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Abstract: We study the extension of methods from classical survival analysis
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Firstly, we establish notation, define fundamental concepts, and present basic
theorems and properties. The second chapter explores semi-parametric methods
for estimating the cumulative incidence function. We compare two methods of
estimation: the first treats competing events as censored, while the second takes
competing events into account. At the end of the chapter, we prove the asymp-
totic distribution of the estimator of the cumulative incidence function. Next,
we present semi-parametric regression methods for estimating cause-specific and
subdistribution hazards. Generalisations of the Cox model are used to estimate
regression parameters. We introduce proofs of the martingale property for the
subdistribution hazard case with complete data. Lastly, we propose a small sim-
ulation study to assess the efficiency of the presented nonparametric estimates.
Different scenarios with constant cause-specific hazards are simulated and visu-
alised. Additionally, there is one more simulation study for semiparametric esti-
mation methods. Two different Cox models with two covariates for cause-specific
hazard are assumed.
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Notation
T Time to event
D Indicator of the type of event
C Time to censoring
X Time to event, or censoring
N j(t) Counting process for the j-th event
Y (t) At risk process
1{.} Indicator function
op(1) Term negligible in probability
S(t) Survival function
ΛCS

j (t) Cumulative cause-specific hazard function of the j-th
event

λCS
j (t) Cause-specific hazard function of the j-th event
λSD

j (t) Subdistributional function of the j-th event
CIFj(t) Cumulative incidence function of the j-th eventˆ︃KM(t) Kaplan-Meier estimator of the survival function
D[0,τ ]−−−→ Weak convergence in the D[0, τ ] space
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Introduction
In survival analysis, we look at either time to event or time to censoring. This
type of analysis is commonly used in medical data, for example time to death.
However, sometimes there are several types of death and in clinical practice it
is necessary to distinguish between them. We have an event of interest and
a competing event. The basic assumption is that if one type of event occurs, then
the other cannot be observed. This assumption contradicts censoring, because
when censoring is being observed , in fact any other event can happen. Therefore,
it is not correct approach treating competing events as censoring. Multi-state
models could be used for this situation, because the competing risk problem
is just a special case of the multi-state model. In the competing risk setting
model has an initial state and k absorbing states. As a consequence, results
from multi-state models can be used. However,the problem can be approached
from the opposite side. We will present and derive all definitions and properties
as a generalisation of classical survival analysis rather than as a special case of
multi-state models.

In the first chapter we will summarise the basic knowledge of classical survival
analysis and define the most important quantities for competing risks. Explana-
tions and relationships of the definitions are given to familiarise the reader with
the problem.

The next chapter focuses on non-parametric methods for estimating the cu-
mulative incidence function. The first part of the chapter discusses two possible
estimators, one that takes competing events into account and the second that
treats competing events as censoring. We show that the second estimator is bi-
ased and that there is an inequality between these estimators. The main result
of this chapter is the derivation of the limiting process of the first estimator.
To prove this theorem, the estimator is rewritten as a martingale and then the
central limit theorem for martingales is used.

Semi-parametric methods are discussed in the third chapter. First, a Cox
regression model for cause-specific hazards is presented. However, we focus more
on modelling sub-distribution hazards. Three types of data are considered and
a generalisation of the Cox model is presented for each type. In addition, the mar-
tingale property is derived for two out of three situations. This property is crucial
for deriving asymptotic properties.

In the last chapter we present two simulations, one for nonparametric methods
and one for semiparametric methods. There are two different ways of generating
simulated data. In the non-parametric simulation we study the efficiency of esti-
mators of a cumulative incidence function. Similarly, we simulate data given by
the Cox cause-specific hazard model. We have the regression model with a nu-
merical covariate and a binary variable. We compare the estimators according to
different scenarios such as different percentage of censoring, sample size or dif-
ferent setting of initial values of the cause-specific hazard. All simulations were
calculated using R Core Team [2023].
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1. Basic Concepts and
Definitions
This chapter provides motivation and a brief summary of classical survival anal-
ysis. Basic definitions and theorems are crucial for understanding competing risk
models as an extension of survival analysis. Secondly, motivation for compet-
ing risk problems is introduced. Main definitions such as a cumulative incidence
function, cause-specific, and subdistribution hazard are presented with stated
notation. At the end of the chapter, elementary properties and relations among
defined quantities are derived, which helps to understand the meaning of the def-
initions.

1.1 Introduction to Survival Analysis
Survival analysis deals with subjects for which the time until a specific event is
observed. We often refer to the time until an event as the time to failure. In prac-
tice, such data formats can be found in various fields such as medicine, industry,
insurance, and many other disciplines. For instance, we can track patients with
transplanted hearts and observe the time of patient’s death. Similar example can
be found in industry where we monitor a machine and the time until it fails. It’s
not always necessary to track time units; we can also monitor the energy con-
sumed by a machine or the number of products produced before it fails. The issue
would lead to a non-negative discrete random variable in the latter case. Theory
has also been developed for this case; however, we will focus only on continu-
ous variables in this work. Therefore, we investigate a non-negative continuous
random variable T , which we will call the “time to failure.”

From the continuity and non-negativity of a random variable, it follows that
P (T = 0) = 0. For example, the failure time distribution T can be determined
by its cumulative distribution function. This function specifies the probabili-
ty of a failure occurring within the time interval t ∈ [0,∞). For negative t,
the cumulative distribution function is trivially zero. Due to the continuity and
non-negativity of the random variable, we will consider t ∈ (0,∞). From an in-
terpretative perspective, we are more interested in the probability that a patient
survives beyond time t. That is the reason why we work with the survival function
rather than the cumulative distribution function.

Definition 1 (Survival function). The survival function of the random variable
T with the cumulative distribution function F is defined as S(t) = 1 − F (t) =
P (T > t).

The distribution of T can be determined by the cumulative distribution func-
tion, density, or survival function. A non-negative continuous random variable
can also be characterised by a hazard function or a cumulative hazard function.
The relevant definitions and a theorem summarising the relationships of these
functions with the survival function are provided below.
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Definition 2 (Hazard function). Let T be a continuous non-negative random
variable. The hazard function λ(t) is defined as:

λ(t) = lim
h↓0

P (t ≤ T < t+ h|T ≥ t)
h

.

Definition 3 (Cumulative hazard function). Let T be a continuous non-negative
random variable. The cumulative hazard function Λ(t) is defined as:

Λ(t) =
∫︂ t

0
λ(s)ds.

Theorem 1. Let T be a non-negative continuous random variable with a cumu-
lative distribution function F and a survival function S = 1 − F , or a density
function f . Then the following relationships hold:

i λ(t) = f(t)
S(t)

ii Λ(t) =
∫︁ t

0
dF (s)
S(s)

iii S(t) = exp (−Λ(t))

Proof. Proofs are provided in Kalbfleisch and Prentice [2011, part 1.2.1].

Therefore, we observe n subjects for a certain period and record the failure
times. In practice, we may not always wait for the failure time for every subject,
or a patient may stop being monitored for other reasons. So, we observe the
failure time for some individuals and the time of leaving the study for others
(censoring). We do not have a random sample of T1, . . . , Tn from a distribution
determined by a random variable T ; instead, we observe two-dimensional random
vectors (X1, δ1)T , . . . , (Xn, δn)T .

The random variableXi represents the time either until the failure or censoring
of subject i, and the binary random variable δi serves as an indicator of whether
the failure time was observed (δi = 1) or not (δi = 0).

The random variable Xi is defined as min(Ti, Ci), where Ti is the event time
and Ci is the censoring time of the i-th individual. The random variable δi is
defined as 1(Ti ≤ Ci), indicating whether the event occurred before censoring.

For further work, it is necessary to introduce a certain assumption of inde-
pendence between the event time T and the censoring time C. These random
variables without an index are considered generic random variables from which
observations are generated.

Definition 4 (Independence Censoring Condition). Let T and C be non-negative
random variables, where the random variable X is the minimum of T and C. If
the following condition holds, C satisfies the independence censoring condition.

λ(t) = lim
h↓0

P (t ≤ T < t+ h|X ≥ t)
h

Under the condition of independent censoring, one can then construct esti-
mates of the characteristics of the random variable T that have already been
introduced above. Before presenting these estimates, we will introduce notation
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in the context of counting processes and martingales since this technique is impor-
tant for later proving properties. The counting process Ni(t) = 1{Ti ≤ t; δ = 1}
is a right-continuous process that takes on the value 0, and at the time of fail-
ure, it jumps to the value 1. In other words, this process provides information
about whether an event occurred by time t for the i-th subject. Another process
that is used is Yi(t) = 1{Xi ≥ t}, called at risk process. This process takes
on the value 1 if neither an event nor censoring has occurred for the subject.
These two processes form the generator of the sigma-algebra system for which we
will want to construct a martingale. The form of this filtration for all observa-
tions is Ft = σ{Ni(u), Yi(u+), 0 ≤ u ≤ t, i = 1, . . . , n}. The counting process is
a non-negative right-continuous submartingale. Therefore, the existence of a com-
pensator for the counting process follows from the Doob-Meyer decomposition.
This procedure is summarised in the following theorem.

Theorem 2. Let A(t) =
∫︁ t

0 Y (u)dΛ(u). Then A(t) is a right-continuous pre-
dictable process. It holds that the process M(t) = N(t) − A(t) is a martingale
with respect to the filtration Ft, if and only if the condition of independent cen-
soring in Definition 4 is satisfied.

Proof. For detailed proof see Fleming and Harrington [2011, Theorem 1.3.1].

Next, let’s assume that we are observing a two-dimensional random sample
(X1, δ1), . . . , (Xn, δn), as defined earlier, and the condition of independent cen-
soring is satisfied. We denote N(t) = ∑︁n

i=1 Ni(t), which represents the sum of
subjects for whom failure (event) occurred by time t. Similarly, Y (t) = ∑︁n

i=1 Yi(t)
indicates the number of individuals for whom neither an event nor censoring oc-
curred by time t. Below, some estimation methods are summarised.

Definition 5 (Kaplan-Meier Estimator of Survival Function). The Kaplan-Meier
estimator of the survival function is defined:

ˆ︁S(t) =
∏︂
tj≤t

(1 − λ̂j) = 1 −
∑︂
tj≤t

ˆ︁S(tj−)∆N(tj)
Y (tj)

,

where tj are the distinct event times obtained from the data for n individuals, and
λ̂j = ∆N(tj)

Y (tj) represents the estimated intensity at time tj.

Definition 6 (Nelson-Aalen Estimator of Cumulative Hazard). The Nelson-
Aalen estimator of the cumulative hazard is defined as follows:

Λ̂(t) =
∫︂ t

0

dN(u)
Y (u)

Assume that we have maximum time τ > 0. For more details and proofs
see Andersen et al. [2012, part IV.1.2]. It is well known that Nelson-Aalen and
Kaplan-Meier estimators are uniformly consistent if we assume the condition of
independent censoring (Definition 4) and with some assumption on the at-risk
process. In other words, expressions

sup
t∈[0,τ ]

|Λ̂(t) − Λ(t)| and sup
t∈[0,τ ]

| ˆ︁S(t) − S(t)|
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converge to zero in probability.
The Kaplan-Meier estimator can also be viewed from a different perspective.

Here, we follow the approach presented in the work by Efron [1967]. We have
n subjects, and events or censoring occur sequentially at times x1 < x2 < · · · <
xn. Implicitly, this assumes that at each time xi, either an event or censoring is
observed, and two events are never observed simultaneously. Without censoring,
the Kaplan-Meier estimator would be a step function, decreasing by 1/n at each
xi. However, censoring is prevalent in the data in practice, so the individual step
sizes are adjusted based on the number of subjects censored. The procedure is as
follows. Assign a probability of 1/n to each xi. When the first censoring occurs
at time xi1 , remove the probability assigned to this time (which is now 1/n) and
distribute it equally among the remaining observations xi1+1, . . . , xn. This redis-
tribution of probability 1/n is performed because the subject did not experience
failure and may fail in the future. Thus, the remaining times xi1+1, . . . , xn now
have probabilities of

1
n

+ 1
n(n− i1)

= 1
n

(︃
1 + 1

n− i1

)︃
.

This inductive process helps to understand how the Kaplan-Meier estimator deals
with censored observations. Moreover, from just two steps, it is apparent that
the time xi for i ∈ {1, . . . , n− 1} has a probability determined by the expression

1
n

i−1∏︂
j=1

(︄
1 + 1

n− j

)︄1−∆N(xj)

, (1.1)

if no censoring occurred at time xi. For time xn, the formula in (1.1) is valid
whether censoring or an event occurred. To estimate P (T > t), you need to sum
the probabilities of all times for which xi > t. The following proposition relates
this construction to the Kaplan-Meier estimator and offers another perspective
on how to interpret this estimator.

Proposition 3. Let us have times x1 < x2 . . . xn−1 < xn , then the following
equality holds for t ∈ (xk−1, xk]

Ŝ(t−) = Y (t)
n

1
Ĝ(t−)

,

where Ĝ(t) is Kaplan-Meier estimate of censoring event.

Proof. Let’s make some algebraic operations with the Kaplan-Meier estimate.

Ŝ(t−) =
∏︂

xi<t

(︄
Y (xi) − 1
Y (xi)

)︄∆N(xi)

=
∏︂

xi<t

(︄
Y (xi)

Y (xi) − 1

)︄1−∆N(xi) ∏︂
xi<t

(︄
Y (xi) − 1
Y (xi)

)︄
=

= 1
Ĝ(t−)

Y (x1) − 1
Y (x1)

Y (x2) − 1
Y (x2)

. . .
Y (xk)
Y (xk−1)

Last expression is actually telescopic product since Y (x1)−1 = Y (x2), so product
is simplified. For the end of the proof, we need to realise that Y (xk) = Y (t).
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Corollary. We can see that the weight of observation xi is in the notation of
Proposition 3 indeed

1
nĜ(t−)

.

The different form of a Kaplan-Meier estimate should give readers an idea of
how the estimate deals with censored data. This approach and reasoning will be
used subsequently in competing risk models.

The expression of the Kaplan-Meier estimate in Proposition 3 can be imag-
ined as a classic empirical survival function (analogy of empirical distribution
function). If there is no censoring we could estimate for xk−1 ≤ t < xk prob-
ability P (T > t) just by (n − k + 1)/n. If censoring occurs in data, we do not
have the same weight for all observations. The size of each weight is expressed
by Proposition 3. As a consequence, from the other point of view, we can see

Ŝ(t−) =
n∑︂

j=k

1
nĜ(t−)

= Y (t)
nĜ(t−)

.

The Cox proportional hazard model is helpful in evaluating the joint effect
of more than one covariate. The advantage of this approach is that we are not
directly assuming any distribution, but we have one crucial assumption, which
must be satisfied, the proportional hazard assumption. However, proportional
hazards are more relaxed than specifying a distribution. For completeness of this
thesis, we’d like to present just a brief intro into the theory of the Cox model.
For more details, see Andersen et al. [2012, part VII.2.1 and VII.2.2].

Assume that the hazard depends on some set covariates. Let us have an ex-
planatory variable vector (stochastic process) Z(t). We need to modify the inde-
pendent censoring condition from the Definition 4 into

λ(t|Z) = lim
h↓0

P (t ≤ T < t+ h|T ≥ t,Z(t))
h

= lim
h↓0

P (t ≤ T < t+ h|T ≥ t, C ≥ t,Z(t))
h

.

Let us have a regression parameter (p-dimensional vector) β. Assume that there
is a parameter value β0 and a baseline hazard λ0(t) such that it holds

λCS
Z (t) = λCS

0 (t) exp
(︂
ZT (t)β0

)︂
. (1.2)

Assume that λ0(t) is some unknown unspecified hazard function. Furthermore,
assume independence across different subjects. Based on this assumption, we can
construct the partial likelihood.

Definition 7. The function

L(β) =
n∏︂

i=1

∏︂
s>0

⎛⎝ Yi(s) exp
(︂
βT Zi(s)

)︂
∑︁n

l=1 Yl(s) exp (βT Zl(s))

⎞⎠∆Ni(s)

is called the partial likelihood, where ∆Ni(t) denotes the change in the counting
process at time t.
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Maximizing this function provides estimate β̂ for the regression coefficients.
We skip the part with log partial likelihood and score function since we will
present analogous derivations for cause-specific and subdistribution hazard in sec-
tions 3.1 and 3.2. It is good to remember that with some additional assumptions
expression

√
n(β̂ − β0) converges in distribution to p−dimensional normal dis-

tribution with zero mean and some covariance matrix I−1. With this result
confidence intervals and statistical tests could be easily constructed.

1.2 Introduction to competing risks
This section will generalise survival analysis problems to cases where an event
can occur for multiple reasons. To illustrate, imagine a doctor monitoring the
time of a patient’s death after a heart transplant. However, death can occur for
various reasons, such as pulmonary embolism, arrhythmia, infection, or many
other causes. In addition to monitoring the time to event T , we also consider
the type of event. Suppose there are K different event types, where K is a finite
natural number. A fundamental assumption is that no other type can occur once
one type of event occurs.

If we are interested in only one event, we could think of it as standard survival
analysis, as we can treat the other reasons for events as censoring. In this case, we
might violate some assumptions. In survival analysis, we assume that a censored
subject can still experience an event. For example, a patient who has moved
(censoring time) and is no longer being monitored, may experience an event after
the censoring time. If we consider competing risks as censoring, it contradicts
the assumption that no event of interest can occur after a competing event.

We will model this situation using a pair of random variables T and D, where
T is a non-negative continuous random variable representing the time of an event,
and D takes almost surely values 1, . . . , K, determining the type of event that
occurred. Martingale representation will be used, as well as classical survival
analysis. Assume that we have time interval [0, τ ], for some τ > 0 finite.

We will work with several fundamental characteristics, including the cause-
specific hazard of the k-th event. We will also use another type of risk so called the
subdistribution hazard, presented in the paper Fine and Gray [1999]. Furthermore,
we will define the cumulative incidence function of the k-th event, which is used
in competing risk models.

Let’s start by defining the cause-specific hazard for the k-th event:

Definition 8 (Cause-specific hazard for the k-th event). Let T be a non-negative
random variable, and random variable D takes values in 1, . . . , K. The cause-
specific hazard for the k-th event, for k ∈ 1, . . . , K, is defined by the following
expression

λCS
k (t) = lim

h↓0

P (t ≤ T < t+ h;D = k|T ≥ t)
h

.

Definition 9 (Subdistribution hazard of the k-th event). Let T be a non-negative
random variable, and random variable D takes values in 1, . . . , K. The subdis-
tribution hazard for the k-thevent, for k ∈ {1, . . . , K}, is defined by the following
expression

9



λSD
k (t) = lim

h↓0

P (t ≤ T < t+ h;D = k|T ≥ t ∪ (T ≤ t ∩D ̸= k))
h

.

Definition 10 (Cumulative Incidence Function of the k-th event). Let T be
a non-negative random variable, and let D take values in the range 1, . . . , K.
The Cumulative Incidence Function (CIF) for the k-th event, for k ∈ {1, . . . , K},
is defined by the following expression:

CIFk(t) = P (T ≤ t;D = k).

As can be seen from Definitions 8 and 9, subdistribution and cause-specific
hazards are very similar, but they differ in terms of which subjects are kept at
risk. For cause-specific hazard of event type k, it can be understood that the
risk applies to subjects for whom no event occurred. Mathematically, the event
T ≥ t is used in the condition. This type of hazard essentially extends the hazard
definition from classic survival analysis (Definition 2).

The subdistribution hazard for the k-th event leaves subjects at risk if no
event has occurred until time t, just like the cause-specific hazard. Additionally,
it keeps subjects at risk who have had an event occur before time t, and if it
was a different event type than k. Therefore, subjects for whom a different
event than the k-th event occurred are kept at risk until infinity. Thus, we can
model the impact of explanatory variables on cause-specific and subdistribution
hazards using regression (a suitable generalisation of the Cox proportional hazard
model). Models that use subdistribution hazard to characterise competing events
are sometimes called CIF models, as there is a direct connection to the cumulative
incidence function [Fine and Gray, 1999].

In the article Lau et al. [2009], it is argued that using one or the other type
of hazard is suitable for different purposes. Cause-specific hazard is used to
determine the causes of specific events, in other words, to answer etiological
questions. On the other hand, subdistribution hazard is used for prediction. For
example, in a medical context, there may be two types of death: heart failure and
another type of death. If we want to predict whether a patient will die from heart
failure or a different kind of death, it is more appropriate to use subdistribution
hazard. We will sometimes refer to SD hazard as a subdistribution hazard and
CS hazard as a cause-specific hazard for brevity.

In addition to making inferences about the k-th event, it may be helpful to
know the probability that the event will occur after time t (survival function).
The survival function will have the same notation as in classical survival analysis,
S(t). This characteristic is related to CS hazard. Furthermore, the CIF of the
k-th event can also be calculated from the CS hazard functions.

Definition 11 (Cumulative CS hazard of the k-th event). Let T be a non-negative
random variable, and D almost surely takes values in the range 1, . . . , K. The
cumulative cause-specific hazard (CS) of the k-th event, for k ∈ {1, . . . , K}, is
defined by the following expression:

ΛCS
k (t) =

∫︂ t

0
λCS

k (s)ds

10



If we combine all types of events into one, we find ourselves in classical survival
analysis. In this case, we will denote Λ(t) = ∑︁K

j=1 ΛCS
j (t) as the overall cumulative

hazard function.

Definition 12 (Overall Survival Function). Let T be a non-negative random
variable, and D almost surely takes values in the range 1, . . . , K. The overall
survival function is defined by the following expression:

S(t) = P (T > t).

Lemma 4. If the assumptions for competing risks are met, then the following
holds:

S(t) = exp
(︄

−
K∑︂

k=1
ΛCS

k (t)
)︄
.

Proof. First, let us introduce auxiliary functions for brevity. Define the function

fk(t) = lim
h↓0

P (t ≤ T < t+ h;D = k)
h

.

After introducing this function, we can realise that

λCS
k (t) = lim

h↓0

P (t ≤ T < t+ h;D = k)
hS(t−) = fk(t)

S(t) .

We sum the CS hazards across all event types and integrate both sides of the
equation over the interval (0, t). We assume the continuity of T , so S(t−) = S(t).

∫︂ t

0

K∑︂
k=1

λCS
k (s)ds =

∫︂ t

0

∑︁K
k=1 fk(s)
S(s) ds+ C.

Furthermore, we can easily realise that the numerator in the integrand is the
derivative of the denominator

d log(S(u))
du

= d log(∑︁K
k=1 P (T > u;D = k))

du
= −

∑︁K
k=1 fk(u)
S(u) .

Therefore, we obtain that ∑︁K
k=1 ΛCS

k (t) = − log(S(t))+C. Substituting t = 0, we
get C = 0, from which the lemma follows.

Lemma 5. If the assumptions for competing risks are met, then the following
holds:

CIFk(t) =
∫︂ t

0
λCS

k (s)S(s)ds

Proof. We proceed similarly to the proof of Lemma 4.

dP (T ≤ t;D = k)
dt

= fk(t) = fk(t)S(t−)
S(t−) = λCS

k (t)S(t−)

From this, it can be seen that the lemma’s wording is obtained by integrating
both sides of the equation.

11



If we want to determine the overall survival function from Definition 12, we
can further proceed in two different ways. The first approach is to combine the
event of interest with competing events. We transform the case into classical sur-
vival analysis and use the Kaplan-Meier estimate to obtain a consistent survival
function estimate. However, if we already have computed estimates of CS haz-
ard or cumulative CS hazard for all events, performing the procedure mentioned
above is unnecessary. Using Lemma 4 is sufficient, and we get another possible
way to estimate the overall survival function.
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2. Nonparametric Estimation
In this chapter, we introduce two approaches. The first approach involves esti-
mating the complement to a survival function (“distribution function”) for the
event of interest, with the presence of competing events in the data, but this fact
is ignored. The second approach takes into account the occurrence of competing
risks. We estimate the cumulative incidence function for the event of interest.
We always denote the first type of event as an event of interest. Other types of
events {2, . . . , K} are always competing events; sometimes, we merge competing
events just to an event number 2. Asymptotic normality of the estimator of the
cumulative incidence function is derived at the end of the chapter.

Let’s consider a situation where we have a continuous random variable T and
a variable D determining the type of event. Additionally, we have a censoring
variable C. Assume that (T1, D1)T , . . . , (Tn, Dn)T are iid random vectors and we
have censoring iid random variables C1, . . . , Cn. These variables (not necessarily
all of them) are observed for n individuals, more specifically, for the i-th individ-
ual, we observe either the time and type of event (variables Ti and Di), or the
censoring time (Ci). We denote Xi as min(Ti, Ci). To sum up we can see set of
independent random vectors

(X1,1{T1 < C1}D1)T , . . . , (Xn,1{Tn < Cn}Dn)T ,

where the second term in each vector is an indicator, which type of event was
observed (0 for censoring, k for k-th type of event ). Let’s have realisations of
random variables Xi, without loss of generality sorted as 0 < x1 < · · · < xn.

To present estimators, it is useful to set martingale and counting process
notation; it will be easier to derive properties afterwards.

Definition 13 (Counting Process of the j-th Event). The counting process of
the j-th event for the i-th subject is defined by the following expression:

Ni,j(t) = 1{Ti ≤ t,Di = j}

The sum over all subjects is denoted as N j(t) = ∑︁n
i=1 Ni,j(t).

Note that the counting process is observable. When j-th event is observed, it
is not censoring time, and we are observing Ti directly.

Definition 14 (At-risk Process). The at risk process of the i-th subject for the
cause-specific risk is defined as:

Yi(t) = 1{Xi ≥ t}

The sum over all subjects is denoted as Y (t) = ∑︁n
l=1 Yi(t).

2.1 Ignoring Competing Events
The foundation of statistical analysis is to realise that other competing events
may exist in the data. When conducting an analysis without knowledge (ignor-
ing) of competing events, the Kaplan-Meier estimate of the survival function is

13



typically used (we will denote it as ˆ︃KM1). The person conducting this analysis
thinks that 1 − ˆ︃KM1(t) is an estimator of probability that the event happens
until time t. This is actually a cumulative incidence function, P (T ≤ t,D = 1).
However, competing events are treated the same way as if they were censored
in the estimate. A warning against this approach was already mentioned in Sec-
tion 1.2. The estimator’s bias and explanation will be conducted in the following
sections. In the established notation, the “incorrect” estimator of the cumulative
incidence function is given by:

1 − ˆ︃KM1(t) = 1 −
∏︂
s≤t

(︄
1 − ∆N1(s)

Y (s)

)︄
.

Additionally, a question arises about what ˆ︃KM1 actually estimates. Putter
et al. [2007] suggested that 1 − ˆ︃KM1 estimates the following expression:∫︂ t

0
λCS

1 (s) exp (−Λ1(s))ds.

From this equation and Lemmas 4 and 5, we can deduce the errors or biases
that would arise if the presence of competing risks were ignored. In the following
inequality is used fact that Λj(s) ≥ 0.

∫︂ t

0
λCS

1 (s) exp (−
K∑︂

j=1
Λj(s))ds ≤

∫︂ t

0
λCS

1 (s) exp (−Λ1(s))ds.

In total, this would lead to an overestimation of the estimate of the cumulative
incidence function for the event of interest.

2.2 Taking competing events into account
The cumulative incidence function can be easily interpreted as the probability
of event k occurring by time t, so it is useful to present an estimator of this
function. To construct such an estimator, we will use Lemma 4. In the lemma,
we replace unknown quantities with their estimates. We replace the integral with
a sum over all observed times xi up to time t. We substitute the CS hazard for
event k at time xi with its empirical estimate. We replace the overall survival
function with the Kaplan-Meier estimate (left-continuous), combining the event
of interest and competing events. The Kaplan-Meier estimate, which combines
events of interest and competing events is denoted as:

ˆ︃KM(t) =
∏︂
s≤t

(︄
1 −

∑︁K
j=1 ∆N j(s)
Y (s)

)︄
.

Perhaps this notation could be confusing because we commonly use it in clas-
sical survival analysis. However, this estimate is a standard Kaplan-Meier esti-
mate in basic survival analysis. Following this procedure, we obtain an estimate
of ˆ︁CIF k(t), which is formally defined.
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Definition 15 (Cumulative Incidence Function Estimator). Under the assump-
tions for the case of the competing risk, the estimate of the cumulative distribution
function for the j − th type of an event is

ˆ︁CIF j(t) =
∑︂

i;xi≤t

∆N j(xi)
Y (xi)

ˆ︃KM(xi−).

Corollary. The estimated cumulative incidence function, as stated in Defini-
tion 15, can be rewritten:

∫︂ t

0

ˆ︃KM(u−)dN j(u)
Y (u)

.

The next section will indicate how this estimate deals with the occurrence of
competing events. With some additional assumptions, it could be proved that the
estimate from Definition 15 is consistent for the cumulative incidence function.

2.3 Comparison of Estimates
It was shown that estimator 1 − ˆ︁KM1(t) in Section 2.1 estimates the function
which is greater than the cumulative incidence function. There could raise a
question if the inequality holds between estimators 1− ˆ︁KM1 and ˆ︁CIF1. Without
loss of generality, assume that we are dealing with just two types of events: 1st,
an event of interest and 2nd, a competing event. The following lemma will help
to prove the statement of inequality.

Lemma 6. For the problem of competing events, we can rewrite the estimate
from Section 2.1 as

1 − ˆ︁KM1(t) =
∫︂ t

0
ˆ︁KM1(u−)dN1(u)

Y (u)
.

Proof. Function ˆ︁KM1(t) is a stepwise decreasing function so that it can be ex-
pressed as the sum of the initial value (at time t = 0) and its steps

ˆ︁KM1(t) = ˆ︁KM1(0) +
∑︂

i:xi≤t

∆ˆ︁KM1(xi).

By simple calculation, we obtain

∆ˆ︁KM1(t) = ˆ︁KM1(t) − ˆ︁KM1(t−) = −ˆ︁KM1(t−)∆N1(t)
Y (t)

.

Finally, we have an equation from which the assertion of the lemma could be seen

1 − ˆ︁KM1(t) =
∑︂

i:xi≤t

ˆ︁KM1(xi−)∆N1(xi)
Y (xi)

.
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Theorem 7 (Inequality of estimators). In the setting of competing risks, follow-
ing inequality between two estimators holds

ˆ︁CIF1(t) ≤ 1 − ˆ︁KM1(t).

Proof. We start with an estimator of the overall survival function and with ˆ︁KM1.
With an assumption of continuous time we obtain

ˆ︃KM(u−)
ˆ︁KM1(u−)

=

∏︁
i;xi<u

(︃
1 − ∆N1(xi)+∆N2(xi)

Y (xi)

)︃
∏︁

i;xi<u

(︃
1 − ∆N1(xi)

Y (xi)

)︃ =

=

∏︁
i;xi<u

(︃
1 − 1

Y (xi)

)︃∆N1(xi)+∆N2(xi)

∏︁
i;xi<u

(︃
1 − 1

Y (xi)

)︃∆N1(xi)
=

∏︂
i;xi<u

(︄
1 − 1

Y (xi)

)︄∆N2(xi)

≤ 1.

Continuity of time is a key assumption because there cannot be more events
at one time. Now we can easily see an inequality ˆ︃KM(u−) ≤ ˆ︁KM1(u−) and
continue with integrating both sides. By the last step, we obtain assertion of the
lemma.

ˆ︁CIF1(t) =
∫︂ t

0
ˆ︃KM(u−)dN1(u)

Y (u)
≤
∫︂ t

0
ˆ︁KM1(u−)dN1(u)

Y (u)
= 1 − ˆ︁KM1(t).

In the article by Gooley et al. [1999], the authors illustrate why the approach
presented in Section 2.2 is correct in contrast to the approach in Section 2.1.
The estimate of the cumulative incidence function from Section 2.2 can be ex-
pressed as a step function, with each step occurring when an event of interest
takes place. For the purpose of abbreviation and simplification of notation, we
use the following notation. Indicator of an event of interest at the time xi is de-
noted by ei = ∆N1(xi). Similarly, the competing event indicator is ri = ∆N2(xi)
and indicator of censoring ci = 1 − ∆N1(xi) − ∆N2(xi). The number of patients
who are known to be at risk of failure beyond time xi is denoted as ni = Y (xi+1)

Let’s denote the size of the step as Jc for ˆ︁CIF 1. Then the estimator can be
rewritten as:

ˆ︁CIF 1(t) =
∑︂

i;xi≤t

eiJc(xi),

where the function expressing the size of the step has the property stated by Goo-
ley et al. [1999]:

Jc(xi) = Jc(xi−1)
(︃

1 + ci

ni

)︃
, (2.1)

for i ∈ {2, . . . , n}. Where Jc(x1) is equal to 1/n. These step sizes can be imagined
as weights being redistributed according to whether censoring occurred, similar
to what was discussed in Section 1.1.

Now, let’s assume a hypothetical situation where censoring occurred at time
x1 and an event of interest happened at time x2. According to Equation (2.1),
we would have ˆ︁CIF (x2) = 1/n. However, based on Definition 15, it should be
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ˆ︁CIF (x2) = 1/(n − 1). From this situation, we can see that Equation (2.1) is
incorrect. The following calculation shows how to adjust the recurrence equation
to be entirely in line with the definition.

Calculations are based on Proposition 3 and its corollary. We can see from
an estimator of the cumulative incidence function

ˆ︁CIF1(t) =
∑︂

i;xi≤t

∆N1(xi)
ˆ︃KM(xi−)
Y (xi)

,

that Jc(xi) = ˆ︃KM(xi−)/Y (xi).
We can use Proposition 3. As a result, we obtain

Jc(xi) = 1
n
∏︁

j<i

(︂
1 − 1

nj−1

)︂cj
= 1
n

∏︂
j<i

(︄
nj−1

nj−1 − 1

)︄cj

=

= 1
n

∏︂
j<i

(︄
1 + 1

nj−1 − 1

)︄cj

= Jc(xi−1)
(︄

1 + ci−1

ni−1

)︄
.

The last expression states correction to Equation (2.1) proposed by Gooley et al.
[1999].

Similarly, the naive (incorrect) incidence function estimate determined by the
formula 1 − ˆ︃KM1(t) is also a step function where the jumps occur precisely at
event times. Thus similarly it can be expressed in the form of a sum:

1 − ˆ︃KM1(t) =
∑︂

i;xi≤t

eiJkm(xi).

In this case, the jump function has the following property according to Gooley
et al. [1999]:

Jkm(xi) = Jkm(xi−1)
(︃

1 + ci + ri

ni

)︃
. (2.2)

This property shows that this estimate treats competing events as censoring
from the idea of reweighting presented in Section 1.1. However, once again,
a calculation is provided to demonstrate that the equality 2.2 is incorrect.

According to Lemma 6, estimate could be written as a sum

1 − ˆ︁KM1(t) =
∑︂
xi≤t

ˆ︁KM1(xi−)∆N1(xi)
Y (xi)

.

From this expression, it follows that

Jkm(xi) =
ˆ︁KM1(xi−)
Y (xi)

.

Now we use Proposition 3 and its corollary. We express the desired recurrent
equation with algebraical operations and a switch to the new stated notation.
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Jkm(xi) =
ˆ︁KM1(xi−)

n ˆ︃KM(xi−)Ĝ(xi−)

=
∏︁

j<i

(︂
1 − 1

nj−1)

)︂ej

n
∏︁

j<i

(︂
1 − 1

nj−1

)︂ej+rj ∏︁
j<i

(︂
1 − 1

nj−1

)︂cj

= 1
n
∏︁

j<i

(︂
1 − 1

nj−1

)︂cj+rj
=
∏︁

j<i

(︂
1 + 1

nj−1−1

)︂cj+rj

n

= Jkm(xi−1)
(︄

1 + ci−1 + ri−1

ni−1

)︄

The calculation shows a similar equality to the original one but with index
shifts.

2.4 Asymptotic Properties of the Estimator
When deriving the asymptotic distribution of the cumulative incidence function
estimator, the cumulative cause-specific hazard properties are utilized. This can
be estimated analogously to the Nelson-Aalen estimator of cumulative hazard
in survival analysis. The estimation of cumulative cause-specific hazard, and
subsequently the cumulative incidence of the first event, can be expressed by using
counting processes and martingales. Now, let’s introduce key definitions necessary
for constructing the filtration and determining the subsequent martingale.

Definition 16 (Nelson-Aalen Estimator of Cumulative Cause-Specific hazard).
The Nelson-Aalen estimator of cumulative cause-specific hazard for the j-th event
is defined by the following expression:

ˆ︁ΛCS
j (t) =

∫︂ t

0

dN j(u)
Y (u)

.

Corollary. One could observe that Nelson-Aalen estimate of overall cumulative
hazard is a sum of estimates of cumulative cause-specific hazards:

Λ̂(t) =
K∑︂

j=1
Λ̂CS

j (t).

For the martingale definition, filtration is needed, so we denote the filtration
for the j-th type of event for all of the data by

F j
t = σ{Ni,j(s), Yi(s), 0 ≤ s ≤ t, i = 1, . . . , n}.

Theorem 8 (Martingale for Cause-Specific hazard). Let λCS
j be the CS hazard

of j-th event , then

Mi,j = Ni,j(t) −
∫︂ t

0
Yi(u)λCS

j (u)du
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is a martingale with respect to σ(Ni,j(s), Yi(s), 0 ≤ s ≤ t) if and only if the fol-
lowing equality holds for each t

λCS
j (t) = lim

h↓0

P (t ≤ Ti < t+ h;Di = j |Xi ≥ t)
h

. (2.3)

Proof. The proof is just an analogous application of the proof of Theorem 2. For
more details see Andersen et al. [2012, part IV.1]

Remark. Typically, we aim to measure the risk of only one competing event, while
we are no longer interested in the rest. Therefore, we switch to the notation where
D = 1 represents the event of interest and D = 2 represents competing events.
Thus, we have combined all types of competing events.

The asymptotic properties of cause-specific hazards and cumulative incidence
function are derived using martingale theory. This is the reason for mentioning
theorems like Theorem 8. Just before we introduce a theorem about asymptotic
properties of the estimator, we state and remind theorem about cumulative cause-
specific hazard and overall cumulative hazard.

Theorem 9. Let the random vectors (T1, D1, C1)T , . . . , (Tn, Dn, Cn)T are inde-
pendently distributed. Suppose variables C1, . . . , Cn to be identically distributed
as well suppose that for vectors (T1, D1)T , . . . , (Tn, Dn)T . Assume that there exist
γ > 0 such that P (Yi(τ) = 1) > γ > 0 . Let’s assume the condition of independent
censoring (2.3) for each j ∈ {1, . . . , K}. It holds:

1.
√
n
(︂ˆ︁ΛCS

j (t) − ΛCS
j (t)

)︂
=

√
n
∫︁ t

0
1{Y (u)>0}dMj(u)

Y (u) + op(1)

2.
√
n
(︂ˆ︁Λ(t) − Λ(t)

)︂
=

√
n
∫︁ t

0
1{Y (u)>0}dM(u)

Y (u) + op(1)

Proof. Proofs can be found in Andersen et al. [2012, part IV.1]

Cumulative incidence functions can be suitably expressed in a similar way as
in the previous theorem. From this representation, it is possible to utilize the
central limit theorem for martingales. But let’s state two more lemmas that will
be useful afterwards.

Lemma 10. Assume the condition of independent censoring, then for every t ≥ 0
such that S(t) > 0, it holds

ˆ︃KM(t)
S(t) − 1 = −

∫︂ t

0

ˆ︃KM(u−)
S(u) d

(︂ˆ︁Λ − Λ
)︂

(u).

Proof. The proof of this lemma is just technical. It is an exercise from the theory
of measure, especially per partes for Lebesgue-Stieltjes integral.

Lemma 11. Let An(t) is a random process that approaches weakly in D[0, τ ] to
zero process. Then An(t) converges uniformly in probability to 0.

Proof. Let A ∈ D[0, τ ]. Transformation A −→ supt∈[0,τ ] |A| is continuous with
respect to metric of space D[0, τ ]. Assume that An

D[0,τ ]−→ A. With the usage of
the continuous mapping theorem, we obtain convergence in distribution

sup
t∈[0,τ ]

|An| D−→ sup
t∈[0,τ ]

|A|.
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As a result, the zero mean process has a supremum equal to zero; this concludes
the proof because convergence in distribution to constant is equivalent to conver-
gence in probability.

Theorem 12 (Martingale Representation of ˆ︁CIF j). Assuming the conditions of
Theorem 9 and S(t) > 0, the following holds:

√
n
(︂
ˆ︁CIF j(t) − CIFj(t)

)︂
=

√
n
(︃∫︂ t

0
ˆ︃KM(u−)dˆ︁ΛCS

j (u) −
∫︂ t

0
S(u−)dΛCS

j (u)
)︃

=
√
n
∫︂ t

0

S(u−)1{Y (u) > 0}dM j(u)
Y (u)

+
√
nCIFj(t)

∫︂ t

0

1{Y (u) > 0}dM(u)
Y (u)

−
√
n
∫︂ t

0

CIFj(u)1{Y (u) > 0}dM(u)
Y (u)

+ op(1)

The expression op(1) means that this part of the formula converges in probability
to zero as n tends to infinity. Furthermore, the convergence is uniform.

Proof. A derivation of the first part of the theorem follows the paper published
by Lin [1997]. Some important parts of the proof in the paper are missing. We
have completed these steps and proved some parts in a different way.

It is easy to see that
√
n
(︂
ˆ︁CIF j(t) − CIFj(t)

)︂
is equal to

√
n
∫︂ t

0
ˆ︃KM(u−)d

(︂ˆ︁ΛCS
j − ΛCS

j

)︂
(u) +

√
n
∫︂ t

0

(︂ ˆ︃KM(u−) − S(u)
)︂
dΛCS

j (u). (2.4)

The first term of the sum in the Equation (2.4) is equivalent to
√
n
∫︂ t

0
S(u−)d

(︂ˆ︁ΛCS
j − ΛCS

j

)︂
(u) + op(1).

To prove this fact we use Theorem 9. Then we apply the central limit theorem.
See Theorem 18 in the appendix. We prove that the expression converges weakly
to a trivial zero process, but first we have to prove the assumptions of the central
limit theorem.

√
n
(︃∫︂ t

0
S(u−) − ˆ︃KM(u−)d

(︂ˆ︁ΛCS
j − ΛCS

j

)︂
(u)

)︃
=

=
√
n

(︄∫︂ t

0

(︂
S(u−) − ˆ︃KM(u−)

)︂ 1{Y (u) > 0}dM j(u)
Y (u)

)︄
+ op(1) =

=
n∑︂

i=1

√
n
∫︂ t

0

(︂
S(u−) − ˆ︃KM(u−)

)︂ 1{Y (u) > 0}dMi,j(u)
Y (u)

:= U
(n)
j (t) =

n∑︂
i=1

U
(n)
i,j

It is easy to see that the integrand is a bounded and left-continuous function.
As a consequence of left continuity, it is a predictable function. Let’s calculate
predictable variation

⟨U (n)
j , U

(n)
j ⟩(t) =

∫︂ t

0

(︂
S(u−) − ˆ︃KM(u−)

)︂2 1{Y (u) > 0}dΛCS
j (u)

Y (u)/n

≤
(︄

sup
[0≤u≤τ ]

(︂
S(u−) − ˆ︃KM(u−)

)︂)︄2 ∫︂ t

0

1{Y (u) > 0}dΛCS
j (u)

Y (u)/n
.
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From the last expression it can be seen that the supremum tends to 0, since
the Kaplan-Meier estimate is uniformly consistent. The second part converges
in probability to

∫︁ t
0 λ

CS
j (u)/P (Yi(u) = 1)du. To sum up, predictable variance

converges to 0 in probability. Therefore, it is not necessary to verify Feller-
Linderberg’s assumption. Finally, we got that the sum of martingale differences
converges weakly to zero mean and zero variance Gaussian process so that the
process is 0 almost surely. With the usage of the Lemma 11, we have the desired
result. We denote P (Yi(u) = 1) := π(u).

Next, we modify Equation (2.4). We can see that the second expression
of the sum in the equation is equal to

√
n
∫︁ t

0
ˆ︃KM(u) − S(u)dΛCS

j (u) + op(1).
The reason why this can be done is based on the fact that difference ˆ︃KM(u) −ˆ︃KM(u−) is equal to ˆ︃KM(u−)/Y (u) in the continuous case. As a result, we
obtain an equation

1√
n

∫︂ t

0
ˆ︃KM(u−)

dΛCS
j (u)

Y (u)/n
. (2.5)

The basic key to prove this statement is that Equation (2.5) consists of part which
is bounded in probability and 1/

√
n which together converges to zero. It is not

presented a detailed proof since it is just technical.
Now we go on with rewriting the second term in Equation (2.4)

√
n
∫︂ t

0

(︂ ˆ︃KM(u) − S(u)
)︂
dΛCS

j (u) + op(1) =

√
n
∫︂ t

0

(︄ ˆ︃KM(u)
S(u) − 1

)︄
S(u)dΛCS

j (u) + op(1).

Based on the result from Lemma 5 we have S(u)dΛCS
j (u) = dCIFj(u). Fur-

thermore we use Lemma 10. We obtain double integral and again we rewrite it
to more convenient expression

√
n
∫︂ t

0
−
∫︂ u

0

(︄ ˆ︃KM(s−)
S(s)

)︄
d
(︂ˆ︁Λ − Λ

)︂
(s)dCIFj(u) + op(1) =

=
√
n
∫︂ t

0

∫︂ u

0

(︄ ˆ︃KM(s−) − S(s)
S(s) + 1

)︄
d
(︂ˆ︁Λ − Λ

)︂
(s)dCIFj(u) + op(1) =

=
∫︂ t

0
op(1)dCIFj(u) +

√
n
∫︂ t

0

(︂ˆ︁Λ(u) − Λ(u)
)︂
dCIFj(u) + op(1).

The last formula consists of the final desired result and integral negligible in
probability, again the negligibility does not depend on t. It can be shown again
by uniform consistency of a Kaplan-Meier estimate and by similar usage of the
central limit theorem for the sum of martingale differences as was provided before.
By the last discussion was proven that the Equation (2.4) is equal to
√
n
∫︂ t

0
S(u−)d

(︂ˆ︁ΛCS
j − ΛCS

j

)︂
(u) +

√
n
∫︂ t

0

(︂ˆ︁Λ(u) − Λ(u)
)︂
dCIFj(u) + op(1) (2.6)

As the next step, we use integrating by parts for Lebesgue-Stieltjes on the
second part of the Equation (2.6). We got

√
n
∫︂ t

0
S(u−)d

(︂ˆ︁ΛCS
j − ΛCS

j

)︂
(u) +

√
n
(︂ˆ︁Λ(t) − Λ(t)

)︂
CIFj(t)

−
√
n
∫︂ t

0
CIFj(u)d

(︂ˆ︁Λ − Λ
)︂

(u) + op(1).
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To finalise the proof we need to plugin formulas for
√
n
(︂ˆ︁Λ(t) − Λ(t)

)︂
and

√
n
(︂ˆ︁Λj(t) − Λj(t)

)︂
,

which are provided in Theorem 9. We receive the final formula which is an as-
sertion of the theorem. Note that the term op(1) tends to zero uniformly. We
obtained final expression

√
n
∫︂ t

0

S(u−)1{Y (u) > 0}dM j(u)
Y (u)

+
√
nCIFj(t)

∫︂ t

0

1{Y (u) > 0}dM(u)
Y (u)

−
√
n
∫︂ t

0

CIFj(u)1{Y (u) > 0}dM(u)
Y (u)

+ op(1).

Remark. As a special result from Theorem 12 we could obtain an asymptotic
representation for an event of interest (j = 1). If we merge all competing events
into one, there is a possibility for just two values of j either equal to one or two.
In this specific setting of problem, it could be easily proved just by algebraic
operations and usage of S(t) = 1 − CIF1(t) − CIF2(t) that

√
n
[︃ ∫︂ t

0

(1 − CIF2(u)) 1{Y (u) > 0}dM1(u)
Y (u)

+
∫︂ t

0

CIF1(u)1{Y (u) > 0}dM2(u)
Y

2(u)

− CIF 1(t)
∫︂ t

0

1{Y (u) > 0}(dM2(u) + dM1(u))
Y (u)

]︃
+ op(1).

Remark. There is used notation S(u−) for left continuous overall survival func-
tion. Our assumption is that time to event is a continuous random variable, so it
holds S(t−) = S(t). We just wanted to emphasise the fact that integrand is left
continuous and as a consequence predictable.

Theorem 13 (Asymptotic normality of ˆ︁CIF1). Assuming the conditions of The-
orem 9.

The expression √
n
(︂
ˆ︁CIF 1(t) − CIF1(t)

)︂
weakly converges to a Gaussian process with zero mean and covariance function
ψ(s, t) for t ≤ s

∫︂ t

0

(1 − CIF2(u) − CIF1(t))2 λCS
1 (u)

π(u) du+
∫︂ t

0

(CIF1(u) − CIF1(t))2 λCS
2 (u)

π(u) du.

Proof. The theorem can be proved by two key steps. Firstly, central limit theorem
for martingale differences is applied, Theorem 18. As the second key step, we use
functional delta limit theorem to prove the assertion of the theorem.
Let’s verify the assumptions. First, continuous time is assumed, so we do not
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observe two types of events at one specific time. Set notation in the context of
the central limit theorem

U
(n)
1 (t) =

n∑︂
i=1

U
(n)
i,1 =

n∑︂
i=1

∫︂ t

0

√
n

(1 − CIF2(u) − CIF1(t)) 1{Y (u) > 0}
Y (u)

dMi,1(u),

U
(n)
2 (t) =

n∑︂
i=1

U
(n)
i,2 =

n∑︂
i=1

∫︂ t

0

√
n

(CIF1(u) − CIF1(t)) 1{Y (u) > 0}
Y (u)

dMi,2(u).

The processes in integrals are denoted as
√
nH1(u) and

√
nH2(u). We have

multivariate counting process of i-th individual Ni = (Ni,1, Ni,2)T . As a conse-
quence we have (︄

Mi,1
Mi,2

)︄
=
(︄
Ni,1
Ni,2

)︄
−
(︄∫︁ t

0 Yi(u)λCS
1 (u)du∫︁ t

0 Yi(u)λCS
2 (u)du

)︄
.

We can see that both Mi,1 and Mi,2 are martingales with respect to filtration
F12 = σ{Ni(s), Yi(s), 0 ≤ s ≤ t, i = 1, . . . , n}. It can be seen that both processes
in the integrals are bounded and predictable (left-continuity).

Let’s now calculate a function to which predictable variation converges

⟨U (n)
1 ;U (n)

1 ⟩(t) =
∫︂ t

0
nH2

1 (u)Y (u)dΛCS
1 (u)

=
∫︂ t

0

(1 − CIF2(u) − CIF1(t))2

P (Yi(u) = 1) λCS
1 (u)du

+
∫︂ t

0
(1 − CIF2(u) − CIF1(t))2

(︄
1{Y (u) > 0}
Y (u)/n

− 1
P (Yi(u) = 1)

)︄
dΛCS

1 (u)

=
∫︂ t

0

(1 − CIF2(u) − CIF1(t))2

P (Yi(u) = 1) λCS
1 (u)du+ An

=
∫︂ t

0
f 2

1 (u)du+ op(1).

From the last equality, we have to prove that the second term in the sum is
negligible in probability. This is straightforward since we can use inequality
(1 − CIF1(u) − CIF2(t))2 ≤ 32. We obtain

|An| ≤ 9
∫︂ t

0

⃓⃓⃓⃓
⃓
(︄

1{Y (u) > 0}
Y (u)/n

− 1
P (Yi(u) = 1)

)︄⃓⃓⃓⃓
⃓ dΛCS

1 (u).

From the last expression by uniform convergence of n/Y (u) to 1/P (Yi(u)) and
fact that ΛCS

1 (τ) < ∞, it could be proved that An is negligible in probability. It is
just a technical proof and it is omitted. Now let’s calculate predictable variation
for U (n)

2
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⟨U (n)
2 ;U (n)

2 ⟩(t) =
∫︂ t

0
nH2

2 (u)Y (u)dΛCS
2 (u)

=
∫︂ t

0

(CIF1(u) − CIF1(t))2

P (Yi(u) = 1) λCS
2 (u)du

+
∫︂ t

0
(CIF1(u) − CIF1(t))2

(︄
1{Y (u) > 0}
Y (u)/n

− 1
P (Yi(u) = 1)

)︄
dΛCS

2 (u)

=
∫︂ t

0

(CIF1(u) − CIF1(t))2

P (Yi(u) = 1) λCS
2 (u)du+ A

′

n

=
∫︂ t

0
f 2

2 (u)du+ op(1).

In a similar way as previously, it can be proved (CIF1(u) − CIF1(t) ≤ 2) that
A

′
n is negligible in probability. Now we can move on to verifying Linderberg’s

assumption to fulfil all assumptions of the central limit theorem. Let ε > 0. For
Y (u) = 0 the integrand is zero. If Y (u) > 0 then we have

⟨U (n)
ε,1 ;U (n)

ε,1 ⟩(t) =
∫︂ t

0
nH2

1 (u)1{
√
nH1(u) > ε}Y (u)dΛCS

1 (u)

=
∫︂ t

0

(1 − CIF2(u) − CIF1(t))2

Y (u)/n
1{

√
nH1(u) > ε}dΛCS

1 (u)

=
∫︂ t

0

(1 − CIF2(u) − CIF1(t))2

π(u) 1{
√
nH1(u) > ε}dΛCS

1 (u) + op(1).

In the last equation, the same ideas as before were used, namely, uniform con-
vergence of Y (u)/n. We obtain expression

∫︂ t

0

(1 − CIF2(u) − CIF1(t))2

π(u) 1{
√
nH1(u) > ε}dΛCS

1 (u)

≤
∫︂ t

0

32

π(u)1
{︃

Y (u)
n (1 − CIF2(u) − CIF1(t))

<
1√
nε

}︃
dΛCS

1 (u)

≤ 32

π(u)1
{︃
Y (τ)
n3 <

1√
nε

}︃
ΛCS

1 (τ).

From the last inequality, we are able to see that the Feller-Lindenberg assumption
is satisfied. The fraction 1/(

√
nε) converges to zero and Y (u)/(6n) converges

uniformly in probability to π(u)/6 > 0. The Feller-Lindeberg assumption for the
second predictable variation could be done by the same procedure.

Finally, we verified all of the assumptions, so we can claim that

(︂
U

(n)
1 (t), U (n)

2 (t)
)︂T D2[0,τ ]−−−−→

(︃∫︂ t

0
f1(u)dW1(u),

∫︂ t

0
f2(u)dW2(u)

)︃T

,

where W1,W2 are independent Brownian motions. Now if we stop in one specific
time t1, we obtain convergence in distribution. By Cramer-Wold theorem we
could find out pointwise asymptotic distribution of the estimator of a cumulative
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incidence function. However assertion of this theorem is stronger. It is necessary
to use the functional delta theorem.

Let ϕ is a mapping (sum of two random processes) from D2[0, τ ] to D[0, τ ].
We can realise that Haddamard derivative of ϕ is actually mapping itself. To
verify this, we need continuity and linearity. It is clear that mapping is linear.
To prove continuity, let (gn

1 , g
n
2 )T , (g1, g2)T ∈ D2[0, τ ] such that

(gn
1 , g

n
2 )T D2[0,τ ]−−−−→ (g1, g2)T .

In other words⃦⃦⃦⃦
⃦
(︄
gn

1
gn

2

)︄
−
(︄
g1
g2

)︄⃦⃦⃦⃦
⃦

2

D2[0,τ ]
= ∥gn

1 − g1∥2
D[0,τ ] + ∥gn

2 − g2∥2
D[0,τ ]

n−→∞−−−−→ 0.

From this expression we can see that both terms in sum have to converge to 0 as n
tends to infinity. Finally, we can prove continuity from the following inequalities⃦⃦⃦⃦

⃦ϕ
(︄
gn

1
gn

2

)︄
− ϕ

(︄
g1
g2

)︄⃦⃦⃦⃦
⃦

2

D[0,τ ]
= ∥gn

1 − g1 + gn
2 − g2∥2

D[0,τ ]

≤ ∥gn
1 − g1∥2

D[0,τ ] + ∥gn
2 − g2∥2

D[0,τ ] + 2 ∥gn
1 − g1∥D[0,τ ] ∥gn

2 − g2∥D[0,τ ] .

Let an −→ ∞ is real sequence and hn, h sequences in D2[0, τ ] such that
hn

D2[0,τ ]−−−−→ h. Let θ ∈ D2[0, τ ], then

an

(︄
ϕ

(︄
θ + hn

an

)︄
− ϕ (θ)

)︄
= an

an

ϕ (hn) D[0,τ ]−−−→ ϕ(h).

Linearity and continuity properties were used within calculations. As a result, ϕ
is Haddamard differentiable (Definition 30) and we can use the functional delta
theorem, Theorem 19. We obtain

U
(n)
1 (t) + U

(n)
2 (t) D[0,τ ]−−−→

∫︂ t

0
f1(u)dW1(u) +

∫︂ t

0
f2(u)dW2(u).

It is easy to see that a sum of two independent, time-transformed Brownian
motions is again a time-transformed Brownian motion. As a consequence limiting
process of an estimator of a cumulative incidence function is a zero-mean Gaussian
process with a variance function ψ(s, t) for t ≤ s

∫︂ t

0

(1 − CIF2(u) − CIF1(t))2 λCS
1 (u)

π(u) du+
∫︂ t

0

(CIF1(u) − CIF1(t))2 λCS
2 (u)

π(u) du.

Corollary. If we are able to estimate the variance function in the previous the-
orem then we are able to perform the point inference with cumulative incidence
functions.
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Results of Theorem 9 could be weaker and proof could be easier as was already
discussed in the proof. However, convergence of the cumulative incidence function
stopped at specific times is not enough for the construction of the confidence
bands. As a consequence of stronger results of the theorem, we are able to
construct such confidence bands. An example of this construction can be seen
for instance in Lin [1997].

For pointwise confidence intervals of CIF1 in practical situation we need to
estimate a variance function. The variance function in Theorem 13 could be
estimated by

∫︂ t

0

(︂
1 − ˆ︁CIF2(u) − ˆ︁CIF1(t)

)︂2
dN1(u)

Y
2(u)/n

+
∫︂ t

0

(︂
ˆ︁CIF1(u) − ˆ︁CIF1(t)

)︂2
dN2(u)

Y
2(u)/n

.

The same estimator of variance function is used by R package cmprsk, Gray [2022]
based on Aalen [1978].
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3. Semiparametric Estimation
Similar to survival analysis, sometimes it is necessary to examine the complex
effects of multiple variables, potentially continuous, simultaneously on the risk
of an event. In survival analysis, the Cox proportional hazards model is the
fundamental model for this situation. Similar models can be supposed in the
context of competing risks. This chapter will present two approaches: cause-
specific and subdistribution hazard.

3.1 Cause-Specific hazard
As already defined in the introductory chapter in Definition 9, CS hazard is one
possible extension of a classical hazard. Assume that CS hazard possibly depends
on some covariates. Let us have a regression parameter βj (p-dimensional vector)
for the j-th type of event and an explanatory variable vector Z(t). Furthermore,
denote true value of parameters β0

j and a baseline hazard λCS
0,j . Assume that the

following equation holds

λCS
Z,j(t) = λCS

0,j (t) exp
(︂
ZT (t)β0

j

)︂
. (3.1)

Based on this assumption, we can construct the partial likelihood as in the Cox
model. We can use the martingale notation introduced in Section 2.4. We only
add that Zi(t) is the vector of explanatory variables for the i-th subject. Note
that we have to assume that the vectors of processes Zi(t) are left continuous
with right-hand side limits. Let’s provide the definition in this notation.

Definition 17. The function

L(β1, . . . ,βK) =
K∏︂

j=1

n∏︂
i=1

∏︂
s>0

⎛⎝ Yi(s) exp
(︂
βT

j Zi(s)
)︂

∑︁n
l=1 Yl(s) exp

(︂
βT

j Zl(s)
)︂
⎞⎠∆Ni,j(s)

is called the partial likelihood of cause-specific hazard, where ∆Ni,j(t) denotes
the change in the counting process at time t.

Maximising this function provides estimates for the coefficients β1, . . . ,βK .
It is noteworthy that according to this definition, we are essentially performing
the standard Cox model K times. More specifically, if we consider the part with
j = 1, this part is essentially a Cox model in which all other events are treated
as censoring so that there can be used theory developed for the Cox model in
classical survival analysis.

Assume that we have an exposed and unexposed group of patients. We are
focused on the effect of exposure on the event of interest by the hazard ratio of
CS hazard HRCS

1 (t) = λCS
E,1(t)/λCS

U,1(t). In the same way for CS hazard ratio for
the second event HRCS

2 (t) = λCS
E,2(t)/λCS

U,2(t). In the context of the Cox model,
the CS hazard ratio is assumed to be constant over time. The fact that HRCS

1
is greater than one does not necessarily imply that the cumulative incidence of
the first event is greater for the exposed than for the unexposed group. As a
consequence, we cannot use it to make predictions. In general CS hazards for all
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events should be analysed including baseline CS hazards. However, it cannot be
said that this approach is unusable. If we estimate the cause-specific hazard of
the event of interest and all of the competing events, we can express it through a
transformation of the relationship with the cumulative incidence function, which
can be appropriately interpreted (see Lemma 4 and 5). Therefore, this approach
requires estimating the cause-specific hazards of all types of events. On the other
hand, these estimates can be executed using software that can implement the
standard Cox model. For more details see Lau et al. [2009] and Allignol et al.
[2011]. Since it is hard to predict according to CS hazards, there is motivation
for models of SD hazard presented in the upcoming section.

Eventhough we mentioned some issues with the interpretation, it is still a
useful approach, therefore we present some important definitions and propositions
about the estimators. We can rewrite partial likelihood (just j-th part) into the
logarithmic form and corresponding score function, but first, we will present the
notation.

Let
S(k)

n (βj, t) = 1
n

n∑︂
i=1

Yi(t)Z
⨂︁

k

i (t) exp
(︂
βT

j Zi(t)
)︂
,

where z
⨂︁

0 = 1, z
⨂︁

1 = z and z
⨂︁

2 = zzT . Let

Zn(βj , t) = S(1)
n (βj, t)

S
(0)
n (βj, t)

.

Definition 18 (Logarithmic partial likelihood for j−th CS hazard). The function

ℓ(βj) =
n∑︂

i=1

∫︂ ∞

0

[︂
βT

j Zi(s) − log(nS0
n(βj , s))

]︂
dNi,j(s).

is called logarithmic partial likelihood for j−th cause-specific hazard.

By differentiating of log partial likelihood with respect to parameter βj we
obtain the score function.

Definition 19 (Score function of j−th CS hazard ).

Un,j(βj) =
n∑︂

i=1

∫︂ ∞

0

[︂
Zi(t) − Zn(βj , t)

]︂
dNi,j(t)

From the last definition, we can see the importance of Theorem 3.1, since we
have a sum of integrals which can be transformed into a sum of martingales. The
consistency of the estimator of βj can be proved with some additional assump-
tions. The asymptotic properties in detail are omitted since the procedure is the
same as in ordinary survival analysis.

3.2 Subdistribution hazard
Semiparametric models using subdistribution hazard are sometimes referred to
as CIF models, Austin et al. [2016], as there is a direct relationship between the
subdistribution hazard of the j-th event and the cumulative incidence function.
The following lemma illustrates the relationship between the j-th cumulative
incidence function and the j-th subdistribution hazard.
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Lemma 14. For the subdistribution hazard of the j-th event, we have

λSD
j (t) = −d log(1 − CIFj(t))

dt
.

Proof.
−d log(1 − CIFj(t))

dt
= −d(1 − P (T ≤ t;D = j)

dt
=

= −d log(P (T > t
⋃︁
D ̸= j))

dt
= dP (T ≤ t;D = j)

dt

1
P (T > t

⋃︁
D ̸= j) =

lim
h↓0

P (t ≤ T < t+ h;D = j)
hP (T > t

⋃︁
D ̸= j) = lim

h↓0

P (t ≤ T < t+ h;D = j|T > t ∪D ̸= j)
h

Subdistribution and cause-specific hazard differ only in terms of which sub-
jects are considered to be at risk. For subdistribution hazard, the risk process has
a different form. In this section we follow ideas from Fine and Gray [1999]. The
estimation of subdistribution hazard is divided into three possible data formats.
Firstly, we will consider data without censoring. Secondly, we will generalise
the concept to situations where we observe censoring even though the event has
occurred. Finally, we will briefly introduce the most general case.

3.2.1 Complete Data
Assume now that there is no censoring in our dataset, as a consequence we directly
observe vectors of independent observations

(T1, D1)T , . . . , (Tn, Dn)T .

Let’s introduce martingale notation used in upcoming theorems.

Definition 20 (Risk process for the j-th type of event). The risk process of the
i-th subject for subdistribution hazard is defined as

Y SD
i,j (t) = 1 −Ni,j(t−) = 1{Ti ≥ t ∪Di ̸= j}.

Martingale theorem

A martingale property is important for derivations of proportional hazard regres-
sion models. The next theorem will provide proof of this fact.

Theorem 15 (Martingale of subdistribution hazard). We have random vec-
tor (Ti, Di)T with corresponding CS hazards λCS

1 (t), . . . , λCS
K (t). Assume P (Di ̸=

j) > 0. Then, it holds that

M
′

i,j(t) = Ni,j(t) −
∫︂ t

0
Y SD

i,j (u)λSD
j (u)du

is a martingale with respect to the filtration

σ
(︂
Ni,j(u), Y SD

i,j (u);u ≤ t
)︂

= F ′j.
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Proof. The proof is similar to the proofs of Theorem 8 and Theorem 2, but
some parts differ. To verify the martingale property, three properties have to be
checked.
The martingale M ′

i,j(t) consists of a counting process and a compensator. The
sum of two measurable functions is a measurable function. The counting process
is trivially measurable since it is in the generator of the σ-algebra. Regarding the
compensator, heuristically we can argue that we have information up to time t.
Based on this information, we are able to decide about value of the compensator.
Integrability can be deduced because the counting process is bounded by one and
from the following inequalities

E|M ′

i,j(t)| ≤ E|Ni,j(t)| +
∫︂ t

0
E
⃓⃓⃓
Y SD

i,j (u)λSD
j (u)

⃓⃓⃓
du ≤

≤ 1 +
∫︂ t

0
P (Ti ≥ u ∪Di ̸= j)λSD

j (u)du ≤

≤ 1 +
∫︂ t

0
lim
h↓0

P (Ti ≥ u ∩Di ̸= j)P (u ≤ Ti < u+ h;D = j|Ti ≥ u ∪Di ̸= j)
h

du =

= 1 +
∫︂ t

0
lim
h↓0

P (u ≤ Ti < u+ h;Di = j)
h

du =

= 1 +
∫︂ t

0
lim
h↓0

P (u ≤ Ti < u+ h|Di = j)P (Di = j)
h

du = 1 + P (Di = j) ≤ 2.

In this section, the definition of conditional expected value was gradually
utilised in the final equation, and the property of density was further employed.
Now, it remains to prove the martingale property.

So, let us have a set F ∈ F
′j
t . We make disjoint decomposition of Ω and use

intersection with the set F.

F = F ∩ Ω = F ∩ ([Ti ≤ t ∩Di = j] ∪ [Ti > t ∪Di ̸= j])

First, let’s consider the first set (clearly F
′j
t -measurable), which implies that

event j occurred for subject i by time t. This means for the counting process that
a jump has already occurred by time t, and it remains constant; hence, it holds
for s > 0, ∫︂

F ∩[Ti≤t∩Di=j]
Ni,j(t+ s) −Ni,j(t)dP = 0.

Similarly, we can deduce the integrals’ nullity:∫︂
F ∩[Ti≤t∩Di=j]

∫︂ t+s

t
1{[Ti ≥ u] ∪ [Di ̸= j]}λSD

j (u)dudP = 0.

This can be seen from the fact that the intersection of the set [Ti ≤ t ∩Di = j]
and the set that appears in the integrand’s indicator is an empty set, yielding
a trivial null integrand.

Now, let’s take the second set from the decomposition, [Ti > t ∪Di ̸= j] and
again deduce that both integrals are equal.

The first important thing to note is that the set does not contain any proper
(non-trivial) subset within F

′j
t . For example, for u > t, consider the set
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[Ti > u ∪Di ̸= j] ⊂ [Ti > t ∪Di ̸= j] .
However, this set does not belong to the filtration till time t. If the set was

a subset, then [Ti ≤ u;Di = j] , would be in F
′j
t . We can see that this set has to

be either ∅ or Ω for u > t. Therefore, for ω ∈ [Ti > t ∪Di ̸= j], the following
conditional expected value equals a constant:

E
[︂
Ni,j(t+ s) −Ni,j(t)|F

′

t

]︂
= k.

Similarly, the following must hold:

E
[︃∫︂ t+s

t
Y SD

i,j (u)λSD
j (u)du|F ′

t

]︃
= k

′
.

If it’s a martingale, both constants must be equal:

kP (Ti > t ∪Di ̸= j) =
∫︂

[Ti>t∪Di ̸=j]
E
[︂
Ni,j(t+ s) −Ni,j(t)|F

′

t

]︂
dP =

=
∫︂

[Ti>t∪Di ̸=j]
Ni,j(t+ s) −Ni,j(t)dP

=
∫︂

Ω
1{[Ti > t ∪Di ̸= j]} (Ni,j(t+ s) −Ni,j(t)) dP.

Gradually, we utilised the definition of conditional expected value since the
set over which we integrate is F

′j
t measurable. The final expression is merely

the expected value of a binary random variable. Thus, we need to calculate the
probability of the variable taking the value of one. It is clear in the indicator
function. The difference between counting processes is non-zero only when event
j occurs between times t and t + s. With this consideration, we obtain that the
expected value is equal to the expression:

P ([Ti > t; t ≤ Ti ≤ t+ s;Di = j] ∪ [Di ̸= j;Di = j; t ≤ Ti ≤ t+ s]).

The second set is an empty set, hence trivially equal to zero. This follows from
the assumption of competing risks, as it is impossible for a subject to experience
multiple types of events. We obtained

k · P (Ti > t ∪Di ̸= j) = P ([Ti > t; t ≤ Ti ≤ t+ s;Di = j]).
Now, let’s proceed with k

′ and calculate it in a similar form using analogous
steps:

k
′ · P (Ti > t ∪Di ̸= j) =

∫︂
[Ti>t∪Di ̸=j]

∫︂ t+s

t
Y SD

i,j (u)λSD
j (u)du dP =

=
∫︂ t+s

t
E1{[Ti > t ∪Di ̸= j]}1{Ti ≥ u ∪Di ̸= j}λSD

j (u)du =

=
∫︂ t+s

t
P (Ti ≥ u ∪Di ̸= j)λSD

j (u)du.
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Since P (Ti > t ∪ Di ̸= j) > 0, we can divide by this expression. To prove
the equality of k and k′, we can cancel the term P (Ti > t ∪Di ̸= j). Martingale
property is then equivalent to the equation

1{[Ti > t ∪Di ̸= j]}P (t < Ti ≤ t+ s;Di = j)
P (Ti > t ∪Di ̸= j) =

1{[Ti > t ∪Di ̸= j]}
∫︁ t+s

t P (Ti ≥ u ∪Di ̸= j)λSD
j (u)du

P (Ti > t ∪Di ̸= j) a.s.

Let’s continue with expression in nominator

P (t < Ti ≤ t+ s;Di = j) =
∫︂ t+s

t
−∂P (Ti ≥ v;Di = j)

∂v

⃓⃓⃓⃓
v=u

du.

For further progress, we need P (Ti ≥ u ∪ Di ̸= j) > 0. This simply follows
from the assumption that P (Di ̸= j) > 0. With this adjustment, we obtain the
final desired equality. It’s important to realise that the integrand, which involves
partial derivatives along with P (Ti ≥ u∪Di ̸= j) in the denominator, represents
the subdistribution hazard.

−
∫︂ t+s

t

P (Ti ≥ u ∪Di ̸= j)
P (Ti ≥ u ∪Di ̸= j)

∂P (Ti ≥ v;Di = j)
∂v

⃓⃓⃓⃓
v=u

du =

=
∫︂ t+s

t
P (Ti ≥ u ∪Di ̸= j)λSD

j (u)du.

This concludes the proof.

Since we make the estimators from the whole dataset we need to modify the
filtration

σ
(︂
Ni,j(u), Y SD

i,j (u);u ≤ t; i = 1, . . . , n
)︂

= F
′j
t .

Proportional model

Now let’s introduce a similar model as was shown in Section 3.1, but in this
situation for subdistribution hazard. Let us have a regression parameter αj for
the j-th type of event and an explanatory variable vector Z(t). Furthermore,
assume true value of the parameter α0

j and a baseline hazard λSD
0,j such that it

holds
λSD

Z,j(t) = λSD
0,j (t) exp

(︂
ZT (t)α0

j

)︂
.

This is assumed for all three situations: Complete data, Complete censored data
and General censored data. In this a little bit changed setting Theorem 15 still
could be used, but it is needed to add one more assumption about covariates. This
is performed by adding Z(t) to filtration F

′j
t . Now we are assuming filtration

σ
(︂
Ni,j(u), Y SD

i,j (u), Y SD
i,j (u)Zi(u);u ≤ t; i = 1, . . . , n

)︂
.

Let’s introduce likelihood for complete data without censoring from which
we obtain estimates of coefficients αj . Note that in this part we are presenting
results mentioned in Fine and Gray [1999].
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Definition 21. The function

L′(αj) =
n∏︂

i=1

∏︂
s>0

⎛⎝ Y SD
i,j (s) exp

(︂
αT

j Zi(s)
)︂

∑︁n
l=1 Y

SD
l,j (s) exp

(︂
αT

j Zl(s)
)︂
⎞⎠∆Ni,j(s)

is called the partial likelihood of subdistribution hazard, where ∆Ni,j(t) denotes
the change in the counting process at time t.

Maximising this function provides estimate αĵ

′ for the coefficients αj . Again
there is defined logarithmic likelihood and the corresponding score function.
There is a small change of notation since there is used other at risk process.

Similarly, as for the CS hazard model, we introduce a little bit changed nota-
tion

S
′(k)
n (αj , t) = 1

n

n∑︂
i=1

Y SD
i,j (t)Z

⨂︁
k

i (t) exp αT
j Zi(t),

and
Z

′

n(αj , t) = S
′(1)
n (αj, t)
S

′(0)
n (αj, t)

.

Definition 22 (Logarithmic partial likelihood for j-th SD hazard for complete
data). The function

ℓ′(αj) =
n∑︂

i=1

∫︂ ∞

0

[︂
αT

j Zi(s) − log(nS ′(0)
n (αj , s))

]︂
dNi,j(s)

is called logarithmic partial likelihood for j-th subdistribution hazard.

By differentiating of log partial likelihood with respect to parameter αj we
obtain the score function.

Definition 23 (Score function of j−th SD hazard ).

U
′

n,j(αj) =
n∑︂

i=1

∫︂ ∞

0

[︃
Zi(t) − Z

′

n(αj , t)
]︃
dNi,j(t)

From Definition 23 can be seen the importance of Theorem 15. The score
function can be transformed into a sum of integrals with respect to martingale
and the central limit theorem can be used. Value of covariates should be added
to filtration F ′j. Now we can claim that

M
′

i,j(t) = Ni,j −
∫︂ t

0
Y SD

i,j (u)λSD
0,j (u) exp

(︂
ZT (u)α0

j

)︂
du

is martingale. With this fact and with some more assumptions can be proved
asymptotic properties of the estimator α̂

′

j

√
n(α̂′

j − αj) D−→ Np(0, (V ′)−1),

where V ′ is limiting covariance matrix

V ′ =
∫︂ ∞

0

[︄
s

′(2)(α0
j , u)

s′(0)(α0
j , u) − zSD(α0

j , u)
⨂︁

2
]︄
s

′(0)(α0
j , u)λj,0(u)du,
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z
′(α0

j , u) =
s

′1(α0
j , u)

s′0(α0
j , u) ,

s
′(k)(αj, u) = lim

n→∞
S

′(k)
n .

Unknown quantity V could be estimated based on Fine and Gray [1999] by

V̂ ′ =
n∑︂

i=1

⎡⎣S
′(2)
n (α̂′

j, Ti)
S

′(0)
n (α̂′

j, Ti)
− Z

′

n(α̂′

j, Ti)
⨂︁

2

⎤⎦1{Di = j}.

3.2.2 Censoring complete data
Sometimes, censoring in a dataset results from administrative follow-up. If we can
obtain the censoring time even if the failure occurred earlier, we can transform
the problem into a complete data setting. However, we need a new modified
risk process and counting process. Moreover, we need the analogic property of
independence of censoring time. As a reminder, let’s assume we observe data

(X1, C1,1{T1 < C1}D1)T , . . . , (Xn, Cn,1{Tn < Cn}Dn)T .

Martingale theorem

Let’s state a theorem similar to Theorem 15. It is useful to realise that in the
filtration, all of the terms are observable. We assume just an administrative
follow-up.

Theorem 16 (Martingale of subdistribution hazard with complete censoring
data). Assume that P (Di ̸= j) > 0. Then, it holds that

M∗
i,j(t) =

∫︂ t

0
1{[Ci ≥ u]}dNi,j(u) −

∫︂ t

0
1{[Ci ≥ u]}Y SD

i,j (u)λSD
j (u)du

is a martingale with respect to the filtration

σ
(︂
1{[Ci ≥ u]},1{[Ci ≥ u]}Ni,j(u),1{[Ci ≥ u]}Y SD

i,j (u);u ≤ t
)︂

= F∗j
t

if and only if it holds

λSD
j (t) = lim

h↓0

P (t ≤ Ti < t+ h;D = j|Ci ≥ t;Ti ≥ t
⋃︁
Ci ≥ t;Di ̸= j)

h

Proof. We present just an idea of the proof of the martingale property. Let us
have a set F ∈ F∗j

t . Now it is decomposed into the following sets

[Ti ≤ t ∩Di = j ∩ Ci ≤ t]
⋃︂

[Ti > t ∪Di ̸= j ∪ Ci > t] = Ω.

Similar to the proof of Theorem 15, we consider both sets to assess the martingale
property. We assume times in the range of 0 < t < t + s. When we examine
the first set in the decomposition, we can see that the martingale property holds.
This is because either an event or censoring has occurred before time t which
means that the counting process remains constant over the time interval (t, t+s).
Therefore, ∫︂

F ∩[Ti≤t∩Di=j∩Ci≤t]

∫︂ t+s

t
1{[Ci ≥ u]}dNi,j(u)dP = 0.
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Furthermore, it is also true that∫︂ t+s

t
1{[Ci ≥ u]}Y SD

i,j (u)λSD
j (u)dudP = 0,

since combining Ci ≤ t and Ci ≤ u > t results in a zero indicator in the integrand.
We continue with the same steps and notation as in the proof of Theorem 15.
First, it is essential to realise there does not exist any nontrivial subset. Therefore,
we obtain the following equations:

kP (Ti > t ∪Di ̸= j ∪ Ci > t) =
∫︂

[Ti>t∪Di ̸=j∪Ci>t]

∫︂ t+s

t
1{[Ci ≥ u]}dNi,j(u)dP =

= E1{[Ti > t ∪Di ̸= j ∪ Ci > t]}1{[Ci > t]} (Ni,j(min (t+ s, Ci)) −Ni,j(t))
= P (t < Ti ≤ t+ s;Ti ≤ Ci;Di = j).

By the same procedure applied to compensator part of martingale, we get the
equations:

k
′
P (Ti > t ∪Di ̸= j ∪ Ci > t) =

=
∫︂ t+s

t
E1{[Ti > t ∪Di ̸= j ∪ Ci > t]}1{[Ci > u]}1{[Ti ≥ t ∪Di ̸= j]}λSD

j (u)du

=
∫︂ t+s

t
P ([T ≥ u;Ci ≥ u] ∪ [Di ̸= j;Ci ≥ u])λSD

j (u)du

Now we compare constants k and k′ and we obtain the last equation which holds
almost surely if and only if there is independent censoring:

P (t < Ti ≤ t+ s;Ti ≤ Ci;Di = j) = −
∫︂ t+s

t

∂P (Ti ≥ v;Di = j;Ci ≥ u)
∂v

⃓⃓⃓⃓
v=u

du =

= −
∫︂ t+s

t

∂P (Ti ≥ v;Di = j)
∂v

⃓⃓⃓⃓
v=u

du.

Again since we work with the whole dataset of n subjects, we assume filtration

F∗j
t =

σ
(︂
1{[Ci ≥ u]},1{[Ci ≥ u]}Ni,j(u),1{[Ci ≥ u]}Y SD

i,j (u);u ≤ t; i = 1, . . . , n
)︂
.

Proportional model

Let us assume a proportional model (identical to that used for complete data)
for the subdistribution hazard of the j-th type of event

λSD
j (t) = λSD

j,0 (t) exp
(︂
ZT (t)α0

j

)︂
,

where α0
j is the true value of the parameter, which we want to estimate.

In this case, we can use Theorem 16. Again it is needed to add a value of
covariates Z(t) to the filtration F∗j

t . Now we are assuming filtration

σ
(︂
1{[Ci ≥ u]},1{[Ci ≥ u]}Ni,j(u),1{[Ci ≥ u]}Y SD

i,j (u),1{[Ci ≥ u]}Y SD
i,j (u)Zi(u);

u ≤ t; i = 1, . . . , n
)︂
.
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Let’s introduce the partial likelihood of censoring complete data from which
we obtain estimates of coefficients αj . Note that in this part we are presenting
an analogical procedure which was performed for the complete data situation.
In the paper Fine and Gray [1999] it was only mentioned that it can be done in
the same way. We present it for completeness.

Definition 24. The function

L∗(αj) =
n∏︂

i=1

∏︂
s>0

⎛⎝ 1{[Ci ≥ u]}Y SD
i,j (s) exp

(︂
αT

j Zi(s)
)︂

∑︁n
l=1 1{[Cl ≥ u]}Y SD

l,j (s) exp
(︂
αT

j Zl(s)
)︂
⎞⎠∆Ni,j(s)

is called the partial likelihood of subdistribution hazard, where ∆Ni,j(t) denotes
the change in the counting process at time t.

Maximizing this function provides estimates α̂∗
j for the coefficients αj. Again,

the logarithmic likelihood and the corresponding score function is defined. There
is a small change of notation since another at-risk process is used.

S∗(k)
n (βj, t) = 1

n

n∑︂
i=1

1{[Ci ≥ t]}Y SD
i,j (t)Z

⨂︁
k

i (t) exp αT
j Zi(t),

and
Z

∗
n(αj , t) = S∗(1)

n (αj, t)
S

∗(0)
n (αj, t)

.

Definition 25 (Logarithmic partial likelihood for j-th SD hazard for censoring
complete data). The function

ℓ∗(αj) =
n∑︂

i=1

∫︂ ∞

0

[︂
αT

j Zi(s) − log(nS∗(0)
n (αj , s))

]︂
dNi,j(s)

is called logarithmic partial likelihood for j-th SD hazard.

By differentiating of log partial likelihood with respect to parameter αj we
obtain the score function.

Definition 26 (Score function of j-th SD hazard).

U ∗
n,j(αj) =

n∑︂
i=1

∫︂ ∞

0

[︂
Zi(t) − Z

∗
n(αj , t)

]︂
dNi,j(t).

From Definition 26 can be seen the importance of Theorem 16. Score function
could be transformed into a sum of integrals with respect to martingale and the
central limit theorem could be used. Now we can claim that

M∗
i,j(t) =∫︂ t

0
1{[Ci ≥ u]}dNi,j(u) −

∫︂ t

0
1{[Ci ≥ u]}Y SD

i,j (u)λSD
0,j (u) exp

(︂
ZT (u)α0

j

)︂
du

is martingale. With this fact and some other assumptions could be proved asymp-
totic properties of estimator α̂∗

j , especially asymptotic distribution:
√
n(α̂∗

j − αj) D−→ Np(0, (V ∗)−1),
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where V ∗ is the limiting covariance matrix

V ∗ =
∫︂ ∞

0

[︄
s∗(2)(α0

j , u)
s∗(0)(α0

j , u) − z∗(α0
j , u)

⨂︁
2
]︄
s∗(0)(α0

j , u)λj,0(u)du,

z∗(α0
j , u) =

s∗1(α0
j , u)

s∗0(α0
j , u) ,

s∗k(αj, u) = lim
n→∞

S∗(k)
n .

Unknown quantity V ∗ can be estimated by

ˆ︁V ∗ =
n∑︂

i=1

⎡⎣S∗(2)
n (α̂∗

j , Xi)
S

∗(0)
n (α̂∗

j , Xi)
− Z

∗
n(α̂∗

j , Xi)
⨂︁

2

⎤⎦1{Di = j}1{Ci > Ti}.

3.2.3 General censored data
In the most general case, we observe either time to event (of any type) or censor-
ing time, so that previous methods cannot be applied. Fine and Gray [1999] sug-
gested estimation of SD hazard based on inverse probability of censoring weight-
ing (IPCW). Derivations are not provided in this thesis, for details see Fine and
Gray [1999]. For completeness of text, there is presented a basic idea and score
function.

Now we are not able to get for all individuals (Xi, Ci,1{Ti < Ci}Di),because
when we observe for example competing event, we do not know censoring time.
Denote knowledge of the vital status of i-th subject at time t as

ri(t) = 1{Ci ≥ min(Ti, t)}.

When ri(t) = 1, then counting processes Ni,j(t) and Y SD
i,j (t) are observable. If

ri(t) = 1 in general we are not able to observe the counting processes. Thus
ri(t)Ni,j(t) and ri(t)Y SD

i,j (t) are always observable. From this, we can construct
the weights for the score function

wi(t) = ri(t)
Ĝ(t)

Ĝ(min(Xi, t)
,

where Ĝ(t) is Kaplan-Meier estimate of censoring event, same as in the Proposi-
tion 3. Now we define the score function for the general censored data

Definition 27 (Score function of j-th SD hazard for general censored data).

U ∗∗
n,j(αj) =

n∑︂
i=1

∫︂ ∞

0

⎡⎣Zi(t) −
∑︁n

l=1 wl(t)Y SD
l,j (t)Zl exp

(︂
ZT

l αj

)︂
∑︁n

l=1 wl(t)Y SD
l,j (t) exp (ZT

l αj)

⎤⎦wi(t)dNi,j(t)

By finding solution of an equation U ∗∗
n,j(αj) = 0 we obtain estimator of αj .

With some additional assumptions and derivations, it can be proved that the
estimator is consistent and asymptotically normally distributed. For more details
see Fine and Gray [1999].
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4. Simulations
In this chapter, the procedure for generating competing risk data is shown. Two
simulations are performed, one for nonparametric methods and one for semipara-
metric estimation.

Firstly, we sum up which data we want to generate. Assume we have one
event of interest and one competing event. We want to generate

(T1, D1)T , . . . , (Tn, Dn)T .

Independent censoring times are generated afterwards. We focus now on initial
step how to generate T1, . . . , Tn, from the distribution given by random variable
T when we know its CS hazard functions λCS

1 , λCS
2 . Since we know CS hazard

functions, we know cumulative hazard functions and as a result, we obtain survival
function exp

(︂
−ΛCS

1 (t) − ΛCS
2 (t)

)︂
. Ideas presented here are based on Bender et al.

[2005]. It is well known that random variable F (T ) has uniform distribution U
over (0, 1). It is easy to prove that 1 −U has uniform distribution over (0, 1) too.
By this we obtain

U ∼ 1 − F (T ) ∼ exp
(︂
−ΛCS

1 (T ) − ΛCS
2 (T )

)︂
.

Assume that we can find the inverse function to calculate T directly, and then
we find the data-generating mechanism. Sometimes, we are able to calculate it
analytically. Sometimes, we have to use numerical methods. As we have obtained
time for the event, we need to find out which event happened. This is done by
CS hazards and their interpretation.

For t > 0, h > 0 we have expression

P (D = 1|T ∈ [t, t+ h), T ≥ t) = P (T ∈ [t, t+ h), D = 1|T ≥ t)
P (T ∈ [t, t+ h)|T ≥ t)

= λCS
1 (t)

λCS
1 (t) + λCS

2 (t) .
(4.1)

From this equation we can see one more interpretation of CS hazard which was
presented by Beyersmann et al. [2009]. If an event for i-th subject happens at
time t then the probability of the first event is given by Equation (4.1). To get
the type of event, a binomial trial with the probability of the first event given
by Equation (4.1) has to be performed. This concludes the first possibility of
how to generate data. This interpretation gives us a reason, why there was
a suggestion to estimate CS hazards for all types of events (to see magnitude
relative to the other events). Theoretically, we can now add censoring times and
calculate simulations. We call it the first type data-generating procedure.

One possible approach to the competing risks problem is via latent times vari-
ables. This other point of view was not presented in this thesis, since there are
problems with identifiability, for more see Putter et al. [2007] and consequently
Tsiatis [1975]. Beyersmann et al. [2009] claims that this is the reason why com-
peting risk data should not be generated via latent variables. However, according
to the following derivations, we do not see any problems for using this method.
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Assume each type of event has its own continuous time to event T̃ 1, . . . , T̃K .
By taking the minimum of all latent variables we obtain random variable

T = min(T̃ 1, . . . , T̃K),

(and D indicator which latent variable was minimum) which is the same random
variable as was used in the thesis. We have to know how to generate these latent
variables according to the chosen scenario. Assume that the latent variables are
independent. Take the CS hazard of the first event and calculate

λCS
1 (t) = lim

h↓0

P (t ≤ T < t+ h;D = 1|T ≥ t)
h

=

lim
h↓0

P (t ≤ T̃ 1 < t+ h|min(T̃ 1, . . . , T̃K) ≥ t)
h

=

lim
h↓0

P (t ≤ T̃ 1 < t+ h| ∩K
k=1 T̃ k ≥ t)

h
= lim

h↓0

P (t ≤ T̃ 1 < t+ h|T̃ 1 ≥ t)
h

.

In the last equation, we used the fact that the latent variables are assumed to be
independent. As a result, we obtained the marginal hazard of random variable T̃ 1.
By Theorem 1 we know that (marginal) hazard completely specifies (marginal)
survival function. As a consequence, we know how to select the distribution from
which we want to generate data. We must generate k-th latent variable from the
distribution specified by k-th CS hazard. The last thing to do is to add censoring
times to complete data generating algorithm. This will be called the second-
type data-generating procedure. This sums up how the data are generated in the
upcoming simulations.

4.1 Nonparametric
In this section, we explore efficiency of estimator presented in Definition 15. Ac-
cording to Monte Carlo principles, the following scenarios were repeated 1000
times.

• censoring situations 10%, 30% and 50% censored,

• sample sizes 50, 100, 1000 and 5000 subjects,

• settings of CS hazard of an event of interest λCS
1 ∈ {0.5, 1, 1.5},

• settings of CS hazard of a competing event λCS
2 ∈ {0.5, 1, 1.5}.

To specify the first data-generating procedure, it is possible to find the in-
verse of the survival function analytically. However in this case we do not have
to follow the instruction exactly. One could realise that we can generate the
random variable T simply from an exponential distribution with rate parameter
λCS

1 + λCS
2 . The other data generating procedure we can see that both T̃ 1 and

T̃ 2 have exponential distribution with rate parameters λCS
1 and λCS

2 . Exponential
distribution was chosen for a censoring time distribution. Since all of the variables
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are exponential, the rate parameter for the censoring was calculated analytically.
As a result, the rate parameter is in the form

(λCS
1 + λCS

2 ) pc

1 − pc

,

where pc is optional probability of censoring.
The results of the performed simulation are presented in Figure 4.1. All the

estimates in the pictures are plotted to 95% quantile of time to either the first
or second event. For 50% of censoring, there is presented 95% Monte Carlo
confidence interval. According to the plot, we can see that the estimator of
the cumulative incidence function seems to be consistent. The curves coincide.
The only situation where some problems could be seen is with a combination of
a small sample size and a high probability of censoring. The estimate varies from
the true cumulative incidence function. However, it differs only in the part where
we usually do not observe any events of interest. However, this problem seems to
be fixed by increasing the sample size. We obtained nearly the same results as for
all the other scenarios. Due to this fact, we present just one scenario. All of the
figures are presented in the appendix to show the whole results. The presented
figures are calculated using the first data-generating mechanism. The simulations
were calculated using the second “latent variable” generating mechanism. We
obtained nearly the same results, so there is no point in presenting all the figures
twice. For each simulated dataset the estimator of cumulative incidence was
performed by R Core Team [2023], package cmprsk [Gray, 2022].

4.2 Semiparametric
As was presented in Section 3.1, the Cox proportional model for CS hazards is
one possibility how to analyse data. In order to explore the efficiency of a model,

Figure 4.1: Nonparametric estimates of cumulative incidence function for sce-
nario: λCS

1 = 1.5 λCS
2 = 1.5.
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Monte Carlo simulations of coefficients were performed. Assume that we have
model given by Equation (3.1), where we assume two covariates (not time de-
pendent) Z = (Z1, Z2)T . For Z1 we assume a binary covariate with Bernoulli
distribution with probability 1/2. The random variable Z2 is a normal random
variable independent of Z1 with mean 50 and variance 122. It was simulated
just for one event of interest and one competing event. There were made 1000
repetitions of each scenario. The simulation scenarios were the following:

• censoring situations 10%, 30% and 50% censored,

• sample sizes 50, 100 and 1000 subjects,

• regression parameters of an event of interest β0
1 = (0.3,−0.01)T ,

• regression parameters of a competing event β0
2 = (0.1, 0.01)T .

To have a complete simulation study setting, it is necessary to specify the CS
hazard of the event of interest and competing event for zero values of covariates.
For this case, we assume just two scenarios, a constant scenario (both CS hazard
functions are constant), a non-constant scenario inspired by Beyersmann et al.
[2009]. We will explore each of these two scenarios more in detail. An exponential
distribution with suitable rate parameters was chosen as the censoring distribu-
tion. The rate parameter was set up on smaller simulated data before the main
simulation.

Constant initial cause-specific hazard

Assume that CS hazards of both types of events are constants for zero values
of covariates(reference group). In the simulation, the initial CS hazard of the
first event of the reference group is λCS

0,1 (t) = 0.5, for the second type of an event
this hazard is set to λCS

0,2 (t) = 0.2. We follow the same notation stated in the
Equation (3.1).

For the first type of data-generating procedure, the inverse of the survival
function (dependent on covariates) is S−1(u) = −log(u)/(λCS

Z,1 + λCS
Z,2). Binomial

trial is given by probability of first event λCS
Z,1/(λCS

Z,1 + λCS
Z,2).

Generating via the latent variables approach is slightly easier. For given co-
variate Z we can use a random generator of exponential distribution for the first
event with rate λCS

Z,1, and in the same way generate the latent variable for the
second one.

Non-constant initial cause-specific hazard

For the first and second event, we set initial CS hazards as functions

λCS
0,1 (t) = 0.09

t+ 1 ,

λCS
0,2 (t) = 0.0002t.
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As a consequence by simple integration and with the usage of the Lemma 4
we obtain the survival function

exp
(︃

−
∫︂ t

0
λCS

Z,1(s)ds−
∫︂ t

0
λCS

Z,2(s)ds
)︃

= exp
(︄

−0.09 log (t+ 1) exp
(︂
ZT β0

1

)︂
− 0.0002t

2

2 exp
(︂
ZT β0

2

)︂)︄
.

We can see that the function is more complex and finding the inverse is not easy.
We have to use a numerical method to calculate the inverse function.

The latent variables approach is again a little bit easier. The variable for the
first event is generated from the distribution with the survival function

S1̃(t) = exp
(︂
−0.09 log (t+ 1) exp (ZT β0

1)
)︂
.

It is easy to see that a function

exp
(︄

− log (u)
0.09 exp (ZT β0

1)

)︄
− 1

is an inverse function to the survival function. As a consequence, we do not need
to use numerical algorithms to solve the inverse function. Similarly, we could
derive analogical results for the competing event. The estimators of regression
coefficients were performed by fit of ordinary Cox model by R Core Team [2023],
survival package Therneau [2023].

Results of the simulations

According to Figure 4.2 all of the confidence intervals are getting narrower and
around the true value as the sample size increases, so all of the estimates seem
to be consistent. For nonparametric simulations, we simulated all parameters
using the first data-generating mechanism. Since the semiparametric simulation
results were summarised in just one figure, we also present results for the second
data-generating mechanism. We can see nearly the same results. There is a slight
difference in competing events for both covariates for sample size 1000 subjects.
For these situations, the confidence intervals are the same length for both data-
generating procedures. For the latent variables, they are not that centred around
the true value of the parameters. However, all of the confidence intervals cover
the true value regardless of the type of data generation.

Beyersmann et al. [2009] suggested generating competing risk data by the
first data-generating procedure rather than the second one. The authors argue
that there is a problem with identifiability and that in practice it is not entirely
appropriate to assume independence of latent variables. It is true that if we
analyse the data and view cause-specific risk as the marginal risk of a given latent
variable, this approach is often incorrect. However, given the simulations and
derivations demonstrated above, if we have the opposite motivation to generate
the data, then this procedure is applicable. The second data-generating procedure
can often simplify the situation. For example the already mentioned computing
the inverse function numerically or analytically.
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Figure 4.2: Monte Carlo 95% confidence intervals estimates of regression param-
eters
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Figure 4.3: Monte Carlo 95% confidence intervals estimates of regression param-
eters by the second data generating mechanism
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Conclusion
First, we presented the motivation for the problem of competing risks. Several
practical examples were shown to illustrate where this phenomenon can occur.

In this thesis, we introduced elementary knowledge about competing risk mod-
els, both nonparametric and semiparametric. We defined basic concepts and de-
rived elementary properties. Furthermore, we discussed an approach where we
ignore competing risks and compared the possible bias of doing so.

The main result of the second chapter, and indeed the primary outcome of the
entire master’s thesis, is the proof of the asymptotic properties of the estimator
of a cumulative incidence function (Theorem 13). This proof is performed with
the necessary background in martingale theory and classical survival analysis,
without employing the theory of multi-state models and product integrals.

In the third chapter, semiparametric methods were introduced. Firstly, we
discussed the possibility of modelling cause-specific and subdistribution hazards.
For the subdistribution hazard, we had to consider three possible situations: com-
plete data, complete censoring data, and the most general case. Partial (log) like-
lihood and corresponding score functions were defined for both hazards and for
all types of data. The main result of this chapter is the proof of Theorem 15 and
the presentation of the idea of the proof of Theorem 16. The theorems proved a
martingale property for distribution hazard. This property is crucial for further
derivations of asymptotic properties.

A small simulation study in the last chapter demonstrated how well the cu-
mulative incidence function can be estimated by the procedure presented in the
second chapter. The results showed that with an increased number of subjects
in the dataset, the estimator became more precise. Similarly, the Monte Carlo
confidence intervals decreased with an increasing number of subjects.

In the second simulation study, we assumed that the Cox model holds for
cause-specific hazards. We considered one binary and one continuous variable,
thereby simulating two regression parameters. Once again, from the results, we
were able to observe that with an increasing number of subjects, the estimates
converged to the true values.
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A. Appendix

A.1 Weak Convergence
Some basic definitions and properties about the D[0, τ ] space will be presented
in this section. Space of stochastic processes with right continuous paths with
left hand limits on [0, τ ] will be denoted as D[0, τ ].Consider a metric space X
and the smallest sigma-algebra B that encompasses all the open sets within X .
A stochastic process, whose sample paths are within X , can be defined as a
measurable mapping from the (Ω,A) −→ (X ,B).

The metric that defines open sets on D[0, τ ] is called Skorokhod metric. Let
Φ be the set of all strictly increasing continuous functions f mapping [0, τ ] onto
[0, τ ] so thatf(0) = 0 and f(τ) = τ

Definition 28 (Skorohod metrics). For any g, h ∈ D[0, τ ] define

d(g, h) = inf
{︂
ε > 0 : ∃f ∈ Φ s.t. sup

t∈[0,τ ]
|f(t) − t| ≤ εand sup

t∈[0,τ ]
|g(t)−h(f(t))| ≤ ε

}︂
.

The distance d is called Skorokhod distance.

Definition 29. Let Pn and P be probability measures on (X ,B). We say that
Pn converges weakly to P as n −→ ∞, (denoted Pn

D[0,τ ]−→ P ), if and only if
Pn(A) −→ P (A) for any A ∈ B such that P (∂A) = 0, where ∂A is the boundary
of the set A.

When the sample space X is Rd, weak convergence aligns with the convergence
in distribution of a random vector Xn to a multivariate distribution P .

Theorem 17 (Continuous mapping theorem). Let h be a continuous mapping
from a metric space (X ,B) to another metric space (X ′

,B′), let Pn
D[0,τ ]−→ P on

(X ,B). Then
Pnh

−1 D[0,τ ]−→ Ph−1

on (X ′
,B′).

For detailed derivations see Billingsley [2013].

A.2 Central limit theorems for sums of martin-
gale integrals

In the thesis, the central limit theorem is used many times. The most important
aspects are mentioned here. For more detailed derivations see Andersen et al.
[2012, part II.5]

We will be working under the following conditions:

1. Let {N (n)
i,k : k = 1, . . . , r, i = 1, . . . , n} be a multivariate counting process

with respect to the stochastic basis (Ω,A, {Ft}t ≥ 0, P ).
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2. Let the compensator A(n)
i,k for N (n)

i,k be continuous.

3. Let H(n)
i,k , k = 1, . . . , r, i = 1, . . . , n, be bounded Ft−predictable processes

on the interval [0, τ ].

Let M (n)
i,k = N

(n)
i,k − A

(n)
i,k be the Ft−martingale for N (n)

i,k .
Denote for ε > 0

U
(n)
i,k;ε(t) =

∫︂ t

0
H

(n)
k,i (u)1{H(n)

k,i (u) > ε}dM (n)
i,k (u) and U

(n)
k;ε (t) =

n∑︂
i=1

U
(n)
i,k;ε(t).

Denote

U
(n)
i,k (t) =

∫︂ t

0
H

(n)
k,i (u)dM (n)

i,k (u) and U
(n)
k (t) =

n∑︂
i=1

U
(n)
i,k (t).

All of these processes are square integrable martingales and it could be proved
that the predictable variation of processes is equal to

⟨U (n)
k ;U (n)

k ⟩(t) =
n∑︂

i=1

∫︂ t

0

[︂
H

(n)
k,i (u)

]︂2
dA

(n)
i,k (u),

and similarly

⟨U (n)
k;ε ;U (n)

k;ε ⟩(t) =
n∑︂

i=1

∫︂ t

0

[︂
H

(n)
k,i (u)

]︂2
1{H(n)

k,i (u) > ε}dA(n)
i,k (u).

Theorem 18 (Central limit theorem). Let for all t ∈ [0, τ ] and all k = 1, . . . , r

⟨U (n)
k ;U (n)

k ⟩(t) P−→
∫︂ t

0
f 2

k (u)du < ∞

as n −→ ∞, where fk are non-negative measurable functions and, for all ε > 0,

⟨U (n)
k;ε ;U (n)

k;ε ⟩(t) P−→ 0.

Then (︂
U

(n)
1 , . . . , U (n)

r

)︂
Dr[0,τ ]−→

(︃∫︂ t

0
f1dW1, . . . ,

∫︂ t

0
frdWr

)︃
,

where W1, . . . ,Wr are independent Brownian motions.

Proof. See Andersen et al. [2012, part II.5]

A.3 Functional delta theorem
We want to explore convergence of random elements in some sample space. We
will present a generalisation of differentiability.
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Definition 30 (Hadamard differentiability). Assume that we have B and B
′

Banach spaces then we call ϕ : B −→ B
′ Hadamard differentiable at a point

θ ∈ B if and only if a continuous linear map

dϕ(θ) : B −→ B
′

exists such that for all real sequences an −→ ∞ and all convergent sequences
hn −→ h ∈ B,

an

(︂
ϕ(θ + a−1

n hn) − ϕ(θ)
)︂

−→ dϕ(θ)h as n −→ ∞.

Theorem 19. Let Tn be a sequence of random elements of B, an real sequence,
such that

an (Tn − θ) w−→ Z

for some fixed point theta and random element Z from B. (it is weak convergence
of measures, in our context it is convergence in Skorochod metrics for D[0, τ ]
spaces) Suppose ϕ : B −→ B

′ is Hadamard differentiable at θ. Then

an (ϕ(Tn) − ϕ(θ)) w−→ dϕ(θ)Z

For more details see Andersen et al. [2012, part II.8]

A.4 Results of the simulations
Figures with results of the simulation from Section 4.1.
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Figure A.1: Scenario: λCS
1 = 1.5 λCS

2 = 1.5

Figure A.2: Scenario: λCS
1 = 1.5 λCS

2 = 1

Figure A.3: Scenario: λCS
1 = 1.5 λCS

2 = 0.5
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Figure A.4: Scenario: λCS
1 = 1 λCS

2 = 1.5

Figure A.5: Scenario: λCS
1 = 1 λCS

2 = 1

Figure A.6: Scenario: λCS
1 = 1 λCS

2 = 0.5
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Figure A.7: Scenario: λCS
1 = 0.5 λCS

2 = 1.5

Figure A.8: Scenario: λCS
1 = 0.5 λCS

2 = 1

Figure A.9: Scenario: λCS
1 = 0.5 λCS

2 = 0.5
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