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Abstract
Despite a plethora of empirical research on electricity demand, results regard-
ing estimated price elasticities persist to be inconclusive. Our meta-analysis
synthesizes 4521 estimates from 413 studies to explore the presence of publi-
cation and endogeneity bias. We code for over 100 variables to quantify the
response of electricity consumers to price shifts. The price elasticity of electric-
ity is inelastic and the short-run elasticity sample average of -0.231 is double
(in magnitude) the short-run elasticity corrected for publication bias, which
is -0.116. The long-run elasticity adjusted for publication bias is -0.303. We
conclude that experimental studies, while also suffering from publication bias,
report unbiased elasticities of -0.07. Our thesis also confirms a significant occur-
rence of p-hacking across multiple specifications. By employing Bayesian model
averaging, we explore the heterogeneity among reported elasticities, finding
that factors such as decreasing tariffs, demographics and fuel usage controls,
daylight hours and number of citations critically influence the variability in
findings. The average and marginal price of electricity and time of use tariffs
play a negligible role in explaining the differences in estimated elasticities.
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Abstrakt
Navzdory množství empirických výzkumů poptávky po elektřině jsou výsledky
odhadů cenové elasticity stále nejednoznačné. Zpracovaná meta-analýza shro-
mažďuje 4521 pozorování ze 413 studií s cílem prozkoumat přítomnost pub-
likačního zkreslení a zkreslení endogenity. Kódujeme více než 100 proměnných,
abychom kvantifikovali reakci spotřebitelů elektřiny na změny ceny. Cenová
elasticita poptávky po elektřině je neelastická a průměrná krátkodobá elas-
ticita (z našeho vzorku studií) -0,231 je dvojnásobná (co do velikosti) oproti
krátkodobé elasticitě očištěné o publikační zkreslení, která je -0,116. Dlouhodobá
elasticita očištěná o publikační zkreslení je -0,303. Docházíme k závěru, že
experimentální studie, ačkoli také trpí publikačním zkreslením, uvádějí nižší
nezkreslené elasticity v hodnotě -0,07. Naše práce také potvrzuje významný
výskyt p-hackingu ve více specifikacích. Pomocí Bayesovského průměrování
modelu zkoumáme heterogenitu mezi uváděnými elasticitami a zjišťujeme, že
faktory, jako jsou klesající tarify, demografické údaje a kontroly spotřeby paliva,
denní doba a počet citací dané studie, rozhodujícím způsobem ovlivňují vari-
abilitu zjištění. Průměrná a mezní cena elektřiny a časové tarify spotřeby hrají
při vysvětlování rozdílů v odhadovaných elasticitách zanedbatelnou roli.
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Chapter 1

Introduction

Electricity as an energy source plays a key role in the viability of an economy.
Many sectors such as manufacturing, health, construction and communications
just to mention a few rely heavily on the production of power for their activi-
ties. Furthermore, Onakoya et al. (2013) characterize electricity as "the pillar of
wealth creation" in many, especially developing, countries. According to Dahl
(2011), electricity consumption increases its share among energy fuels as coun-
tries become richer. Making sure that a country has an adequate electricity
generation capacity is among the most important prerequisites for economic
growth (Outlook 2013). Therefore, understanding the responsiveness of a con-
sumer can help the government and utility companies to reliably predict future
energy needs and design pricing and taxation policies (Espey & Espey 2004).

On the individual level, however, matching electricity demand and supply is
often difficult. Demand is subject to sudden shifts throughout the day and sup-
pliers of electricity have to take into account this variability, usually by storing
the surplus of generated electricity in times of low demand, which can be very
costly (Ajanovic et al. 2020). The ability to store excess energy during peak
generation periods and release it during times of high demand or low renew-
able generation emerges as a critical component for ensuring a stable, resilient,
and sustainable energy future, as highlighted in the top EU Energy priorities
(Commission 2017). Being able to quantify characteristics of consumer demand
would help with such an endeavour. In this respect, the response of consumers
can be measured using the price elasticity of electricity demand, a normalized
parameter that informs policymakers how consumption changes as a response
to price shifts.

It is not surprising that electricity demand has been one of the most heavily



1. Introduction 2

studied energy products over the past decades (Dahl 2011). While there is a
theoretical foundation that the relationship between electricity demand and
price is negative, the results of studies vary widely. Multiple papers argue that
price elasticity is below -6 (Bernard et al. 1996; Narayan et al. 2007; Kohler
2014), while other authors estimate the price elasticity to be above 1 (Hartman
& Werth 1981; Pesaran et al. 1999; Bildirici et al. 2012). Such differences
arise due to various reasons, to name a few: inclusion of control variables
(e.g. household characteristics, temperature), treatment of endogeneity, data
granularity and the length of period for which price elasticity of electricity
is measured. Hence, it is challenging to make generalizations of the electricity
price and demand relationship from individual studies. Labandeira et al. (2017)
argue that despite the increasing number of individual studies on electricity,
there is still a scarcity of attempts to summarize the elasticities into a single
number. Given the heterogeneity of the estimates, we can employ a method
which reconciles the variety of results called meta-analysis, introduced by Glass
(1976).

Admittedly, several surveys (including meta-analyses) attempt to explain
the relationship between electricity price and demand and present generalized
findings. Few studies briefly summarize the previous research on the topic
(Taylor 1975; Aigner 1985; Dahl 1993; 2011). The first meta-analysis of the
price elasticity of electricity was conducted by Espey & Espey (2004), followed
by Horáček (2014), Labandeira et al. (2017), Zhu et al. (2018), Zabaloy & Viego
(2022) and Fatima (2023). This thesis advances the previous studies in multiple
ways. We collect 4521 estimates from 413 studies and employ novel techniques
to quantify publication and endogeneity bias. Furthermore, by collecting over
100 variables, we can investigate the heterogeneity of the estimates by employ-
ing the Bayesian and Frequentist model averaging estimation techniques. The
objective of this thesis is to summarize the plethora of literature on the topic
and assess to what extent are the estimated elasticities affected by the potential
publication and endogeneity bias.

Firstly, we hypothesize that the estimates of the price elasticity of elec-
tricity are tainted by publication selection bias. This means that researchers
consciously or unconsciously manipulate the research process and decide not to
publish certain results. This might be caused by various reasons, such as lack of
time to undergo the peer review process (Song et al. 2013) or counter-intuitive
results (Havranek & Irsova 2012). Some authors even argue that about 50%
of completed studies remain unpublished (Scherer et al. 2018). We find that
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the sample averages considerably exaggerate unbiased elasticities due to publi-
cation bias. While the sample average reports a short-run elasticity of -0.231,
we establish the corrected estimate to be -0.116. Similarly, in the long-run,
we estimate the price elasticity to be -0.303, compared to the biased sample
average of -0.532. The significant presence of p-hacking is also supported by
various tests. Approximately 200 estimates out of 4521 (4.4%) lie right be-
low the 5% significance threshold (-1.96), occupying less than 0.04% of our
winsorized t-statistic range.

Moreover, this is the first meta-analysis to explicitly address the issue of
potential endogeneity bias. While previous surveys and meta-analyses collect
information on estimation techniques, the authors only conclude that vari-
ous estimation techniques, such as IV, have no significant effect (even on the
10% level) on the overall price elasticity estimate. We find that there is no
significant difference between studies neglecting endogeneity and those which
account for it, however, experimental data designed to establish a causal rela-
tionship report much lower elasticities of -0.07 compared to non-experimental
data. Quasi-experimental surveys report a relatively more elastic response of
-0.110. In terms of heterogenous effects on estimates, we conclude that the use
of experimental and cross-sectional data, decreasing tariff, daylight hours and
number of citations significantly affect the price elasticities in the literature.
On the other hand, neither average nor marginal price and also time of use
tariff do not help to explain the heterogeneity of the effects.

The rest of the thesis is structured as follows: Chapter 2 introduces the
reader to the topic of electricity demand and provides a literature overview.
The contribution of this thesis to the existing literature is also incorporated in
this section. Chapter 3 describes the selection criteria for assembling the data
set and a general overview of the literature. In Chapter 4, different statistical
tests are conducted to assess the publication and endogeneity bias in collected
studies and their results are presented. Chapter 5 describes and employs model
averaging techniques to explore heterogeneity between the estimates. Further
robustness checks are included. Best practice estimates, cross-country elastici-
ties and sensitivity analysis are the subject of Chapter 6. Chapter 7 encapsu-
lates the final results, highlights possible limitations, discusses areas for further
research, and concludes the thesis.



Chapter 2

Price Elasticity of Electricity
Demand

This chapter begins by presenting the theoretical framework for electricity de-
mand estimation. Following this, we explore the practical aspects of the effect
estimation using price elasticity. The chapter then provides a concise summary
of previous meta-analyses and highlights the contributions of the thesis. This
approach aims to introduce the reader to the topic, covering key findings and
setting the stage for subsequent discussions and results.

2.1 Modelling Electricity Demand
The growth of electricity demand is expected to accelerate in 2024, particu-
larly in emerging economies like India and China, according to the Agency
(2024). Similarly, the energy use for electricity production is continuously in-
creasing, due to various factors, including global warming (Asadoorian et al.
2006). Power generation emissions are projected to escalate in Asia, in con-
trast to the emphasis on renewables in the European Union and the United
States. The shift in the price of electricity in the last few years stimulated
renewed interest in the area of electricity demand estimation. Moreover, as
emphasized by Zhou & Yang (2016), the focus on mitigating the environmental
impact of electricity consumption extends beyond policy and renewable energy
efforts. Behavioural factors influencing individual consumer patterns play an
important role, too. Understanding household-level energy consumption can
aid regulators with insights to incentivize energy-saving practices and hence
reduce carbon emissions (Alberini et al. 2019b), formulate effective electricity
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policies (Kwon et al. 2016), plan infrastructure, and assess the efficiency of
environmental taxes (Benavides et al. 2015).

Electricity is not consumed directly, but rather through the flow of services
provided by electricity-using appliances (Reiss & White 2005). In an early ex-
ploration of electricity demand, Hausman (1979) proposed an approach that
centres on two fundamental components: the technological design of appliances
and their utilization. This methodology offers a distinct advantage by allowing
differentiation between short-term and long-term effects. In the short-run, with
the capital stock held constant, electricity demand is influenced by usage pat-
terns, such as how often consumers activate lights or utilize air conditioning. In
contrast, the long-term perspective involves consumers potentially opting to re-
place existing appliances with those requiring less energy input. Consequently,
long-term energy demand becomes a trade-off consideration between operating
and capital stock costs. As pointed out by McRae & Meeks (2016), households
with better knowledge of their electricity expenditure are more likely to invest
in energy-efficient improvements.

The very general empirical model of electricity demand, which is denoted
by Q at time t, can be thus written as a function of electricity price PE, other
economic factors X and the stock of electricity using equipment KT :

Qt = F (PEt, Xt, Kt(PEt, Xt)) (2.1)

The three variables might have an independent or dependent impact on the
electricity demand. Silk & Joutz (1997) further break down energy appliances
into two segments. The first one consists of the daily demand for energy ser-
vices: refrigeration, cleaning, lighting, charging and entertainment. The second
type relates to seasonal weather patterns that might influence demand for heat-
ing and cooling services. In the early days of electricity modelling, Fisher &
Kaysen (1962) proposed a two-stage model, firstly focusing solely on the price
of electricity and subsequently including capital stock determinants. Due to
the limited availability of capital stock data, the urbanization rate was used as
a proxy for the stock appliances in the study. A similar model was then devel-
oped by Taylor (1975) with the conclusion that the data on stock appliances
must improve in order to conduct reliable research. The number of studies con-
trolling for stock appliances increased around 2000 (see e.g. Garcia-Cerrutti
2000; Filippini 2011; Fell et al. 2014), which might indicate an increase in the
availability of such data.
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2.2 Estimating the Relationship
In practice, majority of researchers use various models to estimate some func-
tional form of the following equation:

lnQi,t = α + βlnPEi,t + λlnQi,t−1 + δXi,t + ϵi,t (2.2)

where Q denotes the electricity consumption, PE is the electricity price and X

is a vector of other independent variables that might capture the effect of tem-
perature, substitute fuels, household or socioeconomic characteristics. In some
papers (Chang & Chern 1981a; Eltony 2006; Wang et al. 2020), the lag of elec-
tricity consumption Q is also included to examine long-run adjustments. This
suggests that electricity demand is influenced by its own usage in the preceding
period, as households cannot make capital stock adjustments immediately (see
e.q. Paul et al. 2009). In this equation, we add subscripts for individual obser-
vation i at time t, however, the estimated model can be applied analogically
to cross-sectional or time-series data. An extensive discussion of the individual
variables which are usually included in the model is found in Chapter 5.

We present two brief examples of electricity demand estimation. To ex-
plore elasticity variation both across and within the United States, Bernstein
& Griffin (2006) estimate model with the following fixed-effects specification:

lnQi,t = λlnQi,t−1 + αlnPEi,t + βlnXi,t + γlnXi,t−1 + si + yt + ϵi,t (2.3)

where Qi,t is the electricity demand of state i at time t, Qi,t−1 is the lagged
value of electricity demand, and PEi,t is the price elasticity of electricity. A
set of other covariates (such as other fuel prices, population, income) assumed
to affect electricity demand is denoted by Xi,t and the lagged values of such
characteristics are Xi,t−1. Time-invariant variations in electricity consumption
across states are denoted by si. Similarly, yt captures time-variant effects,
which are common to all states. The error term is represented by ϵi,t as usual.
Since the double-log form is employed, the short-run price elasticity estimate
is thus simply α and the long-run elasticity can be obtained by dividing the α

estimate by (1 − λ).
Another rare, but interesting model employed is the Kalman filter, which

is used in selected studies (Wang & Mogi 2017; Wakashiro 2019). This ap-
proach is applied to non-stationary data for estimating regressions in which
the variable (price elasticity in our case) is assumed to have a time-varying ef-
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fect. For example, Hanson (2002) provides a discussion on how to test whether
the parameter is indeed time-varying. The baseline model for time-series data
authors employ is:

lnQt = θ + αtlnPEt + βtlnYt + ϵt (2.4)

ϵt ∼ iidN(0, σ2
e)

αt = αt−1 + µt, µt ∼ iidN(0, σ2
µ1)

βt = βt−1 + νt, νt ∼ iidN(0, σ2
ν1)

(2.5)

The initial step is to determine the starting position α0 and β0. This can be
done using the maximum likelihood approach, with a specific procedure out-
lined in Durbin & Koopman (2012). Equation 2.4 is the measurement function
and Equation 2.5 is called the transition equation, which follows a random walk
process. This procedure allows the elasticities to vary throughout periods and
such changes of elasticity estimates (αt for price and βt for income) are inde-
pendent of each other. Authors can hence provide multiple elasticities or report
an individual estimate (usually the final coefficient). In-depth descriptions can
be found in the papers mentioned.

In the studies collected, authors estimate the relationship using price elas-
ticity. It is a convenient unit-free measure for the electricity demand, which is
expressed as:

ε =
△Q
Q

△P E
P E

(2.6)

Where ε is the price elasticity, Q is the consumption and P is the price, with △
representing the respective change in the variable. The coefficient describes the
relative change in the consumption of electricity due to price changes, ceteris
paribus. Because it is normalized, it measures how the electricity demand
varies when its price changes by one per cent. In the double log specification
in (2.2), the short-run price elasticity of electricity is directly estimated by
coefficient β and the long-run is prevalently estimated by dividing β by (1 − λ)
to capture appliance adjustments. Alternatively, if used in a linear model, the
short-run elasticity can be obtained by multiplying the β coefficient by the ratio
of mean price to mean consumption. In this thesis, we break down the price
elasticity of electricity into short-run, intermediate-run and long-run as there is
a theoretical foundation (not limited to energy economics) that elasticity varies
for these periods (Meher 2020; Otsuka 2023).
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We utilize a meta-analytical approach to consolidate findings on electricity
demand. This involves conducting a regression analysis using a collection of
results gathered from the literature. Additionally, we seek to identify variables
that account for the heterogeneity in reported price elasticities across different
studies. There is a clear consensus that the price elasticity of electricity is neg-
ative (Fan & Hyndman 2011), in other words, electricity is an ordinary and not
a Giffen good. However, the quantification of the elasticity whilst controlling
for specific variables is problematic. Meta-analysis was introduced by Glass
(1976), who stressed that there is a need to "find knowledge in information",
referring to the ability to extract generalizations from primary studies. In this
respect, despite numerous attempts to explain the determinants of electricity
demands, some authors still argue that the topic lacks rigorous analysis which
hinders the designing of government energy policies (Al-Faris 2002; Narayan
et al. 2007; Al Irsyad et al. 2018). Moreover, meta-analysis is also used to test
for publication bias (Card & Krueger 1995).

Meta-analysis is a technique that has been used extensively in energy eco-
nomics. For example, Espey (1998) and Havranek & Kokes (2015) applied
meta-regression analysis to understand gasoline demand, while Van der Kroon
et al. (2013) examined whether there exists a systematic fuel switching be-
haviour from biomass fuels to cleaner alternatives. Labandeira et al. (2017)
further conducted a meta-analysis on energy demand, covering gasoline, heat-
ing oil, diesel and more. Chai et al. (2018) used techniques of meta-analysis to
estimate natural gas demand. These examples highlight how meta-analysis is
a valuable tool in energy economics, helping researchers make sense of diverse
studies and gain a comprehensive view of the field.

2.3 Previous Research
As mentioned, there are hundreds of studies examining the price elasticity of
electricity, the first one conducted by Houthakker (1951), who analysed the
residential electricity demand of provincial towns in Great Britain. The 10
most-cited studies in our dataset collected over 8500 citations, highlighting the
importance of the topic. Some of the studies are also published in top economic
journals: Shaffer (2020) in American Economic Journal; Wolak (2011), Ito
(2014) and Jessoe & Rapson (2014) in American Economic Review; Hawkins
(1978) and Reiss & White (2005) in The Review of Economic Studies.

Based on our knowledge, there exist 6 meta-analyses on the topic: Espey &
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Espey (2004), followed by Horáček (2014), Labandeira et al. (2017), Zhu et al.
(2018), Zabaloy & Viego (2022) and Fatima (2023). Espey & Espey (2004)
conducted the first meta-analysis of 36 studies on price and income elastic-
ities, collecting 123 short-run and 125 long-run estimates of price elasticity,
with means of -0.35 and -0.85, respectively. Interestingly, the author decided
to exclude positive estimates from the analysis due to the small sample size or
insignificance. The paper was the first attempt to include household charac-
teristics, estimation technique, demand model choices and period of analysis
and to inspect whether these factors influence the price elasticity of electricity.
The authors do not present a single general estimate of price elasticity.

Horáček (2014) used the energy database by Professor Carol Dahl as a basis
for his estimation, ultimately utilizing 834 short-run, 1325 intermediate-run and
231 long-run estimates from 247 studies spanning from 1951 to 2014. Using the
OLS estimation technique and mixed-effects models, the author concludes that
the true price elasticity of electricity estimate is -0.06 for short-run, between
-0.16 to -0.21 for intermediate-run and -0.43 for long-run. By coding for 26
variables, the paper explores the heterogeneity of estimates based on estimation
technique, type of elasticity and year of publication. Notably, the author finds
that residential demand is more price elastic (in absolute value) than industrial
and commercial demand and that there is no time variation with respect to
price elasticity.

With the intent of facilitating a sounder economic assessment of electricity
price responsiveness, another study of energy demand products such as elec-
tricity, gas, diesel, gasoline and natural oil is undertaken by Labandeira et al.
(2017). After eliminating 5% of outliers, the authors proceed with 917 short-
run and 959 long-run estimates. They conclude that the short-run estimate for
electricity is -0.126 and the long-run estimate is -0.365. Other energy products
are also price inelastic according to the study. Furthermore, the study finds
that elasticity diminishes over time, with earlier research indicating higher lev-
els of responsiveness. As opposed to Horáček (2014), the paper poses that
commercial electricity demand is more elastic than residential and industrial.

One of the meta-analyses of recent studies published from 1990 through 2017
(but covering data from 1950 to 2014) is conducted by Zhu et al. (2018). The
authors focus on residential electricity demand and code for the functional form,
aggregation of data, estimation technique, country and sample period in order
to explain the heterogeneous nature of the estimates. They collect elasticities
ranging from -0.948 to 0.610 in the short-run and -4.2 to 0.6 in the long-run.
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One interesting finding is that developing countries have higher elasticity in the
short-run. In terms of functional form, double-log model specification yields
the most price elastic estimates in both the short and long term.

Zabaloy & Viego (2022) collect 82 short-run and 131 long-run estimates ex-
clusively for the Carribean and Latin American countries. Moreover, the study
is the first one to collect variables on the type of the study, whether it is a the-
sis, non-indexed journal or Scopus journal. The type of variables connected is
otherwise in line with previous research, focusing on the type of data, stock ap-
pliances and estimation method. There is a publication bias present, however,
the evidence of bias vanishes in studies published in indexed journals according
to the authors. Therefore, the publication bias is attributed to studies with
econometric shortcomings. The paper concludes that due to high heterogeneity,
it is impossible to offer a unique price elasticity estimate for both the short-run
and long-run. Lastly, Fatima (2023) attempts to examine the income and price
elasticities of electricity in Asia. The study focuses on qualitatively explaining
the heterogeneity, with time-series data, long-run estimates and journal impact
factors significantly influencing the estimated effect.

Table 2.1: Meta-analyses on electricity demand

Year Observations Estimate
S-R I-R L-R S-R L-R

Espey & Espey (2004) 123 - 125 -0.350 -0.850
Horacek (2014) 834 1325 231 -0.060 -0.430

Labandeira et al. (2017) 966 - 1010 -0.126 -0.365
Zhu et al. (2018) 175 - 196 -0.228 -0.577

Zabaloy & Viego (2022) 82 - 131 -0.213* -0.351*
Fatima (2023) 113 - 57 -0.104 -0.143

This study 1866 1842 813 -0.116 -0.303

Notes: The observations are divided into short-run (S-R), intermediate-run (I-R), and long-run (L-R).
Estimate column presents either preferred estimate of price elasticity or average value if single estimate
is not presented. *The authors provided multiple elasticity estimates with no clear preference, results
of random-effects specification were chosen. For author’s elasticity estimates, we chose the best practice
estimates presented in Chapter 6.

Following the efforts of the studies aforementioned, we expand the dataset
published by Professor Carol Dahl to include recently published studies. As
mentioned, multiple variables might affect the price elasticity of electricity. It
is hence difficult to calibrate how the inclusion of a particular variable affects
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the price elasticity. Compared to previous studies, this study takes advantage
of a much greater dataset containing over 100 variables, which allows us to illu-
minate the potential heterogeneity of the studies, endogeneity and aggregation
bias. We are also the first to deal with model uncertainty using model aver-
aging techniques. Lastly, multiple robustness checks are conducted to increase
the credibility of our results, which are included in the Appendix A.

While previous studies of Horáček (2014) and Zabaloy & Viego (2022) con-
trolled for publication bias, they used solely linear meta-regression methods
to explore the correlation between the estimate and its standard error. The
authors thus did not consider the possibility that the relationship is non-linear
or that such methods were not available at the moment. Advancements in the
techniques used in meta-analysis allow us to also employ non-linear techniques
to quantify publication bias, if present. Consequently, we conduct tests that re-
lax the exogeneity assumption of the standard error and explore whether there
exists empirical evidence that authors manipulate their findings in order to get
their studies published. Also, this thesis is the first one to address the issue of
p-hacking and endogeneity bias. In conclusion, while the thesis is admittedly
not delving into a novel topic, its contribution is justifiable as the dataset col-
lected is much more complex and techniques used in previous meta-analysis
are either not extensive (Zabaloy & Viego 2022) or rendered obsolete (Horáček
2014).



Chapter 3

Data

This chapter outlines the procedure employed to gather data on price elastic-
ity estimates, including any challenges or limitations encountered during the
process. Following this, we present a preliminary analysis of the collected esti-
mates.

3.1 Data Collection
Our research builds upon the dataset initially created by Carol Dahl for her
2011 survey (Dahl 2011), which is publicly accessible. The initial action was
to filter out any estimates lacking a quantifiable metric of uncertainty, such as
a standard error or t-statistic, reducing the dataset from 5333 to 1839 obser-
vations across 198 distinct studies. Moreover, we conducted a thorough exam-
ination of each paper to record additional variables, such as the total number
of observations, any alterations made to the elasticity calculations, the various
forms of elasticity assessed, and other details. Of the studies included in the
original dataset, 28 of them with initially missing information were kindly sent
to us by Professor Carol Dahl.

The initial step in refining the dataset involved constructing a Google
Scholar search using the term "price elasticity of electricity demand." The search
query yielded approximately 210 000 results. After selecting the first 500 stud-
ies not included in the original sample, the author went over individual ab-
stracts and excluded 243 of them. This left us with 277 studies to examine
(including "snowballing"). Subsequently, some of the studies were excluded
during the paper review as the estimates had no uncertainty metric or the
estimates were not of own price elasticity (but rather cross price elasticity or
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income elasticity). During the literature review, we also used the "snowballing"
technique as recommended by Irsova et al. (2023b). This technique refers to
examining cross-references included in primary studies and therefore increas-
ing the set of potential papers that can be included. Throughout this process,
we adhered to established guidelines for conducting meta-analyses, consulting
papers by Hall & Rosenthal (1995), Stanley et al. (2013), and Havránek et al.
(2020).

Our final dataset consists of 4521 estimates on the price elasticity of elec-
tricity obtained from 413 studies. An overview of all studies included and
the PRISMA diagram of detailed steps in the data collection procedure can be
found in Appendix B. The author admits that our list of studies included is not
an exhaustive, albeit considerable, set of research on price elasticity of electric-
ity demand. The search was concluded on December 15, 2023, and no studies
were added beyond this date. The number of citations for every study included
(based on Google Scholar) was updated on March 3, 2024. The dataset can be
provided upon request.

To be included in the dataset, the studies had to cumulatively satisfy the
following criteria:

• The paper must provide an estimate of own price of elasticity of electricity.
Studies focusing on cross-price elasticity of electricity with other fuels or
income elasticity were excluded.

• The study must report a form of uncertainty metric, preferably stan-
dard errors or confidence intervals that can be transformed into standard
errors. Studies reporting p-values were included and labelled as the trans-
formation into standard errors is subject to approximation. Standard er-
rors are used in meta-analysis as weights and they are needed to quantify
publication bias.

The majority of studies were published in a peer-reviewed journal. There are
two main reasons for this decision. The published studies are easily accessible
and we expect them, on average, to be of higher quality. Adopting this approach
should not affect the integrity of our publication bias analysis, as noted by Rus-
nák et al. (2013). Nevertheless, the inclusion criterion was not strictly limited
to published works; select studies from government agencies and working papers
from economic departments of various institutions were also considered. For in-
stance, contributions from the University of Gothenburg (Walfridson 1987) and
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the American Economic Association (Garbacz 1983a) were included. There-
fore, there was a strong marked preference for peer-reviewed publications, but
this did not preclude the consideration of other reliable sources.

3.2 Data Adujstments
One important variable we had to include for all studies was whether an ap-
propriate transformation of price elasticity was used. There was an ex-ante ex-
pectation that some authors might express price elasticity as a transformation
of the coefficient, for instance, by setting the elasticity to be 1/β with respect
to (2.2) when estimating the inverse demand equation. Fortunately, the vast
majority of studies used either coefficient directly as an elasticity measure (for
double-log specifications) or the elasticity was calculated as a transformation
that does not manipulate the relationship between standard error and the esti-
mate (e.q. obtaining elasticity from the linear model by multiplying the ratio of
average price and consumption). Some studies did not provide an explanation
as to how the specific elasticity was computed from a regression and the author
was not able to deduct such transformation. Such 20 observations are hence
excluded from the tests.

Selected studies did report p-value instead of standard error. While this is
generally not an issue as the standard error can be derived from the p-value, the
problem arises when authors reported a p-value of 0 due to rounding ((Madlener
2011)). In this case, we labelled such studies and used a low p-value of 0.001
to calculate standard errors. Furthermore, some studies (Blázquez et al. 2013;
Saha & Bhattacharya 2018; Frondel et al. 2019) did not report the standard er-
ror connected to the long-run elasticity estimate, which can be calculated based
on the short-run coefficient and lagged coefficient on electricity consumption.
In this case, we used the delta method to derive the missing standard error
from the estimates in the original regression. This method helps with the ap-
proximation of transformation of functions and their asymptotical distribution
using Taylor polynomials. For instance, Oehlert (1992) presents a more thor-
ough discussion of this method. As a last step in the data adjustments, we
applied a 1% winsorization to the data to mitigate any potential skewing in
our results. While trimming could be considered given our ample dataset, it
is deemed less favourable due to the greater loss of information it would en-
tail. This is also emphasized by Irsova et al. (2023b), as the writers argue that
removing such outliers should be the tool of last resort.
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3.3 Preliminary Analysis
Prior to examining publication bias, calibration bias, and heterogeneity, this
section outlines the summary statistics of the dataset compiled. In total, we
collected 4521 estimates from 413 studies and coded for 109 variables. The
oldest and newest paper in our dataset was published in 1951 and 2023, re-
spectively. Only two studies were published before 1971 (Houthakker 1951;
Fisher & Kaysen 1962). The publication dates therefore seem to be uniformly
distributed for the period (1971-2023) with the median year of 1995. In Fig-
ure Figure 3.1, we present a boxplot of price elasticity for selected studies to
emphasise the great variability of price elasticity. There is a dispersion of the
estimated effects, however, there seems to be no systematic trend concerning
the variance of reported elasticities. We also present boxplots for all studies
in Appendix A.

The average number of estimates reported per study is between 10 and 11.
Some studies are providing a single estimate of price elasticity (Fuss 1977; Fou-
quet 1995; Delfino 1995; Chaudhary et al. 1999). There are studies on the other
end of the spectrum, too. McRae & Meeks (2016) provide 85 estimates of price
elasticity of elasticity while Cao et al. (2023) and Walfridson (1987) produced
120 and 192 estimates, respectively. A large number of estimates per study
can be attributed to multiple factors, to name a few: estimation for multiple
countries, various models employed, gradual inclusion of control variables or
estimation for subsets of periods examined in the study. To address the dis-
parities in the volume of estimates across studies, we later apply a weighting
method, utilizing the inverse of the number of estimates each study provides.

The shortened summary statistics on the variables can be found in Ta-
ble 3.1. The mean value of price elasticity in our dataset is -0.395, stating
that on average, if the price increases by one unit, the demand is to decrease
by 39.5% (or vice versa). When considering the absolute values of elasticity,
findings suggest higher elasticity for studies focused on periods before 1984
and shorter time frames. Consistent with established theories, we observe that
short-run elasticities are less than those of the intermediate and long-run. A
discernible pattern within our data is the rise in elasticity corresponding to
increased data granularity; for instance, household-level data show an aver-
age elasticity of -0.523, in contrast to -0.289 at the country level. Consumers
responding to marginal prices seem to exert higher elasticity compared to con-
sumers of electricity reacting to the average price. Notably, there is a great



3. Data 16

Figure 3.1: Variability of the estimated effect for a subset of studies

Notes: The figure shows a box plot of the price elasticity of electricity estimates for a given study. The
vertical line denotes the mean value (-0.395).
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difference in price responsiveness considering tariff structures. The observation
that price elasticity peaks among customers with a decreasing tariff structure
indicates a sensitivity to cost savings, as lower prices for higher usage levels
encourage increased electricity consumption. While time-of-use tariffs induce
a more limited response, consumers nevertheless adjust their behaviour across
different time blocks. Peak times, typically evenings with higher rates, see less
flexibility in usage patterns, while off-peak times, offering lower rates, invite a
significant uptick in consumption as consumers take advantage of cheaper elec-
tricity. It is important to keep in mind that these observations are only based on
simple averages and hence should be taken with reservations. A more in-depth
discussion on the effects of individual variables is presented in Chapter 5.

The summary Table 3.1 concludes that there is little difference in the effect
for relatively high prestigious journals compared to low prestigious ones. It
should be noted that 210 estimates do not come from peer-reviewed journals.
These estimates are mostly from books (Chern 1978; Donnelly 1984) or gov-
ernment studies (Verleger 1973; Matsui 1979; Wijemanne 1987). The dataset
lacks a substantial number of unpublished studies, rendering any statements
about the potential presence of publication bias based on summary statistics
premature. A more in-depth exploration of this aspect is reserved for Chap-
ter 4.

Figure 3.2 shows the distribution of the estimated coefficient from all the
studies. We can see that the elasticities are negatively skewed, with the ma-
jority of estimates lying between -1 and 0. What might be surprising is the
relatively high incidence of both positive and negative extreme values, as ap-
proximately 50 elasticities are larger than 1 and a similar number is below
-3.

Furthermore, we inspected the nature of estimates based on various charac-
teristics, namely elasticity period (run), type of elasticity, type of data used in
the primary study and data aggregation. We present the results of four density
kernels in the Appendix A in Figure A.11. We notice the difference between
cross-sectional and both time-series and panel data. This intuitively makes
sense, as time series and panel data both generally focus on longer periods.
Cross-sectional data exert on average higher elasticity, in line with findings of
Dahl (1993). We also examine the data aggregation, with the already observed
result that estimates at the country level exhibit lower absolute values, while
the relatively most elastic estimates emerge in disaggregated data. The effects
of various models and estimation techniques are relatively similar.



3. Data 18

Table 3.1: Statistics summary

Variable Name Sample Mean CI Weighted Mean WM CI n

All Data -0.395 (-1.342; 0.552) -0.417 (-1.364; 0.530) 4521
Observations ≥ 608 -0.383 (-1.285; 0.519) -0.430 (-1.332; 0.472) 2263
Observations < 608 -0.408 (-1.396; 0.580) -0.409 (-1.397; 0.579) 2258
t-statistic ≥ -2.68 -0.230 (-1.083; 0.623) -0.235 (-1.088; 0.618) 2263
t-statistic< -2.68 -0.561 (-1.484; 0.362) -0.560 (-1.483; 0.363) 2258

Estimate: Short-run -0.231 (-0.823; 0.361) -0.247 (-0.839; 0.345) 1866
Estimate: Intermed.-run -0.502 (-1.533; 0.529) -0.495 (-1.526; 0.536) 1842

Estimate: Long-run -0.532 (-1.700; 0.636) -0.624 (-1.792; 0.544) 813

Type: Marshall -0.398 (-1.327; 0.531) -0.414 (-1.343; 0.515) 3326
Type: Hicks -0.385 (-1.371; 0.601) -0.420 (-1.406; 0.566) 1175
Type: other -0.548 (-1.932; 0.836) -0.465 (-1.849; 0.919) 20

Mid year ≥ 1984.5 -0.375 (-1.284; 0.534) -0.429 (-1.338; 0.480) 2262
Mid year < 1984.5 -0.417 (-1.393; 0.559) -0.406 (-1.382; 0.570) 2259

Number of years ≥ 14.5 -0.322 (-1.186; 0.542) -0.354 (-1.218; 0.510) 2262
Number of years < 14.5 -0.470 (-1.472; 0.532) -0.473 (-1.475; 0.529) 2259

USA -0.395 (-1.293; 0.503) -0.389 (-1.287; 0.509) 2151
Europe -0.410 (-1.394; 0.574) -0.432 (-1.416; 0.552) 833

Daylight hours ≥ 14.767 -0.386 (-1.333; 0.561) -0.404 (-1.351; 0.543) 3100
Daylight hours < 14.767 -0.416 (-1.355; 0.523) -0.434 (-1.373; 0.505) 1436
Annual temp. ≥ 9.146 -0.356 (-1.234; 0.522) -0.381 (-1.259; 0.497) 2305
Annual temp. < 9.146 -0.437 (-1.439; 0.565) -0.462 (-1.464; 0.540) 2231

Aggregation: Country -0.289 (-1.116; 0.538) -0.307 (-1.134; 0.520) 1224
Aggregation: Region -0.397 (-1.238; 0.444) -0.443 (-1.284; 0.398) 1082

Aggregation: City -0.387 (-1.334; 0.560) -0.393 (-1.340; 0.554) 654
Aggregation: Disaggr. -0.523 (-1.597; 0.551) -0.552 (-1.626; 0.522) 1099

Type: Residential -0.355 (-1.337; 0.627) -0.379 (-1.361; 0.603) 1710
Type: Commercial -0.248 (-0.997; 0.501) -0.309 (-1.058; 0.440) 884
Type: Industrial -0.413 (-1.336; 0.510) -0.417 (-1.340; 0.506) 2908

Demand: Peak -0.256 (-1.030; 0.518) -0.360 (-1.134; 0.414) 269
Demand: Mid-peak -0.190 (-0.615; 0.235) -0.186 (-0.611; 0.239) 108
Demand: Off-peak -0.432 (-1.473; 0.609) -0.713 (-1.754; 0.328) 83

Data: Panel -0.389 (-1.318; 0.540) -0.418 (-1.347; 0.511) 2290
Data: Time-series -0.328 (-1.226; 0.570) -0.343 (-1.241; 0.555) 1718

Data: Cross-section -0.652 (-1.667; 0.363) -0.649 (-1.664; 0.366) 513

Granularity: Yearly -0.436 (-1.443; 0.571) -0.455 (-1.462; 0.552) 3291
Granularity: Quarterly -0.316 (-1.208; 0.576) -0.393 (-1.285; 0.499) 126
Granularity: Monthly -0.302 (-1.021; 0.417) -0.289 (-1.008; 0.430) 948

Price: Average -0.409 (-1.315; 0.497) -0.420 (-1.326; 0.486) 2385
Price: Marginal -0.430 (-1.435; 0.575) -0.446 (-1.451; 0.559) 957

Price: Lump sum -0.302 - -0.302 - 1
Price: Shin -0.151 (-0.408; 0.106) -0.137 (-0.394; 0.120) 11

Tariff: Increasing -0.350 (-1.079; 0.379) -0.360 (-1.089; 0.369) 565
Tariff: Decreasing -0.625 (-1.693; 0.443) -0.474 (-1.542; 0.594) 462

Tariff: Flat -0.495 (-1.491; 0.501) -0.530 (-1.526; 0.466) 119
Tariff: TOU -0.283 (-1.153; 0.587) -0.375 (-1.245; 0.495) 559

Control: Demographics -0.484 (-1.431; 0.463) -0.516 (-1.463; 0.430) 1515
Control: Temperature -0.366 (-1.219; 0.487) -0.381 (-1.234; 0.472) 2203

Control: Stocks -0.479 (-1.375; 0.417) -0.465 (-1.361; 0.431) 821
Control: Fuels -0.427 (-1.399; 0.545) -0.458 (-1.430; 0.514) 1844

Control: Income -0.414 (-1.372; 0.544) -0.429 (-1.387; 0.529) 2543

Function: Linear -0.329 (-1.160; 0.502) -0.433 (-1.264; 0.398) 832
Function: Semi-log -0.513 (-1.503; 0.477) -0.344 (-1.334; 0.646) 231

Function: Double-log -0.406 (-1.362; 0.550) -0.412 (-1.368; 0.544) 2474

Impact Factor >= 0.061 -0.391 (-1.304; 0.522) -0.409 (-1.322; 0.504) 2347
Impact Factor < 0.061 -0.400 (-1.380; 0.580) -0.425 (-1.405; 0.555) 2174

Notes: We present the main summary statistics table. Note that some of the variables are grouped but
do not add up to 4521 as the effect of NA column was omitted. TOU is time-of-use tariff. Summary
statistics for the whole dataset are presented in Appendix in Table A.1. All the subsequent tables and
figures come from author’s own computations, unless clearly stated otherwise.
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Figure 3.2: Distribution of the effect

Notes: The figure depicts the distribution of elasticity effect for all estimates. Outliers are bunched
to improve graphical interpretability but are included in all subsequent tests. The dashed vertical line
denotes median and the solid vertical line is mean. The dark dashed lines represent 95% confidence
interval.



Chapter 4

Publication and Endogeneity Bias

While part of the Chapter 3 provided a summary of published studies, its results
will likely not provide an accurate overview of the body of research in an area if
the literature itself reflects selection bias (De Long & Lang 1992). Such concern
can be especially true when there exists a theoretical foundation presuming that
the estimate of price elasticity of electricity should have a negative sign.

That is why this chapter focuses on publication bias. Firstly, we emphasize
the importance of awareness regarding this topic and its implications. We
consequently introduce graphical tests to examine publication bias as well as
linear and non-linear tests of selection bias with multiple robustness checks.
Endogeneity bias is also examined in the last section of this chapter. This
chapter aims to assess the degree to which publication and endogeneity bias
impact research outcomes related to the price elasticity of electricity.

4.1 Importance of Publication Bias
As already briefly introduced, publication bias (also known as selection bias) is
a tendency of authors, but also editors and reviewers, to favour studies present-
ing a conclusion that aligns with a particular theory. The term was first used
by Smith (1980a) in education research. According to Gerber et al. (2008),
publication bias occurs when a particular study has a higher probability of be-
ing published based on the estimates produced, holding the methodology and
data quality of the study constant. Moreover, in the paper on the systematic
selection bias concerning minimum-wage research, Card & Krueger (1995) cat-
egorize three sources of publication selection bias in economics. First is the
predilection of editors to publish papers consistent with the theory. Secondly,
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researchers can ex-post change model or estimation specification selection to
achieve desired outcomes while renouncing controversial outcomes. This is also
known as the "file drawer problem", extensively discussed by Rosenthal (1979).
The main idea is that writers themselves decide to exclude particular studies
with negative effects due to a lower probability of being published. Hence the
studies "end up in a drawer", even if they are of high methodological quality
(Gerber et al. 2008). The last source of publication bias is the general sus-
ceptibility to perceive statistically significant results as more favourable. The
(conscious) manipulations of the estimation process, model selection or data
adjustments are likely to distort the true underlying effect. This explicit and
conscious manipulation of data to achieve significant outcomes is also referred
to as p-hacking (Elliott et al. 2022). As a result, publication or selection bias
can make empirical evidence of an effect seem more than 4 times larger (in ab-
solute value) than it truly is (Stanley 2005). Without any preventive measures
to account for the selection bias, the viability of empirical conclusions is likely
to be questioned (Lehrer 2010).

In his work Novum Organum, Bacon (1620) remarked that "it is the perpet-
ual error of the human intellect to be more moved and excited by affirmatives
than by negatives; whereas it ought properly to hold itself indifferently disposed
towards both alike." This quote on human nature is rather close to justifying
the existence of publication bias, as both authors and reviewers might stance
more critically towards "negatives", epitomized by positive elasticity estimates.
Dickersin (1990) expressed concern about the absence of guidelines regarding
when a study should be published or not. As a result, the authors may be -
besides their own judgement - at the mercy of subjective assessments of editors
and reviewers, who are the ones ultimately deciding which study gets published.

Trying to understand what qualities of a study make it publishable is of ut-
most importance, because to an extent, published and reviewed studies should
represent the acme of our knowledge. While the concern regarding publication
bias was initially noted by academics (Sterling 1959; Begg & Berlin 1988; Senn
2009), it became much more serious due to the prevalence of meta-analyses
created for government policy setting or healthcare intervention studies (Dick-
ersin 1997). Lately, there have been numerous meta-analyses discussing publi-
cation bias in economics (minimum-wage research by Stanley (2001); effect of
democracy on economic growth by Doucouliagos & Ulubaşoğlu (2008); effect
of student employment on education outcome by Kroupova et al. (2024)). For
studies focusing on publication bias in energy economics, one might consult
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Havranek & Kokes (2015), Havranek et al. (2018b) or Havranek et al. (2018a).
While publication bias might be immune to works solely summarizing previ-

ous research, meta-analysis can be employed to directly accommodate such bi-
ases (Stanley 2005). There exist methods that explore the relationship between
the estimates and their standard errors and techniques exploring the distribu-
tion of t-statistics or p-values. Such methods will be discussed shortly. Two
of the previous meta-analyses (Horáček 2014; Zabaloy & Viego 2022) found a
statistically significant presence of publication bias, as will be further discussed
later.

In the electricity demand setting, despite the consensus that the price elas-
ticity is negative, some studies should produce either insignificant or positive
estimates. Such results can arise due to measurement or data noise. If such
studies are discarded, then on average, the true elasticity effect will be lower
than the study average (in our case, -0.231 for the short-run, -0.502 and -0.532
for the intermediate-run and long-run, respectively). The exclusion of very
large estimates of elasticity is unlikely, as there is hardly a framework describ-
ing what value should be the upper threshold (as seen in our study, there are
estimates as low as -12, which might very well be subject to random noise ex-
acerbating the elastic nature of the estimate). Hence, we cannot rely on the
procedure that outliers from the end of both extremes are discarded with the
underlying effect largely unaltered.

4.2 Testing for Publication Bias

4.2.1 Graphical Analysis

In practice, one of the most prevalent tests for publication bias is the funnel plot
introduced by Egger et al. (1997), firstly applied to examine bias in healthcare
research. The main idea is to plot the estimated effect on the horizontal axis
against its precision measure (usually 1/SE) on the vertical axis (Sterne &
Harbord 2004). It is assumed that small sample studies (which are generally
less precise) will be scattered close to the x-axis whilst more precise studies
will create a funnel-like shape. Some very low effects combined with large
standard errors might hence be positioned close to the origin. On the other
hand, the most precise estimates should form a vertical line. A symmetrical
funnel plot could indicate that the existence of publication bias is unlikely.
While in the absence of symmetry, the graph could insinuate that publication
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Figure 4.1: Funnel plot for short-run elasticity

Notes: The figure displays a funnel plot for the short-run subsample. The plot should be symmetrical
in the absence of publication bias. Estimates with higher precision form funnel-like pattern. A vertical
blue line marks the average value of these estimates, with a total count of 1771 data points (due to the
exclusion of extreme values).

bias is present. Furthermore, Egger et al. (1997) also provide different sources
of funnel asymmetry rather than publication bias: true heterogeneity of effects,
data irregularities or chance. The funnel plot asymmetry hence does not have
to arise due to bias (Sterne et al. 2005). Specifically, the asymmetry in our data
might be caused by vast heterogeneity, for instance, due to data aggregation,
type of electricity tariff present etc., as we have seen in Chapter 3. Lastly, it
should be kept in mind that graphical tests are assessed subjectively and each
individual may provide different conclusions for a given graph.

We decide to conduct funnel plot analysis by first segmenting elasticities into
short-run, intermediate-run and long-run. This is for two reasons, first, we are
interested in whether there is a systematic difference in our initial publication
bias analysis and second, a graph containing the full sample might be difficult
to make sense of due to the high number of estimates. This approach will be
used in the following tests, too. Furthermore, we trimmed outliers to improve
readability. There outliers are, however, included in all subsequent tests and
calculations.

Figure 4.1 presents a funnel graph concerning short-run elasticity, we can
indeed see that the graph structure resembles a slightly skewed funnel. One
finding is that the most precise estimates lie in the interval between a very
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Figure 4.2: Funnel plot for intermediate-run elasticity

Notes: The figure displays a funnel plot for the intermediate-run subsample. The plot should be sym-
metrical in the absence of publication bias. Estimates with higher precision form funnel-like pattern. A
vertical blue line marks the average value of these estimates, with a total count of 1671 data points (due
to the exclusion of extreme values).

slight negative effect (approximately -0.1) and zero effect. Furthermore, we see
relatively few precise positive estimates and negative estimates are on average
more precise, with the negative side of the funnel being much more dense. As
the most precise estimates should be scattered around the true effect, this im-
plies that the true elasticity is much lower than our sample average (-0.231).

Figure 4.2 conveys a different message for the intermediate-run effects. In-
terestingly, the most precise estimates lie within the elasticity of -0.5 and -0.05.
Initially, the plot contained highly precise estimates around the value of -1 from
a study by Fisher & Kaysen (1962), who expressed strong reservations about
the availability of data and hence the reliability of results. As a consequence, we
decided to omit this study from the test in the following chapters. The funnel
plot with the study included can be found in Appendix A in Figure A.12. The
overall shape does not resemble a funnel and the lower number of positive esti-
mates is precise, compared to the short-run funnel. There is no way to identify
a possible true elasticity effect. The graph appears notably asymmetric, with
the bulk of the observations positioned to the left of the most precise estimates,
indicating a trend where positive estimates generally exhibit less precision. One
reason why this particular funnel plot should be taken with slight reservation
is the lack of general consensus on the definition of intermediate-run, as will be
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discussed in Chapter 5. The asymmetry is more pronounced in the long-run
funnel plot. Again, assuming the most precise estimates lie around the value
of -0.05, the right part of the funnel graph is basically absent. This might
indicate that authors prefer to avoid presenting significant positive estimates.
To conclude, while short-term and especially long-term funnel plots exhibit
considerable asymmetry, it is too soon to conclude whether publication bias is
present. One important point is that the most precise estimates are not similar
to the underlying sample mean elasticity. Therefore, we will conduct various
tests to either confirm or refute the hypothesis that publication bias is present.

Lastly, note that the dataset consists of different types of elasticities, which
might not be directly comparable. In the following tests where the Marshal-
lian and Hicksian elasticities are not estimated separately, we transformed the
Hicksian elasticities into Marshallian elasticities using the income elasticity,
which is accompanied by Hicksian elasticity estimates in individual studies.
We used the delta method to approximate the standard errors of these newly
transformed effects. Moreover, we omitted 20 observations for which we have
no indication of the type of elasticity estimated.

Figure 4.3: Funnel plot for long-run elasticity

Notes: The figure displays a funnel plot for the short-run subsample. The plot should be symmetrical
in the absence of publication bias. Estimates with higher precision form funnel-like pattern. A vertical
blue line marks the average value of these estimates, with a total count of 786 data points (due to the
exclusion of extreme values).
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4.2.2 Linear Tests for Publication Bias

While funnel plot assists with understanding the nature of our data (Sterne
et al. 2005), regression-based tests are usually employed to quantify publication
bias. The basis for modelling publication selection is the Funnel Asymmetry
Test (FAT) examining the relationship between the estimate (price elasticity of
electricity) and its uncertainty metric (standard error of the estimate) (Card
& Krueger 1995; Stanley 2005):

PEij = α + β ∗ SE(PEij) + ϵij (4.1)

where PEij is the i − th estimate of price elasticity collected from j − th study,
while SE(PEij) denotes the estimate’s standard error. ϵ is the (heteroskedas-
tic) error term. As pointed out by Havranek & Irsova (2017), α (effect beyond
bias) represents the true effect independent of the standard error. On the
contrary, β (publication bias) quantifies publication selection bias in terms of
significance, direction and magnitude.

We provide multiple model specifications applied to the full data sample,
which are in line with methods used in published meta-analyses (Zigraiova et al.
2021; Kroupova et al. 2024). Results for selected subsamples are presented
in Appendix A. Firstly, we deal with the probable heteroskedasticity of the
standard error by clustering at the study level. Therefore, we acknowledge the
correlation among estimates coming from a particular study while assuming
independence across individual papers. However, because the clusters are not
of the same size (dependent on the number of observations per study), we also
construct a 95% confidence interval of the wild bootstrap, as recommended
by MacKinnon & Webb (2017). Moreover, at least at this stage, we assume
that respective models are exogenous. Firstly, we use the ordinary least square
(OLS) estimation technique. Secondly, we add a study-level fixed effect (FE)
and then we follow by accounting for between-study variation (BE). Random-
effect (RE) specification is also included to assign weights for both within-study
and between-study variation, as discussed in Bom & Rachinger (2019).

Furthermore, we decide to apply two weighting schemes. Firstly, to consider
considerable discrepancy in the reported estimates per study (as discussed in
Chapter 3), we weigh the estimated elasticities by the inverse of the number of
estimates obtained per each study (SW). This way, each study has the same
impact on the estimation. Generally, a high constant (in absolute value) of the
study-level weighting scheme could insinuate that publication bias is driven by
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only a fraction of the studies included. Secondly, we use the precision of the
estimate as a weight (PW), as described in Stanley (2005). After dividing the
equation by standard error, we obtain:

PEij

SE(PEij)
= α

SE(PEij)
+ β + εij (4.2)

Note that the left-hand side of Equation 4.2 is a t-statistic of the i−th estimate
from j − th study. Moreover, β now represents the price elasticity corrected for
publication bias, whereas α denotes the magnitude and direction of publication
bias. The equation is also called the precision asymmetry test (PET). This
procedure helps to deal with heteroskedasticity of standard error by assigning
more weight to more precise estimates. The results are presented in Table 4.1.

We find significant evidence of publication bias for all specifications and
throughout all elasticity periods. The random-effects specification yields the
highest corrected elasticities, however, slight reservations for the RE results
are in order. There are some studies that report only a single estimate of
price elasticity, which can alter the within-study variation and hence the re-
sults. Overall, the short-run elasticity corrected for publication bias varies from
−0.046 to −0.161. It should be not surprising that the magnitude of publica-
tion bias exceeds the underlying true effects (Stanley et al. 2008), as is the case
in our estimation, too. While the estimates are relatively similar for most of
the models, the study and especially the precision weighting technique report
much lower elasticity estimates (and the highest magnitude of bias). The re-
sults of the fixed-effects model posit that on average, an increase in the price
of electricity by 1% lowers the demand by 0.15% for the short-run, with the
decrease of 0.38% and 0.43% for intermediate and long-run, respectively. This
is a considerable decrease from the sample averages presented in Chapter 3.

The results are on average (apart from long-run elasticity and the precision
specifications) of higher magnitude compared to the study by Horáček (2014),
who finds the respective true effects to be −0.065, −0.210 and −0.431. For
further comparison, Zabaloy & Viego (2022) reports true short-run effect of
−0.087 and long-run elasticity of −0.154. However, these estimates might not
be directly comparable to ours as the paper focuses solely on Latin America
and the Caribbean.
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Table 4.1: Elasticity results segmented by period

OLS FE BE RE SW PW

Short-Run Elasticity

PB −0.766∗∗∗ −0.751∗∗∗ −1.209∗∗∗ −0.794∗∗∗ −0.979∗∗∗ −2.854∗∗∗

PB
SE

(0.096) (0.035) (0.096) (0.033) (0.142) (0.212)

Boot.
CI

[-0.959; -0.580] [-0.979; -0.610] [-1.178; -0.572] [-3.255; -2.377]

EBB −0.147∗∗∗ −0.149∗∗∗ −0.123∗∗∗ −0.161∗∗∗ −0.077∗∗∗ −0.046∗∗∗

EBB
SE

(0.010) (0.007) (0.019) (0.015) (0.014) (0.009)

Boot.
CI

[-0.167; -0.128] [-0.182; -0.136] [-0.115; -0.053] [-0.068; -0.030]

Total observations = 1846

Intermediate-Run Elasticity

PB −0.734∗∗∗ −0.630∗∗∗ −0.947∗∗∗ −0.658∗∗∗ −0, 998∗∗∗ −3.148∗∗∗

PB
SE

(0.087) (0.046) (0.141) (0.044) (0.117) (0.842)

Boot.
CI

[-0.921; -0.595] [-0.838; -0.494] [-1.250; -0.781] [-4.332; -1.207]

EBB −0.359∗∗∗ −0.381∗∗∗ −0.345∗∗∗ −0.390∗∗∗ −0.386∗∗∗ −0.153∗∗∗

EBB
SE

(0.017) (0.014) (0.038) (0.027) (0.030) (0.053)

Boot.
CI

[-0.386; -0.314] [-0.423; -0.347] [-0.446; -0.326] [-0.264; -0.083]

Total observations = 1723

Long-Run Elasticity

PB −0.715∗∗∗ −0.616∗∗∗ −0.617∗∗∗ −0.621∗∗∗ −0.117 −3.468∗∗∗

PB
SE

(0.100) (0.056) (0.184) (0.054) (0.267) (0.340)

Boot.
CI

[-0.931; -0.540] [-0.840; -0.345] [-1; 0.233] [-4.021; -2.254]

EBB −0.400∗∗∗ −0.429∗∗∗ −0.529∗∗∗ −0.522∗∗∗ −0.255∗∗∗ −0.062∗

EBB
SE

(0.026) (0.023) (0.085) (0.054) (0.033) (0.032)

Boot.
CI

[-0.448; -0.357] [-0.601; -0.437] [-0.310; -0.157] [-0.180; -0.009]

Total observations = 813

Notes: This table presents the results of publication bias and effect beyond bias across different time
horizons: short-run, intermediate-run, and long-run. Standard errors are presented in parentheses.
SW = Study weighted, PW = Precision weighted, PB = Publication Bias, EBB = Effect Beyond Bias, SE
= Standard error, Boot. CI = Bootstrapped confidence interval (n=1000). Asterisks denote significance
level: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10.
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4.2.3 Non-linear Tests for Publication Bias

While the previous linear methods are usually employed in meta-analyses, they
rely on one crucial assumption - that the relationship between the price elastic-
ity and its standard error is linear, which might be erroneous. Bom & Rachinger
(2019) suggest that Equation 4.1 fails to account for the lower likelihood of
selection bias in very precise estimates. Linear methods, while providing im-
portant initial insight into publication bias, could potentially be imprecise and
ultimately lead to either upward or downward bias of the effect. The methods
applied in this section assume that the most precise estimates will probably
not suffer from publication selection, but they proceed in a different manner
to deal with the non-linearity of the relationship between price elasticity and
its standard error. The subsequent tests are also used in (among others) pub-
lished meta-analyses conducted by Cazachevici et al. (2020) and Havranek et al.
(2022).

The first method we employ is Top10 proposed by Stanley & Doucouliagos
(2010). The idea of Stanley’s method is rather simple, the authors believe
that the selection bias among more precise estimates is lower than their less
precise counterparts. Specifically, if there is a strong effect with simultaneous
low standard error, there is no need to modify the results to achieve statistical
significance. That is why the Top10 method focuses on the spike in the funnel
plot. The idea that most precise estimates should exert very limited selection
bias is conveyed in the stem-based method by Furukawa (2019), too. However,
while Top10 sets an exogenous cutoff at 10%, the stem-based method calculates
the preferred number of studies to be included by minimizing the mean squared
error of the estimates. Hence, the approach tries to find the most precise
studies, which are represented by the stem of the funnel plot in Figure 4.4
while filtering out those that are statistically insignificant or lack precision.
For the category of intermediate elasticity specifically, the stem-based method
yields a significant corrected effect of -0.446, marking the largest relative price
elasticity among the non-linear methods.
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Figure 4.4: Stem-based method

Notes: The illustration portrays the "true effect" estimate derived from the Stem-based method by
Furukawa (2019). A blue diamond marks the estimated true effect (which is rather low and insignificant),
while a blue line denotes its 95% confidence interval. Estimates across different precision levels are shown
by the dark grey line, and violet circles represent individual study mean elasticities. A logarithmic scale
was applied to minimize discrepancies among standard error values.

Next method used is the Weighted Average of Adequately Powered (WAAP)
introduced by Ioannidis et al. (2017). The authors suggest using weighted
least square technique, but only for limited amount of estimates which are
"adequately powered". Such power is needed to detect effect if it is truly present.
In practice, a price elasticity estimate is adequately powered if the estimated
effect divided by 2.8 is still larger than its standard error. Hence, the criteria
is more strict than the usual 5% statistical significance level (1.96). In the
estimation procedure, one-third to one-half of the estimates (712 for short-run,
783 for intermediate-run and 346 for long-run) satisfy such condition.
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Table 4.2: Non-linear tests for publication bias

Effect beyond bias (Short-run)

WAAP -0.127*** -0.123*** Selection
(0.006) (0.006) model

Top10 -0.104*** -0.107*** Hierarchical
(0.009) (0.021) Bayes

Stem-based -0.08 -0.046*** Endogenous
method (0.011) (0.003) kink

Publication bias

Hierarchical -1.262*** -2.854*** Endogenous
Bayes (0.142) (0.227) kink

Number of observations = 1846

Effect beyond bias (Intermediate-run)

WAAP -0.335*** -0.337*** Selection
(0.013) (0.014) model

Top10 -0.245*** -0.341*** Hierarchical
(0.022) (0.035) Bayes

Stem-based -0.446*** -0.153*** Endogenous
method (0.011) (0.009) kink

Publication bias

Hierarchical -0.940*** -3.148*** Endogenous
Bayes (0.146) (0.484) kink

Number of observations = 1723

Effect beyond bias (Long-run)

WAAP -0.320*** -0.345*** Selection
(0.020) (0.030) model

Top10 -0.241*** -0.388*** Hierarchical
(0.038) (0.104) Bayes

Stem-based 0.002 -0.062*** Endogenous
method (0.057) (0.008) kink

Publication bias

Hierarchical -0.999*** -3.468*** Endogenous
Bayes (0.155) (0.295) kink

Number of observations = 813

Notes: Results of the three specifications of price elasticities using six non-linear methods. We also include
the publication bias for Hierarchical Bayes and Endogenous kink methods. WAAP = Weighted Average
of the Adequately Powered (n=712 for S-R, 783 for I-R, 346 for L-R). Top10 = Top10 Method (n=187
for S-R, 173 for I-R, 82 for L-R). Standard errors are included in the parentheses. Asterisks denote
significance level: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10.

Consequently, we employ Selection Model by Andrews & Kasy (2019). This
method proposes a sophisticated approach to correcting for publication bias.
This model introduces the concept of ’conditional publication probability’,
which quantifies the likelihood of a study’s findings being published given the
results it reports. This approach recognizes that publication bias can stem from
the inclination towards statistically significant results, impacting the visibility
of certain studies.
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The Endogenous Kink technique (Bom & Rachinger 2019), on the other
hand, is built on the premise that more precise estimates are less influenced
by publication bias. It aims to isolate these precise estimates for a clearer
computation of the average effect. The method achieves this by determining
a cutoff value through a piece-wise linear meta-regression of estimates against
their standard errors, which effectively segments the most precise estimates
from those potentially distorted by publication bias. The ’kink’, or the point
of intersection, marks the transition between these segments.

Lastly, we employ the Hierarchical Bayes model developed by Allenby &
Rossi (2006). The method uses Bayesian inference to aggregate individual-level
data with variability across studies. This model assigns weights to individual
estimates by assessing variation within each study and then synthesizes these
estimates at a higher, study-wide level.

Based on the results of non-linear tests presented in Table A.7, we confirm
our assumption that publication bias is present and is significant in magnitude.
Furthermore, the corrected effect (if we take the median values reported) is
approximately −0.11, −0.34 and −0.33 for the short, intermediate and long-
term, respectively. For the short-run, the sample elasticity mean (−0.231) is
more than twice as large as the elasticity estimate corrected for publication bias.
The results are slightly surprising, as one would expect the long-run elasticity
to be the largest in absolute value. Moreover, the stem-based method provides
insignificant corrected elasticities for the short-run and long-run. However, we
have noticed throughout our analysis that intermediate and long-term effects
are similar in magnitude, which might indicate that some authors use different
guidelines in assigning the elasticity period.

4.2.4 Relaxing the Endogeneity Assumption

So far, we have assumed that the relationship between the effects and their
standard error is exogenous. For this subsection, we will allow for simultane-
ous determination of the price elasticity estimate and its standard error. The
endogeneity of standard error has multiple sources. For instance, deliberate
adjustments to the standard error have been investigated by Pütz & Bruns
(2021). Additionally, factors like measurement inaccuracies in the standard
error or specific methodological approaches could simultaneously impact both
the standard error and the unobserved error term.

Initially, we apply Instrumental Variable (IV) regression and p-uniform*
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method by van Aert & van Assen (2021). The results of the two tests are
presented in Table 4.3. We tried various instruments to account for the endo-
geneity, including the logarithmic transformation of the number of observations,
the inverse of the number of observations and the square root of the number
of observations. The last instrument performed the best. Furthermore, this
instrument diminishes the source of endogeneity Havranek et al. (2022) while
maintaining a linear relationship with the standard error. The result of the
regression suggests that publication is present even after controlling for endo-
geneity. The corrected estimate is −0.116 for the whole sample. We present
results for short and long-run in the Appendix in Table A.8.

Table 4.3: Tests accounting for potential endogeneity

IV Regression p-uniform*
Publication Bias −1.640∗∗∗ L=46.03
Standard Error (0.293) (p<0.001)

Effect Beyond Bias −0.116∗∗ −0.174∗∗∗

Standard Error (0.054) (0.029)
Notes: IV = Instrumental Variable, the instrument is the inverse of the square root of number of ob-
servations. F-test statistic for the instrument is 40.22. The standard errors presented in the parenthesis
are clustered at the study level. P-uniform* method developed by van Aert & van Assen (2021)) uses
maximum likelihood estimation. Asterisks denote significance level: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10.

The p-uniform* method, as discussed in detail in van Aert & van Assen
(2021), is based on the premise that p-values should uniformly distribute around
the true effect size when evaluating whether the estimated coefficient matches
the actual effect value. Publication bias can skew this distribution by causing
a scarcity of higher p-values and an excess of those just under the standard
significance threshold of 0.05. The results indicate a significant presence of
publication bias as well. The outcome of the tests is in line with our current
analysis, showing that elasticity estimates corrected for publication bias are
significantly lower than their sample counterparts.

We will now proceed with tests examining p-hacking. While there is no
clear distinction between publication bias and p-hacking, the latter is usually
defined by conscious or unconscious manipulation of data or methodology un-
til statistical significance (more favourable p-values) is achieved (Irsova et al.
2023b). This can be done by further collection of selective data points, ma-
nipulating estimation procedure or excluding certain subsamples to enhance
significance (Brodeur et al. 2023).
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Figure 4.5: Distribution of the t-statistic for a restricted sample

Notes: The figure depicts the distribution of elasticity t-statistics for all estimates. Outliers are hidden
to improve readability but are included in all tests. The dashed purple line denotes the mean value of
the restricted subsample (|t| < 10). The blue solid lines represent critical values -1.96 and 1.96. Notice
notable discontinuity right around the -1.96 critical value. The other peak occurs at a value of -2.24.

Firstly, observing the t-statistics distribution in Figure 4.5, we notice a
notable spike right below the critical value of -1.96. Almost 200 estimates lie
in the interval [−1.99, −1.96]. After reducing the width of the interval to 0.01,
still over 130 observations were located right below the negative critical value.
This finding is quite striking. Also, there seems to be a slight jump around
the positive 1.96 critical value. This analysis was performed for the restricted
sample, but the distribution for the wider sample is present in Appendix A.

We proceed with the inspection of publication bias with caliper tests pro-
posed by Gerber et al. (2008). The idea of the test concerns the distribution
of t-statistics of individual estimates as opposed to the relationship between
the effects and their standard errors, as we have seen previously. Specifically,
the focus is on critical values, such as 1.645 or 1.96, which represent the 10%
and 5% significant levels, respectively. The test compares the number of obser-
vations in small intervals around critical values and measures the asymmetry.
This possible discontinuity (for example, a rise in t-statistics frequency right
above the 5% significance threshold) is an unambiguous sign of bias (Gerber
et al. 2008).
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Table 4.4: Caliper test for publication bias

Threshold -1.96 -1.645 1.96

Caliper width 0.05

Estimate −0.114∗∗∗ −0.338∗∗∗ 0.172∗∗

Standard Error (0.015) (0.034) (0.084)
Observations 77 78 5

Caliper width 0.1

Estimate −0.155∗∗∗ −0.335∗∗∗ 0.162∗∗

Standard Error (0.014) (0.026) (0.067)
Observations 142 133 9

Caliper width 0.2

Estimate −0.206∗∗∗ −0.314∗∗∗ 0.196∗∗∗

Standard Error (0.012) (0.018) (0.049)
Observations 265 245 21

Caliper width 0.3

Estimate −0.281∗∗∗ −0.335∗∗∗ 0.147∗∗∗

Standard Error (0.009) (0.015) (0.035)
Observations 514 346 36

Caliper width 0.4

Estimate −0.280∗∗∗ −0.392∗∗∗ 0.162∗∗∗

Standard Error (0.008) (0.009) (0.031)
Observations 659 610 49

Caliper width 0.5

Estimate −0.285∗∗∗ −0.390∗∗∗ 0.169∗∗∗

Standard Error (0.007) (0.008) (0.028)
Observations 795 746 60

Notes: Significance levels: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. Caliper widths are chosen to represent
varying precision levels around the thresholds.

The overall perspective is further substantiated by the caliper tests in Ta-
ble 4.4. Focusing on the critical value of −1.96, approximately 61% of observa-
tions lie below the negative threshold (and hence are significant). This original
coefficient is obtained by subtracting 0.5. The asymmetry becomes more even
pronounced as the caliper width increases. Moreover, the asymmetry around
the critical value of −1.645 is of higher magnitude, with over 80% of estimates
passing the 10% significance level. Similarly, there is significant asymmetry for
the positive critical value of 1.96, too. However, we should feel slightly reserved
about this result as the number of observations included in the tests for pos-
itive threshold is rather low. Lastly, Gerber et al. (2008) state that even for
distributions centred away from the critical value (as in our case, the t-statistic
mean is −2.76), the statistical test is not affected.

We conclude the analysis of publication bias with two further p-hacking
tests. We begin with the methodology of Elliott et al. (2022), which scrutinizes
the distribution of p-values, known as the p-curve. Under the null hypothesis of
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Table 4.5: P-hacking tests

A. P-hacking test by Elliott et al. (2022)

Test for non-increasing Test for monotonicity
of the p-curve and bounds

P-value 0.000 0.000
Observations (p ≤ 0.1) 3373
Total observations 4521

B. MAIVE estimator by Irsova et al. (2023)

MAIVE coefficient F-test

Coefficient 0.605* 0.687
Standard Error (0.353)

Notes: Panel A details the outcomes of the examination into p-hacking, implemented by Elliott et al.
(2022), which includes assessments for the constancy of distribution tails and for monotonic and bounded
p-curves. In Panel B, the results derived from the implementation of the robust spurious precision
approach, utilizing the MAIVE estimator developed by Irsova et al. (2023a), are displayed. The F-test
is indicative of the strength of the instruments used in the initial stage of the IV estimation. For the
MAIVE estimations, cluster-robust standard errors have been utilized, which are denoted in parentheses.
Asterisks denote significance level: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10.

no true effect, we expect only 5% of p-values to be less than 0.05. A significant
skew to the right in the p-curve distribution typically signifies genuine effects,
while a leftward skew suggests the presence of p-hacking. Christensen (2018)
provides a detailed discourse on the concept of p-curves. Elliott et al. (2022)
propose that, in the absence of p-hacking, p-curves derived from t-statistics
should demonstrate monotonicity, with their magnitude and derivative being
constrained by specific exponential upper bounds — the exponential bounds
are contingent on the p-test’s critical value and the nature of the t-statistic
(one-tailed or two-tailed). Generally, these tests require a substantial sample
size to affirm the robustness and credibility, which should not be an issue with
respect to our dataset. Panel A in Table 4.5 presents the results. We find that
for both tests, the null hypothesis of no p-hacking is rejected at any reasonable
significance level. We also conducted the test concerning observations below
p ≤ 0.05 with the same null results, as in line with visual inspection of Fig-
ure 4.5. This result is underscored by a consistently null p-value, which holds
true across various data subsets characterized by granularity and elasticity type,
indicating a pervasive trend of p-hacking.

Finally, we report on the results of Meta-Analysis Instrumental Variable
Estimator (MAIVE) introduced by Irsova et al. (2023a). The starting point for
this technique is the Egger regression, which estimates the relationship between
the estimated effect and the quadratic standard error. The problem, according
to the authors, lies in the endogeneity of standard error due to p-hacking. As a



4. Publication and Endogeneity Bias 37

remedy, the authors propose instrumenting the standard error with the inverse
of sample size, which should be correlated with the standard error but have
no effect on the estimated coefficient. The advantage of using sample size is
hence its independence of measurement error, estimation procedure or changing
variables (Opatrny et al. 2023). In the first step, this instrumental variable’s
fitting is assessed using F-test. Unfortunately, the outcome based on the F-
test indicates that the employed instrument is rather weak. Nevertheless, the
MAIVE coefficient is 0.605 as presented in Table 4.5.

In summary, the various analytical tests consistently indicate a significant
presence of publication bias and specifically p-hacking within the data. After
adjusting for this bias, the elasticities show some variation. Typically, the short-
run elasticity, once corrected, hovers around -0.1 across most methods, while
the estimates for intermediate and long-run effects fluctuate from -0.33 to -0.38.
These figures are generally larger (apart from the long-run estimates) than those
reported by Horáček (2014), yet on average, remain lower in magnitude than
the outcomes documented by Zhu et al. (2018).

4.3 Endogeneity Bias
One of the potential issues when estimating electricity demand is the simulta-
neous determination (endogeneity) of electricity consumption and price (Paul
et al. 2009) or energy appliances system choice and price (Bernard et al. 1996).
Notably, this issue arises under variable electricity tariffs. Another intuitive
reason for endogeneity is the omitted variable bias. An illustrative example is
the estimation of electricity on a cold winter day, marked by heightened reliance
on heating appliances. Without controlling for such additional determinants of
demand, the estimates collected will most likely be biased.

To provide one particular example, consider a customer facing the increas-
ing block structure in Figure 4.6. Consumers may opt to use just enough energy
to stay within a lower-priced tier, halting usage just before reaching the thresh-
old that triggers a higher price, as depicted by consuming quantity Q(P ). This
behaviour pattern is known as bunching and has been the subject of numer-
ous studies (Shaffer 2020; Lanot & Vesterberg 2021). As a consequence, it
becomes difficult to isolate the pure effect of price changes on consumption be-
haviour. Bunching would be expected if consumers were accurately optimizing
against the marginal price, but the lack of bunching indicates potential mis-
understandings or sub-optimal responses to the price structure, as described
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Figure 4.6: Bunching at the kink point
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in Borenstein (2009). Consumers’ knowledge of such kink points is a potential
source of endogeneity when trying to establish a causal effect (Rapson 2014).
As a consequence, the estimates of elasticity would be biased and inconsistent.

We segment the studies in the following (mutually exclusive) subsamples:
natural experiments, quasi-experiments, non-experimental studies controlling
for endogeneity and studies that do not control for endogeneity. Initially, our
goal was to also further divide quasi-experimental approaches into regression
discontinuity design and matching technique, however, the number of obser-
vations for respective approaches was limited, precluding us from conducting
more granular tests and substantiating our results.

Experiments are used to estimate causal relationships by taking advantage
of a naturally occurring event or situation that closely mimics a controlled ex-
periment. These "natural experiments" arise from external factors or policies
that divide subjects into groups in a manner unrelated to the characteristics
or behaviours under investigation. For example, Byrne et al. (2021) conducted
an experiment in cooperation with an electricity retailer, during which sud-
den price discounts on a monthly basis to selected customers. Similarly, Mat-
sukawa (2018) explored the impact of providing hourly electricity consumption
information to households through in-home displays, assessing changes in their
usage patterns. Overall, we collected the 299 estimated elasticities from 16
natural experiments, which are, together with quasi-experiments, presented in
the Table B.17.

Moreover, we collected 4 quasi-experimental study designs that include
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matching and regression discontinuity design. The regression discontinuous
procedure, as the name suggests, establishes a cutoff point based on which
subjects are assigned to a control or treatment group. This cutoff can be a
specific value of electricity demand in kWh and then we compare observations
right below and above the cutoff point, assuming that these observations are
similar in all respects except for the treatment. For instance, Zhou et al. (2019)
compare firms in Shanghai based on the average electricity demand after the
introduction of an additional (increasing) block tariff. Firms with consumption
below 600 kWh were generally not subject to the increased marginal electricity
prices, whereas those consuming more than 600 kWh were affected by the higher
rates. On the other hand, matching involves pairing units in the treatment
group with similar units in the control group based on certain observed char-
acteristics, creating a "matched sample" that’s comparable across groups. By
matching treated and untreated subjects with these characteristics, researchers
attempt to isolate the effect of the treatment from other factors. In the con-
text of electricity demand, this might mean matching households or firms that
are similar in terms of size, location, and income, but some receive a sale on
energy-efficient appliances or directly on electricity price per kWh while others
do not. Generally, these methods do not capture the causal effects as strongly
as natural experiments due to usually non-randomized treatment and control
samples.

To further deal with endogeneity, some researchers use instrumental vari-
ables or other estimation models and techniques (Schwarz 1984; Cebula 2012;
Alberini et al. 2019a) to mitigate this difficulty. On the other hand, there are
studies (Apte 1983; Hesse & Tarkka 1986; Fan & Hyndman 2011) which do
not mention the possible endogeneity of price variables at all. Furthermore,
few authors (Burke & Csereklyei 2016; Liddle & Huntington 2021) argue that
instrumenting for price does not alter results significantly on a macro-level.

We hence explore the difference in results between estimates from natural
experiments, quasi-experiments, and studies that control for endogeneity (ob-
tained using for example IV, 2SLS or GMM) and those that do not (usually
OLS or random effects). We define the subsamples used in the estimation as fol-
lows: one group consists of natural experiments, the second group incorporated
quasi-experiments (in our case regression discontinuity design or matching), the
third group consists of employment of techniques controlling for endogeneity
bias (using for instance IV, 2SLS, GMM) and the last subsample consists of
studies which do not control for endogeneity at all.



4. Publication and Endogeneity Bias 40

Table 4.6: Linear tests results for endogeneity subsamples

OLS FE BE RE SW PW

Natural Experiments

PB −1.112∗∗∗ −0.964∗∗∗ −2.314∗∗∗ −1.000∗∗∗ −2.060∗∗∗ −2.313∗∗∗

PB
SE

(0.443) (0.098) (0.564) (0.097) (0.138) (0.418)

Boot.
CI

[-2.071; -0.448] [-1.931; -0.331] [-2.218; -1.513] [-3.126; -1.518]

EBB −0.060∗∗∗ −0.067∗∗∗ −0.027 −0.087∗∗∗ −0.006 −0.039∗∗∗

EBB
SE

(0.017) (0.007) (0.035) (0.027) (0.006) (0.008)

Boot.
CI

[-0.087; -0.026] [-0.132; -0.037] [-0.028; 0.001] [-0.056; -0.025]

Total observations = 299

Quasi-Experiments

PB −0.412 −0.499∗∗∗ −0.428 −0.466∗∗∗ −0.333 −1.585∗∗∗

PB
SE

(0.259) (0.133) (0.952) (0.124) (0.218) (0.378)

Boot.
CI

[-0.889; 0.250] [-0.988; 0.297] [-0.756; 0.213] [-2.260; -0.747]

EBB −0.110∗∗∗ −0.089∗ −0.247 −0.108 −0.125∗∗∗ −0.053∗∗∗

EBB
SE

(0.047) (0.051) (0.369) (0.081) (0.029) (0.016)

Boot.
CI

[-0.207; -0.025] [-0.309; 0.011] [-0.186; -0.69] [-0.100; -0.030]

Total observations = 63

Studies Controlling for Endogeneity

PB −0.848∗∗∗ −0.898∗∗∗ −0.969∗∗∗ −0.897∗∗∗ −1.151∗∗∗ −2.022
PB
SE

(0.100) (0.051) (0.222) (0.049) (0.091) (1.946)

Boot.
CI

[-1.054; -0.065] [-1.084; -0.731] [-1.346; -0.985] [-4.534; -2.346]

EBB −0.327∗∗∗ −0.317∗∗∗ −0.263∗∗∗ −0.276∗∗∗ −0.342∗∗∗ −0.167
EBB
SE

(0.019) (0.016) (0.059) (0.038) (0.020) (0.103)

Boot.
CI

[-0.365; -0.295] [-0.310; -0.235] [-0.381; -0.303] [-0.412; -0.036]

Total observations = 944

Studies Not Controlling for Endogeneity

PB −0.781∗∗∗ −0.723∗∗∗ −1.015∗∗∗ −0.746∗∗∗ −0.425∗ −3.265∗∗∗

PB
SE

(0.069) (0.032) (0.099) (0.031) (0.265) (0.207)

Boot.
CI

[-0.938; -0.644] [-0.917; -0.591] [-1.016; -0.060] [-3.614; -2.783]

EBB −0.270∗∗∗ −0.281∗∗∗ −0.284∗∗∗ −0.329∗∗∗ −0.209∗∗∗ −0.08
EBB
SE

(0.012) (0.010) (0.028) (0.020) (0.032) (0.013)

Boot.
CI

[-0.292; -0.246] [-0.358; -0.303] [-0.262; -0.140] [-0.109; -0.059]

Total observations = 3096

Notes: This table presents the results of publication bias (PB) and effect beyond bias (EBB) for studies
segmented by natural experiments, quasi-experiments, studies controlling for endogeneity, and lack of
endogeneity control. Standard errors are presented in parentheses. SW = Study weighted, PW = Precision
weighted, PB = Publication Bias, EBB = Effect Beyond Bias, SE = Standard Error, Boot. CI =
Bootstrapped Confidence Interval. Asterisks denote significance level: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10.

The results of linear tests are presented in Table 4.6. Generally, there is
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a great difference between experimental and non-experimental data and little
difference between the two endogeneity subsamples (control and no control).
The average price elasticity corrected for publication bias is around -0.06 for the
natural experiments, which is approximately one-fifth of the non-experimental
elasticity results. Nevertheless, the publication bias is still present according
to the tests and the median value of the corrected price elasticity estimate is
approximately between -0.3 and -0.28 for both non-experimental subsamples.
Ultimately, we decided not to segment the elasticities into short-run, interme-
diate run and long-run due to the relatively low number of observations and
also due to the fact that experiments mostly focus on short-run elasticities.

The non-linear techniques for publication bias detection convey a similar
message as the linear tests. The price elasticity corrected for publication bias
is lower for studies controlling for endogeneity (median value is around −0.243)
and studies that do not control for endogeneity (median value is around −0.2),
compared to their sample average of around −0.4. Note that the estimate based
on the stem-based method is insignificant even at 10% for experimental studies.
We conclude that the tests provide significant evidence of publication bias for
these subsamples as well and the underlying elasticity for natural experiments
is much lower compared to non-experimental elasticities. Yet, it seems that
even experimental elasticities suffer from publication bias.



4. Publication and Endogeneity Bias 42

Table 4.7: Non-linear tests for publication bias for endogeneity sub-
samples

Effect beyond bias (Natural Experiments)

WAAP −0.078*** −0.071*** Selection
(0.007) (0.005) model

Top10 −0.035*** −0.055*** Hierarchical
(0.007) (0.161) Bayes

Stem-based −0.014 −0.039*** Endogenous
method (0.027) (0.004) kink

Publication bias

Hierarchical −2.458 −2.313*** Endogenous
Bayes (1.768) (0.501) kink

Number of observations = 299

Effect beyond bias (Quasi Experiments)

WAAP −0.140*** −0.145*** Selection
(0.017) (0.017) model

Top10 −0.051*** −0.148** Hierarchical
(0.011) (0.065) Bayes

Stem-based −0.032 −0.047*** Endogenous
method (0.047) (0.011) kink

Publication bias

Hierarchical −1.109* −2.037*** Endogenous
Bayes (0.868) (0.473) kink

Number of observations = 63

Effect beyond bias (Endogeneity Control)

WAAP −0.292*** −0.296*** Selection
(0.013) (0.016) model

Top10 −0.161*** −0.201*** Hierarchical
(0.026) (0.045) Bayes

Stem-based −0.426*** −0.167*** Endogenous
method (0.016) (0.014) kink

Publication bias

Hierarchical −1.367*** −2.022*** Endogenous
Bayes (0.194) (0.779) kink

Number of observations = 944

Effect beyond bias (No Endogeneity Control)

WAAP −0.232*** −0.212*** Selection
(0.008) (0.008) model

Top10 −0.198*** −0.249*** Hierarchical
(0.015) (0.023) Bayes

Stem-based −0.081*** −0.08*** Endogenous
method (0.026) (0.004) kink

Publication bias

Hierarchical −1.196*** −3.265*** Endogenous
Bayes (0.110) (0.208) kink

Number of observations = 3096

Notes: Results of the three specifications of price elasticities using six non-linear methods. We also include
publication bias for Hierarchical Bayes and Endogenous kink methods. WAAP = Weighted Average of
the Adequately Powered (n = 128 for N.E., 22 for Q.E.,500 for E.C.,1602 for N.E.C.). Top10 = Top10
Method (n = 30 for N.E., 6 for Q.E., 98 for E.C., 323 for N.E.C.). Standard errors are included in the
parentheses. Asterisks denote significance level: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10.



Chapter 5

Heterogeneity

As presented in Chapter 3, the estimated effects vary widely according to dif-
ferent factors or control variables. We now present the variables included in
the dataset, discuss the rationale for their inclusion and how their variation in
the literature may affect the price elasticity estimate. We subsequently employ
Bayesian model averaging (BMA) techniques to deal with model uncertainty
and investigate heterogeneity further. This will prove helpful in the following
chapter, in which we construct our best-practice estimate.

5.1 Explanatory Variables
We initially compare different characteristics of variables included within stud-
ies and subsequently, we try to find specifications that systematically influence
the price elasticity. Even though we have collected 109, we omit some of them,
mostly variables used for identification or a low number of positive observations
for the given variable column, from the main analysis in this section. The full
variable description summary is presented in Table A.1. Initially, this leaves
us with 74 variables to consider for the model averaging.

For the ease of exposition, we divide the elasticity and study characteris-
tics into variables describing the Study Level Data Characteristics (19), Data
Aggregation (3), Type of Price Elasticity (6), Type of Electricity Demand (3),
Type of Electricity Price (5), Type of Electricity Tariff (4), Demand Controls
(5), Model and Function Specification and Estimation Technique (23), Endo-
geneity Control (2) and lastly Publication Characteristics (4). While this is a
considerable amount of aspects that influence electricity modelling procedures,
it is by no means a fully encompassing set of variables. In the following subsec-
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tions, we also do not present an exhaustive list of variables, but rather discuss
the most important variables and offer insights on their connection to price
elasticity estimates obtained from the most prominent studies.

Study Level Data Characteristics

Naturally, we collected estimates such as the elasticity estimate with corre-
sponding t-statistic and standard error. We also coded for the number of
observations used in the primary studies, which vary widely. For instance,
Auray et al. (2019) estimated price elasticity by using more than 16 million
observations from bi-annual household meter readings, whereas some papers
report a number of observations below 40 (Halvorsen & Ford 1979; Nasir et al.
2008), especially those estimating price elasticity on a country level and using
annual data. We coded for specific countries and then created dummy variables
for the USA, Europe, and the rest of the world, which allowed us to investi-
gate the systematic differences in price elasticity that Liddle & Huntington
(2021) suggest vary by country. To explore endogeneity bias, we also labelled
studies employing experimental design with dummy variable exp. A potential
distortion in elasticity measurements from study experiments is highlighted by
Dahl (1993), referring to the Hawthorne effect. This phenomenon, detailed
in Schwartz et al. (2013), suggests that consumers might alter their electric-
ity usage simply because they know they are being observed, not necessarily
as a genuine adjustment to their consumption habits. The experimental data
reviewed did not address whether this effect could skew the elasticities.

We further accounted for variables relating to the temporal scope of pri-
mary studies, recording the start and end years to reflect shifts in electricity
demand, which, as noted by many authors (Chaudhry 2010; Gam & Rejeb
2012; Silva et al. 2018), has been on an upward trajectory in numerous coun-
tries throughout the years. We also created a variable denoting the middle
year of the dataset to include in the model averaging. We tried to explore the
assumption that investigation periods of primary studies are one of the main
significance with respect to electricity demand (Frondel et al. 2019). Further,
we factored in the length of daylight hours and temperature, recognizing that
longer daylight can reduce the necessity for artificial lighting and temperature
can alter the need for heating or cooling, thereby influencing demand elastic-
ity. Additionally, we incorporated the average annual temperature, the status
of countries as electricity exporters, and the carbon intensity of their electricity
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production into our analysis. Sources of these data can be found in the dataset
attached.

Moreover, we also collected the type of data that are used in the estimation.
We differentiated between cross-sectional, time-series and panel data. This is
another potential driver of heterogeneous effects in our sample. Espey & Espey
(2004) find that time-series data are more price elastic compared to cross-
sections, as they can capture long-term effects (stock adjustments), contrary to
the findings of Dahl (1993). Lastly, we included the logarithmic transformation
of population and income variables, as especially the income level might be one
of the determinants of electricity demand.

Data Aggregation

In the research on the electricity demand, there are great sources of data to
choose from. Some authors use nation-level data to estimate price responsive-
ness and as an other extreme, some papers (mainly but not limited to exper-
iments) take advantage of data from electricity meters on a household level.
Other sources include regional or utility-level data. It is important to avoid
mixing these levels of data without proper acknowledgement, as this practice
could introduce aggregation bias. Krishnamurthy & Kriström (2015) argue
that whilst aggregation data might be easier to collect, they are generally more
difficult to both interpret and apply to energy policy. Therefore, the impact
of data aggregation on elasticity estimates remains a subject of debate. Dahl
(1993) observed that aggregated data tend to exhibit higher elasticities com-
pared to more granular, disaggregated data. Nonetheless, more recent analyses,
such as those by Miller & Alberini (2016), indicate that there is no consensus
on whether data aggregation necessarily leads to systematically higher or lower
measures of elasticity.

Type of Price Elasticity

In electricity demand studies, Marshallian, Hicksian, and Morishima types
of elasticities, are usually estimated to analyze consumer responses to price
changes. Marshallian elasticity gauges immediate consumption shifts due to
price changes, assuming constant income and potential prices of other goods.
Hicksian elasticity, in contrast, assesses demand changes by holding utility con-
stant, thus isolating the substitution effect from income effects. Morishima
elasticity further expands on this by examining the substitution rate between
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two goods (or appliances) as their relative prices change. Admittedly, only part
of the studies explicitly mentioned either utility maximization (Jones 1995; Es-
keland & Mideksa 2010; Shaffer 2020) or cost minimization (Pitt 1985; Sterner
1989; Cao et al. 2023) estimation framework, which provides clear instruction
regarding what type of elasticity is of interest. Further information from the
authors of primary studies would provide more robust evidence for our findings
on the heterogeneity of price elasticities with respect to the three types. In this
respect, we provide model averaging results for each type of price elasticity in
the Appendix 7 as a robustness check.

To capture the full scope of price elasticity estimates, we consider short-run,
intermediate-run and long-run effects. While electricity is usually segmented
into short-run and long-run, we decided to include intermediate-run elastic-
ity in order to avoid loss of information from authors who decide to further
differentiate. Short-run elasticity concerns the immediate reaction of house-
holds to price changes, which is the case for short time-series data and more
specifically, time-of-use modelling. On the other hand, long-run effects cap-
ture adjustments of stock appliances and are usually examined by employing
multiple year time-series. Hence, prior papers employed dynamic models with
lagged dependent variables to estimate long-run elasticities (Houthakker 1980;
Filippini 2011). On the other hand, Burke & Abayasekara (2018) argue that
employing dynamic models might be problematic if the exact process of price
shocks is not known. Intermediate-run elasticity is usually estimated using
pooled cross-sectional data and is based on quarterly or annual data.

Type of Electricity Demand

Electricity demand is usually segmented into industrial, commercial, and resi-
dential types, each serving distinct uses in policy-making. Residential demand
concerns the consumption of electricity in households, covering various appli-
ances and daily living needs. Commercial electricity demand includes energy
used in business operations, services, retail environments, and office buildings,
facilitating activities ranging from lighting to powering electronic devices that
support business functions. Industrial demand, on the other hand, is associ-
ated with more substantial energy needs such as operating heavy machinery
and maintaining warehouse operations. For instance, Bildirici et al. (2012)
explore the causal relationship between industrial electricity consumption and
economic growth, emphasizing the role of industrial electricity demand as a
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potential driver of economic development. Residential electricity demand, as
investigated by Sa’ad (2009), shows that price elasticity is influenced by in-
come levels and efficiency improvements within the household sector. Woo
et al. (2018) reports that in the U.S. commercial electricity demand has the
largest variance in the short-run. There might be systematic differences in the
reported elasticities for each consumer type (Gautam & Paudel 2018). Some
authors also included other types of electricity demand such as agriculture or
government demand elasticities (Khan & Abbas 2016), however, such practices
were rare, therefore we included both in the industrial demand.

Type of Electricity Price

The type of electricity price employed in the estimation technique is of utmost
importance and there is an ongoing debate about whether consumers respond
to the average or the marginal price of electricity, which are the two most widely
used metrics. For exhaustive discussion on the topic, see Borenstein (2009),
Ito (2014) or Shaffer (2020). While the cost of additional electricity in terms
of kWh (marginal price) might be a more pertinent tool to base decisions on,
such information is often costly (Shin 1985), especially under multiple block
pricing structures. A customer is hence more prone to consider the average
price, which might not reflect the true cost of additional consumption. Mount
et al. (1974) argue that while households decide with respect to marginal price,
average price is of higher practical importance, especially to utility companies
as the data on average price are generally more readily available (Alberini et al.
2011). Furthermore, Shaffer (2020) conducts an experiment concerning increas-
ing block tariffs in British Columbia and finds that 85% of customers respond
to average price, 7% respond to marginal price while the 8% of consumers left
mistakenly assume that once they move to higher pricing block, their current
marginal price applies to all the electricity consumed. As a simple example,
in the Figure 5.1 below, we can notice the difference between the customer’s
average and marginal price. Suppose the customer is facing increasing block
pricing denoted by solid blue horizontal lines and is consuming quantity Q3.
While the marginal price is reflected only in the specific tariff block (that is,
price P3 ), the average also incorporates previous blocks with lower prices as a
weighted average. However, the consumer might assume that either the average
price is the true cost of additional electricity or that the marginal price applies
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to the whole electricity consumption. Subsequently, consumer responsiveness
can be greatly affected by using different price specifications.

Figure 5.1: Increasing block pricing with marginal and average price
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Besides the average and marginal electricity, some consumers face lump sum
electricity prices. Unlike average or marginal pricing models that adjust based
on consumption levels, a lump sum price is a set fee paid by consumers for ac-
cessing electricity services, regardless of how much or how little electricity they
consume within a billing period. This fixed pricing structure could potentially
encourage the over-consumption of electricity, as it lacks the financial incen-
tives to conserve energy. Widespread adoption of such pricing could, therefore,
strain electricity supply systems and challenge sustainable energy management
practices. However, the prevalence of the lump sum price is very limited, as
such price is reported only in Uri (1982). Overall, it is also observed that elec-
tricity prices tend to be lower in developing countries, as highlighted by McRae
& Meeks (2016).

Misunderstanding of prices as explored by Shaffer (2020) can have detrimen-
tal implications for policymakers and lead to undesired outcomes. Various ex-
periments (Schneider & Sunstein 2017) conclude that "the most cost-reflective
electricity policies might not be the most efficient ones". On the other hand,
Jessoe & Rapson (2014) conduct a randomized trial in which high-frequency
information is conveyed to the customers. Informed households exhibit greater
responsiveness up to three standard deviations.
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Type of Electricity Tariff

Electricity pricing tariffs typically fall into one of the four main categories:
increasing_tariff where the marginal price increases either in blocks or contin-
uously; decreasing_tariff which is the reverse, with marginal costs diminishing;
flat_tariff for which the marginal price stays constant; and time-of-use tariff
for which the price of electricity varies (usually non-monotonically) throughout
the day. Specifically, TOU is becoming of high interest. By setting higher
prices during evening peak hours and lower prices during off-peak times, TOU
encourages more even consumption patterns and can help alleviate excess ca-
pacity issues during off-peak periods. Electricity during peak hours in the
evening is more expensive compared to non-peak time and some of the cus-
tomers can hence smooth their consumption patterns, which helps to address
the overcapacity during peak times. Many of the studies focus specifically on
the time-of-use tariff (Holland & Mansur 2008; Filippini 2011). For example,
Wolak (2011) conducts an experiment to examine whether consumers actu-
ally respond to hourly prices, which requires continual monitoring of electricity
prices. His research found that dynamic pricing programs can significantly re-
duce electricity consumption. Beyond individual behaviour, the broader effects
of TOU pricing have significant implications, with Holland & Mansur (2008)
suggesting that it could facilitate electricity generation from cleaner sources,
thereby mitigating carbon emissions. However, this outcome depends on the
nature of the energy sources in use, as reductions in carbon emissions could be
offset if peak demand is already met by cleaner energy sources and base load
demand is fulfilled by carbon-intensive fuels like coal.

Demand Controls

To capture further possible heterogeneity of price elasticity we also include five
dummy control variables in our dataset: demographics_control signifying if any
information about household or customers was included, such as household size
or date of construction; we also code for temperature_control, usually in terms
of cooling degree days or heating degree days. These characteristics denote
the possible need for additional electricity usage. The main idea is that when
the temperature outside is 65◦F (or 18.3◦C), consumers do not need electricity
for heating or cooling. For days when the temperature exceeds 65F, cooling
degree days (CDD) are computed by averaging the day’s highest and lowest
temperatures and then subtracting 65◦F. For instance, on a day with a high of
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90◦F and a low of 60◦F, the CDD would be 10, reflecting the increased demand
for cooling and, consequently, electricity. If the average temperature is below
65◦F, we use HDD in a similar manner. Climate is becoming increasingly
important for electricity consumption (Auray et al. 2019) and is also becoming
of a central interest with respect to price elasticity estimates (see e.q. Holtedahl
& Joutz 2004; Lee & Chiu 2011). Specifically, Dong & Kim (2018) estimate the
temperature effect on the electricity demand, concluding that not controlling
for temperature leads to a downward bias in price elasticity. Thirdly, we also
control for stock_control, indicating whether the demand equation incorporates
information about the stock of appliances, which, as shown in Chapter 2, is
an inherent part of electricity modelling. The fourth control employed is the
fuels_control, which states whether the author included substitute fuels for
electricity, mainly coal, oil or gas. As a result, such papers usually also present
elasticities of substitution, which are, however, not the focus of the thesis.
Lastly, we denote whether the author also considers information about income
represented by the income_control dummy. Including these variables helps
mitigate the risk of omitted variable bias, a concern highlighted by Lanot &
Vesterberg (2021) and echoed by Miller & Alberini (2016), who point out the
pitfalls of using detailed household data without considering key determinants
of consumption patterns like dwelling characteristics.

Model, Estimation and Function Specification

As already mentioned in Chapter 3, various model specifications and estimation
techniques provide systematically different effects, as the models and estimation
techniques work with various assumptions and also assume different unobserved
patterns between the price elasticity estimates. Based on the literature review,
we decided to code for both 9 models and estimation methods.

Selected studies estimate the simple models, which are usually static and
reduced-form models. These models simply regress the electricity consumption
on the price of electricity. To capture the complexity of estimated models, we
employ several dummy variables (reduced_form, structural_form, static_model,
dynamic_model). Moreover, the dynamic_model variable is specifically used
to indicate whether the model accounts for long-term effects, typically by in-
corporating lagged values of electricity consumption as independent variables.
Dynamic models offer the advantage of simultaneously capturing both imme-
diate (short-run) and eventual (long-run) responses to changes in electricity
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price, facilitated by their inherent lag structure. However, a potential limita-
tion of these models is the risk of collinearity between the current and lagged
consumption variables, which could complicate the analysis.

In terms of functional specification, the ones usually employed are linear,
semi-logarithmic and double-logarithmic. We also collected information regard-
ing the usage of Box-Cox transformations. Subsequently, we also decided to
use dummy variable endo_control to address whether papers did correct the
price elasticities for the endogeneity bias. For a further overview of different
models and estimation procedures with respect to electricity modelling, one
might consult Dahl (1993) or Kamerschen & Porter (2004).

Publication Characteristics

The last group of variables included in the dataset concern the publication
information. We code for impact journal and publication year, which convey
the information on the quality of the journal a particular study was published
in and the year of publication, respectively. We also collected the number
of citations (citations) and subsequently transformed them (citations (t)) to
account for different publication dates.

5.2 Model Averaging Techniques

5.2.1 Introducing BMA

In this section, our main focus is to examine the heterogeneity of the price elas-
ticities collected. Our analysis consists of 74 variables collected. One possibility
would be to examine the following model:

PEij = α + β ∗ SE(PEij) +
74∑︂

k=1
γ ∗ Xijk + ϵij (5.1)

where the interpretation is similar to Equation 4.1, the only difference be-
ing that X is now the set of all (k = 1, 2, ...74) explanatory variables. This
approach, regressing the price elasticities on all explanatory variables would
inflate standard errors as a lot of these variables would be insignificant and
hence redundant. Furthermore, we might encounter issues with multicollinear-
ity (Irsova et al. 2023b). The problem we are facing is the ex-ante uncertainty
of inclusion with respect to our variables. For example, we cannot be certain
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Table 5.1: Definition and summary statistics of selected variables
(Part 1)

Variable Description Mean SD

Data characteristics
Observations (n) How many observations were used 82194 558570
Experiment = 1 if the study is an experiment, 0.066 0.249
P value = 1 if p value instead of standard error is used 0.086 0.280
effect Price elasticity of electricity estimate -0.400 0.486
Standard error Standard error of the price elasticity estimate 0.169 0.257

Start year* Starting year of the study 1979 17.53
End year* Ending year of the study 1993 17.48
Mid year* Middle year of the study 1986 16.65
Number of years* How many years does the study cover 14.28 10.53

USA = 1 if the examined country is the USA 0.477 0.500
Europe** = 1 if the examined country is in Europe 0.187 0.390
Other location* = 1 if outside of USA and Europe 0.350 0.477

Daylight hours Daily average time between sunrise and sunset 15.076 1.800
for a given year

Annual temperature* Average annual temperature 10.96 7.585
Electricity exporter* = 1 if the country exports electricity 0.831 0.375
C. intensity of production* Log of carbon intensity of electricity production 6.114 0.866
Population (log) Log of population in the given country 18.315 1.541
Daylight hours Daily average time between sunrise and sunset 15.076 1.800

for a given year
Income level (log)* Log of GDP per capita 8.932 1.375

Data aggregation
Aggregation: Country = 1 if data aggregation is at the country level 0.275 0.446
Aggregation: Region* = 1 if data aggregation is at the regional level 0.243 0.429
Aggregation: City* = 1 if data aggregation is at the city level 0.141 0.349
Aggregation: Disaggr. = 1 if data are for smaller units than city 0.237 0.425

(household level or granular firm data)

Data type
Data: Panel** = 1 if panel data are used 0.499 0.500
Data: Time-series = 1 if time series data are used 0.386 0.487
Data: Cross-section = 1 if cross section data are used 0.115 0.319

Type of elasticity
Estimate: Short-run = 1 if short-run effect is estimated 0.401 0.490
Estimate: Intermediate-run = 1 if intermediate-run effect is estimated 0.417 0.493
Estimate: Long-run = 1 if long-run effect is estimated 0.183 0.386

Type: Marshall = 1 if the type of elasticity is Marshallian 0.736 0.498
Type: Hicks** = 1 if the type of elasticity is Hicksian 0.260 0.480
Type: other* = 1 if other type of elasticity is used (or type unknown) 0.004 0.090

Type of electricity demand
Type: Residential = 1 if data is relevant for residential demand 0.379 0.485
Type: Commercial = 1 if data is relevant for commercial sector 0.198 0.399
Type: Industrial = 1 if data is relevant for industry 0.640 0.480

Data period
Granularity: Yearly = 1 if data are of a yearly granularity 0.742 0.437
Granularity: Quarterly* = 1 if data are of a quarterly granularity 0.028 0.166
Granularity: Monthly** = 1 if monthly data are used 0.201 0.401

Type of electricity price
Price: Average = 1 if average price is used 0.537 0.499
Price: Marginal = 1 if marginal price is used 0.200 0.400
Price: Other* = 1 if other price than marginal or average is used 0.102 0.302

Type of electricity tariff
Tariff: Increasing = 1 if increasing tariff is installed 0.121 0.326
Tariff: Decreasing = 1 if decreasing tariff is installed 0.104 0.305
Tariff: Flat* = 1 if flat tariff is installed 0.030 0.171
Tariff: TOU = 1 if a time-of-use tariff is installed 0.113 0.317

...continued on the next page
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Table 5.2: Definition and summary statistics of selected variables
(Part 2)

Variable Description Mean SD

TOU demand period
Demand: Peak = 1 if peak demand is observed 0.054 0.225
Demand: Mid-peak = 1 if mid-peak demand is observed 0.024 0.154
Demand: Off-peak** = 1 if off-peak demand is observed 0.019 0.135

Demand Controls
Control: Demographics = 1 if the study controls for demographics 0.337 0.473
Control: Temperature = 1 if the study controls for temperature 0.488 0.500
Control: Stocks = 1 if the study accounts for appliance stock 0.188 0.391
Control: Fuels = 1 if the study includes other fuels as controls 0.414 0.493
Control: Income* = 1 if the study includes income measures 0.571 0.495

Model Form
Form: Reduced = 1 if a reduced form model is used 0.415 0.493
Form: Structural** = 1 if a structural form model is used 0.526 0.499
Model: Dynamic** = 1 if a dynamic model is used 0.687 0.464
Model: Static = 1 if a static model is used 0.310 0.463

Model Specification
Model: RE = 1 if a random-effects model is used 0.011 0.103
Model: FE** = 1 if a fixed-effects model is used 0.091 0.288
Model: VAR* = 1 if vector autoregressive model is used 0.007 0.082
Model: ARDL = 1 if an ARDL model is used 0.078 0.268
Model: ECM* = 1 if an error-correction model is used 0.049 0.215
Model: VECM* = 1 if a vector error-correction model is used 0.019 0.138
Model: DS* = 1 if an demand system model is used 0.104 0.305
Model: DC* = 1 if a discrete-continuous model is used 0.007 0.081
Model: LE = 1 if a lagged-endogenous model is used 0.230 0.421
Model: Other* = 1 if another model type is specified 0.020 0.141

Estimation Technique
Estimation: ML* = 1 if maximum-likelihood estimation is used 0.053 0.224
Estimation: GMM = 1 if generalized method of moments is used 0.040 0.195
Estimation: Error comp.* = 1 if an error component model is used 0.025 0.156
Estimation: OLS = 1 if ordinary least squares or its variations 0.364 0.481

are used
Estimation: GLS* = 1 if generalized least squares is used 0.050 0.218
Estimation: SUR* = 1 if seemingly unrelated regression is used 0.111 0.314
Estimation: 2SLS = 1 if two-stage least squares is used 0.099 0.298
Estimation: 3SLS = 1 if three-stage least squares is used 0.025 0.157
Estimation: IV = 1 if an instrumental variable is used 0.079 0.269
Estimation: other* = 1 if other estimation technique is specified 0.022 0.160

Function Specification
Function: Linear = 1 if a linear function is used 0.287 0.390
Function: Semi-log** = 1 if a semi-log function is used 0.062 0.195
Function: Double-log = 1 if a double-log function is used 0.562 0.497
Function: Box-Cox* = 1 if a Box-Cox transformation is used 0.004 0.060

Endogeneity Control
Control* = 1 if endogeneity is controlled for 0.248 0.432
No control* = 1 if endogeneity is not controlled for 0.752 0.432

Publication Characteristics
Publication Year Year of publication 1997.85 16.50
Impact Factor Journal impact factor 0.182 0.426
Citations (t) Log-transformed number of citations 1.254 1.001
Citations Number of citations until 3rd March 96.31 150.85

Notes: The table provides description and summary statistics on selected variables. Note that the non-
available data column was omitted from the individual groups, hence some of the dummy variable groups
do not add up to 1, as they should. For price variables, we included flat and shin price due to low number
of observations. Citations (t) take into account the publication year, therefore, studies published earlier
are penalized relatively to those published later. Asterisks (*) denote variables subsequently excluded
from the model averaging estimation. Double asterisks (**) include dummy variable used as a reference
for the respective group in BMA.
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whether we should employ average or marginal price, or whether the underly-
ing model should have all 5 demand control variables. Initially, we have 274

options of model specifications and even if we had an idea regarding how a
particular model should look like, by restricting ourselves to a single model, we
run into a higher risk of misrepresenting the economic reality (Steel 2020). As
a result, we are dealing with model uncertainty. The model uncertainty can
be tackled by employing Bayesian model averaging (BMA), which is the usual
practice in the meta-analysis (Havranek et al. 2018c; Bajzik 2021). As the
name suggests, BMA takes averages over all possible combinations of models,
while not precisely knowing which one is the correct one. Subsequently, each
model is assigned a posterior inclusion probability (PIP). Ultimately, different
models might capture various aspects of electricity demand elasticity, such as
time-of-use pricing effects, consumer heterogeneity, and long-term vs. short-
term elasticity. BMA navigates through these models, offering a composite
view that accounts for the uncertainty inherent in model choice.

We will now briefly describe the process of updating model employment
probability (for a more detailed explanation, see Leamer (1978) or Raftery et al.
(1997)). Firstly we consider a set of price elasticity models M1, M2, . . . , Mk,
where each model has associated parameters θj for model Mj. Bayesian infer-
ence starts with specifying a prior probability for each model, P (Mj), and a
prior distribution for the parameters within each model, P (θj|Mj). Firstly, we
are interested in how the posterior distribution of price elasticity (we can for
now denote it by γ) changes with respect to data D we have collected:

P (γ|D) =
k∑︂

j=1
P (γ|D, Mj)P (Mj|D) (5.2)

Where the first probability measure is the distribution of the effects given a
particular model Mj and the second term is the probability of model Mj being
included in the model averaging conditional on the dataset. Subsequently, the
probability of observing the data D given the model Mj and its parameters is
denoted by the likelihood P (D|θj, Mj). Upon observing the data, the posterior
probability of model Mj is updated as follows:

P (Mj|D) = P (D|Mj)P (Mj)∑︁k
i=1 P (D|Mi)P (Mi)

(5.3)
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where
P (D|Mj) =

∫︂
P (D|θj, Mj)P (θj|Mj)dθj (5.4)

encapsulates the model evidence, integrating the parameters’ uncertainty. For
model selection, one might choose the model with the highest posterior prob-
ability. However, BMA goes further by integrating over all models, weighting
parameter estimates and predictions by these posterior model probabilities, en-
hancing predictive performance and robustness against model misspecification.
There are two main challenges in implementing BMA. Firstly, the number of
terms in Equation 5.2 is enormous and secondly, the integral in Equation 5.4
is often difficult to compute.

To manage the computational complexity inherent in this process, in prac-
tice, the Metropolis-Hastings algorithm within the Markov chain Monte Carlo
method is often employed. This algorithm, as detailed by Zeugner & Feld-
kircher (2015) and utilized in the bms package in R, focuses on evaluating the
most probable models, thus streamlining the computation (Zeugner & Feld-
kircher 2009; Cazachevici et al. 2020). The core of BMA is the calculation of
posterior model probabilities, which reflect the likelihood of each model given
the data. The estimation of each variable’s importance is expressed through
the Posterior Inclusion Probability (PIP). A variable’s PIP, analogous to tra-
ditional measures of statistical significance, represents the sum of the posterior
model probabilities of all models that include it. High PIP values indicate
strong evidence for the inclusion of a variable in the final model, following the
classification criteria by Kass & Raftery (1995).

The model averaging requires the specification of prior probabilities to indi-
vidual model specification and estimated coefficients. In this study, we proceed
with the typical approach of employing unit information prior (UIP) for the
parameters in our model, where we assign each variable an equivalent weight.
Moreover, in terms of model ex-ante beliefs, we will use a procedure with a
dilution prior rather than a uniform model prior to better address the issue of
potential collinearity among the numerous explanatory variables in our model.
The dilution prior, suggested by George (2010), uses the model probabilities
and the determinant of the correlation matrix of the independent variables to
allocate weights, particularly favouring variables with lower correlations. This
prior is beneficial when dealing with a significant number of similar variables
that could introduce collinearity concerns. We present the correlation matrix in
the Appendix A in Figure A.15. This prior has also been applied in a number
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of former meta-analyses (Cala et al. 2022; Elminejad et al. 2023). Neverthe-
less, we also include various other specifications to enhance the robustness of
our results in the Appendix A. As a further robustness check, we employ Fre-
quentist model averaging (FMA). This approach does not require specifying
prior beliefs about the models or parameters, making it more straightforward
in settings where such prior information is limited or unavailable. FMA uses
data-driven weights to average over models and does not deal with collinearity
(Irsova et al. 2023b).

To begin the model averaging process, an examination of the correlation
among model variables and their Variance Inflation Factor (VIF) is conducted.
This step is crucial to identify and mitigate issues like the induced corre-
lation between variables. As a first step in our analysis, we examined the
correlation and found out that the problematic pair is publication_year and
mid_year of the dataset (correlation 0.95), which is not surprising. Further-
more, these are the only variables with a VIF value of 11 or more. Therefore,
we excluded the mid_year variable from the model averaging and this sub-
sequently lowered VIF for publication year. Other highly correlated variables
were monthly_granularity and yearly_granularity (correlation of −0.85). Since
this is a considerable linear dependence, we decided to omit the monthly granu-
larity from the procedure as well. Upon further inspection, we decided to omit
a few other variables (denoted by asterisks in Table 5.1) to keep the model
as parsimonious as possible. This was mainly due to high multicorrelation,
elevated VIF, or negligible PIP of selected variables in preliminary model aver-
aging tests. This led to the omission of carbon intensity and electricity export
dummy, as these variables had constantly PIP below 0.04 in preliminary tests.
The rest of the possible pairs’ correlation is below −0.58. Naturally, we omitted
one variable from each dummy group to avoid the dummy variable trap.

We thus proceed with the estimation. The estimated equation is:

PEij = α + β ∗ SE(PEij) +
43∑︂

p=1
γp ∗ Xijp + ϵij (5.5)

This equation presents the general regression of price elasticity estimation. The
individual terms are defined as follows (in line with setting from Equation 4.1):
α denotes the price elasticity corrected for publication bias, and β describes
the magnitude and direction of publication bias. The sum ∑︁43

p=1 γp ∗ Xijp rep-
resents the products of the variables included in the model averaging and their
coefficients. ϵij is the error term.
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5.2.2 Results

Firstly, we provide a graphical overview of the BMA results in Figure 5.2. The
figure depicts the results of BMA based on the posterior inclusion probability
(PIP), where the individual variables are placed in a descending order on the
vertical axis based on the frequency of inclusion in various models. Therefore,
the Standard error, experiment and long-run elasticity are the most included
characteristics during the process. Moreover, on the horizontal axis, we notice
the colouring based on both the inclusion and the effect of the variable. Cells
with blue colouring denote variables with a positive effect on the price elasticity
estimate and purple fill signifies that variables have a negative effect on the price
elasticity estimate. The white cells (uncoloured) denote that for the particular
model, the variable is not included in model averaging.

The outcome indicates that approximately two-fifths of coded characteris-
tics are of high usefulness in explaining the heterogeneity of price elasticity.
Subsequently, the frequency of variables being included in various model speci-
fications decreases rather rapidly. On the other hand, approximately one-third
of variables are included in the minimum of models. With respect to Bayesian
model averaging, we specify the posterior mean (Post. mean) and posterior
standard deviation (Post. SD) along with the posterior inclusion probabil-
ity (PIP). This is analogous to the coefficient (direction and magnitude of
the effect), standard error (certainty about the estimated effect) and p-value
connected to the frequentist approach. The posterior probability denotes the
likeliness of a variable to be included in the final model by taking the sum
of all model probabilities that include this variable. Following the framework
by Jeffreys (1998), the classification of PIP is as follows: weak effect for vari-
ables with PIP between [0.5, 0.75], substantial effect for variables with PIP
between [0.75, 0.95) and strong and decisive effect for intervals of [0.95, 0.99)
and [0.99, 0.1], respectively.

We present the numerical results of the two model averaging approaches in
Table 5.3. We note that 19 variables have PIP over 0.5, with two variables
exerting weak effect (Estimate: Short-run, Model: Static) and one variable
having a substantial effect on price elasticity determination (Model: ARDL).
Furthermore, three characteristics signify strong effect (Panel data, Function:
Linear, Citations (t)) and 13 variables show a decisive effect (Constant, Stan-
dard error, Experiment, Daylight hours, Estimate: Long-run, Cross-sectional
(data), Granularity: Yearly, Type: Residential, Tariff: Decreasing, Control:
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Figure 5.2: Model inclusion in Bayesian model averaging

Notes: The figure displays outcomes from Bayesian model averaging (BMA) utilizing both a uniform
g-prior, as detailed by Eicher et al. (2011), and a dilution prior outlined by George (2010). Each vertical
row represents a distinct variable, arranged according to their Posterior Inclusion Probability (PIP).
The horizontal axis corresponds to the different models considered in the averaging process. Shades of
blue (appearing lighter in greyscale) indicate a variable’s positive influence on the effect size, whereas
shades of purple (appearing darker in greyscale) indicate a negative influence. Cells left uncoloured
(white) signify that the corresponding variable is not included in a particular model. The variables are
described in Table 5.1, and numerical results can be referred to in Table 5.3.
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Demographics, Control: Fuels, Model: LE, Estimation: 3SLS). One observa-
tion to keep in mind is that even though the constant term appears significant,
too, it is unreliable to state conclusions about the effect due to the absent
posterior inclusion probability. In line with evidence presented in Chapter 4,
the presence of publication bias is substantiated by both BMA and FMA re-
sults and is of similar magnitude compared to the both linear and non-linear
tests employed. We now highlight selected observations from the numerical
results rather than covering all of the characteristics and their effect on the
price elasticity estimate.

In terms of the data characteristics group, only the experimental setting and
daylight hours have significant effects on the price elasticity estimates. The di-
rection and magnitude of the experiment variable convey the evidence that
price elasticities emanating from experiments are on average, less price elastic.
Intuitively, this should not be surprising, as experiments are designed to iden-
tify causal relationships. The daylight hours (which are correlated with average
temperature) also seem to decrease price elasticity in magnitude. Moreover, es-
timates coming from the US are also inclined to lower the estimated effect in
magnitude but are insignificant. The aforementioned reasoning is connected to
the idea that price elasticity is negative as shown previously, if the true elastic-
ity was positive, then, of course, the effect would be of increasing magnitude.
Moreover, both panel and cross-sectional data as well as the yearly granularity
of data seem to significantly affect the elasticities, which is in line with findings
of Zhu et al. (2018). However, there are discrepancies with respect to models,
as we find the 3SLS estimation technique to have a decisive effect, but Zhu
et al. (2018) conclude that only error component models are useful. For fur-
ther comparison, Horáček (2014) also finds that US data have a positive effect
on the estimated elasticities, however, the divergence of results concerns the
GMM estimation method (which is insignificant based on the model averaging
results) and the residential type of electricity (which we found to be positively
affecting the estimated elasticity). Lastly, Zabaloy & Viego (2022) find all es-
timation techniques included (GMM and IV) insignificant for their Carribean
sample. Ultimately, this discrepancy in the results can also be caused by a
higher number of variables included in our heterogeneity analysis, as previous
papers focused only on a handful of characteristics.
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Table 5.3: Model averaging results (Part 1)

Bayesian model averaging Frequentist model averaging

Response variable: Post. mean Post. SD PIP Coef. SE p-value

(Intercept) -1.603 0.000 1.000 -5.737 2.069 0.006
Standard error -0.703 0.024 1.000 -0.697 0.025 0.000

Data Characteristics
Observations (n) 0.000 0.000 0.003 0.000 0.000 0.000
Experiment 0.193 0.034 1.000 0.172 0.036 0.000
P value -0.002 0.010 0.033 -0.047 0.033 0.161

USA 0.018 0.030 0.311 0.067 0.028 0.019
Europe 0.000 0.002 0.006 0.009 0.021 0.672

Daylight hours 0.017 0.004 0.999 0.020 0.005 0.000
Population (log) 0.001 0.004 0.097 0.003 0.006 0.670
Income level (log) 0.000 0.000 0.004 -0.009 0.009 0.302

Type of elasticity
Estimate: Short-run 0.046 0.035 0.695 0.057 0.022 0.010
Estimate: Long-run -0.173 0.031 1.000 -0.174 0.025 0.000

Type: Marshall 0.000 0.002 0.009 0.025 0.019 0.191

Data Aggregation
Country level 0.000 0.003 0.012 0.016 0.019 0.387
Disaggregated 0.000 0.003 0.009 -0.021 0.023 0.296

Panel -0.062 0.023 0.953 -0.076 0.019 0.000
Cross-section -0.231 0.028 1.000 -0.239 0.028 0.000

Granularity: Yearly -0.074 0.016 1.000 -0.055 0.021 0.010

Type of electricity demand
Type: Residential 0.112 0.017 1.000 0.124 0.019 0.000
Type: Industrial 0.000 0.001 0.003 0.000 0.007 0.788

Type of electricity price
Price: Average 0.000 0.001 0.005 -0.016 0.020 0.428
Price: Marginal 0.000 0.003 0.009 0.029 0.026 0.272

Type of Electricity Tariff
Tariff: Increasing 0.000 0.002 0.005 0.001 0.020 0.969
Tariff: Decreasing -0.140 0.028 1.000 -0.139 0.030 0.000
Tariff: TOU 0.000 0.002 0.005 0.007 0.022 0.752

....to be continued on the next page
Notes: This table presents the results of the Bayesian model averaging and Frequentist model averaging.
Post. mean = Posterior Mean, Post. SD = Posterior Standard Deviation, PIP = Posterior Inclusion
Probability, Coef. = Coefficient, SE = Standard Error. The variables with PIP > 0.5 are highlighted in
bold.
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Table 5.4: Model averaging results (Part 2)

Bayesian model averaging Frequentist model averaging

Response variable: Post. mean Post. SD PIP Coef. SE p-value

Demand Controls
Demographics -0.099 0.016 1.000 -0.086 0.018 0.000
Temperature 0.001 0.005 0.028 0.016 0.017 0.359
Stocks 0.000 0.002 0.007 0.004 0.018 0.807
Fuels -0.080 0.016 1.000 -0.081 0.016 0.000

Model Specification
Form: Reduced -0.003 0.011 0.072 -0.021 0.020 0.293

Model: Static -0.038 0.034 0.626 -0.052 0.023 0.021
Model: RE -0.070 0.089 0.423 -0.146 0.060 0.016
Model: ARDL 0.101 0.048 0.887 0.107 0.035 0.002
Model: LE 0.173 0.025 1.000 0.151 0.028 0.000

Estimation Technique
Estimation: GMM 0.000 0.005 0.007 0.017 0.037 0.652
Estimation: OLS 0.000 0.003 0.011 -0.014 0.017 0.410
Estimation: 2SLS 0.015 0.030 0.233 0.045 0.028 0.103
Estimation: 3SLS -0.201 0.048 1.000 -0.228 0.048 0.000
Estimation: IV -0.009 0.024 0.139 -0.067 0.030 0.024

Function Specification
Function: Linear 0.083 0.022 0.989 0.078 0.025 0.002
Function: Double-log 0.000 0.002 0.005 0.005 0.018 0.765

Publication Characteristics
Year of publication 0.001 0.001 0.199 0.003 0.001 0.007
Impact Factor 0.018 0.028 0.351 0.056 0.020 0.006
Citations (t) 0.040 0.011 0.977 0.029 0.009 0.001
Notes: This table presents the results of the Bayesian model averaging and Frequentist model averaging
(n=4402). Post. mean = Posterior Mean, Post. SD = Posterior Standard Deviation, PIP = Posterior
Inclusion Probability, Coef. = Coefficient, SE = Standard Error. TN citations = transformed number
of citations, LE = Lagged endogenous. The variables with PIP > 0.5 are highlighted in bold.

One observation to highlight is the insignificance of both average and marginal
prices in determining the estimated elasticities. This might contradict many
authors of the electricity literature, who argue that people respond rather to
average and not marginal price (Ito 2014; Shaffer 2020). Moreover, we find
that decreasing tariffs has the highest effect on price elasticity and the other
tariffs are not useful in explaining the elasticities’ heterogeneity. It is interest-
ing to see that the time-of-use tariff apparently does not explain the estimated
effect, especially as there is extensive literature convinced otherwise (Holland
& Mansur 2008; Torriti 2020). As per demand controls, only controlling for
demographics and substitute fuels seems to be useful. Stock as insignificant
similarly to results of Zabaloy & Viego (2022). Contrary to the findings of
Holtedahl & Joutz (2004), our analysis indicates that temperature controls,
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whether through Cooling Degree Days or Heating Degree Days, do not signif-
icantly alter the elasticity estimates. Lastly, we note that only Citations (t)
from the Publication Characteristics group affect positively and significantly
the estimated effects.

Generally, the results of BMA and FMA concerning the direction of the
effect of individual variables coincide. We note that all variables exerting sig-
nificant explanatory power in BMA are also significant in the frequentist model
averaging with a p-value below 0.05 and moreover, affect price elasticity in the
same direction. One slight inconsistency is that FMA includes more variables
as significant, such as USA, Model: RE, Year of publication, Estimation: IV
and Impact Factor. These variables are, however, significant for the model aver-
aging Marshallian elasticity subsample. The results can be found in Appendix
A.

In our analysis, we have categorized the sample into short-run, intermediate-
run, and long-run segments for detailed estimation. As an additional layer
of verification, we present the results of the model averaging for short-run
elasticity in the Appendix in Table A.13. The goal was to explore whether
the TOU tariff is helpful in explaining at least short-run effects, which is not
the case. The Appendix also includes model averaging analysis focused on
Marshallian and Hicksian price elasticities. Additionally, we explore various
models and g-prior specifications for the full sample, with the outcomes of
these assessments available in Appendix A. For a visual representation of the
robustness across these categorizations, we present the figure showcasing the
posterior inclusion probabilities for each model, presented below in Figure A.14.
The model inclusion posterior probabilities are close to identical for the four
specifications.



Chapter 6

Best Practice Estimate

In the last chapter of this thesis, we aim to create a best practice estimate as
recommended by Irsova et al. (2023b) based on the results of Bayesian Model
Averaging. Ultimately, we also present cross-country implied elasticities.

Constructing best practice estimates incorporates using the coefficients ob-
tained from the model averaging and including the variables that epitomize the
ideal scenario for the elasticity estimation. One constraint of this procedure is
its subjectivity. For instance, we decided to include one variable based on the
performance in BMA, which can be dependent on the prior beliefs we assigned
or preliminary tests conducted. Therefore, this practice should be perceived as
an additional robustness check rather than an independent and novel finding.

We initially set the value of respective variables to their sample means.
There are a few specific values that should be set otherwise. To correct for
publication bias, we set the value of the standard error to 0. Furthermore,
we set the journal impact factor and citations characteristics to the maximum
values, as they are assumed to represent the most reliable methodology and
hence present credible findings. We decide to employ panel data due to greater
information attainment. For short-run results, we naturally set the value of the
short-run to 1 and the long-run value to 0 (and vice versa for long-run).

For the short-run, our best practice estimate (-0.116) is borderline insignif-
icant based on the confidence interval and half the sample average (-0.231).
Interestingly, the effect corresponds to the elasticity obtained using IV regres-
sion in Table 4.3. Furthermore, the long-run estimate is -0.303. The results
are slightly below those reported by Labandeira et al. (2017) and almost half
the estimates from Zhu et al. (2018). Horáček (2014) reports a lower short-run
elasticity of -0.06 but a higher long-run elasticity of -0.430. We remind that
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the comparison to selected studies is also present in Table 2.1. We also esti-
mate results for the European subsample and experimental design, with both
of them being insignificant.

Cross-country implied elasticities are also estimated. Admittedly, the ro-
bustness of the results can be limited by the low number of elasticities reported
for a specific country. The estimates oscillate around our best practice estimate
apart from Norway, Pakistan and Japan. The results for Norway and Pakistan
should be taken with slight reservation due to the low number of observations,
which is below 20. For Japan, we collected 185 elasticities and many of them
were elastic, which might substantiate our significant estimate of -0.200. This
would imply that in Japan, if the price increases by 1%, the electricity demand
decreases by 0.2%. Comparison to sample values for countries can be found in
Figure A.9 in Appendix A.

Table 6.1: Best practice estimates

Short-run Long-run

PE CI PE CI

Author -0.116 (-0.243; 0.011) -0.303 (-0.438; -0.168)

Europe -0.125 (-0.260; 0.010) -0.312 (-0.453; -0.171)

Experimental design 0.041 (-0.084; 0.166)

Cross-country implied elasticities

Bangladesh -0.078 (-0.260; 0.104) -0.276 (-0.458; -0.094)
Brazil -0.117 (-0.321; 0.087) -0.322 (-0.528; -0.116)

Canada -0.084 (-0.209; -0.041) -0.282 (-0.417; -0.147)
China -0.104 (-0.286; 0.078) -0.309 (-0.497; -0.121)
France -0.080 (-0.319; 0.159) -0.278 (-0.521; -0.035)

Germany -0.086 (-0.243; 0.071) -0.287 (-0.450; -0.124)
India -0.074 (-0.237; 0.089) -0.301 (-0.468; -0.134)
Italy -0.085 (-0.310; 0.140) -0.286 (-0.511; -0.061)

Japan -0.200 (-0.341; -0.059) -0.395 (-0.542; -0.248)
Mexico -0.083 (-0.267; 0.101) -0.288 (-0.476; -0.100)
Norway -0.246 (-0.432; -0.060) -0.473 (-0.665; -0.281)
Pakistan -0.240 (-0.418; -0.062) -0.448 (-0.626; -0.270)

South Korea -0.120 (-0.294; 0.054) -0.290 (-0.468; -0.112)
Switzerland -0.127 (-0.309; 0.055) -0.325 (-0.513; -0.137)

UK -0.082 (-0.286; -0.122) -0.280 (-0.490; -0.070)
USA -0.106 (-0.235; -0.023) -0.293 (-0.430; -0.156)

Notes: The table presents calculated cross-country implied elasticities. We employed our base BMA
model with additional country dummies. We also construct a 95% confidence interval by employing OLS
and incorporating clustered standard errors at the study level. The cross-country effect was obtained by
including a specific country dummy variable in the original model averaging estimation. Then, we set
specific country dummy variables to 1 or 0 and obtain a best practice estimate. Other characteristics
(income level, population, EU dummy) were also modified if applicable.

Additionally, we compare the results of our subjective best practice esti-
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Table 6.2: Best practice estimates from literature

Alberini & -0.373* 0.068 Ito (2014)Filippini (2011a) (-0.459; -0.287) (-0.055; 0.191)

Wolak (2011) -0.102 0.084 Shaffer (2020)(-0.216; 0.120) (-0.034; 0.202)
Notes: The table presents calculated estimates for the best practice estimate derived from four distinct
studies. We also construct a 95% confidence interval by employing OLS and incorporating clustered
standard errors at the study level. Results denoted by asterisks (*) are significant on the 5% level.

mate to three other studies. Firstly, we chose a study by Ito (2014). This
study is a natural experiment published in the most prestigious journal in our
dataset (American Economic Review) and attracted one of the highest num-
ber of citations. We also present an estimate based on the paper by Wolak
(2011), published in (American Economic Review), who examined consumers’
responses to hourly pricing. Thirdly, we include another experiment conducted
by Shaffer (2020) examining non-linear pricing. This study was published in one
of the best journals of our dataset (American Economic Journal) and is among
the most recent ones. Lastly, we decided to include a non-experimental study
with a relatively higher number of citations and a recent methodology. There-
fore, we also computed the best practice estimate for Alberini et al. (2011),
who address the endogeneity of their model estimating aggregate elasticities
in the US. Overall, we focused on primary studies published after 2000 due to
advancements in methodology and data availability. As a result, we omitted
the best practice estimate for the most cited paper (Hausman 1979) in our
dataset.

The general pattern is clear, two of the experiments have perhaps sur-
prisingly positive elasticities. This outcome generally aligns with the results
presented in the Section 4.3, in which the elasticities corrected for publication
bias of natural experiments were much lower compared to the non-experimental
studies. We completed more best practice estimates and the theme persisted,
non-experimental studies yielded significantly negative (but inelastic) estimates
and experimental studies estimated mostly positive and seldom statistically sig-
nificant effects. The calculation of the baseline model is included in the dataset
attached. Further research could potentially seek to describe what experiment
characteristics (hourly vs. monthly data, smart-home features controls etc.)
systematically affect the best practice estimates as they vary quite a bit, but
this issue is beyond the scope of this thesis.
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The last table presented in this thesis concerns the sensitivity analysis of
selected variables. We are interested in how a shift in one variable affects our
estimate, ceteris paribus. The first column denotes change by one standard
deviation and the second column presents what is the effect of a minimum to
maximum change (or vice versa). The results of our sensitivity analysis show

Table 6.3: Sensitivity analysis of selected variables

One SD change Maximum change

Response variable: Effect of PE % of BP Effect on PE % of BP

SE of the estimate -0.203 175.38% -1.375 1185.51%
Experiment 0.053 -45.65% 0.193 -166.14%

Estimate: Short-run 0.023 -19.59% 0.046 -39.63%
Estimate: Long-run -0.067 57.88% -0.173 149.13%

Daylight hours 0.031 -26.69% 0.361 -310.97%

Type: Residential 0.054 -46.96% 0.112 -96.5%

Data: Panel -0.031 26.55% -0.062 53.14%
Data: Cross-section -0.073 63.1% -0.231 199.35%

Granularity: Yearly -0.033 28.45% -0.074 63.39%

Tariff: Decreasing -0.043 36.91% -0.140 120.4%

Control: Demographics -0.046 39.81% -0.099 85.54%
Control: Fuels -0.039 33.96% -0.080 68.82%

Model: Static -0.017 14.8% -0.038 32.52%
Model: ARDL 0.027 -23.6% 0.101 -87.46%
Model: LE 0.073 -63.07% 0.173 -149.22%
Estimation: 3SLS -0.032 27.24% -0.201 172.94%
Function: Linear 0.032 -27.88% 0.083 -71.2%

Citations (t) 0.042 -36.2% 0.183 -158.02%
Notes: This table outlines the isolated impact of select variables on the price elasticity estimate. Included
are only variables that exhibited a Posterior Inclusion Probability (PIP) greater than 0.5 within the
Bayesian model averaging (BMA) framework. The term ’One SD change’ refers to the variation in the
PE when a specific variable is altered by one standard deviation from its mean. ’Maximum change’
denotes the shift in the PE when the variable shifts from its lowest to highest value. The benchmark
best practice value used for comparison is -0.116. Here, SD stands for Standard Deviation, PE for Price
Elasticity, and BP for Best Practice. More information concerning the variables can be found in Table 5.1.

that there are 10 variables with a negative effect on price elasticity and 8 vari-
ables positively influencing price elasticity. Firstly, we note that the publication
bias (represented by the standard error) has a large effect on the elasticity. One
standard deviation change in the error could decrease our best practice estimate
(or increase in magnitude) by -0.203 and going from the minimum to maximum
value of the standard error collected can make price elasticity relatively highly
elastic. Secondly, other variables’ effect on the elasticity estimate is in line
with what we have seen so far. For example, estimating long-run elasticity,
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collecting yearly data or focusing on decreasing tariffs decreases the elasticity.
Moreover, the inclusion of demographics and fuel controls lowers the elasticity,
too.

On the other hand, experimental design, and residential electricity demand
characteristics have all positive effects on the elasticity. The effect on resi-
dential demand might be a bit surprising, as we have estimated residential
elasticity in the most elastic based on linear and non-linear tests presented
in Appendix A in Table A.5. However, to be fair, we have shown in Chapter 5
that there is no consensus among authors regarding differences in elasticity
for various consumer groups. One other important point to note is that is it
mostly residential demand analysis which incorporates various (demographic,
fuel) controls, which subsequently negatively affect the elasticity. The result
for the residential demand should be hence taken with reservation. Ultimately,
one quantitative observation is that if we increase the transformed number of
citations by one SD (1.001, which corresponds very roughly to 150 citations),
the price elasticity increases by 0.042.



Chapter 7

Conclusion

Despite the statement that it appears that price elasticities of electricity are
"like snowflakes, no two are alike" (Dahl 1993), this thesis aims to assess the
presence of various biases and to provide a systematic overview of characteris-
tics that significantly influence the effects. We collect 4521 estimates from 413
studies.

Expanding the works of Horáček (2014) and Zhu et al. (2018), we anal-
ysed the presence of publication bias and p-hacking in greater detail using
various statistical tests. The tests conclude that short-run elasticity estimates
lie generally between -0.12 and -0.07, and both intermediate-run and long-run
elasticities oscillate from -0.38 to -0.34, which is well below their sample aver-
age values. Various tests also suggest a significant presence of both publication
bias and p-hacking. This is the first thesis to deal with endogeneity bias. We
find that elasticities from natural experiments are much lower (-0.07 to -0.05)
than non-experimental studies (around -0.3). Tests of non-experimental studies
with methodology controlling for endogeneity report relatively higher elasticity
than studies non-addressing the endogeneity at all, however, the differences
are negligible. All tests performed indicate that price elasticity corrected for
publication bias is inelastic, i.e. lower than 1 in absolute value (even -0.5, for
that matter).

Consequently, we define more than 100 variables and after preliminary tests
include 43 in the Bayesian and Frequentist model averaging. Similarly to previ-
ous tests, we also find strong publication selection bias. Experimental design,
type of data collected, type of electricity demand and study characteristics
are among the most significant influences on price elasticities. Both natural
and quasi-experiments, short-run elasticity, daylight hours, residential demand,



7. Conclusion 69

auto-regressive distributed lag and lagged endogenous model and linear func-
tion specification have a positive relationship with the elasticities. In terms of
publication characteristics, the number of citations positively affects the esti-
mated elasticities. On the contrary, we found a negative relationship between
elasticity and the following variables: long-run estimates, both panel and cross-
sectional data, decreasing tariff, demographics and fuel controls, static model
and 3SLS estimation. Given the general framework that price elasticity should
be negative, the variables with positive relationships make the consumers’ re-
sponse less elastic. Generally, there are no grave surprises in the estimation.
One slight ex-ante expectation could be that the average price would have a
higher inclusion probability as has been argued by multiple papers (Borenstein
2009; Ito 2014). There seems to be no systematic difference between disaggre-
gated data and data on the country or regional level. We also provide a number
of robustness checks, be it publication bias or model averaging estimation for
subsets of data (demand type, type of elasticities).

We conclude the thesis with our best practice elasticity estimate, which
is -0.116 for the short-run and -0.303 for the long-run, respectively. We also
present a sensitivity analysis to quantify the ceteris paribus changes in selected
variables, including the effects of publication selection bias, which exaggerates
the estimates and even can make the price elasticity of electricity elastic.

Ultimately, we acknowledge the possible limitations of our study and present
the possibility of future research focus. It is likely that the potential of the
dataset is not fulfilled by the publication and endogeneity bias analysis con-
ducted in the thesis. The true elasticities might vary for different subsamples,
such as type of electricity demand and more granular geographical areas (such
as country instead of continental level). Furthermore, a more thorough exam-
ination of different elasticity types (Marshallian and Hicksian demand) could
be of future interest, too.

Exploring variations in price elasticities along different delivery streams,
as suggested by Dahl (1993), remains an underexplored area due to limited
data segmentation in existing studies. Additionally, some research has be-
gun to estimate price elasticities across various income quantiles and there
is intuitive merit in investigating whether higher-income households exhibit
more price elasticity compared to their lower-income counterparts, as reported
in Gundimeda & Kohlin (2008). Moreover, Volland & Tilov (2018) focus on
appliance-specific elasticities, which can help policymakers address electricity
conservation policies more efficiently. In a similar vein, Chaudhry (2010) esti-



7. Conclusion 70

mated price elasticities of electricity for various industrial subsectors, finding
positive price elasticities for chemical and leather subsectors. It is likely that
the heterogeneity of consumer responsiveness in the industrial sector will vary
widely. Lastly, with the increasing shift towards renewable and nuclear energy
sources, examining how electricity price elasticities differ based on the energy
mix could provide critical insights for future energy policies. These areas might
present fruitful avenues for further research that builds on the groundwork laid
in the thesis.
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energy price changes: Evidence from ukraine.” The Energy Journal 40(1):
pp. 189–212.

Alberini, A., G. Prettico, C. Shen, & J. Torriti (2019b): “Hot weather
and residential hourly electricity demand in italy.” Energy 177: pp. 44–56.

Allcott, H. (2011): “Rethinking real-time electricity pricing.” Resource and
energy economics 33(4): pp. 820–842.

Allenby, G. M. & P. E. Rossi (2006): “Hierarchical bayes models.” The
handbook of marketing research: Uses, misuses, and future advances pp. 418–
440.

Alter, N. & S. H. Syed (2011): “An empirical analysis of electricity demand
in pakistan.” International Journal of Energy Economics and Policy 1(4):
pp. 116–139.

Amarawickrama, H. A. & L. C. Hunt (2008): “Electricity demand for sri
lanka: a time series analysis.” Energy 33(5): pp. 724–739.



Bibliography 73

Amusa, H., K. Amusa, & R. Mabugu (2009): “Aggregate demand for elec-
tricity in south africa: An analysis using the bounds testing approach to
cointegration.” Energy policy 37(10): pp. 4167–4175.

Anderson, K. P. (1971): “Towards Econometric Estimation of Industrial En-
ergy Demand: An Experimental Application to the Primary Metal Industry.”
Report R-719-NSF, Rand Corporation, Santa Monica, California.

Anderson, K. P. (1973a): “Residential Demand for Electricity: Econometric
Estimates for California and the United States.” The Journal of Business
46(4): pp. 526–553.

Anderson, K. P. (1973b): “Residential Energy Use: An Econometric Analy-
sis.” Report R-1297-NSF, Rand Corporation, Santa Monica, California.

Anderson, K. P. (1974): “The Price Elasticity of Residential Energy Use.”
Report P-5180, Rand Corporation, Santa Monica, California.

Andrews, I. & M. Kasy (2019): “Identification of and correction for publi-
cation bias.” American Economic Review 109(8): pp. 2766–2794.

Andrikopoulos, A. A., J. A. Brox, & C. Paraskevopoulos (1989): “In-
terfuel and Interfactor Substitution in Ontario Manufacturing, 1962-1982.”
Applied Economics 21(12): pp. 1667–1681.

Ang, B., T. Goh, & X. Liu (1992): “Residential Electricity Demand in Sin-
gapore.” Energy 17(1): pp. 37–46.

Apte, P. (1983): “Substitution Among Energy and Non-Energy Inputs in
Selected Indian Manufacturing Industries: An Econometric Analysis.” Indian
Economic Journal 31(2): pp. 71–94.

Archibald, R., D. Finifter, & C. M. Jr. (1982): “Seasonal Variation in
Residential Electricity Demand: Evidence from Survey Data.” Applied Eco-
nomics 14(1): pp. 167–181.

Arimura, T. H., S. Li, R. G. Newell, & K. Palmer (2012): “Cost-
effectiveness of electricity energy efficiency programs.” The Energy Journal
33(2): pp. 63–100.

Arisoy, I. & I. Ozturk (2014): “Estimating Industrial and Residential Elec-
tricity Demand in Turkey: A Time Varying Parameter Approach.” Energy
66(1): pp. 959–964.



Bibliography 74

Aroonruengsawat, A., M. Auffhammer, & A. H. Sanstad (2012): “The
impact of state level building codes on residential electricity consumption.”
The Energy Journal 33(1): pp. 31–52.

Arsenault, E., J. Bernard, C. Carr, & E. Genest-Laplante (1995):
“A Total Energy Demand Model of Quebec: Forecasting Properties.” Energy
Economics 17(2): pp. 163–171.

Asadoorian, M. O., R. S. Eckaus, & C. A. Schlosser (2006): “Model-
ing Climate Feedbacks to Energy Demand: The Case of China.” Report
135/2006, MIT Joint Program on the Science and Policy of Global Change,
Cambridge, Massachusetts.

Asadoorian, M. O., R. S. Eckaus, & C. A. Schlosser (2008): “Model-
ing climate feedbacks to electricity demand: The case of china.” Energy
Economics 30(4): pp. 1577–1602.

Aslam, M. & E. Ahmad (2023): “Untangling electricity demand elasticities:
Insights from heterogeneous household groups in pakistan.” Energy 282: p.
128827.

Atakhanova, Z. & P. Howie (2005): “Electricity Demand in Kazakhstan.”
Energy Policy 35(7): pp. 3729–3743.

Athukorala, P. W. & C. Wilson (2010): “Estimating short and long-term
residential demand for electricity: New evidence from sri lanka.” Energy
economics 32: pp. S34–S40.

Athukorala, W., C. Wilson, S. Managi, & M. Karunarathna (2019):
“Household demand for electricity: The role of market distortions and prices
in competition policy.” Energy Policy 134: p. 110932.

Atkinson, S. F. (1979a): “A Comparative Analysis of Consumer Response
to Time-of-Use Electricity Pricing: Arizona and Wisconsin.” EPRI Report
EA-1304, Electric Power Research Institute, Palo Alto, California.

Atkinson, S. F. (1979b): “Responsiveness to Time-of-Day Electricity Pricing:
First Empirical Results.” Journal of Econometrics 9(1-2): pp. 79–103.

Auray, S., V. Caponi, & B. Ravel (2019): “Price elasticity of electricity
demand in france.” Economie et Statistique 513(1): pp. 91–103.



Bibliography 75

Azevedo, I. M. L., M. G. Morgan, & L. Lave (2011): “Residential and
regional electricity consumption in the us and eu: How much will higher
prices reduce co2 emissions?” The Electricity Journal 24(1): pp. 21–29.

Babatunde, M. A. & M. I. Shuaibu (2009): “The demand for residential
electricity in nigeria: A bound testing approach.” In “Proceedings of 2nd
International Workshop on Empirical Methods in Energy Economics,” .

Bacon, F. (1620): Francisci de Verulamio, Summi Angliae Cancellarii, In-
stauratio magna.

Badri, M. A. (1992): “Analysis of Demand for Electricity in the United
States.” Energy 17(7): pp. 725–733.

Bajzik, J. (2021): “Trading volume and stock returns: A meta-analysis.” In-
ternational Review of Financial Analysis 78: p. 101923.

Baker, P. & R. Blundell (1991): “The Microeconometric Approach to Mod-
elling Energy Demand: Some Results for UK Households.” Oxford Review of
Economic Policy 7(2): pp. 54–86.

Balabanoff, S. (1994): “The Dynamics of Energy Demand in Latin Amer-
ica.” OPEC Review 18(4): pp. 467–488.

Banda, S. H. & L. E. B. Verdugo (2007): “Translog Cost Functions: An
Application for Mexican Manufacturing.” Working paper 8/2007, Banco de
Mexico, Mexico City, Mexico.

Barnes, R., R. Gillingham, & R. Hagemann (1981): “The Short Run
Residential Demand for Electricity.” Review of Economics and Statistics
63(4): pp. 541–552.

Basu, D. R. (1976): “Demand Systems for Energy Commodities, U.K. 1948
- 1972.” Working paper, University of Birmingham, Birmingham, United
Kingdom.

Baughman, M. L., P. L. Joskow, & D. P. Kamat (1979): Electric Power
in the United States: Models and Policy Analysis. MIT Press: Cambridge,
Massachusetts.

Beenstock, M., E. Goldin, & D. Nabot (1999): “The Demand for Elec-
tricity in Israel.” Energy Economics 21(2): pp. 168–183.



Bibliography 76

Begg, C. B. & J. A. Berlin (1988): “Publication bias: a problem in in-
terpreting medical data.” Journal of the Royal Statistical Society Series A:
Statistics in Society 151(3): pp. 419–445.

Beierlein, J. G., J. W. Dunn, & J. C. J. Mcconnon (1981): “The Demand
for Electricity and Natural Gas in the Northeastern United States.” Review
of Economics and Statistics 63(3): pp. 403–408.

Bekhet, H. A. & N. Othman (2011): “Assessing the elasticities of electricity
consumption for rural and urban areas in malaysia: A non-linear approach.”
International Journal of Economics and Finance 3(1): pp. 208–217.

Belanger, D., J.-T. Bernard, & R. Dubois (1990): “Demand for Non-
Energy Petroleum Products: The Case for Quebec.” Energy Economics
12(3): pp. 177–184.

Benavides, C., L. Gonzales, M. Diaz, R. Fuentes, G. García, R. Palma-
Behnke, & C. Ravizza (2015): “The impact of a carbon tax on the chilean
electricity generation sector.” Energies 8(4): pp. 2674–2700.

Berkhout, P. H., A. Ferrer-i Carbonell, & J. C. Muskens (2004): “The
ex post impact of an energy tax on household energy demand.” Energy
economics 26(3): pp. 297–317.

Bernard, J.-T., D. Bolduc, & D. Belanger (1996): “Quebec Residential
Electricity Demand: A Microeconometric Approach.” Canadian Journal of
Economics 29(1): pp. 92–114.

Bernard, J.-T., D. Bolduc, & N.-D. Yameogo (2011): “A pseudo-panel
data model of household electricity demand.” Resource and Energy Eco-
nomics 33(1): pp. 315–325.

Bernard, J.-T., M. Lemieux, & S. Thivierge (1987): “Residential Energy
Demand: An Integrated Two-Level Approach.” Energy Economics 9(3): pp.
139–144.

Berndt, E. R., G. May, & G. C. Watkins (1980): “An Econometric Model
of Alberta Electricity Demand.” In W. T. Ziemba, S. L. Schwartz, &
E. Koenigsberg (editors), “Energy Policy Modeling: United States and
Canadian Experiences,” pp. 103–116. Martinus Nijhoff Publishing: Leiden.



Bibliography 77

Berndt, E. R. & R. Samaniego (1984): “Residential Electricity Demand
in Mexico: A Model Distinguishing Access from Consumption.” Land Eco-
nomics 60(3): pp. 268–269.

Bernstein, M. A. & J. Griffin (2006): “Regional Differences in the Price-
Elasticity of Demand for Energy.” Subcontract Report prepared for the Na-
tional Renewable Energy Laboratory SR-620-39512, Rand Corporation, Santa
Monica, California.

Betancourt, R. R. (1981): “An Econometric Analysis of Peak Electricity
Demand in the Short-Run.” Energy Economics 3(1): pp. 14–29.

Bianco, V., O. Manca, & S. Nardini (2009): “Electricity consumption fore-
casting in italy using linear regression models.” Energy 34(9): pp. 1413–1421.

Bianco, V., O. Manca, S. Nardini, & A. A. Minea (2010): “Analysis and
forecasting of nonresidential electricity consumption in romania.” Applied
Energy 87(11): pp. 3584–3590.

Bigano, A., F. Bosello, & G. Marano (2006): “Energy Demand and Tem-
perature: A Dynamic Panel Analysis.” FEEM Working Paper 112/2006,
Fondazione Eni Enrico Mattei, Milano, Italy.

Bildirici, M. E., T. Bakirtas, & F. Kayikci (2012): “Economic growth and
electricity consumption: Auto regressive distributed lag analysis.” Journal
of Energy in Southern Africa 23(4): pp. 29–45.

Bjerkholt, O. & J. Rinde (1983): “Consumption Demand in the MSG
Model.” SamfunnsOkonomiske studier 53, Central Bureau of Statistics, Oslo,
Norway.

Bjorner, T. B., M. Togeby, & H. H. Jensen (2001): “Industrial Companies
Demand for Electricity: Evidence from a Micropanel.” Energy Economics
23(5): pp. 595–617.

Blasch, J., N. Boogen, M. Filippini, & N. Kumar (2017): “Explaining
electricity demand and the role of energy and investment literacy on end-use
efficiency of swiss households.” Energy Economics 68: pp. 89–102.

Blázquez, L., N. Boogen, & M. Filippini (2013): “Residential electricity
demand in spain: new empirical evidence using aggregate data.” Energy
economics 36: pp. 648–657.



Bibliography 78

Blundell, R. & J. M. Robin (1999): “Estimation in Large and Disaggregated
Demand Systems: An Estimator for Conditionally Linear Systems.” Journal
of Applied Econometrics 14(3): pp. 209–232.

Bom, P. R. & H. Rachinger (2019): “A kinked meta-regression model for
publication bias correction.” Research synthesis methods 10(4): pp. 497–514.

Boogen, N., S. Datta, & M. Filippini (2017): “Dynamic models of residen-
tial electricity demand: Evidence from switzerland.” Energy Strategy Reviews
18: pp. 85–92.

Borenstein, S. (2009): “To what electricity price do consumers respond?
residential demand elasticity under increasing-block pricing.” .

Bose, R. K. & M. Shukla (1999): “Elasticities of Electricity Demand in
India.” Energy Policy 27(3): pp. 137–146.

Botero, J., C. E., & C. E. Velez (1990): “Modelo Economico De Demanda
De Energia Electrica En La Industria Colombiana.” Lecturas de Economia
32-33: pp. 97–124.

Branch, R. (1993): “Short Run Income Elasticity of Demand for Residential
Electricity Using Consumer Expenditure Survey Data.” The Energy Journal
14(4): pp. 111–121.

Brenton, P. (1997): “Estimates of the Demand for Energy Using Cross-
Country Consumption Data.” Applied Economics 29(7): pp. 851–859.

Brodeur, A., S. Carrell, D. Figlio, & L. Lusher (2023): “Unpacking
p-hacking and publication bias.” American economic review 113(11): pp.
2974–3002.

Burke, P. J. & A. Abayasekara (2018): “The price elasticity of electricity
demand in the united states: A three-dimensional analysis.” The Energy
Journal 39(2): pp. 123–146.

Burke, P. J. & Z. Csereklyei (2016): “Understanding the energy-gdp elas-
ticity: A sectoral approach.” Energy Economics 58: pp. 199–210.

Burke, P. J. & S. Kurniawati (2018): “Electricity subsidy reform in in-
donesia: Demand-side effects on electricity use.” Energy Policy 116: pp.
410–421.



Bibliography 79

Bye, T. (1986): “Non-Symmetric Responses in Energy Demand.” Technical re-
port, Presented at the 8th IAEE North American Conference "The Changing
World Energy Economy," Cambridge, Massachusetts.

Byrne, D. P., A. L. Nauze, & L. A. Martin (2021): “An experimental study
of monthly electricity demand (in) elasticity.” The Energy Journal 42(2):
pp. 205–222.

Cala, P., T. Havránek, Z. Havránková, J. Matousek, & J. Novak
(2022): “Financial incentives and performance: a meta-analysis of economics
evidence.” Technical report, IES Working Paper.

Campbell, A. (2018): “Price and income elasticities of electricity demand:
Evidence from jamaica.” Energy Economics 69: pp. 19–32.

Cao, J., M. S. Ho, Y. Li, R. G. Newell, & W. A. Pizer (2019): “Chinese
residential electricity consumption: Estimation and forecast using micro-
data.” Resource and Energy Economics 56: pp. 6–27.

Cao, K. H., H. Qi, R. Li, C.-K. Woo, A. Tishler, & J. Zarnikau (2023):
“An experiment in own-price elasticity estimation for non-residential elec-
tricity demand in the us.” Utilities Policy 81: p. 101489.

Card, D. & A. B. Krueger (1995): “Time-series minimum-wage studies: a
meta-analysis.” The American Economic Review 85(2): pp. 238–243.

Cargill, T. & R. Meyer (1971): “Estimating the Demand for Electricity by
Time of Day.” Applied Economics 3(4): pp. 233–246.

Carlevaro, F. & C. Spierer (1983): “Dynamic Energy Demand Models
with Latent Equipment.” European Economic Review 23(2): pp. 161–194.

Cavoulacos, P. & M. Caramanis (1983): “Energy and Other Factor Input
Demand in Greek Manufacturing, 1963-1975.” Greek Economic Review 5(2):
pp. 158–181.

Cazachevici, A., T. Havranek, & R. Horvath (2020): “Remittances and
economic growth: A meta-analysis.” World Development 134: p. 105021.

Cebula, R. J. (2012): “Us residential electricity consumption: the effect
of states’ pursuit of energy efficiency policies.” Applied Economics Letters
19(15): pp. 1499–1503.



Bibliography 80

Chai, J., H. Shi, X. Zhou, & S. Wang (2018): “The price elasticity of natural
gas demand in china: A meta-regression analysis.” Energies 11(12): p. 3255.

Chang, H. S. & W. S. Chern (1981a): “Specification, Estimation, and Fore-
casts of Industrial Demand and Price of Electricity.” Energy Systems and
Policy 5(3): pp. 219–242.

Chang, H. S. & W. S. Chern (1981b): “A Study on the Demand for Electric-
ity and the Variation in the Price Elasticities for Manufacturing Industries.”
Journal of Economics and Business 33(2): pp. 122–131.

Chang, H. S. & Y. Hsing (1991): “The Demand for Residential Electricity:
New Evidence on Time-Varying Elasticities.” Applied Economics 23(7): pp.
1251–1256.

Chaudhary, M. A., E. Ahmad, A. A. Burki, & M. A. Khan (1999): “Indus-
trial Sector Input Demand Responsiveness and Policy Interventions.” Pak-
istan Development Review 38(4): pp. 1083–1100.

Chaudhry, A. A. (2010): “A panel data analysis of electricity demand in
pakistan.” Lahore Journal of Economics 15.

Chern, W. S. (1975): “Estimating Industrial Demand for Electricity: Method-
ology and Empirical Evidence.” In “Energy: Mathematics and Models,” Pro-
ceedings of the "Siam Institute for Mathematics and Society Conference" held
on July 7-11, 1975, At Alta, Utah, pp. 103–120.

Chern, W. S. (1978): “Aggregate Demand for Energy in the United States.”
In G. S. Maddala, W. S. Chern, & G. S. Gill (editors), “Econometric
Studies in Energy Demand and Supply,” pp. 5–41. Praeger Publishers: New
York.

Chern, W. S. & E. Bouis (1988): “Structural Changes in Residential Elec-
tricity Demand.” Energy Economics 10(3): pp. 213–222.

Chishti, S. (1993): “Recursively Bootstrapped Probability Distribution of
Electricity Demand Forecast in Pakistan.” The Journal of Energy and De-
velopment 18(2): pp. 223–231.

Choi, J. (2002): Short-Run and Long-Run Elasticities of Electricity Demand
in the Public Sector: A Case Study of the U.S. Navy Bases. Ph.d. thesis,
Department of Economics, George Washington University, Washington, D.C.



Bibliography 81

Christodoulakis, N. M. & S. C. Kalyvitis (1997): “The Demand for En-
ergy in Greece: Assessing the Effects of the Community Support Framework
1994-1999.” Energy Economics 19(4): pp. 393–416.

Christopoulos, D. (2000): “The Demand for Energy in Greek Manufactur-
ing.” Energy Economics 22(5): pp. 569–586.

Chung, C. & D. Aigner (1981): “Industrial and Commercial Demand for
Electricity by Time-of-Day: A California Case Study.” The Energy Journal
2(3): pp. 91–110.

Cialani, C. & R. Mortazavi (2018): “Household and industrial electricity
demand in europe.” Energy policy 122: pp. 592–600.

Cicchetti, C. J. & V. K. Smith (1975): “Alternative Price Measures and
the Residential Demand for Electricity: A Specification Analysis.” Regional
Science and Urban Economics 5(4): pp. 503–516.

CISEPA (1998): “Proyeccion del Consumo Mensual de Energia Electrica, Ju-
nio 1997-Diciembre 2000.” Informe final: Consultoria para comision de tari-
fas de energia, Centro de Investigaciones Sociologicas, Economicas, Políticas
y Antropologicas, Lima, Peru.

Cohn, S. M. (1980): “Fuel Choice and Aggregate Energy Demand in the
Residential and Commercial Sectors.” Energy 5(12): pp. 1203–1212.

Commission, E. (2017): “Energy storage—the role of electricity.”

Considine, T. (2000): “The Impacts of Weather Variations on Energy Demand
and Carbon Emissions.” Resource and Energy Economics 22(4): pp. 295–
312.

Coughlin, R. M. (1995): “The Estimation of Residential Price Elasticities
for New England During A Period of Increasing Demand-Side Management.”
EPRI Technical report TR-105012, Electric Power Research Institute, Palo
Alto, California.

Cuddington, J. T. & L. Dagher (2015): “Estimating short and long-run
demand elasticities: a primer with energy-sector applications.” The Energy
Journal 36(1): pp. 185–210.



Bibliography 82

Dahan, A. A. (1996): Energy Consumption in Yemen: Economics and Policy
1970-1990. Ph.d. thesis, Department of Mining and Geology, University of
Arizona, Arizona.

Dahl, C. (2011): “A global survey of electricity demand elasticities.” In “In-
stitutions, Efficiency and Evolving Energy Technologies, 34th IAEE Interna-
tional Conference, June 19-23, 2011,” International Association for Energy
Economics.

Dahl, C. A. (1993): “A survey of energy demand elasticities in support of the
development of the nems.” .

Davis, L. W. (2008): “Durable goods and residential demand for energy and
water: evidence from a field trial.” The RAND Journal of Economics 39(2):
pp. 530–546.

De Cian, E., E. Lanzi, & R. Roson (2007): “The Impact of Temperature
Change on Energy: A Dynamic Panel Analysis.” FEEM Working Paper
46/2007, Fondazione Eni Enrico Mattei, Milano, Italy.

De Long, J. B. & K. Lang (1992): “Are all economic hypotheses false?”
Journal of Political Economy 100(6): pp. 1257–1272.

De Vita, G., K. Endresen, & L. Hunt (2006): “An Empirical Analysis of
Energy Demand in Namibia.” Energy Policy 34(18): p. 34473463.

Delfino, J. A. (1995): “La Demanda Industrial de Energia en Argentia: Una
Estimacion Integral por Etapas.” Economica 41(2): pp. 125–149.

Denton, F., D. Mountain, & B. Spencer (1999): “Energy Use in the Com-
mercial Sector: Estimated Intensities and Costs for Canada Based on US
Survey Data.” Energy Studies Review 9(1): pp. 24–46.

Denton, F. T., D. C. Mountain, & B. G. Spencer (2003): “Energy De-
mand with Declining Rate Schedules: An Econometric Model for the U.S.
Commercial Sector.” Land Economics 79(1): pp. 86–105.

Dergiades, T. & L. Tsoulfidis (2008): “Estimating Residential Demand for
Electricity in the United States, 19652006.” Energy Economics 30(5): pp.
2722–2730.



Bibliography 83

Deryugina, T., A. MacKay, & J. Reif (2020): “The long-run dynamics of
electricity demand: Evidence from municipal aggregation.” American Eco-
nomic Journal: Applied Economics 12(1): pp. 86–114.

Diabli, A. (1998): “The Demand for Electric Energy in Saudi Arabia: An
Empirical Investigation.” OPEC Review 22(1): p. 1329.

Dias-Bandaranaike, R. & M. Munasinghe (1983): “The Demand for Elec-
tricity Services and the Quality of Supply.” The Energy Journal 4(2): pp.
49–71.

Dickersin, K. (1990): “The existence of publication bias and risk factors for
its occurrence.” Jama 263(10): pp. 1385–1389.

Dickersin, K. (1997): “How important is publication bias? a synthesis of
available data.” AIDS education and prevention 9: pp. 15–21.

Dilaver, Z. & L. C. Hunt (2011a): “Industrial electricity demand for turkey:
a structural time series analysis.” Energy Economics 33(3): pp. 426–436.

Dilaver, Z. & L. C. Hunt (2011b): “Turkish aggregate electricity demand:
An outlook to 2020.” Energy 36(11): pp. 6686–6696.

Dobozi, I. (1988): An Empirical Estimation of the Price Responsiveness of
the Hungarian Economy: The Case of Energy Demand. Hungarian Scientific
Council for the World Economy: Budapest.

Dodgson, J. S., R. Millward, & R. Ward (1990): “The Decline in Resi-
dential Electricity Consumption in England and Wales.” Applied Economics
22(1): pp. 56–68.

Donatos, G. S. & G. J. Mergos (1989): “Energy Demand in Greece: The
Impact of Two Energy Crisis.” Energy Economics 11(2): pp. 147–152.

Donatos, G. S. & G. J. Mergos (1991): “Residential Demand for Electricity:
The Case of Greece.” Energy Economics 31(1): pp. 41–47.

Dong, J. & Y.-D. Kim (2018): “Price elasticity of electricity demand with
temperature effect in south korea: Empirical evidence.” ISSN 2168-0612
FLASH DRIVE ISSN 1941-9589 ONLINE p. 219.



Bibliography 84

Dong, Z., Z. Liu, J. Liu, L. Li, & J. Zhao (2020): “Estimating the price
elasticity of electricity of urban residential consumers in eastern china.” In
“2020 Asia Energy and Electrical Engineering Symposium (AEEES),” pp.
881–885. IEEE.

Donnelly, W. A. (1984): “Residential Electricity Demand Modeling in the
Australian Capital Territory: Preliminary Results.” The Energy Journal
5(2): pp. 119–131.

Donnelly, W. A. (1985): “Electricity Demand Modelling.” In D. F. Bat-
ten & P. F. Lesse (editors), “New Mathematical Advances in Economic
Dynamics,” pp. 179–195. New York University Press: New York.

Donnelly, W. A. (1987): The Econometrics of Energy Demand: A Survey of
Applications. Praeger Publishers: New York.

Donnelly, W. A. & M. Diesendorf (1984): “Note on an Econometric Anal-
ysis of Peak Electricity Demand in the Short-Run.” CRES Working Paper
18/1984, Centre for Resource and Environmental Studies, Australian Na-
tional University, Canberra, Australia.

Donnelly, W. A. & H. D. W. Saddler (1984): “The Retail Demand for
Electricity in Tasmania.” Australian Economic Papers 23(42): pp. 52–60.

Doucouliagos, H. & M. A. Ulubaşoğlu (2008): “Democracy and economic
growth: a meta-analysis.” American journal of political science 52(1): pp.
61–83.

Douthitt, R. A. (1989): “An Economic Analysis of the Demand for Residen-
tial Space Heating in Canada.” Energy 14(4): pp. 187–197.

Dubin, J. A. (1985): Consumer Durable Choice and the Demand for Electric-
ity. North-Holland Publishing Company: New York.

Duncan, R. C. & H. P. Binswanger (1976): “Energy Sources: Substitutabil-
ity and Biases in Australia.” Australian Economic Papers 15(27): pp. 289–
301.

Dunstan, R. H. & R. H. Schmidt (1988): “Structural Changes in Residential
Energy Demand.” Energy Economics 10(3): pp. 206–212.



Bibliography 85

Durbin, J. & S. J. Koopman (2012): Time series analysis by state space
methods, volume 38. OUP Oxford.

Durmaz, T., A. Pommeret, & H. Tastan (2020): “Estimation of residential
electricity demand in hong kong under electricity charge subsidies.” Energy
Economics 88: p. 104742.

Egger, M., G. D. Smith, M. Schneider, & C. Minder (1997): “Bias in
Meta-Analysis Detected by a Simple, Graphical Test.” British Medical Jour-
nal 315(7109): pp. 629–634.

Eicher, T. S., C. Papageorgiou, & A. E. Raftery (2011): “Default Priors
and Predictive Performance in Bayesian Model Averaging, With Application
to Growth Determinants.” Journal of Applied Econometrics 26(1): pp. 30–
55.

Ekpo, U. N., C. A. Chuku, & E. L. Effiong (2011): “The dynamics of
electricity demand and consumption in nigeria: application of the bounds
testing approach.” Current Research Journal of Economic Theory 3(2): pp.
43–52.

Elliott, G., N. Kudrin, & K. Wüthrich (2022): “Detecting p-hacking.”
Econometrica 90(2): pp. 887–906.

Elminejad, A., T. Havranek, R. Horvath, & Z. Irsova (2023): “Intertem-
poral substitution in labor supply: A meta-analysis.” Review of Economic
Dynamics 51: pp. 1095–1113.

Eltony, M. N. (1995): “The Sectoral Demand for Electricity in Kuwait.”
OPEC Review 19(1): pp. 37–44.

Eltony, M. N. (2004): “A Model for Forecasting and Planning: The Case
for Energy Demand in Kuwait.” The Journal of Energy and Development
30(1): pp. 91–108.

Eltony, M. N. (2006): “Industrial Energy Policy: A Case Study of Demand
in Kuwait.” OPEC Review 30(2): pp. 85–103.

Eltony, M. N. & A. Al-Awadhi (2007): “The Commercial Sector Demand
for Energy in Kuwait.” OPEC Review 31(1): pp. 17–26.



Bibliography 86

Eltony, M. N. & M. Hajeeh (1999): “Electricity Demand by the Commercial
Sector in Kuwait: An Econometric Analysis.” OPEC Review 23(1): pp. 23–
33.

Eltony, M. N. & A. Hoque (1996): “A Cointegrating Relationship in the
Demand for Energy: The Case of Electricity in Kuwait.” The Journal of
Energy and Development 21(2): pp. 293–302.

Eltony, M. N. & Y. H. Mohammad (1993): “The Structure of Demand
for Electricity in the Gulf Cooperation Council Countries.” The Journal of
Energy and Development 18(2): pp. 213–221.

Erickson, E. W., R. M. Spann, & R. Ciliano (1973): “Substitution and
Usage in Energy Demand: An Econometric Estimation of Long-Run and
Short-Run Effects.” In M. F. Searl (editor), “Energy Modeling: Art, Sci-
ence, Practice,” pp. 190–212. Resources for the Future, Inc.: Washington
D.C.

Eskeland, G. S., E. Jimenez, & L. Liu (1994): “Energy Pricing and Air Pol-
lution: Econometric Evidence from Manufacturing in Chile and Indonesia.”
Policy Research Working Paper 1323/1994, World Bank, Washington, D.C.

Eskeland, G. S. & T. K. Mideksa (2010): “Electricity demand in a changing
climate.” Mitigation and Adaptation Strategies for Global Change 15: pp.
877–897.

Espey, J. A. & M. Espey (2004): “Turning on the lights: A meta-analysis
of residential electricity demand elasticities.” Journal of Agricultural and
Applied Economics 36(1): pp. 65–81.

Espey, M. (1998): “Gasoline demand revisited: an international meta-analysis
of elasticities.” Energy economics 20(3): pp. 273–295.

Fan, J.-L., J.-W. Hu, & X. Zhang (2019): “Impacts of climate change on
electricity demand in china: An empirical estimation based on panel data.”
Energy 170: pp. 880–888.

Fan, S. & R. J. Hyndman (2011): “The Price Elasticity of Electricity Demand
in South Australia.” Energy Policy 39(6): pp. 3709–3719.



Bibliography 87

Fatai, K., L. Oxley, & F. Scrimgeour (2003): “Modeling and Forecasting
the Demand for Electricity in New Zealand: A Comparison of Alternative
Approaches.” The Energy Journal 24(1): pp. 75–103.

Maria de Fátima, S., C. A. Bond, & B. Willson (2012): “Estimation of
elasticities for domestic energy demand in mozambique.” Energy Economics
34(2): pp. 398–409.

Fatima, Z. (2023): “Price & income elasticity of residential electricity demand
in asia: A meta-analysis.” .

Fell, H., S. Li, & A. Paul (2014): “A new look at residential electricity de-
mand using household expenditure data.” International Journal of Industrial
Organization 33: pp. 37–47.

Filippini, M. (1995a): “Swiss Residential Demand for Electricity by Time-of-
Use.” Resource and Energy Economics 17(3): pp. 281–290.

Filippini, M. (1995b): “Electricity Demand by Time-of-Use: An Application
of the Household AIDS Model.” Energy Economics 17(3): pp. 197–204.

Filippini, M. (1999): “Swiss Residential Demand for Electricity.” Applied
Economics Letters 6(8): pp. 533–538.

Filippini, M. (2011): “Short- and Long-Run Time-Of-Use Price Elasticities in
Swiss Residential Electricity Demand.” Energy Policy 39(10): p. 58115817.

Filippini, M., B. Hirl, & G. Masiero (2018): “Habits and rational behaviour
in residential electricity demand.” Resource and Energy Economics 52: pp.
137–152.

Filippini, M. & S. Pachauri (2004): “Elasticities of Electricity Demand in
Urban Indian Households.” Energy Policy 32(3): pp. 429–436.

Fisher, F. M. & G. S. Kaysen (1962): A Study in Econometrics: The demand
for electricity in the United States. North-Holland Publishing Company:
Amsterdam.

Fouquet, R. (1995): “The Impact of VAT Introduction on UK Residential
Energy Demand an Investigation Using the Cointegration Approach.” Energy
Economics 17(3): pp. 237–247.



Bibliography 88

Frondel, M., S. Sommer, & C. Vance (2019): “Heterogeneity in german
residential electricity consumption: a quantile regression approach.” Energy
policy 131: pp. 370–379.

Furukawa, C. (2019): “Publication bias under aggregation frictions: Theory,
evidence, and a new correction method.” Evidence, and a New Correction
Method (March 29, 2019) .

Fuss, M. A. (1977): “The Demand for Energy in Canadian Manufacturing:
An Example of the Estimation of Production Structures with Many Inputs.”
Journal of Econometrics 5(1): pp. 89–116.

Gam, I. & J. B. Rejeb (2012): “Electricity demand in tunisia.” Energy Policy
45: pp. 714–720.

Garbacz, C. (1983a): “Residential Energy Demand: A National Micro-Based
Model.” Technical report, Presented at the "American Economic Association
Meeting" on Dec. 28-30, 1983, San Francisco, California.

Garbacz, C. (1983b): “Electricity Demand and the Elasticity of Intra-
Marginal Price.” Applied Economics 15(5): pp. 699–701.

Garbacz, C. (1983c): “A Model of Residential Demand for Electricity Using
National Household Sample.” Energy Economics 5(2): pp. 124–128.

Garbacz, C. (1984a): “A National Micro-Data Based Model of Residential
Electricity Demand: New Evidence on Seasonal Variation.” Southern Eco-
nomic Journal 51(1): pp. 235–249.

Garbacz, C. (1984b): “Regional Residential Electricity Demand.” Technical
report, Department of Economics, Missouri University of Science and Tech-
nology, Rolla, Missouri.

Garbacz, C. (1984c): “Residential Electricity Demand: A Suggested Appli-
ance Stock Equation.” The Energy Journal 5(2): pp. 150–154.

Garbacz, C. (1986): “Seasonal and Regional Residential Electricity Demand:
A Micro-Based National Model.” The Energy Journal 7(2): pp. 121–134.

Garcia-Cerrutti, L. M. (2000): “Estimating Elasticities of Residential En-
ergy Demand from Panel County Data Using Dynamic Random Variables
Models with Heteroskedastic and Correlated Error Terms.” Energy Eco-
nomics 22(4): pp. 355–366.



Bibliography 89

Gautam, T. K. & K. P. Paudel (2018): “Estimating sectoral demands for
electricity using the pooled mean group method.” Applied energy 231: pp.
54–67.

George, E. I. (2010): “Dilution priors: Compensating for model space
redundancy.” In “Borrowing Strength: Theory Powering Applications–A
Festschrift for Lawrence D. Brown,” volume 6, pp. 158–166. Institute of
Mathematical Statistics.

Gerber, A., N. Malhotra et al. (2008): “Do statistical reporting standards
affect what is published? publication bias in two leading political science
journals.” Quarterly Journal of Political Science 3(3): pp. 313–326.

Gill, S. G. & G. S. Maddala (1978): “Residential Demand for Electricity in
the TVA Area.” In G. S. Maddala, W. S. Chern, & G. S. Gill (editors),
“Econometric Studies in Energy Demand and Supply,” pp. 44–59. Praeger
Publishers: New York.

Glakpe, E. & R. Fazzolare (1985): “Economic Demand Analysis for Elec-
tricity in West Africa.” The Energy Journal 6(1): pp. 137–144.

Glass, G. V. (1976): “Primary, secondary, and meta-analysis of research.”
Educational researcher 5(10): pp. 3–8.

Gollnick, H. G. L. (1975): Dynamic Structure of Household Expenditures in
the Federal Republic of Germany: Analysis and Projections 1955-1969/1971
and 1975/1977. North-Holland Publishing Company: Amsterdam.

Green, R. D., A. G. Salley, G. Grass, & A. S. Osei (1986): “The Demand
for Heating Fuels: A Disaggregated Modeling Approach.” Atlantic Economic
Journal 14(4): pp. 1–14.

Griffin, J. M. (1974): “The Effects of Higher Prices on Electricity Consump-
tion.” Bell Journal of Econometrics and Management Science 5(2): pp.
515–539.

Gundimeda, H. & G. Kohlin (2008): “Fuel Demand Elasticities for Energy
and Environmental Policies: Indian Sample Survey Evidence.” Energy Eco-
nomics 30(2): pp. 517–546.



Bibliography 90

Guo, C. & J. R. Tybout (1994): “How Relative Prices Affect Fuel Use Pat-
terns in Manufacturing: Plant Level Evidence from Chile.” Policy Research
Working Paper 1297/1994, World Bank, Washington, D.C.

Halicioglu, F. (2007): “Residential electricity demand dynamics in turkey.”
Energy economics 29(2): pp. 199–210.

Hall, J. A. & R. Rosenthal (1995): “Interpreting and evaluating meta-
analysis.” Evaluation & the Health Professions 18(4): pp. 393–407.

Halvorsen, B. & B. Larsen (2001): “The Flexibility of Household Electricity
Demand Over Time.” Resource and Energy Economics 23(1): pp. 1–18.

Halvorsen, R. (1975): “Residential Demand for Electric Energy.” Review of
Economics and Statistics 57(1): pp. 12–18.

Halvorsen, R. (1976): “Demand for Electric Energy in the United States.”
Southern Economic Journal 42(4): pp. 610–625.

Halvorsen, R. (1977): “Energy Substitution in U. S. Manufacturing.” Review
of Economics and Statistics 59(4): pp. 381–388.

Halvorsen, R. & J. Ford (1979): “Substitution Among Energy, Capital,
and Labor Inputs in U.S. Manufacturing.” In R. S. Pindyck (editor), “The
Structure of Energy Markets: Advances in the Economics of Energy and
Resources,” volume 1, pp. 51–75. JAI Press Inc.: Greenwich, Connecticut.

Hanson, B. E. (2002): “Tests for parameter instability in regressions with i
(1) processes.” Journal of Business & Economic Statistics 20(1): pp. 45–59.

Hartman, R. S. & A. Werth (1981): “Short-Run Residential Demand for
Fuels: A Disaggregated Approach.” Land Economics 57(2): pp. 195–212.

Hasanov, F. J., L. C. Hunt, & C. I. Mikayilov (2016): “Modeling and
forecasting electricity demand in azerbaijan using cointegration techniques.”
Energies 9(12): p. 1045.

Hausman, J. (1979): “Individual Discount Rates and the Purchase and Uti-
lization of Energy-Using Durables.” The Bell Journal of Economics 10(1):
pp. 197–212.

Havranek, T., D. Herman, & Z. Irsova (2018a): “Does daylight saving
save electricity? a meta-analysis.” The Energy Journal 39(2): pp. 35–61.



Bibliography 91

Havranek, T. & Z. Irsova (2012): “Survey article: Publication bias in the
literature on foreign direct investment spillovers.” The Journal of Develop-
ment Studies 48(10): pp. 1375–1396.

Havranek, T. & Z. Irsova (2017): “Do borders really slash trade? a meta-
analysis.” IMF Economic Review 65: pp. 365–396.

Havranek, T., Z. Irsova, L. Laslopova, & O. Zeynalova (2022): “Pub-
lication and attenuation biases in measuring skill substitution.” Review of
Economics and Statistics pp. 1–37.

Havranek, T., Z. Irsova, & T. Vlach (2018b): “Measuring the income
elasticity of water demand: the importance of publication and endogeneity
biases.” Land Economics 94(2): pp. 259–283.

Havranek, T., Z. Irsova, & O. Zeynalova (2018c): “Tuition fees and uni-
versity enrolment: a meta-regression analysis.” Oxford Bulletin of Economics
and Statistics 80(6): pp. 1145–1184.

Havranek, T. & O. Kokes (2015): “Income elasticity of gasoline demand: A
meta-analysis.” Energy Economics 47: pp. 77–86.

Havránek, T., T. D. Stanley, H. Doucouliagos, P. Bom, J. Geyer-
Klingeberg, I. Iwasaki, W. R. Reed, K. Rost, & R. C. van Aert
(2020): “Reporting guidelines for meta-analysis in economics.” Journal of
Economic Surveys 34(3): pp. 469–475.

Hawkins, R. G. (1975): “The Demand for Electricity: A Cross-Section Study
of New South Wales and the Australian Capital Territory.” Economic Record
51(133): pp. 1–18.

Hawkins, R. G. (1977): “Factor Demands and the Production Function in
Selected Australian Manufacturing Industries.” Australian Economic Papers
16(28): pp. 97–111.

Hawkins, R. G. (1978): “A Vintage Model of the Demand for Energy and Em-
ployment in Australian Manufacturing Industry.” The Review of Economic
Studies 45(3): pp. 479–494.

He, L. & D. Lambert (2004): “Chinese Industrial Energy Demand.” In “Pro-
ceedings of the "24th United States Association for Energy Economics" and



Bibliography 92

the "International Association for Energy Economics North American Con-
ference" held on July 8-10, 2004, Washington D.C.”, .

Henderson, J. S. (1983): “The Economics of Electricity Demand Charges.”
The Energy Journal 4(Special Issue): pp. 127–140.

Henriksson, E., P. Soderholm, & L. Warell (2014): “Industrial Electric-
ity Demand and Energy Efficiency Policy: The Case of the Swedish Mining
Industry.” Energy Efficiency 7(3): pp. 477–491.

Henson, S. E. (1984): “Electricity Demand Estimates Under Increasing-Block
Rates.” Southern Economic Journal 51(1): pp. 147–156.

Herriges, J. A. & K. K. King (1994): “Residential Demand for Electric-
ity Under Inverted Block Rates: Evidence from A Controlled Experiment.”
Journal of Business and Economic Statistics 12(4): pp. 419–430.

Hesse, D. M. & H. Tarkka (1986): “The Demand for Capital, Labor, and
Energy in European Manufacturing Industry Before and After the Oil Price
Shocks.” Scandinavian Journal of Economics 88(3): pp. 529–546.

Hieronymus, W. H. (1976): “Long-Range Forecasting Properties of State-of-
The-Art Models of Demand for Electric Energy.” Final report prepared for the
electric power research institute, Charles River Associates, Inc., Cambridge,
Massachusetts.

Hill, D. H., D. A. Ott, L. D. Taylor, & J. M. Walker (1983): “Incen-
tive Payments in Time-of-Day Electricity Pricing Experiments: The Arizona
Experience.” The Review of Economics and Statistics 65(1): pp. 59–65.

Hirth, L., T. Khanna, & O. Ruhnau (2022): “The (very) short-term price
elasticity of german electricity demand.” .

Hisnanick, J. J. & B. L. Kyer (1995): “Assessing a Disaggregated Energy
Input: Using Confidence Intervals Around Translog Elasticity Estimates.”
Energy Economics 17(2): pp. 125–132.

Hogan, W. W. (1989): “A Dynamic Putty—Semi-Putty Model of Aggregate
Energy Demand.” Energy Economics 11(1): pp. 53–69.

Holland, S. P. & E. T. Mansur (2008): “Is real-time pricing green? the envi-
ronmental impacts of electricity demand variance.” The Review of Economics
and Statistics 90(3): pp. 550–561.



Bibliography 93

Holtedahl, P. & F. L. Joutz (2004): “Residential Electricity Demand in
Taiwan.” Energy Economics 26(2): pp. 201–224.

Hondroyiannis, G. (2004): “Estimating residential demand for electricity in
greece.” Energy economics 26(3): pp. 319–334.

Horáček, P. (2014): “Price elasticity of electricity demand: a meta-analysis.”
.

Horowitz, M. J. (2007): “Changes in Electricity Demand in the United States
from the 1970s to 2003.” The Energy Journal 28(3): pp. 93–119.

Houston, D. A. (1982): “Revenue Effects from Changes in A Declining Block
Pricing Structure.” Land Economics 58(3): pp. 351–336.

Houthakker, H., J. P. K. Verleger, & D. Sheehan (1974): “Dynamic
Demand Analysis for Gasoline and Residential Electricity.” American Jour-
nal of Agricultural Economics 56(2): pp. 412–418.

Houthakker, H. S. (1951): “Some Calculations of Electricity Consumption
in Great Britain.” Journal of the Royal Statistical Society: Series A 114(3):
pp. 351–371.

Houthakker, H. S. (1980): “Residential Electricity Revisited.” The Energy
Journal 1(1): pp. 29–41.

Hsiao, C. & D. C. Mountain (1994): “A Framework for Regional Model-
ing and Impact Analysis: An Analysis of Demand for Electricity by Large
Municipalities in Ontario, Canada.” Journal of Regional Science 34(3): pp.
361–385.

Hsiao, C., D. C. Mountain, M. L. Chan, & K. Y. Tsui (1989): “Modelling
Ontario Regional Electricity System Demand Using A Mixed Fixed and Ran-
dom Coefficients Approach.” Regional Science and Urban Economics 19(4):
pp. 565–587.

Hsueh, L.-M. & J. L. Gerner (1986): “A Model of Home Heating and the
Calculation of Rates of Return on Housing Thermal Improvements Invest-
ment.” In M. Miyata & K. Matsui (editors), “Energy Decisions for the
Future: Challenges and Opportunities,” Proceeding of the "IAEE 8th An-
nual International Conference," Tokyo, Japan, pp. 423–442.



Bibliography 94

Hughes-Cromwick, E. L. (1985): “Nairobi Households and Their Energy
Use: Economic Analysis of Consumption Patterns.” Energy Economics 7(4):
pp. 265–278.

Hung, M.-F. & T.-H. Huang (2015): “Dynamic demand for residential elec-
tricity in taiwan under seasonality and increasing-block pricing.” Energy
Economics 48: pp. 168–177.

Huntington, H. G. & E. Soffer (1982): “Demand for Energy in the
Commercial Sector.” Final Report to Electric Power Research Institute
2330/1982, Data Resources, Inc., Lexington, Massachusetts.

Hyndman, R., Y. Kotowitz, & F. Mathewson (1980): “The Residential
Demand for Electric Energy and Natural Gas in Canada.” In W. Ziemba,
S. L. Schwartz, & E. Koenigsberg (editors), “Energy Policy Modeling:
United States and Canadian Experiences, Specialized Energy Policy Models
I,” pp. 86–102. Martinus Nijhoff Publishing: Leiden.

IEEJ (1986): Petroleum Demand Econometric Study for Japan. The Institute
of Energy Economics of Japan: Tokyo.

Ilmakunnas, P. & H. Torma (1989): “Structural Change in Factor Substitu-
tion in Finnish Manufacturing.” Scandinavian Journal of Economics 91(4):
pp. 705–721.

Inglesi, R. (2010): “Aggregate electricity demand in south africa: Conditional
forecasts to 2030.” Applied energy 87(1): pp. 197–204.

Inglesi-Lotz, R. (2011): “The Evolution of Price Elasticity of Electricity
Demand in South Africa: A Kalman Filter Application.” Energy Policy
39(6): pp. 3690–3696.

Inglesi-Lotz, R. & J. N. Blignaut (2011): “Estimating the Price Elasticity
of Demand for Electricity by Sector in South Africa.” South African Journal
of Economic and Management Sciences 14(4): pp. 449–465.

Ioannidis, J. P., T. D. Stanley, & H. Doucouliagos (2017): “The power
of bias in economics research.”

Iqbal, M. (1986): “Substitution of Labour, Capital, and Energy in the Man-
ufacturing Sector in Pakistan.” Empirical Economics 11(2): pp. 81–95.



Bibliography 95

Irsova, Z., P. R. Bom, T. Havranek, & H. Rachinger (2023a): “Spurious
precision in meta-analysis.” .

Irsova, Z., H. Doucouliagos, T. Havranek, & T. Stanley (2023b):
“Meta-analysis of social science research: A practitioner’s guide.” Journal
of Economic Surveys .

Ishaque, H. (2018): “Revisiting income and price elasticities of electricity
demand in pakistan.” Economic research-Ekonomska istraživanja 31(1): pp.
1137–1151.

Ishiguro, M. & T. Akiyama (1995a): “Energy Demand in Five Major Asian
Developing Countries.” Discussion Paper 277/1995, World Bank, Washing-
ton D.C.

Ishiguro, M. & T. Akiyama (1995b): “Electricity Demand in Asia and the
Effects on Energy Supply and the Investement Environment.” Policy Re-
search Working Paper 1557/1995, World Bank, Washington D.C.

Ito, K. (2014): “Do consumers respond to marginal or average price? evidence
from nonlinear electricity pricing.” American Economic Review 104(2): pp.
537–563.

Ito, K., T. Ida, & M. Tanaka (2018): “Moral suasion and economic incen-
tives: Field experimental evidence from energy demand.” American Eco-
nomic Journal: Economic Policy 10(1): pp. 240–267.

Jaffee, B. L., D. A. H. & R. W. Olshavsky (1982): “Residential Electric-
ity Demand in Rural Areas: the Role of Conservation Actions, Engineering
Factors, and Economic Variables.” Journal of Consumer Affairs 16(1): pp.
137–151.

Jamil, F. & E. Ahmad (2011): “Income and Price Elasticities of Electricity
Demand: Aggregate and Sector-Wise Analyses.” Energy Policy 39(9): p.
55195527.

Javid, M. & A. Qayyum (2014): “Electricity consumption-gdp nexus in pak-
istan: A structural time series analysis.” Energy 64: pp. 811–817.

Jeffreys, H. (1998): The theory of probability. OuP Oxford.



Bibliography 96

Jessoe, K. & D. Rapson (2014): “Knowledge is (less) power: Experimental
evidence from residential energy use.” American Economic Review 104(4):
pp. 1417–1438.

Jin, T. & J. Kim (2022): “The elasticity of residential electricity demand and
the rebound effect in 18 european union countries.” Energy Sources, Part B:
Economics, Planning, and Policy 17(1): p. 2053896.

Jones, C. T. (1995): “A Dynamic Analysis of Interfuel Substitution in U.S.
Industrial Energy Demand.” Journal of Business and Economic Statistics
13(4): pp. 459–465.

Jungeilges, J. & C. A. Dahl (1986): “Implications of Functional Form on
Estimates of Japanese Energy Elasticities.” In M. Miyata & K. Matsui (edi-
tors), “Energy Decisions for the Future: Challenges and Opportunities,” Pro-
ceeding of the "IAEE 8th Annual International Conference," Tokyo, Japan,
pp. 140–158.

Kamerschen, D. & D. Porter (2004): “The Demand for Residential, In-
dustrial and Total Electricity, 1973-1998.” Energy Economics 26(1): pp.
87–100.

Karbuz, S., F. Birol, & N. Guerer (1997): “Electricity Demand in Turkey.”
Pacific and Asian Journal of Energy 7(1): pp. 55–62.

Kaserman, D. L. & J. W. Mayo (1985): “Advertising and the Residential
Demand for Electricity.” The Journal of Business 58(4): pp. 399–408.

Kass, R. E. & A. E. Raftery (1995): “Bayes factors.” Journal of the american
statistical association 90(430): pp. 773–795.

KEEI (1989): “Sectoral Energy Demand in the Republic of Korea: Analysis
and Outlook.” Escap working paper, United Nations Economic and Social
Commission for Asia and the Pacific, Korean Energy Economics Institute,
Seoul, Korea.

Keng, C. W. K. (1991): “Forecasting Energy Demand with Variable Elasticity
Models.” In F. Fesharaki & J. P. Dorian (editors), “Energy Developments
in the 1990s: Challenges Facing Global/Pacific Markets,” Proceedings of
the "IAEE 14th Annual International Conference" held on July 8-10, 1991,
Honolulu, Hawai, pp. 3–28.



Bibliography 97

Khan, M. A. & F. Abbas (2016): “The dynamics of electricity demand in
pakistan: A panel cointegration analysis.” Renewable and Sustainable Energy
Reviews 65: pp. 1159–1178.

Khan, M. A. & A. Qayyum (2009): “The demand for electricity in pakistan.”
OPEC Energy Review 33(1): pp. 70–96.

Khanna, N. Z., J. Guo, & X. Zheng (2016): “Effects of demand side man-
agement on chinese household electricity consumption: Empirical findings
from chinese household survey.” Energy Policy 95: pp. 113–125.

Khazzoom, J. D. (1986): Econometric Model Integrating Conservation Mea-
sures in the Residential Demand for Electricity. JAI Press, Inc.: Greenwich.

Knaut, A. & S. Paulus (2016): “hen are consumers responding to electricity
prices? an hourly pattern of demand elasticity.” .

Kohler, D. F. & B. M. Mitchell (1984): “Response to Residential Time-
Of Use Electricity Rates; How Transferable Are the Findings?” Journal of
Econometrics 26(1-2): pp. 141–177.

Kohler, M. (2014): “Differential electricity pricing and energy efficiency in
south africa.” Energy 64: pp. 524–532.

Kokkelenberg, E. C. & T. Mount (1993): “Oil Shocks and the Demand
for Electricity.” The Energy Journal 14(2): pp. 113–139.

Kolstad, C. D. & J.-K. Lee (1993): “The Specification of Dynamics in Cost
Function and Factor Demand Estimation.” Review of Economics and Statis-
tics 75(4): pp. 721–736.

Krishnamurthy, C. K. B. & B. Kriström (2015): “A cross-country analysis
of residential electricity demand in 11 oecd-countries.” Resource and Energy
Economics 39: pp. 68–88.

Van der Kroon, B., R. Brouwer, & P. J. Van Beukering (2013): “The
energy ladder: Theoretical myth or empirical truth? results from a meta-
analysis.” Renewable and sustainable energy reviews 20: pp. 504–513.

Kroupova, K., T. Havranek, & Z. Irsova (2024): “Student employment
and education: A meta-analysis.” Economics of Education Review 100: p.
102539.



Bibliography 98

Kwon, S., S.-H. Cho, R. K. Roberts, H. J. Kim, K. Park, & T. E. Yu
(2016): “Effects of electricity-price policy on electricity demand and manu-
facturing output.” Energy 102: pp. 324–334.

Labandeira, X., J. M. L. Azcona, & M. R. Mendez (2005): “A Residential
Energy Demand System for Spain.” Working Paper 001/2005, MIT Center
for Energy and Environmental Policy Research, Cambridge, Massachusetts.

Labandeira, X., J. M. Labeaga, & X. López-Otero (2017): “A meta-
analysis on the price elasticity of energy demand.” Energy policy 102: pp.
549–568.

Lanot, G. & M. Vesterberg (2021): “The price elasticity of electricity
demand when marginal incentives are very large.” Energy Economics 104:
p. 105604.

Lareau, T. J. & J. Darmstadter (1982): “Energy and Consumer-
Expenditure Patterns: Modeling Approaches and Projections.” Annual Re-
view of Energy 7(1): pp. 261–292.

Larsson, J. (2004): “Four Essays on Factor Demand Modeling.” Technical
report, Department of Economics, Goteborg University, Sweden.

Larsson, J. (2006): Four Essays on Technology, Productivity and Environ-
ment. Ph.d. thesis, School of Business, Economics and Law, Gothenburg
University, Sweden.

Laumas, P. S. & M. Williams (1981): “Energy and Economic Development.”
Review of World Economics 117(4): pp. 706–716.

Leamer, E. E. (1978): “Regression selection strategies and revealed priors.”
Journal of the American Statistical Association 73(363): pp. 580–587.

Lee, C.-C. & Y.-B. Chiu (2011): “Electricity Demand Elasticities and Temper-
ature: Evidence from Panel Smooth Transition Regression with Instrumental
Variable Approach.” Energy Economics 33(5): pp. 896–902.

Lee, C.-C. & J.-D. Lee (2010): “A panel data analysis of the demand for total
energy and electricity in oecd countries.” The Energy Journal pp. 1–23.

Lehrer, J. (2010): “The truth wears off.” The New Yorker 13(52): p. 229.



Bibliography 99

Liddle, B. & H. Huntington (2021): “How prices, income, and weather
shape household electricity demand in high-income and middle-income coun-
tries.” Energy Economics 95: p. 104995.

Lijesen, M. G. (2007): “The real-time price elasticity of electricity.” Energy
economics 29(2): pp. 249–258.

Lillard, L. A. & J. P. Acton (1981): “Seasonal Electricity Demand and
Pricing Analysis with A Variable Response Model.” The Bell Journal of
Economics 12(1): pp. 71–92.

Lim, K. M., S. Y. Lim, & S. H. Yoo (2014): “Short- and Long-Run Elasticities
of Electricity Demand in the Korean Service Sector.” Energy Policy 67: pp.
517–521.

Lin, B. & X. Ouyang (2014): “Electricity demand and conservation potential
in the chinese nonmetallic mineral products industry.” Energy Policy 68: pp.
243–253.

Lin, B. & J. Zhu (2020): “Chinese electricity demand and electricity consump-
tion efficiency: Do the structural changes matter?” Applied Energy 262: p.
114505.

Liu, G. (2005): “Estimating Energy Demand Elasticities for OECD Countries:
A Dynamic Panel Data Approach.” Discussion Paper 373/2004, Research
Department, Statistics Norway, Kongsvinger, Norway.

Lohani, P. R. (1992): “Electricity Demand in Developing Countries.” Techni-
cal report, Colorado School of Mines, Golden, Colorado.

Lyman, R. A. (1994): “Philippine Electric Demand and Equivalence Scales.”
Southern Economic Journal 60(3): pp. 596–610.

Lynk, E. L. (1989): “The Demand for Energy by U.K. Manufacturing Indus-
try.” The Manchester School 57(1): pp. 1–16.

Ma, C. & D. I. Stern (2016): “Long-run estimates of interfuel and interfactor
elasticities.” Resource and Energy Economics 46: pp. 114–130.

MacKinnon, J. G. & M. D. Webb (2017): “Wild bootstrap inference for
wildly different cluster sizes.” Journal of Applied Econometrics 32(2): pp.
233–254.



Bibliography 100

Macroconsult (2001): “Desarrollo de un Modelo Econometrico de la De-
manda de Energia para el Sistema Interconectado Nacional.” Consultoria
para Comision de Tarifas de Energia 1-2, Macroconsult S.A., Lima, Peru.

Maddala, G. S., F. J. R. Trost, & H. Li (1997): “Estimation of Short
Run and Long Run Elasticities of Energy Demand from Panel Data Using
Shrinkage Estimators.” Journal of Business and Economic Statistics 15(1):
pp. 90–100.

Maddala, G. S., R. Trost, & F. Joutz (1995): “An Integrated Bayesian
Vector Autoregression and Error Correction Model for Forecasting Electricity
Consumption and Prices.” Journal of Forecasting 14(3): pp. 287–310.

Maddala, G. S., R. Trost, F. Joutz, & H. Li (1994): “Estimation of Short
Run and Long Run Elasticities of Energy Demand from Panel Data Using
Shrinkage Estimators.” Technical report, Presented et the "5th Conference
on Panel Data" held on May 5, 1994, Universite Paris, Paris, France.

Maddigan, R. J., W. S. Chern, & C. G. Rizy (1983): “Rural Residential
Demand for Electricity.” Land Economics 59(2): pp. 150–161.

Maddock, R., E. Castano, & F. Vello (1992): “Estimating Electricity De-
mand: the Cost of Linearizing the Budget Constraint.” Review of Economics
and Statistics 74(2): pp. 350–354.

Madlener, R. (2011): “Econometric estimation of energy demand elastici-
ties.” .

Mahmud, F. & S. Chishti (1990): “The Demand for Energy in the Large-
Scale Manufacturing Sector of Pakistan.” Energy Economics 12(4): pp.
251–255.

Mansur, E. T., R. Mendelsohn, & W. Morrison (2005): “A Discrete-
Continuous Choice Model of Climate Change Impacts on Energy.” Technical
report 219/2005, Yale School of Management, School of Forestry and Envi-
ronmental Studies, Yale University, New Haven, Connecticut.

Masike, K. & C. Vermeulen (2022): “The time-varying elasticity of south
african electricity demand.” Energy 238: p. 121984.



Bibliography 101

Matsui, K. (1979): “Income and Price Elasticities of Energy Demand in
Japan.” In “Energy in Japan,” Number 46/1979 in Quarterly Report, pp.
9–24. Japanese Institute of Economic Research.

Matsukawa, I. (1996): “Impacts of permanent time-of-day rates on residential
demand for electricity: Evidence from japance data.” In “(De) Regulation of
Energy: Intersecting Business, Economics and Policy„,” International Asso-
ciation for Energy Economics.

Matsukawa, I. (2018): “Information acquisition and residential electricity
consumption: evidence from a field experiment.” Resource and Energy Eco-
nomics 53: pp. 1–19.

Matsukawa, I., Y. Fujii, & S. Madono (1993): “Price, Environmental Reg-
ulation, and Fuel Demand: Econometric Estimates for Japanese Manufac-
turing Industries.” The Energy Journal 14(4): pp. 37–56.

McFadden, D. L., C. Puig, & D. Kirshner (1977): “Determinants of the
Long-Run Demand for Electricity.” Technical report, Proceedings of the Busi-
ness and Economics Section of the American Statistical Association, pp. 109-
119.

Mchugh, W. M. (1977): “Energy Demand Modeling and Forecasting.” Final
report 02/1977, Mathematical Sciences Northwest, Inc., Bellevue, Washing-
ton.

McRae, S. & R. Meeks (2016): “Price perception and electricity demand
with nonlinear tariffs.” mimeo .

Meher, S. (2020): “Estimating and forecasting residential electricity demand
in odisha.” Journal of Public Affairs 20(3): p. e2065.

Mendoza, Y. & R. Vargas (1987): “Domestic Energy Demand in Oil Abun-
dant Latin American Countries.” In D. O. Wood (editor), “The Changing
World Energy Economy,” Number 19-21 in Papers and Proceedings of the
EAEE 8th Annual North American Conference, pp. 309–313. MIT Press:
Cambridge, Massachusetts.

Micklewright, J. (1989): “Towards A Household Model of UK Domestic
Energy Demand.” Energy Policy 17(3): pp. 264–276.



Bibliography 102

Mikayilov, J. I., F. J. Hasanov, C. A. Bollino, & C. Mahmudlu (2017):
“Modeling of electricity demand for azerbaijan: time-varying coefficient coin-
tegration approach.” Energies 10(11): p. 1918.

Miller, M. & A. Alberini (2016): “Sensitivity of price elasticity of demand to
aggregation, unobserved heterogeneity, price trends, and price endogeneity:
Evidence from us data.” Energy Policy 97: pp. 235–249.

Moghaddam, M. R. (2003): Improving Iran’s Domestic Energy Basket. Ph.d.
thesis, Department of Economics and Business Administration, Tilberg Uni-
versity, Tilberg, Netherlands.

Moghimzadeh, M. & K. O. Kymn (1986): “Cost Shares, Own and Cross-
Price Elasticities in U.S. Manufacturing with Disaggregated Energy Inputs.”
The Energy Journal 7(4): pp. 65–80.

Morovat, H., A. Faridzad, & S. Lowni (2019): “Estimating the elasticity of
electricity demand in iran: A sectoral-province approach.” Iranian Economic
Review 23(4): pp. 861–881.

Mount, T. D. & L. D. Chapman (1979): “Electricity Demand, Sulfur Emis-
sions and Health: An Econometric Analysis of Power Generation in the
United States.” In W. D. Nordhaus (editor), “International Studies of the
Demand for Energy,” North-Holland Publishing Company: Amsterdam.

Mount, T. D., L. D. Chapman, & T. J. Tyrrell (1974): “Electricity De-
mand in the United States: An Econometric Analysis.” In M. S. Macrakis
(editor), “Energy: Demand, Conservation, and Institutional Problems,” Pro-
ceedings from a conference held on February 12–14, 1973, Cambridge, Mas-
sachusetts, pp. 318–329. MIT Press: Cambridge, Massachusetts.

Mountain, D. C. (1982): “Imported Electricity: A Substitute for Inputs Used
by the Regional Electricity Industry.” Journal of Regional Science 22(1): pp.
83–96.

Mountain, D. C. (1989): “A Quadratic Quasi Cobb-Douglas Extension of
the Multi-Input CES Formulation.” European Economic Review 33(1): pp.
143–158.

Mountain, D. C. & C. Hsiao (1989): “A Combined Structural and Flexi-
ble Functional Approach for Modeling Energy Substitution.” Journal of the
American Statistical Association 84(405): pp. 76–87.



Bibliography 103

Mountain, D. C., B. P. Stipdonk, & C. J. Warren (1989): “Technolog-
ical Innovation and A Changing Energy Mix: A Parametric and Flexible
Approach to Modeling Ontario Manufacturing.” The Energy Journal 10(4):
pp. 139–158.

Munley, V. G., L. W. Taylor, & J. P. Formby (1990): “Electricity Demand
in Multi-Family, Renter-Occupied Residences.” Southern Economic Journal
57(1): pp. 178–194.

Murray, M. P., R. Spann, L. Pulley, & E. Beauvais (1978): “The Demand
for Electricity in Virginia.” Review of Economics and Statistics 60(4): pp.
585–600.

Nagata, Y. (2001): “A Forecast of Energy Demand in Japan Considering the
Asymmetric Price Elasticities.” Energy Studies Review 10(1): pp. 17–26.

Nakajima, T. (2010): “The residential demand for electricity in japan: an
examination using empirical panel analysis techniques.” Journal of Asian
Economics 21(4): pp. 412–420.

Nakajima, T. & S. Hamori (2010): “Change in consumer sensitivity to elec-
tricity prices in response to retail deregulation: A panel empirical analysis
of the residential demand for electricity in the united states.” Energy Policy
38(5): pp. 2470–2476.

Nan, G. D. & D. A. Murry (1991): “Energy Demand with the Flexible
Double-Logarithmic Functional Form.” The Energy Journal 13(4): pp. 149–
159.

Narayan, K. P., R. Smyth, & A. Prasad (2007): “Electricity Consumption
in G7 Countries: A Panel Cointegration Analysis of Residential Demand
Elasticities.” Energy Policy 35(9): pp. 4485–4494.

Narayan, P. K. & R. Smyth (2005): “Residential Demand for Electricity in
Australia: An Application of the Bounds Testing Approach to Cointegra-
tion.” Energy Policy 33(4): pp. 457–464.

Nasir, M., M. S. Tariq, & A. Arif (2008): “Residential demand for electricity
in pakistan.” The Pakistan Development Review pp. 457–467.

Oehlert, G. W. (1992): “A note on the delta method.” The American Statis-
tician 46(1): pp. 27–29.



Bibliography 104

Okajima, S. & H. Okajima (2013): “Estimation of Japanese Price Elasticities
of Residential Electricity Demand, 1990-2007.” Energy Economics 40: pp.
433–440.

Oliveira, R. A. (1993): “A Pooled Cross-Section, Time-Series Econometric
Analysis of Residential Electricity Demand in Oregon: Preliminary Find-
ings.” Technical report, Oregon Public Utility Commission, Salem, Oregon.

Olivia, S. & J. Gibson (2008): “Household Energy Demand and Equity and
Efficieny Aspects of Subsidy Reform in Indonesia.” The Energy Journal
29(1): pp. 21–40.

Onakoya, A. B., A. O. Onakoya, O. A. Jimi-Salami, & B. O. Odedairo
(2013): “Energy consumption and nigerian economic growth: An empirical
analysis.” European scientific journal 9(4).

Opatrny, M., T. Havranek, Z. Irsova, & M. Scasny (2023): “Class size
and student achievement: A modern meta-analysis.” .

Otero Prada, D. F. (1984): “Demanda De Energia En El Estudio Nacional
De EnergiaEne De Columbia: Metodologia Y Resultados.” Technical report,
Presented at the "5th Latin American Regional Meeting of the Econometric
Society" on July 24-27, 1984, Bogota, Colombia.

Otsuka, A. (2017): “Determinants of efficiency in residential electricity de-
mand: stochastic frontier analysis on japan.” Energy, Sustainability and
Society 7: pp. 1–10.

Otsuka, A. (2023): “Lessons from regional electricity demand change follow-
ing natural disasters in japan.” Regional Science Policy & Practice .

Otsuka, A. & S. Haruna (2016): “Determinants of residential electricity de-
mand: evidence from japan.” International Journal of Energy Sector Man-
agement 10(4): pp. 546–560.

Outlook, A. E. (2013): “Annual energy outlook 2019 with projections to
2050.” Administ.(EIA), Office Commun .

Parfomak, P. W. & L. B. Lave (1996): “How Many Kilowatts Are in A
Negawatt?: Verifying Ex Post Estimates of Utility Conservation Impacts at
the Regional Level.” The Energy Journal 17(4): pp. 59–87.



Bibliography 105

Parhizgari, A. M. & P. S. Davis (1978): “The Residential Demand for Elec-
tricity: A Variant Parameters Approach.” Applied Economics 10(4): pp.
331–340.

Park, R. E. & J. P. Acton (1984): “Large Business Customer Response
to Time-Of-Day Electricity Rates.” Journal of Econometrics 26(1-2): pp.
229–252.

Parti, M. & C. Parti (1980): “The Total and Appliance-Specific Conditional
Demand for Electricity in the Household Sector.” The Bell Journal of Eco-
nomics 11(1): pp. 309–321.

Paul, A. C., E. C. Myers, & K. L. Palmer (2009): “A partial adjustment
model of us electricity demand by region, season, and sector.” .

Pellini, E. (2021): “Estimating income and price elasticities of residential
electricity demand with autometrics.” Energy Economics 101: p. 105411.

Pesaran, H. M., R. P. Smith, & T. Akiyama (1999): Energy Demand in
Asian Developing Economies. Oxford University Press: Oxford.

Pielow, A., R. Sioshansi, & M. C. Roberts (2012): “Modeling short-run
electricity demand with long-term growth rates and consumer price elasticity
in commercial and industrial sectors.” Energy 46(1): pp. 533–540.

Pindyck, R. S. (1979): “Interfuel Substitution and the Industrial Demand for
Energy: An International Comparison.” Review of Economics and Statistics
61(2): pp. 169–179.

Pindyck, R. S. (1980): “International Comparisons of the Residential Demand
for Energy.” European Economic Review 13(1): pp. 1–24.

Pitt, M. M. (1985): “Estimating Industrial Energy Demand with Firm-Level
Data: The Case of Indonesia.” The Energy Journal 6(2): pp. 25–39.

Polemis, M. L. (2007): “Modeling industrial energy demand in greece using
cointegration techniques.” Energy Policy 35(8): pp. 4039–4050.

Pourazarm, E. & A. Cooray (2013): “Estimating and forecasting residential
electricity demand in iran.” Economic Modelling 35: pp. 546–558.



Bibliography 106

Poyer, D. & M. Williams (1993): “Residential Energy Demand: Additional
Empirical Evidence by Minority Household Type.” Energy Economics 15(2):
pp. 93–100.

Pütz, P. & S. B. Bruns (2021): “The (non-) significance of reporting errors in
economics: Evidence from three top journals.” Journal of Economic Surveys
35(1): pp. 348–373.

Raftery, A. E., D. Madigan, & J. Hoeting (1997): “Bayesian Model Av-
eraging for Linear Regression Models.” Journal of the American Statistical
Association 92: pp. 179–191.

Rahman, S. H. (1982): “Econometric Modeling of Energy-Economy Interac-
tions in Oil Importing Developing Countries: An Empirical Test with Indian
Data.” The Bangladesh Development Studies 10(4): pp. 1–32.

Rai, A. M., L. Reedman, & P. Graham (2014): “Price and income elasticities
of residential electricity demand: the australian evidence.” In “Proceedings
of the Australian Conference of Economists,” .

Ramcharran, H. (1988): “Residential Demand for Energy in Jamaica.” En-
ergy Economics 10(3): pp. 223–228.

Rapson, D. (2014): “Durable goods and long-run electricity demand: Evi-
dence from air conditioner purchase behavior.” Journal of Environmental
Economics and Management 68(1): pp. 141–160.

Reilly, J. M. & S. Shankle (1988): “Auxiliary Heating in the Residential
Sector.” Energy Economics 10(1): pp. 29–41.

Reiss, P. C. & M. W. White (2005): “Household electricity demand, revis-
ited.” The Review of Economic Studies 72(3): pp. 853–883.

Rosenthal, R. (1979): “The file drawer problem and tolerance for null re-
sults.” Psychological bulletin 86(3): p. 638.

Rossi, M. & R. Tansini (1989): “Progreso Tecnico, Elasticidad De Sustitucion
Y Elasticidad Precio De La Demanda De Factores De Producien En La
Industria Del Uruguay, 1976-1986.” Revista de Economia 4(1): pp. 108–137.

Roth, T. P. (1981): “Average and Marginal Price Changes and the Demand for
Electricity: An Econometric Study.” Applied Economics 13(3): pp. 377–388.



Bibliography 107

Rouhani, A., H. R. Mashhadi, M. Feizi et al. (2022): “Estimating the short-
term price elasticity of residential electricity demand in iran.” International
Transactions on Electrical Energy Systems 2022.

Roy, J. (1986): “Pattern of Energy Consumption in Indian Industries and
Their Implications for Development.” In M. Miyata & K. Matsui (editors),
“Energy Decisions for the Future: Challenges and Opportunities,” Proceed-
ing of the "IAEE 8th Annual International Conference," Tokyo, Japan, pp.
1305–1322.

Rusnák, M., T. Havranek, & R. Horváth (2013): “How to solve the price
puzzle? a meta-analysis.” Journal of Money, Credit and Banking 45(1): pp.
37–70.

Ryan, D. L., Y. Wang, & A. Plourde (1996): “Asymmetric Price Responses
of Residential Energy Demand in Ontario.” Canadian Journal of Economics
29(Special Issue): pp. 317–323.

Saddler, H. D. W., J. Bennett, I. Reynolds, & B. Smith (1980): Pub-
lic Choice in Tasmania: Aspects of the Lower Gordon River Hydro-Electric
Development Proposal. Centre for Resource and Environmental Studies, Aus-
tralian National University: Canberra.

Saddler, H. D. W. & W. A. Donnelly (1983): “Electricity in Tasmania:
Pricing, Demand, Compensation.” CRES Working Paper 24/1983, Centre for
Resource and Environmental Studies, Australian National University, Can-
berra, Australia.

Sadorsky, P. (2012): “Information communication technology and electricity
consumption in emerging economies.” Energy Policy 48: pp. 130–136.

Saha, D. & R. N. Bhattacharya (2018): “An analysis of elasticity of elec-
tricity demand in west bengal, india: Some policy lessons learnt.” Energy
Policy 114: pp. 591–597.

Sa’ad, S. (2009): “Electricity demand for south korean residential sector.”
Energy policy 37(12): pp. 5469–5474.

Scherer, R. W., J. J. Meerpohl, N. Pfeifer, C. Schmucker,
G. Schwarzer, & E. von Elm (2018): “Full publication of results initially
presented in abstracts.” Cochrane database of systematic reviews (11).



Bibliography 108

Schneider, I. & C. R. Sunstein (2017): “Behavioral considerations for ef-
fective time-varying electricity prices.” Behavioural Public Policy 1(2): pp.
219–251.

Schulte, I. & P. Heindl (2017): “Price and income elasticities of residential
energy demand in germany.” Energy Policy 102: pp. 512–528.

Schwartz, D., B. Fischhoff, T. Krishnamurti, & F. Sowell (2013):
“The hawthorne effect and energy awareness.” Proceedings of the National
Academy of Sciences 110(38): pp. 15242–15246.

Schwarz, P. (1984): “The Estimated Effects on Industry of Time-of-Day De-
mand and Energy Electricity Prices.” The Journal of Industrial Economics
32(4): pp. 523–539.

Senn, S. J. (2009): “Overstating the evidence–double counting in meta-
analysis and related problems.” BMC Medical Research Methodology 9: pp.
1–7.

Shaffer, B. (2020): “Misunderstanding nonlinear prices: Evidence from a
natural experiment on residential electricity demand.” American Economic
Journal: Economic Policy 12(3): pp. 433–461.

Shi, G., X. Zheng, & F. Song (2012): “Estimating Elasticity for Residential
Electricity Demand in China.” The Scientific World Journal (395629): pp.
1–6.

Shin, E. (1981): “Inter-Energy Substitution in Korea, 1962-1975.” Journal of
Economic Development 6(1): pp. 33–46.

Shin, J.-S. (1985): “Perception of Price When Price Information Is Costly:
Evidence from Residential Electricity Demand.” Review of Economics and
Statistics 67(4): pp. 591–598.

Silk, J. I. & F. L. Joutz (1997): “Short- and Long-Run Elasticities in U.S.
Residential Electricity Demand: A Cointegration Approach.” Energy Eco-
nomics 19(4): pp. 493–513.

Silva, S., I. Soares, & C. Pinho (2018): “Electricity residential demand
elasticities: Urban versus rural areas in portugal.” Energy 144: pp. 627–632.



Bibliography 109

Smith, M. L. (1980a): “Publication bias and meta-analysis.” Evaluation in
education 4: pp. 22–24.

Smith, V. K. (1980b): “Estimating the Price Elasticity of US Electricity De-
mand.” Energy Economics 2(2): pp. 81–85.

Song, F., L. Hooper, & Y. K. Loke (2013): “Publication bias: what is it?
how do we measure it? how do we avoid it?” Open Access Journal of Clinical
Trials pp. 71–81.

Stanley, T. & H. Doucouliagos (2010): “Picture This: A Simple Graph
That Reveals Much Ado About Research.” Journal of Economic Surveys
24(1): pp. 170–191.

Stanley, T. D. (2001): “Wheat from Chaff: Meta-analysis as Quantitative
Literature Review.” Journal of Economic Perspectives 15(3): pp. 131–150.

Stanley, T. D. (2005): “Beyond Publication Bias.” Journal of Economic
Surveys 19(3): pp. 309–345.

Stanley, T. D., C. Doucouliagos, & S. B. Jarrell (2008): “Meta-
regression analysis as the socio-economics of economics research.” The Jour-
nal of Socio-Economics 37(1): pp. 276–292.

Stanley, T. D., H. Doucouliagos, M. Giles, J. H. Heckemeyer, R. J.
Johnston, P. Laroche, J. P. Nelson, M. Paldam, J. Poot, G. Pugh
et al. (2013): “Meta-analysis of economics research reporting guidelines.”
Journal of economic surveys 27(2): pp. 390–394.

Steel, M. F. (2020): “Model averaging and its use in economics.” Journal of
Economic Literature 58(3): pp. 644–719.

Sterling, T. D. (1959): “Publication decisions and their possible effects on
inferences drawn from tests of significance—or vice versa.” Journal of the
American statistical association 54(285): pp. 30–34.

Sterne, J. A., B. J. Becker, & M. Egger (2005): “The funnel plot.” Pub-
lication bias in meta-analysis: Prevention, assessment and adjustments pp.
73–98.

Sterne, J. A. & R. M. Harbord (2004): “Funnel plots in meta-analysis.”
The stata journal 4(2): pp. 127–141.



Bibliography 110

Sterner, T. (1985): Energy Use in Mexican Industry. Ph.d. thesis, School of
Business, Economics and Law, Gothenburg University, Sweden.

Sterner, T. (1989): “Factor Demand and Substitution in a Developing Coun-
try: Energy Use in Mexican Manufacturing.” Scandinavian Journal of Eco-
nomics 91(4): pp. 723–739.

Su, Y.-W. (2018): “Electricity demand in industrial and service sectors in
taiwan.” Energy Efficiency 11(6): pp. 1541–1557.

Sutherland, R. J. (1983a): “Distributed Lags and the Demand for Electric-
ity.” The Energy Journal 4(Special Issue): pp. 141–152.

Sutherland, R. J. (1983b): “Instability of Electricity Demand Functions in
the Post-Oil Embargo Period.” Energy Economics 5(4): pp. 267–272.

S&Z Consultores (1999): “Proyecciones para el Cálculo de las Tarifas en
Barra.” Consultoria para Comision de Tarifas de Energia Informe Final 1,
S&Z Consultores Asociados S.A., Lima, Peru.

Talbi, B., M. B. Jebli, M. F. Bashir, & U. Shahzad (2022): “Does economic
progress and electricity price induce electricity demand: A new appraisal in
context of tunisia.” Journal of Public Affairs 22(1): p. 2379.

Tambe, V. J. & S. Joshi (2014): “Estimating price elasticity of electricity
for the major consumer categories of gujarat state.” In “2014 Australasian
Universities Power Engineering Conference (AUPEC),” pp. 1–6. IEEE.

Tanishita, M. (2019): “Price elasticity of residential electricity demand by
region in japan: Have they changed since the great east japan earthquake?”
Journal of Japan Society of Energy and Resources 40(5): pp. 196–201.

TatlÄ, H. (2017): “Short-and long-term determinants of residential electricity
demand in turkey.” International Journal of Economics, Management and
Accounting 25(3): pp. 443–464.

Taylor, L. D. (1975): “The demand for electricity: a survey.” The Bell Journal
of Economics pp. 74–110.

Taylor, L. D. (1979): “On Modeling the Residential Demand for Electricity
by Time of Day.” Journal of Econometrics 9(1-2): pp. 97–115.



Bibliography 111

Taylor, L. D., G. R. Blattenberger, & J. P. K. Verleger (1977): “The
Residential Demand for Energy.” Final report to Electric Power Research
Institute 1(431), Data Resources, Inc., Lexington, Massachusetts.

Terza, J. (1986): “Determinants of Household Electricity Demand: A Two-
Stage Probit Approach.” Southern Economic Journal 52(4): pp. 1131–1139.

THEC (1983): “Load Forecast: November 1983.” Technical report, Tasmanian
Hydro-Electric Commission, Hobart, Tasmania.

Tiwari, A. K. & A. N. Menegaki (2019): “A time varying approach on the
price elasticity of electricity in india during 1975–2013.” Energy 183: pp.
385–397.

Tiwari, P. (2000): “Architectural, Demographic, and Economic Causes of
Electricity Consumption in Bombay.” Journal of Policy Modeling 22(1):
pp. 81–99.

Torriti, J. (2020): “Temporal aggregation: Time use methodologies applied
to residential electricity demand.” Utilities Policy 64: p. 101039.

Tran, N. D., N. C. Sahu, & P. Kumar (2023): “Estimation of income and
price elasticities of indian electricity demand.” The Electricity Journal 36(5):
p. 107285.

Tserkezos, E. D. (1992): “Forecasting Residential Electricity Consumption
in Greece Using Monthly and Quarterly Data.” Energy Economics 14(3):
pp. 226–232.

Türkekul, B. & G. Unakıtan (2011): “A co-integration analysis of the price
and income elasticities of energy demand in turkish agriculture.” Energy
Policy 39(5): pp. 2416–2423.

Uhr, D. d. A. P., A. L. S. Chagas, & J. G. Z. Uhr (2019): “Estimation of
elasticities for electricity demand in brazilian households and policy implica-
tions.” Energy policy 129: pp. 69–79.

Urga, G. & C. Walters (2003): “Dynamic Translog and Linear Logit Models:
A Factor Demand Analysis of Interfuel Substitution in US Industrial Energy
Demand.” Energy Economics 25(1): pp. 1–21.



Bibliography 112

Uri, N. D. (1977): “The Growth in the Demand for Electrical Energy in the
United States.” The Journal of Energy and Development 3(1): pp. 153–163.

Uri, N. D. (1978): “Forecasting Peak System Load Using A Combined Time
Series and Econometric Model.” Applied Energy 4(3): pp. 219–227.

Uri, N. D. (1979a): “Energy Demand and Interfuel Substitution in India.”
European Economic Review 12(2): pp. 181–190.

Uri, N. D. (1979b): “The Demand for Electrical Energy by Agriculture in the
USA.” Energy Economics 1(1): pp. 14–18.

Uri, N. D. (1979c): “The Impact of Price Expectations on the Demand for
Electrical Energy in the United States.” Applied Energy 5(2): pp. 115–125.

Uri, N. D. (1979d): “Price Expectations and the Demand for Electrical En-
ergy.” Energy Systems and Policy 3(1): pp. 73–83.

Uri, N. D. (1979e): “A Mixed Time-Series/Econometric Approach To Fore-
casting Peak System Load.” Journal of Econometrics 9(1-2): pp. 155–171.

Uri, N. D. (1982): “The Demand for Energy in the Transport Sector in the
United States.” Journal of Transport Economics and Policy 16(1): pp. 65–
84.

Uri, N. D. (1983): “The Demand for Electrical Energy in Korean Industry.”
Applied Energy 14(4): pp. 295–316.

Vashist, D. C. (1984): “Substitution Possibilities and Price Sensitivity of
Energy Demand in Indian Manufacturing.” Indian Economic Journal 32(2):
pp. 84–97.

Veall, M. R. (1983): “Industrial Electricity Demand and the Hopkinson Rate:
An Application of the Extreme Value Distribution.” The Bell Journal of
Economics 14(2): pp. 427–440.

Veall, M. R. (1987): “Bootstrapping the Probability Distribution of Peak
Electricity Demand.” International Economic Review 28(1): pp. 203–212.

Velez, C. E., J. A. Botero, & S. Yanez (1987): “La Demanda Residencial
De Electricidad: Un Caso Colombiano, 1970-1983.” Lecturas de Economia
34: pp. 149–190.



Bibliography 113

Verleger, P. K. J. (1973): “An Econometric Analysis of the Relationships
Between Macro Economic Activity and U.S. Energy Consumption.” In M. F.
Searl (editor), “Energy Modeling: Art, Science, Practice,” pp. 62–97. Re-
sources for the Future, Inc.: Washington D.C.

Vlachou, A. S. & E. J. Samouilidis (1986): “Interfuel Substitution Results
from Several Sectors of the Greek Economy.” Energy Economics 8(1): pp.
39–45.

Volland, B. & I. Tilov (2018): “Price elasticities of electricity demand in
switzerland: Results from a household panel.” Technical report, IRENE
Working Paper.

Wakashiro, Y. (2019): “Estimating price elasticity of demand for electric-
ity: the case of japanese manufacturing industry.” International Journal of
Economic Policy Studies 13: pp. 173–191.

Walfridson, B. (1987): Dynamic models of factor demand: An application
to Swedish Industry.

Walker, J. (1979): “The Residential Demand for Electricity: Further Empir-
ical Evidence.” Resources and Energy 2(4): pp. 391–396.

Wang, H.-F. (1985): “Energy Demand Analysis of Taiwan, R.O.C.” In “En-
ergy and Economy Global Interdependencies: Energy Use and Demand in
Developing Countries,” Proceedings of the "IAEE 7th Annual International
Conference" held on June 3-5, 1985, Bonn, Federal Republic of Germany, pp.
121–140.

Wang, L. C., H. Balarama, A. Islam, & J. S. Kim (2020): “Price elasticities
of residential electricity demand: estimates from household panel data in
bangladesh.” Energy economics 92: p. 104937.

Wang, N. & G. Mogi (2017): “Industrial and residential electricity demand
dynamics in japan: How did price and income elasticities evolve from 1989
to 2014?” Energy Policy 106: pp. 233–243.

Westley, G. D. (1984a): “An Aggregate Time Series Study of Sectoral Elec-
tricity Demand in the Dominican Republic.” Papers on Project Analysis
25/1984, Inter-American Development Bank, Washington, D.C.



Bibliography 114

Westley, G. D. (1984b): “Electricity Demand in A Developing Country.”
Review of Economics and Statistics 66(3): pp. 459–467.

Westley, G. D. (1989a): “Nontraditional Partial Adjustment Models and
Their Use in Estimating the Residential Demand for Electricity in Costa
Rica.” Land Economics 65(3): pp. 254–271.

Westley, G. D. (1989b): “Commercial Electricity Demand in A Central
American Economy.” Applied Economics 21(1): pp. 1–17.

Westley, G. D. (1992): “New Directions in Econometric Modeling of Energy
Demand: With Applications to Latin America.” Technical report, Inter-
American Development Bank, Washington, D.C.

Wijemanne, E. N. (1987): “Energy Pricing Issues in Sri Lanka.” In M. S.
Kumar (editor), “Energy Pricing Policies in Developing Countries: Theory
and Empirical Evidence,” pp. 173–213. International Labour Organization:
New York.

Wilson, J. W. (1974): “Electricity Consumption: Supply Requirement, De-
mand Elasticity, and Rate Design.” American Journal of Agricultural Eco-
nomics 56(2): pp. 419–427.

Wolak, F. A. (2011): “Do residential customers respond to hourly prices?
evidence from a dynamic pricing experiment.” American Economic Review
101(3): pp. 83–87.

Woo, C. K., Y. Liu, J. Zarnikau, A. Shiu, X. Luo, & F. Kahrl (2018):
“Price elasticities of retail energy demands in the united states: New evidence
from a panel of monthly data for 2001–2016.” Applied energy 222: pp. 460–
474.

Yang, Y. L. (1978): “Temporal Stability of Residential Electricity Demand in
the United States.” Southern Economic Journal 45(1): pp. 107–115.

Yang, Z. & J. Liang (2023): “The environmental and economic impacts of
phasing out cross-subsidy in electricity prices: Evidence from china.” Energy
284: p. 129154.

Yin, H., H. Zhou, & K. Zhu (2016): “Long-and short-run elasticities of res-
idential electricity consumption in china: a partial adjustment model with
panel data.” Applied Economics 48(28): pp. 2587–2599.



Bibliography 115

Yoo, S.-H., J. S. Lee, & S.-J. Kwak (2007): “Estimation of Residential Elec-
tricity Demand Function in Seoul by Correction for Sample Selection Bias.”
Energy Policy 35(11): pp. 5702–5707.

Young, T., T. H. Stevens, & C. Willis (1983): “Asymmetry in the Resi-
dential Demand for Electricity.” The Energy Journal 4(Special Issue): pp.
153–162.

Zabaloy, M. F. & V. Viego (2022): “Household electricity demand in latin
america and the caribbean: A meta-analysis of price elasticity.” Utilities
Policy 75: p. 101334.

Zachariadis, T. & N. Pashourtidou (2007): “An Empirical Analysis of
Electricity Consumption in Cyprus.” Energy Economics 29(2): pp. 183–
198.

Zeugner, S. & M. Feldkircher (2009): Benchmark priors revisited: on
adaptive shrinkage and the supermodel effect in Bayesian model averaging.
International Monetary Fund.

Zeugner, S. & M. Feldkircher (2015): “Bayesian model averaging employ-
ing fixed and flexible priors: The bms package for r.” Journal of Statistical
Software 68: pp. 1–37.

Zhang, Z., W. Cai, & X. Feng (2017): “How do urban households in china
respond to increasing block pricing in electricity? evidence from a fuzzy
regression discontinuity approach.” Energy Policy 105: pp. 161–172.

Zhou, K. & S. Yang (2016): “Understanding household energy consumption
behavior: The contribution of energy big data analytics.” Renewable and
Sustainable Energy Reviews 56: pp. 810–819.

Zhou, Y., R. Ma, Y. Su, & L. Wu (2019): “Too big to change: How het-
erogeneous firms respond to time-of-use electricity price.” China Economic
Review 58: p. 101342.

Zhu, X., L. Li, K. Zhou, X. Zhang, & S. Yang (2018): “A meta-analysis on
the price elasticity and income elasticity of residential electricity demand.”
Journal of Cleaner Production 201: pp. 169–177.



Bibliography 116

Zigraiova, D., T. Havranek, Z. Irsova, & J. Novak (2021): “How puzzling
is the forward premium puzzle? a meta-analysis.” European Economic Review
134: p. 103714.

Ziramba, E. (2008): “The Demand for Residential Electricity in South Africa.”
Energy Policy 36(9): pp. 3460–3466.



Appendix A

Data

Table A.1: Full statistics summary (Part 1)

Variable Name Sample Mean CI Weighted Mean WM CI n

All Data -0.395 (-1.342; 0.552) -0.417 (-1.364; 0.530) 4521
Observations (n) ≥ 608 -0.383 (-1.285; 0.519) -0.430 (-1.332; 0.472) 2263
Observations (n) < 608 -0.408 (-1.396; 0.580) -0.409 (-1.397; 0.579) 2258
If appropriate transformation is used -0.385 (-1.310; 0.540) -0.409 (-1.334; 0.516) 4501
t-statistic ≥ -2.68 -0.230 (-1.083; 0.623) -0.235 (-1.088; 0.618) 2263
t-statistic < -2.68 -0.561 (-1.484; 0.362) -0.560 (-1.483; 0.363) 2258
Standard error ≥ 0.086 -0.544 (-1.679; 0.591) -0.588 (-1.723; 0.547) 2261
Standard error < 0.086 -0.247 (-0.825; 0.331) -0.252 (-0.830; 0.326) 2260
Experiment -0.129 (-0.527; 0.269) -0.180 (-0.578; 0.218) 362
P value -0.347 (-1.258; 0.564) -0.369 (-1.280; 0.542) 381

Estimate: Short-run -0.231 (-0.823; 0.361) -0.247 (-0.839; 0.345) 1866
Estimate: Intermediate-run -0.502 (-1.533; 0.529) -0.495 (-1.526; 0.536) 1842
Estimate: Long-run -0.532 (-1.700; 0.636) -0.624 (-1.792; 0.544) 813

Type: Marshall -0.398 (-1.327; 0.531) -0.414 (-1.343; 0.515) 3326
Type: Hicks -0.385 (-1.371; 0.601) -0.420 (-1.406; 0.566) 1176
Type: other -0.548 (-1.932; 0.836) -0.465 (-1.849; 0.919) 20

Start year ≥ 1977 -0.390 (-1.327; 0.547) -0.440 (-1.377; 0.497) 2315
Start year < 1977 -0.401 (-1.357; 0.555) -0.398 (-1.354; 0.558) 2206
End year ≥ 1991 -0.348 (-1.222; 0.526) -0.390 (-1.264; 0.484) 2448
End year < 1991 -0.452 (-1.465; 0.561) -0.445 (-1.458; 0.568) 2073
Mid year ≥ 2000 -0.389 (-1.249; 0.471) -0.410 (-1.270; 0.450) 1166
Mid year < 2000 -0.398 (-1.372; 0.576) -0.418 (-1.392; 0.556) 3355
Number of years≥ 14.5 -0.322 (-1.186; 0.542) -0.354 (-1.218; 0.510) 2262
Number of years < 14.5 -0.470 (-1.472; 0.532) -0.473 (-1.475; 0.529) 2259
Daylight hours ≥ 14.767 -0.386 (-1.333; 0.561) -0.404 (-1.351; 0.543) 3100
Daylight hours < 14.767 -0.415 (-1.358; 0.528) -0.433 (-1.376; 0.510) 1421
Annual temperature ≥ 9.146 -0.355 (-1.235; 0.525) -0.381 (-1.261; 0.499) 2290
Annual temperature < 9.146 -0.437 (-1.441; 0.567) -0.462 (-1.466; 0.542) 2231
Electricity exporter dummy -0.398 (-1.345; 0.549) -0.430 (-1.377; 0.517) 3738
Carbon intensity production ≥ 6.124 -0.394 (-1.327; 0.539) -0.397 (-1.330; 0.536) 3307
Carbon intensity production < 6.124 -0.399 (-1.381; 0.583) -0.464 (-1.446; 0.518) 1214
Population (log) ≥ 19.096 -0.358 (-1.240; 0.524) -0.396 (-1.278; 0.486) 2263
Population (log) < 19.096 -0.433 (-1.435; 0.569) -0.432 (-1.434; 0.570) 2258
Income level (log) ≥ 9.012 -0.350 (-1.236; 0.536) -0.384 (-1.270; 0.502) 2261
Income level (log) < 9.012 -0.441 (-1.437; 0.555) -0.439 (-1.435; 0.557) 2260
Hottest months -0.213 (-0.856; 0.430) -0.247 (-0.890; 0.396) 68
Coolest months -0.427 (-1.632; 0.778) -0.367 (-1.572; 0.838) 78

USA -0.395 (-1.293; 0.503) -0.389 (-1.287; 0.509) 2151
Europe -0.410 (-1.394; 0.574) -0.432 (-1.416; 0.552) 833
Other location -0.391 (-1.373; 0.591) -0.427 (-1.409; 0.555) 1598

Aggregation: Country -0.289 (-1.116; 0.538) -0.307 (-1.134; 0.520) 1224
Aggregation: Region -0.397 (-1.238; 0.444) -0.443 (-1.284; 0.398) 1082
Aggregation: City -0.387 (-1.334; 0.560) -0.393 (-1.340; 0.554) 654
Aggregation: Disaggregated -0.523 (-1.597; 0.551) -0.552 (-1.626; 0.522) 1099

Type: Residential -0.355 (-1.337; 0.627) -0.379 (-1.361; 0.603) 1710
Type: Commercial -0.248 (-0.997; 0.501) -0.309 (-1.058; 0.440) 884
Type: Industrial -0.413 (-1.338; 0.512) -0.417 (-1.342; 0.508) 2893

Demand: Peak -0.256 (-1.030; 0.518) -0.360 (-1.134; 0.414) 269
Demand: Mid-peak -0.190 (-0.615; 0.235) -0.186 (-0.611; 0.239) 108
Demand: Off-peak -0.432 (-1.473; 0.609) -0.713 (-1.754; 0.328) 83

...continued on the next page

Notes: We present the full summary statistics table. Note that some of the variables are grouped but do
not add up to 4521 as the effect of NA column was omitted.
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Table A.2: Full statistics summary (Part 2)

Variable Name Sample Mean CI Weighted Mean WM CI n

Data: Panel -0.389 (-1.318; 0.540) -0.418 (-1.347; 0.511) 2290
Data: Time-series -0.328 (-1.226; 0.570) -0.343 (-1.241; 0.555) 1718
Data: Cross-section -0.652 (-1.667; 0.363) -0.649 (-1.664; 0.366) 513

Granularity: Yearly -0.436 (-1.443; 0.571) -0.455 (-1.462; 0.552) 3291
Granularity: Quarterly -0.316 (-1.208; 0.576) -0.393 (-1.285; 0.499) 126
Granularity: Monthly -0.302 (-1.021; 0.417) -0.289 (-1.008; 0.430) 948

Price: Average -0.409 (-1.315; 0.497) -0.420 (-1.326; 0.486) 2385
Price: Marginal -0.430 (-1.435; 0.575) -0.446 (-1.451; 0.559) 957
Price: Lump sum -0.302 - -0.302 - 1
Price: Shin -0.151 (-0.408; 0.106) -0.137 (-0.394; 0.120) 11
Price: Other -0.340 (-1.347; 0.667) -0.392 (-1.399; 0.615) 453

Tariff: Increasing -0.350 (-1.079; 0.379) -0.359 (-1.088; 0.370) 565
Tariff: Decreasing -0.625 (-1.693; 0.443) -0.474 (-1.542; 0.594) 462
Tariff: Flat -0.495 (-1.491; 0.501) -0.530 (-1.526; 0.466) 119
Tariff: TOU -0.283 (-1.153; 0.587) -0.375 (-1.245; 0.495) 559
Tariff: Undefined -0.420 (-1.398; 0.558) -0.428 (-1.406; 0.550) 1058

Control: Demographics -0.484 (-1.431; 0.463) -0.516 (-1.463; 0.430) 1515
Control: Temperature -0.366 (-1.219; 0.487) -0.381 (-1.234; 0.472) 2203
Control: Stocks -0.479 (-1.375; 0.417) -0.465 (-1.361; 0.431) 821
Control: Fuels -0.427 (-1.399; 0.545) -0.458 (-1.430; 0.514) 1844
Control: Income -0.414 (-1.372; 0.544) -0.429 (-1.387; 0.529) 2543

Form: Reduced -0.407 (-1.340; 0.526) -0.410 (-1.343; 0.523) 1873
Form: Structural -0.370 (-1.293; 0.553) -0.422 (-1.345; 0.501) 2386
Model: Dynamic -0.327 (-1.184; 0.530) -0.377 (-1.234; 0.480) 3100
Model: Static -0.546 (-1.589; 0.497) -0.501 (-1.544; 0.542) 1407

Lag: Dependent -0.299 (-1.114; 0.516) -0.347 (-1.162; 0.468) 1831
Lag: Other -0.279 (-1.059; 0.501) -0.345 (-1.125; 0.435) 442

Model: RE -0.579 (-1.690; 0.532) -0.487 (-1.598; 0.624) 63
Model: FE -0.406 (-1.166; 0.354) -0.379 (-1.139; 0.381) 436
Model: VAR -0.519 (-1.865; 0.827) -0.498 (-1.844; 0.848) 30
Model: ARDL -0.284 (-1.097; 0.529) -0.350 (-1.163; 0.463) 348
Model: ECM -0.369 (-1.463; 0.725) -0.389 (-1.483; 0.705) 217
Model: VECM -0.263 (-1.276; 0.750) -0.362 (-1.375; 0.651) 85
Model: DS -0.445 (-1.464; 0.574) -0.527 (-1.536; 0.492) 497
Model: LE -0.254 (-1.026; 0.518) -0.287 (-1.059; 0.485) 1025
Model: Other model -0.282 (-0.933; 0.369) -0.350 (-1.001; 0.301) 112

Estimation: ML -0.302 (-1.178; 0.574) -0.419 (-1.295; 0.457) 265
Estimation: GMM -0.367 (-1.071; 0.337) -0.300 (-1.004; 0.404) 176
Estimation: Error component -0.398 (-1.443; 0.647) -0.252 (-1.297; 0.793) 111
Estimation: OLS -0.412 (-1.423; 0.599) -0.447 (-1.458; 0.564) 1641
Estimation: GLS -0.412 (-1.151; 0.327) -0.418 (-1.157; 0.321) 220
Estimation: SUR -0.359 (-1.237; 0.519) -0.459 (-1.337; 0.419) 494
Estimation: 2SLS -0.488 (-1.550; 0.574) -0.400 (-1.462; 0.662) 440
Estimation: 3SLS -0.431 (-1.554; 0.692) -0.562 (-1.685; 0.561) 112
Estimation: IV -0.367 (-1.114; 0.380) -0.375 (-1.122; 0.372) 377
Estimation: other -0.253 (-0.770; 0.264) -0.391 (-0.908; 0.126) 100

Endogeneity: Control -0.382 (-1.289; 0.525) -0.371 (-1.278; 0.536) 1306
Endogeneity: No control -0.401 (-1.363; 0.561) -0.431 (-1.393; 0.531) 3215

Function: Linear -0.329 (-1.160; 0.502) -0.433 (-1.264; 0.398) 832
Function: Semi-log -0.513 (-1.503; 0.477) -0.344 (-1.334; 0.646) 231
Function: Double-log -0.406 (-1.362; 0.550) -0.412 (-1.368; 0.544) 2474
Function: Box-Cox -0.453 (-1.235; 0.329) -0.464 (-1.246; 0.318) 16
Function: non available -0.397 (-1.387; 0.593) -0.435 (-1.425; 0.555) 968

Publication Year >= 2000 -0.362 (-1.242; 0.518) -0.406 (-1.286; 0.474) 2161
Publication Year < 2000 -0.427 (-1.423; 0.569) -0.425 (-1.421; 0.571) 2375
Journal Impact Factor >= 0.061 -0.391 (-1.304; 0.522) -0.409 (-1.322; 0.504) 2347
Journal Impact Factor < 0.061 -0.401 (-1.379; 0.577) -0.426 (-1.404; 0.552) 2189
Citations (t) >= 1.128 -0.385 (-1.326; 0.556) -0.383 (-1.324; 0.558) 2286
Citations (t) < 1.128 -0.407 (-1.356; 0.542) -0.444 (-1.393; 0.505) 2250
Number of citations >= 50 -0.368 (-1.270; 0.534) -0.422 (-1.324; 0.480) 1094
Number of citations < 50 -0.404 (-1.360; 0.552) -0.415 (-1.371; 0.541) 3442

Notes: We present the full summary statistics table. Note that some of the variables are grouped but
do not add up to 4521 as the effect of NA column was omitted. Endogeneity control included both
experiments and studies employing estimation method accounting for endogeneity. TOU is time-of-use
tariff.
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Figure A.1: Variability of the estimated effect for all studies (Part 1)

Notes: The figure shows a box plot of the price elasticity of electricity estimates for a given study. The
vertical line denotes the mean value (-0.395).
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Figure A.2: Variability of the estimated effect for all studies (Part 2)

Notes: The figure shows a box plot of the price elasticity of electricity estimates for a given study. The
vertical line denotes the mean value (-0.395).
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Figure A.3: Variability of the estimated effect for all studies (Part 3)

Notes: The figure shows a box plot of the price elasticity of electricity estimates for a given study. The
vertical line denotes the mean value (-0.395).
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Figure A.4: Variability of the estimated effect for all studies (Part 4)

Notes: The figure shows a box plot of the price elasticity of electricity estimates for a given study. The
vertical line denotes the mean value (-0.395).



Appendix X.7

Figure A.5: Variability of the estimated effect for all studies (Part 5)

Notes: The figure shows a box plot of the price elasticity of electricity estimates for a given study. The
vertical line denotes the mean value (-0.395).
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Figure A.6: Variability of the estimated effect for all studies (Part 6)

Notes: The figure shows a box plot of the price elasticity of electricity estimates for a given study. The
vertical line denotes the mean value (-0.395).
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Figure A.7: Variability of the estimated effect for all studies (Part 7)

Notes: The figure shows a box plot of the price elasticity of electricity estimates for a given study. The
vertical line denotes the mean value (-0.395).
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Figure A.8: Variability of the estimated effect for all studies (Part 8)

Notes: The figure shows a box plot of the price elasticity of electricity estimates for a given study. The
vertical line denotes the mean value (-0.395).
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Figure A.9: Variability of the estimated effect by country (Part 1)

Notes: The figure shows a box plot of the price elasticity of electricity estimates segmented by countries.
The vertical line denotes the mean value (-0.395).
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Figure A.10: Variability of the estimated effect by country (Part 2)

Notes: The figure shows a box plot of the price elasticity of electricity estimates segmented by countries.
The vertical line denotes the mean value (-0.395).
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Figure A.11: Density distribution for selected subsamples

Notes: Scaled density plot of the effect for
different electricity demand types.

Notes: Scaled density plot of the effect for
different data types.

Notes: Scaled density plot of the effect for
various model specifications. The model
with spike is the LE model. The model with
spike at the largest elasticity in magnitude
is FE model.

Notes: Scaled density plot of the effect for
various estimation techniques.
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Publication Bias Robustness Checks

Figure A.12: Original funnel plot for intermediate-run elasticity

Notes: The figure displays funnel plot for the intermediate-run subsample including the study by Fisher
& Kaysen (1962), highlighted by black scatter points. The plot should be symmetrical in the absence of
publication bias. Estimates with higher precision form funnel-like pattern. A vertical blue line marks
the average value of these estimates, with a total count of 1781 data points.
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Table A.3: Linear tests results for Marshallian elasticity

OLS FE BE RE SW PW

Short-run
PB −0.715∗∗∗ −0.766∗∗∗ −0.963∗∗∗ −0.773∗∗∗ −0.943∗∗∗ −3.041∗∗∗

PB
SE

(0.105) (0.041) (0.125) (0.039) (0.162) (0.265)

Boot.
CI

[-0.907; -0.484] [-0.992; -0.572] [-1.124; -0.532] [-3.542; -2.475]

EBB −0.161∗∗∗ −0.155∗∗∗ −0.154∗∗∗ −0.166∗∗∗ −0.089∗∗∗ −0.052∗∗∗

EBB
SE

(0.011) (0.008) (0.021) (0.016) (0.018) (0.011)

Boot.
CI

[-0.185; -0.140] [-0.193; -0.143] [-0.140; -0.062] [-0.073; -0.034]

Total observations = 1415

Long-run
PB −0.617∗∗∗ −0.455∗∗∗ −1.285∗∗∗ −0.511∗∗∗ 0.190 −1.367
PB
SE

(0.137) (0.070) (0.197) (0.067) (0.182) (0.933)

Boot.
CI

[-0.906; -0.347] [-0.795; -0.146] [-0.734; 0.392] [-3.145; 0.315]

EBB −0.390∗∗∗ −0.431∗∗∗ −0.290∗∗∗ −0.502∗∗∗ −0.290∗∗∗ −0.262∗∗∗

EBB
SE

(0.030) (0.026) (0.077) (0.063) (0.029) (0.089)

Boot.
CI

[-0.460; -0.334] [-0.609; -0.416] [-0.343; -0.193] [-0.422; -0.089]

Total observations = 517

Notes: This table presents the results of linear tests for publication bias for Marshallian elasticities.
Standard errors are presented in parentheses. SW = Study weighted, PW = Precision weighted, PB =
Publication Bias, EBB = Effect Beyond Bias, SE = Standard Error, Boot. CI = Bootstrapped Confidence
Interval

Table A.4: Linear tests results for Hicksian elasticity

OLS FE BE RE SW PW

Short-run
PB −1.070∗∗∗ −0.781∗∗∗ −1.488∗∗∗ −0.957∗∗∗ −1.099∗∗∗ −2.191∗∗∗

PB SE (0.204) (0.085) (0.131) (0.074) (0.374) (0.392)
Boot. CI [-1.438; -0.695] [-1.522; -0.567] [-1.915; -0.551] [-2.809; -1.320]
EBB −0.085∗∗∗ −0.114∗∗∗ −0.076∗∗∗ −0.125∗∗∗ −0.044∗∗ −0.035∗∗

EBB SE (0.018) (0.013) (0.027) (0.026) (0.021) (0.017)
Boot. CI [-0.123; -0.057] [-0.175; -0.072] [-0.079; 0.001] [-0.075; -0.005]

Total observations = 445

Long-run
PB −1.055∗∗∗ −1.016∗∗∗ −0.345 −0.959∗∗∗ −1.406∗∗∗ −4.163∗∗∗

PB SE (0.148) (0.096) (0.322) (0.094) (0.150) (0.574)
Boot. CI [-1.321; -0.694] [-1.267; -0.681] [-1.713; -1.039] [-5.379; -2.138]
EBB −0.295∗∗∗ −0.303∗∗∗ −0.475∗∗∗ −0.359∗∗∗ −0.053∗∗∗ −0.049
EBB SE (0.033) (0.026) (0.105) (0.077) (0.016) (0.046)
Boot. CI [-0.370; -0.231] [-0.438; -0.255] [-0.088; -0.018] [-0.230; 0.008]

Total observations = 292

Notes: This table presents the results of linear tests for publication bias for Hicksian elasticities. Standard
errors are presented in parentheses. SW = Study weighted, PW = Precision weighted, PB = Publication
Bias, EBB = Effect Beyond Bias, SE = Standard Error, Boot. CI = Bootstrapped Confidence Interval
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Table A.5: Linear tests results by electricity demand

OLS FE BE RE SW PW

Residential demand elasticities
PB −0.854∗∗∗ −0.822∗∗∗ −1.160∗∗∗ −0.844∗∗∗ −0.832∗∗∗ −3.624∗∗∗

PB SE (0.066) (0.031) (0.104) (0.030) (0.096) (0.364)
Boot. CI [-0.979, -0.708] - - [-0.973, -0.704] [-1.012, -0.609] [-4.351, -2.825]
EBB −0.287∗∗∗ −0.293∗∗∗ −0.245∗∗∗ −0.299∗∗∗ −0.269∗∗∗ −0.128∗∗∗

EBB SE (0.011) (0.009) (0.027) (0.020) (0.020) (0.019)
Boot. CI [-0.311, -0.265] - - [-0.325, -0.272] [-0.314, -0.230] [-0.168, -0.091]

Total observations = 2790

Industrial demand elasticities
PB −0.594∗∗∗ −0.564∗∗∗ −0.804∗∗∗ −0.572∗∗∗ −0.302∗∗∗ −1.955∗∗∗

PB SE (0.085) (0.042) (0.132) (0.040) (0.283) (0.776)
Boot. CI [-0.764, -0.424] - - [-0.775, -0.392] [-1.125, 0.080] [-2.951, 0.493]
EBB −0.251∗∗∗ −0.258∗∗∗ −0.238∗∗∗ −0.272∗∗∗ −0.248∗∗∗ −0.077
EBB SE (0.015) (0.014) (0.039) (0.026) (0.036) (0.048)
Boot. CI [-0.285, -0.222] - - [-0.316, -0.233] [-0.305, -0.148] [-0.221, -0.018]

Total observations = 1694

Commercial demand elasticities
PB −0.794∗∗∗ −0.751∗∗∗ −1.010∗∗∗ −0.776∗∗∗ −1.133∗∗∗ −2.400∗∗∗

PB SE (0.141) (0.054) (0.149) (0.051) (0.129) (0.130)
Boot. CI [-1.075, -0.545] - - [-1.033, -0.505] [-1.358, -0.801] [-2.698, -2.139]
EBB −0.145∗∗∗ −0.153∗∗∗ −0.172∗∗∗ −0.200∗∗∗ −0.049∗∗∗ −0.007∗

EBB SE (0.019) (0.016) (0.041) (0.030) (0.013) (0.004)
Boot. CI [-0.184, -0.100] - - [-0.257, -0.144] [-0.081, -0.024] [-0.016, -0.001]

Total observations = 884

Notes: This table presents the results of linear tests for publication bias segmented by electricity demand
type. Standard errors are presented in parentheses. Some studies examined aggregate electricity demand,
which was noted by coding one for all three electricity type demand dummies. Therefore, the sum of
individual types is greater than the total number of observations in the dataset. SW = Study weighted,
PW = Precision weighted, PB = Publication Bias, EBB = Effect Beyond Bias, SE = Standard Error,
Boot. CI = Bootstrapped Confidence Interval
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Table A.6: Non-linear tests for publication bias by elasticity type

Effect beyond bias for Marshallian elasticity

WAAP -0.227*** -0.201*** Selection
(0.007) (0.007) model

Top10 -0.177*** -0.213*** Hierarchical
(0.013) (0.023) Bayes

Stem-based -0.542* -0.096*** Endogenous
method (0.282) (0.005) kink

Publication bias for Marshallian elasticity

Hierarchical -1.275*** -3.062*** Endogenous
Bayes (0.110) (0.295) kink

Number of observations = 3207

Effect beyond bias for Hicksian elasticity

WAAP -0.179*** -0.176*** Selection
(0.013) (0.028) model

Top10 -0.107*** -0.261*** Hierarchical
(0.016) (0.042) Bayes

Stem-based -0.090*** -0.036*** Endogenous
method (0.024) (0.005) kink

Publication bias for Hicksian elasticity

Hierarchical -1.141*** -3.291*** Endogenous
Bayes (0.181) (0.269) kink

Number of observations = 1176

Notes: Results of the three specifications of price elasticities using six non-linear methods. We also include
the publication bias for Hierarchical Bayes and Endogenous kink methods. WAAP = Weighted Average
of the Adequately Powered (n= 1418 for Marshall, 366 for Hicks). Top10 = Top10 Method (n= 317 for
Marshall, 118 for Hicks). Standard errors included in the parentheses. Asterisks denote significance level
***p<0.01, **p<0.05, *p<0.1.
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Table A.7: Non-linear tests for publication bias by electricity demand

Effect beyond bias (Residential demand)

WAAP -0.244*** -0.223*** Selection
(0.008) (0.010) model

Top10 -0.172*** -0.223*** Hierarchical
(0.012) (0.023) Bayes

Stem-based -0.080*** -0.079*** Endogenous
method (0.022) (0.004) kink

Publication bias

Hierarchical -1.367*** -3.900*** Endogenous
Bayes (0.126) (0.249) kink

Number of observations = 2790

Effect beyond bias (Industrial demand)

WAAP -0.132*** -0.164*** Selection
(0.010) (0.010) model

Top10 -0.109*** -0.203*** Hierarchical
(0.016) (0.032) Bayes

Stem-based -0.241** -0.077*** Endogenous
method (0.121) (0.007) kink

Publication bias

Hierarchical -0.960*** -1.944*** Endogenous
Bayes (0.123) (0.437) kink

Number of observations = 1694

Effect beyond bias (Commercial demand)

WAAP -0.054*** -0.087*** Selection
(0.008) (0.007) model

Top10 -0.051*** -0.134*** Hierarchical
(0.014) (0.041) Bayes

Stem-based -0.080*** -0.008*** Endogenous
method (0.005) (0.002) kink

Publication bias

Hierarchical -1.147*** -2.400*** Endogenous
Bayes (0.182) (0.197) kink

Number of observations = 884

Notes: Results of the three specifications of price elasticities using six non-linear methods. We also include
the publication bias for Hierarchical Bayes and Endogenous kink methods. WAAP = Weighted Average
of the Adequately Powered (n= 1223 for RD, 469 for ID, 173 for CD). Top10 = Top10 Method (n= 278
for RD, 170 for ID, 88 for CD). Standard errors included in the parentheses. Asterisks denote significance
level ***p<0.01, **p<0.05, *p<0.1.
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Table A.8: IV Regression results for short-run and long-run periods

Short-run Long-run
Publication Bias −0.786∗∗ −1.44∗∗∗

Standard Error (0.328) (0.382)
Effect Beyond Bias −0.145∗∗∗ −0.193∗

Standard Error (0.039) (0.107)
F-test 18.22

Notes: IV = Instrumental Variable, the instrument is the inverse of the square root of number of
observations. The standard errors presented in the parenthesis are clustered at the study level. Asterisks
denote significance level ***p<0.01, **p<0.05, *p<0.1.

Figure A.13: Distribution of the t-statistic for an unrestricted sample

Notes: The figure depicts the distribution of elasticity t-statistics for all estimates from the winsorized
sample. The vertical lines again denote the mean and critical values, respectively. In the original sample,
the lowest t-statistic was -900 and the highest one was 74.1.
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Model Averaging Robustness Checks

Figure A.14: Model inclusion probabilities from Chapter 5 for various
priors
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Figure A.15: Correlation among selected variables used in model av-
eraging
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Figure A.16: Results of Bayesian model averaging using benchmark
g-prior and random model prior
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Figure A.17: Results of Bayesian model averaging using HQ g-prior
and random model prior
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Figure A.18: Results of Bayesian model averaging using uniform g-
prior and uniform model prior
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Results of the BMA by elasticity types

Table A.9: Model averaging results for Marshallian elasticities (Part
1)

Bayesian model averaging Frequentist model averaging

Response variable: Post. mean Post. SD PIP Coef. SE p-value

Constant -4.888 NA 1.000 -5.277 1.720 0.002
Standard error -0.615 0.027 1.000 -0.607 0.028 0.000

Data Characteristics
Observations (n) 0.000 0.000 0.012 0.000 0.000 0.000
Experiment 0.008 0.031 0.080 0.056 0.043 0.192
P value 0.000 0.004 0.005 -0.08 0.059 0.171

USA 0.018 0.030 0.290 0.015 0.026 0.572
Europe 0.000 0.005 0.009 -0.01 0.026 0.706

Daylight hours 0.011 0.009 0.703 0.018 0.006 0.005
Population (log) 0.009 0.011 0.476 0.015 0.007 0.053

Type of elasticity
Estimate: Short-run 0.046 0.035 0.696 0.058 0.022 0.008
Estimate: Long-run -0.173 0.031 1.000 -0.174 0.025 0.000

Data Aggregation
Country -0.001 0.006 0.021 -0.022 0.023 0.322
Disaggregated -0.001 0.007 0.024 -0.022 0.024 0.353

Time-series 0.105 0.021 1.000 0.123 0.021 0.000
Cross-section -0.162 0.025 1.000 -0.162 0.027 0.000

Granularity: Yearly -0.100 0.019 0.999 -0.057 0.026 0.029

Type of electricity demand
Type: Residential 0.054 0.031 0.821 0.059 0.024 0.016
Type: Industrial -0.008 0.021 0.143 -0.017 0.022 0.439

Type of electricity price
Price: Average -0.093 0.018 1.000 -0.078 0.023 0.001
Price: Marginal 0.000 0.002 0.003 0.017 0.027 0.518

Type of electricity tariff
Tariff: Increasing 0.000 0.003 0.008 0.044 0.033 0.182
Tariff: Decreasing -0.148 0.031 1.000 -0.129 0.032 0.000
Tariff: TOU 0.001 0.008 0.024 0.043 0.032 0.176

....to be continued on the next page
Notes: This table presents the results of the Bayesian model averaging and Frequentist model averaging.
Post. mean = Posterior Mean, Post. SD = Posterior Standard Deviation, PIP = Posterior Inclusion
Probability, Coef. = Coefficient, SE = Standard Error. The variables with PIP > 0.5 are highlighted in
bold.
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Table A.10: Model averaging results for Marshallian elasticities (Part
2)

Bayesian model averaging Frequentist model averaging

Response variable: Post. mean Post. SD PIP Coef. SE p-value

Demand Controls
Demographics -0.077 0.016 1.000 -0.077 0.019 0.000
Temperature 0.003 0.012 0.082 0.027 0.020 0.167
Stocks 0.002 0.010 0.035 0.041 0.027 0.127
Fuels -0.060 0.021 0.962 -0.069 0.018 0.000

Model specification
Form: Reduced -0.001 0.005 0.020 -0.007 0.020 0.706

Model: Static -0.072 0.030 0.916 -0.063 0.025 0.012
Model: RE -0.010 0.041 0.075 -0.139 0.074 0.062
Model: ARDL 0.028 0.051 0.262 0.104 0.049 0.033
Model: LE 0.140 0.027 1.000 0.132 0.029 0.000

Estimation Technique
Estimation: GMM 0.001 0.010 0.018 0.017 0.040 0.675
Estimation: OLS 0.000 0.002 0.007 -0.018 0.019 0.346
Estimation: 2SLS 0.093 0.034 0.948 0.073 0.030 0.016
Estimation: 3SLS -0.148 0.057 0.938 -0.195 0.048 0.000
Estimation: IV -0.052 0.051 0.570 -0.104 0.035 0.003

Function Specification
Function: Linear 0.088 0.021 1.000 0.077 0.023 0.001
Function: Double-log 0.000 0.001 0.003 0.000 0.007 0.000

Publication Characteristics
Year of publication 0.002 0.001 0.836 0.002 0.001 0.015
Impact Factor 0.069 0.022 0.960 0.057 0.021 0.007
Citations (t) 0.040 0.010 1.000 0.037 0.009 0.000

Notes: This table presents the results of the Bayesian model averaging and Frequentist model averaging
for the Marshallian elasticity (n = 3326). Post. mean = Posterior Mean, Post. SD = Posterior Standard
Deviation, PIP = Posterior Inclusion Probability, Coef. = Coefficient, SE = Standard Error. TN citations
= transformed number of citations, LE = Lagged endogenous. The variables with PIP > 0.5 are high-
lighted in bold. Note that we used different dataset for separate estimation (where Hicksian elasticities
are not transformed into Marshallian elasticities), few selected variables are hence labelled differently.
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Figure A.19: Results of Bayesian model averaging using UIP g-prior
and dilution model prior for Marshallian elasticities
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Figure A.20: Model inclusion probabilities for Marshallian elasticities
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Table A.11: Model averaging results for Hicksian elasticities (Part 1)

Bayesian model averaging Frequentist model averaging

Response variable: Post. mean Post. SD PIP Coef. SE p-value

(Intercept) -0.544 NA 1.000 -8.900 5.793 0.124
SE of the estimate -0.898 0.050 1.000 -0.876 0.052 0.000

Data Characteristics
Number of observations 0.000 0.000 0.019 0.000 0.000 0.000
Experiment 0.306 0.101 0.987 0.542 0.141 0.000
P value -0.010 0.033 0.104 -0.116 0.060 0.052

USA 0.001 0.009 0.015 0.051 0.062 0.408
Europe 0.013 0.037 0.138 0.118 0.058 0.042

Daylight hours 0.007 0.011 0.367 0.017 0.010 0.082
Population (log) 0.000 0.002 0.014 -0.010 0.014 0.468

Type of elasticity
Estimate: Short-run 0.195 0.040 0.993 0.166 0.061 0.006
Estimate: Long-run -0.004 0.023 0.045 -0.064 0.067 0.340

Data Aggregation
Aggregation: Country 0.142 0.037 0.997 0.132 0.041 0.001
Aggregation: Disaggregated -0.002 0.016 0.028 -0.029 0.070 0.679

Data: Time-series 0.005 0.020 0.076 0.067 0.050 0.177
Data: Cross-section -0.171 0.093 0.847 -0.194 0.078 0.013

Granularity: Yearly -0.323 0.057 1.000 -0.269 0.069 0.000

Type of electricity demand
Type: Residential 0.253 0.039 1.000 0.269 0.047 0.000
Type: Industrial 0.000 0.004 0.011 0.003 0.022 0.897

Type of electricity price
Price: Average 0.000 0.005 0.013 0.036 0.053 0.495
Price: Marginal -0.209 0.069 0.968 -0.075 0.092 0.414

Type of electricity tariff
Tariff: Increasing 0.006 0.026 0.060 0.040 0.067 0.549
Tariff: Decreasing -0.005 0.027 0.052 -0.076 0.076 0.321
Tariff: TOU -0.001 0.014 0.018 -0.202 0.120 0.091

....to be continued on the next page
Notes: This table presents the results of the Bayesian model averaging and Frequentist model averaging
for the Hicksian elasticity (n = 1176). Post. mean = Posterior Mean, Post. SD = Posterior Standard
Deviation, PIP = Posterior Inclusion Probability, Coef. = Coefficient, SE = Standard Error. TN cita-
tions = transformed number of citations, LE = Lagged endogenous. The variables with PIP > 0.5 are
highlighted in bold.
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Table A.12: Model averaging results for Hicksian elasticities (Part 2)

Bayesian model averaging Frequentist model averaging

Response variable: Post. mean Post. SD PIP Coef. SE p-value

Demand Controls
Demographics -0.204 0.049 1.000 -0.206 0.055 0.000
Temperature -0.004 0.017 0.056 -0.016 0.042 0.697
Stocks -0.003 0.018 0.035 -0.020 0.056 0.722
Fuels -0.002 0.013 0.041 -0.087 0.055 0.113

Model specification
Form: Reduced 0.002 0.014 0.040 0.112 0.069 0.104

Model: Static 0.000 0.006 0.013 -0.027 0.051 0.600
Model: RE -0.002 0.020 0.017 -0.121 0.127 0.341
Model: ARDL 0.000 0.008 0.012 -0.008 0.041 0.839
Model: LE 0.268 0.058 1.000 0.236 0.078 0.003

Estimation Technique
Estimation: GMM 0.000 0.009 0.010 0.025 0.079 0.754
Estimation: OLS 0.000 0.005 0.013 -0.054 0.047 0.254
Estimation: 2SLS -0.002 0.016 0.024 0.051 0.088 0.564
Estimation: IV -0.001 0.010 0.014 -0.067 0.076 0.382

Function Specification
Function: Linear -0.029 0.065 0.200 -0.143 0.081 0.079
Function: Double-log 0.000 0.004 0.009 -0.012 0.040 0.776

Publication Characteristics
Year of publication 0.000 0.001 0.028 0.004 0.003 0.148
Impact Factor 0.003 0.020 0.042 0.162 0.090 0.074
Citations (t) 0.040 0.032 0.689 0.040 0.023 0.083

Notes: This table presents the results of the Bayesian model averaging and Frequentist model averaging
for the Hicksian elasticity (n = 1176). Post. mean = Posterior Mean, Post. SD = Posterior Standard De-
viation, PIP = Posterior Inclusion Probability, Coef. = Coefficient, SE = Standard Error. TN citations =
transformed number of citations, LE = Lagged endogenous. The variables with PIP > 0.5 are highlighted
in bold. Note that we used different dataset for separate estimation (where Hicksian elasticities are not
transformed into Marshallian elasticities), few selected variables are hence labelled differently.
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Figure A.21: Results of Bayesian model averaging using UIP g-prior
and dilution model prior for Hicksian elasticities
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Figure A.22: Model inclusion probabilities for Hicksian elasticities
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Table A.13: Model averaging results for short-run elasticities (Part
1)

Bayesian model averaging Frequentist model averaging

Response variable: Post. mean Post. SD PIP Coef. SE p-value

Constant -6.122 NA 1.000 -10.095 2.128 0.000
SE of the estimate -0.784 0.032 1.000 -0.774 0.033 0.000

Data Characteristics
Observations (n) 0.000 0.000 0.008 0.000 0.000 0.000
Experiment 0.141 0.028 1.000 0.139 0.035 0.000
P value 0.000 0.005 0.016 -0.040 0.032 0.217

USA 0.000 0.002 0.008 0.048 0.030 0.119
Europe -0.089 0.024 0.989 -0.079 0.025 0.001

Type: Marshall -0.043 0.025 0.830 -0.061 0.020 0.002

Daylight hours 0.025 0.005 1.000 0.025 0.005 0.000
Population (log) 0.000 0.001 0.012 -0.008 0.007 0.258
Income level (log) 0.000 0.001 0.011 -0.010 0.008 0.238

Data Aggregation
Aggregation: Country -0.001 0.006 0.042 -0.025 0.017 0.138
Aggregation: Disaggregated 0.000 0.004 0.015 0.017 0.023 0.476

Type: Residential 0.080 0.016 1.000 0.079 0.019 0.000
Type: Industrial 0.000 0.001 0.009 0.006 0.017 0.695

Data: Panel -0.110 0.014 1.000 -0.114 0.017 0.000
Data: Cross-section 0.000 0.005 0.016 -0.018 0.034 0.583

Granularity: Yearly -0.003 0.013 0.093 -0.040 0.022 0.072

Type of electricity price
Price: Average -0.002 0.009 0.081 -0.044 0.019 0.023
Price: Marginal 0.000 0.004 0.015 -0.041 0.026 0.110

Type of electricity tariff
Tariff: Increasing -0.002 0.011 0.054 -0.046 0.028 0.097
Tariff: Decreasing 0.001 0.006 0.016 0.011 0.031 0.714
Tariff: TOU -0.001 0.009 0.035 -0.036 0.029 0.217

Notes:This table presents the results of the Bayesian model averaging and Frequentist model averaging
for the short-run elasticity (n = 1866). Post. mean = Posterior Mean, Post. SD = Posterior Standard
Deviation, PIP = Posterior Inclusion Probability, Coef. = Coefficient, SE = Standard Error. The variables
with PIP > 0.5 are highlighted in bold. Numerical results are based on updated data.
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Table A.14: Model averaging results for short-run elasticities (Part
2)

Bayesian model averaging Frequentist model averaging

Response variable: Post. mean Post. SD PIP Coef. SE p-value

Demand Controls
Control: Demographics -0.085 0.016 1.000 -0.089 0.019 0.000
Control: Temperature 0.000 0.002 0.009 0.006 0.015 0.703
Control: Stocks -0.061 0.026 0.915 -0.071 0.024 0.003
Control: Fuels -0.002 0.008 0.079 -0.020 0.016 0.220

Model specification
Form: Reduced -0.028 0.032 0.484 -0.006 0.025 0.810

Model: Static -0.033 0.038 0.478 -0.039 0.028 0.173
Model: RE 0.000 0.005 0.010 -0.028 0.046 0.546
Model: ARDL 0.001 0.007 0.021 0.037 0.034 0.285
Model: LE 0.130 0.030 1.000 0.137 0.030 0.000

Estimation Technique
Estimation: GMM 0.001 0.008 0.023 0.030 0.036 0.396
Estimation: OLS -0.001 0.007 0.051 -0.029 0.017 0.088
Estimation: 2SLS 0.133 0.023 1.000 0.132 0.026 0.000
Estimation: 3SLS -0.250 0.048 1.000 -0.246 0.052 0.000
Estimation: IV -0.020 0.030 0.360 -0.067 0.027 0.013

Function Specification
Function: Linear 0.000 0.002 0.010 -0.002 0.020 0.904
Function: Double-log 0.000 0.001 0.008 0.000 0.000 0.000

Publication Characteristics
Publication Year 0.003 0.001 0.985 0.005 0.001 0.000
Journal Impact Factor 0.009 0.017 0.241 0.028 0.018 0.123
Citations (t) 0.026 0.007 0.990 0.021 0.008 0.006

Notes: This table presents the results of the Bayesian model averaging and Frequentist model averaging
for the short-run elasticity (n = 1866). Post. mean = Posterior Mean, Post. SD = Posterior Standard
Deviation, PIP = Posterior Inclusion Probability, Coef. = Coefficient, SE = Standard Error. TN cita-
tions = transformed number of citations, LE = Lagged endogenous. The variables with PIP > 0.5 are
highlighted in bold.
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Figure A.23: Results of Bayesian model averaging using UIP g-prior
and dilution model prior for short-run elasticities
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Figure A.24: Model inclusion probabilities for short-run elasticities
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Figure B.25: PRISMA Diagram
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Notes: The diagram denotes the study collection procedure. The number of
assessed papers includes snowballing - studies found after the initial screen-
ing. The final number of studies in the dataset includes both the added
studies (215) and the studies updated from the Dahl dataset (198).
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Table B.17: List of experiments

List of experimental studies included in the Meta-analysis

Allcott (2011) Hill et al. (1983) Munley et al. (1990)
Atkinson (1979b) Ito (2014) Reiss & White (2005)
Byrne et al. (2021) Ito et al. (2018) Shaffer (2020)
Cao et al. (2023) Jessoe & Rapson (2014) Tran et al. (2023)
Davis (2008) Kohler & Mitchell (1984) Wolak (2011)
Deryugina et al. (2020) Lillard & Acton (1981) Zhou et al. (2019)
Herriges & King (1994) Matsukawa (2018)
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