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Abstract

Over the last fifty years the research field of the public goods game experi-
ment became increasingly more convoluted. Especially in the area of learning
models, which attempted to explain the experimental data, many models with
different mechanisms were proposed and studied. However, when it comes to
assessing the performance of the models in relation to each other, few conclu-
sions were reached. This thesis attempts to further the comparative analysis
conducted in Cotla (2015). Using R software simulations, three directional
learning models are assessed on their ability to accurately predict experimental
data. Among the considered models, K-strong equilibrium model is found to be
the best predicting model for all of public goods game experiments considered
in this thesis.
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Abstrakt

V průběhu posledních padesáti let se výzkum hry veřejných statků stal čím
dál tím více komplexním. Zejména v oblasti modelů učení se, které se pok-
oušejí vysvětlit experimentální data, bylo navrženo a studováno velké množství
modelů. Nícméně, co se týče porovnání výkonnosti těchto modelů vůči jiným,
nebylo dosaženo mnoho závěrů. Tato práce se pokouší rozšířit komparativní
analýzu provedenou v Cotla (2015). Za pomocí softwaru R, jsou tři modely
učení se posouzeny na základě jejich schopnosti přesně předpovídat experi-
mentální výsledky. Mezi těmito modely je K-strong equilibrium model tím
nejúspěšnějším v předvídání všech výsledků experimentu hry veřejných statků,
které jsou v této práci brány v potaz.
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Chapter 1

Introduction

Today the public goods game (PGG) setting is one of the classic laboratory
paradigms of experimental economics. Although as an experiment only intro-
duced in the 1970s (Bohm (1972)), the concepts that lead to its origin date as
far back as philosophy itself. In the beginning of his second book of Politics
Aristotle notes: “That which is common to the greatest number gets the least
amount of care,” (Aristotle (1905/ca. 350 B.C.E.)). Thus, describing a phe-
nomenon that is almost 2000 years later named by Garrett Hardin, an American
ecologist, as the “Tragedy of Commons” in an article of the same name in rela-
tion to publicly accessible resources in Hardin (1968). Hardin’s essay inspires
other scholars to approach this area in their research. A 2009 Nobel prize win-
ner, economist Elinor Ostrom, showed in the 1970s, that although uncontrolled
exploitation is a rational choice, varying degrees of cooperation appear in the
real world to avoid the tragedy of commons scenario (Ostrom (1990)). Later,
a complementary concept emerged, where instead of exploiting an existing re-
source, people voluntarily contribute to create a new one. Experimentally, that
is what is most commonly referred to as the public goods game.

Although the game is studied extensively there is still no consensus as to
what motivates people to contribute money towards the public good against
the game theoretic Nash equilibrium strategy of free riding. Initially it was
thought that it must be the good nature of people - their sense for the good
of the whole society and joy from being selfless - that motivates their actions.
Subsequent research however sewed seeds of doubt into this hypothesis. At the
same time many other motives, frequently concentrated around learning, have
been suggested and investigated, but none have managed to rise from the field
of research to the sphere of common knowledge of behavioural economists and
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their students. As the public goods game framework is so simple and popular
the scope of research conducted with its help or directly focused on it is immense
and attempts at clarification of the findings and systematic overview are rare.

This thesis is focused on the evolution of average contributions in repeated
PGGs and specifically how learning contributes to the decay in this contribu-
tion level across consecutive rounds of the game. The public goods game and
its most popular variations are explored, and the mathematical description of
the game is established. On these foundations a part of the PGG research
is overviewed to help the reader see how learning became a prominent con-
cept in PGG data explanation. Later a thorough description of three selected
models is presented and these models are then analysed both to explore their
characteristics as well as compare them amongst themselves in their ability to
predict experimental data. The aim is to see whether there is a model that is
significantly better at predicting the contribution levels in PGGs with different
parameters. The inner workings of such model might also help in explaining
the mechanisms through which individuals learn in economic experiments. The
possibility of dropping some models in favour of better performing ones may
also help clarify the research field in the long run.

In chapter 2 can be found the game theory necessary to understand the
public goods game and some of its variations. Chapter 3 overviews the existing
literature divided into four sections: the first one talking about experiments
with descriptive goals, the second one being focused on experiments tying the
explanation of the contribution levels in the public goods game experiments to
prosociality and personal characteristics of the agents, and the third section
presenting research focused on learning as an explanation of the experimental
results. The last section offers a brief insight into how PGG frameworks are
used in research, which extends to actual real life scenarios and can clearly
highlight the significance of understanding this framework thoroughly.



Chapter 2

Public goods game

This chapter includes a brief summary of the history of game theory, math-
ematical description of the public goods game (PGG) and an overview of the
most studied variations of the PGG experiment.

2.1 Brief history of game theory

When it comes to a rigorous approach to experiments like the public goods
game, the underlying mathematical theory is known as game theory. Its math-
ematical foundations are attributed to John von Neumann, who cooperated
with Oskar Morgenstern, to broaden the work of Emile Borel as well as his
own article from 1928 (Borel (1921), Neumann (1928)). Morgenstern’s and
von Neumann’s groundbreaking work on game theory was published in their
book Theory of Games and Economic behavior. (von Neumann, Morgenstern
1944). A game in the sense of game theory is any interaction between at least
two players, where their optimizing strategies are intertwined, i.e. the best
choice for one of the players depends on the action taken by the other player(s)
and vice versa. Hence the three major components of any game are the set of
players (for uses in the field of economics generally referred to as agents), set
of strategies (also referred to as actions), that they can choose, and a set of
payoffs.

The solutions to games have been named equilibria, as a direct analogy
of physical systems, where the system is said to be in equilibrium if its state
remains constant unless acted upon by an external force. Initial solution ap-
proaches were limited and involved for example the simple elimination of all
strategies which would lead to lesser payoffs for the agent regardless of the other
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agent(s)’ choices. In Nash (1950) and Nash (1951) mathematician John Forbes
Nash jr. proved the existence of a solution, possibly probabilistic, to any finite
game, and described the solution procedure. His solution concept is known
as Nash equilibrium and it is the most known and used equilibrium concept
for judging the quality, stability and rationality of different strategies chosen
by players in these games. It is a concept so well known that its definition is
included also in the Oxford English Dictionary - “noun an array of strategies,
one for each player, in which no player has an incentive (in terms of gaining an
improved advantage) to change his or her strategy as long as none of the other
players change theirs.” In games where the Nash equilibrium takes on the form
of agents choosing between two or more strategies with fixed probabilities, as
opposed to choosing the same strategy every time, the equilibrium is said to
be an equilibrium in mixed strategies.

Over the course of less than a century various concepts of equilibria have
been described and studied. These are usually concepts made to specifically
fit games with particular properties and real world applications, however other
general solution concepts are researched as well. In particular the Lindhal
equilibrium presents a direct analogy for the standard stability point on the
competitive market - a state where the demand and supply of a good are
in balance and thus the marginal cost equals the marginal revenue for every
consumer. Isaac et al. (1985)

One more key concept for this thesis, which even predates the mathematical
Game theory, and is well used in economics, is Pareto efficiency. It allows for
evaluating the outcomes of a game in terms of their total social benefit. An
outcome is said to be Pareto efficient if neither agent can achieve a better
outcome for themselves without making the other agent(s) worse off. The
incorporation of Pareto efficiency to the analysis of game outcomes is attributed
to Schelling (1960).

2.2 Game theory of the simple PGG

To analyse the public goods game from the game theory perspective, let’s
first look at the mathematical description of the situation. The game is charac-
terized by a set of N agents, payoff function π(c), π : RN → RN , marginal rate
of return R, initial endowment Ei of agent i, (i = 1, ..., N) and an action set
consisting of contribution ci, such that 0 ≤ ci ≤ Ei, for each agent. Whether ci

is a real value or an integer depends on the setting of a particular experiment.
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Some experiments may only have action sets consisting of two choices - that is
- [contribute the full amount, not contribute]. The payoff function is defined
as

πi(c) = Ei − ci + R ·
N∑︂

j=1
cj, i = 1, ..., N (2.1)

where A is the initial endowment each agent receives at the beginning of the
experiment, ci is the contribution of agent i, r is the marginal rate of return
and cj is the contribution of agent j. Most PGGs have utility equal to the
payoff function and the agent’s total utility is summed over rounds in the case
of repeated PGG, but there are experiments which would let agents convert
payoff tokens to cash or extra class credit - this would lead to a differentiation
of the payoff and utility functions.

Trivially, the social optimum, i.e., Pareto efficient (optimal) point, here
is when each agent contributes fully. However, as conjectured by Samuelson
(1954) the private and public incentives in the environment with public goods
are in conflict and the provision of public good will be suboptimal in the sense of
social (Pareto) optimum. Brubaker (1975), Buchana (1968) and Olson (1974)
go further and show that in ideal conditions of the simple PGG setup, rational
players will not contribute at all - hence the Nash equilibrium of the game is
to free-ride (i.e. contribute zero).

2.3 Setting description and variations

John O. Ledyard (1995) in the Handbook of experimental economics notes,
that the scope of variations of a public goods game, as well as other social
dilemma problems, is far wider than would seem at first sight. If we focus on
the experiment as an environment in which two goods are produced - a public
and a private one - it can easily be seen that any experiment that enables
individuals to produce the public good from the private one via some function
g and gain utility via some function u can be viewed as part of the public goods
game experiment class. Among others, the Cournot duopoly model is also
mentioned as a public good environment. The research covered in this thesis
will focus mainly on the environment of linear symmetric variable contribution
one (i.e. where g and u are linear, the numbering of the agents doesn’t influence
the outcome of the experiment, and the contributions by agents are chosen from
a restricted set of natural numbers (Ledyard (1995)).

The simplest of settings of the PGG experiment was mathematically de-



2. Public goods game 6

scribed earlier. A trivial modification of that setting is to have the experiment
repeated for a finite number of rounds. From there arise endless options of mod-
ifications to the game. (Ledyard (1995)) Seven popular variations are described
in this section to acquaint the reader with the complexity of mechanisms and
variance of testable hypotheses:

Step-level public goods game

One of the easiest modifications to the game is the step-level modification
presented by Kragt et al. (1983). In this modification, the public pool is only
redistributed back to players with interest rate if a certain threshold of dona-
tions to the pool is reached. Should the threshold not be met, contributions
are given back to the agents, who submitted them, and all agents keep their
initial endowment. This enhances the uncertainty factor of the standard public
goods game and can affect agents’ behaviour differently with varying thresh-
olds. Understanding these changes can be helpful in formation and setting of
policies to achieve needed levels of contribution.

Volunteer’s dilemma

This version of the game is essentially a simplification of the public goods
game utility system and it is set up as such: players i = 1, ..., N have zero
utility to begin with and decide whether to cooperate (do a certain task such
as taking out the trash in their house) or defect (let someone else do the job).
If at least one player decides to cooperate and do the task at cost c, all players
will be rewarded. If all players defect, they will gain zero reward. Volunteer’s
dilemma can be seen as a special case of the step-level public goods game. Such
situations are very common in the real world and thus the experiment offers the
possibility of testing different incentives, or perhaps personal characteristics of
those most likely to volunteer, etc.

Tragedy of commons

As previously mentioned, tragedy of commons is a term coined even before
public goods game was designed as an experiment. As a modification of the
experiment itself, it is a term for a “reversal” of the game’s rules. Initially, the
endowment is concentrated in a public pool of money, from which each of the
agents (individually, or as a group) can decide to withdraw a certain amount.
This amount must be less or equal to the initial endowment.
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When this game is played repeatedly for several rounds, the initial endow-
ment recovers to the original “full” size at the rate of r > 1. In exact terms,
the endowment in period t + 1

Et+1 = Et −
N∑︂

j=1
ct

j · R, (2.2)

where Et is the endowment in period t, ct
j is the depletion of the endowment

by agent j in period t and r is the recovery rate. If the common resource is
fully depleted (Et+1 = 0), the game ends. This introduces a temporal conflict
to the game, where a high enough consumption of a resource in the current
period leads to small or zero consumption in following periods. This setting is
widely used in ecology, where depletion and protection of natural resources is
experimentally investigated.

Asymmetrical endowments and/or payoffs

The next type of setting used within this experimental framework is the
usage of different variants of asymmetrical endowments. Instead of every agent
having the same endowment and choosing whether to put it towards the public
fund, or choosing the amount to donate, there are different initial endowments,
i.e., ∃i, j ∈ (1, ..., N) : Ei ̸= Ej . These can take different forms from having
two endowment groups, to every player having a different initial amount. These
settings are used to explore how the endowment level of an agent influences the
amount that they put towards the pool.

Another variation that can be added into this setting is also having asym-
metrical payoffs - for example wealthier people benefiting less (having lower
return rate) from the common pool and poorer people benefiting more. There
it can be studied whether people will have prosocial tendencies and help raise
the poor people’s endowment by donating at a relatively lower cost.

Groups

Another set of variations of the experiment revolves around the number of
agents participating and the information they have about other agents. Initial
public goods game experiments had agents play in small groups of 4 to 10
agents (Andreoni (1988), 1995aa, 1995bb, Isaac & Walker (1988), 1994, Fehr &
Gachter (2000)). Larger number of agents in a single game was then introduced
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to examine a possible difference between small- and large-scope experimental
outcomes.

Other experiment involved studying the difference between contributions
by individuals and contributions by groups instead of single agents. Groups
allow for other game mechanisms such as those used by biologists to study the
emergence of cooperation in populations, where networks are graphed between
individual agents, and they can then only interact in potential PGGs happening
in their proximity (i.e. with the agents they are connected to via the network).
Groups can also be compared when they exhibit distinctive characteristics. A
popular experimental treatment is to observe differences between “Partners”
(PGGs where agents are assigned to the same PGG for the whole duration of
the experiment and are aware of this) and “Strangers” (PGGs where each round
agents are reassigned to different PGG and therefore cannot build reputation
and coordinate actions with their co-players). The usage of this mechanism
can be found for example in Andreoni (1988) and Fehr & Gachter (2000).

Two stage public goods game

Multiple experiments have been conducted where a particular variation of
the simple PGG was played but constituted only a part of the experiment which
before or after the PGG included also another phase (subgame). For example,
in Kosfeld et al. (2009), the first stage had agents contribute towards an insti-
tution, that would then ensure compulsory full contributions of all agents in
the PGG with existing institutions in the second stage. If the institution was
rejected, agents were free to contribute any amount in the second stage PGG.
Similar setups can serve to study the effects underlying institutions have on
the ability to achieve socially optimal outcomes. The two-stage environment
,in general, offers many options as to the design of an experiment. There is a
variety of hypotheses that can be tested using an appropriately designed two
stage public goods game. Often, these will be concentrated around the possi-
bility of designing a pre-stage to the PGG which will incentives the agents to
contribute fully and achieve the social optimum.

Imperfect information

Lastly, the simple experiment in section 2.2 revealed all the relevant infor-
mation regarding the mechanism of the game beforehand. However, in real
life, perfect information is often unrealistic. Therefore, experiments have been
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conducted where the players of the game did not possess full information on
the mechanism. These ranged from not knowing the number of rounds that
the game is going to be repeated for to not knowing how probable it is that
they will not be able to patrticipate in all the rounds or simply not knowing
the return rate. Variations have been played where the players received no
information, just an endowment and the option to contribute towards a public
good. These experiments are used to bring the laboratory PGG setting closer
to real life scenarios. In the first ever experiment resembling the PGG setting,
agents also did not receive full information about the mechanism of the game
played. Bohm (1972)

The reader will meet these variations of the PGG experiment and see how
they contributed towards the knowledge we have about PGG today, in the
following chapter.



Chapter 3

Research overview

As was previously explained, the research field of the public goods game
(PGG) experiments is highly complex. Therefore, the literature review will be
divided into four sections. Firstly, the reader will get to know the early history
of the PGG experiments and other research aiming for descriptive analysis of
the game. In a later section, experiments incorporating social preferences and
other agent-specific characteristics into the explanation of the observed contri-
butions. The third section is focused on proposed learning models explaining
the deviation from the Nash equilibrium observed in experiments. In the last
section a brief insight into the real life significance of PGG is looked at with
the help of studies, which use the PGG framework, from fields such as ecology
and medicine. Reader acquainted with these research areas will hopefully be
able to appreciate the importance of the PGG research.

3.1 Basic experiment analysis

In this section initial PGG experiments and those that aggregate and anal-
yse the PGG results, without regard to individual motivations or attempts to
model and predict the experiment, are overviewed.

One of the first ever experiments involving a setup similar to the PGG
was the one analysed by Bohm (1972). It aimed to estimate the demand
of individuals for a certain public good via five different approaches. This
experiment was conducted with the help of a TV station in Stockholm that
recruited about 600 individuals to come for a paid experimental session to
review a TV programme that was not shown before. Later, the participants
who arrived for the session were told that the costs of running the experiment



3. Research overview 11

exceeded predictions and that they will only be shown the programme if in
their group the total amount they are willing to pay for it exceeds the cost.

This set up directly translates to the step-level PGG setup if we see the
programme as the public good, the maximum willingness to pay for it as the
contribution to the public good, the costs of viewing the programme as the
threshold and the benefit of seeing it as the reward. Bohm’s experiment was
directed towards comparing different treatments of what the individuals are
actually expected to pay once the threshold is reached, but concluded that
there were no statistically significant differences between the different groups.
In other words, the valuation of the public good for an individual was not
biased by the setup in which the individual was asked to state their valuation.

In Nunn & Watkins (1978), the free rider concept is closely investigated and
special conditions reveal a possible non-cooperative contribution equilibrium.
Firstly, the authors point out that free riding can be of different substance and
formulate two distinct motivations of a free rider. One is that the individual’s
action is insignificant compared to the whole population and, therefore, the
individual does not contribute as he believes it will not change anything. In
the other free riding case, individuals believe that the costs of the public good
will be shared among other individuals anyway and so it is not rational for him
to contribute. The first case can only occur in PGGs with large enough player
groups, but the latter is present everywhere.

Secondly the aim of the authors here is to prove the existence of an equi-
librium different to freeriding. For that purpose, they introduce the case of
a divisible and an indivisible public good. For the former, no positive contri-
bution (non-cooperative) equilibrium is found, but for the latter (essentially a
step-level PGG), such mixed strategy equilibrium can be found at probability
of contribution π∗ which equals the perceived probability of the (k−1)th player
contributing over the perceived probability of other (n−k) players contributing,
in a game where the threshold is reached if k players contribute. Such equilib-
rium leads to positive contributions, although no explicit predictions are made.
Essentially, this is the first attempt at finding a game-theoretical explanation
for the positive contribution level observed in experiments.

A year later, in Marwell & Ames (1979) deepen the insight into PGG contri-
bution levels by investigating different parameters of the game and their effect
on the public good provision. Primarily, their source is The Logic of Collective
Action (Olson (1974)), but they also conduct a wider research overview mostly
on the Volunteer’s dilemma to arrive at the following notions mentioned in the
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literature, that are valuable to state here:

1. Group size effects

(a) PGGs played in small number of players should have higher PG
provision as the investor “makes up” for less free riders in case he is
the only one to contribute.

2. Interest in the good

(a) The more the interest in the PG good in question varies, the more
likely it is that someone’s interest will be high enough for them to
contribute.

(b) This effect will have relatively larger significance in small groups of
players.

3. Distribution of resources

(a) If resources vary so that some individuals have enough resources left
after they have contributed to towards the public pool of money,
while others will be left with very little when contributing, risk
avoidance becomes a relevant factor in the contribution levels.

These findings lead Marwell and Ames to pose hypotheses that they later test
experimentally. The results show there is no evidence that individuals would
contribute more in smaller groups than in larger ones (disproving not only the
group size hypothesis but also the first free-riding “motivation” stated by Nunn
& Watkins (1978), and that groups where interest in the good is unequal in
deed lead to a more likely provision of the public good, while the distribution of
resources is not relevant. As a side note, the article states that participants in
the experiment were asked on their beliefs regarding fairness in the PGG setup
and most responded that they believe in the fairness of contribution, however,
there was no consensus on what constitutes a fair contribution.

Around that point in time Lindhal equilibrium was often mentioned with
connection to the PGG experiment. Isaac et al. (1985) explore the validity of
this equilibrium from the game theoretic and empirical point of view as their
main objective is an attempt to design an experiment where free riding will
become a reasonably valid experimental prediction. They note 3 main issues
with previous experiments that might have skewed the results in favour of an
alternative equilibrium. The first is lack of repetition as most experiments
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conducted up until that time were one shot PGG experiments. The second is
the fact that a lot of these experiments also involved “all or nothing” mentality
when the public good demand was discrete. Lastly, that previous experiments
did not rely solely on the mechanism of voluntary contribution, but for example
went through an iterative process of announcing and evaluating a proposal on
the donation towards a public good. Isaac et al. (1985) conduct 9 experiments
with varying returns to contributions. They make the following observations:

1. For period 5 and subsequent periods, any considered alternative equi-
librium (notably Lindhal equilibrium) can be rejected in favour of Nash
equilibrium.

2. Contribution levels are near zero but remain positive.

3. Throughout the rounds of the experiment, the provision level falls.

4. The contributions made by individuals in round 1 are uncorrelated with
their decisions in later rounds.

5. Individuals contribute more under the condition of higher return on con-
tribution than their peers with lower return. The authors also attempt
to manipulate the experiment towards the Lindhal equilibrium, by an-
nouncing the prices and quantities, which indeed marks an increase of
the provision of public good, but this effect is only temporary.

Andreoni (1988) explores the second observation made by Isaac et al. (1985)
and aims to test if a PGG experiment of enough rounds can cause the so-called
decay of contributions to zero. The article also suggests a game strategic moti-
vation for positive contribution in the early rounds of a PGG by which players
can attempt to conceal their rationality and the fact that they will eventu-
ally free ride so as not to teach other players to play the Nash equilibrium
too. Therefore, Andreoni designs a two-group experiment where one group
can engage in strategic behaviour as the players in one PGG remain the same
and known throughout the experiment (Partners treatment) and the other
one where this is not possible as each round the players in one PGG change
(Strangers treatments). A restart of the experiment - after finishing the ini-
tial 10 rounds subjects are then asked to play another 10 rounds but end up
being interrupted after three rounds - is used to further isolate learning and
strategic effect. Contradicting the strategic play expectations, contributions by
Strangers are higher throughout the whole experiment than by Partners who
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choose more to free ride and their total contribution decays more rapidly than
that of Strangers although it does not reach a zero level even in round 10. While
Strangers are only temporarily affected by the restart, Partners’ decisions in
round 11 largely mirror those made in round 1 and the effect is lasting. As
noted, the strategies hypothesis is disproved by less free riding in the Strangers
group. Learning hypothesis, in the sense of considering early rounds contribu-
tions as solely error caused, is also disproved as given the opportunity, Partners
repeat their actions in the restart.

Further research by Isaac et al. (1994) investigates the relationship between
the size of the group in which the game is played and the provision levels. So
far, the experiment was only carried out with small sized groups and Isaac et
al. (1994) aims to see whether the previous experimental results hold in large
groups. At that time, it was a very common belief that larger group would lead
to decreased efficiency of provision. Through a computer-based experiment
conducted on 1908 subjects in 87 separate datasets, they study the provision
levels in groups of 100, 40, 10 and 4 with marginal per capita (MPCR) return
either of 0.3 or 0.75. For the lower MPCR, the provision rates are higher in the
larger (n = 100, 40) groups compared to the smaller ones (n = 10, 4). As the
MPCR rises to 0.75, there is no significant difference between large and small
groups but results from Isaac & Walker (1988) are confirmed as higher MPCR
leads to higher provision levels.

Group effects are further explored in an article by Sollow & Kirkwood
(2000). There, group identity and gender’s influence on the provision level is
studied. For that purpose, players were recruited and sorted into three groups
- control group of strangers where the subjects are randomly selected from the
experiment, “questionnaire” group of strangers that are asked to cooperate on
a task and therefore have a chance to establish interpersonal connections, and
lastly the community group where players are recruited from a marching band
with long tradition and prestige. Purely female groups are also compared to
purely male groups. The results show that men contribute significantly more
than women and community members contribute more than both the strangers
and questionnaire groups, while it cannot be rejected that strangers and ques-
tionnaire groups provide the same level of the PG at 10% confidence. However,
in the article, a PGG experiment is then also conducted among university
sorority and fraternity members and these groups achieve significantly lower
levels of provision than the strangers group. Solow and Kirkwood conclude
that although group identity has an effect on the provision, determining the
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size and direction of the effect is not straightforward and is possibly subject to
self-selection bias of particular groups.

Baptista et al. (2013) explore new technology options for conducting game-
theoretical experiments by introducing a virtual space in which serious conse-
quences can be simulated. Their INVITE (social Identity and partNership in
VIrTual Environments) framework is essentially a survivor video game and was
found to present a viable option for the study of PGG experiments.

Feige & Ehrhart (2015) engage in exploration of voting and transfer pay-
ments impact on the provision of a public good. They do so by designing a
step-level PGG experiment where the treatment group has the option to trans-
fer payments among players and the control group does not, while all players
have different marginal contribution costs. In addition, groups where the game
is played repeatedly are compared to one-shot groups. It is observed that the
option to transfer payments to players with lower marginal costs leads to the
social welfare maximizing outcome more often. In the control groups, this
outcome is never achieved throughout the experiment.

Lastly, in this group of experiments, the author would like to mention Bailey
et al. (2022). There, the PGG experiment is revisited to see whether the
house-money effect is present in this environment. This effect refers to the
possible differences in experiments when subjects are given a starting capital
as opposed to when the money is considered by the subjects as their own. To
test the hypothesis of the contribution level differing among these two groups
of subjects, the authors give money to a part of their subjects well ahead of
time, so that in the game they face a risk of losing money that they treat as
their own. Bailey et al. (2022) however draw the conclusion that there is no
evidence for a difference in the treatment and control group provision levels.

3.2 Social incentives and diversity

Differentiating slightly from the original line of questioning, Andreoni (1995a)
pays attention to the possible motives behind contributions in PGG games.
Three possibilities for the driving factors behind agents’ decisions are proposed:

1. The warm-glow effect

This effect refers to the good feeling people have when they do something
they consider to be morally/socially right and that in consequence can
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steer individual decisions towards a more selfless behaviour regardless of
whether someone else actually benefits from that decision.

2. Altruism

In the article, altruism refers to the joy individuals feel when someone else,
who usually is in a worse situation than them, gets to enjoy some benefit
they would normally not be able to access, i.e. the joy of seeing someone
else benefit. This will also motivate people to act more selflessly, but only
if they know the consequences of their actions for the other people and
possibly witness them.

3. Errors in decisions

The third effect group is the chaos that comes with the human nature
- all the mistakes and errors people make. This effect, if found to be
predominant, would support the opinion that the decay in contribution
levels in PGG might be due to learning.

Through altering the PGG mechanism, the article compares two groups of
players - in one group the players can cooperate out of both kindness and
error, while in the other group, the incentives to kindness (both warm-glow
and altruism motivation) are removed and so presumably the only cooperative
motive remaining is error in decisions. By comparison, Andreoni (1995a) notes
that when the incentives for kindness are removed, there is a higher percentage
of Nash equilibrium players (full free riders), and the contribution levels are
about 1

3 of what is usually observed in PGG experiments. The conclusion drawn
from these observations is that about fifty percent of the contributions normally
observed can be attributed to kindness motives. The article also mentions
that the decay in contributions may be partially attributed to frustration from
unreciprocated attempts at kindness.

Anderson et al. (1998) presents a theoretical continuation to Andreoni
(1995b) as they attempt to create a model that captures both kindness and
error motives and is able to accurately determine the contribution distribution
when compared to experimental data. Their model is in the form of a proba-
bility distribution for the contribution level adopted by an individual based on
particular initial parameters of the game such as susceptibility to altruism and
error, initial endowment, marginal rate of return and the number of players in
the game. They form three predictions of the model:

1. Contribution increases with the MPCR of the public good.
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2. Total contribution increases with the number of players.

3. Mean contributions lie between the Nash equilibrium and half the initial
endowment.

All of the above predictions are found to be consistent with the data considered
in the article. Furthermore, maximum likelihood estimates of altruism and
error parameters are significant and plausible.

A different approach to studying the factors behind the level of individual
contributions is taken by Burlando & Guala (2005) where they experimentally
approach categorizing people as free riders, cooperators, and reciprocators.
Later, PGGs are played among homogenous agents. In their findings they
observe that the average contribution level is higher when the game is played in
the homogenous group rather than in the heterogenous one. While cooperators
and reciprocators are seen to contribute highly and consistently through the
repeating rounds and their contributions only decay in the last few rounds, free
riders have lower contribution levels to begin with and there is a quick decay
to the Nash equilibrium strategy.

Salahshour (2021) asks the question whether some people are consistent in
cooperation/defection no matter the circumstances. And if they are, what role
do they play in the resulting cooperation rates in the experimental environ-
ments. This is done through executing a PGG experiment with 2 stages. In
the first stage, the PGG games are played to select the people who play in
a cooperative manner. In the second round, the cooperators play the game
separately from the defectors, who have “their own” PGG. This underlying
mechanism is known to the players. Salahshour (2021) shows that when co-
operation is rewarded with more social interaction, it helps to solve the social
dilemma and consistent cooperation emerges. Even if defection is rewarded too,
by advancing to the second stage, but the interaction is assorted, cooperation
still evolves and sometimes even to a better level. I.e. the reward for defection
may foster cooperation.

To demonstrate the complexity and diversity of opinions in the PGG field
- let us look at two articles that can be considered directly clashing in opinion
- Burton-Chellew & West (2012) and Neugebauer et al. (2007). The former
uses the same game mechanism on three different groups of subjects and only
changes what information is available to them. Namely whether they

1. have not played the game before and do not receive any information as
to how the behaviour of agents influences the payoffs of other agents,
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2. have not played the game before and are informed of the influence each
agent has on the other agents,

3. have first received information according to 2. and are now repeating the
experiment (unsure of whether it is the same game or not) but without
any information being directly (re)specified again.

Burton-Chellew & West (2012) conclude that when people are informed of
their influence on others (and hence there is room for prosociality and altruism
in the game) they actually contribute lower amounts. The authors interpret
the results as a direct contradiction to the prosociality hypothesis as the driver
of the non-Nash-equilibrium strategies played in the PGG research. On the
other hand, Neugebauer et al. (2007) ask participants of their experiment to
first guess the total amount of contribution made and only then make their
contribution. They observe that contributions steadily follow the individuals
guesses and on the bases of that they argue that there exists no error (random)
based motive driving the contribution levels in the PGG environment.

3.3 Introducing learning models

The presence of errors naturally implies the possibility to learn. Hence,
Nax et al. (2016) explore how learning takes place in repeated games with no
information other than the resulting payoff of the actions that the player took.
They form and test 5 different hypotheses as to the phenomena that can be
seen with agents’ learning mechanism in repeated games.

1. Assymetric inertia: Agents are less likely to change their decisions dras-
tically when payoff is steady or increasing.

2. Asymmetric volatility:The variance of decision adjustment is higher when
payoff declines than when it is steady or increasing.

3. Asymmetric breadth: The deviation from a previously chosen strategy is
higher when payoff declines than when it is steady or increasing.

4. Reversion: When payoff decreases, it becomes more likely that the agent
will revert back to their pre-decrease choices.

5. Directional bias: If the strategies can be ordered linearly, the direction
in which agents adjust their decisions tends to be reinforced throughout
the repetitions.
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In the experiment, subjects play two consecutive repeated PGGs, first with-
out any information on the game but the received payoff for their actions, then
with the standard PGG experiment information available to them. MPCR is
also manipulated in different groups. Nax et al. (2016) conclude that all 5 phe-
nomena are present with high statistical significance. Even if the subjects later
get to know the rules and gain experience, these phenomena still continue to
be present. This provides credibility to some learning models like the near-far
search, “win-stay-lose-shift”, and others.

In the realm of learning models, a major overview was included in Cotla
(2015), a case study, which this thesis aims to further. Eight prominent learning
models are considered and compared on their predictive accuracy within Cotla
(2015). All of the models are described here, to capture the mechanisms that
proved less capable of predicting PGG data, alas only the important features
of each model are considered in detail:

1. Reinforcement learning model

This model is considered in Erev et al. (2008). It is based on an earlier
model proposed in Erev & Roth (1998). Agents are modelled to have
attractions towards certain strategies, which they then choose on the
basis of a stochastic choice rule. The probability P i

j of agent i = 1, ..., N

choosing a strategy j = 0, ..., A is

P i
j (t) = eλAi

j(t)∑︁mi
l=1 eλAi

l
(t) , (3.1)

where Ai
j(t) is the attractivity of strategy j to agent i in round t = 1, ..., T ,

and λ > 0 is the attraction sensitivity parameter. For high λ, strategies
that are more attractive to the agent are chosen with a higher probability,
while for λ → 0, the stochastic choice rule becomes random choice.

2. Normalized reinforcement learning model

An alternation of the previous model where the attraction sensitivity pa-
rameter becomes adaptive and decreases as the agent observes increasing
variety in payoffs. Essentially, as the observed payoff variability increases,
the sensitivity attraction parameter leads the agent to a random choice.
Erev & Roth (1995)

3. Reinforcement average model with a loss-aversion strategy (REL)
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This model is yet again an adapted version of the Erev & Roth (1998)
model. Proposed by Erev et al. (1999) to address some of the problems
present in the former studies, payoff variability is added. As this model
is the most accurate in predicting experimental results according to the
article and is considered in the practical part of this thesis, it is later
described more comprehensively in section 4.1.

4. Stochastic fictious play

The article chose to include a specification of this model from Erev et al.
(2008), however, Stochastic fictious play is a learning model that has also
been used in other studies such as Fudenberg & Levine (1998), Cheung &
Friedman (1997) and Cooper et al. (1997). It is a model that has a belief
learning nature. Rather than agents learning to make decisions solely on
observations, they also employ some assumptions about the behaviour of
others.

In the first round all strategies are chosen with equal probabilities, how-
ever, the attraction of a strategy Ai

j is then updated by the attraction
weight parameter times the payoff ui agent i = 1, ..., N , gets from strat-
egy j, given others have chosen strategies according to what they have
chosen in round t − 1. The probability function is then given as

P i
j (t) = eλAi

j(t)∑︁mi
l=1 eλAi

l
(t) , t = 1, ..., T. (3.2)

5. Normalized fictious play

Described in Ert & Erev (2007), normalized fictious play is analogous
to the stochastic fictious play model, however, the attraction sensitivity
parameter is now transformed into a scaled version - λ/PVi(t) - where
PVi(t) is the observed variability in payoff by agent i. Thus, PV changes
every round in such a way, that the agent will trust the payoff from
strategy j which is the most recent one and update their observed payoff
variability by the difference of the highest overall attained payoff and
payoff from the last period.

6. Experienced Weighted Attraction learning (EWA)

Described by Camerer & Ho (1999), this model offers a more general
take on a learning model as it presents a combination of reinforcement
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and belief learning. EWA is a three-component model comprised of Ini-
tial attraction setting, Attraction updating a Stochastic choice rule. The
initial attractions are set to have zero attractions leading to equal prob-
ability of being chosen. Throughout the game, they are then updated as
follows

Aj
i (t) = ϕN(t − 1)Aj

i (t − 1) + [δ + (1 − δ)I(sj
i , si(t − 1))]ui(sj

i , s−i(t − 1))
N(t) ,

(3.3)
where ϕ discounts previous attractions, δ ∈ [0, 1] allows the model to
value virtual possible payoffs and actual payoffs differently, the payoff
obtained by agent i when choosing strategy j while others have chosen
strategy profile s−i in the previous round is ui(sj

i , s−i(t − 1)) , I(sj
i , si(t1))

is an indicator function which returns 1 if sj
i is equal to the strategy

agent i chose in the last round. Finally, attractions are weighted by N(t)
function which is defined as

N(t) = 1 + N(t − 1)ϕ(1 − κ), with N(0) = η

1 − ϕ(1 − κ) , (3.4)

where κ determines whether the attraction updating will happen either
in cumulative or in averaging fashion and η determines the strength of
the initial experience weight. The stochastic choice rule is the same as in
the case of the reinforcement learning model and uses the final parame-
ter λ, which represents the sensitivity to attractions. Through different
parameter settings, it can take on special forms such as the cumulative
reinforcement model (Erev & Roth (1995)) for δ = 0, ϕ = 1, κ = 1; aver-
age reinforcement model (Erev & Roth (1998), for δ = 0, ϕ = 1, κ = 0);
cournot learning model (δ = 1, ϕ = 0, κ = 1) and weighted fictious play
(δ = 1, ϕ = 1, κ = 0).

7. Self-tuning experience weighted attraction learning (STEWA)

The EWA model updated by Ho et al. (2007), STEWA fixes the κ pa-
rameter of EWA to 0, and the N(0) parameter to 1. This ensures the
attraction updating to only consider averages. Furthermore, ϕ and δ pa-
rameters are transformed to time (round) dependant variables. As EWA,
due to its high number of parameters, lead to substantial overfitting is-
sues, STEWA was formed to avoid this issue. Ho et al. (2007) shows
the superiority of STEWA to EWA in multiple games, however PGG was
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not included, although using STEWA for PGG does not have technical
limitations. The parameters are functionalized.

ϕ(t) = 1 − 1
2Si(t) (3.5)

where Si(t) is a function that records the quadratic distance between a
cumulative history vector and an immediate history vector, and therefore
mimics the parameters function of discounting previous experiences.

δq
i (t) =

⎧⎪⎨⎪⎩1, when ui(sq
i , s−i(t − 1)) ≥ ui(si(t − 1), s−i(t − 1)

0, otherwise,
(3.6)

so, the parameter directs the attention to strategies which would have
generated a greater outcome.

8. Impulse matching learning

The impulse matching learning model introduced by Chmura & Goerg
(2012) is a regret-learning based model as in each round agents receive
impulses guiding them away from strategies, which resulted in a lower
payoff, and towards strategies, which resulted in higher payoffs. These
impulses are translated into impulse sum vector Ri(t), where Rj

i (t) is the
impulse sum of strategy j of agent i in round t. In this respect impulse
sums can be viewed as an analogy of the attractions concept, which are
a part of some of the previous models, with different attraction updating
system. Impulse sums are then used to calculate the probability distribu-
tions of agents’ strategy choices. Chmura & Goerg (2012) does this via
simple normalization, while Cotla (2015) chose to use the logit function
resulting in a stochastic choice rule analogous to the one in Reinforce-
ment learning model and Stochastic fictious play model, introducing a
free parameter λ representing the sensitivity to impulse sum.

Several descriptive measures derived from log-likelihood are considered to
judge the models in Cotla (2015). Maximum likelihood estimates (MLEs)
are used for the free parameters of the considered models. Random choice
benchmark (RAND) and empirical frequencies benchmark (EMP) are also in-
troduced. The former makes for a trivial benchmark to beat, while EMP is
actually a hardly attainable benchmark, as it is constructed ex-post from the
experimental observations. REL is found to be the best in terms of descrip-
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tive fit by a great margin over the second best performing model - the EWA
model. In terms of predictive success, using log-likelihood and mean quadratic
score (MQS) methods REL is again the best performing model, even beating
EMP on the MQS method. It is worth noting that only reinforcement learning
model, normalized reinforcement learning model, REL and EWA outperform
the RAND benchmark for predictive success. Thus, we can comfortably judge
the remaining models to be unsuccessful prediction models for PGG experi-
ments. It is tested and concluded that both the components of REL are impor-
tant for its comparative success and that REL is the most accurate predictor
among these models.

3.4 Real life significance and applications

Not only does the PGG experiment serve to reveal the how (i.e. how public
projects achieve necessary funding from people) and the why (i.e. why people
would contribute more than theory would predict) of privately funded public
goods, but its use is far wider.

In the field of ecology, the PGG experiment is often used in its “Tragedy
of Commons” variation. Kraak (2010) uses the PGG setup and thought ex-
periments based on previous PGG experimental data to suggest new ways of
preventing overfishing (leading to the depletion of the fish stock) and promoting
cooperative behaviour of fishermen. Hasson et al. (2010) present the dilemma
of either investing into mitigation of climate change or into adapting to it as a
PGG experiment with mitigation investment being a public good and adaption
investment a private good. They conclude that more than the immediate dan-
ger from climate change, simulated as a stochastic cost to all agents mitigated
by the contribution level in the public good, it is trust between people, that
incentivises higher contribution levels towards the mitigation fund. Bosetti et
al. (2017) explore formation of coalitions of individuals promoting clean energy
and environmental preservation using the PGG set up and reach the conclusion
that the presence of a mechanism, which allows for internalization of the bene-
fits to the investing party, leads to a faster formation of a sizeable coalition. On
the other hand, if the benefits are hard to internalize and lead to spillovers, it
might incentivise formation of competing coalitions and lure more individuals
into combating climate change.

Another field where the PGG setup has found its use is medical research.
Archetti (2016) uses a non-linear public goods game to study the cooperation
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of cancer cells. As cancer cells produce (invest their energy into) growth fac-
tors which sustain tumour proliferation (public good beneficial to all cancer
cells) the public goods game framework is a suitable one, although due to the
heterogeneity of cancer cells complex network effects have to be accounted for.
Archetti (2016) concludes that investigating this framework in this particular
context can shed light on, for example, how resistance to therapies targeting
cell growth factors can evolve and therefore help in the prevention of resis-
tance development. Renton & Page (2021) use the same framework as Archetti
(2016) to explain how greater global heterogeneity among cancer cells leads to
cooperation more easily than in well-mixed cancer cell populations.

Of course, social sciences are the most common area of usage of PGG exper-
iments. Politological research Gallier (2017) explores how the policy system,
under which contribution rules punishable by a non-deterrent fine are formed,
influences contribution levels. It is found that endogenously chosen rules, via
the democratic system, lead to a higher contribution, not solely because of the
democracy itself, but rather as a result of the information agents learn about
each other in the democratic process. Hiraishi et al. (2015) use the public
goods game to explore the heredity of prosociality and cooperation tendencies
and Clist & Hill (2021) attempt to answer the question of whether the language
you speak can affect your choices. They do this by having bilingual speakers of
two rural African languages play the PGG, choosing the language of instruc-
tions randomly for each individual, and observing the differences between the
two groups. The conclusion is that the language of instructions can signifi-
cantly affect the social preference of the agent in the experiment. In Tomassini
& Antonioni (2020) PGG frameworks are used to simulate emergence of co-
operative social networks in society, contributing to explanation of history of
early human civilizations development.

As the reader can see, the public goods game has found its way into many
areas of research and consequently plays a large role in what is known about
cooperation in its many forms. To find the models, that are most accurately
able to predict PGG data is essential.
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Selected models

In this chapter three selected learning models for analysis will be introduced.
Two of these models were introduced to the analysis as they were designed with
PGG directly or at least potential games, which PGG belongs to, in mind, and
they were not a part of the previous analysis conducted in Cotla (2015). The
third model is then the best performing model from the 2015 article. The R
code for simulations of the models is part of the appendices of this thesis.

4.1 K-strong equilibrium model

First out of the three selected models is from Nax & Perc (2015). The
article defines a new equilibrium concept where a pure strategy s∗ is a k-strong
equilibrium of the public goods game if it holds that for all subsets of the
population of players, the size of which is less than k, it leads the players from
the subset to a greater payoff if they play the strategy s∗ rather than any
alternative strategy. (For formal definition, see Nax & Perc (2015). To study
the predictions of the k-strong equilibrium concepts they build a learning model
for the PGG experiment. That is why the model will be used under the name
K-strong equilibrium model in this analysis. The technical description of the
model follows.

The population of N agents plays the public goods game. They face a binary
choice of contributing (ci = 1) or defaulting (ci = 0). Probability pi represents
the chance that agent i will choose to contribute. Their choices result in a
private payoff ui = (1 − ci) + (r/n) ∑︁

j∈N cj, where r > 0 is the fixed rate
of return and r/n is the marginal per-capita rate of return which can be for
simplicity denoted by R. In their simulations the game is repeated infinitely



4. Selected models 26

for time steps t = 0, 1, 2.... Nax & Perc (2015) initialise the game parameters
at t = 0 as pt

i ∈ [δ, 1 − δ], subsequently probability of ci = 0 as (1 − pi), where
δ is the incremental probability by which an agent adjust their pi in response
to their observed private payoff. The author of this thesis however chooses to
initialise the model at pi = 0.5 for all agents. This better reflects the empirical
experience from previous experiments and enables direct comparison with other
models. Furthermore, restricting pi to the [δ, 1 − δ] interval would also corrupt
the possibility to compare this model to other models. Thus pi in the model
as used by this thesis is restricted only to the usual interval [0, 1]. Throughout
the game, pi of agent i is then adjusted according to three rules:

Upward directional bias: If ui(ct
i) > ui(ct−1

i ) and ct
i > ct−1

i , or if ui(ct
i) <

ui(ct−1
i ) and ct

i < ct−1
i , then pt+1

i = pt
i + δ (if pt+1

i > 1, then pt+1
i = 1). I.e. if

the agent observes an increase in their payoff for a switch from defaulting to
contributing or a decrease in payoff for a switch from contributing to defaulting,
their probability of contribution will increase.

Neutral directional bias: If ui(ct
i) = ui(ct−1

i ) and/or ct
i = ct−1

i , then pt+1
i

is adjusted to pt
i, pt

i + δ or pt
i − δ with equal probability. Should pt+1

i be < 0 or
> 1 it is adjusted to pt+1

i = 0 or pt+1
i = 1 respectively. I.e. if the agent observes

the same payoff and/or does not switch strategies their probability is equally
likely to increase, decrease and stay the same.

Downward directional bias: If ui(ct
i) > ui(ct−1

i ) and ct
i < ct−1

i , or if
ui(ct

i) < ui(ct−1
i ) and ct

i > ct−1
i , then pt+1

i = pt
i − δ (if pt+1

i < 0, then pt+1
i = 0).

I.e. if the agent observes an increase in payoff for a switch from contributing to
defaulting, or if they observe a decrease in payoff for a switch from defaulting
to contributing, their probability of contribution will decrease.

Furthermore, the adjustment algorithm is subject to random perturbation
ϵ of degree 0.1. This means that with a 10% chance the adjustment will not
proceed according to the directional bias rules stated above but will rather
adjust to pt

i, pt
i + δ or pt

i − δ with equal probability. Again, should pt+1
i be

< 0 or > 1 it is corrected to pt+1
i = 0 or pt+1

i = 1 respectively, to fulfil the
probability restriction.

The δ parameter is a free parameter that has to be estimated.

4.2 Noisy directional learning model

Another model featured in this analysis was described by Anderson et al.
(2004). As an extension of their work on the PGG model capturing suscep-
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tibility to error, mentioned previously in Section 3.2, Anderson et al. (2004)
introduce a general dynamic model for potential games. The rationale behind
this model is rather simple - agents examine the total contribution level and
calculate what strategy would lead them to the highest payoff. That strategy
becomes their desired strategy for the next round. However, these decisions
are subject to error. Unlike in Anderson et al. (1998), the error is not given
in estimated parameter but rather by a standardised white noise process. This
model is not explicitly specified for the public goods game, but this experi-
ment belongs to the potential game class and thus here it will be adjusted
into forming a specific model for the PGG experiment. The adjustments have
to consider the discrete nature of the PGG experiment and thus a discrete
equation describing the action of agent i in round t is established:

ci(t) = c∗
i [max

ci
(πe

i (ci, c−i(t − 1)))] + σi · wi(t) (4.1)

The function c∗
i [max(πe

i (ci, c−i(t−1)))] describes the strategy that yields the
highest payoff, when other players accumulate the same contribution level that
they did in the previous round, and σi · wi(t) is the standard one dimensional
white noise process weighted by its variance.

4.3 Reinforcement average model with a loss-
aversion strategy

Lastly the best performing model from Cotla (2015) is also a part of this
analysis. As previously noted in Section 3.3, the REL model is an adaptation
of a previous model and it was proposed by Erev et al. (1999). Its technical
description is comprised of several components - attractions, payoff variability,
cumulative payoff average and stochastic choice rule.

Attractions: Each agent i = 1, ..., N has certain attractions Ai
j towards

each of the possible strategies j = 1, ..., E. These attractions are initialised
as zero for all strategies for all agents. Throughout the game, they are up-
dated based on the observed payoff ui(si(t), s−i(t)), accumulated payoff average
PAi(t), observed payoff variability PVi(t) and the strength of initial attractions
N(1). The updating is ruled by the following formula. Strategy j of agent i
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has attraction Aj
i (t) in round t:

Aj
i (t) =

⎧⎪⎨⎪⎩
Aj

i (t−1)(Cj
i (t−1)+N(1))+ui(sj

i (t−1),sj
−i(t−1))

Cj
i (t−1)+N(1)+1 , if sj

i = si(t − 1),

Aj
i (t − 1), otherwise.

(4.2)

Payoff variability: Another component that influences the probability of
agent i choosing strategy j is the payoff variability that the agent observes.
This value is initialised as the expected standard deviation of actual observed
payoff from a random choice from the mean payoff obtained from a random
choice. The mean payoff from a random choice is trivially about half the ini-
tial endowment and the expected standard deviation is a quarter of the initial
endowment in absolute value. This initialisation setting makes the agent in-
different to the size of the endowment as the payoff variability is observed in
relative and not absolute measures in the first round. In the following rounds,
the indifference to payoff magnitude is ensured by the accumulated payoff av-
erage component PAi(t) of the updating mechanism. After each new payoff
observation (marked by round t), agent i adjusts their payoff variability.

PVi(t) = PVi(t − 1)(t − 1 + mN(1)) + |ui(si(t − 1), s−i(t − 1)) − PAi(t − 1)|
t + mN(1) ,

(4.3)
where m is the number of strategies available to the agent and N(1) is the
parameter determining the strength of initial strategies attraction.

Cumulative payoff average: The payoff average component PAi(t) is
initialised as 0 and its accumulation throughout the rounds of the game is
governed by the equation:

PAi(t) = PAi(t − 1)(t − 1 + mN(1)) + ui(si(t − 1), s−i(t − 1))
t + mN(1) , (4.4)

where again t signifies the round, m the number of strategies available and
N(1) the strength of attraction towards initial strategies.

Stochastic choice rule: Finally, all the above-mentioned components
combine in the form of a stochastic choice rule to determine the probabilities
with which agents will play their strategies. Probability that agent i chooses
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strategy j in round t is driven by the following formula

P i
j (t) = e

λ
P Vi(t) Aj

i (t)∑︁m
l=1 e

λ
P Vi(t) Al

i(t)
, (4.5)

where λ is the sensitivity to attractions parameter and m the number of avail-
able strategies.

This model has two free parameters λ and N(1) that need to be estimated.
Now that the theoretical descriptions of selected models were established,

and the reader can see the different mechanisms in play, results of simulations
and comparison with experimental data will be discussed in the following chap-
ter.



Chapter 5

Analysis

The objective of the analysis is to further the previous comparisons done
by Cotla (2015) by comparing the Reinforcement average learning with loss-
aversion model (REL)(Section 4.3) with the previously comprehensively de-
scribed K-strong equilibrium model (K-s)(Section 4.1) and the noisy direc-
tional learning model (NDL)(Section 4.2), as these were not a part of the 2015
article. In addition to simple comparison of the performance of each model,
deeper exploration of the characteristics and trends in results of each model is
also conducted.

We believe that due to the high interest in PGG research this field has be-
come increasingly convoluted and establishing viable routes for further research
is essential. Therefore, finding the model that’s closest to reality, even if that
would still the most accurate model from Cotla (2015), can be considered an
important result, which can progress this field towards a clearer overview and
consensus on the topic.

5.1 Method

Firstly, all selected models are rewritten into scripts in the R statistical
software, that allow for simulating the results of potential PGG games with
varying parameters such as the number of rounds, number of players, marginal
per capita return and endowment. Then the simulations are run with parame-
ters equivalent to those of experiments, which are a part of the used dataset, and
the resulting average contribution levels throughout the rounds of the games
of the simulations are compared to the actual experimental data (see Section
5.2). The models are then given scores based on the distance of the predicted
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simulated results from the actual experimental results. This allows for com-
parison of the models in terms of how closely they can predict the outcomes of
experiments. This can shed light on the possible mechanisms that affect play-
ers in their decisions, but more importantly, may be useful in selecting what
model(s) are worth exploring more deeply, so they can potentially be used in
real life scenarios where it is useful to know the contribution level achieved
before the fund raising phase commences.

5.2 Data

The dataset gathered for the purpose of this analysis is largely based on
the 18 datasets used in Cotla (2015). Only data from Botelho et al. (2009),
which were included in Cotla (2015), were not readily available and therefore
are not taken into consideration here. On the other hand, extra two datasets
from Bailey et al. (2022) are a part of this analysis. The dataset can be seen
in Table 5.1

All datasets include information on the average contribution level for each
round of the experiment. Only experiments with the same basic repeated PGG
experiments where included. Some of these datasets come from articles that
aim to study some other mechanisms such as punishments for uncooperative
behaviour, however, from there, only the control groups data were consid-
ered for this analysis. Regarding the data from (Bailey et al. (2022)), as the
treatment was concluded to have no effect on the contribution levels, also the
treatment groups’ data is considered. These datasets may also be subject to
other treatments (extra incentives to (not) cooperate, different nationalities of
participants, etc.) however these treatments do not change the mechanisms
of the game and, if needed, their effects are taken into account by using the
random effects method of estimation of free parameters.

5.3 Results

For each unique set of parameters that enter the simulation, ten simu-
lated round series of contribution levels were averaged to get a mean series
of contribution level over rounds. The number of simulated series of average
contributions was selected to be ten as it presented a reasonably low number
for the computational needs while also presenting stable results. When one set
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Table 5.1: The overview of the data collected for the purpose of this
analysis each listed with the set of parameters of the ex-
periment in the original study.

Dataset Article Treatment Agents Rounds Endowment MPCR
1, 2, 3 Andreoni (1995a) Strangers 5 10 1 0.5
4, 7 Andreoni (1988) Strangers 5 10 50 0.5
5, 6 Andreoni (1988) Partners 5 10 50 0.5
8, 9, 10, 11 Andreoni (1995b) Strangers 5 10 60 0.5
12 Isaac et al. (1988) Partners 4 10 62 0.3
13 Isaac et al. (1988) Partners 4 10 25 0.75
14 Isaac et al. (1988) Partners 10 10 25 0.3
15 Isaac et al. (1988) Partners 10 10 10 0.75
16 Isaac et al. (1994) Partners 4 10 1 0.3
17 Isaac et al. (1994) Partners 10 10 1 0.3
18 Isaac et al. (1994) Partners 40 10 1 0.3
19 Isaac et al. (1994) Partners 100 10 1 0.3
20 Isaac et al. (1994) Partners 4 10 1 0.75
21 Isaac et al. (1994) Partners 10 10 1 0.75
22 Isaac et al. (1994) Partners 40 10 1 0.75
23 Isaac et al. (1994) Partners 100 10 1 0.75
24, 25 Fehr et al. (2000) Strangers 4 10 20 0.4
26, 27 Fehr et al. (2000) Partners 4 10 20 0.4
28, 29, 30, 31 Sefton et al. (2007) Partners 4 10 1 0.5
32, 33 Kosfeld et al. (2009) Partners 4 20 20 0.4
34, 35 Kosfeld et al. (2009) Partners 4 20 20 0.65
36, 37 Bailey et al. (2022) Partners 3 20 50 0.5
38 - 53 Gachter et al. (2010) Partners 4 10 20 0.4
54 Keser et al. (2000) Strangers 4 25 10 0.5
55 Keser et al. (2000) Partners 4 25 10 0.5

of parameters was simulated more times, the mean contribution levels did not
proceed to change significantly anymore. Hence ten simulation repetitions were
decided to be used for the mean of every simulated model given certain param-
eters. Firstly, the models are investigated on their own and later compared
with real data and amongst themselves.

K-strong equilibrium model

The model presented by Nax & Perc (2015) contains a free parameter δ that
represents the step in probability by which an agent adjusts their probability
of contribution. At first, the strategy to estimating the correct δ value was
to use random effects estimation. This would be advantageous as the random
effect model would integrate any oddities of the specific experiments, such as
additional incentives. Merrett (2012) also speaks in favour of the RE method
of estimation when looking at PGG data. Since only data on the average
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contributions and not individual contribution levels are a part of the dataset
used here, there was the presumption, that the δ parameter could be estimated
as the effect the previously observed change in average payoff has on the average
probability of contributing to the public pool of funds. This estimation was
done in an out-of-sample way where each experimental dataset for which δ

was estimated was taken out of the dataset and δ was inferred only from the
remaining observations. Using this approach would help avoiding overfitting
issues. The estimated values for most datasets could be rounded to 0.003 and
ranged from 0.001 to 0.005.

However, when the simulation is run with the δ parameter of this magnitude
(≤ 0.005), the adjustment in probability is unable to direct the agents away
from the initial randomizing strategy (average contribution levels stay very
close to the 50% of endowment level) in the 10 rounds that most experiments
were conducted for. In the actual experimental data, a significant decay in
average contributions can be observed already within the 10 round limit and
thus δ parameters of magnitude 0.005 and less would not produce a simulation
model which would be able to predict experimental outcomes in any accurate
way and would not have been significantly different from the random choice
benchmark (RAND). Hence it was decided to test another approach to choose a
δ value that would ensure simulation results suitable for comparison. This was
achieved by selecting the parameters most common in the dataset (N = 4, R =
0.4, T = 10) and averaging over the experimental results in experiments with
these parameters. The resulting series of average contribution levels consitutes
the EMP line seen in Figure 5.1). Although the simulations are initialised
at the uniform distribution mean of 50% of endowment contribution for each
agent, the EMP curve starts at a slightly higher level in the first round. This is
believed to be due to the dataset not being large enough to get to the 50% level,
which is assumed to be the true empirical mean of the first round. Concurrently,
for the same parameters, average probability series were simulated (and again
averaged over to achieve a more stable average probabilities) with δ parameters
0.05, 0.075, 0.1, 0.125 and 0.15. As can be seen in Figure 5.1, for the first two
parameter values, the decay was too slow to follow the empirical probabilities
and for 0.15 the decay became too quick. For values 0.1 and 0.125 the closeness
to the empirical data (EMP) was about the same, but the 0.125 simulated
averages reflected the decay in empirical data (EMP) a bit better in the last
round. Thus, δ was chosen to be used as 0.125 in the subsequent analysis. The
model is utilized here with the perturbation parameter ϵ = 0.1 as is used in the
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Figure 5.1: Simulated average contribution levels of the K-s model
with different δ parameters and their comparison to em-
pirical data (EMP) for the game parameters N = 4, R =
0.4, T = 10.

general simulation in Nax & Perc (2015).
A note has to be made on the fact that the model by Nax & Perc (2015)

is designed to handle binary decision making by the agent. In order to use it
to predict data in experiments, where the agents have more discrete choices, it
is better to turn to the average underlying probability rather than the average
contribution simulated. To rationalize using this method, the author of this
thesis considered the probability of contributing fully from the model as the de-
sire to contribute an amount less than 1 and more than 0. However, that is not
possible and the agent mixes between strategies 0 and 1 with the probability to
at least achieve her desired contribution hypothetically on average over multi-
ple games. Therefore in games with more strategies, when average contribution
levels are divided by the agents’ endowment, they are a direct analogy for the
simulated average probability series. This is the key characteristics enabling
comparison of simulated data form this model with experimental data.

The adjustment algorithm of the model presents a built-in randomizing
probability of contribution for the first two rounds as only after receiving two
payoffs, the agents can infer what effect their actions might have on their
payoffs. In the third round, the probability of contribution - which can also
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be interpreted as the contribution level in percentage of endowment - deviates
from 0.5 to lower numbers. Over the next rounds a slow decay towards the
Nash equilibrium contribution level of 0 can be observed on average, which is
however only very rarely reached in single runs of the simulation.

To observe how the properties of the model change when parameters change,
the simulation results were grouped by the parameter in question and averaged
to then be plotted against other parameter values. Only parameter values that
appear in the gathered experimental data were considered for these simulations.
The change in simulated contribution levels when the number of players playing
the PGG changes can be seen on Figure 5.2.

Figure 5.2: Simulated average contribution levels for the K-s model,
in % of endowment, for different numbers of players for
10 round games.

All the mean contribution levels produced by the simulations in Figure
5.2 lie in the open interval (0.2, 0.35). The simulated results for 40 and 100
players lead to higher contribution levels than results for 3, 4, 5 and 10 players.
However, no direct relationship can be inferred as e.g. a 3-player game yields a
higher end-round contribution level than both a 5-player and a 10-player game
does.

The response of the mean simulated contribution levels for different values
of the MPCR was investigated in an analogous manner. The results can be
seen in Figure 5.3.
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Figure 5.3: Simulated average contribution levels for the K-s model,
in % of endowment, for different values of MPCR for 10
round games.

Here, a clear relationship between the end round contribution level and the
marginal per capita rate of return can be seen as R = 0.75 yields the highest
contribution level of 0.34% in round 10 and R = 0.3 the lowest level of 0.23%
with the in-between values yielding lowering contribution levels as the MPCR
drops.

As this model is only yielding contribution levels in terms of probability of
contributing fully, the absolute volume of the endowment agents have at hand
is not relevant at all for the simulated results.

In general, this model produces contribution level time series that are not
at first glance inconsistent with experimental results as it shows a slow decay
of contributions throughout the 10 rounds which is the most common experi-
mental length of the repeated PGG.

Noisy directional learning model

For the noisy learning model, it was first attempted to estimate it according
to the original equation from Anderson et al. (2004) (Equation 4.1). However
as the noise is weighted by the variance of the white noise process and the
process itself takes on the form of the normal distribution with the mean µ = 0
and variance σ2 = t in one dimension, the noise turned out to be insufficient to
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direct the agents choices away from the Nash equilibrium fast enough and also
showed a clearly increasing rather than decreasing series of average contribu-
tions. After observing the results for the first couple of sets of parameters, it
became clear that this model does not perform nearly as well as the other mod-
els. Especially in cases where the endowment did not present a binary decision
for the agent. This could be solved by either standardizing all experimental
datasets for this binary decision making or adjusting the noise for the endow-
ment. However, if the variance weighting remained, the noise would lead to an
increase in contribution levels over rounds of the game which is inconsistent
with experimental data, that shows a significant declining trend. Hence the au-
thor of this thesis decided to weight instead the noise process by the variance of
the endowment, where it is viewed as a uniform probability distribution, which
fixes both the adjustment of the noise to the size of the endowment and the
increasing contribution level inconsistency.

For better illustration of the inability of the original model to compete
in predictive ability with the other models and why the adjusted model is a
better fit see Figure 5.4. The EMP data used here is the same as in Figure 5.1.
While the model with original variance results in predictions that are increasing
even beyond the 10th round, while the model with adjusted variance stabilises
aproximately around the EMP contribution level in later rounds.

The model was investigated on the response of mean simulated contribution
levels to changing parameter values. Again, the experimental dataset’s set of
parameters was grouped by a particular parameter value and averaged over
it to gain one mean contribution level series for the 10 round PGG. For the
purpose of comparison of the simulated results, all average contributions were
transformed to average contributions in % of endowment.

Looking at Figure 5.5, immediately visible is the direct drop from the 0.5
contribution level at which the model is initialised to contribution levels around
0.2. This is an inherent characteristic of the model and would be true for
any initialisation value. As all agents realise, that since in the first round
all have contributed half of their endowment, they can be better off by not
contributing at all, given that the assumption, of other agents keeping their
contributions fixed, is true. The model does not allow for higher order thinking.
Subsequently, through the noise component average contribution levels end up
around the 20% level instead of 0 in round 2. Throughout the remaining
rounds, the contribution level rises steadily to the 10th round level of about
30% of endowment. This happens irrespective of the number of players and all
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Figure 5.4: Comparison of the NDL model average contribution levels
with its original (σ2 = t) and adjusted (σ2 = σ2

E) variance
against empirical data (EMP) for the game parameters
N = 4, R = 0.4, T = 10.

Figure 5.5: Simulated average contribution levels for the NDL model,
stated in % of endowment, for different number of players
for 10 round games.
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Figure 5.6: Simulated average contribution levels for the NDL model,
stated in % of endowment, for different values of MPCR
for 10 round games.

the mean simulated contribution levels follow approximately the same trend
line. It can be noted also that the results for 100 and 40 players appear to be
less volatile around the trend than results for lower number of players. This
rising trend is in direct contrast with the experimentally observed decay in
contribution levels and immediately suggests that this model will be a worse
predictor of the experimental results than a model which will have a stable or
decreasing trend.

Similarly to the previous figure, Figure 5.6 shows an increasing trend in
all parameter values without any stable distinction between them. Although
R = 0.75 and R = 0.65 results achieve the highest contribution levels in the
10th round, the course of the evolution of all of the simulated contribution
level series suggests that this is not a given characteristics but rather a random
event.

Reinforcement average model with a loss-aversion strategy

The REL model has two free parameters that need to be estimated in order
to run the simulations. Since both λ and N(1) parameters are a part of the
individuals stochastic choice rule, it is impossible to infer them from the average
contribution level dataset. Since the dataset used for this analysis is largely
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Figure 5.7: Simulated average contribution levels of the REL model,
stated in % of endowment, for different number of players
for 10 round games.

overlapping with the one used in Cotla (2015), the parameter values were taken
over from their estimation and set to be λ = 2.2983 and N(1) = 1.0839. Other
parameter values were shortly looked into as well, but none seemed to produce
results noticeably better fitting to experimental data, than the results produced
with the parameters from the 2015 article. Therefore, the analysis is continued
only for this specific value combination of the free parameters.

Figure 5.7 shows how the model reacts to different number of players playing
the game. Although one of the features of the REL model should be invariance
to the size of the endowment and is therefore invariant also to the absolute
size of the payoffs, the simulation results hint that this invariance has a limit.
When there are enough players in the game, the accumulated public fund of-
fers a return that is big enough to update the attraction of the initial strategy
to a remarkably high number. This leads the initial agents’ strategies (that
were chosen randomly from a uniform distribution) to absorb all probability
on themselves making them a sure event. As the number of players is high
enough, the randomized first choice leads to a stable 50% of endowment aver-
age contribution level. Already at 10 players the simulation results to a less
volatile process that decays under the 50% level only slightly. More decay can
be observed for 3, 4 and 5 agents playing the game, however a 4-player game



5. Analysis 41

Figure 5.8: Simulated average contribution levels for the REL model,
stated in % of endowment, for different values of MPCR
for 10 round games.

yields a higher 10th round contribution level than the 5-player game. More im-
portantly all REL simulations yield a relatively high average contribution levels
in the 10th round starting from approximately 40% of endowment contribution
level.

Figure 5.8 shows that also high value of MPCR has the same effect on the
model as a high number of players has. Since the simulation was run for 4, 10,
40 and 100 players and then averaged, the player factor has negligible impact on
the results for R = 0.75. Again, players’ attractions are updated so graciously
towards the initial strategy, that deviating from it becomes exceedingly rare,
although compared to the 40 and 100 players simulations averaged over different
return rates there are at least some change in agents’ decisions over time. Here,
the simulation yields even higher end round contribution levels not getting
significantly under the 42.5% average contribution level. There is some more
volatility in response to MPCR changes than was seen previously with changes
invoked by changing number of players.

As in the experimental data, some decay in contribution levels can be seen
even in games with high MPCR and/or high number of players it is expected
that REL will perform worse in the prediction of average contribution levels in
these games.
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Figure 5.9: Simulated average contribution level generated from uni-
form distribution on interval (0,1) for each agent in a game
of 4 agents and 10 rounds.

Comparison of models with experimental data

Before the models are compared against themselves in their ability to fit
with the actual average contribution levels recorded in experiments, two bench-
marks need to be introduced. First, it is the randomizing benchmark (RAND)
that provides a basic check that the model is able to beat random choices in
terms of distance of predictions from experimental data. Since many of the ex-
periments were played among small groups, the virtual randomizing behaviour
notably does not have to (and most likely will not) lead to a steady 0.5 average
contribution level and can deviate from it quite significantly. To allow for a di-
rect analogue of the selected models’ analysis, randomizing simulations are run
for each set of parameters and replicated respectively in the RAND simulated
dataset. An example of a RAND benchmark for parameters N = 4, T = 10 and
contribution levels in terms of percentages of endowment is shown in Figure
5.9.

For curiosity purposes an empirical benchmark (EMP) is also introduced,
which is represented by averaging average contribution levels over all experi-
mental datasets. This yields the following average contribution level series seen
in Figure 5.10. Note that this EMP curve is different to the one used previously
in Figures 5.1 and 5.4 as it is constructed out of the whole dataset presented
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Figure 5.10: Visualisation of the empirical average contribution levels
constructed from the whole dataset in Section 5.2

in Section 5.2. The first round EMP mean is however different from 0.5 for the
same reasons as mentioned with the previous EMP curve.

Like previous cases, for averaging and comparison purposes all data have to
be transformed into average contribution levels in terms of percentages of the
agents’ endowment. Smooth decay from about the 50% contribution level to
around 25% in round 10 is followed by a jump back up to a 33% contribution
level and then again a decay is observed to around 10% contribution level
in round 25. The sudden jump is caused by the averaging process over all
experimental data as most experiments end in round 10 and the last two rounds
tend to accelerate the decay as was described by Andreoni (1988).

To compare the models with experimental data the author takes the sim-
ulated results for each set of parameters and count their distance from the
average contribution levels observed in each experiment. The distance is mea-
sured in terms of difference of simulated and experimental average contribution
level squared. Distances are then summed over all rounds of each experimental
dataset resulting in a squared distance score of the model. These scores can
then be used to compare the performances of different models. To get a general
predictive ability score the resulting squared distance scores are averaged to get
a single mean squared distance (MSD) score.

Since from previous analysis of the trends in simulations of each model it
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Table 5.2: The resulting mean quadratic distances from experimental
data for each of the models, as well as the two bechnmarks
RAND and EMP. The scores are written for both the whole
dataset in 5.2 and subsets with certain parameter proper-
ties.

EMP K-s REL NDL RAND
all datasets 0.02001 0.18005 0.39079 0.48470 0.58088
high # of players 0.00837 0.06504 0.19548 0.24342 0.30593
low # of players 0.02199 0.19962 0.42404 0.52694 0.62767
high MPCR 0.01807 0.13638 0.24423 0.61689 0.20767
low MPCR 0.02026 0.18748 0.41574 0.46336 0.64439
high endowment 0.01936 0.14877 0.39420 0.33207 0.75538
low endowment 0.01865 0.19237 0.41250 0.57705 0.56535
Strangers 0.02510 0.19932 0.63655 0.37777 0.90873
Partners 0.01843 0.17408 0.31472 0.51911 0.47939

is known that some models (namely REL) are likely to be worse at predicting
games with certain set of parameters over others also comparison of the models
only on subsets of experiments with different properties is explored. In addition
to the previously explored varying parameters, such as MPCR and number of
players, subsets formed on endowment levels and Strangers/Partners treatment
(see chapter 2) are formed and explored.

The table of results, Table 5.2, includes mean quadratic distance scores for
each studied model as well as for the empirical average contribution level (EMP)
and the simulated average contribution level from randomizing uniformly over
strategies (RAND). Scores are listed not only for the overall analysis of the
whole dataset, but also for the analysed subsets, main characteristics of which
are noted on the left-hand side. Thresholds for high/low subset categories were
chosen this way: high number of players (N = 10, 40, 100), low number of play-
ers (N = 3, 4, 5), high MPCR (R = 0.65, 0.75), low MPCR (R = 0.3, 0.4, 0.5),
high endowment (E = 50, 60, 62), low endowment (E = 10, 20, 25). Data col-
lected in form of percentages of endowment without reference to the absolute
size of the endowment were disregarded for the purpose of analysis of low and
high endowment subsets.

From the Table 5.2 it is clear that EMP as a benchmark is unchallenged.
This presents minor inconsistency with Cotla (2015) as they find that on some
occasions the REL mode is able to beat the EMP benchmark. In this analysis,
however, it does not score well enough to even come close to the benchmark.
The ex-post empirical average is however a very tough benchmark. In all



5. Analysis 45

datasets K-strong equilibrium model (K-s) achieves the lowest MQD score and
thus beats all other models in terms of the accuracy of its predictions. This
happens not only for the dataset as a whole, but also for every analysed subset
of the dataset. On the general dataset level REL model comes in second and
the noisy directional learning model (NDL) performs the worst although it
still manages to beat the RAND benchmark. The fact, that REL beats the
RAND benchmark for the whole dataset is consistent with the findings in Cotla
(2015). In two special cases - when only data from games with high endowment
or only games where the players are randomly re-matched into games every
round (Strangers treatment) - REL scores worse than NDL does (NDL scores
highlighted in yellow). Since it observed that NDL trends in the opposite
direction to EMP, NDL beating REL in certain subsets means that REL is a
bad predictor of games with these parameters. Although REL notably does
not score as bad as would be expected in the high number of players and
high MPCR subsets given the observation made in Section 5.2.3 (5.8,5.7), this
is mainly caused by the fact that the average contribution levels observed in
the experiments are very close to those arising from randomising behaviour (as
seen from the low RAND score, highlighted in red) and REL tends to repetition
of the initial rounds’ choices for every agent under these parameters it yields
similar average contribution levels as RAND. In the case of high MPCR subset
both REL and NDL are even beaten by the RAND benchmark.

In the setting of this analysis the K-strong equilibrium model, inititialised at
pi = 0.5 for every agent and with learning parameter δ = 0.125 and distrubance
parameter ϵ = 0.1, is the unquestioned winner against the other two models in
terms of its ability to accurately predict average contribution levels of PGGs
with different parameter sets.
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Conclusion

This thesis presented three prominent models of learning in the public goods
game and compared them to actual experimental data. In particular the Rein-
forced average model with loss-aversion strategy, the Noisy directional learning
model and the K-strong equilibrium model were thoroughly explained, studied
for their characteristics and results, and judged on their ability to accurately
(with minimum deviation distance) predict experimental data. This research
found that the K-strong equilibrium model with 10% chance of perturbation
occurrence and learning parameter δ = 0.125 is the best performing model in
predicting the chosen dataset among these models. In relation to Cotla (2015)
the results regarding the REL model are consistent in the aspect of scoring bet-
ter than the random choice simulations, but a minor inconsistency regarding
the relation to the benchmark constructed from empirical data was also found.

In other sections of this thesis, it was explained how learning models be-
came a supported mechanism behind the decay in contributions observed in
experiments. The empirical dataset is in accordance with these findings. It
also discussed the importance of understanding PGG results and the ability
to predict them, as the PGG framework is a staple experiment in high variety
of fields studying any form of cooperation. Assuming Cotla (2015) is correct
in their analysis of the models’ performance all explanations of the PGG data
based on these models can be dropped in favour of not only the best perform-
ing model - REL - from the 2015 article, but also in favour of the even better
performing K-strong equilibrium model.

It is the natural implication of this research, that more effort should be
directed towards studying this model. Perhaps finding supporting data for
the underlying decision-making mechanism of the individual agents used in
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this model, or finding variations of the model, which are able to predict PGG
average contribution data with greater detail. Dropping alternative routes
stemming from models that perform worse than the K-strong equilibrium model
may result in some degree of clarification in the complex research field. The
model itself may, with modifications, be helpful in predicting real life data of
contributing towards some public good, but that is also a question yet to be
answered by follow up research.

The results of this thesis are valuable to all researchers interested in the
public goods game, especially when prediction of the resulting average con-
tribution levels is vital. Hopefully, these results can also help those, whose
work revolves around setting up policies for the collection of funds for privately
funded public goods using frameworks similar to the linear public goods game.
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