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Introduction
Various Sobolev spaces and inequalities have played important roles in mathe-
matics for decades. Their applications include (but are not limited to) analysis
of partial differential equations, calculus of variations, or harmonic analysis. In
this thesis, we study a certain Sobolev inequality with monomial weights, which
has recently become quite fashionable. We will establish, in a sense, an optimal
version of the inequality.

One of the most standard Sobolev inequalities can be written in the following
way (e.g., [22, Theorem 11.2]). Let m, n ∈ N, 1 ≤ m < n. Let p ∈ [1, n/m).
There is a finite positive constant C such that

∥u∥Lp∗ (Rn) ≤ C∥∇mu∥Lp(Rn) for every u ∈ V m
0 Lp(Rn). (1)

Here p∗ = np/(n − mp), ∇mu is the vector of all mth order weak derivatives of u,
and V m

0 Lp(Rn) is a Sobolev-type space consisting of m times weakly differentiable
functions in Rn whose mth order (weak) gradients belong to the Lebesgue space
Lp(Rn) and that together with their weak derivatives up to order m−1 “vanish at
infinity” (see Definition 1.14 for the precise definition). Although Lebesgue spaces
and Sobolev spaces built upon them play a prominent role, there are situations
when finer scales of function spaces are needed. An example of such a finer scale
is the scale of Lorentz spaces Lp,q(Rn). This scale is indeed finer because, on the
one hand, for p ∈ [1, ∞] we have Lp(Rn) = Lp,p(Rn), and, on the other hand, for
p ∈ (1, ∞) and 1 ≤ q1 < q2 ≤ ∞, we have Lp,q1(Rn) ⊊ Lp,q1(Rn). The interested
reader can find more information on Lorentz spaces in [33, Chapter 8]. Having
Lorentz space at our disposal, the classical inequality (1) can be improved. The
Lebesgue Lp∗ norm on the left-hand side of (1) can be replaced by the Lorentz
Lp∗,p norm ([32]). Since 1 ≤ p < p∗ < ∞, the Lorentz norm is indeed essentially
stronger. An imminent question is, can the inequality be improved any further?
Or is it optimal? It turns out that the Lorentz space Lp∗,p(Rn) is in a sense
optimal, but we first need to agree on what we mean by optimal, and on how
general function spaces we allow.

What not only the Lebesgue and Lorentz norms but also other common func-
tion norms (such as the Orlicz or Lorentz–Zygmund ones) have in common is that
they depend only on the measure of level sets. By that we mean that if u and v
are two measurable functions such that the measures of the sets {x : |u(x)| > λ}
and {x : |v(x)| > λ} are the same for every λ > 0, then their norms are equal.
For example, for the Lebesgue norm, this follows from the well-known layer cake
representation formula ([23, Theorem 1.13]). Such function spaces belong to the
class of so-called rearrangement-invariant function spaces. In this thesis, we will
consider function spaces from the class of rearrangement-invariant function space
because it is not only quite general (and so it contains function spaces appearing
in various delicate situations) but also reasonably pleasant to work with. Roughly
speaking, rearrangement-invariant function spaces are usually suitable for mea-
suring integrability, but they are not useful for measuring regularity or oscillation
of functions. We can now precisely formulate in what sense the Lorentz space
Lp∗,p(Rn) is optimal ([20, 25]). On the one hand, (1) is valid with Lp(Rn) replaced
by Lp∗,p(Rn), and, on the other hand, Lp∗,p(Rn) is the smallest rearrangement-
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-invariant function space that Lp(Rn) can be replaced by (i.e., if Y (Rn) is a re-
arrangement-invariant function space such that (1) is valid with Lp(Rn) replaced
by Y (Rn), then Lp∗,p(Rn) ⊆ Y (Rn)).

In this thesis, we will study the question of optimality in a considerably
more general Sobolev inequality in the setting of rearrangement-invariant func-
tion spaces. Let n ∈ N, n ≥ 2, and A1, . . . , An ∈ [0, ∞). Set D = n+A1+· · ·+An.
Let m ∈ N, 1 ≤ m < D, and let µD be the measure on Rn whose density with
respect to the Lebesgue measure is the monomial weight xA = |x1|A1 · · · |xn|An ,
that is,

dµD(x) = xAdx.

Namely, we will study the Sobolev inequality of the form

∥u∥Y (Rn,µD) ≤ C∥∇mu∥X(Rn,µD) for every u ∈ V m
0 X(Rn, µD), (2)

where X(Rn, µD) and Y (Rn, µD) are rearrangement-invariant function spaces on
Rn endowed with the measure µD and V m

0 X(Rn, µD) is a suitable Sobolev-type
space built upon X(Rn, µD). We will characterize when, for a given X(Rn, µD),
there is a rearrangement-invariant function space Y (Rn, µD) with which (2) is
valid, and we will describe the optimal (i.e., the smallest) such a rearrangement-
-invariant function space Y (Rn, µD). We will also provide concrete examples of
the optimal rearrangement-invariant function spaces in (2) when X(Rn, µD) is a
Lorentz–Karamata space. Lorentz–Karamata spaces form a wide subclass of rear-
rangement-invariant function spaces that contains not only Lebegue and Lorentz
spaces but also Lorentz–Zygmund spaces and some Orlicz spaces. Sobolev-type
inequalities with monomial weights have drawn a lot of attention lately (e.g.,
[3, 6, 7, 19, 21, 37]). The study of weighted Sobolev inequalities with monomial
weights was initially motivated by [5], where the regularity of stable solutions to
certain planar reaction-diffusion problems was studied. Noteworthily, arguments
based on symmetrization can often be successfully used even though the monomial
weight is not radially symmetric (unless A1 = · · · = An = 0). We, too, will exploit
this quite surprising feature.

The question of optimal rearrangement-invariant function spaces for a large
number of Sobolev inequalities in various settings has been intensively studied
for more than two decades (e.g., [1, 8, 10, 11, 12, 13, 14, 16, 20, 25, 26]). Despite
that, our main results appear to be new (with the exception of the trivial case
A1 = · · · = An = 0, which was studied in [25]), and they answer the question
of optimality in an actively developing setting of Sobolev-type inequalities with
monomial weights. To achieve that, we will combine and make use of a lot of
different techniques developed and improved over time together with results from
both classical and contemporary theory of (rearrangement-invariant) function
spaces.

This thesis is structured as follows. In Chapter 1 we will recall some aspects
of the theory of rearrangement-invariant function spaces and Sobolev spaces built
upon rearrangement-invariant function spaces, which will be used in the thesis.
We will also introduce properties of the Lorentz–Karamata spaces that we will ex-
ploit in the thesis. In Chapter 2 we will prove a reduction principle for the Sobolev
inequality (2). The reduction principle represents a method of how to characterize
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the rearrangement-invariant function spaces X(Rn, µD) and Y (Rn, µD) that sat-
isfy (2) by means of inequalities involving just one-dimensional functions. Thus,
it reduces the question of what spaces satisfy (2) from n dimensions to the real
line. In Chapter 3 we will obtain the characterization of the optimal target space
in (2) for a given rearrangement-invariant function space X(Rn, µD), as it was
already mentioned above. We will also describe the optimal space for a Lorentz–
Karamata space.
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1. Preliminaries
In the whole thesis we use the convention 1

∞ = 0 and 0·∞ = 0. When E ⊆ (0, ∞)
is (Lebesgue) measurable, we denote by λ(E) its Lebesgue measure.

Let (R, µ) be a σ-finite nonatomic measure space. By M(R, µ) we will denote
the class of all µ-measurable functions on R whose values lie in R∪{−∞, ∞}. We
will denote the class of all µ-measurable functions on R whose values lie in [0, ∞]
by M+(R, µ). And the class of all functions in M(R, µ) that are finite µ-almost
everywhere in R will be denoted by M0(R, µ).

1.1 Rearrangement-invariant function spaces
Now we introduce rearrangement-invariant Banach function spaces and their ba-
sic poperties. The theory that is presented here follows the first three chapters
of [2].

Definition 1.1 (Banach function norm). Let ρ be a real valued nonnegative map-
ping on M+(R, µ). We say that ρ is a Banach function norm if all the follow-
ing properties are satisfied for all f, g ∈ M+(R, µ), {fk; k ∈ N} ⊆ M+(R, µ),
c ∈ [0, ∞) and A ⊆ R such that A is µ-measurable.

1. the norm axiom: ρ(f) = 0 if and only if f = 0 µ-almost everywhere in R,
ρ(cf) = cρ(f), ρ(f + g) ≤ ρ(f) + ρ(g);

2. the lattice axiom: if g ≤ f µ-almost everywhere in R, then ρ(g) ≤ ρ(f);

3. the Fatou axiom: if fk ↑ f µ-almost everywhere in R, then ρ(fk) ↑ ρ(f);

4. the nontriviality axiom: if µ(A) < ∞, then ρ(χA) < ∞;

5. the local embedding in L1: if µ(A) < ∞, then∫︂
A

f dµ ≤ KAρ(f), (1.1)

where KA ≥ 0 is a real constant which may depend on A but which does not
depend on f .

Definition 1.2 (Banach function space). Let ρ be a Banach function norm.
The collection of all functions f ∈ M(R, µ) such that ρ(|f |) < ∞ is called
a Banach function space. We will denote it by X(ρ), X(R, µ) or just by X,
depending on what we want to stress.

As their name suggests, Banach function spaces are Banach spaces. Text-
book examples of Banach function spaces are the Lebesgue spaces Lp(R, µ) for
p ∈ [1, ∞]. Every Banach function space contains simple functions (i.e., linear
combinations of characteristic functions of µ-measurable sets of finite measure)
and is contained in M0(R, µ).

To every Banach function space, there is associated another Banach function
space, which is related to its dual space, but which is usually more useful in the
theory of Banach function spaces.
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Definition 1.3 (Associate norm, associate space). Let X(ρ) be a Banach function
space. We say that the mapping ρ′ defined on M+(R, µ) by

ρ′(g) = sup
f∈M+(R,µ),ρ(f)≤1

∫︂
R

fg dµ, g ∈ M+(R, µ), (1.2)

is the associate norm of the function norm ρ. We say that the space X(ρ′) is
the associate space to the space X(ρ) and we detone this space by X ′.

For example, when X = Lp(R, µ) for p ∈ [1, ∞], then X ′ = Lp′(R, µ). Here
p′ ∈ [1, ∞] is the dual index defined by 1

p
+ 1

p′ = 1.
The associate norm of a Banach function norm is a Banach function norm. An

important property of Banach function spaces is that, if X is a Banach function
space, then

(X ′)′ = X. (1.3)

For every Banach function norm ρ, the Hölder inequality∫︂
R

|fg| dµ ≤ ρ(f)ρ′(g) (1.4)

holds for every f, g ∈ M(R, µ).

Definition 1.4 (Continuous embedding). Let X, Y be Banach function spaces
over (R, µ). We say that X(R, µ) is continuously embedded into Y (R, µ) if for
every function u ∈ X(R, µ) it holds that u ∈ Y (R, µ) and that ∥u∥Y (R,µ) ≤
C ∥u∥X(R,µ), where C is a constant that does not depend on u. We denote the fact
that X(R, µ) is continuously embedded into Y (R, µ) by X(R, µ) ↪→ Y (R, µ).

In fact, inclusion between Banach function spaces is always continuous in the
sense that

X(R, µ) ↪→ Y (R, µ) if and only if X(R, µ) ⊆ Y (R, µ).

If X(R, µ), Y (R, µ) are Banach function spaces, it holds that

X(R, µ) ↪→ Y (R, µ) if and only if Y ′(R, µ) ↪→ X ′(R, µ). (1.5)

Both embeddings hold with the same constant.

Definition 1.5 (Equimeasurable functions). Let (R, µ) and (S, ν) be σ-finite
nonatomic measure spaces. Let f ∈ M(R, µ), g ∈ M(S, ν). We say that the
functions f, g are equimeasurable if

µ({x ∈ R; |f(x)| > λ}) = ν({x ∈ S; |g(x)| > λ})

for every λ ≥ 0.

In the rest of this thesis, we will be interested in an important subclass of
Banach function spaces whose norms are invariant with respect to certain rear-
rangements.
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Definition 1.6 (Nonincreasing rearrangement). Let f ∈ M(R, µ). The non-
increasing rearrangement of the function f is the function f ∗

µ : (0, ∞) → [0, ∞]
defined by

f ∗
µ(t) = inf

λ>0
(µ({x ∈ R; |f(x)| > λ}) ≤ t) t ∈ (0, ∞). (1.6)

The function f ∗
µ is nonincreasing and right-continuous. The functions f and

f ∗
µ are equimeasurable. If f ∈ M(R, µ), g ∈ M(S, ν) are equimeasurable, then

f ∗
µ(t) = g∗

ν(t), t ∈ (0, ∞). (1.7)

When it is obvious what the measure that the rearrangement is taken with respect
to is, we often omit the subscript.

For every f, g ∈ M(R, µ), fk ∈ M(R, µ), k ∈ N, and α ∈ R, we have the
following facts. Firstly, if |f | ≤ |g| µ-almost everywhere in R, then

f ∗
µ(t) ≤ g∗

µ(t), t ∈ (0, ∞). (1.8)

Secondly,

(αf)∗
µ(t) = |α| f ∗

µ(t), t ∈ (0, ∞). (1.9)

Finally, if |fk| ↑ |f | µ-almost everywhere in R, then

(fk)∗
µ(t) ↑ f ∗

µ(t), t ∈ (0, ∞). (1.10)

Other important properties of the nonincreasing rearrangement are the fol-
lowing. For every f ∈ M(R, µ) and t ∈ (0, ∞), we have

µ({x ∈ R; |f(x)| > f ∗
µ(t)}) ≤ t. (1.11)

Furthermore, if f ∗
µ(t) < ∞ and µ({x ∈ R; |f(x)| > f ∗

µ(t) − ε}) < ∞ for some
ε > 0, then

µ({x ∈ R; |f(x)| ≥ f ∗
µ(t)}) ≥ t. (1.12)

Now, we finally introduce rearrangement-invariant norms and spaces.

Definition 1.7 (Rearrangement-invariant norm and space). Let X(ρ) be a Ba-
nach function space. If it holds that ρ(f) = ρ(g) whenever f ∗

µ = g∗
µ, f, g ∈

M+(R, µ), then we say that the norm ρ is a rearrangement-invariant norm and
that the space X is a rearrangement-invariant space.

It follows from the layer cake representation formula that Lp(R, µ) spaces,
p ∈ [1, ∞], are rearrangement-invariant spaces. When X is a rearrangement-in-
variant space, so is its associate space. Furthermore, if g ∈ M(R, µ) and if ρ is a
rearrangement-invariant norm, we have

ρ′(g) = sup
f∈M+(R,µ),ρ(f)≤1

∫︂
R

f ∗g∗ dµ. (1.13)
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The Hardy–Littlewood inequality is very important in the theory of rearrange-
ment-invariant spaces. It states that

∫︂
R

|fg| dµ ≤
∞∫︂

0

f ∗(t)g∗(t) dt

for every f, g ∈ M(R, µ). In particular, by taking g = χE, we have

∫︂
E

|f | dµ ≤
µ(E)∫︂
0

f ∗(t) dt (1.14)

for each µ-measurable set E ⊆ R.
Another important result in the theory of rearrangement-invariant spaces is

the so-called Hardy–Littlewood–Pólya principle. For every rearrangement-invari-
ant norm ρ, if f, g ∈ M+(R, µ) are such that∫︂ t

0
f ∗(τ) dτ ≤

∫︂ t

0
g∗(τ) dτ

for every t ∈ (0, ∞), then

ρ(f) ≤ ρ(g). (1.15)

We will also need the following fact. For every t ∈ (0, µ(R)) and for every f ∈
M(R, µ), we have∫︂ t

0
f ∗(τ) dτ = sup

(︃{︃∫︂
E

|f | dµ; E ⊆ R, E µ-measurable, µ(E) = t
}︃)︃

. (1.16)

Each rearrangement-invariant space on (R, µ) can be represented as a re-
arrangement-invariant space on (0, µ(R)). More precisely, if X(R, µ) is a re-
arrangement-invariant space, then there exists a rearrangement-invariant space
X(0, µ(R)) such that for every function f ∈ X(R, µ) it holds that

∥f∥X(R,µ) =
⃦⃦⃦
f ∗

µ

⃦⃦⃦
X(0,µ(R))

.

The rearrangement-invariant space X(0, µ(R)) is called the representation space
of X(R, µ). For example, if X(R, µ) = Lp(R, µ), then X(0, µ(R)) = Lp(0, µ(R)).

On the other hand, for every f ∈ M(0, µ(R)), there exists a function u ∈
M(R, µ) such that

f ∗
λ(t) = u∗

µ(t), t ∈ (0, ∞).

Therefore, for every function f ∈ X(0, µ(R)) there exists a function u ∈ X(R, µ)
such that

∥f∥X(0,µ(R)) = ∥u∥X(R,µ) . (1.17)

Closely related to the nonincreasing rearrangement is the maximal nonincreas-
ing rearrangement.
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Definition 1.8 (Maximal nonincreasing operator). The maximal nonincreasing
operator

Pµ : M(R, µ) → M+(0, ∞)

is defined by

Pµ(f)(t) = 1
t

∫︂ t

0
f ∗

µ(τ) dτ, f ∈ M(R, µ), t ∈ (0, ∞). (1.18)

The image of a function f ∈ M(R, µ) under the maximal nonincreasing opera-
tor Pµ is also commonly denoted by f ∗∗

µ , and it is called the maximal nonincreas-
ing function.

Note that if it is clear what the measure that the maximal nonincreasing
operator is taken with respect to is, we often write just f ∗∗ or P for short,
analogously as in the case of the nonincreasing rearrangement.

The maximal nonincreasing function is nonincreasing and we have f ∗ ≤ f ∗∗.
The maximal noncreasing function also have the following four properties that
are similar to the the properties (1.8)–(1.10) of the nonincreasing rearrangement.
For every f, g ∈ M(R, µ), fk ∈ M(R, µ), k ∈ N, and α ∈ R, the following facts
hold. Firstly, if |f | ≤ |g| µ-almost everywhere in R, then

f ∗∗
µ (t) ≤ g∗∗

µ (t), t ∈ (0, ∞). (1.19)

Secondly,

(αf)∗∗
µ (t) = |α| f ∗∗

µ (t), t ∈ (0, ∞), (1.20)

Finally, if |fk| ↑ |f | µ-almost everywhere in R, then

(fk)∗∗
µ (t) ↑ f ∗∗

µ (t), t ∈ (0, ∞). (1.21)

Another important property of the maximal nonincreasing function is the subad-
ditivity. It means that for every f, g ∈ M(R, µ) we have

(f + g)∗∗
µ (t) ≤ f ∗∗

µ (t) + g∗∗
µ (t), t ∈ (0, ∞). (1.22)

Note that the nonincreasing rearrangement function is not subadditive.
If X(0, µ(R)) is a rearrangement-invariant space and h ∈ M+(0, µ(R)) is

a nonincreasing function, we know thanks to (1.13) that

∥h∥X′(0,µ(R)) = sup
g∈M+(0,µ(R)),∥g∥X(0,µ(R))≤1

∫︂ µ(R)

0
h(t)g∗(t) dt.

In general, when h ∈ M+(0, µ(R)) is not necessarily nonincreasing, we only have

∥h∥X′(0,µ(R)) ≥ sup
g∈M+(0,µ(R)),∥g∥X(0,µ(R))≤1

∫︂ µ(R)

0
h(t)g∗(t) dt (1.23)

owing to (1.2). However, it follows from [14, Theorem 9.5] and [30, Theorem 3.10]
that

∥tαf ∗∗(t)∥X′(0,µ(R)) ≤ 4 sup
g∈M+(0,µ(R)),∥g∥X(0,µ(R))≤1

∫︂ µ(R)

0
tαf ∗∗(t)g∗(t) dt (1.24)
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for every α ∈ [0, 1] and f ∈ M(R, µ). Inequalities (1.23) and (1.24) mean that
the norm of tαf ∗∗(t) can be approached, up to a multiplicative constant, by
nonincreasing functions in this case even though the function tαf ∗∗(t) does not
have to be nonincreasing.

We conclude this subsection by introducing the dilation operator.

Definition 1.9 (Dilation operator). Let α ∈ (0, ∞). The dilation operator

Dα : M+(0, ∞) → M+(0, ∞)

is the operator defined by

(Dαf)(t) = f(αt), f ∈ M+(0, ∞), t ∈ (0, ∞).

The dilation operator is bounded on every rearrangement-invariant space over
(0, ∞). More precisely, there exists a constant 0 < C ≤ max{1, 1

α
} such that

∥Dαf∥X(0,∞) ≤ C ∥f∥X(0,∞) (1.25)

for every f ∈ M+(0, ∞), every α ∈ (0, ∞) and every rearrangement-invariant
space X(0, ∞).

1.2 Lorentz–Karamata spaces
Now we introduce the theory of Lorentz–Karamata spaces. For proofs and more
information see [31]. Lorentz–Karamata spaces contain a lot of classical function
spaces, such as the Lebesgue spaces, Lorentz spaces or Lorentz-Zygmund spaces.
In this subsection, we assume that µ(R) = ∞.

Definition 1.10 (Equivalent functions). Let f, g : (0, ∞) → (0, ∞) be functions.
We say that the function f is equivalent to the function g if there exist con-
stants C1 > 0 and C2 > 0 such that

C2g(t) ≤ f(t) ≤ C1g(t)

for every t ∈ (0, ∞). We denote equivalent functions by

f ≈ g.

Definition 1.11 (Slowly varying function). Let b : (0, ∞) → (0, ∞) be a contin-
uous function. We say that b is slowly varying if for every ε > 0 there exists a
nondecreasing function φε and a nonincreasing function φ−ε such that tεb(t) is
equivalent to φε(t) on (0, ∞) and that t−εb(t) is equivalent to φ−ε on (0, ∞).

A positive continuous function on (0, ∞) that is equivalent to a positive con-
stant function is a trivial example of a slowly varying function. Functions of
logarithmic type constitute less trivial and very important examples of slowly
varying functions. For k ∈ N, the function ℓk : (0, ∞) → (0, ∞) defined as

ℓk(t) =

⎧⎨⎩1 + | log t| if k = 1,

1 + log ℓk−1(t) if k > 1,
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t ∈ (0, ∞), is slowly varying. More generally, the function ℓAk : (0, ∞) → (0, ∞)
defined as

ℓAk (t) =

⎧⎨⎩ℓα0
k (t) if t ∈ (0, 1),

ℓα∞
k (t) if t ∈ [1, ∞),

where A = (α0, α∞) ∈ R2, is slowly varying.
We now list some important properties of slowly varying functions. If b1 and

b2 are slowly varying functions, then so are b1 + b2 and b1 · b2. If b is a slowly
varying function, then for every r ∈ R the function br is also slowly varying. If b
is a slowly varying function and α ∈ (0, ∞), then

b(t) ≈ b(αt) (1.26)

on (0, ∞). Furthermore, for every slowly varying function b and for every α ∈
(0, ∞) we have ∫︂ t

0
τα−1b(τ) dτ ≈ tαb(t) (1.27)

on (0, ∞), ∫︂ ∞

t
τ−α−1b(τ) dτ ≈ t−αb(t) (1.28)

on (0, ∞),

sup
τ∈(0,t)

ταb(τ) ≈ tαb(t) (1.29)

on (0, ∞) and

sup
τ∈(t,∞)

τ−αb(τ) ≈ t−αb(t) (1.30)

on (0, ∞).
We now define Lorentz–Karamata spaces.

Definition 1.12 (Lorentz–Karamata space). Let b be a slowly varying function.
Let p, q ∈ [1, ∞]. We define the Lorentz–Karamata functionals by

∥f∥p,q,b =
⃦⃦⃦
t

1
p

− 1
q b(t)f ∗

µ(t)
⃦⃦⃦

Lq(0,∞)

and by

∥f∥(p,q,b) =
⃦⃦⃦
t

1
p

− 1
q b(t)f ∗∗

µ (t)
⃦⃦⃦

Lq(0,∞)

for every f ∈ M(R, µ). The Lorentz–Karamata spaces are defined as

Lp,q,b(R, µ) =
{︂
f ∈ M(R, µ); ∥f∥p,q,b < ∞

}︂
and as

L(p,q,b)(R, µ) =
{︂
f ∈ M(R, µ); ∥f∥(p,q,b) < ∞

}︂
.
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If we take p = q and b ≡ 1, we obtain the Lebesgue spaces. More generally,
we obtain the Lorentz spaces Lp,q(R, µ) and L(p,q)(R, µ) by taking b ≡ 1. Fur-
thermore, Lorentz–Karamata spaces also include the Lorentz–Zygmund spaces,
which were thoroughly studied in [29]. We obtain them by taking slowly varying
functions of logarithmic type as above.

Even though we refer to Lorentz–Karamata spaces as spaces, they are not
always rearrangement-invariant spaces.

The space L(p,q,b)(R, µ) is a rearrangement-invariant Banach function space if
and only if q ∈ [1, ∞] and one of the following conditions holds:

1. p ∈ (1, ∞),

2. p = 1 and
⃦⃦⃦
t− 1

q b(t)χ(1,∞)(t)
⃦⃦⃦

Lq(0,∞)
< ∞,

3. p = ∞ and
⃦⃦⃦
t− 1

q b(t)χ(0,1)(t)
⃦⃦⃦

Lq(0,∞)
< ∞.

The Lorentz–Karamata functional ∥·∥p,q,b is equivalent to a rearrangement-in-
variant Banach function norm if and only if q ∈ [1, ∞] and one of the following
conditions is satisfied:

1. p ∈ (1, ∞),

2. p = q = 1 and b is equivalent to a nonincreasing function on (0, ∞),

3. p = ∞ and
⃦⃦⃦
t− 1

q b(t)χ(0,1)(t)
⃦⃦⃦

Lq(0,∞)
< ∞.

By the equivalence, we mean that there are a rearrangement-invariant function
norm ρ and constants C1 > 0 and C2 > 0 such that

C1ρ(f) ≤ ∥f∥p,q,b ≤ C2ρ(f) for every f ∈ M+(R, µ). (1.31)

Since we will not be interested in exact values of constants, we treat Lp,q,b(R, µ) as
a rearrangement-invariant space whenever q ∈ [1, ∞] and one of these conditions
is satisfied.

The spaces Lp,q,b(R, µ) and L(p,q,b)(R, µ) are closely related to each other. We
always have

∥f∥p,q,b ≤ ∥f∥(p,q,b) for every f ∈ M+(R, µ).
If p > 1, then there is a constant C > 0 such that

∥f∥(p,q,b) ≤ C∥f∥p,q,b for every f ∈ M+(R, µ).

In other words, if p > 1, then

∥·∥p,q,b ≈ ∥·∥(p,q,b) . (1.32)

Moreover, when either p ∈ (1, ∞) or p = ∞ and
⃦⃦⃦
t− 1

q b(t)χ(0,1)(t)
⃦⃦⃦

Lq(0,∞)
< ∞, we

can take ρ(·) = ∥ · ∥(p,q,b) in (1.31).
We end this subsection by describing the associate space of Lp,q,b(R, µ). Recall

that for every p ∈ [1, ∞], the dual index p′ ∈ [1, ∞] is defined by 1
p

+ 1
p′ = 1. It

holds that (︂
Lp,q,b(R, µ)

)︂′
= Lp′,q′,b−1(R, µ) (1.33)

if one of the following conditions is satisfied:

12



1. p ∈ (1, ∞) and q ∈ [1, ∞],

2. p = q = 1 and b is equivalent to a nonincreasing function on (0, ∞).

By
(︂
Lp,q,b(R, µ)

)︂′
= Lp′,q′,b−1(R, µ), we mean that both embeddings

(︂
Lp,q,b(R, µ)

)︂′
↪→ Lp′,q′,b−1(R, µ) and Lp′,q′,b−1(R, µ) ↪→

(︂
Lp,q,b(R, µ)

)︂′

are true. To avoid confusion, we stress that b−1 is the function 1/b, not the inverse
function of b. The case p = ∞ is more complicated, but we will not need it.

1.3 Sobolev spaces built on rearrangement-in-
variant spaces

In this subsection, we define suitable weighted Sobolev spaces built on rearrange-
ment-invariant spaces. We start with some notation and conventions used in the
rest of this thesis.

Conventions. Throughout the rest of this thesis, we assume that n ∈ N, n ≥
2, is the dimension of Rn. We also assume that A1, . . . , An ∈ [0, ∞) are fixed
nonnegative numbers. We set

D = n + A1 + · · · + An.

Finally, we assume that m ∈ N is such that

1 ≤ m < n.

Definition 1.13 (Monomial weight and weighted measure µD). For every x ∈
Rn, we set

xA = |x1|A1 · · · |xn|An .

We define the weighted measure µD on Rn as

µD(E) =
∫︂
E

xA dx

for every Lebesgue measurable set E ⊆ Rn.

Note that the measure µD is absolutely continuous with respect to the n-
dimensional Lebesgue measure λn, i.e.,

λn(E) = 0 ⇒ µD(E) = 0 (1.34)

for every Lebesgue measurable set E ⊆ Rn.
We now defined the Sobolev spaces that we will work with.

Definition 1.14 (Sobolev spaces V kX(Rn, µD) and V k
0 X(Rn, µD)). Let k ∈ N

and let u be a k-times weakly differentiable function in Rn (i.e., it has all weak
derivatives up to the k-th order). We denote by ∇lu, l ∈ {1, . . . , k}, the vector of
all l-th order weak derivatives of u. We also set ∇0u = u.
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Let X(Rn, µD) be a rearrangement-invariant space. We say that u belongs to
the space V kX(Rn, µD) if ⃓⃓⃓

∇ku
⃓⃓⃓
∈ X(Rn, µD).

We say that u belongs to the space V k
0 X(Rn, µD) if u ∈ V kX(Rn, µD) and for ev-

ery l ∈ {0, 1, . . . , k − 1} and for every λ > 0 it holds that

µD

(︂{︂
x ∈ Rn;

⃓⃓⃓
∇lu(x)

⃓⃓⃓
> λ

}︂)︂
< ∞.

For short, we will write ∥∇ku∥X(Rn,µD) instead of ∥ |∇ku| ∥X(Rn,µD).

If u ∈ V 1
0 X(Rn, µD), then we have

u∗
µ(t) < ∞ (1.35)

for every t ∈ (0, ∞) and, furthermore

lim
t→∞

u∗
µ(t) = 0. (1.36)

We will also encounter Sobolev space W 1,1(Rn, µD), which is a weighted coun-
terpart of the classical Sobolev space W 1,1(Rn).

Definition 1.15 (Sobolev space W 1,1(Rn, µD)). We say that a function u belongs
to the space W 1,1(Rn, µD) if it is weakly differentiable in Rn, u ∈ L1(Rn, µD) and
|∇u| ∈ L1(Rn, µD).

We will need to use an isoperimetric inequality for the weighted measure µD.

Convention. Let x ∈ Rn and r ∈ (0, ∞). We denote

Br(x) = {y ∈ Rn; |x − y| ≤ r}.

Definition 1.16 (Points of density and essential boundary). Let t ∈ [0, 1] and
let E ⊆ Rn be a Lebesgue measurable set. We say that E has density t in a point
x ∈ Rn if

lim
r↓0

λn(E ∩ Br(x))
λn(Br(x)) = t.

We denote the set containing all points where E has density t by Et. The essential
boundary of E is defined as

Rn \
(︂
E0 ∪ E1

)︂
.

We denote the essential boundary of E by ∂∗E.

We have ∂∗E ⊆ ∂E. Furthermore, the sets Et are Borel sets for every t ∈ [0, 1].
So ∂∗E is a Borel set.

The isoperimetric inequality that we will need follows from [4, Theorem 1.3]
(see also [3, Theorem 1.4], cf. [15, Theorem 1.1]).

Theorem 1.17 (Isoperimetric inequality). For each Borel set E ⊆ Rn that sat-
isfies µD(E) < ∞ it holds that

PµD
(E) =

∫︂
∂∗E

xA dHn−1(x) ≥ CisoµD(E)D−1
D ,

where Ciso > 0 is a constant that depends only on D.
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2. Reduction principle
The goal of this chapter is to prove a suitable reduction principle. First of all
we derive a variant of the Pólya–Szegő inequality. Our proof is based on the proofs
of theorems [9, Lemma 4.1], [10, Lemma 3.3] and [36, Lemma 1.E].

Theorem 2.1 (Pólya–Szegő inequality). Let X be a rearrangement-invariant
space over (Rn, µD) and u ∈ V 1

0 X(Rn, µD). Then u∗
µD

is a locally absolutely
continuous function on the interval (0, ∞), and it holds that

Ciso

⃦⃦⃦⃦
⃦tD−1

D
du∗

µD

dt
(t)
⃦⃦⃦⃦
⃦

X(0,∞)
≤ ∥∇u∥X(Rn,µD) , (2.1)

where Ciso is the constant from the isoperimetric inequality (Theorem 1.17).

Proof. Firstly, we prove the theorem for nonnegative u. We start with the proof
of the local absolute continuity of the function u∗

µD
. Let {(am, bm)}m∈M be a

countable system of pairwise disjoint nonempty bounded intervals. For each m ∈
M define the function fm : R → R in the following way:

fm(y) =

⎧⎪⎨⎪⎩
0 if y ≤ u∗

µD
(bm),

y − u∗
µD

(bm) if u∗
µD

(bm) < y < u∗
µD

(am),
u∗

µD
(am) − u∗

µD
(bm) if u∗

µD
(am) ≤ y.

Note that for every m ∈ M , the function fm is Lipschitz continuous and nonneg-
ative. For each m ∈ M we now set vm = fm ◦ u. Choose an arbitrary m ∈ M .
The function vm is well-defined since the function u∗

µD
is finite everywhere in R

owing to (1.35). The function vm is also µD-measurable since u is µD-measurable
and fm is continuous. Now we prove that vm ∈ W 1,1(Rn, µD). We have

vm ≤ u∗
µD

(am) − u∗
µD

(bm) < ∞

µD-almost everywhere in Rn. For µD-almost every x in the set

{x ∈ Rn; u(x) ≤ u∗
µD

(bm)},

it holds that vm(x) = 0. It also holds that

µD({x ∈ Rn; u(x) > u∗
µD

(bm)}) < ∞ (2.2)

since u ∈ V 1
0 X(Rn, µD). So, the function vm is bounded, and it can be nonzero

in a set of finite µD-measure only. We obtain vm ∈ L1(Rn, µD). We know that
the function fm is Lipschitz continuous and that u is weakly differentiable in Rn.
So, we can use the chain rule for Sobolev functions (see [38, Theorem 2.1.11]).
We obtain vm is weakly differentiable in Rn and

∇vm = ∇uχ{u∗
µD

(bm)<u<u∗
µD

(am)}

µD-almost everywhere (see (1.34)) in Rn. From this equality we get |∇vm| = 0
µD-almost everywhere in the set

{x ∈ Rn; u(x) ≤ u∗
µD

(bm)}.
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We know that the function ∇u ∈ X(Rn, µD). So, by virtue of (1.1) it follows that
∇u ∈ L1(E, µD) for every µD-measurable set E ⊆ Rn, µD(E) < ∞. We can now
again use (2.2) to obtain ∇vm ∈ L1(Rn, µD). To conclude, we have just proved
that for all m ∈ M it holds that vm ∈ W 1,1(Rn, µD).

Now we can use the coarea formula (see [35], [24]) for the functions vm, m ∈ M .
We obtain∫︂⋃︁

m∈M
{u∗

µD
(bm)<u<u∗

µD
(am)}

|∇u(x)| dµD(x) =
∑︂

m∈M

∫︂
Rn

|∇vm(x)| dµD(x)

=
∑︂

m∈M

∫︂ ∞

−∞
PµD

({x ∈ Rn; vm(x) > t}) dt

=
∑︂

m∈M

∫︂ u∗
µD

(am)−u∗
µD

(bm)

0
PµD

({x ∈ Rn; vm(x) > t}) dt

≥ Ciso

∑︂
m∈M

∫︂ u∗
µD

(am)−u∗
µD

(bm)

0
µD({x ∈ Rn; vm(x) > t})

D−1
D dt

= Ciso

∑︂
m∈M

∫︂ u∗
µD

(am)

u∗
µD

(bm)
µD({x ∈ Rn; u(x) > t})D−1

D dt.

(2.3)

The first equality holds because the sets {u∗
µD

(bm) < u < u∗
µD

(am)}, m ∈ M, are
pairwise disjoint. In the second equality we used the coarea formula. Now we
verify that the third equality holds. If t < 0, then

{x ∈ Rn; vm(x) > t} = Rn,

and it is true that PµD
(Rn) = 0 since ∂Rn = ∅. If t > u∗

µD
(am) − u∗

µD
(bm), then

{x ∈ Rn; vm(x) > t} = ∅.

So, the third equality is correct. The first inequality holds by virtue of the isoperi-
metric inequality (Theorem 1.17) since

µD({x ∈ Rn; vm(x) > t}) < ∞

for every t ∈ (0, u∗
µD

(am)−u∗
µD

(bm)). The fourth equality is true owing to the def-
inition of the function vm and a change of variables t ↦→ t + u∗

µD
(bm).

Now we derive an upper estimate of∫︂⋃︁
m∈M

{u∗
µD

(bm)<u<u∗
µD

(am)}
|∇u(x)| dµD(x).

We obtain∫︂⋃︁
m∈M

{u∗
µD

(bm)<u<u∗
µD

(am)}
|∇u(x)| dµD(x)

≤
∫︂ µD(⋃︁m∈M

{u∗
µD

(bm)<u<u∗
µD

(am)})
0

|∇u|∗µD
(t) dt

=
∫︂ ∑︁

m∈M

µD({u∗
µD

(bm)<u<u∗
µD

(am)})

0
|∇u|∗µD

(t) dt ≤
∫︂ ∑︁

m∈M

(bm−am)

0
|∇u|∗µD

(t) dt.

(2.4)
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The first inequality holds by virtue of the Hardy–Littlewood inequality (1.14).
The last inequality we can verify in the following way. We have

µD({u∗
µD

(bm) < u < µ∗
µD

(am)}) = µD({u∗
µD

(bm) < u}) − µD({u∗
µD

(am) ≤ u})
≤ bm − am,

where we used (1.11) and (1.12) in the inequality.
In this part of the proof, we will assume that all the intervals (am, bm), m ∈ M ,

are contained in an interval [a, b] ⊆ (0, ∞). We prove that the function u∗
µD

is
absolutely continuous on the interval [a, b]. We can assume that u∗

µD
(a) > 0.

Otherwise u∗
µD

is equal to 0 on the whole interval [a, b] since u∗
µD

is nonincreasing.
We set

K = µD({x ∈ Rn; u(x) ≥ u∗
µD

(a)}).

Then we have K < ∞ since u ∈ V 1
0 X(Rn, µD). Since u∗

µD
(a) > 0, we can use

(1.12) to obtain K > 0. Owing to (2.3) we obtain∫︂⋃︁
m∈M

{u∗
µD

(bm)<u<u∗
µD

(am)}
|∇u(x)| dµD(x)

≥ Ciso

∑︂
m∈M

∫︂ u∗
µD

(am)

u∗
µD

(bm)
µD({x ∈ Rn; u(x) > t})D−1

D dt

≥ Ciso

∑︂
m∈M

∫︂ u∗
µD

(am)

u∗
µD

(bm)
µD({x ∈ Rn; u(x) ≥ u∗

µD
(am)})

D−1
D dt

≥ Ciso

∑︂
m∈M

∫︂ u∗
µD

(am)

u∗
µD

(bm)
µD({x ∈ Rn; u(x) ≥ u∗

µD
(a)})

D−1
D dt

= CisoK
D−1

D

∑︂
m∈M

(u∗
µD

(am) − u∗
µD

(bm)).

(2.5)

It follows that∑︂
m∈M

(u∗
µD

(am) − u∗
µD

(bm))

≤ C−1
isoK

1−D
D

∫︂⋃︁
m∈M

{u∗
µD

(bm)<u<u∗
µD

(am)}
|∇u(x)| dµD(x)

≤ C−1
isoK

1−D
D

∫︂ ∑︁
m∈M

(bm−am)

0
|∇u|∗µD

(t) dt.

(2.6)

The first inequality holds due to (2.5). The second inequality holds by virtue
of (2.4).

Next we want to prove that∫︂ t

0
|∇u|∗µD

(τ) dτ < ∞ (2.7)

for every t ∈ (0, ∞). Firstly, we show that the function |∇u|∗µD
is integrable over

the interval (0, 1). This is equivalent to the fact that |∇u| ∈ (L1 + L∞)(Rn, µD)
(see [2, Chapter 2, Theorem 6.4]). But the latter is satisfied since we know
that |∇u| ∈ X(Rn, µD) and that X(Rn, µD) ⊆ (L1 + L∞)(Rn, µD) (see [2, Chap-
ter 2, Theorem 6.6]). So, we have the fact that the function |∇u|∗µD

is integrable
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over the interval (0, 1). If t ∈ (0, 1], we have also proved (2.7) since the func-
tion |∇u|∗µD

is nonnegative. Now assume that t ∈ (1, ∞). We exploit the fact
that the function |∇u|∗µD

is nonincreasing to obtain∫︂ t

0
|∇u|∗µD

(τ) dτ =
∫︂ 1

0
|∇u|∗µD

(τ) dτ +
∫︂ t

1
|∇u|∗µD

(τ) dτ

≤
∫︂ 1

0
|∇u|∗µD

(τ) dτ + (t − 1) |∇u|∗µD
(1) < ∞.

So, we have proved (2.7) for all t ∈ (0, ∞).
Since we know that |∇u|∗µD

is integrable over an arbitrary bounded inter-
val (0, t), we can use (2.6) to obtain the fact that the function u∗

µD
is absolutely

continuous on the interval [a, b]. It follows that it is locally absolutely continuous
on the interval (0, ∞), which is the desired result.

It remains to prove the inequality (2.1). From now we do not anymore assume
that the intervals (am, bm) are contained in [a, b]. Note that since the function
u∗

µD
is nonincreasing, it is also differentiable almost everywhere in (0, ∞) and

du∗
µD

dt
(t) ≤ 0, wherever the derivative exists. In particular, it means that the left-

hand side of the inequality makes sense. Define the function ϕ : (0, ∞) → [0, ∞)
by ϕ(t) = −Cisot

D−1
D

du∗
µD

dt
(t), t ∈ (0, ∞). We show that∫︂ t

0
ϕ∗(τ) dτ ≤

∫︂ t

0
|∇u|∗µD

(τ) dτ, t ∈ (0, ∞). (2.8)

Choose t ∈ (0, ∞) arbitrarily. By virtue of (1.16), we know that it is enough
to prove that for every measurable set E ⊆ (0, ∞) such that λ(E) = t, it holds
that ∫︂

E
ϕ(τ) dτ ≤

∫︂ t

0
|∇u|∗µD

(τ) dτ. (2.9)

Now choose an arbitrary m ∈ M . We have∫︂ bm

am

ϕ(τ) dτ = −
∫︂ bm

am

Cisoτ
D−1

D
du∗

µD

dτ
(τ) dτ. (2.10)

We use the change of variables theorem (see [34, page 156]). Since the func-
tion u∗

µD
is absolutely continuous and nonincreasing on the interval [am, bm],

and the function τ ↦→ µD({x ∈ Rn; u(x) > τ})D−1
D , τ ∈ (0, ∞), is nonnegative

on the interval (am, bm), we obtain∫︂ u∗
µD

(am)

u∗
µD

(bm)
CisoµD({x ∈ Rn; u(x) > s})

D−1
D ds

= −
∫︂ bm

am

CisoµD({x ∈ Rn; u(x) > u∗
µD

(τ)})D−1
D

du∗
µD

dτ
(τ) dτ.

(2.11)

Now we prove that∫︂ bm

am

CisoµD({x ∈ Rn; u(x) > u∗
µD

(τ)})
D−1

D
du∗

µD

dτ
(τ) dτ

=
∫︂ bm

am

Cisoτ
D−1

D
du∗

µD

dτ
(τ) dτ.

(2.12)
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Owing to (1.11) we know that for every τ ∈ (am, bm) it holds that

µD({x ∈ Rn; u(x) > u∗
µD

(τ)}) ≤ τ.

The function u∗
µD

is differentiable almost everywhere in the interval (am, bm).
Choose an arbitrary τ ∈ (am, bm) such that the function u∗

µD
is differentiable

at τ . Assume that

µD({x ∈ Rn; u(x) > u∗
µD

(τ)}) < τ.

Then there exists δ ∈ R, δ > 0, such that for every s ∈ (τ − δ, τ) it holds that

µD({x ∈ Rn; u(x) > u∗
µD

(τ)}) < s. (2.13)

From the inequality (2.13) we obtain for each s ∈ (τ − δ, τ)

u∗
µD

(s) = inf {α ∈ (0, ∞); µD({x ∈ Rn; u(x) > α}) ≤ s}
≤ u∗

µD
(τ).

Because the function u∗
µD

is nonincreasing it holds that u∗
µD

(s) = u∗
µD

(τ) for all s ∈
(τ − δ, τ). Since the function u∗

µD
is differentiable at τ , we have du∗

µD

dτ
(τ) = 0. So,

we have just proved (2.12). By (2.10), (2.11) and (2.12) we have
∫︂ bm

am

ϕ(τ) dτ =
∫︂ u∗

µD
(am)

u∗
µD

(bm)
CisoµD({x ∈ Rn; u(x) > τ})D−1

D dτ. (2.14)

Now we obtain∫︂⋃︁
m∈M

(am,bm)
ϕ(τ) dτ =

∑︂
m∈M

∫︂ u∗
µD

(am)

u∗
µD

(bm)
CisoµD({x ∈ Rn; u(x) > τ})

D−1
D dτ

≤
∫︂⋃︁

m∈M
{u∗

µD
(bm)<u<u∗

µD
(am)}

|∇u(x)| dµD(x)

≤
∫︂ ∑︁

m∈M

(bm−am)

0
|∇u|∗µD

(τ) dτ.

(2.15)

The equality holds thanks to (2.14) and to the fact that the intervals (am, bm), m ∈
M , are pairwise disjoint. The first inequality holds thanks to (2.3). The sec-
ond inequality is true by virtue of (2.4). Now choose an arbitrary measurable
set E ⊆ (0, ∞), λ(E) = t. Then for every ε ∈ R, ε > 0, there exists a countable
system {(am, bm)}m∈M of pairwise disjoint nonempty bounded intervals such that

E ⊆
⋃︂

m∈M

(am, bm) and λ

(︄ ⋃︂
m∈M

(am, bm) \ E

)︄
< ε.

So, choose an arbitrary ε ∈ R, ε > 0, and let {(am, bm)}m∈M be such a system
of intervals. From (2.15) we obtain∫︂

E
ϕ(τ) dτ ≤

∫︂⋃︁
m∈M

(am,bm)
ϕ(τ) dτ ≤

∫︂ t+ε

0
|∇u|∗µD

(τ) dτ.
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We already know from (2.7) that for all s ∈ (0, ∞) the function |∇u|∗µD
is inte-

grable over (0, s). So, we obtain∫︂
E

ϕ(τ) dτ ≤
∫︂ t

0
|∇u|∗µD

(τ) dτ

thanks to the Lebesgue dominated convergence theorem. This means that (2.9)
is true. So, we have just proved (2.8). The inequality (2.1) now follows from the
Hardy–Littlewood–Pólya principle (1.15).

We have proved the theorem for nonnegative u. Now let u ∈ V 1
0 X(Rn, µD) be

general. Since u is weakly differentiable in Rn, it is true (see [38, Corollary 2.1.8])
that |u| is weakly differentiable in Rn and that |∇u| = |∇ |u|| almost everywhere
in Rn. It means that |u| ∈ V 1

0 X(Rn, µD). So, the theorem holds for |u|. Since
u∗

µD
= |u|∗µD

, the theorem holds also for the function u.

In the remaining part of this chapter we prove the reduction principle. Recall
that the parameteres m and D were introduced in Section 1.3 and that we have
m ∈ N, 1 ≤ m < D.

Theorem 2.2 (Reduction principle). Let X and Y be rearrangement-invariant
spaces over (Rn, µD). Then the following three statements are equivalent.

1. For all functions v ∈ V m
0 X(Rn, µD) it holds that

∥v∥Y (Rn,µD) ≤ C1 ∥∇mv∥X(Rn,µD) . (2.16)

2. For all functions f ∈ M+(0, ∞) it holds that⃦⃦⃦⃦∫︂ ∞

t
f(τ)τ m

D
−1 dτ

⃦⃦⃦⃦
Y (0,∞)

≤ C2 ∥f∥X(0,∞) . (2.17)

3. For all functions g ∈ M+(0, ∞) it holds that⃦⃦⃦
t

m
D g∗∗(t)

⃦⃦⃦
X′(0,∞)

≤ C2 ∥g∥Y ′(0,∞) . (2.18)

Here, C1 and C2 are positive constants such that C1 depends only on C2, m and
D, and C2 depends only on C1, m and D.

The proof of this theorem will be divided into three steps. The first step will
be Proposition 2.3, the second step will be Proposition 2.4 and the third one will
be Proposition 2.11. In Proposition 2.3 we prove the equivalence of the second
and the third statement of Theorem 2.2.

Proposition 2.3. Let X, Y be rearrangement-invariant spaces over (Rn, µD). Let
φ ∈ M+(0, ∞). Then the following two statements are equivalent.

1. For all functions f ∈ M+(0, ∞) it holds that⃦⃦⃦⃦∫︂ ∞

t
f(τ)φ(τ)τ−1 dτ

⃦⃦⃦⃦
Y (0,∞)

≤ C ∥f∥X(0,∞) . (2.19)
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2. For all functions g ∈ M+(0, ∞) it holds that

∥φ(t)g∗∗(t)∥X′(0,∞) ≤ C ∥g∥Y ′(0,∞) . (2.20)

Here, C is a positive constant.

Proof. The inequality (2.19) is equivalent to the inequality

sup
f∈M+(0,∞),∥f∥X(0,∞)≤1

⃦⃦⃦⃦∫︂ ∞

t
f(τ)φ(τ)τ−1 dτ

⃦⃦⃦⃦
Y (0,∞)

≤ C. (2.21)

The inequality (2.20) is equivalent to the inequality

sup
g∈M+(0,∞),∥g∥Y ′(0,∞)≤1

∥φ(t)g∗∗(t)∥X′(0,∞) ≤ C. (2.22)

For the proof of the equivalence of (2.19) and (2.20) it is enough to show that
(2.21) is equivalent to (2.22). Firstly, assume that (2.21) holds. For all func-
tions f, g ∈ M+(0, ∞), ∥f∥X(0,∞) ≤ 1, ∥g∥Y ′(0,∞) ≤ 1, it holds that∫︂ ∞

0
f(τ)φ(τ)g∗∗(τ) dτ =

∫︂ ∞

0
g∗(t)

∫︂ ∞

t
f(τ)φ(τ)τ−1 dτ dt

≤ ∥g∥Y ′(0,∞)

⃦⃦⃦⃦∫︂ ∞

t
f(τ)φ(τ)τ−1 dτ

⃦⃦⃦⃦
Y (0,∞)

≤ C ∥g∥Y ′(0,∞) ≤ C.

We used the Fubini theorem in the equality. The first inequality holds by virtue
of the Hölder inequality (1.4). The second inequality is true thanks to (2.21).
This proves (2.22) thanks to (1.2).

It remains to prove that (2.22) implies (2.21). Assume that (2.22) holds.
For all functions f, g ∈ M+(0, ∞), ∥f∥X(0,∞) ≤ 1, ∥g∥Y ′(0,∞) ≤ 1, it holds that∫︂ ∞

0
g∗(t)

∫︂ ∞

t
f(τ)φ(τ)τ−1 dτ dt =

∫︂ ∞

0
f(τ)φ(τ)g∗∗(τ) dτ

≤ ∥f∥X(0,∞) ∥φ(τ)g∗∗(τ)∥X′(0,∞) ≤ C ∥f∥X(0,∞) ≤ C.

The first inequality is true by virtue of the Hölder inequality. The second in-
equality holds by (2.22). It follows that (2.21) holds owing to (1.2).

Note that if we set φ(t) = t
m
D , t ∈ (0, ∞), then we obtain the equivalence of (2.17)

and (2.18) in the reduction principle (Theorem 2.2).
Now we aim to prove the following proposition.

Proposition 2.4. Let X, Y be rearrangement-invariant spaces over (Rn, µD).
Assume that there exists a positive constant C1 such that for all functions v ∈
V m

0 X(Rn, µD) it holds that

∥v∥Y (Rn,µD) ≤ C1 ∥∇mv∥X(Rn,µD) .

Then there exists a positive constant C2 such that for all functions f ∈ M+(0, ∞)
it holds that ⃦⃦⃦⃦∫︂ ∞

t
f(τ)τ m

D
−1 dτ

⃦⃦⃦⃦
Y (0,∞)

≤ C2 ∥f∥X(0,∞) . (2.23)

The constant C2 depends only on the constant C1, on m and on D.
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Owing to this proposition the n-dimensional part of the reduction principle
implies the one-dimensional part. Before the proof of the proposition, we need
prove the following two lemmata.

Convention. Let ν be a measure on Rn that is absolutely continuous with respect
to the Lebesgue measure. Then we denote by Bν the weighted measure of the unit
ball in Rn, i.e.,

Bν = ν({x ∈ Rn; |x| ≤ 1}).

Lemma 2.5. Let ν be a measure on Rn that is absolutely continuous with respect
to the Lebesgue measure with a positive locally integrable density ω. Let α ≥ 0
be a constant and assume that the density ω is an α-homogeneous function, i.e.,
ω(rx) = rαω(x) for every x ∈ Rn and for every r > 0. Then the mapping
σ : Rn → [0, ∞) defined by

σ(x) = Bν |x|α+n , x ∈ Rn,

has the following property. For every Lebesgue measurable set E ⊆ [0, ∞), it is
true that σ−1(E) is a ν-measurable set and that ν(σ−1(E)) = λ(E).

The mapping σ with the property mentioned in the statement is called a
measure-preserving transformation of the measure spaces (Rn, ν) and ([0, ∞), λ).
Proof. Firstly, observe that the mapping σ is continuous. It means that it is also
Lebesgue measurable. So, for every measurable set F ⊆ [0, ∞), we have the fact
that the set

σ−1(F ) ⊆ Rn

is ν-measurable. It remains to prove that

ν
(︂
σ−1(F )

)︂
= λ(F ). (2.24)

Choose an arbitrary r > 0. Set

M = σ−1([0, r)) =
{︄

x ∈ Rn; |x| <
(︃

r

Bν

)︃ 1
α+n

}︄
.

We obtain

ν
(︂
σ−1([0, r))

)︂
=
∫︂

M
ω(x) dx =

∫︂
B1(0)

(︃
r

Bν

)︃ n
α+n

(︃
r

Bν

)︃ α
α+n

ω(x) dx = r,

where the second equality holds owing to the change of variables and to the α-
homogeneity of ω. Recall that by B1(0) we denote the closed unit ball in Rn with
the center at the origin. It follows that (2.24) holds for F = [0, r). Now choose
an arbitrary 0 < q < r. We obtain

σ−1([0, r)) = σ−1([0, q)) ∪ σ−1([q, r)). (2.25)

So,

ν
(︂
σ−1([q, r))

)︂
= r − q
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since the sets on the right-hand side of (2.25) are disjoint. It means that (2.24)
holds with F = [q, r). Finally, choose an arbitrary s ∈ [0, ∞). We obtain

ν
(︂
σ−1({s})

)︂
= ν

(︄{︄
x ∈ Rn; |x| =

(︃
s

Bν

)︃ 1
α+n

}︄)︄
= 0

since the Lebesgue measure of this sphere is equal to zero. It follows that (2.24)
holds for F = {s}. Consequently, we have proved that (2.24) holds for every open
subset of [0, ∞). Now choose an arbitrary compact set K ⊆ [0, ∞). Find r > 0
such that K ⊆ [0, r). Since [0, r) and [0, r) \ K are open in [0, ∞) and since K
and [0, r) \ K are disjoint, we obtain (2.24) for F = K. Now choose an arbitrary
measurable set F ⊆ [0, ∞). Let {Kk}∞

k=1 be a sequence of compact subsets of
[0, ∞) such that Kk ⊆ F for all k ∈ N and limk→∞ λ(Kk) = λ(F ). Let {Gk}∞

k=1
be a sequence of open subsets of [0, ∞) such that F ⊆ Gk for every k ∈ N and
limk→∞ λ(Gk) = λ(F ). For every k ∈ N we obtain

λ(Kk) = ν
(︂
σ−1(Kk)

)︂
≤ ν

(︂
σ−1(F )

)︂
≤ ν

(︂
σ−1(Gk)

)︂
= λ(Gk),

so (2.24) holds for an arbitrary measurable F .

Remark. It follows from the preceding lemma that every function h ∈ M+(0, ∞)
is equimeasurable with the µD-measurable function x ↦→ h(Bµ |x|D), x ∈ Rn.

The following lemma is just a technical tool that we will use in the proof of
Proposition 2.4.

Lemma 2.6. Let f ∈ M+(0, ∞)∩L∞(0, ∞) be a function with a bounded support.
Let g : [0, ∞) → [0, ∞) be the function defined by

g(t) =
∫︂ ∞

t
f(τ)τ m

D
−m(τ − t)m−1 dτ, t ∈ [0, ∞). (2.26)

Then g ∈ Cm−1(0, ∞) and

g(j)(t) = (−1)j (m − 1)!
(m − j − 1)!

∫︂ ∞

t
f(τ)τ m

D
−m(τ − t)m−j−1 dτ, t ∈ (0, ∞) (2.27)

for every j ∈ {1, . . . , m − 1}. Moreover, g(m−1) is locally Lipschitz on (0, ∞) and

g(m)(t) = (−1)m(m − 1)!f(t)tm
D

−m (2.28)

for almost every t ∈ (0, ∞).

Proof. Recall that m < D. Assume that m > 1 and that j = 1. Choose
an arbitrary t ∈ (0, ∞). We have

g′(t) = lim
h→0

1
h

(︃∫︂ ∞

t+h
f(τ)τ m

D
−m(τ − t − h)m−1 dτ −

∫︂ ∞

t
f(τ)τ m

D
−m(τ − t)m−1 dτ

)︃
= lim

h→0

1
h

∫︂ ∞

t+h
f(τ)τ m

D
−m

(︂
(τ − t − h)m−1 − (τ − t)m−1

)︂
dτ

− lim
h→0

1
h

∫︂ t+h

t
f(τ)τ m

D
−m(τ − t)m−1 dτ, (2.29)
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provided that the limits exist. For the first term on the right-hand side of (2.29),
it holds that

lim
h→0

1
h

∫︂ ∞

t+h
f(τ)τ m

D
−m

(︂
(τ − t − h)m−1 − (τ − t)m−1

)︂
dτ

= lim
h→0

1
h

∫︂ ∞

t+h
f(τ)τ m

D
−m(m − 1)(−h)(τ − t)m−2 dτ

+ lim
h→0

1
h

∫︂ ∞

t+h
f(τ)τ m

D
−m

m−1∑︂
i=2

(︄
m − 1

i

)︄
(τ − t)m−1−i(−h)i dτ

= −(m − 1) lim
h→0

∫︂ ∞

t+h
f(τ)τ m

D
−m(τ − t)m−2 dτ

= −(m − 1)
∫︂ ∞

t
f(τ)τ m

D
−m(τ − t)m−2 dτ.

(2.30)

The second equality holds since⃓⃓⃓⃓
⃓limh→0

1
h

∫︂ ∞

t+h
f(τ)τ m

D
−m

m−1∑︂
i=2

(︄
m − 1

i

)︄
(τ − t)m−1−i(−h)i dτ

⃓⃓⃓⃓
⃓

≤ lim
h→0

m−1∑︂
i=2

(︄
m − 1

i

)︄
hi−1

∫︂ ∞

t
2

f(τ)τ m
D

−m |τ − t|m−1−i dτ = 0.

The last equality holds owing to the Lebesgue dominated convergence theorem.
Observe that we want to show that g′(t) is equal to the last term of (2.30).
It means that it remains to prove that the second term on the right-hand side
of (2.29) is equal to zero. For every h ∈ (−t, t) we obtain

0 ≤ 1
|h|

⃓⃓⃓⃓
⃓
∫︂ t+h

t
f(τ)τ m

D
−m |τ − t|m−1 dτ

⃓⃓⃓⃓
⃓ ≤ 1

|h|

⃓⃓⃓⃓
⃓
∫︂ t+h

t
f(τ)τ m

D
−m |h|m−1 dτ

⃓⃓⃓⃓
⃓

= |h|m−2
⃓⃓⃓⃓
⃓
∫︂ t+h

t
f(τ)τ m

D
−m dτ

⃓⃓⃓⃓
⃓ .

(2.31)

The last term of (2.31) converges to zero as h approaches zero by virtue of the
fact that m−2 ≥ 0 and thanks to the Lebesgue dominated convergence theorem.
It means that

lim
h→0

1
h

∫︂ t+h

t
f(τ)τ m

D
−m(τ − t)m−1 dτ = 0,

so (2.27) holds with j = 1. The fact that (2.27) holds for 1 < j ≤ m − 1 can be
proved in a similar way as for j = 1. Thanks to (2.27) we have the fact that g(j)

is differentiable and hence also continuous on (0, ∞) for every j ∈ {0, . . . , m−2}.
Note that we use the notation g = g(0).

Now let 1 ≤ m < D be arbitrary. Owing to (2.26) and to (2.27), we have

g(m−1)(t) = (−1)m−1(m − 1)!
∫︂ ∞

t
f(τ)τ m

D
−m dτ, t ∈ (0, ∞).

This function is locally Lipschitz on (0, ∞) since for every closed interval [t1, t2] ⊆
(0, ∞) and for every s1, s2 ∈ [t1, t2], s1 ≤ s2, we have∫︂ s2

s1
f(τ)τ m

D
−m dτ ≤ ∥f∥L∞(0,∞) t

m
D

−m
1 (s2 − s1).
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Hence the function g(m−1) is differentiable almost everywhere in (0, ∞) and we ob-
tain (2.28) for almost every t ∈ (0, ∞).

Now we finally prove Proposition 2.4.
Proof of Proposition 2.4. Choose an arbitrary function f ∈ M+(0, ∞). Observe
that it is enough to prove the theorem for ∥f∥X(0,∞) < ∞. Firstly, assume that
the function f belongs to L∞(0, ∞) and that it has a bounded support. Define
the function v : Rn → [0, ∞) by

v(x) =
∫︂ ∞

BµD
|x|D

f(τ)τ m
D

−m
(︂
τ − BµD

|x|D
)︂m−1

dτ, x ∈ Rn. (2.32)

Now define the function σ : Rn → [0, ∞) by

σ(x) = BµD
|x|D , x ∈ Rn.

It holds that

σ ∈ C∞(Rn \ {0}). (2.33)

Observe that

v(x) = (g ◦ σ)(x), x ∈ Rn, (2.34)

where g is the function from (2.26).
Now, for every k ∈ {1, . . . m} and for the parametres l1, l2 satisfying l1 ∈

N, l1 ≤ min({k, m − 1}), l2 ∈ {0, . . . , k}, 2(l1 + l2) ≥ k, we define the functions

x ↦→
∫︂ ∞

BµD
|x|D

f(τ)τ m
D

−m
(︂
τ − BµD

|x|D
)︂m−l1−1

dτ |x|l1(D−2)−2l2
2(l1+l2)−k∏︂

j=1
xij

(2.35)

for every x ∈ Rn \ {0}, and

x ↦→ f
(︂
BµD

|x|D
)︂

|x|−m
m∏︂

j=1
xij

(2.36)

for almost every x ∈ Rn. Owing to Lemma 2.6, to (2.33) and to the chain rule,
we obtain the fact that

v ∈ Cm−1(Rn \ {0}).

Thanks to (2.26), to (2.27), to the chain rule and to the product rule, we obtain
the fact that an arbitrary partial derivative of the function v of the k-th order
in every point x ∈ Rn \{0} and for every k ∈ {1, . . . m−1} is a linear combination
of the functions (2.35). By virtue of (2.28) and of (2.33), the partial derivatives
of the function v of the m-th order in almost every point x ∈ Rn exist and are
linear combinations of the functions (2.35) with k = m and of the functions
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(2.36). We know that f has a bounded support. Assume that it is contained in
(0, M) for some 0 < M < ∞. We have⃓⃓⃓⃓
⃓⃓∫︂ ∞

BµD
|x|D

f(τ)τ m
D

−m
(︂
τ − BµD

|x|D
)︂m−l1−1

dτ |x|l1(D−2)−2l2
2(l1+l2)−k∏︂

j=1
xij

⃓⃓⃓⃓
⃓⃓

≤
⃓⃓⃓⃓
⃓
∫︂ M

BµD
|x|D

f(τ)τ m
D

−l1−1 dτ

⃓⃓⃓⃓
⃓ |x|l1D−k

≤ χ(0,M)
(︂
BµD

|x|D
)︂

∥f∥L∞(0,∞)
D

l1D − m
|x|l1D−k

(︃
M

m
D

−l1 + B
m
D

−l1
µD |x|m−l1D

)︃
= χ(0,M)

(︂
BµD

|x|D
)︂

∥f∥L∞(0,∞)
D

l1D − m

(︃
M

m
D

−l1 |x|l1D−k + B
m
D

−l1
µD |x|m−k

)︃
(2.37)

for every x ∈ Rn \ {0} and for every k, l1, l2 that the functions (2.35) are defined
for. It is also true that

f
(︂
BµD

|x|D
)︂

|x|−m
m∏︂

j=1
xij

≤ ∥f∥L∞(0,∞) χ(0,M)
(︂
BµD

|x|D
)︂

(2.38)

for almost every x ∈ Rn. Owing to (2.37), (2.38) and to the facts that l1D−k ≥ 0
and that m − k ≥ 0, we obtain the fact that all of the partial derivatives of v
up to the m-th order belong to the space L1(Rn). Each function (2.35) is the
product of the functions

x ↦→
∫︂ ∞

BµD
|x|D

f(τ)τ m
D

−m
(︂
τ − BµD

|x|D
)︂m−l1−1

dτ

= (−1)l1
(m − l1 − 1)!

(m − 1)! (g(l1) ◦ σ)(x)
(2.39)

and

x ↦→ |x|l1(D−2)−2l2
2(l1+l2)−k∏︂

j=1
xij

. (2.40)

Every function (2.40) is of the class C∞(Rn \ {0}). If l1 < m − 1, then we obtain
the fact that the function (2.39) is of the class C1(Rn \ {0}) thanks to Lemma 2.6
and to (2.33). We obtain the fact that these functions are locally absolutely
continuous on every line in Rn that is parallel to the coordinate axes and that
does not pass through the origin. If l1 = m − 1, then we obtain the same result
by virtue of (2.33) and of the fact that the function g(m−1) is locally Lipschitz on
(0, ∞) thanks to Lemma 2.6. It means that by [22, Theorem 10.35] we have the
fact that all of the weak partial derivatives of v up to the m-th order exist and
are equal to the classical partial derivatives of v almost everywhere on Rn.

Now, thanks to (2.35) with k = m and to (2.36), we obtain

|∇mv(x)| ≤ C

(︄
f
(︂
BµD

|x|D
)︂

+
m−1∑︂
l=1

∫︂ ∞

BµD
|x|D

f(τ)τ m
D

−l−1 dτ |x|lD−m

)︄
(2.41)

for µD-almost every x ∈ Rn, where C is a positive constant depending only on m
and on D.
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For every l ∈ {1, . . . m − 1}, we now define the operator

Fl : (L1 + L∞)(0, ∞) → (L1 + L∞)(0, ∞)

by

Fl(φ)(t) = tl− m
D

∫︂ ∞

t
φ(τ)τ m

D
−l−1 dτ, t ∈ (0, ∞), φ ∈ (L1 + L∞)(0, ∞).

Choose an arbitrary l ∈ {1, . . . m − 1}. We have

∥Fl∥L∞→L∞ ≤ sup
t∈(0,∞)

tl− m
D

∫︂ ∞

t
τ

m
D

−l−1 dτ = D

Dl − m
. (2.42)

Now choose an arbitrary function φ ∈ L1(0, ∞). We have

∥Fl(φ)∥L1(0,∞) ≤
∫︂ ∞

0
tl− m

D

∫︂ ∞

t
|φ(τ)| τ

m
D

−l−1 dτ dt

=
∫︂ ∞

0
|φ(τ)| τ

m
D

−l−1
∫︂ τ

0
tl− m

D dt dτ = D

Dl − m + D

∫︂ ∞

0
|φ(τ)| dτ

= D

Dl − m + D
∥φ∥L1(0,∞) .

The first equality is valid owing to the Fubini theorem. So,

∥Fl∥L1→L1 ≤ D

Dl − m + D
. (2.43)

The norm estimates (2.42) and (2.43) have two consequences. The first one is
the fact that the range of the operator Fl is indeed a subset of the space (L1 +
L∞)(0, ∞). It means that the operator Fl is well defined. The second consequence
is the fact that the operator Fl is, owing to [2, Chapter 3, Theorem 2.2], bounded
on the space X(0, ∞) and

∥Fl∥X(0,∞) ≤ D

Dl − m + D
≤ D

2D − m
(2.44)

for each l ∈ {1, . . . , m − 1}.
Now define the functions h : (0, ∞) → [0, ∞) and w : Rn → [0, ∞). The func-

tion h is defined by

h(t) = f(t) +
m−1∑︂
l=1

Fl(f)(t), t ∈ (0, ∞). (2.45)

The function w is defined by

w(x) = (h ◦ σ)(x), x ∈ Rn \ {0}.

Owing to (2.41) we obtain

|∇mv|∗µD
(t) ≤ ˜︁Cw∗

µD
(t), t ∈ (0, ∞), (2.46)

where ˜︁C is a positive constant which depends only on m and on D. By virtue
of Lemma 2.5, the functions h and w are equimeasurable. So, we have

|∇mv|∗µD
(t) ≤ ˜︁Ch∗(t), t ∈ (0, ∞), (2.47)
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thanks to (1.7). Now we obtain

∥∇mv∥X(Rn,µD) =
⃦⃦⃦
|∇mv|∗µD

⃦⃦⃦
X(0,∞)

≤ ˜︁C ∥h∗∥X(0,∞) = ˜︁C ∥h∥X(0,∞)

≤ ˜︁C (︄
∥f∥X(0,∞) +

m−1∑︂
l=1

∥Fl(f)∥X(0,∞)

)︄
≤ K ∥f∥X(0,∞)

(2.48)

where

K = ˜︁C (︄
1 + D(m − 1)

2D − m

)︄
.

The first inequality holds by virtue of (2.46) and (2.47). The second inequality is
true by (2.45). The third inequality holds owing to (2.44). From (2.48) it follows
that v ∈ V mX(Rn, µD). Since the function f has a bounded support, owing
to (2.32) and (2.35), we obtain there exists a constant L > 0 such that

⃓⃓⃓
∇kv(x)

⃓⃓⃓
=

0 for every x ∈ Rn, |x| ≥ L, and for every k ∈ {0, . . . , m − 1}. It means that
v ∈ V m

0 X(Rn, µD).
Now, thanks to (2.34) and to Lemma 2.5, we have the fact that the functions v

and g are equimeasurable. We obtain

∥v∥Y (Rn,µD) =
⃦⃦⃦
v∗

µD

⃦⃦⃦
Y (0,∞)

= ∥g∗∥Y (0,∞) = ∥g∥Y (0,∞)

≥
⃦⃦⃦⃦∫︂ ∞

2t
f(τ)τ m

D
−m (τ − t)m−1 dτ

⃦⃦⃦⃦
Y (0,∞)

≥
⃦⃦⃦⃦
⃦
∫︂ ∞

2t
f(τ)τ m

D
−m

(︃
τ

2

)︃m−1
dτ

⃦⃦⃦⃦
⃦

Y (0,∞)

= 21−m

⃦⃦⃦⃦∫︂ ∞

2t
f(τ)τ m

D
−mτm−1 dτ

⃦⃦⃦⃦
Y (0,∞)

= 21−m

⃦⃦⃦⃦∫︂ ∞

2t
f(τ)τ m

D
−1 dτ

⃦⃦⃦⃦
Y (0,∞)

. (2.49)

Finally, we have⃦⃦⃦⃦∫︂ ∞

t
f(τ)τ m

D
−1 dτ

⃦⃦⃦⃦
Y (0,∞)

≤ 2
⃦⃦⃦⃦∫︂ ∞

2t
f(τ)τ m

D
−1 dτ

⃦⃦⃦⃦
Y (0,∞)

≤ 2m ∥v∥Y (Rn,µD)

≤ 2mC1 ∥∇mv∥X(Rn,µD) ≤ 2mC1K ∥f∥X(0,∞) .

The first inequality holds by virtue of (1.25). The second inequality holds thanks
to (2.49). The third inequality is true by the assumption of the theorem. The last
inequality holds owing to (2.48). So, (2.23) holds with C2 = 2mC1K. We have
proved the inequality (2.23) for bounded functions with bounded support. Now
let f ∈ M+(0, ∞), ∥f∥X(0,∞) < ∞ be general. Define a sequence {fk}∞

k=1 of func-
tions from M+(0, ∞) by fk(t) = min{f(t), k}χ(0,k)(t), t ∈ (0, ∞), k ∈ N. Then
{fk}∞

k=1 is a sequence of bounded functions with bounded support such that
fk(t) ↑ f(t) for almost every t ∈ (0, ∞). Since (2.23) holds for every fk, k ∈ N,
we obtain the fact that (2.23) also holds for f thanks to the Fatou axiom of Ba-
nach function norms (3. property in Definition 1.1).

It remains to prove that the one-dimensional part of the reduction princi-
ple implies the n-dimensional part. We will prove it by induction on m. The
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first step will be Lemma 2.8. The induction step will be Proposition 2.9. In
Proposition 2.11 we will combine the previous results to complete the proof.

In the following technical lemma we prove that a certain n-dimensional map-
ping is a rearrangement-invariant Banach function norm.

Lemma 2.7. Let X be a rearrangement-invariant space over (Rn, µD), let φ ∈
M+(0, ∞). Assume that there exists a > 0 such that these two conditions hold:

1. there exists A > 0 such that 0 < φ(t) ≤ A for almost every t ∈ (0, a);

2. φ(t)
t

χ(a,∞)(t) ∈ X(0, ∞).

Then the mapping σ : M+(Rn, µD) → [0, ∞] defined by

σ(v) =
⃦⃦⃦
φv∗∗

µD

⃦⃦⃦
X(0,∞)

, v ∈ M+(Rn, µD),

is a rearrangement-invariant Banach function norm.

Proof. The fact that σ(v) = 0 if and only if v = 0 µD-almost everywhere in Rn

follows directly from the definition of the nonincreasing rearrangement (1.6) and
from the definition of the maximal nonincreasing function (1.18). The positive
homogeneity and the subadditivity of σ is valid owing to (1.20) and to (1.22). So,
we have proved that σ satisfies the norm axiom of Banach function norms. The
fact that σ satisfies the lattice axiom and the Fatou axiom follows from (1.19)
and (1.21), respectively.

Now, we prove that σ satisfies the nontriviality axiom. Choose an arbitrary
set E ⊆ Rn such that 0 < µD(E) < ∞. For every t ∈ (0, ∞) we have

(χE)∗∗
µD

(t) = χ(0,µD(E))(t) + µD(E)
t

χ[µD(E),∞)(t).

Assume that a ≤ µD(E). We obtain⃦⃦⃦
φ (χE)∗∗

µD

⃦⃦⃦
X(0,∞)

≤
⃦⃦⃦
φχ(0,a)

⃦⃦⃦
X(0,∞)

+
⃦⃦⃦
φχ(a,µD(E))

⃦⃦⃦
X(0,∞)

+
⃦⃦⃦⃦
⃦φ(t)µD(E)

t
χ(µD(E),∞)(t)

⃦⃦⃦⃦
⃦

X(0,∞)

≤ A
⃦⃦⃦
χ(0,a)

⃦⃦⃦
X(0,∞)

+ 2µD(E)
⃦⃦⃦⃦
⃦φ(t)

t
χ(a,∞)(t)

⃦⃦⃦⃦
⃦

X(0,∞)
< ∞.

Now, assume that a > µD(E). We obtain

⃦⃦⃦
φ (χE)∗∗

µD

⃦⃦⃦
X(0,∞)

≤
⃦⃦⃦
φχ(0,µD(E))

⃦⃦⃦
X(0,∞)

+
⃦⃦⃦⃦
⃦φ(t)µD(E)

t
χ(µD(E),a)(t)

⃦⃦⃦⃦
⃦

X(0,∞)

+
⃦⃦⃦⃦
⃦φ(t)µD(E)

t
χ(a,∞)(t)

⃦⃦⃦⃦
⃦

X(0,∞)

≤ A
⃦⃦⃦
χ(0,µD(E))

⃦⃦⃦
X(0,∞)

+ A
⃦⃦⃦
χ(µD(E),a)

⃦⃦⃦
X(0,∞)

+ µD(E)
⃦⃦⃦⃦
⃦φ(t)

t
χ(a,∞)(t)

⃦⃦⃦⃦
⃦

X(0,∞)

< ∞.
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Now, we prove that σ satisfies the local embedding into L1. Choose an arbi-
trary function v ∈ M+(Rn, µD). Assume that a ≤ µD(E). We obtain∫︂

E
v dµD ≤

∫︂ µD(E)

0
v∗

µD
(τ) dτ = µD(E)v∗∗

µD
(µD(E))

≤
(︃⃦⃦⃦

φχ(0,a)

⃦⃦⃦
X(0,∞)

)︃−1
µD(E)

⃦⃦⃦
φχ(0,a)v

∗∗
µD

⃦⃦⃦
X(0,∞)

≤
(︃⃦⃦⃦

φχ(0,a)

⃦⃦⃦
X(0,∞)

)︃−1
µD(E)

⃦⃦⃦
φv∗∗

µD

⃦⃦⃦
X(0,∞)

.

The first inequality is true owing to the Hardy–Littlewood inequality (1.14).
The second inequality is valid since the function v∗∗

µD
is nonincreasing on (0, ∞).

The local embedding into L1 in the case a > µD(E) can be proved in a similar
way as in the previous case.

So, we have proved that σ is a Banach function norm. The fact that σ is
rearrangement invariant follows from the definition of the maximal nonincreasing
function (1.18).

The following lemma, in which we exploit the Pólya–Szegő inequality (Theo-
rem 2.1), is the first step in the induction.

Lemma 2.8. Let X be a rearrangement-invariant space over (Rn, µD). Assume
that t

1
D

−1χ(1,∞)(t) ∈ X ′(0, ∞). Define the mapping σ : M+(Rn, µD) → [0, ∞] by

σ(v) =
⃦⃦⃦
t

1
D v∗∗

µD
(t)
⃦⃦⃦

X′(0,∞)
, v ∈ M+(Rn, µD).

Then σ is a rearrangement-invariant Banach function norm. Denote the respec-
tive Banach function space by Z1(Rn, µD). Then

∥u∥Z′
1(Rn,µD) ≤ C−1

iso ∥∇u∥X(Rn,µD) , u ∈ V 1
0 X(Rn, µD),

where Ciso is the constant from Theorem 2.1.

Proof. The fact that σ is a rearrangement-invariant Banach function norm
follows from Lemma 2.7. Observe that for every g ∈ M+(0, ∞), we have⃦⃦⃦

t
1
D g∗∗(t)

⃦⃦⃦
X′(0,∞)

= ∥g∥Z1(0,∞)

by virtue of (1.17). So, by Proposition 2.3 we obtain⃦⃦⃦⃦∫︂ ∞

t
f(τ)τ 1

D
−1 dτ

⃦⃦⃦⃦
Z′

1(0,∞)
≤ ∥f∥X(0,∞) (2.50)

for every f ∈ M+(0, ∞). In the previous inequality we also used (1.3). Choose
an arbitrary function u ∈ V 1

0 X(Rn, µD). We have

∥u∥Z′
1(Rn,µD) =

⃦⃦⃦
u∗

µD

⃦⃦⃦
Z′

1(0,∞)
=
⃦⃦⃦⃦
⃦−

∫︂ ∞

t

du∗
µD

dτ
(τ) dτ

⃦⃦⃦⃦
⃦

Z′
1(0,∞)

=
⃦⃦⃦⃦
⃦
∫︂ ∞

t

(︄
τ

D−1
D

du∗
µD

dτ
(τ)
)︄

τ
1−D

D dτ

⃦⃦⃦⃦
⃦

Z′
1(0,∞)

≤
⃦⃦⃦⃦
⃦tD−1

D
du∗

µD

dt
(t)
⃦⃦⃦⃦
⃦

X(0,∞)

≤ C−1
iso ∥∇u∥X(Rn,µD) .

30



The second equality holds owing to (1.36) and to the fact that u∗
µD

is locally
absolutely continuous on (0, ∞) (see Theorem 2.1). The first inequality is true
thanks to (2.50). The last inequality holds owing to the Pólya–Szegő inequality
(Theorem 2.1).

The following proposition is the induction step in the induction.

Proposition 2.9. Let X be a rearrangement-invariant space over (Rn, µD). As-
sume that

t
m
D

−1χ(1,∞)(t) ∈ X ′(0, ∞).

Define the mapping σm : M+(Rn, µD) → [0, ∞] by

σm(v) =
⃦⃦⃦
t

m
D v∗∗

µD
(t)
⃦⃦⃦

X′(0,∞)
, v ∈ M+(Rn, µD). (2.51)

Then σm is a rearrangement-invariant Banach function norm. Denote the re-
spective Banach function space by Zm, i.e.,

Zm(Rn, µD) = Zm(σm). (2.52)

Then for every function u ∈ V m
0 X(Rn, µD) it holds that

∥u∥Z′
m(Rn,µD) ≤ Km ∥∇mu∥X(Rn,µD) , (2.53)

where Km is a positive constant, which depends only on m and on D.

Proof. The fact that σm is a rearrangement-invariant Banach function norm is
true owing to Lemma 2.7. We prove the inequality (2.53) by induction on m.
For m = 1 the inequality holds with K1 = C−1

iso thanks to Lemma 2.8. Now,
let m ∈ {2, . . . , ⌈D − 1⌉} and assume that the inequality (2.53) with m re-
placed by k holds for every k ∈ N, k < m. Choose an arbitrary function u ∈
V m

0 X(Rn, µD) and i ∈ {1, . . . , n}. Then the weak partial derivative ∂u
∂xi

belongs
to V m−1

0 X(Rn, µD). So, we can use the induction hypothesis to obtain⃦⃦⃦⃦
⃦ ∂u

∂xi

⃦⃦⃦⃦
⃦

Z′
m−1(Rn,µD)

≤ Km−1

⃦⃦⃦⃦
⃦∇m−1 ∂u

∂xi

⃦⃦⃦⃦
⃦

X(Rn,µD)
≤ Km−1 ∥∇mu∥X(Rn,µD) .

It means that

∥∇u∥Z′
m−1(Rn,µD) ≤ nKm−1 ∥∇mu∥X(Rn,µD) < ∞. (2.54)

It follows that u belongs to V 1
0 Z ′

m−1(Rn, µD). Now we show that

t
1
D

−1χ(1,∞)(t) ∈ Zm−1(0, ∞). (2.55)

We have (︂
τ

1
D

−1χ(1,∞)(τ)
)︂∗

(t) = (t + 1)
1
D

−1 (2.56)
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for every t ∈ (0, ∞). We obtain⃦⃦⃦
t

1
D

−1χ(1,∞)(t)
⃦⃦⃦

Zm−1(0,∞)
=
⃦⃦⃦
(t + 1)

1
D

−1
⃦⃦⃦

Zm−1(0,∞)

=
⃦⃦⃦⃦
t

m−1
D

1
t

∫︂ t

0
(τ + 1)

1
D

−1 dτ

⃦⃦⃦⃦
X′(0,∞)

= D
⃦⃦⃦
t

m−1
D

−1
(︂
(t + 1)

1
D − 1

)︂⃦⃦⃦
X′(0,∞)

≤ D
⃦⃦⃦
t

m−1
D

−1
(︂
(t + 1)

1
D − 1

)︂
χ(0,1)(t)

⃦⃦⃦
X′(0,∞)

+ D
⃦⃦⃦
t

m−1
D

−1
(︂
(t + 1)

1
D − 1

)︂
χ(1,∞)(t)

⃦⃦⃦
X′(0,∞)

≤ D
⃦⃦⃦
t

m−1
D

−1
(︂
(t + 1)

1
D − 1

)︂
χ(0,1)(t)

⃦⃦⃦
X′(0,∞)

+ D
⃦⃦⃦
t

m
D

−1χ(1,∞)(t)
⃦⃦⃦

X′(0,∞)
< ∞.

The first equality holds thanks to (2.56). The second inequality holds since
(t + 1) 1

D ≤ t
1
D + 1 for every t ∈ (1, ∞). The last inequality is true thanks

to the fact that the function t
m−1

D
−1
(︂
(t + 1)

1
D − 1

)︂
is bounded on (0, 1) since

lim
t→0+

t
m−1

D
−1
(︂
(t + 1)

1
D − 1

)︂
= 0. It means that (2.55) holds. Now, we can use

Lemma 2.8 with the space Z ′
m−1(Rn, µD) to obtain

∥u∥W ′(Rn,µD) ≤ C−1
iso ∥∇u∥Z′

m−1(Rn,µD) , (2.57)

where ∥u∥W (Rn,µD) =
⃦⃦⃦
t

1
D u∗∗

µD
(t)
⃦⃦⃦

Zm−1(0,∞)
. Owing to [12, Theorem 3.4] and [27,

Proposition 5.1] (cf. [14, Theorem 9.5]), we obtain

∥v∥W (Rn,µD) ≤ C
⃦⃦⃦
t

m
D v∗∗

µD
(t)
⃦⃦⃦

X′(0,∞)
= C ∥v∥Zm(Rn,µD) , v ∈ M+(Rn, µD), (2.58)

where the positive constant C depends only on m and on D. Thanks to (2.58)
and (1.5), we obtain

∥v∥Z′
m(Rn,µD) ≤ C ∥v∥W ′(Rn,µD) , v ∈ M+(Rn, µD). (2.59)

By virtue of (2.54), (2.57) and (2.59), we obtain the fact that (2.53) holds with
Km = nCC−1

isoKm−1.

The following lemma guarantees that we can use Proposition 2.9 to prove
Proposition 2.11.

Lemma 2.10. Let X, Y be rearrangement-invariant spaces over (Rn, µD). As-
sume that there exists a positive constant C such that for all functions f ∈
M+(0, ∞) it holds that⃦⃦⃦⃦∫︂ ∞

t
f(τ)τ m

D
−1 dτ

⃦⃦⃦⃦
Y (0,∞)

≤ C ∥f∥X(0,∞) . (2.60)

Then

t
m
D

−1χ(1,∞)(t) ∈ X ′(0, ∞). (2.61)
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Proof. We have⃦⃦⃦
t

m
D

−1χ(1,∞)(t)
⃦⃦⃦

X′(0,∞)
= sup

f∈M+(0,∞),∥f∥X(0,∞)≤1

∫︂ ∞

1
f(τ)τ m

D
−1 dτ

=
(︃⃦⃦⃦

χ(0,1)

⃦⃦⃦
Y (0,∞)

)︃−1
sup

f∈M+(0,∞),∥f∥X(0,∞)≤1

⃦⃦⃦⃦∫︂ ∞

1
f(τ)τ m

D
−1 dτχ(0,1)(t)

⃦⃦⃦⃦
Y (0,∞)

≤
(︃⃦⃦⃦

χ(0,1)

⃦⃦⃦
Y (0,∞)

)︃−1
sup

f∈M+(0,∞),∥f∥X(0,∞)≤1

⃦⃦⃦⃦∫︂ ∞

t
f(τ)τ m

D
−1 dτχ(0,1)(t)

⃦⃦⃦⃦
Y (0,∞)

≤
(︃⃦⃦⃦

χ(0,1)

⃦⃦⃦
Y (0,∞)

)︃−1
sup

f∈M+(0,∞),∥f∥X(0,∞)≤1

⃦⃦⃦⃦∫︂ ∞

t
f(τ)τ m

D
−1 dτ

⃦⃦⃦⃦
Y (0,∞)

≤ C
(︃⃦⃦⃦

χ(0,1)

⃦⃦⃦
Y (0,∞)

)︃−1
,

where the last inequality holds by virtue of (2.60). It means that (2.61) is true.

Thanks to Lemma 2.10 we can use Proposition 2.9 to prove the remaining
part of the reduction principle.

Proposition 2.11. Let X, Y be rearrangement-invariant spaces over (Rn, µD).
Assume that there exists a positive constant C2 such that for all functions f ∈
M+(0, ∞) it holds that⃦⃦⃦⃦∫︂ ∞

t
f(τ)τ m

D
−1 dτ

⃦⃦⃦⃦
Y (0,∞)

≤ C2 ∥f∥X(0,∞) . (2.62)

Then there exists a positive constant C1 such that for every u ∈ V m
0 X(Rn, µD)

it holds that

∥u∥Y (Rn,µD) ≤ C1 ∥∇mu∥X(Rn,µD) .

The constant C1 depends only on the constant C2, on m and on D.

Proof. Firstly, we use Lemma 2.10 to obtain the fact that

t
m
D

−1χ(1,∞)(t) ∈ X ′(0, ∞).

It means that the mapping σm defined in (2.51) is a rearrangement-invariant Ba-
nach function norm owing to Proposition 2.9. Recall that the respective Banach
function space is denoted by Zm(Rn, µD) (see (2.52)).

We prove that for every function u ∈ V m
0 X(Rn, µD) it holds that

∥u∥Y (Rn,µD) ≤ C2 ∥u∥Z′
m(Rn,µD) ≤ C2Km ∥∇mu∥X(Rn,µD) , (2.63)

where Km is the positive constant from the inequality (2.53). Since (2.62) holds,
we can use Proposition 2.3 to obtain

∥v∥Zm(Rn,µD) ≤ C2 ∥v∥Y ′(Rn,µD) , v ∈ M+(Rn, µD).

So, the first inequality in (2.63) is true owing to (1.5), and the second one holds
thanks to Proposition 2.9.
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Finally, we show how to combine the previous results to obtain the proof of
the reduction principle.
Proof of Theorem 2.2. Equivalence of the second statement and the third state-
ment follows from Proposition 2.3. The fact that the first statement implies
the second statement follows from Proposition 2.4. The fact that the second
statement implies the first one follows from Proposition 2.11.
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3. Optimality
In this chapter we will firstly prove that for a given rearrangement-invariant
Banach function space X(Rn, µD), the space Z ′

m(Rn, µD) defined in (2.52) is the
optimal (i.e., the smallest) target space in the inequality (2.16) among all re-
arrangement-invariant spaces Y (Rn, µD). Then we will show some examples.
We will describe the optimal space Z ′

m(Rn, µD) when X(Rn, µD) is a Lorentz–
Karamata space Lp,q,b(Rn, µD) with p ∈

[︂
1, D

m

]︂
.

Theorem 3.1. Let X be a rearrangement-invariant space over (Rn, µD). Assume
that

t
m
D

−1χ(1,∞)(t) ∈ X ′(0, ∞). (3.1)

Let Zm(Rn, µD) be the rearrangement-invariant Banach function space defined in
(2.52). Then there exists a constant C > 0, which depends only on m and on D,
such that

∥u∥Z′
m(Rn,µD) ≤ C ∥∇mu∥X(Rn,µD) , u ∈ V m

0 X(Rn, µD). (3.2)

Moreover, the space Z ′
m(Rn, µD) is the optimal space in the previous inequality

among all rearrangement-invariant spaces in the following way. If Y (Rn, µD) is
a rearrangement-invariant space satisfying

∥u∥Y (Rn,µD) ≤ ˜︁C ∥∇mu∥X(Rn,µD) , u ∈ V m
0 X(Rn, µD), (3.3)

with a positive constant ˜︁C that does not depend on u, then

Z ′
m(Rn, µD) ↪→ Y (Rn, µD). (3.4)

On the other hand, if (3.1) is not true, then the inequality (3.3) does not hold
for any rearrangement-invariant space Y (Rn, µD).

Proof. The inequality (3.2) is true thanks to Proposition 2.9. Assume that (3.1)
holds and that Y (Rn, µD) is a rearrangement-invariant space satisfying (3.3).
Owing to Proposition 2.4 we obtain the fact that Y (Rn, µD) satisfies the in-
equality (2.17). It means that we can use the first inequality in (2.63) to obtain
the embedding (3.4).

Now, assume that (3.1) is not true. Then owing to Lemma 2.10 there does not
exist any rearrangement-invariant space Y (Rn, µD) such that (2.17) holds. Then
by Proposition 2.4 there is not any rearrangement-invariant space Y (Rn, µD) such
that (3.3) is true.

In the following proposition we show that the norm of the space Zm(Rn, µD)
is equivalent to a different rearrangement-invariant function norm provided the
boundedness of the maximal nonincreasing operator P . We will use this equiva-
lence in Theorem 3.3.
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Proposition 3.2. Let X be a rearrangement-invariant space over (Rn, µD). As-
sume that the maximal nonincreasing operator P is bounded on the space X(0, ∞).
Then the functional σm defined in (2.51) is equivalent to the functional

u ↦→
⃦⃦⃦⃦∫︂ ∞

t
u∗∗

µD
(τ)τ m

D
−1 dτ

⃦⃦⃦⃦
X′(0,∞)

, u ∈ M+(Rn, µD). (3.5)

Proof. For every u ∈ M+(Rn, µD) we have⃦⃦⃦⃦∫︂ ∞

t
u∗∗

µD
(τ)τ m

D
−1 dτ

⃦⃦⃦⃦
X′(0,∞)

= sup
∥g∥X(0,∞)≤1

∫︂ ∞

0
g∗(t)

∫︂ ∞

t
u∗∗

µD
(τ)τ m

D
−1 dτdt

= sup
∥g∥X(0,∞)≤1

∫︂ ∞

0
u∗∗

µD
(τ)τ m

D
−1
∫︂ τ

0
g∗(t) dtdτ = sup

∥g∥X(0,∞)≤1

∫︂ ∞

0
u∗∗

µD
(τ)τ m

D g∗∗(τ) dτ.

The first equality holds thanks to (1.13). Since the operator P is bounded on the
space X(0, ∞), we obtain

sup
∥g∥X(0,∞)≤1

∫︂ ∞

0
u∗∗

µD
(τ)τ m

D g∗∗(τ) dτ ≤ ∥P∥X(0,∞)→X(0,∞)

⃦⃦⃦
t

m
D u∗∗

µD
(t)
⃦⃦⃦

X′(0,∞)

owing to (1.4).
On the other hand, for every u ∈ M+(Rn, µD), we have

∥u∥Zm(Rn,µD) =
⃦⃦⃦
t

m
D u∗∗

µD
(t)
⃦⃦⃦

X′(0,∞)
≤ 4 sup

∥g∥X(0,∞)≤1

∫︂ ∞

0
g∗(τ)τ m

D u∗∗
µD

(τ) dτ

≤ 4 sup
∥g∥X(0,∞)≤1

∫︂ ∞

0
g∗∗(τ)τ m

D u∗∗
µD

(τ) dτ,

where the first inequality holds owing to (1.24).

Remark. If the condition (3.1) is satisfied, then, by virtue of [17, Theorem 6.3],
we obtain the fact that the functional (3.5) is a rearrangement-invariant Banach
function norm.
Remark. Assume that D ∈ N and that we work on the space RD with the
Lebesgue measure. The operator Im defined by

Im(u)(x) = π
D
2 2m Γ(m

2 )
Γ(D−m

2 )

∫︂
RD

u(y)
|x − y|D−m dy

for those functions u ∈ M(RD) for which the integral exists for almost every
x ∈ RD is called the Riesz potential of order m. Assume that X is a rear-
rangement-invariant Banach function space over RD such that t

m
D

−1χ(1,∞)(t) ∈
X ′(0, ∞) and that the maximal nonincreasing operator P is bounded on the space
X(0, ∞). We say that the rearrangement-invariant Banach function space Y (RD)
is a target space for the Riesz potential defined on X(RD) if the Riesz potential
is bounded from X(RD) to Y (RD). By virtue of Theorem 3.1, Proposition 3.2
and [17, Theorem 6.3], we obtain the following facts. There exists the optimal
target space Ym(RD) for the Riesz potential defined on X(RD) and this space is
equivalent to the space Z ′

m(RD).
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Now we start describing the optimal space for the Lorentz–Karamata space
Lp,q,b(Rn, µD). In the following theorem we deal with the case p ∈

[︂
1, D

m

)︂
.

Theorem 3.3. Let p ∈
[︂
1, D

m

)︂
, let q ∈ [1, ∞] and let b be a slowly varying

function. Furthermore, assume that one of the following conditions is satisfied:

1. p ∈
(︂
1, D

m

)︂
,

2. p = q = 1 and b is equivalent to a nonincreasing function on (0, ∞).

Then the optimal space in (3.2) for X(Rn, µD) equal to the Lorentz–Karamata
space Lp,q,b(Rn, µD) is the space Z ′

m(Rn, µD) defined by (2.52). Moreover, the
optimal space Z ′

m(Rn, µD) is equivalent to L
Dp

D−mp
,q,b(Rn, µD).

Proof. Owing to (1.33) we obtain the fact that the space
(︂
Lp,q,b(Rn, µD)

)︂′

is equivalent to the space Lp′,q′,b−1(Rn, µD). Recall that b−1 is the function 1
b
.

We have⃦⃦⃦
t

m
D

−1χ(1,∞)(t)
⃦⃦⃦

Lp′,q′,b−1 (0,∞)
=
⃦⃦⃦⃦
t

1
p′ − 1

q′ (t + 1)m
D

−1b−1(t)
⃦⃦⃦⃦

Lq′ (0,∞)
< ∞. (3.6)

The equality holds since(︂
τ

m
D

−1χ(1,∞)(τ)
)︂∗

(t) = (t + 1)
m
D

−1 (3.7)

for every t ∈ (0, ∞). We show that the inequality is also valid. Recall the
fact that, for every r ∈ R, br is a slowly varying function. If q ∈ (1, ∞], then
p ∈

(︂
1, D

m

)︂
. We have

∫︂ 1

0
τ

q′
p′ −1(τ + 1)q′( m

D
−1)b−q′(τ) dτ < ∞ (3.8)

owing to (1.27). We also have∫︂ ∞

1
τ

q′
p′ −1(τ + 1)q′( m

D
−1)b−q′(τ) dτ <

∫︂ ∞

1
τ

q′( 1
p′ + m

D
−1)−1

b−q′(τ) dτ < ∞. (3.9)

The second inequality holds thanks to (1.28) since 1
p′ + m

D
−1 < 0. The inequality

in (3.6) is now true by virtue of (3.8) and (3.9). If q = 1, then p ∈
[︂
1, D

m

)︂
. We

have

sup
t∈(1,∞)

t
1
p′ (t + 1)m

D
−1b−1(t) < sup

t∈(1,∞)
t

1
p′ + m

D
−1

b−1(t) < ∞. (3.10)

The second inequality holds owing to (1.30) since 1
p′ + m

D
− 1 < 0. We also have

sup
t∈(0,1)

t
1
p′ (t + 1)m

D
−1b−1(t) < ∞. (3.11)

If p ∈
(︂
1, D

m

)︂
, then the inequality is valid by virtue of (1.29) since 1

p′ > 0. If
p = 1, then we assume that b is equivalent to a nonincreasing function on (0, ∞).
It means that the function b−1 is equivalent to a nondecreasing function on (0, ∞).
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So, the inequality (3.11) is valid since b−1 is bounded on (0, 1). The inequality in
(3.6) is now valid owing to (3.10) and (3.11). It means that owing to Theorem 3.1,
the space Z ′

m(Rn, µD) is the optimal space for Lp,q,b(Rn, µD).
It remains to prove that the space Z ′

m(Rn, µD) is equivalent to the space
L

Dp
D−mp

,q,b(Rn, µD). Firstly, assume that p ∈
(︂
1, D

m

)︂
. Owing to (1.32) the maximal

nonincreasing operator P is bounded on the space Lp,q,b(0, ∞). It means that by
virtue of Proposition 3.2, the norm of the space Zm(Rn, µD) is equivalent to the
functional

u ↦→
⃦⃦⃦⃦
t

1
q

− 1
p b−1(t)

∫︂ ∞

t
u∗∗

µD
(τ)τ m

D
−1 dτ

⃦⃦⃦⃦
Lq′ (0,∞)

, u ∈ M+(Rn, µD). (3.12)

The associate space
(︃

L
Dp

D−mp
,q,b(Rn, µD)

)︃′
is equivalent to L( Dp

D−mp)′
,q′,b−1

(Rn, µD)
thanks to (1.33). We have

(︄
Dp

D − mp

)︄′

=
Dp

D−mp
Dp

D−mp
− 1

= Dp

Dp − D + mp
.

It means that the norm of L( Dp
D−mp)′

,q′,b−1
(Rn, µD) is equivalent to the functional

u ↦→
⃦⃦⃦
t

1
q

− 1
p

+ m
D b−1(t)u∗∗

µD
(t)
⃦⃦⃦

Lq′ (0,∞)
, u ∈ M+(Rn, µD), (3.13)

owing to (1.32). By virtue of (1.5) it remains to prove that the functionals (3.12)
and (3.13) are equivalent. Since

t
m
D = m

D
(︂
1 − 2− m

D

)︂ ∫︂ t

t
2

τ
m
D

−1 dτ,

we obtain

t
m
D u∗∗

µD
(t) ≤ m

D
(︂
1 − 2− m

D

)︂ ∫︂ t

t
2

u∗∗
µD

(τ)τ m
D

−1 dτ ≤ m

D
(︂
1 − 2− m

D

)︂ ∫︂ ∞

t
2

u∗∗
µD

(τ)τ m
D

−1 dτ

(3.14)

for every u ∈ M+(Rn, µD) and for every t ∈ (0, ∞). In the first inequality
we also used the fact that the function u∗∗

µD
is nonincreasing. By virtue of (1.26)

and (3.14), we obtain existence of a constant C1 > 0 such that

t
1
q

− 1
p

+ m
D b−1(t)u∗∗

µD
(t) ≤ 2

1
q

− 1
p mC1

D
(︂
1 − 2− m

D

)︂ (︃ t

2

)︃ 1
q

− 1
p

b−1
(︃

t

2

)︃ ∫︂ ∞

t
2

u∗∗
µD

(τ)τ m
D

−1 dτ

(3.15)

for every u ∈ M+(Rn, µD) and for every t ∈ (0, ∞). Owing to (1.25) and (3.15)
we obtain existence of a constant C2 > 0 such that⃦⃦⃦

t
1
q

− 1
p

+ m
D b−1(t)u∗∗

µD

⃦⃦⃦
Lq′ (0,∞)

≤ C2

⃦⃦⃦⃦
t

1
q

− 1
p b−1(t)

∫︂ ∞

t
u∗∗

µD
(τ)τ m

D
−1 dτ

⃦⃦⃦⃦
Lq′ (0,∞)
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for every u ∈ M+(Rn, µD). Now we prove the opposite inequality, i.e., we prove
that there exists a constant K1 > 0 such that⃦⃦⃦⃦

t
1
q

− 1
p b−1(t)

∫︂ ∞

t
u∗∗

µD
(τ)τ m

D
−1 dτ

⃦⃦⃦⃦
Lq′ (0,∞)

≤ K1

⃦⃦⃦
t

1
q

− 1
p

+ m
D b−1(t)u∗∗

µD
(t)
⃦⃦⃦

Lq′ (0,∞)
,

(3.16)

for every u ∈ M+(Rn, µD). By virtue of the weighted Hardy inequality ([28,
Theorem 2]), the inequality (3.16) is valid if

sup
t∈(0,∞)

⃦⃦⃦
τ

1
q

− 1
p b−1(τ)

⃦⃦⃦
Lq′ (0,t)

⃦⃦⃦
τ

1
p

− 1
q

−1b(τ)
⃦⃦⃦

Lq(t,∞)
< ∞. (3.17)

Again, recall the fact that, for every r ∈ R, br is a slowly varying function. If
q ∈ (1, ∞], then we have⃦⃦⃦

τ
1
q

− 1
p b−1(τ)

⃦⃦⃦
Lq′ (0,t)

≈ t1− 1
p b−1(t) (3.18)

on (0, ∞) thanks to (1.27) since q′(1
q
− 1

p
) = q(p−1)

p(q−1) −1 and q(p−1)
p(q−1) > 0. If q ∈ [1, ∞),

then we have ⃦⃦⃦
τ

1
p

− 1
q

−1b(τ)
⃦⃦⃦

Lq(t,∞)
≈ t

1
p

−1b(t) (3.19)

on (0, ∞) owing to (1.28) since q(1
p

− 1
q

− 1) = q(1
p

− 1) − 1 and q(1
p

− 1) < 0. If
q = 1, then we have

sup
τ∈(0,t)

τ 1− 1
p b−1(τ) ≈ t1− 1

p b−1(t) (3.20)

on (0, ∞) by virtue of (1.29). If q = ∞, then we have

sup
τ∈(t,∞)

τ
1
p

−1b(τ) ≈ t
1
p

−1b(t) (3.21)

on (0, ∞) owing to (1.30). If we combine (3.18)–(3.21), we obtain the fact that
the function

t ↦→
⃦⃦⃦
τ

1
q

− 1
p b−1(τ)

⃦⃦⃦
Lq′ (0,t)

⃦⃦⃦
τ

1
p

− 1
q

−1b(τ)
⃦⃦⃦

Lq(t,∞)
, t ∈ (0, ∞)

is equivalent to a constant on (0, ∞) for every q ∈ [1, ∞]. It means that the
inequality (3.17) holds for every q ∈ [1, ∞].

Now we prove that the space Z ′
m(Rn, µD) is equivalent to L

Dp
D−mp

,q,b(Rn, µD)
under the assumption that p = q = 1 and that b is equivalent to a nonin-
creasing function on (0, ∞). It means that we want to prove that the space
Z ′

m(Rn, µD) is equivalent to the space L
D

D−m
,1,b(Rn, µD). Thanks to (1.33) we

have
(︂
L

D
D−m

,1,b(Rn, µD)
)︂′

= L
D
m

,∞,b−1(Rn, µD). Owing to (1.5) it is sufficient to
prove that the space Zm(Rn, µD) is equivalent to the space L

D
m

,∞,b−1(Rn, µD).
Thanks to (1.32) the space L

D
m

,∞,b−1(Rn, µD) is equivalent to L( D
m

,∞,b−1)(Rn, µD),
so, it is sufficient to prove that Zm(Rn, µD) is equivalent to L( D

m
,∞,b−1)(Rn, µD).

By virtue of (1.33) we obtain

∥u∥Zm(Rn,µD) =
⃦⃦⃦
t

m
D u∗∗

µD
(t)
⃦⃦⃦

L∞,∞,b−1 (0,∞)
(3.22)
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for each u ∈ M+(Rn, µD). For every u ∈ M+(Rn, µD) we have

∥u∥Zm(Rn,µD) ≤
⃦⃦⃦⃦
⃦ sup

τ∈[t,∞)
τ

m
D u∗∗

µD
(τ)
⃦⃦⃦⃦
⃦

L∞,∞,b−1 (0,∞)
= sup

t∈(0,∞)
b−1(t) sup

τ∈[t,∞)
τ

m
D u∗∗

µD
(τ)

= sup
τ∈(0,∞)

τ
m
D u∗∗

µD
(τ) sup

t∈(0,τ ]
b−1(t) ≤ K2 sup

t∈(0,∞)
b−1(t)tm

D u∗∗
µD

(t)

= K2 ∥u∥
L( D

m ,∞,b−1)(Rn,µD)
,

where K2 > 0 is a constant that does not depend on u. The first inequality follows
from (3.22). The last inequality holds since b−1 is equivalent to a nondecreasing
function on (0, ∞). So, we have proved the first inequality. To prove the opposite
inequality, we exploit [17, Lemma 4.10]. This lemma works with the concept of a
quasiconcave function. A function φ : [0, ∞) → [0, ∞) is quasiconcave if φ(0) = 0,
φ is nondecreasing on [0, ∞) and φ(t)

t
is nonincreasing on (0, ∞). Owing to the

lemma we have the fact that if X(0, ∞) is a rearrangement-invariant space and
φ is a quasiconcave function, then there exists a constant K3 > 0 such that⃦⃦⃦⃦

⃦ sup
τ∈[t,∞)

φ(τ)u∗∗
µD

(τ)
⃦⃦⃦⃦
⃦

X(0,∞)
≤ K3

⃦⃦⃦
φ(t)u∗∗

µD
(t)
⃦⃦⃦

X(0,∞)
(3.23)

for every u ∈ M+(Rn, µD). For every u ∈ M+(Rn, µD) we obtain

∥u∥
L( D

m ,∞,b−1)(Rn,µD)
= sup

t∈(0,∞)
b−1(t)tm

D u∗∗
µD

(t) ≤ sup
t∈(0,∞)

b−1(t) sup
τ∈[t,∞)

τ
m
D u∗∗

µD
(τ)

=
⃦⃦⃦⃦
⃦ sup

τ∈[t,∞)
τ

m
D u∗∗

µD
(τ)
⃦⃦⃦⃦
⃦

L∞,∞,b−1 (0,∞)
≤ K4

⃦⃦⃦
t

m
D u∗∗

µD
(t)
⃦⃦⃦

L∞,∞,b−1 (0,∞)

= K4

⃦⃦⃦
u∗∗

µD

⃦⃦⃦
Zm(Rn,µD)

,

where K4 > 0 is a constant that is independent of u. The last inequality holds
owing to (3.23) since the function t ↦→ t

m
D , t ∈ [0, ∞), is quasiconcave. The last

equality is valid thanks to (3.22).

In the rest of this chapter, we consider the space L
D
m

,q,b(Rn, µD).
Proposition 3.4. Let q ∈ [1, ∞] and let b be a slowly varying function. If⃦⃦⃦⃦

t
− 1

q′ b−1(t)
⃦⃦⃦⃦

Lq′ (1,∞)
< ∞, (3.24)

then the optimal space in (3.2) for X(Rn, µD) equal to the Lorentz–Karamata
space L

D
m

,q,b(Rn, µD) exists and it is equal to the space Z ′
m(Rn, µD) defined by

(2.52). On the other hand, if (3.24) does not hold, then the inequality (3.2) for
X(Rn, µD) equal to L

D
m

,q,b(Rn, µD) does not hold for any rearrangement-invariant
space Y (Rn, µD).

Proof. We have the fact that
(︂
L

D
m

,q,b(Rn, µD)
)︂′

= L
D

D−m
,q′,b−1(Rn, µD) thanks to

(1.33). In view of Theorem 3.1 it is enough to prove that (3.24) is true if and
only if ⃦⃦⃦

t
m
D

−1χ(1,∞)(t)
⃦⃦⃦

L
D

D−m
,q′,b−1

(0,∞)
< ∞. (3.25)
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We have⃦⃦⃦
t

m
D

−1χ(1,∞)(t)
⃦⃦⃦

L
D

D−m
,q′,b−1

(0,∞)
=
⃦⃦⃦⃦
t
1− m

D
− 1

q′ (t + 1)m
D

−1b−1(t)
⃦⃦⃦⃦

Lq′ (0,∞)
(3.26)

by virtue of (3.7). Now, we prove that⃦⃦⃦⃦
t
1− m

D
− 1

q′ (t + 1)m
D

−1b−1(t)
⃦⃦⃦⃦

Lq′ (0,1)
< ∞. (3.27)

Recall that br is a slowly varying function for every r ∈ R. If q ∈ (1, ∞], then we
obtain ∫︂ 1

0
τ q′(1− m

D
)−1(τ + 1)q′( m

D
−1)b−q′(τ) dτ < ∞

owing to (1.27) since 1 − m
D

> 0. If q = 1, then we have

sup
t∈(0,1)

t1− m
D (t + 1)m

D
−1b−1(t) < ∞

by virtue of (1.29) since 1− m
D

> 0. It means that (3.27) is valid. Now, combining
(3.26) with (3.27), we obtain the fact that the inequality (3.24) is valid if and
only if the inequality (3.25) is valid since the function (t + 1)m

D
−1 is equivalent to

the function t
m
D

−1 on (1, ∞).

In the following theorem we describe the optimal space Z ′
m(Rn, µD) for the

space L
D
m

,q,b(Rn, µD) if q ∈ (1, ∞].
Theorem 3.5. Let q ∈ (1, ∞] and let b be a slowly varying function. Assume
that (3.24) is true. Define the function b̃ : (0, ∞) → (0, ∞) by

b̃(t) = b1−q′(t)∫︁∞
t τ−1b−q′(τ) dτ

, t ∈ (0, ∞).

Then the optimal space Z ′
m(Rn, µD) for the space L

D
m

,q,b(Rn, µD) is equivalent to
L∞,q,b̃(Rn, µD).
Remark. Owing to [31, Lemma 2.16] we obtain the fact that b̃ is a slowly varying
function. So, L∞,q,b̃(Rn, µD) is indeed a Lorentz–Karamata space.

Proof. The existence of the optimal space Z ′
m(Rn, µD) follows from Proposi-

tion 3.4. We have the fact that L∞,q,b̃(Rn, µD) is equivalent to L(∞,q,b̃)(Rn, µD)
thanks to (1.32). By virtue of [31, Theorem 3.32] we obtain the fact that the
space L(∞,q,b̃)(Rn, µD) is equivalent to

(︂
L(1,q′,b−1)(Rn, µD)

)︂′
. So, it is sufficient

to prove that Zm(Rn, µD) is equivalent to L(1,q′,b−1)(Rn, µD) owing to (1.5). For
every u ∈ M+(Rn, µD) we have

∥u∥L(1,q′,b−1)(Rn,µD) =
⃦⃦⃦⃦
t
1− 1

q′ b−1(t)u∗∗
µD

(t)
⃦⃦⃦⃦

Lq′ (0,∞)

≤
⃦⃦⃦⃦
⃦tD−m

D
− 1

q′ b−1(t) sup
τ∈[t,∞)

τ
m
D u∗∗

µD
(τ)
⃦⃦⃦⃦
⃦

Lq′ (0,∞)

=
⃦⃦⃦⃦
⃦ sup

τ∈[t,∞)
τ

m
D u∗∗

µD
(τ)
⃦⃦⃦⃦
⃦

L
D

D−m
,q′,b−1

(0,∞)
≤ C1

⃦⃦⃦
t

m
D u∗∗

µD
(t)
⃦⃦⃦

L
D

D−m
,q′,b−1

(0,∞)

= C1 ∥u∥Zm(Rn,µD) ,
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where C1 > 0 is a constant that does not depend on u. The second inequality is
true owing to [17, Lemma 4.10] (see (3.23)). The last equality is valid since(︂

L
D
m

,q,b(Rn, µD)
)︂′

= L
D

D−m
,q′,b−1(Rn, µD) (3.28)

up to the equivalence of norms by virtue of (1.33).
On the other hand, for every u ∈ M+(Rn, µD), we obtain

∥u∥Zm(Rn,µD) =
⃦⃦⃦
t

m
D u∗∗

µD
(t)
⃦⃦⃦

L
D

D−m
,q′,b−1

(0,∞)
≤
⃦⃦⃦⃦
⃦ sup

τ∈[t,∞)
τ

m
D u∗∗

µD
(τ)
⃦⃦⃦⃦
⃦

L
D

D−m
,q′,b−1

(0,∞)

=
⃦⃦⃦⃦
⃦tD−m

D
− 1

q′ b−1(t) sup
τ∈[t,∞)

τ
m
D u∗∗

µD
(τ)
⃦⃦⃦⃦
⃦

Lq′ (0,∞)
≤ C2

⃦⃦⃦⃦
t
1− 1

q′ b−1(t)u∗∗
µD

(t)
⃦⃦⃦⃦

Lq′ (0,∞)

= ∥u∥L(1,q′,b−1)(Rn,µD) , (3.29)

where C2 > 0 is a constant independent of u. The first equality is true thanks to
(3.28). To prove the second inequality, we use [18, Theorem 3.2]. Owing to this
theorem the second inequality in (3.29) is valid if for every t ∈ (0, ∞) it is true
that

t
m
D

⃦⃦⃦⃦
τ

D−m
D

− 1
q′ b−1(τ)

⃦⃦⃦⃦
Lq′ (0,t)

≤ K
⃦⃦⃦⃦
τ

1− 1
q′ b−1(τ)

⃦⃦⃦⃦
Lq′ (0,t)

, (3.30)

where K > 0 is a constant that does not depend on t. The inequality (3.30) is
true since by virtue of (1.27) we obtain the fact that

t
m
D

⃦⃦⃦⃦
τ

D−m
D

− 1
q′ b−1(τ)

⃦⃦⃦⃦
Lq′ (0,t)

≈ tb−1(t) ≈
⃦⃦⃦⃦
τ

1− 1
q′ b−1(τ)

⃦⃦⃦⃦
Lq′ (0,t)

on (0, ∞). It means that the second inequality in (3.29) is valid.

In the last theorem of this thesis, we show the equivalent expression of the
norm of the optimal space Z ′

m(Rn, µD) for the space L
D
m

,1,b(Rn, µD).

Theorem 3.6. Let b be a slowly varying function. Assume that

inf
t∈(1,∞)

b(t) > 0.

Furthermore, assume that b−1 is a locally Lipschitz function on (0, ∞). Define
the function b̂ : (0, ∞) → (0, ∞) by

b̂(t) = inf
τ∈[t,∞)

b(τ), t ∈ (0, ∞).

Then the following two statements are true.

1. If lim
t→0+

b̂(t) = 0, then the norm of the optimal space Z ′
m(Rn, µD) for the

space L
D
m

,1,b(Rn, µD) is equivalent to the functional

u ↦→
⃦⃦⃦
b̂

′(t)u∗
µD

(t)
⃦⃦⃦

L1(0,∞)
, u ∈ M(Rn, µD).
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2. If lim
t→0+

b̂(t) > 0, then the norm of the optimal space Z ′
m(Rn, µD) for the

space L
D
m

,1,b(Rn, µD) is equivalent to the functional

u ↦→
⃦⃦⃦
b̂

′(t)u∗
µD

(t)
⃦⃦⃦

L1(0,∞)
+ ∥u∥L∞(Rn,µD) , u ∈ M(Rn, µD).

Proof. The optimality of the space Z ′
m(Rn, µD) follows from Proposition 3.4.

Note that

b̂(t) = 1
sup

τ∈[t,∞)
b−1(τ) , t ∈ (0, ∞). (3.31)

Owing to [31, Lemma 2.16] we have the fact that b̂ is a slowly varying function.
By virtue of [31, Proposition 3.7] we obtain the fact that

L(1,∞,b̂
−1)(Rn, µD) = L(1,∞,b−1)(Rn, µD) (3.32)

up to the equivalence of norms. Now, we prove that

Zm(Rn, µD) = L(1,∞,b−1)(Rn, µD) (3.33)

up to the equivalence of norms. For each u ∈ M+(Rn, µD) we have

∥u∥Zm(Rn,µD) =
⃦⃦⃦
t

m
D u∗∗

µD
(t)
⃦⃦⃦

L
D

D−m
,∞,b−1

(0,∞)
≤
⃦⃦⃦⃦
⃦ sup

τ∈[t,∞)
τ

m
D u∗∗

µD
(τ)
⃦⃦⃦⃦
⃦

L
D

D−m
,∞,b−1

(0,∞)

= sup
t∈(0,∞)

t
D−m

D b−1(t) sup
τ∈[t,∞)

τ
m
D u∗∗

µD
(τ) = sup

τ∈(0,∞)
τ

m
D u∗∗

µD
(τ) sup

t∈(0,τ ]
t1− m

D b−1(t)

≤ C1 sup
t∈(0,∞)

tb−1(t)u∗∗
µD

(t) = C1 ∥u∥L(1,∞,b−1)(Rn,µD) ,

where C1 > 0 is a constant that does not depend on u. The first equality is valid
since (︂

L
D
m

,1,b(Rn, µD)
)︂′

= L
D

D−m
,∞,b−1(Rn, µD) (3.34)

up to the equivalence of norms owing to (1.33). The second inequality follows from
the fact that the function t1− m

D b−1(t) is equivalent to a nondecreasing function on
(0, ∞).

On the other hand, for every u ∈ M+(Rn, µD), we obtain

∥u∥L(1,∞,b−1)(Rn,µD) = sup
t∈(0,∞)

tb−1(t)u∗∗
µD

(t) ≤ sup
t∈(0,∞)

t1− m
D b−1(t) sup

τ∈[t,∞)
τ

m
D u∗∗

µD
(τ)

=
⃦⃦⃦⃦
⃦ sup

τ∈[t,∞)
τ

m
D u∗∗

µD
(τ)
⃦⃦⃦⃦
⃦

L
D

D−m
,∞,b−1

(0,∞)
≤ C2

⃦⃦⃦
t

m
D u∗∗

µD
(t)
⃦⃦⃦

L
D

D−m
,∞,b−1

(0,∞)

= C2 ∥u∥Zm(Rn,µD) ,

where C2 > 0 is a constant that is independent of u. The second inequality is
valid by virtue of [17, Lemma 4.10] (see (3.23)). The last equality is true owing
to (3.34). So, we have proved (3.33).
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Owing to (3.31) we have the fact that b̂
−1(t) = sup

τ∈[t,∞)
b−1(τ) for every t ∈

(0, ∞). Now, we prove that this function is locally absolutely continuous on
(0, ∞). We know that b−1 is a locally Lipschitz function on (0, ∞). We show
that b̂

−1 is also locally Lipschitz on (0, ∞). So, choose an arbitrary closed in-
terval [t1, t2] ⊆ (0, ∞). For arbitrary s1, s2 ∈ [t1, t2], s1 ≤ s2, it is true that
|b−1(s1) − b−1(s2)| ≤ L(s2 − s1) for some L > 0, which depends on the interval
[t1, t2]. If sup

τ∈[s1,∞)
b−1(τ) = sup

τ∈[s2,∞)
b−1(τ), then we obtain b̂

−1(s1) − b̂
−1(s2) = 0. If

sup
τ∈[s1,∞)

b−1(τ) > sup
τ∈[s2,∞)

b−1(τ), then we have

b̂
−1(s1) − b̂

−1(s2) = max
τ∈[s1,s2]

b−1(τ) − sup
τ∈[s2,∞)

b−1(τ) ≤ max
τ∈[s1,s2]

b−1(τ) − b−1(s2)

≤ L(s2 − s1).

So, the function b̂
−1 is locally Lipschitz on (0, ∞), and so it is also locally abso-

lutely continuous on (0, ∞). It means that we can use [31, Theorem 3.32] with
the space L(1,∞,b̂

−1)(Rn, µD) to obtain the fact that the statements (1.) and (2.)
are true since (3.32) and (3.33) are valid.

Remark. The assumption that b−1 is locally Lipschitz on (0, ∞) does not entail
significant loss of generality since common slowly varying functions satisfy this
condition.
Remark. If the function b is in addition nonincreasing on (0, 1] and constant on
[1, ∞), then we obtain the fact that b̂ is constant on (0, ∞), so b̂

′
≡ 0 on (0, ∞).

It means that the optimal space Z ′
m(Rn, µD) is equivalent to L∞(Rn, µD).

Remark. The optimal space Z ′
m(Rn, µD) from the preceding theorem is equivalent

to the function space Λ1(b̂′)(Rn, µD) if lim
t→0+

b̂(t) = 0 and to Λ1(b̂′)(Rn, µD) ∩

L∞(Rn, µD) if lim
t→0+

b̂(t) > 0. The function space Λ1(b̂′)(Rn, µD) is an example of
a so-called classical Lorentz space (e.g., see [33, Chapter 10]). It is defined as the
collection of all functions f ∈ M(Rn, µD) such that ∥b̂

′(t)f ∗
µD

(t)∥L1(0,∞) < ∞.
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