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Introduction
Gravity waves (GWs) are intermittent and ubiquitous, naturally occurring in our
atmosphere. They have different sources, but in this work we will concern our-
selves with waves created by the orography, orographic gravity waves (OGWs).
This topic is very important, since OGWs have a great influence on the dynam-
ics and energy transport, especially in the middle atmosphere. For this reason,
their effects must be included in global circulation models (GCMs), to better
represent real atmosphere. Currently, GCMs have quite coarse horizontal resolu-
tion in orders up to hundreds of kilometres. OGWs exist on quite small scales,
which largely reflect the scales of the orography. For that reason the models can-
not resolve them explicitly and we must use parameterization to represent their
effects.

Parameterizations of OGWs use lot of different simplifications. They are based
on the linear wave theory and the only represented effect is a drag force, which
causes deceleration in regions of GW breaking. Strong impact of this drag on
the model dynamics have been showed in several studies. However, this impact
may be to a large extent overestimated and possibly artificial, created by the
models. This is due to the different formulation of the parameterization schemes
as well as because of only loosely constrained tuning of the individual parameters,
which control not only the amount of the drag but also its distribution in the
atmosphere.

This thesis is a direct continuation of my bachelor thesis and as such we will
build on that work, in some cases referencing to it as not to repeat previously
stated information. We will start by the theory and description of OGWs, by
possible non-linear effects connected to the waves, and how we can predict the
resulting wave field and its characteristics.

We will continue with expanding our research of OGWs effect in CMIP6
(Coupled Model Intercomparison Project Phase 6) models. We focus especially
on the impact of parameterized drag on the resolved, planetary waves. Planetary
waves are one of the important driving mechanisms in global dynamics and their
misrepresentation in the models can have negative impacts on short-term forecasts
as well as long-term future projections.

Last part of this thesis will be dedicated to inspection of different variations
of parameterization schemes. We create several high-resolution idealized simula-
tions of flow over a singular hill. We use a state of the art research and forecasting
model WRF-ARW. We analyze the situations, looking at the differences between
the simulations and the interaction of waves with the mean flow. We then repli-
cate those simulations, using coarse horizontal resolution representing the global
models, and we will apply the different parameterization schemes. We will try
to diagnose weaknesses and strengths of each parameterization scheme, based on
how well they are able to replicate the real drag caused by OGWs.
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1. Gravity waves, dynamics and
theory of flow over orography
There exist many types of wave motions in the terrestrial atmosphere and ocean.
Waves are typically resulting from a deviation to a balanced state with some
restoring mechanism acting against the deviation. The waves can be classified
based on the restoring mechanisms. For example Rossby waves are naturally
occurring in rotational mediums due to the gradient of potential vorticity which
stems from latitudinal difference of the Coriolis parameter. Whereas internal
gravity waves can exist due to restoring force of stratification [Bühler, 2014].

We can divide waves also by their scale. There exist large scale waves, with
wavelengths of thousands of kilometres, such as Rossby waves or inertia gravity
waves and small scale, with wavelengths of few to few hundreds of kilometres,
such as convective or OGWs. Although different in nature, all of those waves
play an important role in the atmospheric dynamics.

1.1 Formation of gravity waves
Internal GWs are ubiquitous in the atmosphere and have several different sources
such as overshooting tops of convective clouds, eruptions of volcanoes, and also
orography, which is the focus of this thesis. Before we introduce the problem of a
flow over an obstacle such as a mountain, we will describe the sourcing of gravity
waves in general. As mentioned before, gravity waves are enabled by stratification
of the atmosphere which is described by the so called Brunt-Väisälä frequency,
N ,

N =
√︄
g

θ

∂θ

∂z
=
√︄

−g

ρ

∂ρ

∂z
, (1.1)

where θ is the potential temperature and ρ is the density. It is the natural
frequency of an oscillating air particle which follows from description of Newton’s
second law applied on this particle once it is displaced from its original position as
showed in [Hájková, 2022]. Vertical motion of this particle then can be described
as

δz(t) = AeiNt +Be−iNt. (1.2)
As we can see from the equation, the nature of the resulting motion depends on
the Brunt-Väisälä frequency. If N is imaginary, meaning that the potential tem-
perature is decreasing with the height, the second term of the equation, Be−iNt,
will go to infinity. In that case, the displacement of the particle will only grow
with time as the atmosphere is unstably stratified. The first term on the contrary
goes to zero, so it is of no concern to us. However, if the potential temperature
is increasing, i.e. if the atmosphere is stably stratified, the solution represents a
harmonic oscillator.

It can be shown that GWs do not have necessarily frequency of N . In deriving
the particle displacement we supposed that the motion is strictly vertical. How-
ever, that is rarely the case and once we take into consideration that the particle

3



may be displaced at an angle, we can see, that N is only an upper limit of the
GW frequency, as we show later.

1.2 Equations of motion for gravity waves
Although GWs and their interactions are fairly non-linear in nature, in many
cases linear wave theory can be used for their description with surprising ac-
curacy. To derive the governing equations we will start with a set of Eulerian
equations in Cartesian coordinates, which describe conservation of momentum,
and we also add conservation of mass and energy in a friction-less atmosphere
following [Holton, 2013]:

ρ
(︃
Du

Dt
− fv

)︃
+ ∂p

∂x
= 0, (1.3a)

ρ
Dw

Dt
+ ∂p

∂z
+ ρg = 0, (1.3b)

Dρ

Dt
+ ρ∇ · u⃗ = 0, (1.3c)

Dθ

Dt
= 0. (1.3d)

D
Dt

represents a material derivative,
D

Dt
= ∂

∂t
+ u⃗ · ∇. (1.4)

For easier notation we restricted ourselves only to 2D motions.
This set of equations permits not only existence of GWs, but also existence of

acoustic waves. This compressible formulation is unnecessary for us and highly
increases potential computational costs. To filter sound waves from the system,
we will use the Boussinesq approximation, e.g. [Sutherland, 2010]. This approx-
imation assumes that changes in the density are significant only when connected
to the buoyancy term, so only in the term including g. We also assume, that the
vertical scales of motions we are examining are smaller than the scale height of
the atmosphere,

Hs = RT0

g
. (1.5)

Depending on what part of the atmosphere we are talking about, i.e. what is the
temperature in the formula, the scale height is ≈ 6.4 − 8.4 km. In general, the
assumption that the perturbations caused by waves are small is the base of the
linear wave theory.

To continue with this approximation, we want to decompose the density to
the mean state and perturbation caused by the waves, so we can write it as
ρ = ρ0(z) + ρ1(x, z, t). Due to our assumption that the vertical motions are
small, it stands that ρ1/ρ0 << 1. We will do the same decomposition for the
pressure and substitute both in the equations we have and divide by the mean
state density. Taking into account that the mean state pressure will change only
in the vertical direction the momentum equations will become(︄

1 + ρ1

ρ0

)︄(︃
Du

Dt
− fv

)︃
+ 1
ρ0

∂p1

∂x
= 0 (1.6a)
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(︄
1 + ρ1

ρ0

)︄
Dw

Dt
+ 1
ρ0

∂p0

∂z
+ 1
ρ0

∂p1

∂z
+
(︄

1 + ρ1

ρ0

)︄
g = 0. (1.6b)

We can also assume that the background pressure is hydrostatic i.e.:

−∂p0

∂z
= ρ0g, (1.7)

which will simplify the second equation.
As we said, it follows from Boussinesq approximation that we take the fluid -

air - as incompressible e.g. in [Sutherland, 2010], which will in this case simplify
the mass conservation equation giving us ∇ · u⃗ = 0. The last equation, conser-
vation of energy, can be approximated in several ways, including using density
instead of potential temperature e.g. in [Holton, 2013], which we will use here.
Since the mean state density is not changing in time nor horizontal direction, we
can expand the time derivative and get

Dρ1

Dt
= −w∂ρ0

∂z
. (1.8)

Substituting potential temperature in the last equation with Brunt-Väisälä fre-
quency, altogether we will get set of Boussinesq equations:

Du

Dt
− fv + 1

ρ0

∂p1

∂x
= 0, (1.9a)

Dw

Dt
+ 1
ρ0

∂p1

∂z
+ ρ1

ρ0
g = 0, (1.9b)

∇ · u⃗ = 0, (1.9c)
Dρ1

Dt
+ w

ρ0

g
N2 = 0. (1.9d)

1.3 Taylor-Goldstein equation
To study the flow around an obstacle such as a hill we would like to have a wave
equation which will predict vertical velocities based on the background wind and
shape of the hill. To achieve this we will start by deriving Taylor-Goldstein equa-
tion (TGE) which was published by G.I. Taylor and S. Goldstein in 1931 ([Taylor,
1931],[Goldstein and Taylor, 1931]) and governs shear-flow disturbances. This
equation is often derived using stream function ψ e.g. in [Sutherland, 2010], we
will however derive it using explicitly the vertical velocity similarly to derivations
by original authors, following [Nappo, 2002]. We take our set of 2D Boussinesq
equations, this time in irrotational fluid and linearise all velocities according to
q(x, z, t) = q0(z) + q1(x, z, t). q1(x, z, t) are the disturbances, being order of O(a),
where a is the amplitude of the wave. Anything of the order O(a2) is considered
neglectable, due to the previously mentioned assumption of the linear theory,
that the disturbances are always small. We will get

∂u1

∂t
+ u0

∂u1

∂x
+ w1

∂u0

∂z
+ 1
ρ0

∂p1

∂x
= 0, (1.10a)
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∂w1

∂t
+ u0

∂w1

∂x
+ 1
ρ0

∂p1

∂z
+ ρ1

ρ0
g = 0, (1.10b)

∂u1

∂x
+ ∂w1

∂z
= 0, (1.10c)

∂ρ1

∂t
+ u0

∂ρ1

∂x
+ w1

ρ0

g
N2 = 0. (1.10d)

We are interested in wave-like solutions, hence we can assume that the pertur-
bances have a form of a wave such as

q1(x, z, t) = q̂(z)ei(kx−ωt), (1.11)

where ω is the extrinsic wave frequency and k is the horizontal wave number in
the direction of x defined as 2π/λx. More correctly the argument of exponential
should be i(kx − ωt) + z/2Hs, which considers the exponential decline of atmo-
spheric density [Fritts and Alexander, 2020]. However, it should be mentioned
that it is usually neglected during the derivation of TGE. After inserting this into
our equations we will get a new set of equations, which we will further simplify
by using intrinsic frequency Ω = ω − ku0. This will get us

iΩû− ŵ
du0

dz − i
k

ρ0
p̂ = 0, (1.12a)

iΩŵ − 1
ρ0

dp̂

dz − ρ̂

ρ0
g = 0, (1.12b)

ikû+ dŵ

dz = 0, (1.12c)

iΩρ̂+ ŵ
ρ0

g
N2 = 0. (1.12d)

These equations describe relations between amplitudes of wave perturbations of
different variables and are called polarization relations [Fritts and Alexander,
2020]. Now we want to derive an equation for the vertical structure of ŵ. We
start by inserting û from Equation 1.12c to Equation 1.12a. We will also insert
ρ̂ from Equation 1.12d to Equation 1.12a. This will get us two equations which
we both multiply by ρ0 and get

−ρ0
Ω
k

dŵ

dz − ρ0ŵ
du0

dz − ikp̂ = 0, (1.13a)

iρ0Ωŵ − dp̂

dz − i
ρ0

ΩN2ŵ = 0. (1.13b)

We see, that we still have to get rid of p̂. We do this by taking the z-derivative
of Equation 1.13a and subtracting Equation 1.13b times ik. Remembering that
Ω = ω − ku0 and multiplying the result by −kρ0/Ω the resulting equation is

d2ŵ

dz2 + 1
ρ0

dρ0

dz
dŵ

dz +
[︄
k2N2

Ω2 + k

Ω
d2u0

dz2 + k

Ω
1
ρ0

dρ0

dz
du0

dz − k2
]︄
ŵ = 0. (1.14)

We will now consider the exponential decline of density

ρ0 = ρse
z/Hs → ∂ρ0

∂z
= − ρ0

Hs

. (1.15)
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d2ŵ

dz2 − 1
Hs

dŵ

dz +
[︄
k2N2

Ω2 + k

Ω
d2u0

dz2 − k

Ω
1
Hs

du0

dz − k2
]︄
ŵ = 0. (1.16)

To simplify the equation more, we will also substitute c = Ω/k+ u0, which is the
apparent horizontal phase speed in x direction. This results in TGE

d2ŵ

dz2 − 1
Hs

dŵ

dz +
[︄

N2

(c− u0)2 + u′′
0

c− u0
− 1
Hs

u′
0

c− u0
− k2

]︄
ŵ = 0, (1.17)

where u′
0 = du0/dz. Terms including the scale height in the denominator are

usually neglected,
d2ŵ

dz2 +
[︄

N2

(c− u0)2 + u′′
0

c− u0
− k2

]︄
ŵ = 0. (1.18)

Equation 1.18 is the most used form of TGE and it tells us the expected wave
field based on the background variables and the wave characteristic in a form of
the horizontal wave number. We can see that it actually gives us also a condition
for the wave number. To get periodic solution, waves, to this equation we need
the term in the square brackets to be positive. We need to apply:

N2

(c− u0)2 + u′′
0

c− u0
> k2. (1.19)

In case of OGWs, this condition actually defines a so called Scorer parameter
l, [Nappo, 2002]. Firstly, we need to realise that the apparent horizontal phase
speed in the case of a mountain wave is zero. Waves are created above the
mountain and to an outside observer appear stationary. This means, that their
intrinsic phase speed c1 = Ω/k is equal but opposite to the background wind
speed, for the apparent phase speed to be zero, as we see in Figure 1.1.

Figure 1.1: Illustration of flow with velocity uf and resulting formation of OGWs
with intrinsic phase speed Ck

This will give us Scorer parameter defined as:

l2 = N2

u2
0

− u′′
0
u0

(1.20)
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1.4 Flow around an obstacle
To test a model, we usually want to compare its results with some observation
and or an analytical solutions. In the case of a flow over a mountain we can derive
analytical solution in some idealized cases, where the background variables as well
as the mountain are as simple as possible. We will derive this solution for a case
with a constant background wind and Brunt-Väisälä frequency — meaning with
constant stratification. In this case we mean constant in space as well as time.
As we showed in the previous section, the apparent phase speed for mountain
waves is zero, which gives us simplified version of TGE from Equation 1.18:

d2ŵ

dz2 +
[︄
N2

u2
0

− k2
]︄
ŵ = 0. (1.21)

Now we have to consider how does w1, which we want to express, relate to ŵ. Our
assumption of the wave-like solution during derivation of the TGE also means that
we would get the same set of equations using Fourier transform [Achatz, 2022].
Or in other words we can define Fourier transform as

ŵ(k, z) =
∫︂ ∞

−∞
w1(x, z)e−ikxdx (1.22)

and inverse Fourier transform as

w1(x, z) = 1
2π

∫︂ ∞

−∞
ŵ(k, z)eikxdk, (1.23)

which we will use later. Note that ωt is not present in this version of Fourier
transform due to the zero extrinsic frequency. With our condition defined by the
Scorer parameter that l2 > k2 our solution for TGE is

ŵ(k, z) = Ae
−i

(︃√︂
N2
u2

0
−k2

)︃
z

+Be
i

(︃√︂
N2
u2

0
−k2

)︃
z

= Ae−imz +Beimz, (1.24)

where m is the vertical wave number. Firstly we will apply the top boundary
condition in the form of a so called radiation boundary condition [Klemp and
Durran, 1983]. This means that we allow only upward propagation at the top,
which will ensure no reflection there. This condition means that B must be zero.
Following [Nappo, 2002] we will define bottom boundary condition to resolve A.
To get ŵ(k, 0) we will firstly get w1(x, 0). The flow is irrotational and without
friction, so we can say that the streamline at the surface is of the form of the
surface itself, meaning the it can be defined using parametric equation as

r = z − h(x), (1.25)

where h(x) is the height of the obstacle. This works quite well in a case of a
small hill. From the definition of a streamline we know that gradient of the
streamline will be normal to the wind velocity which has both the background
and perturbation component. In 2D we will get

U⃗ · ∇r = (u0 + u1, w1) ·
(︄

−dh
dx, 1

)︄
= 0. (1.26)
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In the linear limit, dh/dx must be order of magnitude O(a). Hence, the product
of u1 and dh/dx will be neglected and we can express w1

w1(x, 0) = u0
dh
dx. (1.27)

If we substitute that to Equation 1.22 and use differentiation property of Fourier
transform we will get

A = ŵ(k, 0) =
∫︂ ∞

∞
u0

dh
dxe

−ikxdx = u0
dh
dx
ˆ

= iu0kĥ. (1.28)

This way we got exact solution for ŵ(k, z), which can be substituted to Equa-
tion 1.23 of inverse Fourier transform to finally get the solution for vertical wind
speed perturbation caused over hill described by h(x)

w1(x, z) = 1
2π

∫︂ ∞

−∞
iu0kĥe

−imzeikxdk. (1.29)

Using limitation of the Scorer parameter we can define maximum horizontal wave
number |km| = N/u0. We can also simplify the integral by realising that the
imaginary part of the exponential is an odd function and the real part is an even
function which altogether gives us

w1(x, z) = 1
π

∫︂ km

0
−iu0kĥℜ(e−imze−ikx)dk. (1.30)

Because the wave vector has opposite direction than the wind, we take only the
negative horizontal wave numbers, which accounts for the minus signs in front of
k terms.

From this equation we can analytically calculate the stationary mountain wave
solutions for comparison with numerical model simulations of the exact problem.
Most often used types of a hill are the so called Witch of Agnesi hill

hA = Ha2

x2 + a2 (1.31)

and Gaussian hill
hG = He− x2

a2 . (1.32)
Solutions for those hills will be derived in the last part of this thesis.

1.5 Energetics
In the previous section, we used momentum equations to derive the form of
OGWs. Now, we use those equations to describe the wave energy transport,
as it is crucial for describing their role in the mean flow interactions as well as
for the parameterization development. Following [Sutherland, 2010] we will first
consider momentum equation (in 2D) in its vector form and make the dot product
with u⃗ or in other words adding together Equation 1.10a multiplied by u1 and
Equation 1.10b multiplied by w1. Using continuity equation Equation 1.10c we
get:

D

Dt

[︃1
2ρ(u

2
1 + w2

1)
]︃

+ ρ1gw1 = − ∂

∂x
(u1p1) − ∂

∂z
(w1p1) − ρ0u1w1

du0

dz . (1.33)

9



The first term in the brackets on the left is obviously perturbation kinetic energy.
However, we want to get also the potential perturbation energy in the material
derivative. We can do that by modifying the second term on the left, by firstly
defining vertical displacement as w1 = Dδ/Dt. We will use this and equation
Equation 1.8 which will get us

ρ1 = −dρ0

dz δ. (1.34)

Using this definition, perturbation potential energy itself can be defined as

Ep = ρ1g
δ

2 = −1
2

dρ0

dz gδ
2 = 1

2ρ0N
2δ2 (1.35)

This will give us rate of change for perturbation potential energy as

DEp

Dt
= ρ1gw1 = D

Dt

(︃1
2ρ0N

2δ2
)︃
. (1.36)

Equation of the total energy is then

DE

Dt
+ ∂

∂x
u1p1 + ∂

∂z
w1p1 = −ρ0u1w1

du0

dz , (1.37)

where the second and third term on the left are divergences of non-advective hor-
izontal and vertical fluxes of energy. We will now consider special case, where the
background wind is zero. We will take horizontal average of the energy equation,
showed by the overbar, over one wavelength, which due to the periodicity will
cancel the second term on the left. We then get the conservation law for total
energy in the stationary wind field

∂E

∂t
= −∂w1p1

∂z
= −∂F

∂z.
(1.38)

It can be shown ([Nappo, 2002]) that this flux F is related with the group velocity
by

F = cgzE, (1.39)
where cgz = ∂ω/∂m is the group velocity in the vertical direction. Of course, in
the presence of the background flow, the term cannot be simplified this way.

In a shear flow, the term on the right of Equation 1.37 does not disappear.
We would like to derive conservation law of energy for this more realistic case. It
stands [Nappo, 2002], that

ρ0u1w1 = k

Ωw1p1 = k

ΩcgzE. (1.40)

We can use fact the that z-derivative of Ω can be written as
∂Ω
∂z

= ∂ω − ku0

∂z
= −k∂u0

∂z
. (1.41)

We will put all of this together and since we take Ω as constant in time, we can
write the horizontally averaged energy Equation 1.33 as

∂E

∂t
+ ∂cgzE

∂z
+ k

ΩcgzE
du0

dz = Ω ∂

∂t

(︄
E

Ω

)︄
+ Ω ∂

∂z

(︄
cgz

E

Ω

)︄
= 0, (1.42)
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which gives us the conservation law for wave energy in a shear flow constant in
time.

∂

∂t

(︄
E

Ω

)︄
= − ∂

∂z

(︄
cgz

E

Ω

)︄
, (1.43)

where E/Ω is the so-called pseudoenergy, one of the proxies for a wave action.
Biggest attention from OGWs effects on the atmosphere receives the deceler-

ation of the background flow due to the OGW drag. This effect can be illustrated
from the conservation of momentum or more precisely of the so-called pseudomo-
mentum.

To derive this conservation law, we will use first momentum Equation 1.9a
and apply horizontal averaging across the horizontal wavelength while using con-
tinuity equation. This will get us rid of the x-derivatives. Using also the decom-
position into mean and perturbation parts we will arrive at equation ([Bühler,
2014],[Sutherland, 2010])

∂u

∂t
= ∂u1w1

∂z
, (1.44)

which shows on the right-hand side the vertical flux of horizontal momentum,
which we will call momentum flux in short. The right-hand side is already known
to us from manipulations of the pseudoenergy equation. Term u1w1 is a com-
ponent of the Reynold’s stress tensor and as we showed in [Hájková, 2022], it is
closely tied to the OGW drag.

1.6 Reflection and resonance of waves
We will now delve into effects which can arise during flow around a hill allowing
background winds or stratification to vary with altitude. In geometric optics, if
there is a change in the index of refraction, light is reflected and or changes its
path in the new environment. This happens similarly in our case of OGWs, where
fast change in Brunt-Väisälä frequency or wind speed affects in turn the vertical
wave number. Although those effects are not easily described in real case, we will
briefly describe theory behind them, as reflection and resonance are actually in
some form considered in some OGW parameterizations.

1.6.1 Reflection
Following [Nappo, 2002], we will consider flow in two layers with interface at the
boundary height zb, which has constant background variables and the layer differ
only in stratification N which we will denote NA and NB. We want to study, how
a change in the Brunt-Väisälä frequency, wave number and wave frequency are
connected. We can demonstrate it using a simplified dispersion relation [Fritts
and Alexander, 2020] in the form

ω = kN√
k2 +m2

= N cosα. (1.45)

Where α is the angle between the horizontal direction and the wave vector, which
is perpendicular to the wave fronts. This relation shows us how the wave fre-
quency is limited by Brunt-Väisälä frequency but not necessary equal to it. We
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will go back to our two-layer flow. We expect, that in the case of a sharp change
of stratification some of the waves travelling upward from the boundary will be
refracted, but also reflected back downward from the boundary between the lay-
ers. For these waves, we can say that the wave frequency as well as horizontal
wave numbers will remain the same. From the dispersion relations this tells us
that the vertical wave number must change. We also want to apply boundary con-
ditions. First condition we get from the dispersion relation and the unchanging
wave frequency meaning

NA cos βA = NB cos βB. (1.46)

This condition can be fulfilled only in the case of a stably stratified atmosphere.
In the case of a neutral or unstable atmosphere the waves do not propagate here
and are evanescent as in agreement with our previous analysis. Another boundary
condition is dynamical boundary condition which says that the pressure including
the perturbation parts must equal at both sides of the boundary

pA,0(zb) + pA,1(zb) = pB,0(zb) + pB,1(zb). (1.47)

We also need kinematic boundary condition, which tells us, that the local mass
vertical fluxes are equivalent in both directions

ρA,0(zb)w1(zb) = ρB,0w1(zb). (1.48)

We can use these conditions to find the ratio between the amplitude of the re-
flected and original wave, which we call reflection index r. Firstly, we use our
boundary and kinematic condition to combine them to one

pA(zb)
ρA,0(zb)wA(zb)

= pB(zb)
ρB,0(zb)wB(zb)

→ ZA(zb) = ZB(zb), (1.49)

which is called impedance. Impedance can be calculated, if we consider, that in
the upper layer we have only the refracted wave and in the lower layer we have
both the original and reflected wave, [Gill, 1982]. It is easier to start with the
wave that was transmitted through as it is only

wB = Be−imB(z−zb)e−i(kx−ωt). (1.50)

For the bottom layer we have one wave travelling upwards and one downwards
but with the same vertical wavenumbers such as

wA =
(︂
Aue

imA(zb−z) + Ade
−imA(zb−z)

)︂
e−i(kx−ωt), (1.51)

where Au and Ad are amplitudes of the upwards travelling original wave and
downwards travelling reflected wave respectively, which we can use to substitute
reflective index in to the equation since

r = Ad

Au

(1.52)

and we get
wA = Au

(︂
eimA(zb−z) + re−imA(zb−z)

)︂
e−i(kx−ωt), (1.53)
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Pressure and density can be calculated using polarization relations we derived
before, which we put into impedance boundary condition. This will actually give
us reflective index as

r = mA −mB

mA +mB

. (1.54)

This relationship can be used to derive how much momentum flux and hence
energy will continue upwards and how much will be trapped and dissipated in
the lower level. We can see, that for the reflection to be minimal we want the
maximum possible vertical wave number in the upper level. This means that the
maximum is found when NB > NA or when the stratification stays the same. In
that case the wave continues upward without any loss of energy. Schematic of
reflection is in Figure 1.2

Figure 1.2: Illustration of reflection of a wave on the border of two differently
stratified levels.

1.6.2 Resonance
We have seen that it is possible for waves to reflect in case of a sudden change in
stratification. We will now analyse more special cases, where waves are trapped
in the lower region and or when there is a partial transmission. Specifically, we
are interested if the reflection can have any amplification effects on the original
wave. Imagine a continuous source of waves, such as mountain. In that case the
reflected wave can interfere with the mountain wave which is continuously being
created. We can show this using the equation Equation 1.53 together with the
boundary condition in Equation 1.27, which leads to the equation for vertical
velocity perturbations in the lower layer

wA = u0
dh
dx

(︄
eimA(zb−z) + re−imA(zb−z)

eimAzb + re−imAzb

)︄
e−i(kx−ωt). (1.55)

In case of resonance, the amplitude will grow unbounded. It is obvious that the
condition for this to happen is that

r = −ei2mAzb . (1.56)

However, we are most interested in cases where r = 1 or r = −1. We can see
that this happens if mAzb = nπ/2, where n is a whole number. Then we can get
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destructive interference, when n is an even number and r = −1, or constructive
interference, when n is an odd number and r = 1. Generally speaking then,
resonance can happen during wave trapping, which inhibits propagation of energy
in the vertical direction and so the waves propagate horizontally without loosing
their energy. This phenomena is mostly observed with so called lee waves.

We will now analyse the circumstances, when this can actually happen. For
this we will look at two dimensionless numbers

b = NL

U
,F = NH

U
, (1.57)

where H is the reflecting height and L represents a half-width of an isolated hill
and can be connected to horizontal wave number. This is done as

k = 2π
λx

= 2π
4L (1.58)

The first dimensionless number b measures the validity of the hydrostatic approx-
imation [Pierrehumbert, 1986]. This applies for b >> 1 or in other words k <<
N/U . However, in that case we can make also approximation that m = N/U ,
which comes from the TGE and assumption that the wind is constant. Now we
can see, that our resonance condition for r = 1 actually translates to condition
for F , which is the inverse Froude number

mazb = (2n+ 1)π2 → F = NH

U
= (2n+ 1)π2 . (1.59)

It must be also said, that perfect reflection cannot occur at the boundary of
two stably stratified layers, for that would mean, that the vertical wave number
mB in the section above the reflecting level would have to be zero, which is in
disagreement with mb = NB/U . However, if the Froude number is close to our
goal value, meaning the reflecting level is at the correct height, there can be
partial reflection and in special cases reinforcement of the waves by following
reflection of the ground. This can be dangerous as such situations can cause
so called downslope windstorms with very high wind speeds as well as vertical
accelerations that can cause problems for aviation [Lilly, 1978], [Klemp and Lilly,
1975].
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2. GWs in models
In the preceding chapter, we have illustrated how gravity waves and some of their
effects emerge from the governing equations. Importance of these effects on real
atmospheric dynamics has been thoroughly documented in the literature [Alexan-
der et al., 2010], [Fritts and Alexander, 2020]. However, gravity waves cannot be
resolved by GCMs and their effects are parameterized, as was mentioned before.
As a motivation for research of OGWs in particular, in this chapter we will review
their interaction with resolved dynamics in the models and demonstrate how large
their impacts can be based on the current research [Sacha et al., 2021], [Eichinger
et al., 2003], [Cohen et al., 2013], [Cohen et al., 2014].

2.1 Representation in models
Importance of OGWs lies in their transport of momentum and energy. Due to
Newton’s third law the amount of momentum and energy carried by the wave
is linked with the conditions at the source level. Particularly, the pressure ex-
erted on the orography by the flow is then equal to the stress propagated away
from the orography that causes deceleration once the wave breaks. It has been
documented that the drag from OGWs breaking from the troposphere to the up-
per stratosphere and aloft has significant dynamical effects and hence must be
included in GCMs ([Bretherton], [Lilly, 1972]).

In parameterizations, we firstly define base momentum flux, which will be
carried by the wave upwards. This momentum flux is estimated using simplified
shape of sub-grid scale orography (SSO) and grid scale variables. Propagation of
the wave and hence the flux is in models instantaneous and strictly vertical —
there is no communication between the neighbouring grid cells. Deposition of this
momentum in a form of drag is in parameterizations controlled by the saturation
hypothesis. It says that there is some maximum amount of momentum that can
be carried by the wave through the background flow without the wave breaking
at the level. If the momentum flux is larger than this saturation value, abundance
of the momentum is released to the surrounding air masses as the drag and rest
of the momentum is carried upwards by the diminished wave. Based on the linear
wave theory we can estimate this saturation momentum flux

τs = ρU3α

N
, (2.1)

as shown in [Pierrehumbert, 1986]. Shape of the mountain is considered by di-
mensionless constant α, which is of an order of unity. It is clear from the equation
that the saturation flux is determined by a ratio of density, which is exponentially
decreasing with the altitude, and by the third power of the wind speed. If we look
at the climatological values of wind in northern hemisphere winter in Figure 2.1
we can see that in the mid-latitudes up to about approximately 100 hPa (lower
stratosphere) the winds are growing from the surface to the core of the upper
tropospheric - lower stratospheric (UTLS) jet. Above the jet, the winds decrease
and so does the saturation momentum flux. At that point, we expect breaking
of OGWs and drag deposition. Illustrative focus on mid-latitudes is reasonable
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Figure 2.1: Zonal mean zonal wind, winters of 1980-2010, average taken from 14
CMIP6 models

due to the location of the main orographic features on our planet and hence also
OGWs in these regions in both hemispheres.

In practical implementation, both base momentum flux and saturation flux
are controlled by tunable parameters in the parameterizations, which tend to be
tuned differently for each model. There can be several different free parameters,
depending on the used parameterization scheme. Usually inverse Froude number
is used in the basic form of every parameterizations to define both base and
saturation momentum flux, as its critical value indicates breaking of the waves by
the so called convective overturning. This instability happens when the amplitude
grows too much and causes dense fluid to overly less dense fluid [Sutherland, 2010].

The ability to control and adjust the amount of drag in a model is especially
important for climate-modelling centers for adjusting the model biases. Due to
the tuning, the parameterized drag does not necessarily reflect the values that
would occur in the reality, but rather works as a tool for removing biases in a
model. For example, if the model has positive bias of wind speed in the lower
stratosphere, we can adjust the critical Froude number to get more drag here,
which decelerates the wind speeds towards observational climatology. This would
not be as problematic, if the only affected part of the atmosphere were the winds
alone. However, it has been shown, that differences in orographic gravity wave
drag (OGWD) have large impact on resolved wave driving in models e.g. in
[Sacha et al., 2021], [Eichinger et al., 2003]. This is due to the fact, that the
location of maximum of OGWD in the so-called valve layer [Kruse et al., 2016] is
strategic for controlling the propagation of planetary waves from the troposphere
to stratosphere [Wu and Reichler, 2020]. These waves in turn control the resolved
dynamics in the models.
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2.2 Interaction with resolved waves
In this subchapter, we use CMIP6 data to demonstrate the relationship between
parameterized OGWD and the resolved waves. CMIP6 project includes large
number of participating models and many different prescribed scenarios for sim-
ulations. Here we will use data from 13 models, which include up to 49 different
realisations depending on the availability (details in Table A.1). We are interested
in several variables and to represent OGWD we will use utendogw - tendency of
eastward wind due to orographic gravity wave drag. To represent resolved waves,
we will adopt classical approach of using Eliassen-Palm flux (EPF) and its diver-
gence, [Andrews et al., 1987]. CMIP6 datasets were chosen, because our previous
research showed large differences between OGWD in the models [Hájková, 2022]
and we will now broaden this analysis in the following. Figure 2.2 illustrates the
intermodel differences on zonal mean OGWD in the lower stratosphere for all the
available simulations.

Figure 2.2: Zonal mean of OGWD, average over 100 hPa - 50 hPa, winter season,
northern hemisphere

2.2.1 Theory of Eliassen-Palm flux
We will now briefly introduce the theory behind EPF. Following [Andrews et al.,
1987] and [Andrews and McIntyre, 1976], we will show that by using transformed
eularian mean equations.

In contrast to our previous analysis, we are now at large, planetary scales,
which means that the rotational effects are not neglectable. For reducing the
complexity of the system of governing equations, we will limit ourselves to the
so called quasi-geostrophic approximation on a β-plane. This approximation

17



assumes only small deviations from the geostrophic balance, which means a dom-
inant balance between the pressure gradient and Coriolis force, which we will
decompose as f⃗ = f0 + βy⃗, where y⃗ is a unit vector in the y direction. This way
we include the spherical shape of the Earth and the meridional gradient of the
Coriolis parameter, without using spherical coordinates.

As detailed in [Andrews et al., 1987], several assumptions underlie this ap-
proximation to restrict us to planetary scale motions. We define a Rossby number

Ro = U

fL
, (2.2)

where L is the typical horizontal scale at which we expect changes in wind speed.
For small Rossby numbers, the rotational effects are strong and our approxima-
tions are valid. Other assumptions are: slow changes of the wind field compared
to f0, small change of Coriolis force on our scale lengths βL << f0 and small
friction, which is insured by condition

|X|, |Y | << f0/U, (2.3)

where X and Y represent non-conservative processes, which will appear in our
governing equations.

Continuing with our quasi-geostrophic approximation, we will decompose the
wind components to geostrophic and ageostrophic components

u = ug + ua, v = vg + va, w = wg. (2.4)

Using this and our conditions as defined before we get set of governing equa-
tions similarly to Equation 1.3

Dgug

Dt
− f0va − βyvg = X, (2.5a)

Dgvg

Dt
+ f0ua + βyug = Y, (2.5b)

∂ua

∂x
+ ∂va

∂y
+ 1
ρ0

∂ρ0wa

∂z
= 0 (2.5c)

Dgθd

Dt
+ wa

∂θ0

∂z
= Q, (2.5d)

where θd is a small departure from the base state potential temperature, such that
the vertical derivative of θ can be replaced by that of θ0. Q represents diabatic
heating and material derivative is defined as

Dg

Dt
= ∂

∂
+ ug

∂

∂x
+ vg

∂

∂y
. (2.6)

We now have a way to describe large planetary scales motions. However,
similarly as with gravity waves, we would like to know, how the disturbances,
meaning planetary waves, interact with the mean flow. In this case, we take
mean as a zonal mean and denote by the overbar. We will then decompose all
variables to the zonal mean and disturbances and get new set of equations
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∂u

∂t
− f0va −X = −∂u′v′

∂y
, (2.7a)

∂va

∂y
+ 1
ρ0

∂ρ0wa

∂z
= 0, (2.7b)

∂θ

∂t
+ wa

θ0

∂z
−Q = −∂v′θ′

∂z
. (2.7c)

We dropped the index g, for clarity, as well as Equation 2.5b, because in zonal
mean the meridional geostrophic wind is zero and this equation will not be needed
in further analysis. Similarly, we also omit the thermal wind equation [Andrews
et al., 1987], which would be needed for a full set, as we will not refer to it later.

From these equations we now can see, how the mean flow can change due
to the disturbances — eddies — caused by the waves. However, to see effect
of this eddy forcing more clearly, we can finally use the transformed eularian
mean equations. For this, we have to define so called residual mean meridional
circulation for quasi geostrophic beta-plane. We define it as

v∗ = va − 1
ρ0

(︄
ρv′θ′

θ0z

)︄
z

, (2.8a)

w∗ = wa +
(︄
v′θ′

θ0z

)︄
y

, (2.8b)

where the indices denote derivative in this direction.
As we can see, the residual mean circulation is the sum of eularian mean and

the wave driven parts. This form is especially useful because it will give us a new
set, the transformed eulerian mean equations

ut − f0v
∗ −X = 1

ρ0

(︄
−(ρ0u′v′)y +

(︄
ρ0f0

v′θ′

θ0z

)︄
z

)︄
, (2.9a)

v∗
y + 1

ρ0
(ρ0w

∗)z = 0, (2.9b)

θt + w∗θ0z −Q = 0. (2.9c)
The largest difference from Equation 2.7 is that the eddies do not figure in the
equations alone, but rather in tandem. The right hand side of the Equation 2.9a
is the divergence of our wanted Eliassen-Palm flux F

∇ · F =
(︄

−(ρ0u′v′)y +
(︄
ρ0f0

v′θ′

θ0z

)︄
z

)︄
, (2.10)

with components defined as

F =
(︄

0,−ρ0u′v′, ρ0f0
v′θ′

θ0z

)︄
. (2.11)

Importance of EPF lies in its dependence on wave characteristics. In case of
steady, linear waves and only conservative forces [Eliassen and E., 1961], [Andrews
and McIntyre, 1976], we get

∇ · F = 0. (2.12)
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This means that EPF divergence is equal to zero, if there is no dissipation
of the planetary waves. Allowing non-conservative effects of the waves, repre-
sented by D and changing of wave amplitudes in time we get so called generalised
Eliassen-Palm theorem

∂A

∂t
+ ∇ · F = D +O(a3), (2.13)

where A is wave activity density representing changes of the wave amplitude a.
This theorem shows the clear dependence of the EPF divergence on the wave
characteristics and their effects, and subsequently that steady, linear waves do
not change the mean flow.

Based on this, we can look at the components of the EPF vector to analyse
the wave activity and at its divergence to analyse breaking of these waves and
their effect on the mean flow.

2.2.2 Resolved and parameterized drag in CMIP6 models
After illustrating the methodology for analysis of wave-mean flow interaction in
the atmosphere and hence also in the models, we use it to analyse the relationship
between the resolved and parameterised wave drag. [Cohen et al., 2013] found
in an idealized GCM, that there is a compensation between resolved and pa-
rameterized drag in the stratosphere. Perturbations to OGWD cause changes of
opposite sign in the drag by resolved waves. Specifically, stronger parameterized
drag results in weaker resolved one and the other way around. It is argued that
this helps to mitigate the uncertainty connected with the parameterized drag, as
there are relatively much smaller changes in the net wave driving. [Cohen et al.,
2014] showed, that beside compensation mechanism, there can be also inverted
relationship, where increasing parameterized drag can cause amplification of the
resolved wave driving.

This process is traced to happen via changes to the so called surf zone. This
zone can be found in midlatitude stratosphere and is defined by strong mixing
of potential vorticity, q, caused by planetary waves. This surf zone encompasses
polar vortex, which in contrast has strong gradients of q on its border with the
zone. Strong wave activity and breaking at the boundaries can broaden and shift
the border of this mixed potential vorticity area poleward (shrinking the polar
vortex) [McIntyre and Palmer, 1984]. Breaking of GWs in this area also causes
mixing of q. Depending on the location of the breaking in respect to the edge of
the surf zone, [Cohen et al., 2014] showed that it can cause either the expected
compensation mechanism or an amplification of the resolved wave driving.

[Eichinger et al., 2003] and [Sacha et al., 2021] argued that the interaction be-
tween resolved and unresolved dynamics is dominated by modification of resolved
wave propagation through the changes of lower stratospheric refractive index, n2

s.
This index describes how easy it is for planetary waves to propagate through some
specific region. We expect waves to propagate easily in regions where n2

s > 0 and
avoid areas where n2

s < 0 [Andrews et al., 1987]. We will derive the definition of
this index later.

Although the influence of the parameterized drag on resolved waves has been
established before, it was mostly done on either idealized GCMs or on, albeit fully
comprehensive, only individual models. We will now use the CMIP6 datasets and
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perform a multi model analysis. We are limited by the availability in the case of
EPF data (details in Table A.1). For some vertical levels, we can calculate the
missing variables, however, we are unable to rely on the calculated data from 100
hPa upwards in some cases. This is due to the coarse vertical resolution of the
input variables. Calculations are done using freely available software by [Jucker
and rjaiser, 2023] with scaling of EPF terms done as in [Jucker, 2021].

Following analysis updates the results of [Hájková and Šácha, 2024], as we
include multiple realisations and more models. We will take a look at EPF di-
vergence to asses if we can further confirm or disprove the compensation and or
amplification effect. For this analysis we will only use data available from the
CMIP6 database already prepared as outputs from the models. This limits us to
8 different models and 21 realisations. In Figure 2.3 we can see two scatter plots,
each for a region with different dynamical regime of OGWD influence on the
resolved wave field revealed by [Hájková and Šácha, 2024]. For both regions we
calculated the Pearson coefficient to describe the correlation and p-value to show
the statistical significance. First plot a) shows OGWD taken over maximum in
midlatitudes in the lower stratosphere and EPF divergence taken southward from
it. The analysis reveals a strong and statistically significant negative correlation
between the parameterized and resolved drag. This is a manifestation of the well
known compensation mechanism, with stronger parameterized drag suppressing
equatorward propagation of planetary waves from the troposphere to the strato-
sphere. However, when we look at the Eliassen-Palm flux divergence (EPFD)
poleward, we can see clear inversion of this relationship. This points towards the
amplification of the resolved wave breaking. This was already showed in [Hájková
and Šácha, 2024] and we confirm here the robustness of this interaction using mul-
tiple realisations. Such a strong relationship is quite unexpected, especially since
the relationships are not in fact linear, as we can see from differences between
realisations of one model.

This relationship between OGWD in the valve layer and the resolved dynamics
can be predominantly explained by modulation of resolved wave propagation by
OGWD. For this, we calculate the refractive index as in [Andrews et al., 1987],
demonstrating the influence on the propagation of leading planetary wave modes.
Definition of the refractive index is as follows

n2
s = qϕ

u
− s2

a2 cosϕ2 − f 2

N2H2
s

, (2.14)

where qϕ is the meridional gradient of the zonal mean potential vorticity, in
spherical coordinates defined as

qϕ = 2Ω cosϕ−
[︄(u cosϕ)ϕ

a cosϕ

]︄
ϕ

− a

ρ0

(︄
ρ0f

2

N2 uz

)︄
z

. (2.15)

In both equations a is the radius of the spherical Earth and s is a zonal wave
number usually taken between 1 − 3.

Since data for calculation of refractive index were available for the full set of
models, the refractive index is presented for all 13 models and 49 realisations. In
Figure 2.4 we are showing the refractive index taken as a mean over all simula-
tions. In the lower stratosphere, above the midlatitudes, we can see an area of
smaller refractive index where large scale waves are inhibited to propagate. This
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Figure 2.3: Scatter plots of OGWD and EPF divergence (EPFD), OGWD taken
over maximum (30◦ - 45 ◦, 100-50 hPa), EPFD taken over latitudes as described

is the so-called valve region and our area of interest is indicated by the black
border. In the tropics, the index looses physical meaning and is traditionally not
used. Near the pole we can see a sharp drop towards negative values. Inside the
polar vortex, vertical wave propagation is often inhibited. We again repeat the
intermodel correlations analysis and show the scatter plots for RI in Figure 2.5.
This specific domains for averaging the RI values were chosen according to [Wu
and Reichler, 2020], capturing the most important area for propagation of plane-
tary waves from troposphere to stratosphere. Once again, we can see pronounced
strong correlation between the OGWD and the refractive index leading to modu-
lation of the planetary waves propagation. We can clearly see, that larger values
of the drag from parameterized waves inhibit propagation of the planetary waves
in the UTLS jet region.

Similarly to EPFD, we can be interested if the influence of OGWD on the
refractive index does reach higher latitudes, nearer to the polar vortex. Although
the relationship is not nearly as strong there, it is still significant and we can see,
that there is quite clear inversion of it. This shows that differences in circulation
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Figure 2.4: Refractive index, northern hemisphere, mean over all realisations.

Figure 2.5: Scatter plot of OGWD and the refractive index, OGWD taken over
maximum (30◦ - 45 ◦, 100-50 hPa), RI taken over and vertical levels as described

as well as the resolved dynamics caused by OGWD can influence far away regions
and do not have only localised effects.

The relationship between the parameterized drag and resolved waves can be
however more complicated. We are also interested in how near surface OGWD can
influence the planetary wave activity in the troposphere and how the waves then
possibly influence the resulting OGWD in the lower stratosphere. We will again
repeat our scatter plot analysis, but this time we will look at near surface OGWD
and at vertical component of EPF above, in Figure 2.7. We must be careful,
when looking at the near surface OGWD data, because [Hájková and Šácha,
2024] warned about possibility that there are missing values concerning low-level
breaking. This is however in accordance with what we see in Figure 2.7. Models
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Figure 2.6: Scatter plot of OGWD and the refractive index, OGWD taken over
maximum (30◦ - 45 ◦, 100-50 hPa), RI taken over and vertical levels as described

HadGEM3-GC31-LL and UKESM1-0-LL, which fall the most out of the found
relationship are actually the specific models that were suspected to miss part of
the drag. The found relationship, albeit not a strong one, points to amplification

Figure 2.7: Scatter plot of OGWD and the refractive index, OGWD taken over
maximum near surface (30◦ - 45 ◦, 1000-500 hPa), EPFz taken over and vertical
levels as described

of the wave activity in the troposphere by higher values of OGWD near the
surface. In the Appendix, Figure A.1, we show inversion of this relationship
when looking at the EPF component at the same location and the drag above
in the lower stratospheric maximum. Nevertheless, to properly describe this
interaction and correctly define the causality of these effects, further analysis
would have to be performed, as there will be influence of other factors such as
wind speed for example. All effects described in this section are possibly strongly
artificial — found only in models and do not necessary reflect real processes in
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the atmosphere. For this reason, more research is needed of GW interaction with
Rossby waves and OGW parameterizations should be further improved and their
effects more analysed.

The analysis above is shown only for the northern hemisphere for brevity, since
the situation is more complicated in the southern hemisphere and generally less
studied. Although we can see the same interactions as in NH, the correlations are
usually weaker and latitudinally shifted. This is due to slightly different location
of the orography there, added drag from the antarctic region and unrealistic
OGWD gap between the south America and Antarctic peninsula [McLandress
et al., 2012], [Hájková and Šácha, 2024].
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3. Simulation of a flow over the
hill
In the first part we introduced theoretical background of a flow over some obstacle.
We will now use this theory to analyse a set of different idealised simulations of
the flow over a hill and we will evaluate the off-line performance of selected OGW
parameterizations.

3.1 Model and simulation setup
For our simulations we have used the numerical weather prediction model WRF-
ARW [Skamarock et al., 2019]. We have used idealized simulation setup. Main
difference between real and idealized cases are the initial conditions. For real cases
these are usually data from either observations or from previous runs of a model.
For the idealised set-up this is usually only 1D or 2D sounding, with necessary
variables — potential temperature, relative humidity and the horizontal wind
field. Instead of real orography, we will prescribe the idealised witch of Agnesi
hill and Gaussian hill in different versions.

WRF offers several prepared idealised cases, which serve as a basis for more
complicated simulations. Some of the cases are for example large eddy sim-
ulations, squall line simulations or our chosen setup of flow over a hill called
em hill2d x. In its base version it is 2D hydrostatic simulation with a single sym-
metric witch of Agnesi hill of height 100 m. We modified the original setup and
performed several simulations based on the work in [Doyle et al., 2011]. We ex-
pand the simulation with the Gaussian hill (originally only Agnesi hill was used)
and we also run longer simulations.

First two simulations are run in an idealistic (hydrostatic) set-up with a con-
stant wind U = 10 m/s and a stratification of N = 0.0196 s−1 to test the model.
For comparison we use simplistic model ICAR [Gutmann et al., 2016] based on
the linear wave theory and an analytical solution which we will now derive. We
start with the Witch of Agnesi hill. To calculate the analytical solutions using
Equation 1.29 we must firstly define ĥ. That is

ĥ(k) =
∫︂ ∞

−∞
h(x)e−ikxdx =

∫︂ ∞

−∞

Ha2

x2 + a2 e
−ikxdx = Hae−|k|aπ. (3.1)

We will supply that to Equation 1.29 to get

w1(x, z) = ℜ
∫︂ km

0
−iu0kHae

−|k|ae
−i
√︂

N2
u2

0
−k2z

e−ikxdk, (3.2)

where vertical wave number m was supplemented accordingly, based on Equa-
tion 1.24. We take the same approach to calculate the analytical solution for the
Gaussian hill. Fourrier transform will be

ĥ(k) =
∫︂ ∞

−∞
He

−x2
a2 e−ikxdx = Ha

√
πe− k2a2

4 (3.3)
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and that gives us

w1(x, z) =
√
π

π
ℜ
∫︂ km

0
−iu0kHae

− k2a2
4 e

−i
√︂

N2
u2

0
−k2z

e−ikxdk. (3.4)

Solutions for w1 were then calculated numerically using the trapezoidal rule. We
also have to include the growth of the amplitude with decreasing density in the
vertical. This is done by multiplying the solution by a factor (ρs/ρ0)−1/2, where
ρ0(z) is the base state density and ρs is the surface density, [Nappo, 2002], [Doyle
et al., 2011].

For the idealistic simulations we choose symmetrical hills with height of 100 m
and with the parameter, a, describing the slope (half-width) equal to 10 km for the
Agnesi hill and 8.3 km for the Gaussian hill. We will call these simulations IdealA
and IdealG. The half-width parameter for IdealA was based on the work of [Doyle
et al., 2011] and for IdealG it was chosen based on the parameterization schemes
we will be using later. We found that by choosing that value, the standard
deviation of both of the hills is almost identical for coarse 200 km resolution
simulations. This gives us nice inside to how details of the orography can be lost
in global models, even when using SSO. More will be explained in the following
sections.

For more realistic simulations (using the non-hydrostatic setup) we use vertical
profile of the wind given as in [Doyle et al., 2011], that is based on the sounding
done in the Sierra Nevada mountains during the T-REX campaign [Grubǐsić et al.,
2008].

In Figure 3.1 we can see the wind and potential temperature profiles used for
the simulations. For the numerical stability purposes, the wind was altered to
be constant near surface at 5 m/s and to decrease linearly from 18 km to be at
zero at 23 km and above. The decrease to zero was done to limit waves from
reflecting from the top of the model. The level where the wind speed is equal
to zero is called a critical level for OGWs, [Nappo, 2002], and the waves cannot
propagate through, causing them to dissipate. This can be seen from the TGE
as well, where we get zero in the denominator.

Parameter selection for these simulations is a = 40 km on the windward
side and a = 5 km on the leeward side of the hill for the Agnesi simulations
and a = 40 ∗ 0.83 km and a = 5 ∗ 0.83 km for the Gaussian hills. This means
that the Gaussian hill is steeper on both the windward and the leeward side.
Simulations were done for hills with height of 1000 m and 2500 m. We will call
these simulations A1000, A2500, G1000 and G2500.

To estimate the resulting wave field, we can look at the Brunt-Väisälä fre-
quency and the Scorer parameter. Former will tell us if the atmosphere is stable
and supports waves, and will identify points where possible reflection may emerge
due to fast changes of the stratification, the latter will tell us what is the max-
imum horizontal wave number that waves can have to penetrate through the
individual levels, as we derived before.
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Figure 3.1: Profile of wind and potential temperature used for the non idealistic
simulations
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Figure 3.2: Profiles of the Brunt-Väisälä frequency, N, and Scorer parameter, l,
for the input sounding, smoothed by rolling average for better visualisation
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3.2 Simulations over the Witch of Agnesi and
Gaussian hill

We start describing the results of simulations IdealA and IdealB and evaluate
WRF against the analytical solutions and linear wave theory based simulations
of ICAR. In Figure 3.3 and Figure 3.4 we can see the resulting wave field from the
idealized WRF simulations, ICAR and analytic solutions and it is evident that
there is in general a very good agreement among them and a vertically propagated
wave solution is produced as expected. Due to the constant profile of the wind
and Brunt-Väisälä frequency we can see steady hydrostatic waves with a vertical
wavelength of

λz = 2π U
N

∼ 6400m. (3.5)

All solutions seem to agree reasonably well regarding the amplitude, with bigger

Figure 3.3: IdealA - the wave field above the 100 m Witch of Agnesi hill - the
vertical velocity field, 4 hours into the simulation.

Figure 3.4: IdealB - the wave field above the 100 m Gaussian hill - the vertical
velocity field, 4 hours into the simulation.

agreement between analytical and WRF results. ICAR shows slightly weaker
vertical velocities as well as a slightly different shape of the windfield itself. We
can also notice differences between the simulations for different hills, showing how
different shapes can result in differences of the resulting waves independently on
the height. Waves above the Gaussian hill reach higher velocities, this is due to
the larger slope in comparison to the Witch of Agnesi hill.

After validating the idealistic simulations, we now move towards analyzing
the non-linear simulations. We start with replicating Ex1000 fs simulations from
[Doyle et al., 2011]. In accordance with the reference, our domain is 400 km large,
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with the hill located in the middle. The horizontal resolution is 1 km and there
is 150 vertical levels with the top at the altitude of 30 km. In contrast with the
original study, we run the simulation for longer time period (24 hours) to see a
full time development of the waves. In Figure 3.5 we can see our first try of this
simulation, time steps are shown in 2 h. The resulting wind field at 4 hours of the

Figure 3.5: A1000 - domain 400 km, 24 hours of simulation.

simulation agrees with the original results of [Doyle et al., 2011], Fig 3. However
looking at the further wave field development in later times of the simulation, it
is interesting to see the severely decreasing amplitude of the wave modes with
progressing simulation. Although the dissipation and resulting drag from the
waves feed back on the creation of the waves due to the resulting turbulence
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reaching near surface levels, this decreasing tendency seems surprisingly strong
here. We found it to be an effect of the lateral boundary conditions, which are
open in this simulation as is usual in those cases for the WRF ideal simulations.
For those boundary conditions, we can expect possible partial refection, amplified
in cases with strong turbulence and wind speeds. We confirmed that by looking at
the streamlines of the flow, as in Figure 3.6 Here, we can clearly see a turbulence

Figure 3.6: A1000 - domain 400 km, 24 hours simulation, streamlines.

in a form of rotors beginning to start at 12 hours of the simulation at the leeward
side of the domain boundary and then propagating back to the domain, reaching
also the wind facing side of the hill and decreasing the incoming background
winds here. Although rotors are not artificial per se in connection to OGWs, the
propagation from the boundary is clearly artificial, which confirms the reflection
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problem.
To avoid this problem, we enlarged the domain to 800 km with the hill still in

the middle, which turned out to be just enough for the length of our simulation,
with reflection effects visible at the edge of the domain only by the end of the
simulations. However, in cases longer than one day we would have to adapt a new
set of boundary conditions to resolve this. Further results shown in the thesis are
produced using the wider domain.

We will now look more closely at the simulation A1000 realised on the larger
domain in Figure 3.7 focusing on the middle of the domain with the span of
400 km for better visualisation. In the figure, from the start we can clearly see
a vertically propagating wave mode and evolving trapped lee waves below ∼ 5
km, which are horizontally propagating away from the hill. This is due to the
decrease of Scorer parameter which at around 4 km of height starts to decrease
below 0.005 m−1. This means that the horizontal wavelengths of the vertically
propagating waves must be bigger than 12.5 km according to Equation 1.19,(︃2π

λx

)︃2
= k2 < l2 = N2

U
− Uzz

U
→ λx >

2π
0.005 ∼ 12.5km. (3.6)

Looking closely at the plots, we can see that the horizontal wavelengths of lee-
waves are around 10 km, hence they are unable to fully penetrate the levels above.
At first amplitudes of the leewaves starts to grow, probably due to the reflection
either from the level above or from the ground. Based on looking at smaller
time step (not shown), it is possible that after 6 hours of the simulation, the
amplitudes grow too large, which leads to instability and breaking. This leads
to decreasing amplitude of the vertical velocities at some stages. Also the wave
packet propagates horizontally away from the hill.

As noted before, we can also see vertical propagation of waves with larger
horizontal wavelengths to the stratosphere, where they start to break already by
4 hours. Breaking of the waves at this altitude is in accordance to the saturation
hypothesis. Based on the isolines, we can see regions of unchanging potential
temperature. This shows, that the resulting drag leads to slight mixing downwind
of the hill in the lower stratosphere and we see it is mostly unchanging in time.

We can now look at the simulation G1000 for comparing the effect of differ-
ently shaped hill of the same height. In Figure 3.8 we can see that the simulations
are fairly similar to each other in the early stages. The difference between them
can be seen after 6 h of the simulation time. While in the case of Agnesi hill it
seems that we have rather diminishing of the reflected waves after a while due
to instabilities, with the Gaussian hill, there seems to be a resonance effect. The
amplitudes and vertical velocities of the lee waves grow, penetrating more easily
to the stratosphere, resulting in stronger wave activity altogether. Perturbation
to horizontal velocities for both simulations are shown in the Attachment, Fig-
ure A.2 and Figure A.3 We will now take a look at the simulations A2500 and
G2500, starting with Agnesi hill in Figure 3.9. It should be mentioned that the
case of a single mountain with a height of 2500 m above surrounding topography
is quite extreme. For this reason, it is not surprising that although we can see
formation of large waves in the first time step, there is immediate breaking and
overturning in the next. This causes significant downslope winds, with vertical
velocities reaching up to 30 m/s. What we see here is so called hydraulic jump,
[Doyle and Reynolds, 2008].
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Figure 3.7: A1000 - domain 800 km (400 km showed), 24 hours simulation, vertical
velocity. Vertical velocities in color, with black lines as isolines for potential
temperature with the interval of 8 K.

In the following time steps we can see propagation of a large mixing area
behind the hydraulic jump. This can be seen particularly in Figure 3.10, where
we show horizontal wind perturbations. Deceleration in the mixing region reaches
up to 50 m/s, causing turning of the flow at some points.

Near surface we can see also overturning due to breaking of the waves. How-
ever, it has to be noted that the character of the low-level processes in particular
is strongly influenced by the free slip boundary condition, which is a known effect
[Doyle and Durran, 2002]
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Figure 3.8: G1000 - domain 800 km (400 km showed), 24 hours simulation,
vertical velocity.

We will now compare the results of the A2500 simulation with the simulation
G2500 shown in Figure 3.11. Since both of these cases are quite extreme, there
is less difference between the type of the hills than in 1000 m cases, although we
can still see higher vertical velocities for the Gaussian hill, especially along the
lee ward slope. There is also difference in the altitude of the lower stratospheric
breaking of freely propagating gravity wave modes, more obvious for the last 6
hours of the simulation. For the Gaussian hill, we can see the breaking already
at around 15 km of altitude, where in the Agnesi case it is closer to 20 km.

In the simulations we did see many non-linear effects connected to OGW
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Figure 3.9: A2500 - domain 800 km (400 km showed), 24 hours simulation, vertical
velocity.

propagation, breaking and resulting drag. These phenomena, of course, cannot
be resolved by the coarse resolution GCMs and the question is if the parameter-
izations supplement the resulting drag accurately. With the aim of comparing
the off-line performance of selected OGW parameterizations in these cases, we
will calculate the momentum flux and drag from our WRF simulations in the
following way

τx = ρ0u1w1, (3.7)
where all variables have been defined before and with a basic state u0 and w0
taken as average over the time and the domain. The resulting drag is calculated
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Figure 3.10: A2500 - domain 800 km (400 km showed), 24 hours simulation,
horizontal wind perturbations.

as
OGWD = − 1

ρ0

∂τx

∂z
, (3.8)

as shown in [Hájková, 2022]. The resulting drag averaged over the whole simu-
lation time is shown in Figure 3.12. For the 1000 m hills we see 2 clear regions
of breaking. One near surface and one in the lower stratosphere. This is quite
in accordance with our expectations. We also see larger amounts of drag for the
Gaussian hill, which agrees with our observation of stronger wave activity and
turbulence in these simulations. In the case of 2500 m hills, we see continuous
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Figure 3.11: G2500 - domain 800 km (400 km showed), 24 hours simulation,
vertical wind velocities.

distribution of the drag due to large turbulence and mixing reaching values larger
by an order.
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Figure 3.12: OGWD calculated for simulations A1000, A2500, G1000 and G2500
(1000 m hills on the left, 2500 m on the right)

3.3 Off-line calculations of parameterization
In this section we will replicate the high-resolution simulation with simulations on
a coarse resolution grid. We have chosen horizontal resolution of 100 km and 200
km, which is appropriate for general circulation models on global scales. We will
then apply different parameterization schemes and compare the resulting drag
with the original high-resolution simulation.

3.3.1 Coarse resolution simulation
Firstly, we have to create grid scale orography (GSO). Normally, first step is to
filter out any features on scales smaller than 5 km [Elvidge et al., 2019]. However
in our case of single smooth hill we can skip this step. We simply calculate the
mean orography height from the high-resolution orography. We will do that for
each grid point. This will become GSO for the simulation. There will be 20 grids
in the 100 km resolution and 10 in the 200 km resolution, making the domain
much larger at 2000 km in length, with the hill still placed in the middle.

For off-line calculations with the different parameterizations we need infor-
mation about SSO. Firstly we will subtract GSO from the high resolution one.
Then, there are usually 4 parameters for each grid point representing standard
deviation, slope, anisotropy and angle of SSO. Standard deviation, µ, is calcu-
lated as usual as a root mean square of the variance of SSO. Slope, σ, is defined
as a root mean square of the horizontal gradient of orography

σ =

⌜⃓⃓⎷∂h

∂x

2

. (3.9)
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Anisotropy, i.e. variations of the orography in different directions, in our two
dimensional case does not have to be defined. The same applies for the angle,
which defines direction of the wind in relation to the mountain, and which is
zero for 2D simulations. This set of parameters is further supplemented by a
maximum height.

The low resolution simulations are run with the same sounding information
and are performed for 24 hours as well.

3.3.2 Estimating the parameterized drag offline.
We base our work on research of different parameterization schemes described in
[Hájková and Šácha, 2024]. We apply the set of various parameterization schemes
using different components, changing the individual parameters, to asses impacts
of these changes.

First step common for every parameterization is to define base momentum
flux. We can define it as

τ(pi) = −EKh2
eρ0N0U0, (3.10)

where E is an efficiency factor of the order of unity, K is a factor concerning the
horizontal wave number of the resulting wave and he is the effective height of the
mountain. All variables are taken near surface at reference level pi.

The definition of the parameter K differs between different parameterizations.
For our tests we will firstly use standard definition K = κ/2, where κ is a hori-
zontal wave number usually fixed for the whole globe. It varies from ∼ 10−6 to
∼ 10−3. We will also use another definition using the slope, σ, and the standard
deviation, µ as in [Lott, 1999],

K = σ

4µ. (3.11)

The main difference between those two definitions is that the slope is not constant
for the whole domain and is defined for each grid.

We will continue with defining the effective height, he, because the height of
the obstacle may be limited by the critical Froude number. That is because once
the Froude number is higher than some critical value (usually of the order of
unity) the flow instead of going above the hill can go around (not in our 2D case)
or the low level gravity wave breaking may occur. Either way the effective height
that will give rise to the mountain waves will be smaller than the actual height of
the obstacle. This can be estimated using the inverse Froude number definition
as

he = min

(︄
hm,

FcU(pi)
N(pi)

)︄
. (3.12)

hm is usually defined using standard deviation as hm = 2µ, e.g. in [McFarlene,
1997]. We will use this definition as well as the definition following [Lott, 1999],
which equals it simply to the maximum of SSO height at a given grid box.

In the 3D case, the base momentum flux would be further multiplied by factors
depending on the anisotropy and the angle, which are of the order of unity. In
that sense, their effect is similar to the efficiency parameter.
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Once we have defined the base momentum flux, we can also define the drag
from a low-level breaking. This can be done by either considering the drag co-
efficient [Lott and Miller, 1997], which is more connected to the blocking effects
which do not apply here due to the 2D nature of the simulations. Another op-
tion, which is more simplistic, is to take the difference between the maximum
base momentum flux and the actual one limited by the critical Froude number.
That is we will use the same Equation 3.10 but apply he = hm. So, if the limita-
tions defined by critical Froude number have not been reached, there will be no
OGWD near surface. The resulting drag is then equally distributed to all levels
below the reference one.

We will also adopt another approach introduced by [Iwasaki et al., 1989].
Instead of applying the low level breaking, we will employ a second wave, which
will be assigned its own momentum flux. In contrast to the first wave, the second
wave will have a shorter horizontal wavelength and will be dissipating according
to

τ(z) = τ(pi2)
(p(z) − p(9000))2

(p(pi2) − p(9000))2 , (3.13)

where pi2 is a reference level below pi. This is based on an assumption that there
are shorter waves developing at lower levels, which are, however, trapped and
dissipate up to 300 hPa ∼ 9000 m.

So far we have defined the base momentum flux and the low level drag. We
also need to formulate the saturation hypothesis, i.e. how much momentum flux
can be carried through each specific level without any drag deposition. We will
do that similarly to the way we defined the base momentum flux. For each level
we will calculate the saturation momentum flux using Equation 3.10, with the
effective height defined as he = FcU/N . If the momentum flux is larger then
the saturation momentum flux, the difference will be deposited at the level using
Equation 3.8. The wave will continue propagating upwards but the momentum
flux will be diminished by the amount that was distributed in this level. The
Froude critical number for the saturation test is usually the same as for the base
momentum flux definition, but can also differ.

Most parameterization schemes do not consider other effects concerning grav-
ity waves dynamics, but we will additionally account also for the resonance and
reflection effects similar to the scheme used in CNRM model as described in
[Roehrig et al., 2020].

Resonance effect is based on the work of [Peltier and Clark, 1986] and we did
not modify it any way from how it is used in the CNRM model. The effect lies in
applying additional drag to all levels below the first critical level, which can be
already the reference level, or usually some level close above. This means quite
near surface, which is in accordance with the theory of resonance as we described
in the first section.

That said, for the reflection effect we had to introduce certain modifications.
In the original scheme, reflection is considered only in cases where the Brunt-
Väisälä frequency drops to zero and the atmosphere is neutrally stratified, mean-
ing the waves cannot propagate upwards anymore. These cases are however quite
unusual. Drag is then applied to all levels below this critical one based on the
amount of momentum flux carried by the wave. We will instead adopt different
approach, considering reflection at every level, where the Brunt–Väisälä frequency
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will change its gradient from positive to negative as to account for possible quick
decreases of stability. This is based on the theoretical background from the Chap-
ter 1 of the thesis. To calculate the amount of drag deposited in the levels below
reflection, we will use a modification of Equation 1.54. We will approximate ver-
tical wavenumber m by N/U and we will suppose that the changes of wind speed
between the two levels are negligible so we will get the reflective index

r = N1 −N2

N1 +N2
. (3.14)

We will then deposit a drag to this level equal to the product of the momentum
flux with the reflective index. Although being a very crude approach for account-
ing for the reflection, it is the first step towards a better vertical variance for
parameterized OGWD.

This was a brief description of the parameterization schemes used further
for off-line estimation of the drag from the unresolved orography. Details on all
simulations and selected values of free parameters used in our tests are inTable 3.1.

test w. n. slp std max 2. w. s. drg ref. res. Fc Fcs

base 1 1 0 1 0 0 0 0 0 1 1
base 07 1 0 1 0 0 0 0 0 0.7 0.7
base 05 1 0 1 0 0 0 0 0 0.5 0.5
difF 107 1 0 1 0 0 0 0 0 1 0.7
difF 105 1 0 1 0 0 0 0 0 1 0.5
difF 071 1 0 1 0 0 0 0 0 0.7 1
difF 0705 1 0 1 0 0 0 0 0 0.7 0.5
difF 051 1 0 1 0 0 0 0 0 0.5 1
difF 0507 1 0 1 0 0 0 0 0 0.5 0.7
kgw4 1 0 1 0 0 0 0 0 1 1
slope 0 1 1 0 0 0 0 0 1 1
maxim 1 0 0 1 0 0 0 0 1 1
twowave 1 0 1 0 1 0 0 0 1 1
lowlevstd 1 0 1 0 0 1 0 0 1 1
lowlevmax 1 0 0 1 0 1 0 0 1 1
reson 1 0 1 0 0 0 0 1 1 1
reflection 1 0 1 0 0 0 1 0 1 1

Table 3.1: Summary of the performed off-line parameterization tests. First 8
columns represent which variant of the scheme was used, last 2 represent value of
certain nondimensional tunable parameters. w.n. - wave number, slp - slope, std
- standard deviation, max - maximum height, ref - reflection, res - resonance, Fc-
Froude critical number, Fcs - Froude critical number for saturation limit. Wave
number κ = 10−5, for all except kgwe4 where κ = 10−4. κ2 = 4 ∗ 10−5 is a value
for the smaller wave in twowave scheme.

As a base reference we used Fc = 1, effective height defined using the standard
deviation and wave number κ = 10−5, based on the review of existing parame-
terization schemes and their setups in [Hájková, 2022]. Drag estimates using
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the parameterization schemes were calculated off-line using the coarse resolution
simulations and SSO information as an input. For each parameterization setup
there is 8 different results, accounting for 4 simulations A1000, G1000, A2500
and G2500, using coarse resolutions of 100 km and 200 km for each of them.

3.3.3 Results of offline parameterization calculations
We will start with the base test base1. Results of the scheme are in Figure 3.13

Figure 3.13: OGWD calculated using base1 parameterization scheme. Average
over time and the domain.)

Firstly, we will notice the magnitude of the drag. The resulting drag from
the parameterization is of the same order as for the high-resolution simulations.
Looking at the 1000 m hill simulation on the left in Figure 3.13, we can see that
for some of the simulations there is a small amount of low-level drag, coming
from exceeding the saturation limit in the levels just above the reference level.
Then, we can see the breaking region of freely propagating waves at around 20
km for all simulations, as expected. There is a quite clear division between 100
km resolution simulations and 200 km ones. We see earlier breaking for the
higher resolution but smaller peaks in the levels above. Interestingly, we can
also see higher values for Witch of Agnesi hill with 100 km resolution, which is
in contradiction to our high-resolution results. Differences between Agnesi and
Gaussian hills with 200 km resolutions are, as we expected, much smaller due
to the same standard deviation. We can also see that there is no drag being
distributed between the two previously identified breaking regions. This is due
to the increasing stability and strong winds in the UTLS. Only when the winds
drop enough, the saturation limit can be reached.

The issue of vertical distribution is more acutely seen in the 2500 m hill sim-
ulation on the right in Figure 3.13. This striking difference between the param-
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eterized and simulated drag in Figure 3.12 could be attributed to the limitation
of off-line calculation. On-line calculation would possibly provide the model with
enough drag to cause the turbulence and subsequently more frequent breaking
of the waves. However, our parameterized OGWD has the similar profile to the
1000 m hill although correctly reaching larger values by an order. The upper level
breaking is lower then for 1000 m hills as we would expect due to larger values
and we can once again see earlier deposition as well as lower peaks for the 100
km resolution simulations.

Results for tests base07 and base05 are in the Attachment, Figure A.4, Fig-
ure A.5. Due to lowering of both Froude critical number and saturation critical
number, the resulting drag does not differ much in the vertical distribution from
the base1 but significantly in the magnitude, which drops with lower critical num-
ber. Main difference we can see is that the altitude of upper level breaking is more
similar between 100 km and 200 km resolution simulations in case of 2500 km
hills.

We will now move to tests with different choice of the Froude number diffF .
The idea behind having different Fc and Fcs is that by the first one we control the
amount of the momentum flux launched to the atmosphere and by the other we
can control the vertical distribution. As we can see in Figure 3.14, by choosing
larger critical number for the definition of the base momentum flux and smaller for
the saturation limit, we will get more drag near surface and less at the upper-level
breaking region.

Figure 3.14: OGWD calculated using diffF107 parameterization scheme. Aver-
age over time and the domain.)

We can further observe this effect in diffF105 in the Attachment Figure A.6,
where the shift of drag towards the surface is even stronger.

On other other hand, by choosing larger critical number for the saturation
hypothesis, we can eliminate drag near surface, Figure 3.15 and in the extreme
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case of diffF051, Figure 3.16, we can also see diminishing of the drag in the
upper-levels and altogether a shift of the breaking altitude upwards.

Figure 3.15: OGWD calculated using diffF071 parameterization scheme. Aver-
age over time and the domain.)

Figure 3.16: OGWD calculated using diffF051 parameterization scheme. Aver-
age over time and the domain.)

The remaining set of the diffF test results can be found in the Attachment
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Figure A.7, Figure A.8.
We will now keep both critical numbers equal to 1 and focus on effects of

different parts of the parameterizations. As we could see in the test base1, local
values of the OGWD do reach the same order as the high-resolution ones. Due
to otherwise small vertical distribution, it seems however that the whole amount
of drag and hence momentum flux is underestimated.

This can be mitigated by choosing more appropriate values of the horizontal
wave number κ. Our first choice κ = 10−5 might seem like a possible underesti-
mation, but it is not an unusual choice for GCMs and it demonstrates how global
models can underestimate the amount of momentum flux carried by the wave.
For our test kgw4 we chose larger value, κ = 10−4 which is more accurate for our
specific orography. We can see the results in Figure 3.17.

Figure 3.17: OGWD calculated using kgw4 parameterization scheme. Average
over time and the domain.

As a direct consequence of the different choice of the characteristic horizontal
wave number, we can see by an order larger values of OGWD. This brings the
net momentum flux closer to the expected values (as we will show later), but
locally gives unrealistically large amounts of drag at the specific levels.

In the following, we will continue with different definition of the wave number.
It will not be a fixed parameter, but it will depend on a varying slope and the
standard deviation as defined in Equation 3.11. This takes into consideration
the diversity of the orography, by specifying the value for each grid by using
SSO data. In this case we would expect larger differences between the Agnesi
and Gaussian hills. Looking at Figure 3.18, we can see that for the 100 km
resolutions we get quite a large amplification of the drag in comparison with the
base1 test. However, we do not see the significant variations between Agnesi and
Gaussian hills as we would expect. This might be because the ratio with standard
deviation in Equation 3.11 could actually mask the difference. Even for the 200
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Figure 3.18: OGWD calculated using slope parameterization scheme. Average
over time and the domain.

km resolution tests, where the standard deviation is the same, we can see that
the Guassian hills reach higher values only slightly. It seems that although quite
small differences in the slope of the mountains cause a large differences in the
reality, due to coarse resolution those differences in SSO are not enough to reflect
the real effects.

We will now turn to the impact of the definition of the effective height. It is
argued in [Lott, 1999] that using standard deviation leads to incorrect elevations
in some cases. This is possibly because standard deviation considers the shape
of the hill as well, which in some cases does not have to be strictly connected to
the maximum height. We can go around this problem by simply using only the
maximum height of the SSO above the grid height to define the effective height.
We can see the results in Figure 3.19.

Since we are now not considering the shape of the mountain at all, we can see
only small differences between the different hills of the same resolution, which can
be caused by the differences in the background flow. Looking at the magnitude
we can also see increase of the drag. Comparing with test base1, in the case of
the 1000 m hills we can see larger peaks and in the case of 2500 m hills we can
rather see earlier wave breaking, with a broader vertical distribution of the drag.

We will now look at schemes, which consider other effects connected to OGWs.
The twowave scheme deploys second, smaller wave, which is supposed to be
trapped. The two wave scheme results in a moderate amount of the drag being
distributed in the troposphere, in accordance with the definition, as we see in
Figure 3.20. Generally the inclusion of the second wave did not bring any unex-
pected results. Differences between values of each simulation reflect what we saw
in the previous tests.

None of the previous set-ups considered the drag due to blocking and the near
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Figure 3.19: OGWD calculated using maxim parameterization scheme. Average
over time and the domain.

Figure 3.20: OGWD calculated using twowave parameterization scheme. Average
over time and the domain.)

surface breaking of the waves, which is a consequence of the definition of the base
momentum flux. We will now add these mechanisms to the same set-ups which
were used in base1 and maxim. We chose these test because of the different
description of effective height, to compare the impacts of the definitions on the
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low-level drag. In Figure 3.21 we can see the lowlevstd test. For both heights of
the hill, we can see rather small amount of the near surface drag which does not
agree with the results of high-resolution simulations. Looking at the second case

Figure 3.21: OGWD calculated using the lowlevstd parameterization scheme.
Average over time and the domain.

lowlevmax in Figure 3.22, we do see significant amount of the drag deposited
at the near surface levels, especially in the case of the 2500 m hills. Also, we
can see a clear distinction between the types of the hills. Since we are using
the definition of a maximum height, which does not consider the shape of the
orography, this could be attributed to the slightly different wind speeds between
the coarse resolution simulations. This leads to capturing the larger drag from
the Guassian type of the hill. Looking closer this applies for the lowlevstd setup
as well.

Last two schemes we will look at, will employ effects of resonance and reflec-
tion, starting with the resonance. Based on its definition, we expect its effects
only near the surface, as we can confirm in Figure 3.23.

In comparison to lowlev schemes, the distinction between the 1000 m and
2500 m after including the resonance effects is more subtle, with relatively larger
values seen in 1000 m hills.

We will finish this section with including the reflection effects. In Figure 3.24
we see that even the simplistic use of a reflective index does add some small
amount of variation to the vertical distribution of the drag between the low-level
and lower stratospheric drag regions. It seems that for the cases of smaller hills
it is able to at least partially reproduce the peaks as seen in the high-resolution
simulations. However, for the larger hill, the amount of drag by reflection is
almost negligible compared to the pronounced drag maximum in the profile as
the scheme can not capture the turbulent nature of this simulation. But, this
could not have been expected.
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Figure 3.22: OGWD calculated using the lowlevmax parameterization scheme.
Average over time and the domain.

Figure 3.23: OGWD calculated using the reson parameterization scheme. Aver-
age over time and the domain.)

3.3.4 Discussion of results of parameterization schemes
We will now discuss the results of our parameterization tests. Firstly, it must be
said that these were only off-line calculations and we do not have online compu-
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Figure 3.24: OGWD calculated using the reflection parameterization scheme.
Average over time and the domain.

tations for comparison. This means that the parameterized drag was not com-
municated back to the model and was therefore not able to alter the background
flow, which would in turn modify the computed parameterized drag.

For a full insight into the previous results concerning resulting drag profiles,
in Table 3.2 we list the momentum flux transported to the free atmosphere after
the low-level breaking. We include only the tests for which the base momentum
flux is different.

A1000100 A1000200 A2500100 A2500200 G1000100 G1000200 G2500100 G2500200
High-Res -0.11278 -5.14569 -0.32143 -5.42674
base 1 -0.02557 -0.03264 -0.22216 -0.22642 -0.01941 -0.02608 -0.14248 -0.23288
base 07 -0.0176 -0.02009 -0.14178 -0.1759 -0.01193 -0.01483 -0.08902 -0.16692
base 05 -0.00905 -0.01231 -0.0741 -0.09084 -0.00627 -0.00954 -0.04542 -0.08962
maxim -0.03064 -0.04922 -0.28678 -0.36215 -0.02508 -0.04263 -0.18167 -0.35849
kgw4 -0.2557 -0.3264 -2.22156 -2.26421 -0.19408 -0.26085 -1.4248 -2.32879
slope -0.04744 -0.03355 -0.46203 -0.31784 -0.0355 -0.02786 -0.33996 -0.33099

Table 3.2: Calculated momentum fluxes for the high-resolution simulation and
each test, [m2/s2].

We can see that although the peaks of OGWD did locally reach compara-
ble values, the actual amount of momentum flux propagated vertically is much
smaller for all the parameterization set-ups (for example in the case of base1
smaller by an order). We can also see the expected distinction between the Agnesi
and Gaussian hills in the case of 1000 m height for the high-resolution simulation.
This confirms that for the steeper hill we do not have only more breaking near the
surface, but also stronger wave activity transported upwards. It seems however
that parameterization schemes were not able to accurately represent that.
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Looking at the three base experiments, we can see the large disparity between
them. All of these critical number values are actively used in state-of-the-art
climate models [Hájková, 2022]. This demonstrates that the parameterized drag
does not have to represent the real physical values that would actually be there
in more realistic cases. There is a possible argument that the tuning is based on
the biases of zonal wind speed in the models and that the resulting drag will have
to be the same. However, as we saw in actual cases in Chapter 2, this is not the
case and also it would be applicable only if the bias was homogeneous throughout
the atmosphere, which is usually not the case at all.

Using maxim scheme seems to not only enlarge the whole momentum flux,
but also widen the differences between the underlying horizontal resolutions of
the coarse grid simulations. This suggests that, this approach is more resolution
sensitive.

As we already saw in Figure 3.18, using combination of the slope and standard
deviation seems to estimate more OGW drag in the 100 km resolution simulations,
which is actually opposite of what we see in other tests. Also even this scheme was
not able to properly represent the different shapes of the hills. This is possibly
because the differences between the slope were too small for the coarse resolution
to truly effect the results.

Last point concerning momentum fluxes that we want to highlight is con-
nected with the choice of the wave number. Of course, the larger value of the
wave number did result in the greater momentum flux as expected, but it also
accentuated the underestimation for the higher hill. In the 1000 m cases, the
momentum flux is now either greater or relatively close to the high-resolution
values. On the contrary, in cases of 2500 m hills, we get less then half of the
resolved momentum flux. This shows how the parameterizations is less able to
capture the more extreme cases involving strongly nonlinear flow regimes.

Summarising the results of the rest of the tests, schemes diffF demonstrated
the use of different critical numbers in controlling the vertical distribution of the
drag. This can possibly help in the cases where there are biases of the wind speed
in particular vertical levels.

To account for the low-level drag in the schemes, one needs to utilise the con-
cept of the effective height. Our lowlevel schemes show large differences depend-
ing on its definition. Although not surprising, it suggests that better approach,
as is for example in [Lott, 1999], is needed to represent the effects of blocking and
near-surface breaking more accurately.

The scheme including the resonance seems to capture the effect correctly.
Relatively larger values for the 1000 m hill could be a good indicator that the
scheme can recognise the good resonance condition we see in the high-resolution
simulations.

Overall, we can say that the possibly biggest problem is the lack of a greater
variability in the vertical distribution of the drag. In the middle troposphere we
cannot get any drag due to high winds. This is in accordance with the linear
theory, but in the reality we get much more turbulent flow, especially in the
extreme case of 2500 m. Our reflection scheme does add small amount of vertical
variability, but it can be considered realistic only in the 1000 m hill cases, where
the added drag in the troposphere can be possibly at least partially accounted
to the reflection effects. The very strong mixing in the 2500 m case, would be
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however probably represented in online calculations, which would consider effects
of large added drag near surface.
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Conclusion
In the first chapter of this thesis, we introduced theory behind the orographic
gravity waves. We started by deriving the governing equations. Using these we
then derived the TGE, which describes the resulting windfield in linear cases,
as well as the conditions for vertical propagation of the waves. We also showed
the energy conservation laws and the possible non-linear effects concerning waves
such as reflection and resonance.

We followed with providing a motivation for the research of OGWs by showing
how large is the impact of parameterized drag on the resolved dynamics in global
circulation models. We expanded the previous research from [Hájková, 2022], us-
ing multiple models and realisations to show robust correlations between OGW
drag and the refractive index that describes ability of the atmosphere to allow
propagation of large scale waves. We were also able to further confirm the rela-
tionship between parameterized and resolved drag, showing both compensation
as well as amplification depending on the analyzed location. This is especially
important since the tuning parameters of the OGW schemes are always individu-
ally tuned for each model based on the possible biases it has. This however means
that the drag does not necessarily represent the real values we would found in a
real atmosphere.

Last part of this work starts with high-resolution simulations of overflowing of
four different hills. We analyzed the simulations, looking for differences between
resulting wave fields, breaking and other non-linear effects. Further, we replicated
these simulations, using 2 different coarse resolution set-ups, trying to mimic
global circulation model. This section was followed by an application of chosen
versions of parameterization schemes. Using different tuning and modifications,
we tried to show the sensitivity to the choices and to what extent the schemes
are able to reproduce the real drag from high-resolution simulations.

Similarly to my bachelor thesis, this work will lay the basics for my following
research, which will go in two directions.

Results from the second chapter will be further analyzed. We need to better
understand the causality between propagation of the planetary waves and the
parameterized drag near surface as well as in the lower stratosphere. Our results
showed a clear connection which we will further investigate. Resolved waves are
an important variable for correct prediction of sudden stratospheric warmings
(SSW) in models, [Wu and Reichler, 2020]. Previous research already showed
that differences in OGW schemes have significant impact on the simulated SSW
frequency [Sigmond et al., 2023]. Our goal is to better quantify the impact of the
parameterized drag, continuing with CMIP6 data to perform a further multimodel
analysis.

The off-line parameterization calculation is the first step in further research,
with an ultimate goal of developing a new parametrization scheme. Our results
showed huge dependence on the tuning parameters as well as the horizontal reso-
lution. Where quite small difference in the shape of the mountain causes a large
differences in the wave activity in the high-resolution simulations, those differ-
ences are not well represented by the parametrisations. This stands even when
using SSO information such as slope.
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Otherwise, the schemes were to some degree able to replicate the drag in cases
of the smaller hills, although the vertical distribution as well as the momentum
flux were underestimated. This effect was more evident in the cases of more ex-
treme hill. We hope to continue our work with on-line application of the schemes
to WRF-ARW to properly analyse these effects and determine the source of the
problems.

Results from both section show the continuous need for better understanding
of the OGW processes as well as for improvement of their representation in global
climate models. This topic has a big societal relevance, as these improvements
could help to improve both the short-term weather forecasts as well as the long-
term projections.
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A. Attachments

A.1 First Attachment

Model OGWD EPFD EPFz RI
CanESM5 3 3 3 3
CESM2 3 3 3 3
CESM2-FV2 3 / 3 3
CESM2-WACCM 3 3 3 3
CNRM-CM6-1 1 / 1 1
CNRM-ESM2-1 1 / 1 1
GFDL-CM4 1 / / 1
GFDL-ESM4 1 1 / 1
HadGEM3-GC31-LL 5 5 5 5
IPSL-CM6A-LR 21 2 21 21
MIROC-ES2L 3 / 3 3
MRI-ESM2-0 3 3 3 3
UKESM1-0-LL 1 1 1 1

Table A.1: Used CMIP6 models and number of realisations for each variable.
OGWD and EPFD are taken from the CMIP6 database, EPFz and RI are calcu-
lated using available variables as described in the text.

A.2 Second Attachment

Figure A.1: Scatter plot of OGWD and the refractive index, OGWD taken over
maximum near surface (30◦ - 45 ◦, 1000-500 hPa), EPFz taken over and vertical
levels as described
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A.3 Third Attachment

Figure A.2: A1000 - domain 800 km (400 km showed), 24 hours simulation,
horizontal wind perturbations.
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Figure A.3: G1000 - domain 800 km (400 km showed), 24 hours simulation,
horizontal wind perturbations.
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A.4 Fourth Attachment

Figure A.4: OGWD calculated using base07 parameterization scheme. Average
over time and the domain.)

Figure A.5: OGWD calculated using base05 parameterization scheme. Average
over time and the domain.)
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Figure A.6: OGWD calculated using diffF105 parameterization scheme. Aver-
age over time and the domain.)

Figure A.7: OGWD calculated using diffF07055 parameterization scheme. Av-
erage over time and the domain.)
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Figure A.8: OGWD calculated using diffF0507 parameterization scheme. Av-
erage over time and the domain.)
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