

MASTER THESIS

Jaroslav Vozár

Surfel-cloud rendering

Department of Software and Computer Science Education

Supervisor of the master thesis: RNDr. Josef Pelikán

Study programme: Computer Science

Specialization: IPGVPH

Prague 2024

I declare that I carried out this master thesis independently and only with the

cited sources, literature, and other professional sources.

I understand that my work relates to the rights and obligations under Act No.

121/2000 Coll., the Copyright Act, as amended, in particular the fact that Charles

University has the right to conclude a license agreement on the use of this work as a

school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In ...Prague..., date signature

I would like to thank my thesis supervisor for helping me with this thesis and

for general guidance during both the research and implementation process.

Title: Surfel-cloud rendering

Author: Jaroslav Vozár

Department / Institute: Department of Software and Computer Science

Education

Supervisor of the master thesis: RNDr. Josef Pelikán, Department of

Software and Computer Science Education

Abstract:

Rendering optimization is very important, especially for low-power and high-

demand devices such as AR/VR headsets, where a scene has to be rendered for each

eye at a high frame rate and with low latency. Many algorithms have been created for

this problem, each with its own advantages and disadvantages.

This project firstly compared existing rendering optimization techniques,

mostly focusing on the Level of Detail approach. Then, based on specific needs, the

best suited algorithm was selected and implemented. The implementation process

also involved several improvements and adjustments.

Keywords: surfels, Level of Detail (LoD), rendering, 3D model sampling

__

Názov práce: Surfel-cloud rendering

Autor: Jaroslav Vozár

Katedra / Ústav: Katedra softwaru a výuky informatiky

Vedúci diplomovej práce: RNDr. Josef Pelikán, Katedra softwaru a výuky

informatiky

Abstrakt:

Optimalizácia renderovania je veľmi dôležitá, najmä pre zariadenia s nízkou

spotrebou a vysokými nárokmi, ako sú AR/VR headsety, kde sa scéna musí vykresliť

pre každé oko pri vysokej snímkovej frekvencii a s nízkou latenciou. Pre tento

problém bolo vytvorených mnoho algoritmov, z ktorých každý má svoje výhody a

nevýhody.

Cieľom tohto projektu bolo najprv porovnať existujúce techniky

optimalizácie renderovania, zamerané predovšetkým na Level of Detail prístup.

Potom na základe špecifických potrieb bol vybraný a implementovaný najvhodnejší

algoritmus. Proces implementácie zahŕňal aj viaceré vylepšenia a úpravy.

Kľúčové slová: surfels, Level of Detail (LoD), rendering, 3D model

sampling

Contents

1 Introduction ... 1

1.1 Background .. 1

1.2 Motivation for the thesis .. 1

1.3 Problem statement .. 1

1.4 Overview of the FataMorgana platform ... 2

1.4.1 Problem in terms of FataMorgana ... 4

1.5 Scope and limitations of the research ... 5

1.6 Structure of the thesis ... 5

2 LoD techniques analysis .. 6

2.1 LoD in general .. 6

2.1.1 Parameters for selection of LoD level ... 6

2.1.2 Continuous and discrete LoD .. 8

2.1.3 Polygons vs. surfels vs. points .. 9

2.2 Criteria used for selection of LoD technique 10

2.3 Review of relevant literature .. 11

2.3.1 Image-based rendering .. 11

2.3.2 Progressive meshes ... 11

2.3.3 Point clouds ... 12

2.3.4 Surfels .. 12

2.3.5 Virtualized geometry ... 15

2.3.6 Micro-Meshes .. 16

2.4 Discussion of analyzed techniques ... 17

2.5 Justification for the chosen technique .. 17

2.5.1 Hybrid remote rendering ... 18

3 Blue Surfels ... 19

3.1 Overview of papers .. 19

3.1.1 The origins ... 19

3.1.2 Rendering .. 20

3.1.3 Sampling .. 20

3.2 Sampling algorithm .. 21

3.2.1 Rasterization .. 22

3.2.2 Initial sample selection .. 23

3.2.3 Sample format ... 23

3.2.4 Main loop .. 24

3.2.5 Rasterizing disks ... 27

3.2.6 Output .. 28

3.3 Existing implementation .. 28

4 Implementation process ... 30

4.1 Selected technologies ... 30

4.1.1 Programming language ... 30

4.1.2 Development environment .. 31

4.1.3 Source control ... 31

4.1.4 Graphics API ... 31

4.1.5 Graphics API binding library .. 34

4.1.6 Shader language .. 34

4.1.7 Graphics debugger ... 35

4.1.8 Recapitulation .. 35

4.2 Dependencies ... 36

4.2.1 FataMorgana .. 36

4.2.2 Libraries .. 36

4.3 Integration into FataMorgana ... 37

4.3.1 Input .. 38

4.3.2 Output .. 38

4.3.3 Conclusion ... 38

4.4 Testing hardware .. 38

4.4.1 AMD and Nvidia ... 39

4.4.2 Limitations of AMD cards .. 39

4.5 Encountered technical issues .. 40

4.5.1 Device Lost error ... 40

4.5.2 Attempted to read or write protected memory error 41

4.5.3 Gaps in results ... 41

5 Architecture ... 43

5.1 Organization of solution, projects, and folders 43

5.2 Main method .. 44

5.2.1 Options .. 44

5.2.2 Setup .. 45

5.2.3 Run .. 46

5.2.4 End .. 46

5.3 Vulkan Apps ... 46

5.3.1 Render-less Vulkan App ... 47

5.3.2 Renderers ... 47

5.3.3 Vulkan Apps Miscellaneous .. 50

5.4 Stages ... 52

5.4.1 Compute stages ... 52

5.4.2 G-buffers stages ... 54

5.5 Surfel Generator ... 57

5.5.1 Main loop .. 57

5.5.2 Synchronization between stages .. 58

5.5.3 Graphics debuggers ... 58

5.6 Buffers .. 59

5.6.1 Interfaces ... 60

5.6.2 Uniform Buffers .. 61

5.6.3 Staged Storage Buffers .. 62

5.7 Constants .. 63

5.8 Descriptors ... 65

5.8.1 Descriptors Manager ... 66

5.8.2 Descriptor Set Elements .. 66

5.9 Cameras .. 67

5.10 Elements ... 68

5.10.1 Surfels .. 68

5.10.2 Vertices .. 69

5.11 Meshes .. 71

5.12 Helper functions ... 72

5.13 Providers ... 74

5.14 Consumers .. 75

6 Implementation highlights ... 77

6.1 Camera placement algorithms .. 77

6.1.1 Hand-picked values ... 77

6.1.2 Spherical coordinate system .. 77

6.1.3 Fibonacci sphere .. 78

6.1.4 Implementation .. 79

6.2 Organization of shaders .. 79

6.2.1 Compact and Sort stage ... 80

6.3 Operation atomicExchange vs. atomicMax ... 81

6.4 Unsafe code .. 83

6.5 Sampling colors .. 84

6.6 Replacement of Sampling stage ... 85

6.6.1 FMBrain .. 86

6.7 Nullable warnings .. 86

6.7.1 MemberNotNull attribute .. 87

6.7.2 API call and out parameter .. 88

6.8 Rendering of surfels ... 89

6.8.1 Shape of surfels ... 89

6.8.2 Transition between surfels and original mesh 90

6.8.3 Blending between surfels .. 90

6.9 FMsurfelsDebugTools .. 91

6.10 Shared texture in Voronoi stage ... 91

6.11 Disposal of Vulkan objects .. 92

6.12 Multiple GPUs .. 93

6.12.1 Per-model basis ... 93

6.12.2 Inside of algorithm .. 93

6.12.3 Conclusion ... 93

6.13 Layered rendering .. 94

6.14 Alternative for atomic operations ... 95

7 Results ... 97

7.1 Research ... 97

7.2 Improvements compared to existing implementation 97

7.3 State of the project .. 98

7.3.1 Conclusion ... 99

7.4 Presentation of results .. 100

7.4.1 Car ... 100

7.4.2 Crane ... 104

7.4.3 Render times .. 106

7.4.4 Conclusion ... 107

7.5 Other uses of the project ... 107

7.6 Limitations ... 108

7.6.1 Input format ... 108

7.6.2 Sampling of model interior ... 109

7.7 Contributions to 3rd party software ... 109

7.7.1 RenderDoc ... 109

7.7.2 Visual Studio ... 110

8 Discussion ... 111

8.1 Selection of models for conversion to surfels 111

8.2 Small triangle draw efficiency ... 111

9 Conclusion ... 113

9.1 Research ... 113

9.2 Implementation ... 113

9.3 Results .. 114

9.3.1 Limitations .. 114

9.3.2 Bug fixes in 3rd party software .. 115

10 References ... 116

11 List of figures .. 120

12 List of abbreviations .. 123

13 Attachments ... 125

13.1 Attachment 1 - Source code ... 125

1

1 Introduction

This chapter explains the main goals of the Master thesis, the problems it

tries to solve, and the motivation behind it all.

1.1 Background

In computer graphics industries such as data visualization or 3D modeling,

Level of Detail (LoD) is a technique used to optimize rendering time and

computational and memory requirements. The main idea is that objects positioned

further away from the observer (/virtual camera) can be represented in lower detail

than objects closer to it. This is simply because the further away the object is from

the camera, the smaller its projection on the screen. This does not apply to all

projections (such as orthographic), but it does apply to perspective projection, which

is the most common in computer graphics applications.

1.2 Motivation for the thesis

LoD can be achieved through numerous approaches, each with advantages

and disadvantages. These must be thoroughly analyzed for the specific use case,

requirements, and constraints.

The end goal of this thesis is both the selection and implementation of

rendering optimization technique suitable for, but not only, FataMorgana – an

AR/VR (augmented/virtual reality) platform for remote collaboration developed by a

smaller start-up company Pocket Virtuality.

1.3 Problem statement

AR and VR headsets are notorious for requiring more computational power

than traditional rendering to standard screen for several reasons:

1. There is a need to render the same content to both eyes but from

slightly different positions (stereo rendering).

2. While users of standard computer applications (such as video games,

3D modeling software, …) can be satisfied with rendering 25-30

frames per second (FPS), a wearer of a VR headset needs at least 60

FPS to avoid motion sickness.

2

3. Latency also has to be considered. Motion sickness can occur if it

takes longer than 20-25ms from head movement to the new frame

being displayed in the headset (Hou, et al., 2004) (Wilson, 2016).

4. Displays in VR headsets are placed mere centimeters away from the

eyes. Therefore, they should provide higher resolution to keep

visible pixels per degree as high as possible and make viewed images

sharper.

Reasons 2, 3, and 4 also applies to AR headsets but are not so strict due

to the constantly visible real environment. However, most AR headsets

(such as Microsoft HoloLens) are portable, which means they cannot

utilize the powerful hardware of desktop PCs (like connected VR headsets

can). They are also expected to last at least a few hours on an embedded

battery and be lightweight and sleek. All this results in most AR headsets

having performance comparable to modern smartphones.

Therefore, using LoD is especially beneficial for AR/VR applications.

1.4 Overview of the FataMorgana platform

FataMorgana is an enterprise software system developed by Pocket

Virtuality. Its purpose is to provide an easy way for training and remote assistance,

mainly for industry (manufacturing, energy, maintenance, …).

There are numerous separate parts in this system. The best way to describe

them is through a typical workflow. It starts with getting all the required 3D models

of the scene, tools, etc. If a 3D model is unavailable, the scene can be scanned using

a 3D scanner or Microsoft HoloLens AR headset. A server-side app, FMBrain,

merges scene data from various sources. Then, a desktop program called FMStudio

can be used to create scenarios for training, adjust models, see people using

HoloLens in real-time in the correct place relative to the model, communicate with

them, etc.

3

Figure 1 FMVoyager displaying additional information including maintenance steps, over

the real environment. Courtesy of Pocket Virtuality

A client app on HoloLens called FMVoyager allows communication back to

FMStudio and other FMVoyager users. Besides that, it shows steps in case of

training, markers in the real world with text/image info, avatars of other HoloLens

users (in case they are connected remotely), and more (see Figure 1). FMVoyager

runs on Microsoft HoloLens and various VR devices.

This whole process, from the scanning of the environment to displaying the

result in AR/VR, is depicted in Figure 2.

4

Leica 3D scanner

FMBrain

FMStudio

environment

HoloLens

photos

3D scanner

...FMVoyager

AR

FMVoyager

VR

Figure 2 A simplified overview of a typical workflow in the FataMorgana platform. It starts

with HoloLens, Leica, and other devices scanning the environment, which is then fused in FMBrain,

adjusted and utilized in FMStudio, before being displayed in AR/VR headsets using FMVoyager.

1.4.1 Problem in terms of FataMorgana

Models imported into the FataMorgana system are huge CAD models with

hundreds of millions of triangles. It is not rare that even the tiniest parts of these

models, such as screws and nuts, are fully modeled to the smallest detail.

These models are not optimized for low-power portable devices such as

Microsoft HoloLens. But they also cause problems on VR headsets, where rendering

is significantly more expensive and demanding than a single 2D display.

Besides that, these models might be in various formats – not just typical

triangle meshes. This project aspires to fix the issue of rendering large and complex

scenes in systems such as FataMorgana.

5

1.5 Scope and limitations of the research

Optimization of rendering is a very complex, broad, and long-studied topic.

Research of existing techniques in this project was bounded by techniques applicable

to input models in various formats (not only meshes) that were reasonably scalable

and novel (for a more detailed list of requirements, see Chapter 2.2). Many older

techniques were researched but primarily only as a necessity for understanding newer

research based on them.

The field of rendering optimization is still very active. Therefore, it is good to

note that several newer techniques were presented while this project was being

worked on. Some of them might be mentioned later in this text, but it is out of this

project's scope to keep up with all possible new techniques.

This project should not be used as a meta-analysis of rendering

optimization techniques since many research papers were thrown away right away

after reading the abstract and realizing they do not meet the constraints of this

project. Such papers will most probably not be mentioned in this project.

1.6 Structure of the thesis

Right after this introductory chapter (1), there is an analysis of various

LoD techniques (2) followed by a more detailed description (3) of the technique

that was chosen as the best for this case.

Then, the implementation process (4) is described, which, besides other

things, also includes the reasoning behind chosen technologies and libraries. The

whole architecture (5) is described in the next chapter. That is followed by a chapter

with implementation highlights (6), such as reasoning for selecting low-level

algorithms and approaches.

At the end, there is a presentation of results (7), discussion (8), standard

conclusion (9), references (10), lists of figures (11) and abbreviations (12), and

lastly, attachments (13).

6

2 LoD techniques analysis

Dozens of LoD techniques were researched throughout the history of

computer graphics. This chapter will explain different approaches to LoD, compare

them, and defend the selection of the LoD technique, which was implemented as the

second part of this thesis.

2.1 LoD in general

Computer games were probably the first part of the computer graphics

industry that used LoD. This is due to their nature of displaying large and detailed

scenes in real time and high frame rates on consumer-grade devices of various

power.

The most basic approach to LoD is to create several polygonal meshes

representing the same object manually but with varying number of polygons (see

Figure 2). This follows the basic principle – if the object is far away, the low-poly

version of mesh is displayed, and vice versa.

Figure 3 Comparison of different LoD levels on the Stanford bunny model. Source:

YouTube0F

1

2.1.1 Parameters for selection of LoD level

Distance from camera to model in a scene is the most common, easily

available, and very reliable way to select which LoD level of the mesh should be

used for an object in a scene.

1 https://www.youtube.com/watch?v=mIkIMgEVnX0

https://www.youtube.com/watch?v=mIkIMgEVnX0

7

Figure 4 Illustration of the angle between gaze vector and vector to rendered object.

However, it is not the only parameter for this selection. The angle between

the user’s gaze vector and the object (depicted as φ in Figure 4) is also a usable

parameter. Suppose the angle between the gaze vector from the camera center and

the line from the camera center to the object is large. In that case, it means the object

is in the observer's peripheral vision, and therefore, it does not require such a detail

compared to an object in the middle of the camera. The human eye's anatomy shows

fewer rods and cones on the retina's periphery, which results in fewer stimuli

available compared to the middle.

Figure 5 Depiction of the principle of foveated rendering. Source: Article “Foveated

Rendering on the VIVE PRO Eye” on LinkedIn1F

2 by Chris O'Connor from ZeroLight

2 https://www.linkedin.com/pulse/foveated-rendering-vive-pro-eye-chris-o-connor/

https://www.linkedin.com/pulse/foveated-rendering-vive-pro-eye-chris-o-connor/

8

Since users can look anywhere on a standard monitor and due to the general

lack of any widely used eye-tracking system, this is not usable in most common

scenarios. Seeing models of lower quality on the edges of the monitor might look

uncanny. This changes with modern AR/VR headsets, which can track the user’s

gaze using internal cameras. The technique in which the user’s gaze direction is used

to optimize rendering is called foveated rendering (see Figure 4).

Foveated rendering is not restricted to only displaying low-poly models in the

area of peripheral vision. Such an area is also a good candidate for utilization of

lower quality (but faster) shaders or even calling shaders less often than every frame.

The second-mentioned technique is usually referred to as variable rate shading.

A good system would consider both distance and angle to the rendered model

in selecting the LoD level.

There are other parameters for selecting LoD level, but they might be too

subjective to particular cases or software. One of them could be a priority of the

object. If software is used to, for example, present a car, the environment around it

can be rendered in lower resolution.

On battery-powered devices, it might be a good idea to lower the rendering

quality to keep the device running longer. Lower rendering quality also leads to

lower thermal output of portable devices. This might be desired when the device

gets overheated, e.g., due to the influence of the environment.

2.1.2 Continuous and discrete LoD

No matter how the importance of the model is calculated (distance to camera,

angle, …), it is usually a continuous value. The camera can move closer to a model

by a small amount, and the LoD system has to react somehow to this scenario.

If only a discrete amount of LoD models is available, changing from one

level to another might cause undesirable visual effects, referred to as “popping”.

Advanced systems can utilize techniques to mask this transition. Such approaches are

for example:

• Alpha Blending - One LoD level decreases in opacity, and the other

increases, as seen in Figure 5. This requires both LoD levels of the model to

be rendered simultaneously, even though only for a relatively short transition

time.

9

Figure 6 A blending for transition between 2 LoD levels. Source: Wikipedia - Popping

(computer graphics)2F

3

• Geomorphing - Directly changing mesh from one model to another is

another technique (see Figure 6). Real-time geomorphing can be

computationally expensive.

Figure 7 An illustration of geomorphing for transition between 2 levels of detail. Wikipedia -

Popping (computer graphics)3

Other techniques for more continuous LoD can include, for example,

adjusting the amount of rendered points/surfels in very small steps. This approach

usually scales very well.

Discrete LoD is a traditional approach for this problem, as first presented by

(Clark, 1976). In comparison, the term continuous LoD is sometimes called

“progressive LoD” after (Hoppe, 1996).

2.1.3 Polygons vs. surfels vs. points

Manual creation of sets of polygonal meshes requires a lot of artists' time.

Naturally, this led to the development of automated systems to simplify polygonal

meshes. These algorithms usually involve some kind of clustering of neighboring

vertices while trying to maintain the overall shape of the 3D model. Information

about neighbors for each vertex is essential, and in case of its absence, expensive

3 https://en.wikipedia.org/wiki/Popping_(computer_graphics)

https://en.wikipedia.org/wiki/Popping_(computer_graphics)

10

pre-processing is required. Even after that, manual fixes and adjustments of meshes

are often needed.

These disadvantages led to the analysis of other approaches to LoD, such as

the use of points and surfels.

Points are usually handled as sets, referred to as “point clouds”. Their

rendering is cheap and a good alternative to low-poly meshes. However, gaps

between points must be handled by calculating an adequate size for each point.

Moreover, visual effects such as shadows are often problematic to achieve.

More generalized primitives to points are so-called surfels (as first defined in

(Pfister, et al., 2000)), from “surfel” = surface element. They are usually represented

as points with associated sizes and normal vectors (their orientation). Visually, they

can be rendered as oriented circles, ellipses, squares, or other planar primitives

positioned in 3D space.

2.2 Criteria used for selection of LoD technique

As briefly mentioned in Chapter 1.5, there are several requirements for the

selection of the LoD technique for this project:

1. Input format – Many formats of input models are already used in the

FataMorgana system. And there are expected to be only more in the

future. This is not just about various formats for 3D meshes but also

non-standard representations such as output from 3D scanners and

similar devices.

2. Scalability – Support for devices with strongly varying performance

is critical since this technique is expected to be used on low-power

standalone headsets such as HoloLens or Meta Quest, but also on

powerful desktop PCs. Continuous LoD is a good candidate to fulfill

this requirement.

3. Novelty – It is important to check how old the specific research is.

The older it is, the higher the probability that newer research that

improves it exists. On the other hand, if there is no progress in the

field for a long time, it might mean it is a dead end, and research is

focused on different techniques. In both cases, checking any newer

research referencing these old ones is a good idea.

11

2.3 Review of relevant literature

The following subchapters contain brief descriptions, advantages, and

disadvantages of researched techniques. Not all researched papers/articles are

mentioned here. Some of them were found not to be relevant enough even to mention

them as potential techniques.

2.3.1 Image-based rendering

Other than LoD, several techniques for optimizing rendering based on

simplification of rendered scene were also considered - for example, image-based

rendering and sprites.

These approaches somewhat resemble LoD because they show simplified

versions of objects when they are too far from the camera. But instead of simplifying

meshes, they show 2D images in 3D space, sometimes called imposters or

billboards.

Most, if not all, simple image-based techniques suffer from low quality and

visual artifacts. Several methods and data structures were created to address these

issues. One of the most known are Layered Depth Images (LDI) described in

(Shade, et al., 1998), later extended into structures such as LDI Tree (Chang, et al.,

1999) and Layered Depth Cube (Lischinski, et al., 1998).

However, these techniques are rarely used nowadays due to a significant lack

of quality and the generally complex nature of structures. Research in this field has

not advanced anywhere in the last 20 years.

2.3.2 Progressive meshes

One of the older techniques for LoD is called progressive meshes. It was

first described in (Hoppe, 1996). In simple terms, progressive mesh is a data

structure containing the simplified version of input mesh and hierarchy of decimation

operations, which lead to this simplified representation. Then, to get a better-quality

mesh, these decimation operations are applied in reverse.

There were several attempts to implement this technique on GPU, such as

(Hu, et al., 2009) and (Derzapf, et al., 2012).

It offers very good granularity of quality. On the other hand, disadvantages

include higher memory consumption and, most importantly, strict requirements for

12

input mesh. Not only does the input have to be a polygonal mesh, but it also has to

contain information about the connectivity of neighboring vertices.

2.3.3 Point clouds

The point-cloud-based LoD methods have a significant advantage in final

rendering since the rendering of points is cheap. The resulting quality can vary, but

it should not be a huge concern since points would be used only on objects far from

the camera. Alternatively, advanced blending of points with polygonal meshes

could be utilized (Cohen, et al., 2001).

The notable disadvantage is the significantly more complicated handling of

shadows, occlusion culling, and other techniques primarily developed for polygonal

meshes. Also, converting polygonal mesh to a point cloud requires a suitable

sampling method. However, sometimes data are already in the form of the point

cloud, such as output from 3D scanners.

LoD techniques based on point clouds focus on the

decimation/simplification of a set of points. This includes, for example (Pajarola,

2003) or (Shi, et al., 2011), where k-means clustering is used. This simplification

process creates multiple versions of the same point cloud with coarser and coarser

details.

A good simplification process for point clouds should consider the model's

properties, such as curvature. More points should be preserved in high curvature

places (compared to flat areas) since that usually signals more detail. This is done by,

for example (Pauly, et al., 2002).

Even though the rendering of points is cheap, the whole rendering process

might be challenging. This is because output is usually represented as complex

hierarchies (such as point-octree), which need to be handled during rendering time -

increasing complexity and performance hit for rendering.

2.3.4 Surfels

Surfels as rendering primitive were first introduced by (Pfister, et al., 2000).

Since then, several techniques for their rendering and use in LoD have been

presented.

13

For example, a combination of surfels and billboards (image-based

impostors) in a hierarchical LoD structure was proposed (Holst, et al., 2007). This

structure can also be combined with triangle-based LoD structures.

Figure 8 Model of Stanford Bunny consisting of varying amount of Blue Surfels. Note that

the size of the surfels is not representative of actual rendering. Source: (Jähn, 2013)

A significantly simpler LoD structure with a sampling of meshes was

introduced in (Jähn, 2013) as Blue Surfels. Thanks to complex sampling, the

resulting structure for rendering is a simple 1D array of surfels. The renderer

decides how many surfels (how large prefix of this array) should be rendered based

on LoD parameters. This can be seen in Figure 7. The sampling process itself was

later described in more detail in (Brandt, et al., 2019) [Visibility-Aware Progressive

Farthest Point Sampling on the GPU] and rendering with LoD selection in (Brandt, et

al., 2019) [Rendering of Complex Heterogenous Scenes using Progressive Blue

Surfels]. Blue surfels are explained in more detail in Chapter 3.

14

Gaussian splats

Figure 9 Comparison of Gaussian splats (left) and opaque squares (right). Source: (Coconu,

et al., 2002)

Similar to surfels (or even their version) are primitives commonly referred to

as Gaussian splats. As the name suggests, they use Gaussian distribution – more

specifically, this distribution is used for the gradient of the alpha channel from the

center of the splat to its edges. This technique blends splats with others around

them to create a more natural look compared to opaque surfels.

However, this comes with higher rendering complexity due to alpha blending

and non-standard depth testing. This was attempted to be solved using the old A-

buffer technique (Carpenter, 1984), z-offsetting (Rusinkiewicz, et al., 2000), or

complex hierarchical structures enabling rendering in paint order like the painter’s

algorithm does (Coconu, et al., 2002).

An increase in quality using Gaussian splats compared to primitive opaque

surfels can be seen in Figure 8.

15

EWA filtering

Another technique trying to improve opaque surfels is called Elliptical

Weighted Average (EWA) surface splatting (Ren, et al., 2002). It does require 2

render passes, however.

2.3.5 Virtualized geometry

A novel approach to LoD is virtualized geometry, with the most famous

example being Nanite3F

4. This system takes polygonal mesh on input and breaks it

down into hierarchical clusters of triangle groups. These clusters are then swapped

on the fly to provide varying levels of detail.

Figure 10 Nanite and its clustering of triangles. Source: Nanite – A Deep Dive presentation

at SIGGRAPH 20214F

5

It provides a considerable performance boost, which makes it possible to

display models with a very high number of triangles. Besides that, it also compresses

the mesh itself, resulting in lower memory requirements.

It does have several drawbacks, however. First, it is implemented only in

Unreal Engine 4 - though there will undoubtedly be other implementations soon.

4 https://docs.unrealengine.com/5.0/en-US/nanite-virtualized-geometry-in-unreal-engine/

5 https://www.highperformancegraphics.org/slides22/Journey_to_Nanite.pdf

https://docs.unrealengine.com/5.0/en-US/nanite-virtualized-geometry-in-unreal-engine/
https://www.highperformancegraphics.org/slides22/Journey_to_Nanite.pdf

16

The Unity version of Nanite was crowdfunded through Indiegogo5F

6. At the time of

writing, Nanite works only with DirectX 12 (and PlayStation 5 and Xbox Series S|X,

but those are irrelevant to this project).

Other drawbacks include no support for double-sided faces, Android, and

mobile chips (including Meta Quest), which means it might not support HoloLens

either. Nanite also does not work with all materials and translucent objects. It works

poorly with long thin objects (hair, grass, vegetation in general, etc.) and can be

used only on static meshes.

Many rendering techniques are not currently supported by Nanite. The most

important one (for this project) is the lack of support for stereo rendering.

2.3.6 Micro-Meshes

A technique called Micro-Mesh, developed and recently shown by Nvidia6F

7, is

based on splitting each triangle of the base mesh into micro-triangles. These micro-

triangles are later displaced to create a highly detailed model. Thanks to these micro-

triangles, this technique offers an inherit continuous LoD – the number of rendered

micro-triangles for each base triangle can be adjusted on the fly through blended

decimation.

Figure 11 A visualization of conversion from input model to Micro-Mesh. Source:

(Maggiordomo, et al., 2023)

Unlike Nanite, this technique works on animated meshes. Micro-triangles

can also be easily generated on the fly, for example, for procedurally generated

meshes. However, this requires the latest generation of GPUs – more specifically,

GPUs ray-tracing capabilities are needed for the native generation of micro-meshes

6 https://www.indiegogo.com/projects/the-unity-improver-nano-tech#/

7 https://developer.nvidia.com/rtx/ray-tracing/micro-mesh

https://www.indiegogo.com/projects/the-unity-improver-nano-tech%23/
https://developer.nvidia.com/rtx/ray-tracing/micro-mesh

17

(Maggiordomo, et al., 2023). Same as Nanite, Micro-Meshes can also compress the

original mesh to a fraction of its original size.

This approach's disadvantages include the necessity for the latest generation

of GPUs. Micro-meshes also requires input to be in the form of a polygonal mesh.

Non-standard meshes or meshes with errors might cause problems for this

algorithm. This includes, for example: open edges, non-manifold surfaces,

overlapping UVs for textures, and similar. This will likely improve soon since

research in this field is very new and active.

2.4 Discussion of analyzed techniques

The previous chapter reviews many relevant LoD techniques based on stated

criteria. It discusses their advantages, disadvantages, and limitations.

There are also depictions of research trends for LoD algorithms. As can be

seen, image-based LoD algorithms and progressive meshes went into the background

of research, while the industry focused on Micro-Meshes and virtualized geometry.

The introduction of Nanite was a giant leap forward in a field where only

minor progressive improvements were made in the last years. Its implementation into

industry-level game engines such as Unreal Engine will surely bring more focus

into this area of research.

Based on this literature analysis and considering all the advantages and

disadvantages, selecting the LoD algorithm for this project was relatively easy. This

selection is discussed and justified in the next chapter.

2.5 Justification for the chosen technique

The selected LoD technique, hereinafter referred to as “Blue Surfels”, fulfills

all requirements set in Chapter 2.2. It brings even something extra to the table. This

algorithm provides scalable LoD with extreme granularity, is novel, and is prepared

to work with inputs in arbitrary format. Plus, there is a source code available. As a

bonus, it is also tested with VR headsets.

On a more personal note, using a rasterization pipeline in a very non-

standard way and compute shaders (basically a GPGPU) is an exciting topic for me.

This is not a crucial decision factor. It is still motivating to explore such an exciting

approach to graphics hardware.

18

2.5.1 Hybrid remote rendering

The extremely high granularity and output format of the Blue Surfels

algorithm allow for something that can be referred to as hybrid remote rendering.

“Remote” in this case means that the hard work (conversion of input model

to surfels) is done on a powerful machine (server). This is then sent to a low-power

device (client).

“Hybrid” refers to the fact that the client still has to render something

(surfels in this case), unlike traditional remote rendering where the server sends only

final RGB images (and optionally depth maps). Rendering surfels is, however, still

significantly cheaper than rendering huge models with millions of triangles. There

are also no complex structures and computations used for rendered primitives – only

a single 1D array of surfels.

High granularity and an iterative approach to Blue Surfels allow the server to

send more and more surfels gradually as they become available. Or, as there is more

bandwidth for that – surfels can be sent one by one, and they still provide an

improvement individually to the rendered scene on the client device. That allows to

use this technique even with very slow and bad connection.

For example, sending huge models through a slow internet connection might

not be possible. Sending only a part of the 3D model is not practical (and might not

be possible at all, depending on the format of the 3D model). On the other hand,

sending just a few Blue Surfels is way better than having no model at all (or

having only a placeholder, for example, in the form of a bounding box).

It is worth noting that no matter what type of remote rendering is used, some

things should be rendered locally – such as hands. They usually require very little

computational power (low triangle count and simple shading), their geometry and

position change every frame, and they should be as low latency as possible while

being resistant to problems caused by networks.

19

3 Blue Surfels

This chapter talks about Blue Surfels algorithm as presented by

• Claudius Jähn (from DeepL GmbH, Cologne, Germany),

• Sascha Brandt,

• Matthias Fischer,

• and Friedhelm Meyer auf der Heide (the last 3 are from Heinz Nixdorf

Institute, Paderborn University, Germany)

in these 3 papers:

• Progressive Blue Surfels (Jähn, 2013),

• Rendering of Complex Heterogenous Scenes using Progressive Blue Surfels

(Brandt, et al., 2019),

• and Visibility-Aware Progressive Farthest Point Sampling on the GPU

(Brandt, et al., 2019).

More specifically, the first part of this chapter describes the working of this

algorithm as presented in 3 papers. This should be a replacement for reading all

these papers – at least for a high-level understanding of the algorithms used in this

project.

The second part of this chapter mentions the existing implementation of the

Blue Surfels algorithm into the university’s rendering platform. It also provides

arguments on why a complete rewrite of the algorithm was required.

3.1 Overview of papers

All aforementioned research papers talk about the same problem from

different views. The main idea of the algorithm, as mentioned in Chapter 2.3.4, is

the uniform sampling of a 3D model to create a surfel representation of it. These

surfels are ordered in a 1D array in a way that rendering longer and longer prefix

results in more details while maintaining the uniformity of rendered surfels’

distribution.

3.1.1 The origins

The first mentioned paper, Progressive Blue Surfels (Jähn, 2013), is a

concise introduction to this problem. Most of the mentioned processes and

20

algorithms are described on a very high level. Others are very primitive versions of

algorithms with notes that they should be improved/replaced in future work. No

benchmarks, comparisons, or analyses are provided.

Since the other 2 papers cover and build upon everything in this paper, it is

irrelevant to this project.

3.1.2 Rendering

Rendering of Complex Heterogenous Scenes using Progressive Blue

Surfels (Brandt, et al., 2019) paper does mention progressive sampling, but only the

significantly simplified version. It consists of a greedy permutation (maximization

of the minimal closest distances between neighboring surfels) with a heuristic to

make it faster while keeping the sampling quality reasonably good.

The main focus of this paper is the actual rendering of surfels. This includes

primarily calculation of array prefix length for desired surfel size. Subsequently,

another formula shows how to calculate surfel size based on the rendering time of

the last frame. An amount of rendered surfels (array prefix length) is expected to be

updated as often as every single frame.

The rest of the paper consists of performance benchmarks and a quality

comparison of rendered surfels to baseline mesh rendering.

3.1.3 Sampling

The last paper, Visibility-Aware Progressive Farthest Point Sampling on

the GPU (Brandt, et al., 2019), is the most important one since it describes an

advanced sampling process with blue noise characteristics (more in the next

chapter).

Note that this sampling algorithm is different and especially significantly

more advanced than the one briefly mentioned in the previously discussed paper.

Besides the detailed description of the algorithm, this paper also contains a

very deep analysis of results, including differential domain analysis, timings

compared to reference algorithm, statistics, etc. There is also a comparison of various

values for algorithm parameters.

No rendering algorithms are discussed in this paper. There are only

mentions of LoD as one of the applications for the sampling algorithm.

21

3.2 Sampling algorithm

This whole project is based on the advanced sampling process described in

the Visibility-Aware Progressive Farthest Point Sampling on the GPU (Brandt, et al.,

2019) paper. Therefore, this chapter is dedicated to description of this algorithm as

presented in the paper.

The overall goal of this sampling algorithm is to sample the visible surface of

the 3D model so that the resulting samples have blue noise characteristics for every

prefix of the output sequence of samples.

“Blue noise” in this context means that samples are distributed uniformly (in

spatial dimension) with low regularity (no visible patterns). In computer graphics,

blue noise is also frequently used for applications such as dithering, as can be seen in

(Ulichney, 1988).

All this is done with a focus on utilizing the highly parallel architecture of

modern GPUs, gaining a huge performance advantage compared to CPU-only

algorithms.

Note that this algorithm, as presented in the paper, is not one-to-one

compared to the algorithm actually implemented in this project. Also, parts of the

algorithm in the following subchapters are mentioned in a relatively high-level

approach since low-level workings are explained in detail in the rest of this thesis.

Similarly, implementation-specific details are excluded from this chapter.

The following flow-diagram in Figure 12 shows overview of individual

stages of algorithm and main loop. It also illustrates how compute and rasterization

pipelines are utilized in a “zig-zag” manner.

22

u
nt

il
en

o
ug

h
 s

u
rf

el
s

ar
e

ge
n

er
at

ed

Rasterize 3D model into G-buffers

Choose first sample

Main loop

Draw Voronoi diagram

Extract farthest sample from each cell

Draw Poisson disks

Eliminate conflicts

Compact and sort

Count valid samples

Compute pipeline

Rasterization pipeline

Figure 12 A flow-diagram representing individual stages of the whole algorithm. Orange

stages use compute shaders and green ones run on rasterization pipeline (vertex, geometry, and

fragment shaders).

3.2.1 Rasterization

The algorithm starts with an input model being rasterized from various

directions/views – originally, pre-generated positions of cameras on the sphere

around the input model are used.

This resembles deferred rendering since the result of rasterization is a set of

G-buffers. Specifically, 3 buffers containing position, normal, and color for each

pixel. This can be seen in Figure 13. G-buffers are stored as layered textures, where

each layer corresponds to 1 camera.

23

No representation of the original input model is used in the algorithm from

this point onward.

Figure 13 Rasterization of the object from several directions (left) and storage of results into

various G-buffers (right). Source: (Brandt, et al., 2019)

3.2.2 Initial sample selection

After rasterization, 1 random sample is selected from G-buffers. Sample, in

this case, means a reference to a valid (= non-background) pixel of G-buffer texture.

This is not a reference to a particular pixel but rather a position of pixel applicable to

all G-buffers since each G-buffer represents different parameters of the same

rasterized object.

This sample is stored in a sequence of samples S.

3.2.3 Sample format

Each sample is represented as a single 64-bit float. The sample radius is

stored in the 32 most significant bits, while the rest is used for texture coordinates.

These coordinates are stored in the format of 12:12:5:3 bits as follows:

• 2 x 12 bits for UV coordinates,

• 5 bits for the texture layer,

• and the last 3 bits for the MIP level.

Having the 32 most significant bits represent a sample radius (while the

whole sample is a single 64-bit float) has one significant advantage – easy sorting.

The progressive nature of output is achieved by sorting of the samples by the

decreasing sample radius. Therefore, this format allows a simple comparison of just

these 32 bits of each sample to get correctly sorted output. Radix sort is ideal for

24

cases like this. Furthermore, the whole 64-bit number is directly comparable using a

single compare operation.

Invalid samples are stored as a 64-bit representation of the number 0. This is

also a default value for the whole sequence S.

3.2.4 Main loop

After the initial sample is selected, the algorithm's main loop starts. It loops

until no more samples can be extracted or the desired number of samples is

generated (one of the input parameters).

Figure 14 Simplified visualization of a single main loop iteration: from drawing of Voronoi

diagram, extraction of the farthest samples, and elimination using Poisson disks. The right-most

picture represents an updated Voronoi diagram used for the next loop iteration. Source: (Brandt, et al.,

2019)

Voronoi diagram

For each camera view, a discrete 3D Voronoi diagram is calculated.

The idea is that each sample in sequence S acts as a Voronoi site (a generator

for Voronoi cell). A disk is rasterized (directly on layers of G-buffers; for details,

see Chapter 3.2.5) for each sample. The distance to the Voronoi site is subsequently

written into the depth buffer. This utilizes a highly optimized depth buffer to assign

a given pixel to the closest sample, creating a Voronoi diagram. This algorithm is

based on (Ip, et al., 2013).

25

Figure 15 G-buffers for Voronoi diagram algorithm stage. Each shade of red in the left

picture represents a single Voronoi cell. The right picture then depicts the distance of each pixel from

its Voronoi site on a scale of black (nearest) to red (farthest). The centers of the black blobs are the

Voronoi sites. Used model: Stanford Bunny8

The output of this stage consists of 2 G-buffers. One stores the ID of the

Voronoi cell for each pixel (left picture in Figure 15). This ID corresponds to the

sample’s index in sequence S, which the Voronoi cell was created from. The second

G-buffer stores the distance to the closest Voronoi site (right picture in Figure 15).

The left-most part of Figure 14 shows Voronoi cells created from samples,

while the right-most picture shows a Voronoi diagram with an additional cell

created. The diagram with the added cell is used in the next loop iteration.

Farthest sample extraction

When the Voronoi diagram is created, it is time to find each cell's locally

farthest discrete point (pixel of G-buffer). This can be seen in the second picture in

Figure 14. This farthest point becomes a sample. And since each initial sample from

the sequence S creates exactly 1 new sample, the total number of samples is

doubled.

This also means that the corresponding new sample for each site is at a

strictly defined index in sequence S. For the initial sample with index i, the new

sample’s index would be (m + i), where m is the current number of samples in S.

8 https://graphics.stanford.edu/data/3Dscanrep/

https://graphics.stanford.edu/data/3Dscanrep/

26

The farthest point is extracted in a single pass of a compute shader. G-buffers

(containing Voronoi cell ID and distance to site) from the previous algorithm part are

used. An atomic max operation is performed to select a sample with the largest

distance to its Voronoi site. This sample is then written into sequence S at index (m

+ i), as mentioned above.

Conflict removal

Not all new samples extracted from Voronoi cells are usable. For example, if

multiple new samples are too close to each other – this can be seen in the second

and third picture of Figure 14. Of 3 new samples (turquoise circles), 2 are rejected as

being too close to the remaining one.

 This “conflict removal” is done by rasterizing Poisson disks (similarly to

disks used to create the Voronoi diagram) for each new sample. The disk’s radius is

equal to the distance from the new sample to the Voronoi site it from created from.

When overlapping disks appear, the one with the largest radius wins. This

is illustrated in the third picture of Figure 14. The selection of the disk with the

largest radius is done using a depth buffer – the same way as with the distance to the

Voronoi site in the “Voronoi diagram” part of this algorithm, just with different clear

value and comparison function for the depth test.

Once indices of Poisson disks are written into the G-buffer, a compute shader

is used to go through new samples in sequence S and mark them invalid if the

neighbor’s Poisson disk overlaps them.

Compact and sort

The previous part of the algorithm causes gaps of invalid samples in

sequence S. Furthermore, new valid samples are not sorted. To achieve progressive

sampling, sorting by decreasing the sample radius is required. A “compact and sort”

algorithm is performed to fix these issues.

Thanks to the format of samples (both valid and invalid; see Chapter 3.2.3),

compacting (removal of gaps) and sorting can be done effectively on GPU using

parallel radix sort. The inner working of this sorting algorithm is directly based on

(Satish, et al., 2009).

After sequence S is compacted and sorted, a count of valid samples is

updated. This number is needed to decide whether to quit or continue the main

algorithm loop.

27

3.2.5 Rasterizing disks

Figure 16 Process of rasterization of disks for purposes of Voronoi diagram. Vertex shader

creates a point for each sample (using G-buffers), geometry shader creates a triangle from each point,

and fragment shader discards fragments, leaving only an inscribed circle behind. The right-most

pictures show resulting G-buffers – they are analogous to Figure 15. Source: (Brandt, et al., 2019)

Both Voronoi diagram creation as well as conflict removal using Poisson

disks require the rasterization of disks. This is done using the standard rasterization

pipeline of modern GPUs. The process can be seen in Figure 16, while a more

detailed description is available in the rest of this chapter.

Vertex shader

The sequence of samples S is used as a vertex buffer. Vertex shader takes

each sample, and based on texture coordinates stored in it, position and normal

vector are read from G-buffers. These parameters are passed to the next stage.

Geometry shader

Geometry shader takes each sample as a point and creates an equilateral

triangle, whose inscribed circle:

• has center at the sample’s position,

• rotation perpendicular to the sample’s normal vector,

• and radius identical to the sample’s radius.

Fragment shader

Lastly, the fragment shader discards all fragments that are further away from

the inscribed circle center than the circle radius, leaving only fragments

representing the circle. A similar process is also visualized in Figure 17.

28

3.2.6 Output

The very important notable thing about this algorithm is the form of its

output. It consists of a single 1D array of samples. These samples are arranged in a

way that any prefix of this array creates a progressive sampling of the input model.

For an illustration of this, see Figure 8. As a result of that, the rendering itself can be

done in a single draw call – just with a variable prefix length.

The number of rendered samples (prefix length) depends on general

parameters for selecting the LoD level – for more details, see Chapter 2.1.1. It is

important to note that the output of this algorithm is usable as continuous LoD with

extreme granularity. Prefix length can be increased/decreased by as little as a single

sample in each frame without processing overhead. Only the surfel size has to be

updated. Fortunately, this value is the same for all the surfels at a single draw call,

and its calculation is computationally trivial.

Samples can be easily converted to surfels as part of preprocessing or

rendered directly. Direct real-time rendering of samples is less convenient since it

requires having all relevant G-buffers bound, and reading from them will result in

unnecessary performance hit.

3.3 Existing implementation

PADrend7F

9 (Platform for Algorithm Development and Rendering) is a

software system for virtual walkthroughs in 3D scenes developed at Heinz Nixdorf

Institute, University of Paderborn, Germany. Authors of Blue Surfels papers

implemented surfel generator and renderer as a plugin into this system.

The whole implementation is written in a combination of EScript and C++.

EScript (different from eScript, a scripting version of Erlang) is a scripting language

for controlling C++ applications explicitly developed for PADrend. The use of this

language and the fact that implementation is very tightly integrated into PADrend

were good reasons to completely rewrite the implementation rather than use the

existing one and try to adjust it.

PADrend’s implementation of Blue Surfels also uses OpenGL as a graphics

API. This API is rather old, lacks options for deep optimization, and its support

9 https://www.padrend.de/

https://www.padrend.de/

29

will only worsen in the upcoming years. It is understandable to use OpenGL in an

academic environment since it is easy to learn, use by students, and prototype ideas

quickly. But there are better alternatives for professional applications nowadays.

The lack of comments and documentation also did not favor using the

existing implementation.

Therefore, a decision to completely rewrite this program was made. Papers

describing Blue Surfels were good enough to write a new implementation from

scratch. The existing implementation code was still used in a few places as a

reference, especially the shaders. The architecture of CPU code was created

completely from scratch without any influence from the existing implementation.

30

4 Implementation process

The implementation process, from the selection of software, testing

hardware, and integration into FataMorgana, as well as a discussion of technical

difficulties, are all presented in this chapter.

4.1 Selected technologies

This subchapter discusses the reasons for this project's technologies - IDE,

programming language, APIs, libraries, etc. For a quick summarization of the

following subchapters, skip to Chapter 4.1.8.

4.1.1 Programming language

No critical computationally intensive part of this project is performed on the

CPU. Therefore, the selection of CPU programming language was not crucial and

came down to support for the binding library for selected graphics API (more in

Chapter 4.1.5), ease of use, and compatibility with the rest of the FataMorgana

system.

C/C++ is the best for working with all relevant graphics APIs without the

need for any binding library.

C# was chosen mainly due to its simplicity (both in writing code and setting

up a project with multiple files) but most importantly due to the ease of integration

into FataMorgana. The core of this system is written in C#, and therefore, any

interoperability is as easy as possible.

The version of .NET in the FataMorgana system is frequently updated to the

most modern and stable version available. It also has minimal impact on

interoperability between projects. Due to all these reasons and the fact that newer

versions of .NET frequently bring a lot of useful and relevant improvements (for

example, into C# language), it was decided that this project will be written using

.NET 6 - the latest stable version at the time of the beginning of this project. Once

.NET 7 was released in a stable version, the project was upgraded to it.

31

4.1.2 Development environment

Visual Studio comes up naturally as the #1 IDE for working with any C#

project, especially larger ones (which might require profiling and other features

unavailable in Visual Studio Code and similar IDEs). Therefore, the selection of IDE

was easy.

4.1.3 Source control

Git was selected as source control software simply because the FataMorgana

project is already hosted in a Git repo.

To make work on this project possible, even after I left Pocket Virtuality, the

project was moved from the company’s Git repo to a private one. A simple remote or

clone change was impossible since the company’s repo contained all FataMorgana

projects. Project files had to be copied manually. This led to the loss of Git history,

but it did not cause any issues.

4.1.4 Graphics API

The selection of graphics API in an application like this is crucial since most

of the computation is performed on GPU, and the differences between available

APIs are enormous. If single-purpose and non-Windows graphics APIs are excluded

(such as Metal for Apple products and PSGL for Sony PlayStation), there are only so

many options.

OpenGL

OpenGL10 is multiplatform, easy to use (at least as far as graphics APIs

go), but rather old. The Khronos Group (the group behind OpenGL) is increasingly

shifting focus to their newer API called Vulkan. Therefore, support for it is lacking

behind and is not expected to improve. Besides that, OpenGL does not support low-

level optimizations and techniques that modern APIs offer.

Vulkan

Vulkan11 is modern and multiplatform graphics API. Its advantage is the

ability to optimize code on a very low level by providing graphics driver (precisely,

10 https://www.opengl.org/

11 https://www.vulkan.org/

https://www.opengl.org/
https://www.vulkan.org/

32

Vulkan runtime in this case) as much information about provided data structures and

operations as possible. Vulkan also allows programmers to utilize the multithreaded

nature of modern computers fully. Its main disadvantages are a steep learning

curve, lack of proper tutorials/troubleshooting guides, and hard-to-read official

documentation.

DirectX

DirectX12 is a graphics API with almost 30 years of history. It is developed

by Microsoft and works only on Microsoft products, such as Xbox gaming consoles

and Windows OS. The most commonly used major version nowadays are 11 and 12.

In the case of DirectX, versioning is very misleading – while differences between

DirectX 9, 10, and 11 are substantial, the core concept is still the same, and

programmers can quickly adapt to newer versions. The difference between versions

11 and 12 is almost the same as the difference between OpenGL and Vulkan.

DirectX 12 works on entirely different core principles and exposes many low-level

features, similarly to Vulkan.

Translation layers/emulators

Translation layers and emulators, which allow users to play games written in

graphics API not supported on their system, are improving. A massive boom in

this field was recently caused by the popular Steam Deck gaming console, which

runs on a Linux-based operation system called Steam OS. This naturally required a

good emulator since most games are written in DirectX. However, these emulators

are still far away from being perfect.

Decision process

Initially, DirectX 11 seemed like the best candidate for graphics API for this

project because it is already extensively used in the FataMorgana system, so various

libraries could be reused in other projects. Besides that, DirectX 11 is relatively

widespread, with many tutorials for it.

Unfortunately, in the middle of development, DirectX 11 proved unusable

because it does not support one critically required instruction in compute shader

– atomic max on 64-bit floating-point numbers. Workarounds, such as locks and

12 https://learn.microsoft.com/en-us/windows/win32/directx

https://learn.microsoft.com/en-us/windows/win32/directx

33

memory barriers, were considered and tested, but the performance hit was too big (by

several orders of magnitude) – see Chapter 6.14.

The usage of CUDA or other similar GPU-driven libraries for high-

performance computing was also considered. Still, interoperability between these

libraries and graphics API causes performance bottlenecks and general problems

with development and troubleshooting.

Graphics APIs that support this critical atomic operation are OpenGL, Vulkan

(through extension), and DirectX 12. The use of OpenGL was quickly dismissed due

to a lack of low-level optimization and a gradual loss of support. Choosing either

Vulkan or DirectX 12 meant completely rewriting existing code and no benefit of

sharing libraries with existing projects from the FataMorgana system. Also, both

APIs are more or less equally difficult to learn, and none of them were used by any

employees of Pocket Virtuality before. One significant decision parameter was

multiplatform support. Vulkan is the winner in this aspect as well whole decision

process for graphics API.

Windows 10 does support DirectX 12; however, it is not the version that

supports atomic max on 64-bit floats. To get this functionality, it is required to use

DirectX 12 with Feature Level 12.2 and Shader Model 6.6. This requires WDDM

2.9, which is technically possible to use in Windows 10 but only in builds available

through Dev Channel. Builds in Beta and Release Preview Channels were not usable.

A few development builds of Windows 10 with support for WDDM 2.9 were tested,

but they were all very unstable and generally unusable for everyday work. Moreover,

selecting Dev or Beta Channel as Windows Insider in Windows 10 nowadays forces

installation of Windows 11. Getting Windows 10 with all the required features

through normal means is impossible. This would further limit usable platforms in

case DirectX 12 was chosen.

The new dedicated Intel Arc GPUs are also worth considering in the

equation. These GPUs are based on entirely new architecture, and the focus was

obviously on new graphic APIs such as DirectX 12 and Vulkan. There are known

issues with support and performance in games running older versions of DirectX and

OpenGL as they are internally translated/emulated.

34

4.1.5 Graphics API binding library

Vulkan’s API is written natively in C language. This means that a binding

library for C# was required. Binding libraries are low-level enough (at least between

C# and C/C++) not to cause significant performance bottlenecks. And since all of the

performance-critical work is computed in shaders on GPU, usage of binding library

compared to native calls to C API does not hurt the final performance of this

application in any noticeable way.

There are 2 major C# binding libraries for Vulkan. Vortice and Silk.NET.

Other libraries, such as vk and VulkanCore, have not been in active development

for several years and, therefore, were ignored.

Vortice is developed primarily by a single person with few contributors.

Silk.NET, on the other hand, is officially developed under the umbrella of the .NET

Foundation. This means significantly more contributors, more end users, and more

frequent releases. Both libraries' quality and ease of use seemed to be more or less

the same, and both are open-source projects with the same licenses (MIT). Due to

these advantages of Silk.NET over Vortice, the final decision was made to use

Silk.NET as a binding library.

While the project was still developed in DirectX 11 (which also offers only

native C-based API), SharpDX was used as a binding library from C#. This choice

was made purely from the standpoint of SharpDX being already used in

FataMorgana. Otherwise, using this binding library is not recommended, as it was

abandoned in 2019. Silk.NET would probably be a good alternative as it offers all

the above advantages and provides DirectX bindings. However, no further research

was done in this field as it was irrelevant.

4.1.6 Shader language

There are 2 major shading languages: GLSL, used in OpenGL, and HLSL,

used in DirectX. Vulkan, however, relies only on low-level shader code

representation called SPIR-V. There are compilers for both GLSL and HLSL into

SPIR-V. The decision between GLSL and HLSL unlimitedly boils down to personal

preference since the vast majority of extensions are supported. That is, unless the

shader code is supposed to be shared with OpenGL or DirectX, which was not the

case.

35

GLSL was chosen primarily for personal preference and partially due to the

availability of a better GLSL to SPIR-V compiler plugin for Visual Studio.

4.1.7 Graphics debugger

The selection of a graphics debugger was not straightforward and required a

bit of trial and error. This was mostly due to high demands for support of advanced

features and extensions.

Visual Studio Graphics Debugger is great for quickly inspecting the

rendering process and results but lacks advanced tools. But most importantly, it

does not support Vulkan. However, it was used when the project was written in

DirectX 11.

Regarding actual graphics debuggers (not just profilers) that support Vulkan,

there are only 2 options: RenderDoc and Nvidia Nsight Graphics. Both are

advanced, and both were used to some extent. However, RenderDoc appeared to be

more suitable for debugging most of the cases in this project. Some advanced tools

needed for this project's development include a step-by-step shader debugger and the

ability to work with layered textures. RenderDoc fully supports both. Besides that, it

is also open-source, with great support from the community and the creator.

RenderDoc API

Graphics debuggers usually expect the standard structure of the rendered

frame – 1 or more Draw/Compute commands with Present command denoting the

end of frame (tells GPU that the current frame can be presented to the screen).

However, this project uses a rasterization pipeline in a very unusual way – it works

iteratively and completely off-screen with no Present command involved.

To properly debug situations like this, RenderDoc provides API that (besides

other features) allows apps to mark the start and end of rendered frames. In this

project, a single iteration of the algorithm acts more or less as a single frame and was

set this way.

4.1.8 Recapitulation

To summarize previous subchapters, selected technologies are as follows:

• Development environment: Visual Studio (standard solution with

projects) and Git

36

• Languages: C# for CPU side and GLSL for shaders

• Graphics API: started in DirectX 11 but later changed to Vulkan

through the Silk.NET binding library

• Graphics debugger: primarily RenderDoc, a bit of Nvidia Nsight

Graphics

4.2 Dependencies

Using this project as part of a commercial product leads to limitations in

selecting dependencies. More specifically, licensing, probability for long-term

support, and development stability (how probable are large breaking changes to

API) had to be considered.

4.2.1 FataMorgana

Plans to use DirectX 11 to get the option to share some of the libraries with

the FataMorgana system could not be fulfilled. Also, there was no code using Vulkan

in this ecosystem. Due to these reasons, there are absolutely no dependencies on the

FataMorgana system, and this project can currently be used as a standalone.

4.2.2 Libraries

All external dependencies are managed through NuGet packages since it is

the easiest and most straightforward way to add 3rd party libraries to C# projects.

These packages include:

• CjClutter.ObjLoader – loader library for .obj files (containing 3D

mesh data),

• CommandLineParser – simple utility library to help with parsing

command line arguments,

• Evergine.Bindings.RenderDoc – C# binding for RenderDoc API,

• Silk.NET – various packages related to C# binding to Vulkan API or

working with graphics APIs in general, more specifically:

o Maths – math library used for standard graphics APIs

operations such as vectors, matrices, etc.,

37

o Vulkan, Vulkan.Extensions.EXT, Vulkan.Extensions.KHR

– Vulkan binding itself and bindings to 1st party KHR

(Khronos) and 3rd party EXT extensions,

o Windowing, Windowing.Common, Windowing.Glfw,

Windowing.Sdl – packages related to the windowing system

used by Silk.NET,

• SpirVTasks – a small utility tool that adds tasks into Visual Studio

for automatic compilation of GLSL shaders into SPIR-V.

Vulkan frameworks

There are several libraries and frameworks specifically made for Vulkan.

However, this project does not use any of them. The decision to write everything

from scratch and use pure Vulkan was made to have complete and low-level access

to everything needed.

Also, most of these frameworks are designed for standard rendering. This

project uses Vulkan in a highly non-standard approach; therefore, finding a

framework that would provide everything needed for this project was deemed

problematic, especially since it would have to be comfortably usable from C#.

Licensing

All aforementioned 3rd party packages are distributed under the MIT License.

This license permits both private and commercial use, modifications, as well as

distribution of code using these libraries. Therefore, there is no issue with using these

packages in commercial systems such as the FataMorgana.

4.3 Integration into FataMorgana

As mentioned in Chapter 4.2.1, this project has no dependencies on any

existing part of the FataMorgana system. It can work entirely independently.

Integration of this project into FataMorgana (or any other similar system) still

requires much work. This consists mainly of the workflow to select a model, split it

(if necessary), convert it, call this project to generate surfels, and save surfels.

Neither the rendering of surfels (see 6.8) nor the selection of the correct number of

surfels to render (or the original mesh) are complex.

The only parts of this project that need to be adjusted based on the system

around it, are input and output formats.

38

4.3.1 Input

Not only can mesh input be in many different formats, but the input does not

have to be a mesh at all. Output from a 3D scanner or similar device can be used as

input to this project. This is further discussed in Chapter 6.6. Transfer of input can be

done in various ways as well – as a file on disk/database, a pointer (/handle) to

memory on CPU or GPU, etc.

4.3.2 Output

The same applies to an output. It can be saved to a file or transferred to GPU

memory for maximum performance advantage. Vulkan offers interop functionality

for the vast majority of graphics APIs, which could save unnecessary copying. But

again – it is highly dependent on an external system using this project.

Creating a universal system for handling input and output in as many ways

as possible is a long-term commitment whose usefulness heavily depends on the

number of external systems using this project. This algorithm was created primarily

with just a single external system in mind.

4.3.3 Conclusion

The actual integration into the FataMorgana system is outside this project's

scope. It was planned to be done shortly after this project was finished. However,

these plans have now changed since I no longer work for Pocket Virtuality at the

time of writing. Therefore, integration into FataMorgana and other works related to it

will have to be done by another company employee.

4.4 Testing hardware

All development and testing were done primarily on desktop PC running

Windows 11 and the following configuration:

• AMD Ryzen 9 3900X,

• 32 GB RAM (3600 MHz),

• Nvidia GeForce RTX 3070 Ti (8 GB of dedicated GPU memory).

All relevant software, such as OS, Vulkan SDK, and GPU drivers, were kept

reasonably up-to-date during development.

39

4.4.1 AMD and Nvidia

Besides the aforementioned main testing Nvidia GPU, this project was also

tested on a dedicated AMD graphics card. More specifically, AMD Radeon RX

6600. This testing was brief and done only to check changes in the behavior of

Vulkan drivers from different GPU vendors.

As for the result, no differences between AMD and Nvidia graphics cards

were encountered in program output. There was also no difference in

errors/warnings/debug messages produced by AMD and Nvidia drivers.

4.4.2 Limitations of AMD cards

The AMD card used for testing is modern but very low-end (the cheapest

previous generation AMD card available in shops at the time). This caused 3

problems.

Firstly, this application requires 1 queue (capable of graphics, compute, and

transfer operations) for generating surfels and another one (with graphics, transfer,

and presentation capabilities) for debug renderer.

AMD Radeon RX 6600 supports a single queue capable of graphics

workload (“GRAPHICS_BIT”). Therefore, using a debug renderer on this AMD

card was impossible. For comparison, the Nvidia RTX 3070 Ti supports 5 different

queue families of various capabilities, each containing up to 16 queues (28 queues in

total across all families). Surprisingly, AMD card does not support more than a

single queue.

The second issue was the maximum number of views for multiview

rendering (a property called “maxMultiviewViewCount” in Vulkan Hardware

Capability Viewer). While the tested Nvidia card supports up to 32 views (plenty for

sampling cameras), the AMD card supports a mere 6 views.

Lastly, this AMD card does not support 64-bit unsigned integers

(VK_FORMAT_R64_UINT) in any buffers, therefore not even in the vertex buffer,

which is required by the application. However, even though standard Vulkan

validation layers threw an error regarding the lack of support for this format,

everything worked fine. One can only assume that the GPU driver must have used a

fallback behavior for this case. Still, this should be avoided in general. Not only can

it cause undefined behavior or crashes, but a fallback strategy will most likely cause

40

reduced performance. If needed, this issue could be solved using other 64-bit

format and casting. Radeon RX 6600 does support 64-bit signed floating-point

numbers (R64_SFLOAT) for vertex buffers.

After more research, these limitations showed up to be more of an issue of

AMD rather than low-end vs high-end cards. For example, the exactly same issues

occur between competing cards of comparable price, Nvidia RTX 3050 and AMD

RX 7600. While Nvidia offers 32 multiview views and plenty of fully-equipped

queues, AMD offers only a fraction of that.

Strangely, the same limitations occur in the best consumer-grade AMD cards

of the current generation, such as RX 7900 XTX. Its maxMultiviewViewCount is

only 6, and while it offers 9 queues in total, there is still only a single fully equipped

queue available. It is also the only queue with essential graphics capabilities.

4.5 Encountered technical issues

Vulkan has a handy feature called API layers. These small programs

intercept calls to Vulkan functions before they reach the GPU driver. Layers can be

used for profiling, validation, and similar things. Vulkan SDK contains the Vulkan

Configurator app, which provides many different layers – everything from

validation of synchronization, thread safety, and object lifetime to hardware-specific

performance suggestions.

Standard validation layers were turned on throughout the development to

catch issues immediately. Unfortunately, some edge cases are undetected even with

all available 1st party validation layers turned on. And with GPU programming being

notorious for complex troubleshooting, resolving some issues took considerable time.

4.5.1 Device Lost error

One such issue was the hard crash of an application with nothing but a

“Device Lost” error provided by Vulkan. This issue is extremely difficult to debug

since it gives no additional information.

Khronos acknowledges this and recently added a way for GPU driver

manufacturers to specify what caused the Device Lost error. This can be done

through extensions VK_EXT_device_address_binding_report and

41

VK_EXT_device_fault. These extensions were not available before the problem

was resolved.

Nvidia provides an SDK for collecting GPU crash dumps. Unfortunately, it

is available only for C/C++. Therefore, other methods were tested before trying to

call this SDK from C# code (which might be very difficult or even impossible due to

the nature of this low-level SDK).

After some trial and error, it was discovered that this problem was most

probably caused by the Nvidia driver (specifically, version 512.15). It also

happened only on testing laptop but not desktop PC. Since newer drivers seemed to

fix this issue, it was not investigated further.

4.5.2 Attempted to read or write protected memory error

Another issue, most probably caused by the faulty driver, resulted in throwing

an “Attempted to read or write protected memory” error when trying to create a

pipeline using the vkCreateGraphicsPipelines command. Validation layers

reported no other errors, nor was there a more detailed description of why this error

was thrown.

This issue was even more baffling since the call to this command was at the

beginning of the whole program run - in a phase of setting up devices, pipelines,

command buffers, etc. No actual work was being done on GPU yet. This error also

seemed to depend on the number of views for multi-view rendering (internally

ImageArrayLayersCount variable).

Fortunately, this issue occurred only in drivers 522.25 and 526.47. No other

drivers produced this error message.

4.5.3 Gaps in results

The more serious issue, however, was causing gaps in the resulting array of

surfels. Meaning that there were surfels with all parameters set to 0 (default value)

in the middle of the resulting array. This started to happen after several iterations of

the algorithm (at least the first few thousand surfels in the output array were correct).

The algorithm was internally designed the way this should not happen and was

therefore considered a faulty output.

42

Investigation of this issue involved Nvidia drivers released in the last several

months from when this issue was detected. Both Game Ready and Studio drivers and

Beta versions of drivers were tested.

A weird behavior was detected - drivers from 512.15 up to 516.40 expressed

the same problem with gaps in output, but driver version 516.59 caused differences

in reading the same buffer from RenderDoc and directly from code (by copying this

buffer to CPU memory where it could be read the standard way). Later driver

versions did not have this issue but still produced incorrect output. All available

drivers up to 516.94 were tested.

This all seems like undefined behavior, so the investigation was re-focused on

a different approach. In the end, problems with incorrect output were caused by an

incorrectly set memory barrier – something that is usually detected by validation

layers, but this time, it was not.

43

5 Architecture

This chapter explains the architecture of the whole app. That includes:

• organization of the source code,

• class hierarchy (inheritance, base classes, interfaces, …),

• functionality and usage of most classes/structs and their

properties/methods,

• and rationale behind implementation decisions.

5.1 Organization of solution, projects, and folders

The root folder of this project contains:

• FMsurfelsDebugTools folder

o everything related debug tools project

o for more info, see Chapter 6.9

• FMsurfelsDirectX folder

o abandoned DirectX version of the main project and everything

related

▪ this project is not part of any solution anymore

• FMsurfelsVulkan folder

o Vulkan version of the main project and everything related

• Master Thesis folder

o this Master Thesis document and its assets

• FMsurfels.sln file

o solution which contains projects FMsurfelsVulkan and

FMsurfelsDebugTools projects

o does not contain the FMsurfelsDirectX project anymore

• <miscellaneous files such as gitignore and Directory.Build.props>

All C# project files are in the roots of their respective folder trees. They are

all self-contained – without cross references or dependencies.

FMsurfelsVulkan folder further contains Program.cs with an entry point

(method Main), class diagrams (generated in Visual Studio; mainly to provide

pictures for this document), and a hierarchy of folders containing the rest of the

44

source code. With few exceptions, each class/struct has its own .cs file named after

it.

The majority of folders are named after the classes/interfaces they contain.

For example, the Buffer folder contains BufferBase.cs file (+ files with specific

classes inheriting directly from it), Staged Storage Buffers subfolder (with

StagedStorageBufferBase.cs inheriting from BufferBase class; + more

classes inheriting now from StagedStorageBufferBase), and so on.

Most of this chapter is organized similarly, with subchapters and subtitles as

the aforementioned folder hierarchy.

5.2 Main method

The entry point for the whole program is the Main method in the

Program.cs file.

5.2.1 Options

The first thing the Main method does is the parsing of command line

arguments from string[] args parameters.

Options class represents a collection of program parameters used for that. It

uses the Command Line Parser Library for CLR and NetStandard installed from

the NuGet package. This library provides an easy way to specify options, their

default values, whether they are required, and other useful features using

straightforward attributes. It then takes care of actual parsing in the Main method.

These options are used to specify:

• input OBJ file,

o path to a file used as an input,

• dimensions of sampling viewports,

o size of sampling camera viewport in pixels

o in general, values between 512x512 and 2048x2048 seems to

have an ideal quality to performance ratio with 1024x1024

being a default value

• maximum number of surfels,

o upper limit of surfels to be generated

45

o there is no guarantee that this many surfels will be generated

since the algorithm will finish also when no more surfels can

be extracted from the model

o depends extremely on the model itself and the requirements

of the external system using this algorithm

o expected to be in orders of thousands up to hundreds of

thousands for big models

o a default value of 10 000 seems like a golden mean for debug

purposes

• number of views,

o number of cameras to use for the Sampling stage

o limited by the value of maxMultiviewViewCount from

VkPhysicalDeviceMultiviewProperties and

VkPhysicalDeviceLimits.MaxImageArrayLayers

o a default value is 16, while the minimum should not be lower

than 6 (to keep decent quality), and most GPUs nowadays are

limited by maxMultiviewViewCount being 32 (see

Chapter 4.4.2 for more details)

• and debug options

o whether to use surfel renderer

o file path for output PLY file with surfels

o options related to RenderDoc API, such as file path for

capture files.

None of these options are mandatory to specify in the command line

argument since they all have default values.

5.2.2 Setup

After parsing, the Main method sets up instances of 2 important classes:

SurfelGenerator and VulkanAppBase. The second mentioned one is actually

an abstract class. The concrete selected implementation is based on the value of

Options.UseDebugRenderer.

• If true, SurfelRenderer is used to show debug visualization of

surfels.

46

• If not, BasicVulkanApp is created instead.

In either case, SurfelGenerator uses this created VulkanAppBase to

get everything needed from Vulkan – Instance, Device/PhysicalDevice,

Queues, CommandPool, AllocationCallbacks, …

Both SurfelGenerator and VulkanAppBase are initialized solely

using options parsed from the command line (or their default value).

5.2.3 Run

The actual run of the algorithm from the perspective of the Main method is

relatively simple. It calls Run methods on both SurfelGenerator and

VulkanAppBase. These methods return Tasks, which are then waited for using

Task.WaitAll method.

5.2.4 End

If Options.OutputPlyFileName property is specified,

SurfelGenerator saves generated surfels into PLY file on disk.

After that, the only remaining thing to do before the program exits is proper

disposal of instances of both SurfelGenerator and VulkanApp.

5.3 Vulkan Apps

At the core of this application is a hierarchy of “Vulkan App” classes. These

classes were developed with the intention of providing a flexible Vulkan backend

for the majority of applications. The whole hierarchy might seem too generic and

broad. The reason is that such a system of classes could be used in any other project

requiring Vulkan in the company.

Base class

As with most complex classes in this project, there is an abstract base class at

the bottom of this hierarchy - VulkanAppBase. It takes care of all core things

Vulkan requires, such as initialization of Instance, choosing PhysicalDevice,

creating (logical) Device, Queues, CommandPool, etc. It also checks and enables

desired device and instance extensions as well as layers. And, of course, it ensures all

of this is appropriately disposed of (using an IDisposable interface). It is

47

expected that many methods of VulkanAppBase will be overridden by classes that

inherit from it; therefore, they are marked as virtual.

There is no rendering done in this class. There are also no calls to any other

Vulkan commands. This adds flexibility since it allows the creation of various apps

on top of this class – be it standard rendering or non-standard ones like this

project.

This class also does not take care of creation or management of windows or

even swapchain. No windows and swapchains mean no need for a present Queue.

Therefore, this class can be used on platforms that do not support this type of

Queue.

5.3.1 Render-less Vulkan App

The simplest implementation of the aforementioned base class is

BasicVulkanApp. It provides a way to check for device features easily. This class

is directly used by SurfelGenerator in case there is no need for a debug

renderer.

Same as VulkanAppBase, this class still does not do any work after

initialization. It belongs to the render-less branch of Vulkan Apps. Its Run method

returns Task.CompletedTask. BasicVulkanApp is just used to provide all

core Vulkan objects ready and initialized for whatever system above it needs

them.

5.3.2 Renderers

There are 3 renderer classes in total. 2 of which are abstract and 1 concrete.

This might seem unnecessarily complex, but it creates a foundation for various

renderers – both off-screen and on-screen/window renderers.

RendererBase

The branch of rendering Vulkan Apps starts with the RendererBase

class. Like all Vulkan Apps, it too inherits from VulkanAppBase. On top of that, it

takes care of initializing and providing renderer-related Vulkan objects such as

Viewport, graphics Pipeline (with color blending, input assembly, rasterizer,

…), RenderPass but also DepthBuffer, and DescriptorPool.

48

Unlike BasicVulkanApp, this class is actually expected to do something

besides the initialization of Vulkan objects. Its Run method calls MainLoop, and it

even provides the GetMainRenderCommands method, which calls Vulkan

commands for binding of Pipeline, DescriptorSets, vertex/index buffers,

and finally calls CmdDraw/CmdDrawIndexed.

WindowedRendererBase

WindowedRendererBase then extends RendererBase with properties

and methods required for managing the window and its surface. Thanks to the

Silk.NET.Windowing namespace, the managing of windows is platform-

independent.

Besides inheriting from RendererBase, it also implements the

IPresentQueueProvider interface (adds present Queue). This class does not

take care of just surface-related Vulkan objects KhrSurface and SurfaceKHR,

but also synchronization objects (Semaphores and Fences) used to signal which

Framebuffer is being presented and which is being rendered to. This is needed

since the WindowedRendererBase class supports advanced present modes

(chosen by a class inheriting from this base class). In older graphics APIs, these

present modes are referred to as double/triple buffering. Present modes in Vulkan

are significantly more complicated – the important part is that they require multiple

Framebuffers.

Lastly, WindowedRendererBase handles all work related to

Swapchain. This includes its creation, disposal, and, very importantly, a re-creation

of the swapchain in case of an error. Such an error might be, for example,

KhrSwapchain.AcquireNextImage method returning

Result.ErrorOutOfDateKhr, which usually indicates that the window was

resized.

Note – Swapchain class mentioned in this part is not directly a Vulkan

object but rather a custom class (for more details, see Chapter 5.3.3).

SurfelRenderer

SurfelRenderer class extends WindowedRendererBase with

everything needed for debug rendering of surfels. This includes setting up correct

shaders (Surfels.vert/.geom/.frag files), camera, WindowControl, and

49

various parameters for surfels such as their radius and length of prefix of surfels

array to draw.

These parameters for surfels and cameras must be transferred from CPU to

GPU. Therefore, SurfelRenderer also sets up Uniform Buffers with descriptors

for them (SurfelParametersUbo and SimpleMatricesUbo).

The non-trivial part of SurfelRenderer is a calculation of the length of

the surfel array (RenderableSurfelsBuffer) prefix to render. The calculation

is done through the ChangeSurfelRadius method

(ChangeSurfelRadiusCallback in case of a call from WindowControl).

Calculations themselves are based on Chapter 4.1 from (Brandt, et al., 2019).

SurfelGenerator itself has to call the

SetExampleMedianMinimumDistance method to set the value of the

exampleMedianMinimumDistance variable based on minimal distances

between surfels. This is done only once at least <examplePrefixLength>

surfels are inside of RenderableSurfelsBuffer.

Figure 17 Rendering of surfel from surfel sample. A surfel sample (a single point) is passed

from the vertex buffer to the vertex shader, the geometry shader creates an equilateral triangle out of

it, and the fragment shader discards fragments outside of its inscribed circle (red fragments). Blue

fragments represent the final surfel drawn as a circle.

When these calculations are done, RenderableSurfelsBuffer is set as

a vertex buffer, and the appropriate amount of surfels from it is rendered. Vertex

shader does nothing but transfer color, normal, and world position (from

RenderableSurfelsBuffer acting as a vertex buffer) to geometry shader. It

then draws an equilateral triangle whose inscribed circle is a surfel - color, normal,

and world position are taken from the vertex buffer, while the radius is taken from

SurfelParametersUbo (it is a constant for all surfels in a single draw call). The

fragment shader subsequently discards fragments of the triangle that are not part of

50

its inscribed circle and sets simple Lambertian shading for easier visual inspection of

debug visualization. The whole process can be seen in Figure 17.

A similar process is used for the rasterization of disks to create a Voronoi

diagram and a Poisson disk conflict removal, as mentioned in Chapter 3.2.5.

SurfelRenderer is used mainly as a debug renderer and is not expected

to be used directly by an external program using this application.

5.3.3 Vulkan Apps Miscellaneous

This subchapter explains the purpose of some miscellaneous classes directly

related to Vulkan Apps.

Swapchain

Even though it might sound like that, this is not directly a Vulkan object.

Swapchain class does include instances of both Vulkan KhrSwapchain and

SwapchainKHR but also everything else related to swapchain, such as Images

themselves (with ImageViews, dimensions/Extent2D, and their Format) and

also Framebuffers.

This class creates all of these Vulkan objects and properly disposes them. It

also provides a way to acquire the next image and queue it for presentation. All

including error handling.

The Swapchain class is directly used only by the

WindowedRendererBase class.

VulkanException

This is a bare class inheriting from System.Exception. The vast majority

of internal code throws this exception instead of System exceptions. It is helpful for

future expansion, such as logging errors. Note – almost all error throws in this

application are meant to be fatal for the application and should result in immediate

program termination or hard reset at best.

QueueFamilyIndices

A struct called QueueFamilyIndices holds indices to the Queue family

to use for all graphics, present, and compute Queues. This is directly used by

mostly VulkanAppBase and Swapchain. Indices held by this struct correspond

51

to an array of QueueFamilyProperties returned from the

GetPhysicalDeviceQueueFamilyProperties Vulkan method.

Besides holding these indices, it also provides methods for checking whether

all indices are set for a particular case:

• Normal case when all 3 families are required,

• or windowless case when the present Queue family is not needed.

WindowControl

The purpose of the WindowControl class is to handle callbacks from

keyboard/mouse button presses and cursor movement to translate/zoom camera.

This results in the possibility of moving in the debug window as in any 3D program.

It also provides a way to adjust the size of displayed surfels.

Figure 18 Key bindings for debug viewer. Source of vector art: Vecteezy8F

13

Controls are currently hardcoded to the industry standard of WASD for

forward/backward/sideways movement and Q and E for camera up/down movement.

Additionally, the X and C keys are used to increase/decrease the surfel radius, and

the reset of the camera to its default position is done using the R key.

Shift key is then used to speed up all translations. Holding down the right

mouse button and subsequent cursor movement rotates the camera around the pivot.

The mouse scroll wheel's functionality is used to translate the camera alongside its

forward vector (primitive “zoom”).

The whole key binding scheme is illustrated in Figure 12.

13 https://www.vecteezy.com/vector-art/4931862-keyboards-computer-with-black-and-white-

style-vector-illustration and https://www.vecteezy.com/vector-art/9866961-mouse-icon-vector-mouse-

icon-vector-illustration

https://www.vecteezy.com/vector-art/4931862-keyboards-computer-with-black-and-white-style-vector-illustration
https://www.vecteezy.com/vector-art/4931862-keyboards-computer-with-black-and-white-style-vector-illustration
https://www.vecteezy.com/vector-art/9866961-mouse-icon-vector-mouse-icon-vector-illustration
https://www.vecteezy.com/vector-art/9866961-mouse-icon-vector-mouse-icon-vector-illustration

52

There are known issues with this system in extreme cases. However, it

works well enough for its purpose – simple camera movement in the debug window.

Therefore, there is little to no incentive to improve these window controls

furthermore. This also applies to customizable bindings for keys/mouse actions,

movement speeds, etc.

All callbacks are currently handled through the GlfwWindowing class

from Silk.NET. This is a windowing system selected for modern Windows OS.

Unfortunately, Silk.NET does not provide a platform-independent way to handle

these callbacks. And since all development is done on Windows 10/11, this one is

used and hardcoded in the WindowControl class. In case it is required, it will not

be too difficult to add support for the SdlWindowing system as well.

This class is directly used only by the SurfelRenderer class.

5.4 Stages

Stages are the most essential part of the CPU code of this project. They take

care of creating and managing Framebuffer, RenderPasses,

FramebufferAttachment, Pipeline, CommandBuffer, and synchronization

objects for one part of the algorithm. The main program loop is directly calling

Draw/Dispatch methods on stages to submit their CommandBuffers into the

Queue – this is the end of all work in CPU code prior to work in shaders on GPU.

The base class for all stages, StageBase, is used mainly to create the

skeleton for its implementations and a few standard methods, such as calls to dispose

of Vulkan objects.

There are 2 very distinct types of stages:

• compute stages, calling compute shaders,

• and G-buffer stages, used for rendering into G-buffers (off-screen

render targets).

5.4.1 Compute stages

Base class

ComputeStageBase is an abstract class for all stages used to call compute

shaders. That is why it contains compute-shader-specific variables such as sizes of

workgroups.

53

Besides that, it can directly create a shader stage (an instance of

PipelineShaderStageCreateInfo; not related to “stages” in terms of this

project) since there is always only a single shader in a compute pipeline, unlike a

graphics pipeline, which can contain a varying number of shaders.

Before main loop

One of the simpler compute stages is ChooseFirstSampleStage, which

needs mainly texture with sampled world positions, and SurfelSamplesBuffer,

where it writes the very first sample. Its shader is relatively simple but with a small

caveat mentioned in Chapter 6.3.

Inside of main loop

ExtractFarthestSamplesStage is the first compute stage to be called

right after G-buffer VoronoiStage inside the main program loop. For each view, it

creates 1 new sample (written into SurfelSamplesBuffer) from the farthest

pixel in each Voronoi cell.

Right after G-buffer PoissonStage, RemoveCloseSamplesStage is

called. Its purpose is simple – invalidate new samples (in

SurfelSamplesBuffer) that are too close to each other. This is done by going

through all new samples created in the last iteration of

ExtractFarthestSamplesStage and checking whether the pixel they were

created from is covered by the Poisson disk of another sample. In case it is, their

sample in SurfelSamplesBuffer is invalidated by writing 0 in its place (more

specifically 64-bit representation of 0).

The next compute stage, CompactAndSortStage, is the most complex

one. This stage actually consists of 6 mandatory phases (LocalSort,

ComputeHistogramAndOffsets, ScanHistogram, ScanBlock, and

Scatter) and 1 optional phase (TestElementsOrder) used only for debugging

and validation purposes. All these phases run one after another. They are all

contained in a single CompactAndSort.comp shader (for discussion on why it is

in a single shader and not multiple ones, see Chapter 6.2.1). Algorithms in this

shader are based on (Satish, et al., 2009). In short, it fixes gaps of invalid samples

created by the previous stage and then sorts the new samples by decreasing the

radius (to achieve progressiveness of samples). Sorting is done using parallel radix

sort since it is ideal for sorting by only the 32 most significant bits representing

54

radius in the surfel sample and not the whole 64-bit number. Plus, parallel radix sort

can be effectively implemented in a compute shader.

And lastly, a simple CountNewSamplesStage is called. As the name

implies, its shader counts a number of new valid samples added in this algorithm

iteration after removing close samples, sorting, and compacting them in

SurfelSamplesBuffer.

Others

The only remaining compute stage to mention is ConvertSurfelsStage.

It is one of the simpler compute stages as its task is to convert surfels represented in

the form of SurfelSample (data and indices to data in textures, all packed in a

single 64-bit number) into the form of RenderableSurfel (data ready for

straightforward rendering). These representations of surfels are discussed in more

detail in Chapter 5.10.1. ConvertSurfelsStage is the most flexible stage

regarding the order of execution in code. Based on the specific needs of the system

using this algorithm, ConvertSurfelsStage can be called only at the very end

of the main algorithm or, for example, each nth iteration. In other words, it is

expected to be called only when the outside system requires the actual output from

this algorithm – be it partial or final output.

5.4.2 G-buffers stages

The standard forward rendering pipeline consists of 1 framebuffer and 1

depth buffer. On the other hand, this algorithm uses several framebuffers as outputs

from a single stage and reuses them as input to the following stages. This approach is

more similar to deferred rendering, which uses several G-buffers to capture various

information about the scene at a given pixel (diffuse color, specular color, normal

vector, …). That is why the term “G-buffer” is also used in this algorithm, and it

refers to render target with arbitrary information (not just the color) for pixels.

Framebuffer attachment

In the most general view, attachments in Vulkan refer to images with

additional information on how to use them as input or (more commonly) output.

Output attachments are equivalent to render targets – images containing color (color

buffer), depth/stencil (depth buffer), or any other relevant information for the pixel

we write into in fragment shader.

55

To make work with attachments easier, FramebufferAttachment class

was created. It is used to hold a reference to Image itself (together with

ImageMemory and ImageView) but also other relevant information such as

ClearValue, attachment-specific structs AttachmentDescription

(information on sampling used, load/store operation, layout, and others) and

AttachmentReference, and others.

Base class

Abstract GBuffersStageBase class holds information and functions used

by all G-buffers stages (they inherit from it). This includes (but is not limited to) the

creation of RenderPass, Framebuffer objects (out of

FramebufferAttachments, which it also provides a way to create), Pipeline,

CommandBuffer, and other objects required for a single pass of rendering using

rasterization to multiple off-screen render targets (G-buffers). Each

FramebufferAttachment (more specifically, the Image this

FramebufferAttachment refers to) is created with a number of layers

corresponding to a number of cameras. Subsequently, RenderPass is created with

multiview rendering enabled (VK_KHR_multiview) to utilize the capabilities of

modern hardware (see Chapter 6.13 for more details about layered rendering).

Before main loop

There is only a single G-buffers stage before the start of the main program

loop: SamplingStage. It is technically the same as the first pass of deferred

rendering – it renders the scene (from several cameras at once) into several off-

screen G-buffers (layers of their Images). This is depicted in Figure 13. In this case,

these G-buffers contain:

• color,

• normal vector,

• and the absolute world position for each pixel.

Its shaders are similarly straightforward. SamplingStage is the only stage that

rasterizes a scene from its polygonal representation. This fact makes the algorithm

even more versatile since there is no need for representation of the scene as long as

we have the aforementioned G-buffers as inputs (for more details, see Chapter 6.6).

56

Inside of main loop

The very first stage called in the main loop is VoronoiStage. Its job is to

assign each pixel of the “rendered scene” to the Voronoi cell created from surfel

samples (the sample acts as a Voronoi site). It does not directly use rendered scene

but only the texture of absolute world positions retrieved from the SamplingStage

(or another system able to provide it). Internally, it works on surfel samples in

packed form (as 64-bit floats) bound as its vertex buffer. These samples are

unpacked to get radius and texture coordinates, which are used to sample texture

with world positions. With this information, the geometry shader creates an

equilateral triangle from each sample so that its inscribed circle has a center and

radius based on data passed from the vertex shader. The fragment shader is then

used to discard all fragments outside of the aforementioned inscribed circle (see

Figure 16). Besides that, the fragment shader also calculates the distance of a

fragment to its Voronoi site and stores it in a G-buffer, together with the unique ID

of the Voronoi cell. Distance to the Voronoi site also has one important role – it is

assigned as the fragment’s depth (gl_FragDepth system variable). This

technique assures that the fragment is assigned to its closest Voronoi site, therefore

creating a valid (discrete) Voronoi diagram. Such a diagram can be seen on the left-

most and right-most pictures of Figure 14.

Right between ExtractFarthestSamplesStage and

RemoveCloseSamplesStage is the last G-buffers stage called PoissonStage.

It works only on newly added surfel samples instead of all of them like the previous

G-buffers stage. Its CPU-side code is very similar to VoronoiStage, and

therefore, it inherits from it. Besides overriding a few properties (depth buffer clear

value and comparison operation), it changes FramebufferAttachments. More

specifically, it uses just 1 FramebufferAttachment – to output the ID of the

Poisson disk for each pixel. It even uses exactly the same vertex and geometry

shaders. Only the fragment shader is slightly different. Instead of writing the

distance to the site into the depth buffer, it writes the radii of the new surfel sample

(equal to the distance to their Voronoi site) in there. This results in larger Poisson

disks virtually overdrawing smaller ones (see the third picture in Figure 14), which

affects ID written into the render target for a specific fragment.

57

RemoveCloseSamplesStage later uses these IDs to determine which new

samples should be removed (invalidated) and which should be kept.

5.5 Surfel Generator

The heart of the whole algorithm is a class called SurfelGenerator. As

the name suggests, it is the place where surfels are generated. This is done by

running stages (calling either Draw or Dispatch methods) in the correct order and

with the proper parameters.

Before that, SurfelGenerator has to create and initialize all these stages,

as well as all supporting objects such as buffers, sampling cameras, rasterizer,

descriptions, etc. To do this, it utilizes VulkanAppBase passed as an argument into

SurfelGenerator.Initialize method.

SurfelGenerator also provides various supporting structs for the creation

of VulkanAppBase. These include ApplicationInfo,

PhysicalDeviceFeatures, validation layer names, instance extensions, and

others.

5.5.1 Main loop

After the initialization of SurfelGenerator, the outside class (in this

case, Program.Main) just has to call the async Task Run() method, which

starts the MainLoop method.

This method first calls SamplingStage to populate G-buffers for positions,

normals, and colors and then ChooseFirstSampleStage to select the first

sample, which is used as a base for VoronoiStage. This is done before the actual

loop.

After this, the while loop begins – until a number of samples is larger

than the MaxSurfelsCount parameter or no new samples can be created in an

iteration of the loop.

One iteration of the loop starts with a call to VoronoiStage, followed by a

call to dispatch of ExtractFarthestSamplesStage for each view,

PoissonStage, and RemoveCloseSamplesStage. In this order, the only

remaining mandatory stages to call are CompactAndSortStage and

CountNewSamplesStage. The last mentioned is needed to obtain both the total

58

number of samples and the number of new samples from this iteration (both are used

to check whether the loop should continue with more iterations).

The call to ConvertSurfelsStage can be made at the end of the while

loop whenever we want new surfels to display. This does not have to be every

iteration of the loop and will heavily depend on the actual final usage of the program.

5.5.2 Synchronization between stages

There is a call to QueueWaitIdle between each and every call to a stage.

Since each subsequent stage is entirely dependent on the end of work of the previous

stage (and only a few, if any, pipeline stages can be run in parallel), this was found to

be the easiest and the least problematic solution.

While more sophisticated approaches using Semaphores/Fences exist,

they are significantly more challenging to set up correctly. Both

GBuffersStageBase.Draw and ComputeStageBase.Dispatch methods

fully support the use of these synchronization objects. Currently, there are unused

parameters with default null values for all parts of SubmitInfo (various

Semaphores, wait stages, Fences, …).

This could be one of the potential improvements in this program. However, it

is expected that performance gain from this approach would not be significant.

It is important to note that the approach with QueueWaitIdle is also more

flexible since it does not depend on stages, it is in between. The same cannot be said

about other mentioned synchronization objects.

5.5.3 Graphics debuggers

Each iteration of the loop (and the short part before the loop) calls RenderDoc

API to set the start and end of the frame through

RenderDocHelperFunctions. This is needed since there are no standard

“frames” in this algorithm (most graphics debuggers consider the end of the frame

to be a call to a “present” method or similar). But 1 iteration of this loop was found

to be ideal for “frame” in terms of RenderDoc.

59

5.6 Buffers

Vulkan already contains a class called Buffer. However, it is used only as

an opaque handle without any properties/methods. Buffers in computer graphics are

used for a vast variety of features/algorithms and come in many shapes, forms, and

ways of usage. Therefore, it was necessary to create a hierarchy of classes that

primarily encapsulate the Buffer handle and everything else related to it, such as

DeviceMemory and various flags (BufferUsageFlags and

MemoryPropertyFlags), but also provide methods for easier work.

DepthBuffer

Even though the name might suggest it, the class DepthBuffer does not

contain a Vulkan Buffer object but rather an Image (among others). Therefore, it

does not share any functionality or predecessors (interfaces or base classes) with the

rest of the classes with “buffer” in its name. Since the name “depth buffer” is well

established in computer graphics and Image class can be considered a 2D Buffer

with additional functionality such as sampling, it should keep this name.

Regarding the purpose of this class, it is a wrapper around stuff related to

depth buffering/Z-buffering. This includes, most importantly, Image itself,

CompareOp, methods to find supported formats, and a straightforward way to create

structs used for FramebufferAttachments (AttachmentDescription and

AttachmentReference) and the creation of pipeline

(PipelineDepthStencilStateCreateInfo).

Base class

BufferBase class serves as a base class for all other buffer classes (except

for the aforementioned DepthBuffer). It encapsulates the Vulkan Buffer class

together with DeviceMemory, flags, and getters used to retrieve the total size of the

buffer and the number of elements in it. An element is a class set as a type T since

BufferBase<T> is a generic class.

This class also takes care of the disposal of allocated Vulkan classes using a

standard IDisposable interface.

StagingBuffer

Staging buffers, in general, are used as a middleman between memory on

the CPU (host visible) and Buffers completely stored on the GPU (device local).

60

Of course, this does not apply to all architectures, but in general (especially on

standard desktop computers), it provides a significant performance benefit.

Data is first copied from CPU memory (an array, for example) to the staging

buffer, and then the staging buffer is copied to the final device local buffer. This

technique is extensively used throughout this application to get as much performance

as possible. VulkanHelperFunctions provide the

UpdateBufferUsingStagingBuffer method to do exactly this.

The StagingBuffer class inherits from BufferBase and overrides

default BufferUsageFlags to ones used by all staging buffers:

TransferSrcBit and TransferDstBit to make work with staging buffers

easier.

This class also restricts generic type T to unmanaged. This is required since

System.Buffer.MemoryCopy is used to copy data from CPU-only memory to

the staging buffer, and it requires a pointer to data (using a fixed keyword). Until

C# 11, trying to get a pointer to a managed type resulted in an error. In C# 11, doing

so will result in only a warning (CS8500) but still should not be used to avoid any

issues. Besides, T being unmanaged is not a huge restriction in this case. Having a

string, array, or other collection as a single element in a buffer makes very little

sense. Custom structs with all fields being unmanaged are still considered

unmanaged themselves, which replaces the need for having a custom class as an

element of a buffer.

StagingBuffer is primarily used by Staged Storage Buffers (see Chapter

5.6.3) but can also be used outside of them.

5.6.1 Interfaces

There are 2 main buffer-related interfaces: IDataBuffer and

IIndexBuffer. They serve as a set of minimal requirements for specific cases.

IDataBuffer requires just a Buffer object and the number of elements in

it. This is, for example, all that the renderer needs to bind the vertex buffer

(CmdBindVertexBuffers) and draw it (CmdDraw).

IIndexBuffer inherits from IDataBuffer and adds a requirement to

declare IndexType. A renderer then uses this to bind it

(CmdBindIndexBuffer).

61

5.6.2 Uniform Buffers

Uniform Buffers (frequently referred to as UBO = Uniform Buffer Object)

are buffers that are relatively fast to access (in general, faster than Storage Buffers

but slower than Push Constants), but they are read-only for a shader and cannot

hold much data (usually from 16 to 64 kB on the most GPUs; still significantly

more than Push Constants).

Most of the Uniform Buffers in this project are small enough to be converted

to Push Constants to get even slightly faster access. However, changing the Push

Constant's value requires re-recording the whole CommandBuffer, which is not

needed in the case of Uniform Buffer. Therefore, overall performance gain would be

negligible. Also, working with Uniform Buffers is more comfortable and easier than

Push Constants.

Base class

UboBase abstract class serves as a base class for all UBO classes. It provides

DescriptorType, DescriptorBufferInfo, and BufferUsageFlags, as

well as methods for updating data in these buffers using a CommandBuffer. It

inherits from a BufferBase class.

Specific UBO classes

Most final UBO classes are relatively simple – they just declare structs used

inside and set it as their type T since the UboBase<T> class is generic.

Structs can range from simple ComputeUbo (containing viewIndex used

in several compute shaders) and SurfelParametersUbo (holding surfel radius

for SurfelRenderer) through SortParametersUbo (with several variables

used in CompactAndSort shader) up to SimpleMatricesUbo and

MatricesUbo. The last 2 mentioned contain structs with standard 4x4 model,

view, projection, and modelViewProjection matrices used by various

shaders. Compared to SimpleMatricesUbo, MatricesUbo has arrays of all of

these matrices (except for the model matrix) – 1 set of matrices in arrays (at the

same index) for each camera view.

62

5.6.3 Staged Storage Buffers

Storage Buffers in Vulkan are the most flexible buffers. They can be both

read and written to in shaders, and they can hold a huge amount of data. As a

limitation, they are rather slow to access.

The word “staged” in the full name of these buffers refers to the fact that they

contain an instance of the StagingBuffer class to improve overall performance

on most architectures while still allowing writing and reading from these buffers on

the CPU side.

Base classes

Abstract StagedStorageBufferBase class inherits from BufferBase

(and also IDataBuffer interface). On top of that, it adds an instance of

StagingBuffer<T> with everything related to it: the creation of this buffer, the

update of the main buffer using this staging buffer, and its disposal. The

StagedStorageBufferBase constructor also requires a Queue instance to copy

data from the staging buffer to the main buffer.

There is one additional abstract class between

StagedStorageBufferBase and some of the final classes:

ReadableDataBufferBase. As the name suggests, it adds functionality to read

data on the CPU from the main buffer using the staging buffer through the T[]

GetData() method. The StagedStorageBufferBase class itself does not

offer this functionality because it requires an additional usage flag for the main

buffer (BufferUsageFlags.TransferSrcBit) and could cause unnecessary

performance hit.

CompactAndSort buffers

Similarly to Uniform Buffers, many Staged Storage Buffer classes just

declare the structs they contain and add overloads of methods for easier creation,

update, and data retrieval based on their structs.

Examples of such simple classes are ones used for CompactAndSort

shader: BoundsBuffer, HistogramBlockSumBuffer, HistogramBuffer,

SamplesCountsBuffer, and OrderedTestBuffer.

Surfel buffers

More complex buffers in the same category are related directly to surfels.

63

The first one is RenderableSurfelsBuffer, which is used for debug

visualization in SurfelRenderer. Compared to other buffer classes, it adds

functionality to export data to PLY format for debug purposes, and its usage flags

are extended by BufferUsageFlags.VertexBufferBit.

The second surfel-related buffer is probably the most important buffer in the

whole application – SurfelSamplesBuffer. As an addition, it provides methods

for getting testing data (both precalculated/deterministic and random). And same as

RenderableSurfelsBuffer, it is used as a vertex shader, which is reflected in

its usage flags.

Structs for both of these buffers (RenderableSurfel and

SurfelSample) are explained in detail in Chapter 5.10.1.

Rasterization buffers

The last 2 remaining Staged Storage Buffers are simply called just

IndexBuffer and VertexBuffer. As names suggest, they are directly used for

rasterization in the SamplingStage.

Since Vulkan’s IndexType does not provide much flexibility (it technically

supports only 16 or 32-bit unsigned integers for standard rasterization),

IndexBuffer straightaway sets its generic type parameter T to 32-bit uint. A

change to 16-bit ushort won’t be problematic in case this performance/memory

advantage is required. But ~65k indices (accessible through ushort) is rarely

enough. Therefore, it was deemed unnecessary even to consider this option.

To enable as broad support for vertex formats as possible, VertexBuffer

uses byte as its generic type parameter T. This moves the responsibility of

providing correct vertex format to IMesh with its byte[]

GetVertexBufferArray() method (for more info, see Chapters 5.10.2 and

5.11) and subsequently the selection of corresponding shader.

Both of these buffers also set appropriate usage flags:

BufferUsageFlags.IndexBufferBit and VertexBufferBit,

respectively.

5.7 Constants

Vulkan uses the concept of Specialization Constants to change the values of

constants in halfway-compiled SPIR-V shaders before they are bound to the pipeline

64

stage, as seen in Figure 13. This is a great way to easily adjust simple values in

shaders with virtually no performance overhead – unlike Push Constants and various

buffers.

Figure 19 Illustration of how specialization constants are set in the shader compilation

pipeline. Source: Vulkan Specialization Constants presentation by Mike Bailey from Oregon State

University9F

14

This technique is used in DimensionsConstants.inc file, which is

included in several shaders. It provides constants for a maximum number of views

and dimensions of the viewport.

To make use of Specialization Constants easier, several classes were

developed. An IShaderConstants interface is at the bottom of this hierarchy,

with broader ShaderConstantsBase inheriting this interface. Together, they

provide the final class with as many automatically calculated values as possible. For

example, SpecializationMapEntry[] can be automatically created thanks to

C# reflection. The final class then only needs to set actual data struct containing

constants and provide an implementation for a method to get

14 https://web.engr.oregonstate.edu/~mjb/vulkan/Handouts/SpecializationConstants.4pp.pdf

https://web.engr.oregonstate.edu/~mjb/vulkan/Handouts/SpecializationConstants.4pp.pdf

65

SpecializationInfo – that is the only struct required by Vulkan itself for the

creation of the pipeline shader stage.

5.8 Descriptors

The concept of descriptors (descriptor sets, layouts, pools, …) in Vulkan is

somewhat convoluted and complex. The descriptor is usually either an image or a

buffer with additional information. For an image, this additional information

(besides ImageView itself) would be ImageLayout and Sampler. And for a

buffer, the descriptor contains its size and offset.

Descriptors are always grouped into descriptor sets.

Descriptor set layouts provide a description for these sets – saying what type

of descriptor is at which binding index and which shader stages it is used in. This

layout is bound to the pipeline.

Later, a descriptor set (containing references to actual buffers and images) is

used in a call to command buffer. Of course, any descriptor set that fits the

descriptor set layout can be used with that pipeline. This is illustrated in Figure 20.

Figure 20 Visualization of relations between descriptors, descriptors sets, descriptor set

layouts, and descript pool. Source: Article “Vulkan Shader Resource Binding” on Nvidia Developer

website15

15 https://developer.nvidia.com/vulkan-shader-resource-binding

https://developer.nvidia.com/vulkan-shader-resource-binding

66

5.8.1 Descriptors Manager

DescriptorsManager with several helper classes was implemented with

the sole purpose of making the use of descriptors more comfortable. This class

creates DescriptorSetLayout, DescriptorPool (used to allocate

descriptors), and DescriptorSet. Finally, it updates the DescriptorSet using

WriteDescriptorSet (makes sure descriptor objects point to actual data such as

Buffers or Images).

This solution to wrap the whole concept of descriptors lacks flexibility in

some cases (such as creating multiple descriptor sets for a single layout or more

efficient use of a descriptor pool). But it is easy to use (compared to raw handling of

sets, layouts, etc.) and should be adequate for most cases. Most importantly, it is

more than enough for use in this project.

5.8.2 Descriptor Set Elements

To actually do all this work, DescriptorsManager needs info about

descriptors to use in the first place. This is provided as

IEnumerable<IDescriptorSetElement>. In this case, “descriptor set

element” refers to a single “descriptor” (or “descriptor object” as called in some

literature). On top of that is the base class DescriptorSetElementBase, which

implements methods for getting WriteDescriptorSet and

DescriptorSetLayoutBinding.

The most interesting classes for the final implementor are

BufferDescriptorSetElement and SamplerDescriptorSetElement.

As names imply, they are descriptors for buffers and samplers. In Vulkan, it is

technically possible to have a descriptor only for Sampler or image (ImageView

with ImageLayout). But the most common case is to use

DescriptorType.CombinedImageSampler, which combines the sampler and

image into one descriptor. It is also the easiest way to deal with it.

One more class deriving from IDescriptorSetElement is UboBase

(for details about his class, see Chapter 5.6.2). It is a particular case since it does not

inherit from DescriptorSetElementBase. Instead, it internally holds a

67

reference to BufferDescriptorSetElement – that is also how it implements

the IDescriptorSetElement interface.

Constructors of all these final classes are as simple as possible. Just provide

the necessary info for descriptors, and everything else is deduced from the ordering

of IEnumerable<IDescriptorSetElement> that goes to the constructor of

the DescriptorsManager class.

5.9 Cameras

Camera classes (deriving from the ICamera interface) have 2 tasks:

calculate and provide projection and view matrices.

Extrinsics/View matrix

The calculation of the view matrix is based on extrinsics of the camera -

position, direction/target vector, and orientation (represented by an up vector in this

case). Since extrinsics are not dependent on the type of camera, they are handled in

the abstract CameraBase class through SetExtrinsics methods.

Intrinsics/Projection matrix

Intrinsics (required for projection matrix) depend on camera type and,

therefore, are handled by the final classes – CameraOrthographic and

CameraPerspective. Respectively, they are set using SetIntrinsics

methods.

A perspective camera is used for debug viewer since that is how human

vision works and is the most common way to display 3D data naturally.

On the other hand, an orthographic camera is an ideal candidate for the

sampling process. It projects parts of a 3D scene the same, whether in the center of

the camera view or on the edge. This type of camera also ignores the distance of

parts of the scene from the camera. The only thing that matters is whether the scene

is in front of the camera or behind it. Due to the nature of the placement of cameras

(see Chapter 6.1), the whole model is always in front of each orthographic camera

used for sampling. The width and height of these cameras are also set to always

capture the entire model.

For a comparison of perspective and orthographic projections, see Figure 15.

68

Figure 21 An illustration of the difference between perspective and orthographic projections.

Source: StackOverflow question “From perspective picture to orthographic picture” by Raph Schim11F

16

5.10 Elements

Structs and interfaces in FMsurfelsVulkan.Elements namespace are

used directly in vertex buffers. To make serialization into buffers easier:

• they are actually C# structs and not classes,

• all data is in the form of fields (and properties are used only as getters

into these fields), and

• FormatAttribute is used to mark these fields with

Silk.NET.Vulkan.Format.

They consist of various vertices for sampled mesh and 2 structs used for

surfels.

5.10.1 Surfels

Two structs for the representation of surfels are needed since they have

significantly different internal representations and are used for different tasks.

They also do not share any interface, even though naming might suggest so.

16 https://stackoverflow.com/questions/36573283/from-perspective-picture-to-orthographic-

picture

https://stackoverflow.com/questions/36573283/from-perspective-picture-to-orthographic-picture
https://stackoverflow.com/questions/36573283/from-perspective-picture-to-orthographic-picture

69

RenderableSurfel is the more straightforward of these two. It is used for

rendering into a debug viewer. That is why its simple internal structure is

represented by just position, normal vector, and color.

The significantly more important and more complex one is the

SurfelSample. Internally, it is represented as a single ulong (64-bit unsigned

integer) containing packed data for UV texture coordinates, texture layer index,

and radius. The exact format is (U, V, layer, radius) with 13:13:6:32 bits,

respectively. In this packed form, texture coordinates and layer index are uint

values, while radius is float. Note that this is slightly different from the format

used in (Brandt, et al., 2019) and described in Chapter 3.2.3.

To make utilization of this struct easier, the SurfelSample class contains

methods for packing and unpacking its data into separate values. These helper

methods are currently used only for debugging since the actual “instances” of these

structs are all created and manipulated solely on the GPU side in shaders.

Conversion from SurfelSample to RenderableSurfel happens in the

ConvertSurfels stage through a compute shader to make it as efficient as

possible. This means there is no need to copy buffers from GPU to CPU memory

and back.

5.10.2 Vertices

Interfaces

As a base for vertices structs, there are 2 simple interfaces. IVertex

providing nothing but position – useful for simple operations such as calculation of

bounding boxes. And IObjParsableVertex providing a static method to parse

vertex out of the .obj file. This is needed since different types of vertices have

different properties and, therefore, are parsed from .obj in different ways. Parameters

for IObjParsableVertex.ParseFromObj method (group, face, and face

vertex index) are generic enough to interpret this vertex in any way .obj files allow.

Specific structs

For the actual structs used for the representation of vertices, there are

ColorVertex and TextureVertex. Both contain position and normal vector,

and either color or texture coordinates. It looks like this:

70

public readonly record struct ColorVertex

 : IVertex, IObjParsableVertex<ColorVertex>

{

 [Format(Format.R32G32B32Sfloat)]

 private readonly Vector3D<float> position;

 [Format(Format.R32G32B32Sfloat)]

 private readonly Vector3D<float> normal;

 [Format(Format.R32G32B32Sfloat)]

 private readonly Vector3D<float> color;

 public ColorVertex(

 Vector3D<float> position,

 Vector3D<float> normal,

 Vector3D<float> color);

 public ColorVertex(

 float x, float y, float z, // position

 float nx, float ny, float nz, // normal vector

 float r, float g, float b); // color

 public static ColorVertex ParseFromObj(

 LoadResult result,

 Group group,

 Face face,

 int faceVertexId)

 {

 return new ColorVertex(...);

 }

}

These structs are actually record structs – which removes the hassle of

manually implementing the whole IEquatable<T> interface.

These structs for vertices are used primarily for debugging and

demonstration purposes. Therefore, there was no incentive to merge these structs

into more generic ones capable of holding various formats vertices. Besides color

and texture, this could be various colors (ambient, diffuse, specular), material

parameters/coefficients, illumination model, displacement and bump maps, etc.

Implementing such a system is significantly outside of the scope of this work.

71

5.11 Meshes

Interface

The IMesh interface is at the bottom of the hierarchy for mesh-related

classes. It specifies the used PrimitiveTopology (most commonly

TriangleList for standard triangular meshes), methods for getting AABB (axis-

aligned bounding box) used for camera placement, and most importantly, methods

for retrieving vertex and index buffer arrays.

The only part of the algorithm that directly uses meshes is

SamplingStage.

Base class

Abstract MeshBase class (implementing IMesh) was created to make

working with meshes easier. It fully implements AABB-related methods. This is

done thanks to its generic type being restricted to IVertex, whose only requirement

is getter for a position. MeshBase also provides convenient Lists for vertices and

indices, which enables the implementation of GetVertexBufferArray and

GetIndexBufferArray from the IMesh interface.

Specific classes

TriangularMesh class then fully specifies PrimitiveTopology and

further restricts its generic type to IObjParsableVertex, which makes it

possible to implement the LoadFromObj method. This is mainly for debug reasons

since it is expected to transfer meshes in different ways and formats based on the

architecture of the external program that would use this app.

However, as mentioned, the IMesh interface is all that is needed, and it is

generic enough to enable easy implementation from the external program.

The last mesh-related class is TestingMesh. It directly inherits from

TriangularMesh, sets its generic type parameter to ColorVertex, and provides

static Lists of testing vertices and indices. This makes it possible to test meshes

without any external factors and settings. Therefore, it minimizes potential errors

caused by parsed external files.

72

5.12 Helper functions

There are several static classes containing helper methods that were not

suitable to be anywhere else and could be made static.

MathHelperFunctions

One of the simple ones is MathHelperFunctions. The majority of math-

related operations on vectors and such are handled using the Silk.NET.Maths

namespace. There was still a need to implement other methods, such as conversion

between coordinate systems (spherical to cartesian and vice versa), and this class

seems ideal for these methods.

MiscHelperFunctions

MiscHelperFunctions is reserved for general-purpose methods that

are too small and unique to be placed into a separate helper class but are still needed

to be called from various parts of the code.

RenderDocHelperFunctions

RenderDocHelperFunctions class is used to simplify work with

RenderDoc API, especially using IDebugProvider (see 5.13). It also takes care

of the interpretation of C-style results from calls to this API.

VulkanHelperFunctions

A similar but way more complex helper class is

VulkanHelperFunctions. It was created with a job to simplify tasks related to

work with Vulkan which could be called from more than one place and therefore

were not suitable to be placed directly into the caller class. These tasks include

creating and updating buffers, images, commands, pipelines, handling memory and

allocations, and others.

It also takes care of error handling – processing

Silk.NET.Vulkan.Result and throwing exceptions in case the negative result

of a call to the Vulkan function is non-recoverable. VulkanHelperFunctions

could be considered a mini framework for Silk.NET Vulkan library since most of

these functions would be useful in any program accessing Vulkan through Silk.NET,

not just this one.

73

This is not an uncommon approach when it comes to Vulkan. Monado17, an

open-source OpenXR runtime, uses a similar class with helper functions for the most

common Vulkan functions.

ObjParsingHelperFunctions

Another class with wrapper-like helper functions is

ObjParsingHelperFunctions. It is used to simplify parsing of the most

common properties (such as position, normal, and color) from the ObjLoader

library as well as calculating normal vectors in case they are missing.

ElementsHelperFunctions

The second helper class closely associated with elements is

ElementsHelperFunctions. It helps to generate Vulkan structures such as

VertexInputAttributeDescription and

VertexInputBindingDescription out of elements (various surfels and

vertices).

To do that as easily as possible, it utilizes C# reflection and custom attribute

FormatAttribute to denote data fields of elements structs with

Silk.NET.Vulkan.Format. An example is the Vector4D<float> color

field in RenderableSurfel being marked with

Format.R32G32B32A32Sfloat.

It might seem like this could be even more automated since Vector4D

shows there should be 4 elements, and <float> could be clearly used to determine

that individual parts are 32-bit floats. However, it is not as straightforward for all

types – for example, the difference between R8G8B8A8SNorm,

R8G8B8A8Sscaled, R8G8B8A8Sint, and R8G8B8A8Srgb cannot be deduced

from C# type alone. It could easily lead to unintended behavior. Also, there are over

300 Vulkan formats; therefore, making this conversion at least somewhat reliable

would still require several orders of magnitude more work than just setting simple

attributes such as [Format(Format.R32G32B32A32Sfloat)] to each field.

17 https://monado.dev/

https://monado.dev/

74

5.13 Providers

Various calls to Vulkan API require a lot of different Vulkan objects, most of

which are constant for the whole duration of the application run. This includes Vk

(does not exist in the pure C version of Vulkan API; it is just a way to provide global

functions in C#), Instance, Device/PhysicalDevice,

AllocationCallbacks, and others. This results in passing many parameters

from one class to another. To make code more readable, flexible, and shorter, a

system of providers was created.

Providers are classes that implement one of the provider interfaces. These

interfaces require an implementation of getters for the aforementioned Vulkan

objects. As a result, classes implementing these provider interfaces can then be

passed as parameters to other classes.

The list of provider interfaces is following:

• IMinimalVulkanProvider

o groups together aforementioned Vulkan objects

• IDebugProvider

o gives access to ExtDebugUtils (Vulkan debug utilities)

and instance of RenderDoc (from Evergine namespace)

• IComputeQueueProvider, IGraphicsQueueProvider, and

IPresentQueueProvider

o provides access to instances of compute, graphics, and present

queues, respectively

• IStandardProvider

o only groups together IMinimalVulkanProvider and

IDebugProvider

The class that implements all of these (except for

IPresentQueueProvider) is VulkanAppBase. Higher in the class hierarchy

is then WindowedRendererBase, which adds IPresentQueueProvider to a

list of interfaces it implements. Since VulkanAppBase is the backbone of

everything Vulkan-related (initialization of all these Vulkan objects), it is

straightforward for it to provide easy access to all these objects.

Reference to VulkanAppBase can be passed even deeper in the method

call hierarchy without a need to store references to all these Vulkan objects

75

individually in each class on the way to the final API call. As an example,

VulkanHelperFunctions.CreateBufferAndMemory method takes

IMinimalVulkanProvider as one of its parameters. Then it takes whatever it

needs from this provider and passes it whole to other methods it calls. Some Vulkan

objects from this provider interface will be redundant, but it keeps the code cleaner

and provides no performance hit since everything is passed as a reference anyway.

These interfaces make it easier to replace VulkanAppBase or extract

initialization of these Vulkan objects elsewhere if needed.

This approach also makes it possible to check what exactly the passed-in

provider is and behave accordingly. For example, as mentioned, the

CreateBufferAndMemory method takes IMinimalVulkanProvider as a

parameter. But then it calls the AssignDebugNameConditional method to

assign debug names for just the created buffer and memory. This method takes just

IMinimalVulkanProvider as one of its parameters. But if this passed

IMinimalVulkanProvider is also IDebugProvider, its ExtDebugUtils

method is used to assign a debug name. This makes switching between debug and

non-debug (release) versions of providers possible.

The approach to encapsulate several core Vulkan objects is quite common.

For example, Monado has a class vk_bundle containing a similar collection of

objects. However, it is less flexible since it contains only a single queue.

5.14 Consumers

Directly related to the aforementioned providers is the

MinimalVulkanConsumerBase class. This class provides a mechanism to

simplify code for classes that need to store an instance of

IMinimalVulkanProvider and easily access its properties. To do that, the

class can inherit from MinimalVulkanConsumerBase, assign

IMinimalVulkanProvider to its property (through the constructor of

MinimalVulkanConsumerBase), and get direct access to the underlying

properties of this provider through getters from MinimalVulkanConsumerBase.

For example, instead of accessing MinimalVulkanProvider.CommandPool, it

can be accessed directly through CommandPool.

76

This mechanism exists only to make code a bit shorter and cleaner. Since

classes in C# cannot inherit from more than 1 class, this might cause inconvenience

if a large refactor of classes is done in the future. It does not cause any known issues

right now. MinimalVulkanConsumerBase could be changed from class to

interface, solving the problem with single-class inheritance. However, that would

cause a loss of the base constructor, which forces inheriting classes to set

MinimalVulkanProvider.

Also, this class and the whole mechanism can be removed without directly

affecting the system of providers.

77

6 Implementation highlights

This chapter mentions and analyzes some of the most critical decisions in

architecture and low-level implementation. It contains a detailed comparison of

various approaches/algorithms for the problem and a justification for the chosen

solution.

6.1 Camera placement algorithms

A small number of cameras (a few dozen at max) used for sampling in the

first stage must be placed around the sampled 3D model. The most universal

solution without the need to analyze actual mesh is to place cameras around it

uniformly. For example, on the surface of a sphere around the whole mesh.

Cameras, in this case, would be all pointed into the center of this sphere.

Several algorithms for uniform placement (in this case, same as sampling)

on the sphere were tested. Placement is calculated only once per model, so the speed

of actual calculation is not critical.

6.1.1 Hand-picked values

Using saved hand-picked values for placement is probably the simplest

solution, but it lacks flexibility with a varying number of cameras.

6.1.2 Spherical coordinate system

The standard cartesian coordinate system is unsuitable for dealing with

coordinates in a sphere and on its surface. For cases like this, the spherical

coordinate system is a great candidate. It is specified by 3 numbers: a distance from

the sphere center, polar angle, and azimuthal angle (see Figure 16). Based on ISO

convention12F

18, these variables are referred to as r, θ, and φ, respectively.

18 ISO 80000-2:2019 Quantities and units - Part 2: Mathematics

https://www.iso.org/standard/64973.html

78

Figure 22 Spherical coordinate system illustration. Source: Wikipedia - Spherical coordinate

system13F

19

Since cameras are supposed to be placed on the surface of a sphere, distance

r is fixed. However, a uniformly random setting of θ and φ coordinates does not

result in uniformly distributed samples. And even worse, with few cameras, results

are highly unpredictable. An additional check for the quality of samples and their

eventual re-calculation would be required.

6.1.3 Fibonacci sphere

One of the solutions for the even distribution of samples on the surface of a

sphere is called the Fibonacci sphere (sometimes referred to as the Fibonacci

lattice). The algorithm for its calculation is fully deterministic, and the result is

uniform (see Figure 17).

19 https://en.wikipedia.org/wiki/Spherical_coordinate_system

https://en.wikipedia.org/wiki/Spherical_coordinate_system

79

Figure 23 An example of a Fibonacci sphere (left) and one of the spirals it was generated

from (right). Source: (Munguba, et al., 2021)

A visible pattern in samples will appear with a high number of samples.

However, when working with a number of samples on the order of tens (as used in

this application), the resulting sampling looks random enough while being nicely

evenly distributed.

Since the Fibonacci sphere algorithm perfectly meets all requirements for

sampling on the sphere and is very easy to implement, it was chosen for the final

implementation.

6.1.4 Implementation

Internally, the SamplingCamerasGenerator class takes care of

calculating positions for ICameras. GeneratorTechnique enum then provides

the ability to choose which technique should be used:

RandomPolarCoordinates, FibonacciSphere, or DEBUG. The last one is

just a set of hand-picked values used solely as a deterministic set for debugging

purposes.

6.2 Organization of shaders

The majority of shaders used in this project are short and straightforward

enough to be contained in a single file each.

The only shared functions between shaders are in PackUnpack.inc and

DimensionsConstants.inc files. The first mentioned contains macros for

80

packing and unpacking uint into ivec3 containing texture coordinates (U and V

coordinates and texture layer index). The second mentioned contains constants for

the width and height of the viewport in pixels and the maximum number of views

available.

6.2.1 Compact and Sort stage

The only exception to short and more-or-less self-contained shaders is the

compute shader for the Compact and Sort stage. It consists of 6 phases that run one

after another.

Quite a few shared functions, constants, and bindings exist between them.

Therefore, the problem with the division of this large shader arose.

• Splitting phases each into their file would cause chaos with shared

parts of code, which would have to be added using the #include

directive.

• The other option is to use the so-called “ubershader” – put

everything into one big shader file and handle it one of the following

ways.

o Usage of GLSL shader subroutine (conceptually similar to

function pointers in C) would be ideal for this case.

Unfortunately, SPIR-V shaders do not support this

functionality.

o Vulkan supports setting the shader's entry-point (PName

variable in PipelineShaderStageCreateInfo struct).

However, this does not work for GLSL shaders, which

mandate the use of the void main() function as an entry-

point.

o Both glslangValidator and glslc (GLSL/HLSL to SPIR-V

compilers) support the setting of --source-entrypoint

parameter, which specifies GLSL/HLSL entry-point. Even

though glslangValidator seems to log an error when a function

other than main is used with this parameter, it does seem to

work. However, this would require compiling a shader once

for each phase – just with different entry-points. It would

81

ultimately lead to an increased memory footprint and a more

complex build process.

▪ Besides that, no matter how various entry-points would

be achieved, each phase would now require its own

pipeline and bind it before the phase is called. Even

though the added complexity of code and performance

hit would probably be minor, it is good to consider

them.

o The most straightforward way is to compile a single copy of

the shader the standard way with the main function and use

branching (if/else or switch) to call the appropriate method to

handle phases. Plus, since this branching is based on the Push

Constant (whose value is pre-recorded in the command

buffer), it can be very effectively optimized, and a call to the

main function with branching would be equivalent to directly

calling the phase function as an entry-point. And even in case

this optimization is not utilized by the graphics driver, the

performance hit is expected to be relatively insignificant. One

of the drawbacks is the potential bug-prone missing

association between phase indices and actual phases. The only

link between these in CPU and GPU codes is a new Push

Constant (uint), and any change to the order of phases has to

be adjusted in several places. However, this is a usual issue

when writing CPU and GPU code (shaders).

Due to its simplicity and relatively few drawbacks, the last option

(ubershader with the main function as a single entry-point and switch statement)

was selected for the organization of compute shader for the Compact and Sort stage.

6.3 Operation atomicExchange vs. atomicMax

The task of the compute shader for the Choose First Sample stage is to select

the first sample for the rest of the algorithm. It does not matter which pixel is

selected for the first sample as long as it is valid. The body of the shader looks like

this:

82

const ivec3 textureUVW = ivec3(gl_GlobalInvocationID.xy, 0);

const vec4 worldPosition = texelFetch(worldPositionsTexture,

textureUVW, 0);

if (worldPosition.w > 0) // pixel is valid

{

 atomicMax(sharedPackedSampleCoordinate,

 packCoordinate(textureUVW));

}

This compute shader goes through pixels of worldPositionsTexture

(at layer 0, since it does not matter which layer is chosen) and checks which pixel has

a value of W coordinate non-zero. This is sufficient and the only condition for a

pixel to be considered valid; therefore, it can be chosen for the first sample.

Next, the shader needs to pack the coordinates of this pixel and set shared

uint sharedPackedSampleCoordinate to its value. After proper

synchronization of invocations using barriers, this shared variable is written into the

global array surfelSamples.samples[0] by locally first invocations (it does

not matter which specific invocation is used) of each workgroup.

The interesting part is the actual setting of the

sharedPackedSampleCoordinate variable. This variable is shared between all

invocations within a single workgroup. Atomic operations are the best candidates

for this since they do not require manual synchronization between invocations.

Based on the operation's name alone, atomicExchange might seem ideal

for this task. However, using atomicMax instead provides one very good advantage

– result reproducibility.

Scheduling of workgroups is entirely up to the driver, and individual

invocations in each workgroup would call atomicExchange operation in a

different order, resulting in different results (different first samples) for each

application run. Function atomicMax ensures the same result regardless of the

scheduling of workgroups and invocations. This is great for debugging purposes.

And since the Choose First Sample stage is called only once at the beginning of the

algorithm run and the performance difference between these 2 atomic operations is

negligible, atomicMax is used even outside debug runs.

83

The same mechanism is used at the end of this shader – at the place where

locally first invocations of each workgroup set the global value of

surfelSamples.samples[0] equal to sharedPackedSampleCoordinate

(packed into surfel sample). Usage of function atomicMax will result in the same

value in surfelSamples.samples[0] each algorithm run, regardless of

workgroup scheduling.

Of course, it should be noted that atomicMax, in this case, acts as

atomicExchange only because the sharedPackedSampleCoordinate

variable is set to 0 at the beginning of the shader run, and all valid packed

coordinates are represented as positive non-zero numbers.

The same technique with the same context is used in the

ExtractFarthestSamples compute shader.

6.4 Unsafe code

Due to the nature of Silk.NET, it is impossible to avoid using unsafe C# code

in this project. This essentially means using raw asterisk pointers (such as void*).

This is used only when necessary due to undelaying API. Some parts of code also

require using IntPtr or nint to store pointers (for example, to call

Marshal.StructureToPtr method).

Handling and management of raw global memory could not be avoided

either. This is, for example, when chaining several structs using void* PNext of

Vulkan structs. PNext is a pointer to the next Vulkan struct, which is used to add

information, for example, using extensions. Almost all Vulkan structures contain this

field, which leads to the possibility of chaining as many structs as needed.

Unfortunately, in C#, this is problematic due to the automatic garbage

collector, which does not know that the pointer is still used by some void*. To fix

this, Silk.NET offers the method SilkMarshal.Allocate method (and its

counterpart SilkMarshal.Free) to allocate global memory. This memory can

then be populated using Marshal.StructureToPtr. This is precisely what

VulkanHelperFunctions.StructToGlobalMemory method does.

Working with global memory results in extra care needed to be taken by a

programmer to avoid memory leaks. This is especially true for C# where unsafe

code and memory leaks in general are very rare.

84

6.5 Sampling colors

Right now, the Sampling stage directly takes only a single sample of color

for a given fragment. In some rare cases, this might cause graphical issues such as

aliasing (see Figure 18).

Figure 24 An example of an aliasing in computer graphics caused by insufficient sampling.

Source: Spatial Antialiasing - Presented by Tiger Giraffe14F

20

An easy way to improve it would be to take multiple samples from each

fragment and average them. This can usually be hardware accelerated since the same

technique has been used for MSAA (multisample anti-aliasing) in games and other

software for many years.

Another more advanced approach would be to take multiple samples not just

from a given fragment but from neighboring fragments as well. This is more

difficult to implement and will result in significantly higher performance hit.

20 https://mielliott.github.io/index.html

https://mielliott.github.io/index.html

85

Figure 25 An example of a CAD model. Source: “Car Engine” model by Mahtabalam Khan

published on GrabCAD Community website15F

21

However, it is essential to consider what data type is expected to be sampled.

For the case of this project and the whole FataMorgana platform, the most common

3D models on input are CAD models. They usually have uniform colors and very

few places to cause aliasing since textures are rarely used (see Figure 19 for an

example). Therefore, it was decided that improvements in the color sampling process

have low priority and are outside this project's scope.

6.6 Replacement of Sampling stage

As mentioned in Chapter 5.4.2, the Sampling stage is the only stage that

works with an actual mesh representation of the scene. All other stages work with

G-buffers containing color, normals, and positions for pixels generated in the

Sampling stage.

This means the Sampling stage can be easily replaced with anything else that

can provide these attributes. This could be, for example, a 3D scanner,

photogrammetry system, ray-tracer, or even some novel neural-network-based

21 https://grabcad.com/library/car-engine-8

https://grabcad.com/library/car-engine-8

86

techniques such as NeRF (Mildenhall, et al., 2020) or Gaussian splatting (Kerbl, et

al., 2023).

Note that the camera's position with a depth map (more prevalent for some

of these techniques) instead of the actual positions of pixels is also sufficient since

world positions can be calculated from them.

6.6.1 FMBrain

One specific system that could replace the Sampling stage is FMBrain. This

project was created in Pocket Virtuality as part of the FataMorgana platform.

The purpose of FMBrain is a production of high-quality meshes created by

the combination of data from various sources:

• low-quality meshes provided by HoloLens sensors,

• photos periodically captured from HoloLens main RGB camera,

• point clouds from 3D scanners (such as Leica BLK 360),

• and potentially others.

It contains a photogrammetry pipeline for processing those photos and

works with colors, normals, and positions for pixels. The exact outputs of the

Sampling stage. Therefore, this would be the first candidate for replacement of this

stage if needed.

6.7 Nullable warnings

Novel C# versions bring features for mitigating errors caused by null

references. This is mainly in the form of static analysis done by the compiler and

can be turned on per file (#nullable enable preprocessor directive) or for a

whole project (<nullable>Enable</nullable>).

It is recommended to write new code with this feature enabled. However, as

this project shown, it is not always possible or beneficial enough.

Since the majority of the work of this program is done on the GPU side,

occasional null checks in CPU code will not cause a noticeable performance hit.

The vast majority of Silk.NET Vulkan API consists of structs that are not

nullable. They can be made nullable using StructType? notation (shorthand for

Nullable<StructType>). But most of these Silk.NET structs are just wrappers

around its single field public ulong Handle. This works like an opaque

87

“pointer” for Vulkan API. If the Handle = 0, it is considered an equivalent of a

null pointer, and use of it in API calls will, in most cases, throw an exception or

return an error result.

The compiler’s static analysis, of course, does not check for the value of

Handle; therefore, it would still miss a lot of possible runtime errors caused by a

null reference.

6.7.1 MemberNotNull attribute

Attributes MemberNotNull and MemberNotNullWhen could help, but

unfortunately, they do not play nicely with inheritance. More specifically, using

these attributes in such cases results in “Warning CS8776: Member '<member from

base class>' cannot be used in this attribute”. This problem is still being worked on,

as seen in GitHub issue #5653116F

22 for the Roslyn compiler.

Another problem with the MemberNotNull attribute is that it does not seem

to work nicely with method calls. Imagine this code:

DescriptorsManager decriptorsManager;

void Initialize()

{

 CreateDescriptorsManager(); // creates decriptorsManager

 CreatePipeline(); // the inside of this method does not know that

descriptorsManager is not null

}

Then we create the IsInitialized property and AssertIsInitialized

method like this:

[MemberNotNullWhen(true, nameof(descriptorsManager))]

bool IsInitialized { get; set; } = false;

void AssertIsInitialized()

{

 if (!IsInitialized)

 {

 <handle error>

 }

}

22 https://github.com/dotnet/roslyn/issues/56531

https://github.com/dotnet/roslyn/issues/56531

88

After all this, it might seem like the following code for the CreatePipeline

method should be able to detect whether descriptorsManager is null or not:

void CreatePipeline()

{

 AssertIsInitialized();

 pipelineLayout = VulkanHelperFunctions.CreatePipelineLayout(

descriptorsManager.DescriptorSetLayout,…);

}

If static analysis for nullability is turned on, a warning saying that

“descriptorsManager may be null here” in a call to CreatePipelineLayout

appears. This warning can be removed only by copying the whole body of the

AsserIsInitialized method directly inside of the body of

CreatePipeline. The call to AssertIsInitialized (as in the code example

above) is insufficient. This would, naturally, result in a lot of copied code, which is a

bad practice.

Various other static analyzers for nullability included in Visual Studio

require much work before being fully usable.

6.7.2 API call and out parameter

Furthermore, changing these Vulkan structs to nullable would break

compatibility with almost all API calls. Let’s say we have this code:

private Queue queue;

void SetQueue()

{

 Vk.GetDeviceQueue(…, out renderingGraphicsQueue);

}

Changing Queue to Queue? is not compatible with out parameter of

Vk.GetDeviceQueue method. And majority of these structs are created exactly

this way – as out parameter instead of a return value (which is reserved for

Result). This problem can be fixed by introducing a new method-local variable

and assigning it to a class variable queue. Still, it would add boilerplate code for

each of these API calls, making the code less readable.

89

6.8 Rendering of surfels

SurfelRenderer is used only for debug visualization of generated

surfels. It is still a good demo of how easy it is to draw these surfels. The process it

uses is explained in detail in Chapter 5.3.2.

This chapter talks about rendering primitives that can be used for rendering

surfels and their blending with each other and polygonal meshes.

6.8.1 Shape of surfels

Surfels can be rendered as various shapes using several techniques.

Circles

Using a geometry shader to create a triangle, which is then “cut” into a

circle in a fragment shader (as SurfelRenderer does), is not the only possible

technique to render surfels. And also, it is not always the best. For example, the

hardware architecture on Microsoft HoloLens 2 causes the geometry shader to be

very slow.

Squares

One of the alternative approaches would be to render a simple square. This

does not require a non-standard approach with geometry shader. However, without a

geometry shader, there would have to be 4 vertices for every surfel in the vertex

buffer instead of just a single vertex. Which translates into more data stored and

more work for the vertex shader.

Point sprites

Older graphics APIs such as DirectX 9 and OpenGL support so-called point

sprites. They are a generalization of points as primitives. The primary use for them

was particle systems. However, since they support the setting of size and color, they

could be an alternative to the aforementioned approaches.

Modern graphics APIs do not offer this functionality anymore. Therefore, it

was not investigated further. It is possible that this technique was never intrinsic to

GPU hardware and was just emulated using a geometry shader and subsequent

discarding of fragments similar to the rendering of surfels as circles mentioned

above.

90

Squarkle

Azure Remote Rendering supports native rendering of point clouds. Each

point is rendered as a squarkle – a combination of square and circle. This technique

results in space coverage almost as good as a square, but it keeps the precision of a

circle.

Unfortunately, no more information was provided or found. It might be a

good idea to keep that in mind and later check papers describing this technique in

more detail.

Using squarkles for rendering was mentioned in the Azure Remote Rendering

presentation for Mixed Reality Dev Days 202217F

23.

6.8.2 Transition between surfels and original mesh

One of the more advanced techniques required for high-quality rendering in

the final product would be a transition between surfels and the original representation

of mesh when the model gets close enough to the camera.

To prevent ugly “popping” during the transition, both mesh and surfels of

the same models could be rendered simultaneously, and alpha blending would be

used to transition between them smoothly. This is, however, strongly dependent on

the external system – primarily its rendering pipeline and representation of the

original mesh.

6.8.3 Blending between surfels

Alpha blending could also be used for nicer blending between surfels

themselves. They could be rendered opaque in the center and progressively more

transparent toward the edges – similar to Gaussian splats (mentioned in Chapter

2.3.4).

This technique was used in several older approaches to rendering surfels.

However, surfels in those cases were usually significantly larger than those in this

algorithm. Therefore, it is possible that this approach would bring little to no visual

improvement in most cases. What it would definitely bring is, however, the

rendering complexity. Whenever objects with transparency are rendered, they need

23 https://youtu.be/R6SoCL25nCY?feature=shared&t=1980 (timestamp 33:00)

https://youtu.be/R6SoCL25nCY?feature=shared&t=1980

91

to be rendered in an ordered manner (back-to-front). Using alpha values also means

no early depth tests, resulting in another impact on performance.

6.9 FMsurfelsDebugTools

Part of the FMsurfels solution is the project called

FMsurfelsDebugTools. It is a tiny project consisting of a single Program.cs

file with all code being just in the Main method.

Its only purpose is to provide a simple command line tool to decompose a

surfel sample packed in ulong (64-bit unsigned integer) into its parts – texture

coordinates (2 uint values), layer index (uint), and radius (float).

Even though it is relatively simple, it is still robust regarding input parsing,

and it correctly displays errors instead of just throwing an exception and shutting

down.

6.10 Shared texture in Voronoi stage

The last 2 lines of the fragment shader for the Voronoi stage look like this:

outDistance = distanceToSite / bounds.maxDistance;

gl_FragDepth = distanceToSite / bounds.maxDistance;

and the question might be – why not share 1 texture between the depth buffer and G-

buffer of distances (outDistance) since both are assigned the same value?

The answer is that the G-buffer of distances is read in the shader in the next

stage. For that, its Image needs to be in the ShaderReadOnlyOptimal layout.

Depth buffer, on the other hand, requires the use of

DepthStencilAttachmentOptimal layout. The transition between these 2

ImageLayouts back and forth in each algorithm iteration might be too big of an

overhead (depending on architecture and drivers). Added complexity to code is also

to be considered – ImageLayout transition must be done through

CommandBuffer.

The gain from sharing one texture would be just a little saved memory. And

almost no processing time (initialization and disposal of 1 of the textures) would be

saved because of all the new wasted time on ImageLayout transitions.

92

6.11 Disposal of Vulkan objects

All classes creating Vulkan objects also dispose of them to prevent memory

leaks. This is done through Vk.Destroy… methods. To make this more

manageable, System.IDisposable interface is fully implemented on all relevant

classes.

While IDisposable requires only the implementation of a single void

Dispose() method, the reality is a bit more complicated (primarily due to classes

with inheritance).

In the end, the whole implementation of C# Dispose Pattern (for needs of

this project) for a single ExampleClass class looks like this:

protected bool disposed = false;

public void Dispose() // required by System.IDisposable interface

{

 Dispose(true);

 GC.SuppressFinalize(this);

}

protected virtual unsafe void Dispose(bool disposing)

{

 if (disposed)

 {

 return;

 }

 Vk.Destroy…(…, Allocator);

 <other IDisposable classes>?.Dispose();

 disposed = true;

}

~ExampleClass() // destructor

{

 Dispose(false);

}

93

6.12 Multiple GPUs

One of the considered performance improvements is the use of multiple

GPUs. This could be done in several ways.

It is important to note that this algorithm is not real-time, unlike games.

Therefore, these approaches to utilize multiple GPUs are not strictly related to

technologies such as SLI or CrossFire used for synchronized cooperation of GPUs.

Also, both SLI and CrossFire have seen a significant loss of interest in the last years

in the consumer market. The only remaining useful technology for this is NVLink,

which is focused more on enterprise solutions.

6.12.1 Per-model basis

Utilizing multiple GPUs on a per-model basis would mean that each sampled

model is processed on a different GPU. Since each processing means a new and

independent run of this program, there would be no issues related to memory

conflicts and synchronization. It also means there is no need for tight cooperation of

GPUs using aforementioned technologies such as SLI or CrossFire. However, this

approach would have to be fully implemented in external application.

The only change in this program would be an added way to select a desired

GPU from the outside. That is relatively easy to do.

6.12.2 Inside of algorithm

The second approach to utilizing multiple GPU would be to modify this

program by splitting the load. This would require extensive changes to the

algorithm as well as handling of synchronization of memory and states. Doing this

correctly for an arbitrary number of GPUs is a very complex task and significantly

out of this project's scope.

Since each run of the algorithm (for a single model) is expected to be

relatively fast, it is doubtful whether this approach would bring any significant

advantage.

6.12.3 Conclusion

Based on the aforementioned analysis of 2 approaches to utilize multiple

GPUs, it is pretty easy to see that “per model basis” is easier to implement in

94

general, less prone to issues with synchronization, less dependent on other

technologies, and last but not least it would probably bring more significant

performance advantage.

This is still just an initial analysis – at best, it is a starting point for one of the

future improvements/additions.

6.13 Layered rendering

Layered rendering refers to a technique when one render call results in writes

to more than 1 layer of framebuffer/render target. This technique was initially used

for cube-based shadow mapping and cube environment maps – instead of rendering

scene 6 times per cube map, it can be rendered in a single pass. A more novel use of

this technique is rendering for stereo displays, such as AR/VR headsets, stereo

projectors/monitors, CAVE systems, etc.

Layered rendering is heavily utilized in this project (in G-buffer stages) to

extract as much performance as possible.

There are 2 main approaches to layered rendering:

• Geometry shader instancing – This technique uses geometry shader to

create multiple copies (instances) of each primitive it processes. The

aforementioned example with cube maps can render the whole scene 3-4

times faster than independent draw calls (Stenning, 2014, page 319). Its

primary disadvantage is that the number of instances has to be set in

compile time right in the shader as an attribute. It is possible to re-

compile the whole shader with a new constant at runtime, but that

significantly increases the complexity of the build process and is not very

flexible.

• Multiview rendering – A more flexible approach is using multiview

rendering. In Vulkan, this is provided by the VK_KHR_multiview

extension. It allows to set a number of instances right at the time of

calling the draw call. It also does not require a geometry shader,

which would be an unnecessary bottleneck in cases where a geometry

shader is not used for anything else.

95

Due to the disadvantages and worse flexibility of geometry shader instancing,

multiview rendering was selected as a better candidate for layered rendering

in this project.

6.14 Alternative for atomic operations

As mentioned in Chapter 4.1.4, DirectX 11 lacks an essential operation for

this project – atomic max on 64-bit floats. There were attempts to work around this

issue using mutex.

For evaluation purposes, 2 shaders were created to do essentially the same

max operation on 1D texture containing uint values:

• One shader used atomic operation (InterlockedMax), and its code

looked like this:

RWTexture1D<uint> SimpleSurfelSamples : register(u0);

[numthreads(THREADSX, THREADSY, THREADSZ)]

void ExtractFarthestPointCS(

 uint groupIndex : SV_GroupIndex,

 uint3 groupId : SV_GroupID,

 uint3 groupThreadId : SV_GroupThreadID,

 uint3 dispatchThreadId : SV_DispatchThreadID)

{

 uint coord = (groupThreadId.x * dispatchThreadId.y * groupId.z *

groupIndex) % 1000;

 InterlockedMax(SimpleSurfelSamples[coord], groupIndex);

}

• The second one, significantly more complicated, uses mutex and active

waiting. Compared to the aforementioned shader, this one adds mutex in

the form of 1D texture:

RWTexture1D<uint> SimpleSurfelSamples : register(u0);

and changes the body of ExtractFarthestPointCS function

accordingly:

96

bool keepWaiting = true;

while (keepWaiting)

{

 uint originalValue;

 // try to set the mutex to 1

 InterlockedCompareExchange(Mutex[coord], 0, 1, originalValue);

 if (originalValue == 0)

 { // nothing was locked (previous entry was 0)

 // do actual work

 if (groupIndex > SimpleSurfelSamples[coord])

 {

 SimpleSurfelSamples[coord] = groupIndex;

 }

 // unlock mutex

 InterlockedExchange(Mutex[coord], 0, originalValue);

 // exit loop

 keepWaiting = false;

 }

}

The result of the performance evaluation of these 2 shaders was undoubtedly

in favor of atomic operation. While that shader took around 0.16ms (average of 10

runs), the version of the shader with mutex took 1551ms on average. That is several

orders of magnitude slower. The standard deviation in both cases was small and did

not play a role in the results.

This shows that using mutex instead of atomic operations in shaders would

result in a considerable performance hit. Therefore, the use of DirectX 11 was not

feasible.

97

7 Results

This chapter talks about the concrete results of the project as a whole – both

the research and the implementation part. It consists mainly of discussions of

contributions in various ways and to various parties, as well as the project's current

state.

7.1 Research

The first part of this thesis consisted of research for adequate LoD technique.

Chapter 2 went through various rendering optimization approaches, compared state-

of-the-art LoD algorithms, and justified the selection of Blue Surfels for the second

part of this thesis.

This research should not be considered a meta-analysis of LoD algorithms

since it was constrained by the requirements for this project. However, it is still

extensive, detailed, and up-to-date enough to help others get an overall idea of

where research in the field of LoD is and even how it got there all the way from the

first papers.

7.2 Improvements compared to existing implementation

The second part of this project, the implementation of the selected LoD

technique, is far more than just a copy of the existing implementation of Blue

Surfels.

First of all, this project replaced deprecated OpenGL with modern Vulkan.

Besides the utilization of modern technologies, Vulkan also provides the most

possibilities for future improvements and the best performance gain. All that while

keeping multiplatform support similar to that provided by OpenGL.

The result of this project is a completely independent executable unit with

no 1st party and only a minimum of (carefully selected) 3rd party dependencies. This

is unlike the existing implementation, which relies heavily on university renderer

PADrend and is not prepared for compilation on other platforms other than Linux.

Even the compilation on Linux is not without issues.

The important part is also significantly more readable, organized, and

documented code. This is a notable disadvantage of the existing Blue Surfel

98

implementation. It looks like a typical research paper implementation – as long as it

works and is implemented quickly, it is fine. There were no expectations of

programmers using it other than authors themselves.

7.3 State of the project

The algorithm implemented for the purpose of this project is a type of

algorithm that can be extended and improved for years. Naturally, it was

impossible to include all of them in this project at the time of submission for the

purpose of the thesis. However, some of these potential improvements are

mentioned all around this thesis text.

The code's architecture is designed to be easily extensible in the future.

Future work on this project was always expected since the code was developed

partially for the company Pocket Virtuality.

Nonetheless, the submitted code for this thesis is fully functional from the

beginning to the end. More specifically, the program takes an .obj file on the input

and produces a surfel representation of it.

99

Figure 26 A debug renderer window displaying a sampled car model in the form of surfels

(10k in total).

The submitted code also includes an interactive debug renderer (see Figure

24) for easy visualization of the result.

Command line arguments provide a way to adjust the inner workings of the

surfel generator as needed.

The main part of future work would be an external system around this

program. Such a system would take care of the calls to the program (setting its

inputs and parameters) and then handle produced outputs. However, it is expected

that this external system would be extremely dependent on the platform into which it

should be integrated. Therefore, it was outside of this project’s scope.

7.3.1 Conclusion

The submitted version of this project’s program:

100

• supports all the essential parts,

• is fully functional,

• improved the original implementation of Blue Surfels in several

aspects,

• and is architecturally prepared for future extensions and

improvements.

This all seemed like a reasonable scope for the needs of this Master's thesis.

7.4 Presentation of results

This subchapter presents 2 selected 3D models – sampled and rendered as

surfels using a debug renderer.

A lot of various 3D models were tested during the development. Two of them

were selected for presentation of results. These models are sufficiently different in

size, proportions, and overall shape to represent the most common use cases well.

7.4.1 Car

The car model was selected because it has a uniform cuboid-like shape with

mostly curved surfaces (both convex and concave). Its mesh is pretty low-poly

(~3.6k faces) for such an object.

Figure 27 A 3D model of a car viewed as a triangular mesh rendered in MeshLab24 on the

left and the debug renderer visualizing the same model as sampled surfels on 2 right pictures. There

are 10k surfels in both right pictures, just with varying sizes for easier visualization.

Firstly, Figure 27 shows a comparison of triangular mesh and surfels. Both

surfel representations contain the same number of surfels, only the surfel size is

different. Note that the middle picture from this figure is not representative of the

24 https://www.meshlab.net/

https://www.meshlab.net/

101

intended final usage. The size of the surfels should always be selected so there are no

gaps compared to the original mesh.

Also, rendering 10k surfels instead of the original mesh, which has only 3.6k

faces, would make very little sense. This is only for demonstrative purposes. The

sampling of an ultra-high-poly version of the same car model would produce a very

similar set of surfels for rendering, making surfel representation more useful.

On the other hand, Figure 28 shows that even a few hundred surfels are

enough to approximate the car model relatively well.

Again, such low numbers of surfels would be used only in case the model is

really far from the camera. Usually, the size of the surfel would be selected so that its

projection in the worst-case scenario is a few pixels on the screen. In these pictures, a

single surfel is notably projected to thousands of pixels, if not more. The more

realistic visualization is in Figure 29.

Nonetheless, this demonstrates the effect of varying numbers of surfels

(even in extremes) on visual quality and recognizability compared to the original

model.

102

Figure 28 The same model of car rendered using a varying number of sampled surfels

(number in the bottom right corner of each picture). From unusably low 60 surfels, through decently

usable (at high distance from camera) hundreds of surfels, all the way up to 10 000 surfels.

103

Figure 29 Comparison of the same models (same surfel counts) as in Figure 28. Displayed

horizontally (upper right corner), there are all models next to each other scaled down to the same size

(to simulate large distance from the observer). Vertically, each model is scaled to match the same

surfel size (based on the most upper left model).

104

7.4.2 Crane

The second model selected for the presentation of results is a crane.

Compared to the car model, the crane:

• is significantly less uniform,

• has marginally more polygons – about 130k, compared to less than 4k

polygons used for car model,

• consists of mostly sharp edges (and very few curved surfaces),

• contains challenging parts such as long thin rods and cables

(pendants)

Figure 30 Model of crane composed of 100 all the way up to 100k surfels (number in the

corner of each picture). The bottom right picture shows an original triangular mesh (~130k faces)

rendered in MeshLab.

105

This model poses a great challenge with its very low uniformity and long,

thin parts. Pendants, diagonal cables connecting the middle tower peak with the

horizontal jib and counterjib, are a dominant part of any crane and are very

important in its recognition. But they are also thin and, therefore, generally

challenging for most LoD techniques.

As Figure 30 shows, even versions with an extremely low number of surfels

(a few hundred) preserve these pendants very well, making the object easily

recognizable as a crane from a distance.

It is important to note that these surfel representations show artifacts in the

form of high contrast between neighboring surfels. This is partially due to the very

primitive lighting model (Lambertian shading) used in the debug renderer but also

because surfels appear way too big in low-surfel-count versions. This is an

unrealistic scenario used only for demonstration purposes. Techniques such as EWA

filtering (see Chapter 2.3.4) would greatly help this problem.

Figure 31 A close-up of the back platform on the crane from Figure 30. It contains pictures

of both the original mesh rendered in MeshLab and the debug renderer using 3k, 12k, and all 100k

surfels. The number of surfels refers to the total number on a whole crane, not just a visible part.

Figure 31 shows a close-up of a platform on a crane’s counterjib. This spot

was chosen to show challenging parts of the model, such as various rods and

railings, in more detail. And as this figure shows, this technique can reconstruct even

meshes like this one pretty well.

106

Low surfel counts (thousands of surfels) are not very usable in this scenario,

but they would not be used in such a close-up anyway. In some cases, it might be a

good idea to split such a big model as this crane into multiple parts and let each part

handle the LoD level independently. This would make sense if an external program

expected a camera to be located, for example, at the bottom platform of the crane

(where original mesh or at least high surfel count should be used) and distant parts

(top of the crane) could be rendered using just a few surfels.

7.4.3 Render times

Figure 32 Dependency of number of rendered surfels and time for a single draw call

(vkCmdDraw) in microseconds. Tested in debug renderer on a model of the crane. Times are

calculated as an average of 5 independent frames, captured and analyzed using RenderDoc (Nvidia

Nsight Graphics reported similar times). Measured standard deviations were insignificantly small.

Time to render the model is linearly dependent on number of surfels it is

made of, as can be seen on Figure 32. This was tested in the debug renderer with no

optimizations such as frustum or occlusion culling and with standard depth test

enabled.

As can be seen, rendering very small amounts of surfels (the lowest tested

number was ~150) is not effective since there is an overhead of about 10μs for a

render call itself. For a comparison, rendering 1000 surfels took only 2μs longer, and

rendering 6000 surfels took, on average, an additional 2μs. From that point onward,

the change is more or less proportional.

107

7.4.4 Conclusion

The previous subchapters and their figures showed that this technique of

mesh sampling has good results on both concave and convex curved surfaces, as

well as surfaces with sharp edges. Moreover, generally challenging meshes such as

long, thin rods/ropes are handled correctly as well.

Different homogeneity of the input model does not pose a problem for this

sampling technique either. However, depending on the scenario, big models such as

an example crane might need to be split into multiple parts, and each part sampled

independently.

Limitations such as graphical artifacts were acknowledged and explained,

and a solution for them was proposed.

Figure 28 together with Figure 30 show that as low as few hundreds of

surfels can create a representation of a model which is good enough in case it is

viewed from a relatively long distance. This, with the results presented in Figure 32,

shows that these sampled models are adequate for LoD needs.

For example, rendering a single model consisting of 10k surfels (because it is

close to the camera) is equivalent to rendering 10 instances of the same model, each

consisting of 1k surfels (since they are further away). Naturally, this example does

not consider other optimization techniques, rendering approaches, overheads, etc.

7.5 Other uses of the project

The result of this project is not only an improved implementation of Blue

Surfels. The critical part is also an extensive foundation for Vulkan-based

applications/renderers.

As can be seen throughout the whole of Chapter 5, there was a strong focus

on scalable and extensible architecture. Evidence of that is deep hierarchies of

classes, from the most abstract one, through generic implementation (great as a base

for other projects), all the way to concrete classes used for this project.

The minimal amount of 3rd party dependencies also helps with the use as a

base for other projects. Besides that, these 3rd party libraries were carefully selected

with regard to licenses (so there are no issues with commercial use) and probability

for long-term support.

108

7.6 Limitations

The following subchapters discuss some of the largest limitations of this

project in its current state, with justification for the lack of these features.

7.6.1 Input format

This project, in its current state, has very strict limitations related to the

format of input.

First of all, only .obj files are supported. This format for chosen for its

(relative) simplicity of its implementation using 3rd party libraries and widespread

access to free data. However, as mentioned, this is not very useful for the final

implementation. Any external program using this project would have to implement

its own import of models.

It is not possible to implement fully universal system for all cases. Not only

it can be any format (even proprietary one) but it can be imported in various ways

(as a pointer to CPU memory, file on drive, handlers to vertex and index buffers on

GPU, etc.).

Not to mention that input might not be in the form of 3D model at all.

Skipping sampling stage and providing sampled data from different system (such

as 3D scanner) is a valid strategy. And again, creating universal system for this case

would be extremely time consuming and irrelevant to the goals set for this project.

Second of all, even though .obj format is relatively simple, supporting it

fully is not easy. There is far more than just positions and colors. Full support for

.obj files would have to handle various colors (ambient, diffuse, specular),

illumination models (reflections, …), bump and displacement maps, and much

more.

With all that, a surprisingly high number of .obj files available online are not

fully correct. There are often invalid values and missing MTL files with materials.

Handling all of this is outside of the scope of this project.

The complexity of the full support is also one of the reasons the results

presented in previous subchapters are all greyscale. Finding adequate and interesting

.obj files with the correct colors and materials is not an easy task. However, the

general support for handling of color in the rest of the algorithm was tested and

worked without any issues.

109

7.6.2 Sampling of model interior

Currently, the sampling stage samples the input model only on its surface.

In many cases, this is good enough. However, as mentioned in (Brandt, et al., 2019),

some models would benefit from being sampled from inside as well.

This can be achieved using techniques such as depth peeling. In the context

of this project, depth peeling would work on the principle of sampling topmost layer

from each direction several times, while rejecting samples already sampled in the

previous iteration. This would result in sampling deeper and deeper layer each

time.

But all of this comes with a cost of higher complexity. Not only

computational but also a complexity of decision making on which models should

be sampled in depth and, especially, how deep should the sampling go.

More about depth peeling approaches in general can be found in, for example,

(Bavoil, et al., 2008) or (Liu, et al., 2009).

7.7 Contributions to 3rd party software

This project works with several unusual techniques, such as the non-standard

use of rendering pipeline and rare formats. This caused several issues with 3rd party

software. These issues were adequately reported, which led to their fix.

7.7.1 RenderDoc

RenderDoc having an active community and creator came in handy when

several issues were discovered in this graphics debugger.

More specifically, there was a lack of support for using both geometry

shaders and multi-view rendering simultaneously. This caused buggy behavior of

GUI (such as missing output in panels) and lack of any form of notification18F

25.

The second case was improper handling of packing of vector consisting of

two 32-bit numbers into 64-bit and vice versa (unpackUint2x32 and related

methods) in shader debugger.

25 GitHub issue: https://github.com/baldurk/renderdoc/issues/2595

https://github.com/baldurk/renderdoc/issues/2595

110

The last encountered issue was also related to 64-bit numbers, which are rare

in standard rasterization pipelines. The usage of 64-bit numbers in the vertex

buffer (when read in the vertex shader) caused the crash of RenderDoc.

All these issues led to proper bug reports and were quickly fixed by the

creator.

7.7.2 Visual Studio

As part of the development of this project, a bug in Visual Studio was

discovered and reported, which led to its successful fix19F

26. This was a minor bug in

IEnumerable Visualizer (debug window for IEnumerable classes). It involved

an incorrect row index being displayed for selected rows. Before it was discovered,

this bug caused several inconveniences since this feature was crucial in early

development and debugging.

26 https://developercommunity.visualstudio.com/t/IEnumerable-Visualizer-row-index-does-

no/10130331

https://developercommunity.visualstudio.com/t/IEnumerable-Visualizer-row-index-does-no/10130331
https://developercommunity.visualstudio.com/t/IEnumerable-Visualizer-row-index-does-no/10130331

111

8 Discussion

This chapter contains a few miscellaneous topics that would not fit anywhere

else. These topics are usually just extensions and thoughts on top of the whole

project.

8.1 Selection of models for conversion to surfels

Not all models are suitable for conversion using this algorithm. This chapter

discusses it, mainly from the point of the FataMorgana system.

CAD models are great candidates for conversion. They usually contain a

considerable number of triangles, have uniform colors (and rarely any textures –

see Figure 19), and are mostly static. Even if there are animations, it is usually just a

simple translation/rotation of parts of the mesh and no morphing of the mesh itself.

Therefore, this technique could be used as long as separate static sub-models are

converted separately.

On the other hand, a scanned environment from HoloLens is not the best

candidate for this. It is usually low-poly; therefore, the performance advantage of

surfels would be relatively small. And, more importantly, these meshes are

constantly changing (as the physical scene changes) and improving (with finer and

finer detail).

The more complicated is the decision of whether to convert the environment

scanned using 3D scanners such as Leica BLK360. Output from such scanners can

vary in size a lot depending on the device and settings. Also, it depends on the usage

of the scanner itself. If the environment is scanned once and remains static after that,

conversion to surfels could be used. But if the 3D scanner is still used to gradually

improve and extend existing scans (similar to the case with HoloLens), it might be

wise to wait with conversion.

8.2 Small triangle draw efficiency

Rasterizing many triangles smaller than 2x2 pixels is extremely ineffective.

This applies to the vast majority of standard modern GPU architectures. The authors

112

of Nanite realized this27 when working on their rendering optimization algorithm,

which is based on rendering a huge number of small triangles. Their research

concluded that primitive and mesh shaders could help, but software rasterization

was still several times faster than standard GPU rasterization. Besides Nanite, similar

work was presented in (Kenzel, et al., 2018).

The rendering of surfels outputted from the algorithm presented in this thesis

could pose the same challenges. Software rasterization is not easy to implement

effectively with all the required features, such as depth tests.

Moreover, hardware rasterization is still more effective for large triangles.

This means that the selection process between software and hardware rasterization

needs to be implemented. Additional care must be taken to prevent pixel cracks

between these 2 rasterizers.

27

https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf

(starts at page 80)

https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf

113

9 Conclusion

Rendering for AR/VR devices is especially demanding. There are many

rendering optimization techniques, each with its advantages and disadvantages.

Therefore, the first goal of this project was to research and find an adequate

LoD algorithm for the needs of the FataMorgana platform. The second goal was to

implement this algorithm with potential improvements and additions.

9.1 Research

The first part of this project, a research, consisted of an extensive review of

existing literature in the field of rendering-optimization techniques, mostly based on

the LoD approach. The focus was on:

• novelty – which usually means good performance and modern hardware

utilization compared to older techniques,

• scalability – since the algorithm should help with the rendering of huge

scenes in a vast range of devices, from powerful desktop computers to

low-power standalone AR/VR headsets,

• and the support for input format – which is expected to be not only in

the form of a triangular mesh but also a point cloud from a 3D scanner

and other non-standard representations.

Based on the stated criteria, the best candidate for the LoD-based algorithm

was selected to be a technique called Blue Surfels, as presented in (Brandt, et al.,

2019).

9.2 Implementation

The use of an aging OpenGL graphics API, a lack of documentation, and a

very strong coupling to its base rendering platform prevented the existing

implementation of Blue Surfels from being used directly for this project's needs.

Therefore, it was decided that it would be a better idea to completely rewrite

the existing program from scratch. This enabled the use of modern, multiplatform

Vulkan API instead of OpenGL. Its main benefits are the ability for low-level

optimization and full utilization of modern GPUs.

114

Besides that, while rewriting the whole algorithm, a great deal of focus was

spent on creating an extensible and scalable architecture. The result is a mini

framework consisting of a complex but flexible hierarchy of classes and many

helper methods. This framework could be easily used as a base for (almost) any

Vulkan-based application.

Although several aspects of this project and implementation decisions were

influenced by its being primarily developed for Pocket Virtuality, it does not

directly depend on any proprietary technology or code developed by this company.

Also, only a minimum number of carefully selected 3rd party libraries were used.

9.3 Results

An extensive comparison of related literature was conducted. As a result,

the Blue Surfels algorithm was selected as best suited for the case. This algorithm

was completely rewritten and improved in several ways, such as the utilization of

modern technologies and improved readability and organization of code.

The resulting code, created as a part of this thesis, supports all essential parts

of Blue Surfels algorithm. The structure of the code enables easy implementation of

extensions for the future work. The important part is that the code is fully

functioning from import of the model, through setting up parameters, all the way to

producing expected output.

Besides the sampling algorithm itself, a debug renderer was created as a part

of this project as well.

9.3.1 Limitations

An implementation part of this thesis is a type of project that can be extended

for years. Therefore, it was important to set reasonable limitations and treat several

potential improvements as being out of the project’s scope and a future work.

This includes, for example, an input format being restricted to .obj files. In

the case of the final implementation into an external system, inputs will heavily

depend on the said system. Implementing this universally is very difficult and time

consuming.

The other limitation is graphical artifacts in the debug renderer. This is due

to its simplistic nature and intended purpose (a debugging of surfel placement). Its

115

rendering is not representative of an expected rendering in the external system.

Various techniques can be implemented to improve this.

In its current form, sampling of the model is done only on its surface. Blue

Surfels project also implemented a depth peeling algorithm for sampling inside of

the model. This does benefit some specific models. However, due to its

implementation complexity and relatively small output enhancement for models

expected in the FataMorgana platform, this was deemed to be outside the project’s

scope.

The external system using this project is also responsible for splitting input

models as necessary, setting up desired parameters, and managing the whole LoD

selection process.

9.3.2 Bug fixes in 3rd party software

A lot of non-standard techniques were used in this project. This led to the

discovery of several software bugs in a graphics debugger called RenderDoc. These

bugs were further investigated (thanks to the open-source nature of this software) and

properly reported, which led to their fix. The same goes for a GUI bug in Visual

Studio.

116

10 References

Bavoil Louis and Myers Kevin Order Independent Transparency with Dual

Depth Peeling. - [s.l.] : NVIDIA Corporation, February 2008.

Brandt Sascha [et al.] Rendering of Complex Heterogenous Scenes using

Progressive Blue Surfels [Journal]. - April 2019.

Brandt Sascha [et al.] Visibility-Aware Progressive Farthest Point Sampling

on the GPU [Conference] // Computer Graphics Forum. - [s.l.] : The Eurographics

Association and John Wiley & Sons Ltd., 2019. - Vol. 38. - pp. 413-424. - ISSN:

1467-8659.

Carpenter Loren The A -buffer, an antialiased hidden surface method

[Conference] // SIGGRAPH '84: Proceedings of the 11th annual conference on

Computer graphics and interactive techniques. - 1984. - pp. 103-108.

Clark James Henry Hierarchical Geometric Models for Visible Surface

Algorithms [Journal] // Communications of the ACM. - New York, NY, USA :

Association for Computing Machinery, October 1, 1976. - 10 : Vol. 19. - pp. 547-

554. - ISSN: 0001-0782.

Coconu Liviu and Hege Hans-Christian Hardware-Oriented Point-Based

Rendering of Complex Scenes [Conference] // EGRW '02: Proceedings of the 13th

Eurographics workshop on Rendering / ed. Debevec P. and Gibson S.. - [s.l.] : The

Eurographics Association, 2002. - pp. 43-52. - ISBN: 1-58113-534-3.

Cohen Jonathan D., Aliaga Daniel G. and Zhang Weiqiang Hybrid

simplification: Combining multi-resolution polygon and point rendering

[Conference] // Proceedings Visualization, 2001. VIS '01.. - San Diego, CA, USA :

IEEE, 2001. - pp. 37-539.

Derzapf Evgenij and Guthe Michael Dependency-Free Parallel Progressive

Meshes [Conference] // Computer Graphics Forum. - [s.l.] : The Eurographics

Association and Blackwell Publishing Ltd., 2012. - Vol. 31. - pp. 2288-2302.

Holst Mathias and Schumann Heidrun Surfel-Based Billboard Hierarchies

for Fast Rendering of 3D-Objects [Conference] // 4th Symposium on Point Based

Graphics, PBG@Eurographics 2007, Prague, Czech Republic, September 2-3, 2007 /

ed. Botsch Mario [et al.]. - Prague, Czech Republic : Eurographics Association,

2007. - pp. 109-118.

117

Hoppe Hugues Progressive meshes [Conference] // Proceedings of the 23rd

annual conference on Computer graphics and interactive techniques. - New York,

New York, USA : ACM Press, 1996. - pp. 99-108.

Hou Xueshi, Lu Yao and Dey Sujit Wireless VR/AR with Edge/Cloud

Computing [Conference] // 2017 26th International Conference on Computer

Communication and Networks (ICCCN). - Vancouver, BC, Canada : IEEE, 2017. -

pp. 1-8.

Hu Liang, Sander Pedro Vieira and Hoppe Hugues Parallel view-

dependent refinement of progressive meshes [Conference] // I3D '09: Proceedings of

the 2009 symposium on Interactive 3D graphics and games / ed. Haines Eric [et

al.]. - Boston, Massachusetts, USA : ACM, 2009. - pp. 169-176.

Chang C.-F., Bishop G. and Lastra A. LDI tree: a hierarchical

representation for image-based rendering [Conference] // Proceedings of the 26th

Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH

’99. - 1999. - pp. 291–298.

Ip Cheuk Yiu [et al.] PixelPie: maximal Poisson-disk sampling with

rasterization [Conference] // Proceedings of the 5th High-Performance Graphics

Conference. - New York, NY, USA : Association for Computing Machinery, 2013. -

Vol. 13. - pp. 17-26. - ISBN: 9781450321358.

Jähn Claudius Progressive Blue Surfels [Journal]. - 2013.

Kenzel Michael [et al.] A high-performance software graphics pipeline

architecture for the GPU [Article] // ACM Transactions on Graphics. - New York,

NY, USA : Association for Computing Machinery, July 30, 2018. - 4 : Vol. 37. - pp.

1-15. - ISSN: 0730-0301.

Kerbl Bernhard [et al.] 3D Gaussian Splatting for Real-Time Radiance

Field Rendering [Journal] // ACM Transactions on Graphics. - [s.l.] : ACM, July

2023. - 4 : Vol. 42.

Lischinski Dani and Rappoport Ari Image-Based Rendering for Non-

Diffuse Synthetic Scenes [Conference] // Rendering Techniques '98, Proceedings of

the Eurographics Workshop / ed. Drettakis George and Max Nelson L.. - Vienna,

Austria : Springer, 1998. - pp. 301–314.

Liu Baoquan, Wei Li-Yi and Xu Ying-Qing Multi-Layer Depth Peeling via

Fragment Sort [Conference] // 11th IEEE International Conference on Computer-

118

Aided Design and Computer Graphics. - Huangshan, China : IEEE, 2009. - ISBN:

978-1-4244-3699-6.

Maggiordomo Andrea, Moreton Henry and Tarini Marco Micro-Mesh

Construction [Conference] // ACM Transactions on Graphics. - New York, New

York, USA : ACM, 2023. - Vol. 42. - pp. 1-18.

Mildenhall Ben [et al.] NeRF: Representing Scenes as Neural Radiance

Fields for View Synthesis [Journal] // Communications of the ACM. - [s.l.] : ACM,

2020. - 1 : Vol. 65. - pp. 99-106.

Munguba Gabriel [et al.] The complex build algorithm to set up starting

structures of lanthanoid complexes with stereochemical control for molecular

modeling [Journal] // Scientific Reports. - November 2021. - Vol. 11. - Article

number: 21493.

Pajarola Renato Efficient level of details for point-based rendering

[Conference] // Proceedings of the Sixth IASTED International Conference on

Computer Graphics and Imaging. - Honolulu, Hawaii, USA : IASTED/ACTA Press,

2003. - pp. 141-146.

Pauly Mark, Gross Markus and Kobbelt Leif P. Efficient Simplification of

Point-Sampled Surfaces [Conference] // IEEE Visualization, 2002. VIS 2002. -

Boston, MA, USA : IEEE, 2002. - ISBN: 0-7803-7498-3.

Pfister Hanspeter [et al.] Surfels: Surface Elements as Rendering Primitives

[Conference] // SIGGRAPH '00: Proceedings of the 27th annual conference on

Computer graphics and interactive techniques. - [s.l.] : ACM Press/Addison-Wesley

Publishing Co., 2000. - pp. 335-342. - ISBN: 1581132085.

Ren Liu, Pfister Hanspeter and Zwicker Matthias Object Space EWA

Surface Splatting: A Hardware Accelerated Approach to High Quality Point

Rendering [Conference] // Computer Graphics Forum / Eurographics. - Saarbrücken,

Germany : [s.n.], 2002. - Vol. 21. - pp. 461-470.

Rusinkiewicz Szymon and Levoy Marc QSplat: A Multiresolution Point

Rendering System [Conference] // SIGGRAPH '00: Proceedings of the 27th annual

conference on Computer graphics and interactive techniques. - [s.l.] : ACM, 2000. -

pp. 343-352.

Satish Nadathur, Harris Mark and Garland Michael Designing efficient

sorting algorithms for manycore GPUs [Conference] // 2009 IEEE International

119

Symposium on Parallel & Distributed Processing. - Rome, Italy : IEEE, 2009. - pp.

1-10.

Shade Jonathan [et al.] Layered depth images [Conference] // SIGGRAPH

'98: Proceedings of the 25th annual conference on Computer graphics and interactive

techniques. - New York, New York, USA : ACM, 1998. - pp. 231–242.

Shi Bao-Quan, Liang Jin and Liu Qing Adaptive simplification of point

cloud using point cloud using k-means clustering [Journal] // Computer-Aided

Design. - [s.l.] : Elsevier, August 2011. - 8 : Vol. 43. - pp. 910-922.

Stenning Justin Direct3D Rendering Cookbook [Book]. - [s.l.] : Packt,

2014. - ISBN: 9781849697101.

Ulichney Robert A. Dithering with blue noise [Conference] // Proceedings of

the IEEE. - [s.l.] : IEEE, 1988. - Vol. 76. - pp. 56-79.

Wilson Michael Lee The Effect of Varying Latency in a Head-Mounted

Display on Task Performance and Motion Sickness [Journal] // All Dissertations. -

[s.l.] : TigerPrints, 2016.

120

11 List of figures

Figure 1 FMVoyager displaying additional information including

maintenance steps, over the real environment. Courtesy of Pocket Virtuality 3

Figure 2 A simplified overview of a typical workflow in the FataMorgana

platform. It starts with HoloLens, Leica, and other devices scanning the environment,

which is then fused in FMBrain, adjusted and utilized in FMStudio, before being

displayed in AR/VR headsets using FMVoyager. ... 4

Figure 3 Comparison of different LoD levels on the Stanford bunny model.

Source: YouTube0F .. 6

Figure 4 Illustration of the angle between gaze vector and vector to rendered

object. ... 7

Figure 5 Depiction of the principle of foveated rendering. Source: Article

“Foveated Rendering on the VIVE PRO Eye” on LinkedIn1F by Chris O'Connor

from ZeroLight ... 7

Figure 6 A blending for transition between 2 LoD levels. Source: Wikipedia -

Popping (computer graphics)2F ... 9

Figure 7 An illustration of geomorphing for transition between 2 levels of

detail. Wikipedia - Popping (computer graphics)3 ... 9

Figure 8 Model of Stanford Bunny consisting of varying amount of Blue

Surfels. Note that the size of the surfels is not representative of actual rendering.

Source: (Jähn, 2013) .. 13

Figure 9 Comparison of Gaussian splats (left) and opaque squares (right).

Source: (Coconu, et al., 2002) .. 14

Figure 10 Nanite and its clustering of triangles. Source: Nanite – A Deep

Dive presentation at SIGGRAPH 20214F .. 15

Figure 11 A visualization of conversion from input model to Micro-Mesh.

Source: (Maggiordomo, et al., 2023) ... 16

Figure 12 A flow-diagram representing individual stages of the whole

algorithm. Orange stages use compute shaders and green ones run on rasterization

pipeline (vertex, geometry, and fragment shaders). ... 22

Figure 13 Rasterization of the object from several directions (left) and storage

of results into various G-buffers (right). Source: (Brandt, et al., 2019) 23

121

Figure 14 Simplified visualization of a single main loop iteration: from

drawing of Voronoi diagram, extraction of the farthest samples, and elimination

using Poisson disks. The right-most picture represents an updated Voronoi diagram

used for the next loop iteration. Source: (Brandt, et al., 2019) 24

Figure 15 G-buffers for Voronoi diagram algorithm stage. Each shade of red

in the left picture represents a single Voronoi cell. The right picture then depicts the

distance of each pixel from its Voronoi site on a scale of black (nearest) to red

(farthest). The centers of the black blobs are the Voronoi sites. Used model: Stanford

Bunny ... 25

Figure 16 Process of rasterization of disks for purposes of Voronoi diagram.

Vertex shader creates a point for each sample (using G-buffers), geometry shader

creates a triangle from each point, and fragment shader discards fragments, leaving

only an inscribed circle behind. The right-most pictures show resulting G-buffers –

they are analogous to Figure 15. Source: (Brandt, et al., 2019) 27

Figure 17 Rendering of surfel from surfel sample. A surfel sample (a single

point) is passed from the vertex buffer to the vertex shader, the geometry shader

creates an equilateral triangle out of it, and the fragment shader discards fragments

outside of its inscribed circle (red fragments). Blue fragments represent the final

surfel drawn as a circle. .. 49

Figure 18 Key bindings for debug viewer. Source of vector art: Vecteezy8F 51

Figure 19 Illustration of how specialization constants are set in the shader

compilation pipeline. Source: Vulkan Specialization Constants presentation by Mike

Bailey from Oregon State University9F ... 64

Figure 20 Visualization of relations between descriptors, descriptors sets,

descriptor set layouts, and descript pool. Source: Article “Vulkan Shader Resource

Binding” on Nvidia Developer website ... 65

Figure 21 An illustration of the difference between perspective and

orthographic projections. Source: StackOverflow question “From perspective picture

to orthographic picture” by Raph Schim11F .. 68

Figure 22 Spherical coordinate system illustration. Source: Wikipedia -

Spherical coordinate system13F ... 78

Figure 23 An example of a Fibonacci sphere (left) and one of the spirals it

was generated from (right). Source: (Munguba, et al., 2021) 79

122

Figure 24 An example of an aliasing in computer graphics caused by

insufficient sampling. Source: Spatial Antialiasing - Presented by Tiger Giraffe14F 84

Figure 25 An example of a CAD model. Source: “Car Engine” model by

Mahtabalam Khan published on GrabCAD Community website15F 85

Figure 26 A debug renderer window displaying a sampled car model in the

form of surfels (10k in total). ... 99

Figure 27 A 3D model of a car viewed as a triangular mesh rendered in

MeshLab on the left and the debug renderer visualizing the same model as sampled

surfels on 2 right pictures. There are 10k surfels in both right pictures, just with

varying sizes for easier visualization. .. 100

Figure 28 The same model of car rendered using a varying number of

sampled surfels (number in the bottom right corner of each picture). From unusably

low 60 surfels, through decently usable (at high distance from camera) hundreds of

surfels, all the way up to 10 000 surfels. .. 102

Figure 29 Comparison of the same models (same surfel counts) as in Figure

28. Displayed horizontally (upper right corner), there are all models next to each

other scaled down to the same size (to simulate large distance from the observer).

Vertically, each model is scaled to match the same surfel size (based on the most

upper left model). ... 103

Figure 30 Model of crane composed of 100 all the way up to 100k surfels

(number in the corner of each picture). The bottom right picture shows an original

triangular mesh (~130k faces) rendered in MeshLab. ... 104

Figure 31 A close-up of the back platform on the crane from Figure 30. It

contains pictures of both the original mesh rendered in MeshLab and the debug

renderer using 3k, 12k, and all 100k surfels. The number of surfels refers to the total

number on a whole crane, not just a visible part. ... 105

Figure 32 Dependency of number of rendered surfels and time for a single

draw call (vkCmdDraw) in microseconds. Tested in debug renderer on a model of

the crane. Times are calculated as an average of 5 independent frames, captured and

analyzed using RenderDoc (Nvidia Nsight Graphics reported similar times).

Measured standard deviations were insignificantly small. 106

123

12 List of abbreviations

• nD (1D, 2D, 3D) – n-dimensional

• AABB – Axis-Aligned Bounding Box

• API – Application Programming Interface

• AR – Augmented Reality

• CAD – Computer-Aided Design

• CAVE – Cave Automatic Virtual Environment (recursive acronym)

• CLR – Common Language Runtime

• CPU – Central Processing Unit

• EXT – Extension

• FM – FataMorgana

• FPS – Frames Per Second

• GLFW – Graphics Library Framework

• GLSL – OpenGL Shading Language

• GPU – Graphics Processing Unit

• GPGPU – General Purpose GPU

• GUI – Graphical User Interface

• HLSL – High-Level Shading Language

• IDE – Integrated Development Environment

• KHR – Khronos

• LDI – Layered Depth Image

• LoD – Level of Detail

• MIT – Massachusetts Institute of Technology

• MSAA – Multisample Anti-Aliasing

• NeRF – Neural Radiance Field

• OS – Operating System

• PADrend – Platform for Algorithm Development and Rendering

• PLY – Polygon File Format

• SDL – Simple DirectMedia Layer

• SLI – Scalable Link Interface

• SPIR-V – Standard Portable Intermediate Representation - Vulkan

124

• TBD – To Be Done (if you are seeing this anywhere else in the final

document, something went wrong)

• UBO – Uniform Buffer Object

• VK – Vulkan

• VR – Virtual Reality

• WDDM – Windows Display Driver Model

125

13 Attachments

13.1 Attachment 1 - Source code

This thesis’s first and only attachment is an archive file containing source

code. This includes all 3 projects: FMsurfelsVulkan, FMsurfelsDebugTools, and

abandoned FMsurfelsDirectX. The first 2 are accessible through the FMsurfels.sln

solution file. For more details about the organization of files, see Chapter 5.1.

As a bonus, there are ClassDiagram<1,2>.cd files under the

FMsurfelsVulkan folder. A component called "Class Designer" for Visual Studio

must be installed to open them. (This is an official component installed through

Visual Studio Installer, not an extension.) These files contain a hand-picked and

carefully arranged set of the classes/structs with their most important properties and

methods.

For the testing purposes, see OBJ files in FMsurfelsVulkan/Models

folder and ObjFileName command line argument (-i or –-inputFileName).

