariants.

Consider the energy momentum tensor (1.3) T ab, expressing this in the NP
basis (2.18) and (2.31) we get

T (a)
(b) = 2

⎛⎜⎜⎜⎝
−ϕ1ϕ1 −ϕ2ϕ2 −ϕ2ϕ1 −ϕ1ϕ2
−ϕ0ϕ0 −ϕ1ϕ1 −ϕ1ϕ0 −ϕ0ϕ1
ϕ0ϕ1 ϕ1ϕ2 ϕ1ϕ1 ϕ0ϕ2
ϕ1ϕ0 ϕ2ϕ1 ϕ2ϕ0 ϕ1ϕ1

⎞⎟⎟⎟⎠ . (3.10)

Computing the eigenvalues of this we get

λ1 = λ2 = −λ3 = −λ4 = 2
√︂

(ϕ2
1 − ϕ0ϕ2)(ϕ

2
1 − ϕ0ϕ2) . (3.11)

Since the eigenvalue equation Tv = λv is basis invariant, the scalar λi is an
invariant quantity, this can be seen by expressing it terms of the two invariants
of the electromagnetic field. Expressing the invariant (3.9) in the NP basis we
get

∗F ab∗F ab
∗F

cd∗F cd = 256(ϕ2
1 − ϕ0ϕ2)(ϕ

2
1 − ϕ0ϕ2) (3.12)
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Working out the factors we get

1
8

√︂
∗F ab∗F ab

∗F
cd∗F cd = λ1 = −λ3 (3.13)

Thus we get that the invariant (3.9) is in fact the square of the eigenvalue of the
energy momentum tensor of the Maxwell field. Let us now define the Poynting
vector as

P a = −T abub (3.14)

expressing the Poynting vector in terms of the electric E and magnetic B fields

P a = 1
2u

a(BbB
b + EbE

b) + ϵabcdu
bBcEd (3.15)

this definition recovers the standard three vector Poyting in the tetrad indices

P(a) = ϵ(a)(b)(c)B
(c)E(b), a = 1, 2, 3, (3.16)

with and the zero element is

P (0) = 1
2(||E||2 + ||B||2). (3.17)

calculating the norm of the Poyting vector we get the relation

P aPa = TabT
acubuc = λ1 = −λ3 (3.18)

Thus the invariant takes a clear meaning, it is simply the square root of the
norm of the Poyting four-vector and as is clear from the eigenvalues (3.11) this
is independent of the choice of four-velocity u.
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4. Solving the Maxwell equations
We will start from Teukolsky’s article [15], in which he, among others, derives
linearized equations for gravitational and electromagnetic fields of a rotating black
hole. It turns out that the standard calculation procedure, in which the metric
perturbation is taken into account, gives too complex results and inseparable
equations. Teukolsky therefore uses the NP formalism - for each NP quantity and
for each NP tetrad vector X, it holds that X = XA+XB, where XA is the quantity
corresponding to the background and XB its perturbation. By substituting into
the NP equations and leaving only the terms linear in B, we obtain the desired
equations.

First we have to choose an appropriate tetrad. For the sake of consistency
with other related works we choose the so called Kinnersley tetrad. Such tetrad
is appropriate due to the fact that many of the Ricci spin coefficients κ, σ, ν, λ, ϵ
are zero and all but one of projections of Weyl tensor are zero.

l = 1
∆
[︂(︂
r2 + a2

)︂
∂t + ∆∂r + a∂φ

]︂
,

n = 1
2Σ

[︂(︂
r2 + a2

)︂
∂t − ∆∂r + a∂φ

]︂
,

m = 1√
2ϱ

[︃
ia sin θ∂t + ∂θ + i

sin θ∂φ

]︃
.

(4.1)

The full Ricci rotation coefficients (2.21) then read

µ = 1
2∆ρ2ρ̄, τ = − i√

2a sin θρρ̄,
π = i√

2a sin θρ2, γ = µ+ 1
2(−M + r)ρρ̄,

α = −β̄ + π, β = − 1
2
√

2 cot θρ̄,

ρ = 1
ϱ

= 1
ia cos θ − r

, κ = σ = α = ν = ϵ = 0.

(4.2)

Where we also defined ϱ. Since we are in Type D spacetime with an appropriate
tetrad the only non-zero Weyl scalar is

Ψ2 = −M

ϱ3 . (4.3)

4.1 Electromagnetism in Type D spacetime
Omitting the index B, the linearized equations for the perturbed electromagnetic
field are

(D − 2ρ)ϕ1 − (δ + π − 2α)ϕ0 = 2πJl, (4.4)
(δ − 2τ)ϕ1 − (∆ + µ− 2γ)ϕ0 = 2πJm, (4.5)
(D − ρ+ 2ϵ)ϕ2 − (δ + 2π)ϕ1 = 2πJm, (4.6)
(δ − τ + 2β)ϕ2 − (∆ + 2µ)ϕ1 = 2πJn. (4.7)
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The lower index next to J denotes the projection of the four vector Jµ + iMµ,
where we also included the magnetic current vector Mµ onto the NP tetrad
components. For example Jl = (Jµ + iMµ)lµ.

Utilising the following commutation relation, which hold for any Type D met-
ric [2],

(D − ϵ+ ϵ− 2ρ− ρ)(δ − 2τ) − (δ − β − α + π − 2τ)(D − 2ρ) = 0, (4.8)

and applying (δ − β − α+ π − 2τ) on (4.4) and (D − ϵ+ ϵ− 2ρ− ρ) on (4.5) we
get by the difference of these equations

[(D − ϵ+ ϵ+ 2µ+ µ)(∆ + µ− 2γ)
+(−δ + β + α + 2τ − π)(δ + π − 2α)

]︂
ϕ0 = 2πJ0,

(4.9)

with
J0 = (δ − β − α− 2τ + π)Jl − (D − ϵ+ ϵ− 2ρ− ρ)Jm.

Under the interchange of l with n and m with m we get

[(∆ + γ − γ + 2µ+ µ)(D − ρ+ 2ϵ)
−(δ + α + β + 2π − τ)(δ − τ + 2β)

]︂
ϕ2 = 2πJ2,

(4.10)

with
J2 = (∆ + γ − γ + 2µ+ µ)Jm − (δ + α + β + 2π − τ)Jn. (4.11)

Astoundingly, not only equations (4.9) and (4.10), but also the equations for
gravitational field and neutrino field can be summarised in the so-called Teukol-
sky’s master equation [15]. In Boyer-Lindquist coordinates with the (4.1) it reads(︄

(r2 + a2)2

∆ − a2 sin2 θ

)︄
∂2ψ

∂t2
+ 4Mar

∆
∂2ψ

∂t∂φ
+
(︄
a2

∆ − 1
sin2 θ

)︄
∂2ψ

∂φ2

− ∆−s ∂

∂r
(∆s+1∂ψ

∂r
) − 1

sin θ
∂

∂θ
(sin θ∂ψ

∂θ
) − 2s

(︄
a(r −M)

∆ + i cos θ
sin2θ

)︄
∂ψ

∂φ

− 2s
(︄
M(r2 − a2)

∆ − ϱ

)︄
∂ψ

∂t
+ (s2 + cot2 θ − s)ψ = 4πΣT.

(4.12)
For electromagnetic perturbations we recover our fore-mentioned (4.9) (4.10) by
plugin in {ψ = ϕ0, s = 1, T = J0} or {ψ = ρ−2ϕ2, s = −1, T = ρ−2J2} respec-
tively. Furthermore Bičák, Janǐs [2] showed that these equations are separable
for stationary solutions by utilising the ansatz.

ϕ1 =
(︄
r+ − r−

ϱ

)︄2∑︂
l,m

0Rlm 1Ylm(θ, φ),

ϕ2 =
(︄
r+ − r−

ϱ

)︄2∑︂
l,m

2Rlm(r) −1Ylm(θ, φ).
(4.13)

Where ∑︁
l,m abbreviates ∑︁∞

l=1
∑︁l
m=−l, Ylm are the NP spin-weighted spherical

harmonics (see appendix A.1). The factors before the sum have been introduced
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in [2] to further simplify the equations. Utilising the orthonormality of the spin-
weighted spherical harmonics and the equations for ϕ2 we obtain [2]

∆d2(2Rlm)
dr2 +

[︄
a2m2 − 2iam(r −M)

∆ − l(l + 1)
]︄

2Rlm = −4π2Jlm. (4.14)

Where

2Jlm =
∫︂ 2π

0

∫︂ π

0
dθdφ Σ ϱ2 J2

(r+ − r−)2 −1Y lm sin θ, (4.15)

J2 = −∆
2
√

2Σϱ2

[︂√
2
(︄
∂

∂r
− a

∆
∂

∂φ
+ 1
ϱ

)︄
ϱ2Jm

+ 2
(︄
∂

∂θ
− i

sin θ
∂

∂φ
+ ia sin θ

ϱ

)︄
Σϱ
∆ Jn

]︂
. (4.16)

We could have derived similar equations for φ0. But in [2] a relation has been
found between 0Rlm and 2Rlm, by applying differential operators to the Maxwell
equations we get

0Rlm = 2(r+ − r−)2

l(l + 1)

(︄
d
dr + iam

∆

)︄(︄
d
dr + iam

∆

)︄
2Rlm. (4.17)

Since no separated equation for ϕ1 exists. We can utilize the normal Maxwell
equations. Thanks to axial symmetry we write

ϕ1(x, θ, ϕ) =
∞∑︂

m=−∞

(︃
1 − 1

x

)︃ −iam
r+−r−

eimϕϕlm(x, θ). (4.18)

Using this ansatz, [2] we are able to express ϕ1 as function of 2ylm.
The homogeneous part of the equation (4.14) is of the Fuchsian type. The

equation has three regular singular points {r−, r+,∞}. We can transform such
equation into a hypergeometric form. For our equation the transformation reads

2Rlm(x) =
(︃

1 − 1
x

)︃iZm
2ylm(x),

x = r − r−

r+ − r−
Zm = am

r+ − r−
,

(4.19)

we get
x(x− 1) 2

y′′
lm − 2iZm2

y′
lm − l(l + 1)2ylm = 0. (4.20)

The two solutions are

2
yIlm =

(︃
1 − 1

x

)︃2iZm

x(x− 1) 2F1(l + 1, 1 − l, 2 − 2iZm, x),
2
yIIlm = (−x)−l

2F1(l, l + 1 − 2iZm, 2l + 2, x),
(4.21)

where 2F1 denotes the hypergeometric function of the second type [16]. The
solution I corresponds to the inner solution r < r0 where r0 is the location of the
source. The solution II corresponds to the outer solution r0 < r. These solutions
were chosen such that the functions 0

RI
lm and 2

RI
lm are admissible at the horizon
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r+ and such that 0
RII
lm and 2

RII
lm are admissible at infinity. Finally the complete

inner solution is

ϕ0 =
∑︂
l,m

2 alm
l(l + 1)

(︃
1 − 1

x

)︃−iZm d2

dx2

(︂
2yIlm

)︂
1Ylm,

ϕ1 =Ea
ϱ2 +

√
2 (r+ − r−)

ϱ2

∑︂
l,m

alm
l(l + 1)

(︃
1 − 1

x

)︃−iZm
{︄

−ia sin θ d
dx

(︂
2yIlm

)︂
1Ylm

+ [l(l + 1)]1/2
[︄
ϱ
d

dx

(︂
2yIlm

)︂
− (r+ − r−) 2yIlm

]︄
0Ylm

}︄
,

ϕ2 =(r+ − r−)2

ϱ2

∑︂
l,m

αlm

(︃
1 − 1

x

)︃−iZm

2y
I
lm −1Ylm.

(4.22)
For the outer solution we can just replace αlm with βlm and 2yIlm with 2yIIlm. To
determine αlm and βlm we take the full solution of inhomogeneous equation (4.14)

2Rlm(x) =2RI
lm(x)

∫︂ 4π2Jlm(ξ)2RII
lm(ξ)

ξ(ξ − 1)W (2RII
lm,

2RI
lm, ξ)

dξ

− 2RII
lm(x)

∫︂ 4π2Jlm(ξ)2RII
lm(ξ)

ξ(ξ − 1)W (2RII
lm,

2RI
lm, ξ)

dξ,
(4.23)

where
W (2RII

lm,
2RI

lm, ξ) = (2l + 1)!Γ(2 − 2iZm)
(l + 1)!Γ(l + 1 − 2iZm) , (4.24)

is the Wronskian at the points ξ. Comparing (4.23) with (4.45) while regarding
the substitution (4.19) and solution (4.21) we get

αlm = −4π W (2RII
lm,

2RI
lm, ξ)

∫︂ 2Jlm(ξ) 2RII
lm(ξ)

ξ(ξ − 1) dξ,

βlm = −4π W (2RII
lm,

2RI
lm, ξ)

∫︂ 2Jlm(ξ) 2RI
lm(ξ)

ξ(ξ − 1) dξ.
(4.25)

Lastly, we need to determine the constants Ea and Eb. To do this we employ the
Gauss theorem, which can be written as∫︂ 2π

0

∫︂ π

0
(−g)1/2F tr|r=r0dθdφ = 4πe(r0), (4.26)

where r0 is the total charge inside the ”sphere” of radius r0. Expressing out the
F tr explicitly

F tr
r=r0 =

{︄
(r2 + a2)

Σ ϕ1 − ia sin θ√
2ϱ

ϕ2 + ia∆ sin θ
2
√

2Σϱ
ϕ0 + c.c.

}︄
|r=r0 . (4.27)

Where c.c. denotes the complex conjugate. Only the axisymmetric terms (m = 0)
contribute to the integral (4.26) owing to the integration over φ. Keeping this in
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mind we only need to evaluate

∫︂ 1

−1

⎡⎣
√︂
l(l + 1)0Yl0(θ, 0)
r0 − ia cos θ − ia sin θ1Yl0(θ, 0)

(r0 − ia cos θ)2

⎤⎦ d(cos θ) =

=
∫︂ π

0

[︄
i

sin θ
∂
∂θ

(sin θ1Yl0(θ, 0))
r0 − ia cos θ + ∂

∂θ
(r0 − ia cos θ)−1

1Yl0(θ, 0)
]︄

sin θdθ

=
∫︂ π

0

∂

∂θ

(︄
sin θ 1Yl0(θ, 0)
r0 − ia cos θ

)︄
dθ = 0,

(4.28)

where we utilized

0Yl0(θ, 0) = 1√︂
l(l + 1) sin θ

∂

∂θ
(sin θ 1Yl0(θ, 0)) . (4.29)

and also
∫︂ 1

−1

⎡⎣ (r2
0 + a2) 0Yl0(θ, 0)√︂

l(l + 1)(r0 − ia cos θ)2
+ ia sin θ −1Yl0(θ, 0)

r0 − ia cos θ

⎤⎦ d(cos θ) =

=(l(l − 1))−1/2
∫︂ 1

−1
0Yl0(θ, 0)d(cos θ) = 0,

(4.30)

where we utilized
−1Yl0(θ, 0) = 1√︂

l(l + 1)
∂

∂θ
0Yl0(θ, 0). (4.31)

Taking these integrals into mind the integral (4.26) reduces to

2π
∫︂ 1

−1

(︄
(r2

0 + a2)E
(r0 − ia cos θ)2 + c.c.

)︄
d(cos θ) = 4π(E + E) = 4πe(r0), (4.32)

where
E = Ea ⇐⇒ r0 < r1 E = Eb ⇐⇒ r0 > r2.

Similarly for ”magnetic charges”∫︂ 2π

0

∫︂ π

0
(−g)1/2F ∗tr|r=r0dθdφ = 4πe(r0). (4.33)

We get that
E − E = 0. (4.34)

So finally we arrive at the solution

E = 1
2e(r0). (4.35)

For a source located in the region ⟨r1, r2⟩ with the total charge e and with zero
black hole charge we get

Ea = 0, Eb = 1
2e. (4.36)
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4.1.1 The extremal case
We will repeat the previous section for the extremal black hole a = M . Although
it is possible to take the limit a → 1 in the final results from the previous section,
the expression in the extremal case take a simple form so that they might be of
interested when studying this special case. These results were also introduced in
[2]. We start for the equation (4.14) which holds for a = M as

(M − r)2 d
2(2Rlm)
dr2 +

⎡⎣mM
(︂
(2i+m)M − 2ir

)︂
(M − r)2 − l(l + 1)

⎤⎦ 2Rlm = −4π2Jlm,

(4.37)

where now

2Jlm =
∫︂ 2π

0

∫︂ π

0

(︂
r − iM cos θ

)︂3(︂
r + iM cos θ

)︂
sin θJ2M

−2
−1Y lmdθdφ. (4.38)

The equation (4.37) is most easily solved following two transformations, first
consider taking

2Rlm(x) = eim/x 2ylm(x), x = r

M
− 1, (4.39)

which results in the equations

x2 2y′′
lm(x) − l(l + 1) 2ylm(x) − 2im 2y′

lm(x) = 0. (4.40)

Further taking
2ylm(χ) = x−lη(ξ), χ = −2im

x
, (4.41)

results in
χη′′(χ) − (χ− 2l − 2)η′(χ) − lη(χ) = 0. (4.42)

The two solution of this equation are [2]

η
(I)
lm = (−2im)2l+1eχ χ−(2l+1)Φ(1 − l,−2l,−χ),
η

(I)
lm = Φ(l, 2l + 2, χ).

(4.43)

Where Φ is the hypergeometric cofluent function. Transforming back into y and
x we get

2y
(I)
lm = xl+1e−2im/xΦ(1 − l,−2l, 2im/x),

2y
(I)
lm = x−lΦ(l, 2l + 2,−2im/x).

(4.44)

Further the derivation is exactly analogous to the derivation in the previous
section only now (r+ −r−) is replaced by M and a is replace by M the final forms
of ϕi take the form
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ϕ0|a=M =
∑︂
l,m

2 alm
l(l + 1) exp(im/x) d

2

dx2

(︂
2yIlm

)︂
1Ylm|a=M ,

ϕ1|a=M =Ea
ϱ2 +

√
2M
ϱ2

∑︂
l,m

alm
l(l + 1) exp(im/x)

{︄
−ia sin θ d

dx

(︂
2yIlm

)︂
1Ylm

+ [l(l + 1)]1/2
[︄
ϱ
d

dx

(︂
2yIlm

)︂
−M2yIlm

]︄
0Ylm

}︄
|a=M ,

ϕ2|a=M =M
2

ϱ2

∑︂
l,m

αlm

(︃
1 − 1

x

)︃−iZm

2y
I
lm −1Ylm|a=M .

(4.45)

The coefficients alm, βlm are now given by the formulas

αlm = 4π
2l + 1

∫︂
2Jlm(ξ)ξ−2 2R

(II)
lm (ξ)dξ,

βlm = 4π
2l + 1

∫︂
2Jlm(ξ)ξ−2 2R

(I)
lm(ξ)dξ.

(4.46)

We’ve provided the derivation the full solution to the test electromagnetic
field in Kerr spacetime as an infinite sum [2]. We want to inform the reader that
for some specific cases, especially in the axisymmetric case, closed expressions
can be found. Even more in some cases the so called Debye potential was found
and the whole field can be expressed in terms of one complex scalar. A detailed
discussion of the point charge in terms of Debye potential can be found in [17].

4.2 Meissner effect
By the Meissner effect, which was first introduced in [18], we understand the
expulsion of magnetic fields from a superconductor. This happens when the
superconductor cools below some critical temperature Tc. In GR a Meissner-like
effect also arises. The test electromagnetic field are ”expelled” from the horizon
of extremal black hole a = M . Such an effect was first found noticed by Wald in
[19]. The electric and magnetic flux across some region Σ can then be simplify
defined as

iΦe + Φm =
∫︂

Σ
∗F (4.47)

In accordance to the Gauss theorem, such an integral over the black hole horizon
would always be zero, since the black hole has zero charge. There are many ways
to quantify the amount of flux coming into the black-hole. For axisymmetric
fields we can intuitively take the region as the upper (or lower) hemispere. For
non-axisymmetric field the construction is more complicated (see for example
Bičák and Janǐs [10]). We also quickly want to note that we will work in the
general case a < M as long as we can so that the expression may be utilized for
other calculations, in the end we will take the a → M− limit.

Writing out the integral explicitly we recover over the black hole r = r+

iΦe + Φm =
∫︂ ∫︂

∗Fθφ|r=r+dφdθ, (4.48)
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with
∗Fθφ = a∆φ0√

2ϱ
sin2 θ − 2i(a2 + r2)φ1 sin θ −

√
2ϱaφ2 sin2 θ. (4.49)

We now show how the integral above always behaves when we take the limit
r → r+ for the axisymmetric case. To calculate these it is preferable to utilise
the ingoing coordinates (1.11), in these coordinates it hold that the component
(4.49) is the same ∗Fθφ = ∗Fθψ and schematically the integral changes to

∫︁ 2π
0 dφ →∫︁ 2π

0 dψ. First we rewrite (4.45) into the coordinate ψ

ϕ0 =
∑︂
l,m

2 αlm 1Ylm(θ, ψ)
l(l + 1)x

{︄
−2i(l − 1) 2F1(2 − l, 2 + l, 2 − 2iZm, x)

+
(︄

1 + 2iZm
l(x− 1) + x+ 2iZm

x− 1

)︄
2F1(1 − l, 2 + l, 2 − 2iZm, x)

}︄
,

ϕ2 =
∑︂
l,m

4 αlm ϱ−2(M2 − a2)(x− 1)x −1Ylm(θ, ψ) 2F1(1 − l, 2 + l, 2 − 2iZm, x)

ϕ1 =
∑︂
l,m

2
√

2αlm
√
M2 − a2

l(l + 1)ϱ2

{︄
2F1(2 − l, 2 + l, 2 − 2iZm, x)

·
[︃√︂

l(l + 1) ϱ 0Ylm(θ, ψ) − ia sin θ 1Ylm(θ, ψ)
]︃

(x− 1)(1 − l)

+
[︄√︂

l(1 + l)0Ylm(θ, ψ)
(︃

−4
√︂

(M2 − a2)x(x− 1) + (l(x− 1) + x)ϱ+ 2iϱZm
)︃

+ ia sin θ 1Ylm(θ, ψ) (l(x− 1) + x+ 2iZm)
]︄

2F1(1 − l, 2 + l, 2 − 2iZm, x)
}︄
.

(4.50)

When calculating limit (4.49) we cannot just take the limits of φi but we need to
take into account the whole equations (4.49). From rudimentary analysis it is the
general knowledge that a sum of limits is a limit of sums if both limits exist and
are finite. Similarly for product, a limit of a product of functions is a product of
limits when both limits exist, are finite and non-zero. Taking this into account
we can split (4.49) into the expressions

lim
r→r+

∆ϕ0 =
∑︂
l,m

16αlm(a2 −M2)
l(l + 1) Zm(2Zm − i)1Ylm(θ, ψ)

· 2F1(1 − l, 2 + l, 2 − 2iZm, 1),

lim
r→r+

ϕ1 =
∑︂
l,m

2
√

2αlm
√
M2 − a2

l(1 + l)(r+ − ia cos θ)2 (2Zm − i) 2F1(1 − l, 2 + l, 2 − 2iZm, 1)

·
{︄√︂

l(l + 1)
[︃
iM +

√︂
(M2 − a2) + a cos θ

]︃
0Ylm(θ, ψ)

+ a sin θ 1Ylm(θ, ψ)
}︄
,

lim
r→r+

ϕ2 = 0.
(4.51)

In the first we had to take ∆ϕ0 since the product rule for limits doesn’t hold.
Finally, after a straightforward simplification we can explicitly write out (4.49)
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∗Fθψ|r=r+ =
∑︂
l,m

8
√

2 αlm sin θ
l(l + 1)ϱ2

+
(2Zm − i) 2F1(1 − l, 2 + l, 2 − 2iZm, 1)

{︃√︂
l(l + 1)(M2r+ −Ma2)ϱ+ 0Ylm(θ, ψ) + (Ma3i− iM2r2

+

−(M2 − a2)ϱ+Zm) sin θ 1Ylm(θ, ψ)
}︂
,

(4.52)

where we denoted ϱ+ = ϱ|r=r+ = r+ − ia cos θ. Directly from the expression
above we can prove the Meissner effect. For stationary axially symmetric sources
J i = J i(r, θ) ∀i ∈ {0, 1, 2, 3} and for the extremal black hole a = M the integral
(4.15) over the variable φ reduces to integral over the spherical harmonic, then
further considering (4.25) we get∫︂ 2π

0
−1Y lm(θ, φ)dφ = −1Y lm(θ, 0)2πδm,0 =⇒ αlm = αl0δm,0. (4.53)

For these types of sources we get

lim
x→1+
a→M

∗Fθψ|αlm=αl0δm,0 = 0 (4.54)

We thus recovered the expulsions of electromagnetic axisymmetric fields for ex-
tremal black holes. So the Meissner effect says that locally the electromagnetic
flux at the horizon of any vacuum axisymmetric stationary solution of the Maxwell
equation is zero. This also implies that, for the extremal Kerr black hole, the
flux across the lower (or upper) hemisphere of any stationary electromagnetic so-
lution is zero. Since for any field we can formally split it into two parts, the part
perpendicular to axis of symmetry F⊥ and the part parallel to axis of symmetry
F∥. The former part has of course zero total flux across the horizon, this is given
by the symmetry of the problem, for the latter the Meissner effect holds.

We now shortly discuss the history and relevance of the Meissner effect.

History

It would be cumbersome to provide an exhaustive list of all articles discussing the
Meissner effect, we thus just the outline of the most important developments in
Meissner effect. The history of the Meissner effect begins with the Wald’s solution
[19], where they first derived the homogeneous magnetic field aligned along the
symmetry axis of a rotating black hole. They have done this by noticing that
a combination of the axial and timelike Killing vectors generates this solution.
Later King [20] noticed that flux across the lower hemisphere of this solution goes
to zero as the black hole becomes extremal a → M . In 1976 Bičák and Dvořák [2]
showed that this is the case for any axially symmetric test electromagnetic field
proving it in a similar fashion to the proof given above. More recent developments
have been in numerical methods for general relativistic magnetohydrodynamics,
such have been done in for example [21].
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Figure 4.1: The and magnetic Φm flux across the lower horizon of the Kerr black
hole of the homogeneous magnetic field of the homogeneous magnetic field 5.5.
The flux is divided by the black hole area A+ = 4π(r2

+ + a2). We can see the
Meissner effect starts to prevail at large values of a.

Relevance

The Meissner effect isn’t some artifact of the extremal case. This is because the
flux behaves in a continuous manner as a → M . This can be seen in 4.1. Thus
the Meissner effect is surely important to understanding the fundamental physics
behind the ”expulsion” of electromagnetic fields which is yet not understood,
although it has been discussed in many articles like [22]. There is an ongoing
discussion about wether significantly reduce or even eliminate the Blandford-
Znajek mechanism. For a detailed discussion we refer the reader to [23, 24]. The
Meissner effect was found to be true in more general metrics like the Magnetized
Kerr-Newman one discussed in [25].

4.3 Invariants
We already defined the electromagnetic invariants and explained their meaning in
Section 3. To calculate these invariants at horizons we express the Maxwell tensor
F in terms of the NP tetrad (2.31) while keeping in mind the normalization of
the tetrad (2.15) and (2.16). Using these we get after a long but straightforwards
simplification

1
4F

αβFαβ = ϕ0ϕ2 + ϕ0ϕ2 − ϕ2
1 − ϕ

2
1,

1
4F

αβ ⋆ Fαβ =
(︂
ϕ2

1 − ϕ1
2 − ϕ0ϕ2 + ϕ0ϕ2

)︂
ϵαβγιl

αnβmγmι

= i
(︂
ϕ2

1 − ϕ1
2 − ϕ0ϕ2 + ϕ0ϕ2

)︂
.

(4.55)

The scalar ϵαβγιlαnβmγmι is best calculated in the NP basis.
We now consider an axially symmetric test electromagnetic field. According

to [10] the NP components at horizon (∆ = 0) for the extremal Kerr black hole
(a = M) behave as

ϕ0 ∼ ∆(l−1)/2, ϕ1 ∼ ∆l/2, ϕ2 ∼ ∆(l+1)/2. (4.56)

27



Reordering the sums in (4.55) we get

1
2F

αβFαβ|(a=M,∆=0) = 0,
1
4F

αβ ⋆ Fαβ|(a=M,∆=0) = 0.
(4.57)

Thus, in the context of axisymmetric test fields surrounding an extremal Kerr
black hole, the magnitudes of magnetic and electric fields become equal at the
horizon ||B||2 = ||E||2, and the two fields are perpendicular to each other E·B=0,
this does not hold for the non-extremal case and can be formulated in terms of a
single invariant as

λ1|a=M,∆=0 = 0. (4.58)
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5. Fields lines and visualization
Before discussing the source term we will take a short detour and discuss visual-
ization of Electromagnetic fields in GR. The electric and magnetic field lines are
defined as tangent to the Lorentz force.

dxµ
ds = Eµ dxµ

ds = Bµ. (5.1)

These vector fields are not what the local observer measures. The local observer
measures the projection of these fields onto it’s own tetrad {ei}i=0,1,2,3, e0 = u.
As before we denote the projection of vector fields with the bracketed indices we
have the relations

B(a) = −e(a)
µ ⋆ F µνuν = − ⋆ F (a)(t),

E(a) = e(a)
µ F µνuν = F (a)(t).

(5.2)

The relation between the vector field projected onto a tetrad and the coordinate
one is

Bµ = −⋆F µ
νu

ν = eµ(k)B
(k),

Eµ = F µ
νu

ν = eµ(k)E
(k).

(5.3)

Instead of integrating the field lines on the manifold and then projecting these
integral curves onto a flat plane for purposes of visualization we can identify the
orthogonal projection with the flat plane and find the integral curves there. This
has the advantage that the field lines are as they would be measured by the local
observer. This can be more physically appropriate for some applications.

We define the field lines for the orthogonal projections as

dx(a)

ds = E(a)

ha
,

dx(a)

ds = B(a)

ha
. (5.4)

we have included polar (or spherical) Lamé coefficients ha , we do not sum over
a or (a). For an orthogonal frame the Lorentz force is obviously tangent to the
field lines.

We discuss the differences between the tetrad field lines and the coordinate
ones in the section below after introducing the homogeneous magnetic field.

5.1 Homogeneous magnetic field at infinity
Since we are dealing with perturbations the magnetic field doesn’t affect the ge-
ometry, on the other hand the geometry affects the field. A field that would be
homogeneous everywhere in Minkowski’s space (a = 0,M = 0) to be homoge-
neous only at infinity. Furthermore near the horizon of black hole the geometry
”induces” a electric field from a purely magnetic field at infinity.

The full form of magnetic field homogeneous at infinity was given in [2]. Let
us consider asymptotically, at large distances, Minkowskian coordinates {x =
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r sin θ cosφ, y = r sin θ sinφ, z = r cos θ}, in these coordinates the field takes
the asymptotical form Bx = B sinα,Bz = B cosα,By = 0. Without any loss of
generality we took By = 0, we also later parameterized the field by it’s magnitude
B and the angle from the z-axis α.

The electromagnetic field tensor then has the asymptotical form (r → ∞)[2].

F tr = F tθ = F tφ = 0,

F rθ = −sinφ
r

B sinα,

F rφ = B

r
(cosα− cot θ cosφB sinα) ,

F θφ = B

r2 (cot θ cosα + cosφ sinα) .

(5.5)

From comparing the asymptotic form of (4.45) and (5.5) we get that the only
nonzero coefficients are

a11 = i

√︃
π

6B sinα, a10 = i

√︃
π

3B cosα, a1−1 = −i
√︃
π

6B sinα. (5.6)

Writing out explicitly the scalars (4.45) while reparametrizing by the angle from
the z-axis α and the magnitude of the field B: B0 = B cosα,B1 = B sinα

ϕ0 = B√
2

{︄
sinα

2∆(ϱ− 2r)
[︂
cosψ

(︂
4Maϱ+ a∆

(︂
3 − cos(2θ)

)︂
+ 2i∆ cos θr

)︂
+ 2

(︂
−2MΣ + ∆(ϱ− 2r) + 2

(︂
Σ +M(ϱ− 2r)

)︂
r
)︂

sin(ψ)
]︂

+ i cosα sin θ
}︂

ϕ1 = B

⎧⎨⎩ i cosα∆ sin θ√
2(2Σ − 4ϱr)

+ i sinα sin θ
2
(︂
Σ + 2(ϱ− 2r)r

)︂ [cosψ ((ϱ− 2r)r +M(−ϱ+ r))

+a(M − ϱ+ 2r) sinψ]

⎫⎬⎭,
ϕ2 = −B

{︄
cosα (a (3 + cos(2θ)) (M − r) − 2i cos θa2 + r2)

4(ϱ− 2r)2

+i cosα {cosψ [(ϱ− 2r)r +M(−ϱ+ r)] + a(M − ϱ+ 2r) sinψ} sin θ
2 (Σ + 2(ϱ− 2r)r)

}︄
.

(5.7)

with ϱ = r − ia cos θ as before and ψ being the Kerr ingoing coordinate.

ψ = a

r+ − r−
ln
(︄
r − r+

r − r−

)︄
+ φ.

We do not provide the full form of the tensor F since the field is more elegantly
described in terms of the NP scalars, but for the convenience of the reader we have
expressed the tensor F in terms of the NP scalars in Boyer-Lindquist coordinates
along with projections to the tetrad fields in the appendix A.2.

Since we have several visualization techniques we split the discussion into
the field aligned with the axis of symmetry. Such field is probably the most
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astrophysically relevant, the direction of the field will eventually be the same as
of the axis of symmetry, but since the time it would take to align both directions
is probably long [2], the oblique case is also of interest.

Aligned field

The field is aligned with the axis of symmetry for α = 0. As we discussed in
above we have a plethora of ways to visualize the electromagnetic fields. Different
visualization techniques are shown in Fig. 5.1 reveal significant discrepancies. We
will now attempt to summarize the field behaviour for different observers.

The ZAMO coordinate field lines exhibit expulsion of the field lines for the
extremal case a = M . As anticipated as we approach the horizon (r = r+) the
angle of approach of the field lines diverges, signifying a complete expulsion of
the electromagnetic field from the horizon. Consistently with this expulsion both
the electric and magnetic field completely vanishes at the horizon r = r+.

However, the ZAMO tetrad field lines present a contrasting view. The field
lines do no exhibit any expulsion at all. The angle of approach remains finite
as we approach the horizon. Perhaps in accordance with the Meissner effect the
electric and magnetic field also completely vanish at the horizon. This view agrees
with the behaviour of the norm of the magnetic field ||B|| shown in fig. 5.2.

For the Doran observer coordinate and tetrad field lines experience some ex-
pulsion at the horizon. However this expulsion does not strictly adhere to the
Meissner effect. Here the field remains non-zero at the horizon and the situation
is more subtle, if we zoom in on the horizon we can see that some of the tetrad
field lines start at the horizon and then plunge back in Fig. 5.3. Such field lines
start to appear at around a ≈ 0.9M . The coordinate field lines for the Doran
observer stay strictly at the horizon, since Br˜ is zero everywhere at the horizon.
As can be seen in Fig. 5.2 the norm of the magnetic field ||B||on the horizon is
not zero as in the ZAMO case.

We also show the electric field lines Fig. 5.4, since these are subordinate to
the magnetic field lines, we plot just the field lines for the Doran observer. And
we also projected the ZAMO tetrad field lines on the embedding in the figure
Fig. 5.6.

Finally we also note another difference between the ZAMO and Doran ob-
server, for ZAMO observer the tetrad fields stay at constant φ, this is because
the ZAMO observer corotates in a natural way around the Black hole. But the
Doran observers move at constant φ so the field lines are shifted in this direction
as can be seen in Fig. 5.7.

To summarize the Meissner effect, if formulated as expulsion of field lines from
the black hole horizon in the extremal black hole case, seems to be coordinate
dependent effect. Different observer and different visualization techniques dis-
play different levels of expulsion from the horizon, even thought it always stays
true that the flux through the black hole Fig. 4.54 and Fig. 4.57 electromagnetic
invariants vanish. Thus the Meissner effect should not be formulated as expul-
sion of the magnetic/electric field lines, but should stay strictly confined to the
vanishing flux or invariants, even thought this is not intuitive from the point of
classical electrodynamics.
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Oblique field

The oblique field α = π/2 can really only be sensibly visualized as 2D graph in
the θ = π/2 plane, since the field lines starting in this plane stay confined to
this plane. The Meissner effect is completely gone since it’s experienced only for
aligned fields. We here only quickly note that since the field is dependent on the
coordinate φ it is important to utilize some other well behaved coordinate as the
coordinate φ winds infinitely around the horizon. This is visualized in Fig. 5.5.
As noted in [26] for ZAMO observer there exist closed loops of magnetic lines
which start at the horizon and end at the horizon. For the Doran observer the
field lines coming from infinity can either hit the horizon. Or can continue past
the black hole. There exist no closed magnetic loops as in the ZAMO case.
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(b) Doran coordinate field lines
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(c) ZAMO tetrad field lines
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(d) Doran tetrad field lines

Figure 5.1: Comparison of two different visualization techniques for field lines
of homogeneous magnetic field for a = M . We can see substantial difference.
Especially for the ZAMO observer, for which field lines as measured by the local
observer (tetrad field lines) actually ”hit” the black hole.
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(a) Doran observer (b) ZAMO observer

Figure 5.2: Norms of the magnetic field ||B|| at the horizon r = r+ plotted with
respects to the rotation of the black hole a and the coordinate θ.
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Figure 5.3: Field lines which start at the horizon for the tetrad Doran observer
a = M .
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(a) Doran tetrad field lines
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(b) Doran coordinate field lines

Figure 5.4: Visualization of induced electric field for the extremal Kerr black hole
a = M .

Figure 5.5: Oblique field a = 0.998M ZAMO Tetrad field lines, magnetic field
lines starting at π/2 are blue, mag field lines at π/4 are red. We can see the
infinite winding effect of the φ coordinate.
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Figure 5.6: Magnetic field lines (red) of Homogeneous magnetic field aligned with
the axis of symmetry for orthogonal ZAMO magnetic field projected onto the
embedding of Kerr black hole a = 1/2M into E3. The curves are also projected
onto the flat x− z plane (dashed).

Figure 5.7: Full 3D plot of the magnetic field lines projected onto the Doran
observer tetrad. For the extremal Kerr black hole a = M . Only a few lines
starting at r cos θ = 2 are shown for the sake of clarity.
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Figure 5.8: Λ function on the black hole horizon r = r+ of the homogeneous
magnetic field parameterized by the angle of the field to the axis of symmetry
α and the rotational parameter of the black hole a. Qualitatively, the graph is
similar to the homogeneous magnetic field.

To visualize how the Meissner effect depends on the direction of the homo-
geneous magnetic field we then take the eigenvalue λ1 and integrate it over the
whole black-hole we get a function Λ that is dependent on α and the rotation
parameter a.

Λ(α, a) =
∫︂ 2π

0

∫︂ π

0
λ1Σ sin θ dθ dφ. (5.8)

The function behaviour can be seen in Fig. 5.8. We can clearly see how the
field becomes null for the extremal black hole a = M and the aligned field α = 0.
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6. Source terms and fields
In this section we describe the source terms while also deriving the coefficients
αlm, βlm. We first start with the simplest case, the point charge, these have been
already derived in [2]. Then we will move to a charged axial loop which we later
generalize into a non-axial loop and a disk.

Any source must of course satisfy the continuity equation

∇µJ
µ = 1

(−g)1/2
∂

∂xµ

(︂
(−g)1/2Jµ

)︂
= 0, (6.1)

with (−g)1/2 = Σ sin θ being the metric determinant in Boyer-Lindquist coordi-
nates. The same equation holds for the magnetic current vector Mµ.

6.1 Point charge
The simplest non-axially symmetric source is the point charge. A point charge
at the point r0, θ0, φ0 is described by the following expression in Boyer-Lindquist
coordinates

J = e

Σ0 sin θ0
∂t δ(r − r0)δ(θ − θ0)δ(φ− φ0). (6.2)

Following steps derived in Section 4.1 we then calculate

2Jlm =e∆
[︂
2
√

2(r+ − r−)2ϱ0

]︂−1
{︄
ia sin θ0 −1Y lm(θ0, φ0)δ′(r − r0)

+
[︃
am

∆0
sin θ0 −1Y lm(θ0, φ0) −

√︂
l(l + 1) 0Y lm(θ0, φ0)

]︃
δ(r − r0)

}︄
.

(6.3)

Employing (4.25) we get

alm = 2πe√
2 (r+ − r−) (r0 + ia cos θ0)

(l + 1)!Γ (l + 1 − 2iZm)
(2l + 1)!Γ (2 − 2iZm)

(︃
1 − 1

x0

)︃−iZm

· (−x0)−l
{︄

− ia

r+ − r−
sin θ0Ȳ lm (θ0, φ0)

l

x0
F (l + 1, l + 1

−2iZm, 2l + 2;x−1
0

)︂
+ [l(l + 1)]1/2Ȳ lm (θ0, φ0)

·F
(︂
l, l + 1 − 2iZm, 2l + 2;x−1

0

)︂}︂
,

blm = 2πe√
2 (r+ − r−) (r0 + ia cos θ0)

(l + 1)!Γ (l + 1 − 2iZm)
(2l + 1)!Γ (2 − 2iZm)

(︃
1 − 1

x0

)︃iZm

·
[︄
− ia

r+ − r−
(1 − 2iZm) sin θ0Ȳ lm (θ0, φ0)

· F (l + 1,−l, 1 − 2iZm;x0) + [l(l + 1)]1/2Ȳ lm (θ0, φ0)x0 (x0 − 1) ,
·F (l + 2, 1 − l, 2 − 2iZm;x0)]

Ea = 0, Eb = 1
2e.

(6.4)

Here we want to note that again for axisymmetric case θ0 = 0, φ0 = 0 only
the modes with m = 0 are non-zero.
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Figure 6.1: Magnetic and electric coordinate fields lines with respect to the ZAMO
observer for the extreme Kerr black hole (a = M). The charge is located at
r = 3/2M and is visualized magenta, the outer horizon r+ is visualized black. No
truncation error can be seen because we’ve used the closed form derived in [17].
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6.2 Axial current loop
Consider an current loop in the equatorial plane lying at θ = π/2, r = r0 > r+.
We will consider a axial current loop with the charge q and the current I as
measured by the ZAMO observers. To relate these quantities to the four-vector
Jµ we consider the form.

J =
(︃

q

2πΣ0
∂t + C∂φ

)︃
δ(r − r0)δ(r − π/2). (6.5)

In ZAMO coordinates this the third component four-vector has the form

JφZAMO =
√︄
A0

∆0
r0

[︃
C − Mae

πr0A0

]︃
δ(ξr − ξr0)δ(ξθ − ξθ0). (6.6)

The observer meassure the current as

JφZAMO = Iδ(ξr − ξr0)δ(ξθ − ξθ0). (6.7)

We can relate

C = r−1
0

⎡⎣Maq

πA0
+ I

√︄
∆0

A0

⎤⎦ . (6.8)

where we denoted ∆0 = ∆|r=r0,Σ0 = Σ|r=r0,θ=θ0 , A0 = A|r=r0,θ=θ0 .
From (4.16) we then find

2Jlm = 2JR
lm + 2, JL

lm (6.9)

with

2JR
lm = e∆δm0

2
√

2r0(r+ − r−)2

{︂
ia ‧1Y l,m(π/2, 0)δ′(r − r0)

− (l(l + 1))1/2
0Y lm(π/2, 0)δ(r − r0)

}︂
,

2JL
lm = − ∆δm0√

2(r+ − r−)2

[︂
(Mae/A0) + πI(∆0/A0)1/2

]︂
[︂
i(r2

0 + a2)‧1Y lm(π/2, 0)δ′(r − r0)

+
{︂
ir0 ‧1Y lm(π/2, 0) − a((l + 1))1/2

0Y lm(π/2, 0)
}︂
δ(r − r0)

]︂
.

(6.10)

The splitting of (6.9) is in correspondence to different physical situations. For
static charged axial ring with no current 2

JClm = 2JL
lm, for a current loop with no

charge 2Jlm = 2JL
lm, e = 0. For a current loop with charge have the consider the

whole equations (6.9).
From equation (4.25) and following the notation above we get

αlm = αRlm + αLlm,

βlm = βRlm + βLlm,
(6.11)

with
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aRlm = δm02πe√
2 (r+ − r−) (r0 + ia cos θ0)

(l + 1)!l!
(2l + 1)! (−x0)−l

·
{︄

− ia

r+ − r−
sin θ0−1Ȳ l0 (θ0, 0) l

x0
F
(︂
l + 1, l + 1, 2l + 2;x−1

0

)︂
+[l(l + 1)]1/2Ȳ l0 (θ0, 0)F

(︂
l, l + 1, 2l + 2;x−1

0

)︂}︂
,

bRlm = δm02πe√
2 (r+ − r−) (r0 + ia cos θ0)

(l + 1)!l!
(2l + 1)!

·
{︄

− ia

r+ − r−
sin θ0 − 1Ȳ l0 (θ0, 0)F (l + 1,−l, 1;x0) + [l(l + 1)]1/2

·Ȳ l0 (θ0, 0)x0 (x0 − 1)F (l + 2, 1 − l, 2;x0)
}︂
,

Ea = 0, Eb = 1
2e.

(6.12)

and

aLlm = δm04π√
2 (r+ − r−)

(l + 1)!l!
(2l + 1)!

[︂
Mae/A0 + πI (∆0/A0)1/2

]︂
(−x0)−l

[︄
i
r2

0 + a2

r+ − r−

· −1Ȳ l0

(︃
π

2 , 0
)︃
l

x0
F
(︂
l + 1, l + 1, 2l + 2;x−1

0

)︂
+
{︃
ir0−1Ȳ l0

(︃
π

2 , 0
)︃

−a[l(l + 1)]1/2Ȳ l0

(︃
π

2 , 0
)︃}︃

F
(︂
l, l + 1, 2l + 2;x−1

0

)︂]︃
,

bLlm = δm04π√
2 (r+ − r−)

(l + 1)!l!
(2l + 1)!

[︂
Mae/A0 + πI (∆0/A0)1/2

]︂ [︄
i
r2

0 + a2

r+ − r−
Ȳ l0

(︃
π

2 , 0
)︃

· F (l + 1,−l, 1;x0) +
{︃
ir0−1Ȳ l0

(︃
π

2 , 0
)︃

− a[l(l + 1)]1/2

·Ȳ l0

(︃
π

2 , 0
)︃}︃

x0 (x0 − 1)F (l + 2, 1 − l, 2;x0)] ,

Ea = 0, Eb = 1
2e.

(6.13)
Where again for a charged ring we set αRlmβRlm zero, for current loop with no

charge we set e = 0 and for a current loop we charge we take the full solution.
The field of the current loop with no charge is visualized in Fig. 6.2.
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Figure 6.2: Magnetic field of axial current loop for a = 3/4M located at r = 6M ,
the black hole is visualized black with the loop being magenta. At r = 6 we can
see truncation error, we have taken first 10 l of sum.
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Figure 6.3: The construction of the non-axial current loop. The normal of the
plane of the axial loop n = {0, 0, 1} coincides with the axis of symmetry. The
normal of the plane of the non-axial loop is denoted n′ = {0,Υ, 1}, the angle
between the planes α. The axial loop is plotted red, the non-axial is plotted
green. The parameters of the plot are Υ = 1/2 ( =⇒ α = 26.56◦), r0 = 6M .
The plot is visualized in units of Mass.

6.3 Non-axial current loop
We will now generalize the current loop above by allowing the current loop to
be tilted, instead of localizing the coordinate θ to the equatorial plane θ = π/2
we allow to loop to smoothly vary in the θ coordinate as the function of φ. We
consider the ansatz

J = (f ∂t + g Υ cosφ ∂θ + h ∂φ) δ(r − r0)δ(θ − π

2 − Υ sinφ). (6.14)

Where in general f = f(t, θ, φ), g = g(t, θ, φ), h = h(t, θ, φ), the current vector
now also has a non-zero Jθ. The Υ constant symbolizes the ”deflection magni-
tude” from the axial current loop. In reality this also defines the normal of the
plane where the non-axial current loop is the coordinates {x = r sin θcosφ, y =
r sin θ sinφ, z = r cos θ} as ni = {0,Υ, 1}. To make the geometrical situation
clear we have provided a visualization in (6.3). We could also parameterize by
the angle between the current loop and the equatorial plane α, but the equations
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take simpler form in the Υ parameter, these two are related by

cosα = 1√
1 + Υ2

. (6.15)

We could now directly solve the continuity equation (6.1) while correctly han-
dling the Dirac deltas as distribution and introducing test function L2(R). A
more elegant approach is inducing a metric on the current loop and solving the
continuity equation there, we denote the induced metric by g.

g = g|{r=r0,θ=π/2+Υ sinφ}, (6.16)

this metric works out to be

g = (−1 + 2Mr0

Σ̃
)dt2 − Mra sin(θ̃)

Σ̃
dtdφ

+ Υ2Σ̃ cos2 φ+ sin2(θ̃)
(︄
r0 + a2 + 2Mr0a

2 sin2(θ̃)
Σ̃

)︄
dφ2,

(6.17)

where Σ̃ = r2
0 +a2 cos θ̃, θ̃ = π/2+Υ sinφ. The determinant of the induced metric

is
gdet = Υ2

(︂
2Mr0 − Σ̃

)︂
cos2 φ+

(︂
2Mr0 − r2

0 − a2
)︂

sin2 θ̃. (6.18)
On such a metric the induced current vector J takes the form

J = f∂t + (h+ g) ∂φ = f∂t + 2F∂φ, (6.19)

where the definition of F = F (φ) is obvious. The continuity equation on the
induced metric takes the form

1√−g
∂

∂xi
(
√

−g Ji) = 0, (6.20)

where xi = {t, φ}. Working out this equation explicitly at Υ = 0 we get

f = const, (6.21)

and

F ′(φ)
F (φ) =

θ̃
′(φ)

(︂
a2 sin(2θ̃(φ))

(︂
∆ − a2θ̃

′(φ)2
)︂

+ 2
(︂
a2∆ − a4 + (r2

0 − Σ)2)︂
θ̃

′′(φ)
)︂

2a4 sin2 θ̃(φ)θ̃′(φ)2 − 2a2∆
(︂
sin2(θ̃(φ)) + θ̃

′(φ)2
)︂ .

(6.22)

This differential equation can be simply solved by exponentiation, denoting
the right hand side of (6.22) as F(φ), we thus arrive at

F (φ) = exp
(︃∫︂

dφF(φ)
)︃
, (6.23)

which can be easily solved by using the substitution

u = 2a4θ′(φ)2 sin2(θ(φ)) − 2a2∆
(︂
θ′(φ)2 + sin2(θ(φ))

)︂
, (6.24)
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finally leads to

F (φ) = exp
∫︂ −1

2u du = exp
(︄

− log |u| + const

2

)︄

= C√︂
|∆0 (1 + Υ2 (1 + cos(2φ)) + cos(2Υ sinφ)) − 2Υ2a2 cos2 φ cos2(Υ sinφ)|

.

(6.25)

We here note that it is not physically appropriate to relate the constant to the
ZAMO observers, since they do not measure such a loop naturally, this only makes
sense in the case of zero tilt, where the constants take for form A = q/(2πΣ0), C =
r−1

0
√

∆0
(︂
Maq/(πA0) + I

√︂
∆0/A0

)︂
. Constructing a class of physically sensible

observers which circularly orbit in the non-equatorial plane at a constant radius
is not feasible, since such orbits experience precession [27]. To provide a intuitive
insight, we plot the behaviour of the function F (φ) in (6.5). The final source
terms thus takes the form

J = (f∂t + F (φ)Υ cosφ∂θ + F (φ)∂φ) δ(r − r0)δ(θ − π/2 − M sinφ), (6.26)

where f = conts. Finally, we should now calculate the 2Jlm from the current vector
(6.26) but we weren’t able to do the integral over φ analytically, for any following
graphs and results we’ve calculated the constants αlm and βlm numerically.

We can now repeat the procedure of finding integral of the eigenvalue Λ, this
is shown in the Fig. 6.6. It is clear that the Meissner effect holds for such a
solution. In the graph we can see that the Λ is not constant in the parameter Υ
for a = 0 this is because we have taken the constant C to unity for each Υ. But
in reality it is clear that the constant must be dependent on the parameter Υ in
such a ways that for Υ → 0 we recover the axial current loop.

The full 3D field line plots of non-axial field can be hard to read even in the
simplest case of homogeneous field. We resolved to visualizing the vector field
instead. Choosing a full 3D plot, we’ve visualized the vector field on a center cut
sphere, see Fig. 6.4.
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Figure 6.4: The ZAMO magnetic vector field of non-axial current loop. The
parameters of the plot are lmax = 7, Υ = 1/3, a = 3/4M , r0 = 4M . The black
hole is visualized black, the current loop is visualized green. The vector sizes as
well as their color correspond to their magintudes with logarithmic scaling
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Figure 6.5: Behaviour of the F (φ) for different Υ for a = 1/2M .

Figure 6.6: The Λ invariant of the non-axial current loop. The constant C was
taken such that the plot is normalized to 1 at Υ = 0, a = 0
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6.4 Field of a current disk
Lastly we will reformulate the work of Vlasáková [28] in the NP formalism, where
she modeled a field of a current disk. We will generalize the work by considering
non-zero rotational parameter a but we will not consider a continuous current
profile rather modeling the disk by superposing multiple current loops.

Consider a current loop located some distance rn with the current In, we
can then model a disk located between r0 = r01 and rn = r02 as having the
four-current

Jadisk =
N∑︂
n=1

Jaloop(rn, In) (6.27)

By the linearity of Maxwell equations we can infer

ϕi =
N∑︂
n=1

ϕni , i = 0, 1, 2. (6.28)

the sum above is more of a symbolic representation, we need to note that our
solutions are split into the inner and outer solution,

ϕni =

⎧⎨⎩ϕ(I)n
i , r < rn

ϕ(II)n
i , rn < r

, i = 0, 1, 2. (6.29)

For a continuous current profile the sum goes over to the integral

ϕi =
∫︂ rN

r0
ϕi(r̃, I(r̃))dr̃, i = 0, 1, 2. (6.30)

It is not clear what radial profile of current I(r) should be, so we consider multiple
possible profiles which can be seen in 6.7.

We finally provide plots of the behaviour of B(r) in Fig. 6.9 and B(θ) in Fig.
6.10 as functions of r. We can see that the non-zero value of a changes the
behaviour of such field significantly.

I(r) =
(︃
r

rN

)︃n
M−1 (6.31)
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Figure 6.7: Radial current profile for disk located between r = 4M and r = 5M
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(b) a = 0.99M

Figure 6.8: Magnetic field of disk using 5 loops between r0 = 4M and r5 = 5M
with constant current I(r) = I, the disk is plotted magenta, the horizon r+ is
visualized black
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Figure 6.9: Behaviour of the radial field B(r) on the outer horizon r = r+. The
difference between the a = 0 case and other can be easily explained by considering
that the outer horizon isn’t a spherical but a quasi spherical.
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located.
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7. Magnetic fluxes
In this final section we will follow the article [10]. Which discusses the magnetic
fluxes around general hemispheres of the Kerr black hole. In the extremal case
a = M we will find the hemisphere of maximal magnetic flux for the homogeneous
magnetic field and compare this results with numerical results for the non-axial
current loop.

Let us first discuss the derivation of the Eq. (4.48). Consider the tensor

dσαβ = 2dx[α
1 dx

β]
2 ,

dxα1 = {0, 0, dθ, 0}, dxβ2 = {0, 0, 0, dφ}.
(7.1)

where [ ] denotes anti-symmetrization. Such a tensor enables one to define the
surface of a black hole invariantly. Surface element of the black-hole is then

dS =
√︄⃓⃓⃓⃓1

2dσabdσab
⃓⃓⃓⃓
|r=r+ =

√︂
A+ sin θdθdφ = (r2

+ + a2) sin θdθdφ. (7.2)

Identical results comes when transforming the quantities in general coordinates.
The total area of a black hole A is

A =
∫︂ π

0

∫︂ 2π

0
dS = 4π(r2 + a2). (7.3)

Consider now the electromagnetic field Fαβ and it’s dual ⋆Fab and some ar-
bitrary 3-volume with the volume 3-form dΞt and with the surface ∂Ξ with the
surface 2-norm d ⋆ ξab. We can utilize the Gauss theorem to define appropriate
fluxes. For the electric charges we have∮︂

∂Ξ
F ab d ⋆ ξab =

∮︂
∂Ξ
⋆Fab dξab =

∫︂
Ξ

2F ta
;a dΞt. (7.4)

And for the ”magnetic charges” we get∮︂
∂Ξ
⋆F ab d ⋆ ξab =

∮︂
∂Ξ
Fab dξab =

∫︂
Ξ

2 ⋆ F ta
;a dΞt = 0. (7.5)

Thus the magnetic Φm and electric Φe flux across any surface (non-necessarily
closed) is given by

Φm =
∫︂
∂Ξ
Fab dxa ∧ dxb, Φe =

∫︂
∂Ξ
⋆Fab dxa ∧ dxb. (7.6)

Where ∧ denotes the exterior product. As already noted in Sec. 4.2 we can write
this in terms of a single complex quantity (4.48). Consequently, if the the area is
part of the horizon of the black hole S we get

Φm =
∫︂
S
Fθφ dθdφ, Φe =

∫︂
S
⋆Fθφ dθdφ. (7.7)

In [10] the integral was derived for arbritrary hemisphere.
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7.1 Hemispheres of maximal flux for the
extremal Black hole

In this section we will consider only the extremal black hole a = M , while setting
the mass of the black hole to unity M = 1. Since an flux of arbitrary axisymmetric
(part) field is zero, the hemisphere of maximal flux will always be such, that
it’s axis of symmetry lies in the equatorial plane. All such hemispheres can be
parameterized by a single angle β ∈ ⟨−π, π⟩. Thus the integrals (7.7) reduce to

Φm =
∫︂ β+π/2

β−π/2

∫︂ π

0
Fθφ dθdφ, Φe =

∫︂ β+π/2

β−π/2

∫︂ π

0
⋆Fθφ dθdφ. (7.8)

Let us now consider an arbitrary field that is homogeneous at infinity any such
field will have non-zero only the terms with l = 1. We can integrate the field
explicitly for arbitrary α1m we get

Φm|l=1 =
∫︂ β+π/2

β−π/2

∫︂ π

0
Fθφ|l=1 dθdφ

=
√︄

3π
8 [cos β ((1 + 2i)ᾱ1−1 − (1 − 2i)ᾱ11 + (−1 + 2i)α1−1 + (1 + 2i)α11)

+ sin(β) ((1 + 2i)ᾱ1−1 + (1 − 2i)ᾱ11 + (1 − 2i)α1−1 + (1 + 2i)α11)] .
(7.9)

We’ve provided the expression in such a form, to emphasize that no terms a10, this
is actually the general case for every l. In the case of the field of the homogeneous
field derived in the section 5.1 this reduces to

Φhom.
m = πB1(cos β − 2 sin β), (7.10)

this result matches with the results of [10] and can be derived for arbitrary a < M
and M , the full expression reads

Φhom.
m = πB1

(︂
r2

+ cos β −
(︂
r2

+ +M2
)︂
a sin β

)︂
. (7.11)

For B1 > 0 this has the extrema at the points

βhom.
max = − arctan 2,
βhom.
min = π − arctan 2,

(7.12)

which we have determined by the second derivative test, but from the geometry
of the problem it’s obvious that the minimum will be located at π − βmax.

Let us now repeat the procedure for the non-axial current loop. Here we need
to be careful with convergence, taking l = 16 and the loop radius r = 10M , we
can derive the equations for of flux (7.8) for arbitrary constants αlm analytically
although the expression is too long to provide here, we then substitute numerically
calculated components αlm of the non-axial current loop. Deriving this equation,
numerically solving the equation for the extrema and then checking if we are at
maxima or minima with the second derivative test we arrive at the of at a list of
β indexed by the values of Υ where the flux is maximal. The variance of this list
is of the order 10−7 with the mean value being

βloop
max = −2.6755. (7.13)
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(a) Homogeneous field directed in
x = r sin θ cos ϕ.

(b) Non-axial loop taken with the
parameter Υ = 1/2.

Figure 7.1: 2 Visualizations of hemispheres of maximal flux. The hemispheres
are colored magenta. The extremal black hole is visualized opaque. (a) the
homogeneous magnetic field is visualized blue, (b) the non-axial current loop is
visualized blue.

The difference of the angles between the loop and the homogeneous field is

βloop
max − βhom

max = −2.6755 + (arctan 2) .= −π

2 , (7.14)

where the absolute error such a results is 0.002. The result can be intuitively
understood, we vary the loop of the direction of y = r sin θ sinφ, but the ho-
mogeneous magnetic field has the direction x = r sin θ cosφ, thus the maximal
hemispheres are only shifted by 90◦. It is not quite clear why the hemispheres
should be the same (expect for the shift π/2), because the field are very differ-
ently even for the extremal case. We also want to note that we’ve received the
same result when varying varying the loop diameter from r0 = 40 to r0 = 4. For
lower values of r ≤ 4 we’ve run into more problems with numerical calculations
and the error grew (although the error was not larger than 0.05). It could be
possible that the non-circular profile of the loop located near the horizon causes
the hemisphere to shift slightly, but as we’ve already said, we suspect that this
was just a numerical error of the calculations.
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Conclusion
This thesis explored the application of NP formalism for the Kerr spacetime.
We’ve built upon the work of prof. Bičák who derived the solution for arbitrary
stationary electromagnetic test field. Using these results, we identified the source
term and the associated electromagnetic field of a non-axial current loop.

Further we analyzed the solution by calculating the electromagnetic invariant
(eigenvalue of the associated energy momentum tensor) on the horizon. Revealing
expected behaviour but also showing possible problems with the solution.

We’ve also explored the Meissner effect, providing full mathematical proof
in the Kerr spacetime. Notably we noticed that not only the flux of arbitrary
stationary axially symmetric electromagnetic field across the extremal black hole
vanishes but also that both of electromagnetic invariants vanish. We then dis-
cussed different possible visualization techniques of the electromagnetic field lines,
these visualizations revealed a surprising diversity of configurations.

Finally, we determined the hemisphere of maximal flux for the non-axial loop.
And shown, how this is related to the known hemisphere of maximal flux for the
homogeneous magnetic field.
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[25] F. Hejda and J. Bičák, “Extremal black holes in strong magnetic fields: Near-
horizon geometries and Meissner effect,” in The Fourteenth Marcel Gross-
mann Meeting, WORLD SCIENTIFIC, Nov. 2017.
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A. Appendix

A.1 Spin Weighted Spherical Harmonics
We will follow the article [29], where they in detail describe the spin-weighted
spherical harmonics. The spin-weighted spherical harmonics represent the spher-
ical harmonics with additional s that represents the U(1) symmetry. First we
consider the three dimensional Euclidian space with the coordiantes {r, θ, ϕ} and
introduce the orthonormal triad a,b, c, where c points in the radial direction and
a,b are tangent to a sphere of radius r. We complexify the triad by introducing
the complex vector m and it’s complex conjugate m

√
2m = a + ib. (A.1)

Of course a and b were defined up to a rotation angle ψ so that now m and m
are defined up to a phase m′ = eiψm. We’re now able to define the spin-weight s,
we say that a quantity η is of the spin-weight s if it transform under the rotation
angle ψ as

η′ = eisψη. (A.2)

From this we can, for example see, that the vector c is of the spin-weight 0 since it
does not change under the rotation. We will now introduce the ð operator, such
operator is not important only in deriving spin-weighted spherical harmonics,
but in a whole tetrad formalism in GR called the GHP (Geroch, Held, Penrose)
formalism [30], which is a special form of the NP formalism already introduced.
Here we simplify define the ð operator by it’s action on a quantity η with the s

ðη = −(sin θ)s
[︄
∂

∂θ
+ i

sin θ
∂

∂ϕ

]︄
(sin θ)−sη, (A.3)

which implies that the ð operator raises the spin-weight by 1 since

(ðη)′ = ei(s+1)ψ(ðη). (A.4)

In the same sense one can define the conjugate operator ð

ðη = −(sin θ)s
[︄
∂

∂θ
− i

sin θ
∂

∂ϕ

]︄
(sin θ)−sη, (A.5)

which lowers the spin-weight by one

(ðη)′ = ei(s−1)ψ(ðη). (A.6)

Consider now the ordinary spherical-harmonics Ylm(θ, ϕ) we can define the
spin-weighted spherical harmonics sYlm(θ, ϕ) by

sYlm(θ, ϕ) =

⎧⎪⎪⎨⎪⎪⎩
√︃

(l−s)!
(l+s)! ð

sYlm(θ, ϕ) 0 ≤ s ≤ l,√︃
(l+s)!
(l−s)!

(︂
−ð

)︂−s
Ylm(θ, ϕ) −l ≤ s ≤ 0.

(A.7)
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Spin-wieghted spherical harmonics are undefined for |s| > l. Explicitly these can
be written as

sYlm(θ, ϕ) =

⌜⃓⃓⎷(l +m)!(l −m)!
(l + s)!(l − s)!

2l + 1
4π (sin θ/2)2l

·
∑︂
k

(︄
l − s

k

)︄(︄
l + s

k + s−m

)︄
(−1)1−k−seimϕ (cot θ/2)2k+s−m .

(A.8)

Such spin-wieghted spherical harmonics form a complete orthonormal set for each
value of s. That is any spin-wieghted function of the wight s can be expanded
into such a series of sYlm(θϕ). Finally we note that the spin-weighted spherical
harmonics have been numerically implement in the Mathematica package Black
hole pertubation toolkit [31], which we have used for the numeric calculations.

A.2 Maxwell tensor and it’s projection
Since in the text we provided the forms of the NP quantites φ0, φ1, φ2 we will
here provide the whole Maxwell tensor along with the projection of the self dual
form 3.6 to the ZAMO u and Doran ũ four velocities and their appropriate tetrad
projections in the Boyer-lindquist coordiantes 1.5.

First the tensor F has the components in the Boyer-Lindquist coordiantes

Ftr = −φ1 + iaφ0 sin θ√
2(2 − 4r)

− iaφ2(ϱ− 2r) sin θ√
2∆

+ c.c.

Ftθ = − Σφ2√
2ϱ

− ∆φ0√
2(2ϱ− 4r)

− iaφ1 sin θ + c.c.

Ftϕ = i∆φ0 sin θ√
2(2ϱ− 4r)

+ i√
2φ2(ϱ− 2r) sin θ + c.c.

Frθ = 1
2
√

2ϱφ0 − Σφ2(ϱ− 2r)√
2∆

+ c.c.

Frϕ = iφ0(∆ + 2Mr) sin θ
2
√

2(ϱ− 2r)
− iφ2(ϱ− 2r)(∆ + 2Mr) sin θ√

2∆
− aφ1 sin2 θ + c.c.

Fθϕ = −iφ1(∆ + 2Mr) sin θ + a∆ϱφ0 sin2 θ

2
√

2Σ
+ 1√

2aφ2(ϱ− 2r) sin2 θ + c.c.

(A.9)

where c.c. denotes the complex conjugate. Then we denote the projection of the
self-dual form to the four-velocity of the ZAMO observer as Ea = ∗F baua is

E t = 0,

Er = −2∆1/2Σ1/2φ1

A1/2 − ia∆1/2Σ1/2φ0 sin θ√
2A1/2ϱ

+ i
√

2aϱΣ1/2φ2 sin θ
A1/2∆1/2 ,

Eθ = ∆3/2Σ1/2φ0√
2A1/2ϱ

−
√

2∆1/2ϱΣ1/2φ2
A1/2 − 2ia∆1/2Σ1/2φ1 sin θ

A1/2 ,

Eϕ = −i∆3/2Σ1/2φ0 sin θ√
2A1/2ϱ

− i
√

2∆1/2ϱΣ1/2φ2 sin θ
A1/2 .

(A.10)
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We remind the reader that (modulo sign) the electric E and magnetic B field are
real and imaginary part of E respectively. Projecting this to the ZAMO tetrad
we get

E (t) = 0,

E (r) = −2Σφ1

A1/2 + i
√

2aϱΣφ2 sin θ
A1/2∆ + iaφ0(ϱ− 2r) sin θ√

2A1/2
,

E (θ) = −
√

2∆1/2ϱΣφ2
A1/2 − ∆3/2φ0(ϱ− 2r)√

2A1/2
− 2ia∆1/2Σφ1 sin θ

A1/2 ,

E (ϕ) = −i∆3/2φ0 sin2 θ√
2ϱ

− i
√

2∆1/2ϱφ2 sin2 θ.

(A.11)

For the Doran tetrad we denote the projection as Ẽ = ∗F baũa

Ẽ t =

√︂
Mr (∆ + 2Mr)

∆Σ2

(︄
2
√

2Σφ1(∆ + 2Mr) + ia∆Σφ0 sin θ
ϱ

+ 2iaΣ2φ2 sin θ
ϱ− 2r

)︄
,

Ẽr = −2φ1(∆ + 2Mr)
Σ − ia∆φ0 sin θ√

2ϱΣ
− i

√
2aφ2 sin θ
ϱ− 2r ,

Ẽθ = ∆φ0(∆ + 2Mr)1/2

2M1/2ϱΣr1/2 +
√

2ϱΣ(∆ + 2Mr)1/2
− 2iaφ1 sin θ

Σ ,

+
φ2
(︂√

2∆ + 2
√

2Mr + 2M1/2r1/2(∆ + 2Mr)1/2
)︂

∆ϱ− 2∆r

Ẽϕ = 2
√

2Mraφ1(∆ + 2Mr)1/2

∆Σ +
iφ2 csc θ

(︂√
2Σ + 2M1/2 r1/2(∆ + 2Mr)1/2

)︂
∆(ϱ− 2r)

−
iφ0

(︂√
2Σ − 2M1/2r1/2(∆ + 2Mr)1/2

)︂
sin θ2ϱΣ .

(A.12)

and finally projecting to the Doran tetrad

Ẽ (t) = 0,

Ẽ (r) = (∆ + 2Mr)1/2

Σ1/2

(︄
−2φ1 − 1

2ϱiaφ0
(︂√

2 − 2M1/2r1/2

(∆ + 2Mr)1/2

)︂
sin θ

iaϱ

∆ φ2
(︂√

2 + 2M1/2r1/2

(∆ + 2Mr)1/2

)︂
sin θ

)︄
,

Ẽ (θ) = ∆φ0

2M1/2ϱr1/2 +
√

2ϱ(∆ + 2Mr)1/2
− 2iaφ1 sin θ

(∆ + 2Mr)1/2

+
φ2
(︂
2M1/2Σr1/2 +

√
2Σ(∆ + 2Mr)1/2

)︂
∆ϱ− 2∆r ,

Ẽ (ϕ) = −
iΣ1/2φ0

(︂√
2 − 2M1/2r1/2

(∆+2Mr)1/2

)︂
2ϱ +

iΣ3/2φ2
(︂√

2 + 2M1/2r1/2

(∆+2Mr)1/2

)︂
∆(ϱ− 2r) .

(A.13)
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