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Šesták, who helped with the programming part of the work, was always supportive and
always patient with me.
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citovaných pramen̊u, literatury a daľśıch odborných zdroj̊u.
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Abstract:

This thesis deals with molecular simulations of peptides in acid-base equilibrium. In the
first part we focused on 4 pentapeptides. Using a coarse-grained simulation we deter-
mined the degree of ionization of their side chains, values of their effective pKa and Hill
coefficients. As a result, our CG model provides only a rough estimate of pKa values. The
results depend on the chosen model parameters, the effect of which on the final value is
not yet known. In the second part of our work, we studied the adsorption of the Aβ-(1–42)
peptide onto a charged surface which for our purposes represents a charged nanoparticle.
Successful adsorption could be a way to prevent the Aβ-(1–42) peptide aggregation, which
is suspected of causing Alzheimer’s disease. Our preliminary results show that adsorption
of the Aβ-(1–42) peptide onto the charged surface of a negatively charged nanoparticle
occurs at low pH, 1 < pH < 4.

Keywords: acid, base, acid-base equilibrium, pH, peptide, amyloid, charged surface

Abstrakt:

Tato práce se zabývá molekulovými simulacemi peptid̊u v acidobazické rovnováze. V
prvńı části jsme se zaměřili na 4 pentapeptidy. Pomoćı simulace hrubozrnným modelem
jsme určili stupeň ionizace jejich postranńıch řetězc̊u, hodnoty jejich efektivńıch pKa a
Hillovy koeficienty. Výsledkem je, že náš CG model poskytuje pouze hrubý odhad hodnot
pKa. Výsledky záviśı na zvolených parametrech modelu, jejichž vliv na konečnou hodnotu
zat́ım neńı znám. Ve druhé části naš́ı práce jsme studovali adsorpci peptidu Aβ-(1-42) na

nabitý povrch, který pro naše účely představuje nabitou nanočástici. Úspěšná adsorpce
by mohla být zp̊usobem, jak zabránit agregaci peptidu Aβ-(1-42), který je podezřelý z
toho, že zp̊usobuje Alzheimerovu chorobu. Naše předběžné výsledky ukazuj́ı, že k adsorpci
peptidu Aβ-(1-42) na nabitý povrch záporně nabité nanočástice docháźı při ńızkém pH,
1 < pH < 4.
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List of abbreviations

AA - all-atom model

BAM - N -tert-butylacrylamide

CG - coarse-grained model

cpH - constant-pH method

DHc - Debye–Hückel correction

HH - Henderson-Hasselbalch equation

LJ - Lennard-Jones potential

MC - Monte Carlo methods

MD - molecular dynamics

NIPAM - N -isopropylacrylamide

NPCE - non-permanently charged ends
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1. Motivation

Peptides and proteins are abundant in all living organisms and perform many func-
tions, such as biocatalysis, regulatory and protective functions. These substances are
found in an aqueous environment and fulfill their function under specific conditions, de-
fined by for example pressure, temperature, pH and salt concentration. The appropriate
setting of these conditions can be used for many purposes, such as removal of waste sub-
stances from blood during dialysis, protein-mediated drug delivery to target sites in the
body, or improvement of food quality. However, to achieve these goals, it is necessary
to understand the effect of the above-mentioned quantities on the functions of a certain
peptide. We focus on studying the acid-base behavior of molecules in equilibrium, specif-
ically the degree of ionization of individual side chains in peptides depending on pH.

1.1 Historical overview of acid-base behavior studies

The first widely accepted acid-base theory was described by Arrhenius as early as
1884. This theory described an acid as a substance releasing the proton H+ and a base
as a substance releasing the hydroxide ion OH− in an aqueous solution.

In 1923 a more accurate theory dealing with the acid-base behavior of simple acids and
bases, the Brønsted theory[1], was published. This theory defines an acid as a substance
that is able to donate an H+ proton and a base as a substance that can accept this H+

proton.

Around the same time period, in 1908, the work of Henderson, Hasselbalch and
Sörenson resulted in the definition of the equation known today as the Henderson-Hasselbalch
equation[2]. This formula relates 3 quantities - pH, pKa and the ratio of the dissociated
form of an acid to its undissociated form. The advantage of this approach is in its sim-
plicity and it is therefore widely used in analytical chemistry. However, this formula can
only be used for dilute solutions. In order to calculate the percentage of the ionized form
of the acid in a certain solution, it is necessary to know, in addition to the measured pH
value, also the dissociation constant pKa. Nevertheless, the pKa value is dependent on
temperature, ionic strength and the dielectric constant of the solvent.

Debye attempted to describe the effect of ionic strength on the acid-base behavior of
simple molecules in collaboration with Huckel, resulting in the formation of the Debye-
Hückel theory[3] in 1923. Their theory results in several expressions for calculating the
activity coefficient, such as the McInnes approximation or the Davies equation. Using
this obtained coefficient, we can calculate the acid-base behavior of molecules even in
solutions of higher concentrations.

However, these aforementioned analytical methods are no longer applicable for more
complex systems, such as peptides or polyelectrolytes. Computer molecular simulations
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were invented to investigate these systems. The biggest development of these methods
came in the second half of the 20th century[4][5][6][7]. Main groups of computational
methods include Monte Carlo[4][5] methods and Molecular dynamics[6][7].

Any molecular simulation needs a model of the given molecules of the system. The
main categories of these models include atomistic and coarse-grained models.

In atomistic models, each particle represents one atom of a molecule. Simulations
of atomistic models usually provide comparable results to experiment[8], but suffer from
high computational and time requirements.

That is why the development of coarse-grained models began, where one particle of
the model represents a certain group of atoms in a given molecule, for example one amino
acid in a peptide can be represented by one particle. In principle, these rough models do
not contain all the properties of the real molecule and therefore can provide a different
result from the experiment. However, the advantage of these coarse-grained models is
that we can tune the complexity of the model by turning various interactions ”on and
off” and observe the effect of individual simplifications on the result. In this way, we can
obtain tools for theoretical prediction of acid-base behavior and gain acceptable results
in a sufficiently short time.

One of the freely available softwares is pepKalc, which works on the principle of
Gaussian-chain model for the disordered state and a hybrid mean-field approximation
treatment[9]. The main advantage of this method is its speed. We have not yet verified
the accuracy of this approach by comparing its results with other computational or ex-
perimental methods.

In our research group, led by Peter Košovan, we study the acid-base equilibrium
of peptides and polymers using the coarse-grained model[10][11][12][13]. Our colleague
Pablo Blanco is working on the development of the software pyMBE: the Python-based
Molecule Builder for ESPResSo[14]. This tool is widely used to study acid-base behavior
throughout our group[15].

1.2 This work

Overall, this work consists of two parts - Short peptides and The Aβ-(1–42) peptide at
a charged surface. The Short peptides project is an extension of the topic of my bachelor’s
thesis, and the Aβ-(1–42) peptide at a charged surface is a new project where we use our
coarse-grained model to study an even more complex system.

In the Short peptides project, we investigated the degree of ionization of the side
chains in four pentapeptides using the coarse-grained model. The question was whether
CG models can predict the degree of ionization of individual side chains in a peptide with
accuracy comparable to atomistic models. Our hypothesis was that our model is able to
predict the degree of ionization of given side chains with comparable accuracy to the AA
model and that it performs this calculation in significantly less time. In order to test our
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hypothesis, we have compared our data with the AA model data and also with the NMR
experiment data from Dobrev et al.[8].

In our second project, we used the coarse-grained model to study an amyloid peptide,
specifically the Aβ-(1–42) peptide. It is a 42 amino acid long molecule that is the main
component of amyloid plaques found in patients suffering from Alzheimer’s disease[16].
The plaques are aggregates of these peptides and may be the cause of this disease. How-
ever, it is not yet clear whether the aggregation of amyloid peptides is a consequence or
a cause of Alzheimer’s disease. How to effectively and safely prevent the aggregation of
these peptides is now one of the main subjects of worldwide research.

Many studies have focused on the structural changes of amyloid peptides during aggre-
gation[17][18]. Kirkitadze et al.[17] investigated the structural changes of several amyloid
proteins during fibrillogenesis at pH 7.5 using circular dichroism. Their study shows that
fibrils are rich in beta sheet structure, which is formed under a transient increase in alpha
helix structure. They also found that fibrillation was significantly retarded in Aβ-(1–40)
peptide compared to Aβ-(1–42) peptide. They further monitored these structural changes
as a function of pH and found that the rapid acceleration of helical intermediate formation
occurred between pH 3.86 and 6.0. They attributed this acceleration to the pH regime in
which the β-carboxyl group of Asp and the imidazole ring of His are charged.

Some studies show that the presence of charged nanoparticles significantly inhibits
the aggregation of amyloid peptides[19][20]. Cabaleiro-Lago et al.[20] investigated the
effect of copolymer NiPAM:BAM nanoparticles on Aβ-(1–40) peptide fibrillation at pH
7.4. They found that the presence of these nanoparticles predominantly affects the nu-
cleation phase of fibrillation and that the elongation phase is no longer affected by these
nanoparticles. Analysis of their data suggests that binding of monomeric Aβ and prefibril-
lated oligomers to the nanoparticle prevent fibrillation. Two years later, Cabaleiro-Lago
et al.[19] published a study of amino-modified polystyrene nanoparticles and their ef-
fect on Aβ-(1–40) protein fibrillation. These amino modified particles were 120 nm in
size and were cationic polymer nanoparticles. The main finding of this study was that
amyloid peptide fibrillation is directly dependent on the ratio of protein to nanoparticle
concentration. At a constant peptide concentration (16 µM), fibrillation is accelerated
at low nanoparticle concentration (0.05 mg/ml), whereas fibrillation is retarded at high
nanoparticle concentration (1.1 mg/ml).

In contrast, Linse et al.[21] suggest that the nucleation of protein fibrillation may be
enhanced by the presence of a nanoparticle. They argue that several layers of peptide on
the surface of the nanoparticle, providing a local increase in protein concentration, can
promote oligomer formation.

The combination of these studies suggests that adsorption of amyloid peptides onto
nanoparticles does occur, but this process is very sensitive to individual conditions such
as pH or nanoparticle concentration. We offer the possibility to study these conditions of
peptide adsorption on nanoparticles by molecular simulations, specifically using a coarse-
grained model. These methods are significantly cheaper and more flexible in terms of
changing various properties of the system, such as the charge density on the nanoparticle
or the length of the amyloid peptide. In this work, we focused on the effect of pH on the
Aβ-(1–42) peptide adsorption onto the negatively charged surface.
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2. Theoretical introduction

2.1 Acid-base behavior of a simple molecule

The term simple molecule here means a molecule with one ionizable group, i.e. a
monoprotic acid or base.

According to the Brönsted theory[1], an acid is characterized by dissociating in an
aqueous solution to form a proton H+ and a charged acid molecule, conjugate base A−

HA+H2O −−⇀↽−− H3O
+ +A− (2.1)

In contrast, in an aqueous solution a base as a neutral substance is able to bind a
proton and this proton-binding base, conjugate acid BH+, is charged. However, we can
also describe acid-base behavior of the base using dissociation of the charged (proton-
binding) form BH+ as

BH+ +H2O −−⇀↽−− H3O
+ + B (2.2)

The difference between these two dissociation equations is, among other things, that
in Equation 2.1, two charged molecules are formed from neutral ones and in Equation 2.2
the charge is simply transferred from one molecule to the other. Both these equations
(2.1 and 2.2) are characterized by their own equilibrium constant, for an acid as K(acid)

K(acid) =
a(A−)a(H3O+)

a(HA)a(H2O)

(2.3)

and for a base K(base)

K(base) =
a(B)a(H3O+)

a(BH+)a(H2O)

(2.4)

which tells us something about the tendency of the acid or base to dissociate. We can
also include water activity in these constants K and then we call these new constants the
acidity constant Ka(acid) for an acid

Ka(acid) =
a(A−)a(H3O+)

a(HA)

(2.5)

and acidity constant Ka(base) for a base.

Ka(base) =
a(B)a(H3O+)

a(BH+)

(2.6)

All these constants are defined using activities ai of given substances

ai = e
µi−µ◦−

i
kBT (2.7)

that are defined using the difference between chemical potential of substance µi and
chemical potential of its standard state µ◦−

i .
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The activity of individual substances can also be expressed using their concentration ci
relative to a certain standard concentration c◦− and a quantity called the activity coefficient
γi

ai =
ci
c◦−
γi = c(i,rel)γi (2.8)

The standard concentration c◦− is here to ensure the dimensionlessness of the activity
ai and its value is c◦− = 1 mol/l. The activity coefficient γi represents non-ideal behavior
of the a substance.

However, the activity coefficient of a given type of ions is experimentally unavailable,
and thus we introduce the term mean activity coefficient γ±

γ±,Xν+Yν−
= ν++ν−

√
γ+ν+γ−ν− (2.9)

where X represents a cation and Y an anion.

Another very important quantity is pH

pH = − log10 a(H3O+) (2.10)

which is defined as the negative logarithm of the activity of H3O
+ ions and pKa

pKa = − log10Ka (2.11)

which is a p-function of the dissociation constant Ka and it is characteristic for each
acid (or base) in a particular molecule.

2.1.1 Ideal behavior: Henderson-Hasselbalch equation

Ideal behavior of substances is characterized by the fact that mutual interactions
between molecules do not matter (the activity coefficient γi is equal to 1) and the overall
acid-base behavior depends only on the concentrations of individual substances. Thus, for
ideal behavior, the dissociation constant becomes the ratio of equilibrium concentrations
of the dissociated components to the undissociated form of an acid

Ka(acid) =
[A−][H3O

+]

[HA]
(2.12)

and of a base

Ka(base) =
[B][H3O

+]

[BH+]
(2.13)

where brackets [ ] indicate the relative concentrations c(i,rel) of the given forms of in-
dividual substances.
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The ratio of concentration of the charged form of a given substance to its total con-
centration (the sum of charged and uncharged forms) is called the degree of ionization α.
For an acid

α(acid) =
[A−]

[A−]+[HA]
(2.14)

and for a base

α(base) =
[B+]

[B+]+[B]
(2.15)

From Equations 2.12 and 2.15, we can express the equation for pH for an acid

pH(acid) = pKa + log10
[A−]

[HA]
(2.16)

and for a base.

pH(base) = pKa + log10
[B]

[BH+]
(2.17)

We then can modify Equations 2.16 and 2.17 to express the degree of ionization for
the acid α(acid)

α(acid) =
1

1 + 10(pKa−pH)
(2.18)

and an analogous expression for the base.

α(base) =
1

1 + 10−(pKa−pH)
(2.19)

These four equations (2.16-2.19) are forms of the Henderson-Hasselbalch equation[2].

Numerical value of pKa is equal to pH when the ratio between the dissociated and
non-dissociated form of the acid (or base) is 1:1.

pH α(acid) α(base)
pKa - 2 0.01 0.99
pKa - 1 0.1 0.9
pKa 0.5 0.5
pKa + 1 0.9 0.1
pKa + 2 0.99 0.01

Table 2.1: Approximate values of degree
of ionization for various pH

In Figure 2.1 we can see the plot of the
degree of ionization α depending on pH for an
acid and base. For the acid, at pH = pKa−1
the degree of ionization equals approximately
0.1 and at pH = pKa−2 α(acid)

.
= 0.01. This

trend is centrally symmetric with respect to the
pKa value, so if pH = pKa+1 then α(acid)

.
=0.9

and if pH = pKa+2 then α(acid)
.
=0.99. All

these approximate values for acid and base are
shown in Table 2.1.
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Figure 2.1: Degree of ionization as a function of pH for an acid and a base plotted using
Henderson-Hasselbalch equation for an ideal molecule. pKa(acid) = 4.08, pKa(base) =

6.54

2.1.2 Added salt: the Debye–Hückel correction

So far we have not considered any salt in the solution at all. However, when we add
salt to an acid (or a base) solution, the acid-base behavior changes significantly. Such a
change can be described using the p-function of the mean activity coefficient γ±

pγ± ≡ − log10 γ± =
A
√
I

1 +Ba
√
I

(2.20)

which depends on the ionic strength I of the solution

I =
1

2

∑︂
i

cizi
2 (2.21)

where A, B and a are are coefficients resulting from Debye-Hückel theory[3]. Their
values are in Table 2.2.

For a monovalent salt such as NaCl, the concentration csalt is equal to the ionic strength
I of the solution. Equation 2.20 is part of Debye–Hückel theory[3] and it is called the
Debye–Hückel expression for the mean activity coefficient and for which we use the ab-
breviation DHc.

Table 2.2: Values of DHc coefficients [22]

Constant A [mol−1/2 dm3/2] B [nm−1 mol−1/2 dm3/2] a [nm]
Value 0.5085 0.3281 0.9
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Figure 2.2: Degree of ionization as a function of pH for an acid and a base plotted using
Henderson-Hasselbalch equation for an ideal molecule and Henderson-Hasselbalch
equation corrected using DHc, pKa(eff) = pKa(HH) − pγ for an acid, pKa(eff) =

pKa(HH) + pγ for a base

By implementing the DHc into the Henderson-Hasselbalch equation, we obtain a mod-
ified expression for the degree of ionization of the acid α(acid)

α(acid) =
1

1 + 10(pKa−pH−pγ)
(2.22)

and for the base α(base).

α(base) =
1

1 + 10−(pKa−pH+pγ)
(2.23)

The change of the acid-base behavior is shown graphically in Figure 2.2.

2.2 More complex molecules: Charge regulation

The acid-base behavior of a real molecule is not only affected by the added salt but
also by interactions between individual ionizable groups. The interaction is influenced,
among other things, by the distance between these ionizable groups and if this distance is
defined, for example, by bonds between individual ionizable groups, then their resulting
acid-base behavior strongly deviates from ideal behavior. We can see an example of this
deviation in Figure 2.3 on the HVD molecule (peptide Ac-NH-histidine-valine-aspartic
acid-CONH2). There are two ionizable groups of opposite polarity, quite spacialy close to
each other and for that reason pKa of histidine is significantly shifted compared to pKa

of an isolated molecule so its degree of ionization is increased[23].
This shift in the pKa value can be described by quantity called ∆pKa
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∆pKa = pKa(eff)− pKa(ref) (2.24)

Figure 2.3: HVD molecule

which is the difference between the effective
value of pKa, for example pKa value of histidine
in the HVD molecule, and some reference value,
for example pKa value of histidine under ideal
conditions.

We then can also monitor the difference in
∆pKa obtained by various methods, for exam-
ple simulation and experiment. This variable is
called ∆∆pKa.

∆∆pKa = ∆pKa(simulation)−∆pKa(experiment) (2.25)

2.2.1 Hill equation

However, for more complex molecules, not only the pKa value but also the slope of
the titration curve (Figure 2.1) may change. This means that the degree of ionization is
affected in different ways, depending on the pH value. The slope of the titration curve is
characterized by the Hill coefficient n in the Hill equation, for an acid

α(acid) =
1

1 + 10n(pKa−pH)
(2.26)

and for a base.

α(base) =
1

1 + 10−n(pKa−pH)
(2.27)

2.3 Acid-base behavior of peptides

A peptide is a molecule that consists of individual amino acids linked by a peptide
bond. An oligopeptide consists of ≈ 2-10 amino acids, a polypeptide contains ≈ 11-100
amino acids, and if the chain is longer than 100 amino acids, we call it a polypeptide (or
protein if it is produced by living organisms).

There are 21 proteinogenic α-amino acids, 20 of which contain a side chain. The term
α-amino acid means that the amino group -NH2 is attached to the same carbon (alpha
carbon Cα) as the attached -COOH group. Several of these 20 side chains of individual
amino acids are ionizable (they contain a basic or acidic group and undergo chemical
reactions - Equation 2.1 or 2.2). All amino-acids used in this work are listed in Table 2.3.

When we connect individual amino acids into a peptide chain, we must in principle
have a free N-terminus at one end of the chain and a C-terminus at the other end (if we are
not considering cyclic peptides). These ends are also ionizable. In our work, we explicitly
write these ionizable ends in the sequences of studied molecules using abbreviations ”n”
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Table 2.3: All amino acids, n-terminus and c-terminus used in this work.
The one-letter abbreviation of acidic amino acids is highlighted in red and basic amino
acids are highlighted in blue (this colored marking is also used for sequences of studied

peptides in this work).

Amino acid Abbreviation Side chain Group
Alanine Ala A neutral methyl group
Arginine Arg R basic
Asparagine Asn N neutral
Aspartic acid Asp D acidic carboxyl group
Glutamic acid Glu E acidic carboxyl group
Glutamine Gln Q neutral
Glycine Gly G — —
Histidine His H basic imidazole
Isoleucine Ile I neutral
Leucine Leu L neutral
Lysine Lys K basic
Methionine Met M neutral
Phenylalanine Phe F neutral benzyl group
Serine Ser S neutral hydroxyl group
Tyrosine Tyr Y acidic 4-OH-benzyl group
Valine Val V neutral isopropyl group
N-terminus — n — —
C-terminus — c — —

and ”c”. It should be noted that the abbreviations ”n” and ”c” in peptide sequences
are not standard abbreviations. However, we write them down because they also under-
go acid-base reactions (Equation 2.1 and 2.2) and thus contribute to the charge regulation.

In general, we can say that peptides and proteins are substances where charge regu-
lation plays an important role, and the acid-base behavior of specific amino acids in the
chain is strongly influenced by its immediate surroundings.

2.4 Radius of gyration Rg

One of the quantities describing the effective size of a peptide is a the radius of gyration
Rg, that for a chain composed of N monomer units of the same mass mi can be calculated
as

Rg =

⌜⃓⃓⎷ 1

N

N∑︂
i=1

|ri⃗ − rcm⃗|2 (2.28)

where ri is the position vector of a given monomer unit and rcm is the position vector
of the chain center of mass.
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3. Systems of our interest

3.1 Short peptides

In our first project we focused specifically on 4 oligopeptides - nGEAEGc, nGEAHGc,
nGHAEGc, nGHAHGc (Figure 3.1). There are two ionizable side chains in each se-
quence, and we work with all their possible combinations: both acidic, both basic, acidic
at the n-terminus with basic at the c-terminus and basic at the n-terminus with an acid
at the c-terminus.

For these olipeptides, we focused on values of the degree of ionization for individual pH
values, on effective pKa values resulting from titration curves and on the overall changes
in titration curves with respect to ideal behavior (shift of titration curve and the change
of its slope).

(a) nGEAEGc sequence (b) nGEAHGc sequence

(c) nGHAEGc sequence (d) nGHAHGc sequence

Figure 3.1: Peptide sequences investigated in the first part of our work

In Dobrev et al.[8], they present data for all-atom (AA) simulation and NMR exper-
iment for all of the four sequences. In Figure 3.2a, we can see example data of the AA
simulation and Figure 3.2b shows example data for the NMR experiment. Data for other
sequences can be found in the Appendix (Figure 7.1-7.8).
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(a) All-atom (AA) data for nGEAHGc
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(b) NMR data for nGEAHGc

Figure 3.2: Degree of ionization as a function of pH for nGEAHGc peptide from Dobrev
et al.[8]. E2 represents glutamic acid at position 2 in the sequence and H4 histidine at

position 4. The black dashed line without dots represents the ideal behavior for
glutamic acid described by the Henderson-Hasselbalch equation corrected by the

Debye-Huckel correction (E HH+DHc) and the black dashed line with dots represents
this ideal behavior for histidine (H HH+DHc).

3.2 The Aβ-(1–42) peptide at a charged surface

In our second project, we studied the acid-base behavior of the Aβ-(1–42) peptide in
the presence of a charged surface, which is supposed to represent nanoparticles with a
charged surface. We chose a charged surface (plate) instead of a charged spherical par-
ticle due to the large radius of a nanoparticle relative to the size of the peptide. Blanco
et al.[24] claim that Rg of the Aβ-(1–42) peptide is around 2 nm and Cabaleiro-Lago et
al.[19] studied the adsorption of amyloid peptide on charged nanoparticles with a size
of 120 nm. The ratio of particle sizes can be seen in Figure 3.3. Given these data, we
decided to simulate our system as a peptide in the presence of a charged surface.

Figure 3.3: Scheme of a nanoparticle and a Aβ-(1–42) peptide. Red bead represents a
nanoparticle, gray bead the effective size of the peptide (sphere with a radius of Rg) and

the black tangled line represents a Aβ-(1–42) peptide
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Figure 3.4: Scheme
of Aβ-(1–42) peptide.

From a number of amyloid peptide alloforms, we chose the Aβ-(1-
42) peptide, which is the major form of the amyloid peptides found
in the plaques[16].

The sequence of the Aβ-(1–42) peptide is:
nDAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIAc

where acidic ionizable groups are highlighted in red and basic
ionizable groups in blue. Overall, this molecule contains 7 acidic
and 6 basic side chains plus an acidic c-terminus and a basic n-
terminus so there are up to 8 negative and 7 positive charges per
molecule. The scheme of the Aβ-(1-42) peptide can be seen in Figure
3.4.

It should be noted that the Aβ-(1–42) peptide already contains el-
ements of secondary structure - in an apolar microenvironment there
are two helical regions connected by a flexible kink[16], in water it
adopts a collapsed coil structure[25] and in the form of aggregates
(fibrils) they take a β-sheet conformation[17].

Nevertheless, we have not (yet) included any of these secondary
structure elements in our coarse-grained model. But in the future
we would like to include them in our model by using additional pa-
rameters of the Martini force field mimicking the secondary struc-
ture[26].
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4. Our approach - molecular
simulation

4.1 Simulation model of peptides

In our simulation we use the coarse-grained model, specifically the two-bead model[12].
Molecules represented by the coarse-grained model are generally only an approximation of
the real molecules. Individual parts containing multiple atoms are replaced by individual
beads. In our case, each amino acid is represented by two beads, therefore the two-bead
model. One bead is for the backbone of the chain and the second one is for the side chain.
If an amino acid has no side chain, it is represented by only one bead. In our work this
is true for glycine. The two-bead model can be seen in Figure 4.1.

(a) Our CG model of nGEAHGc peptide (b) Simulation snapshot of nGEAHGc peptide

Figure 4.1: Our coarse-grained model of a short peptide

This two-bead model is characterized by several parameters as well as interactions
between individual beads.

The most intuitive parameter is the size of the beads and the distances between them,
bond lengths. The bead diameter was 0.35 nm for all beads. Some of the bond lengths
were obtained using the all-atom (AA) simulation by Lunkad et al.[27], bonds: Cα-Cα,
Cα-Glu, Cα-His. The rest of the bond lengths used in the Short peptides were determined
using the Avogadro software[28], bonds: Cα-n-terminus, Cα-c-terminus, Cα-Ala. Other
bond lengths in the Aβ-(1–42) peptide, not determined by AA simulation from Lunkad et
al.[27] or Avogadro software[28], had a default bond length of 0.4 nm. These bond lengths
are the distances between centers of individual beads and they are shown in Table 4.1.

A bonding interaction between individual beads is represented by a harmonic potential

Uh(r) =
kh
2
(r − r0)

2 (4.1)

where kh is the stiffness constant, r0 is the equilibrium distance between two beads
connected by a chemical bond (bond lengths in Table 4.1) and r is the current distance
between these two beads.
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Table 4.1: Bond lengths for the two-bead model

Bond Bond length [nm] Data source
Cα-Cα 0.382 Lunkad et al.[27]
Cα-Glu 0.329 Lunkad et al.[27]
Cα-His 0.452 Lunkad et al.[27]
Cα-Ala 0.153 Avogadro software[28]
Cα-n-terminus 0.146 Avogadro software[28]
Cα-c-terminus 0.246 Avogadro software[28]
default bond 0.400 —

A non-bonding interaction between all particles in a simulation is represented by the
short-range Lennard-Jones interaction

ULJ(r) = 4ϵ

(︃(︂σ
r

)︂12
−
(︂σ
r

)︂6)︃
(4.2)

where ϵ represents the depth of the potential well, which is a measure of interaction
strength of two particular particles. σ represents a distance at which the potential between
particles is zero, it is a distance at which two particles can approach each other, and r is
the current distance between two particles. The parameter σ is the size of a bead so it is
0.35 nm for all particles in the simulation and ϵ was set to the value of kBT for all particles.

A non-bonding interaction between all charges in a simulation is represented by the
long-range Coulomb interaction

Ucoul(r) =
1

4πϵ0ϵr

qiqj
rij

(4.3)

where ϵ0 represents vacuum permittivity, ϵr relative permittivity of a solvent (in our
case water), qi and qj represent to particular charges and rij is the distance between them.

For molecular simulations we have other technical parameters that we can change. One
of them is the cutoff for various potentials. We introduce this cutoff due to computational
complexity of the simulation. We calculate all interactions below this cutoff value in real
space and all interactions above this value (beyond the cutoff limit) are calculated in
reciprocal space. This approach is called the Ewald summation[29].

4.2 Simulation methods

Simulation methods can be divided into several categories. Among the most important
are Molecular dynamics and Monte Carlo methods. Molecular dynamics is a method of
statistical sampling of the phase space where we use integration of motion equations. A
particle in a phase space is defined by its position and momentum. Unlike molecular
dynamics, the Monte Carlo method is used to statistically sample the configuration space
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by randomly generating configurations of a given system. Particles in this configuration
space are defined only by their position.

4.2.1 Motion in a simulation: The velocity Verlet method

One of the most widely used methods to track temporal evolution of particle positions
is the velocity Verlet method.

The whole process of tracking temporal evolution of particle positions begins with
generation of particles in completely random positions (at t = t− dt, Figure 4.2a). Then,
using an integrator other than the velocity Verlet we generate a position of the particle at
time t (Figure 4.2b). Further, using Equation 4.5, we calculate the velocity in half of the
time step dt as the difference of individual positions divided by the time step dt (Figure
4.2c). This step is just an approximation, but for a sufficiently small value of the time
step dt, there is almost no deviation. In the last step, we calculate the force at a given
time t (according to Equation 4.6). By dividing the force by the mass of the particle
we obtain its acceleration a and finally we calculate the velocity at time t (according to
Equation 4.7).

(a) Random position
and velocity

(b) First integrator
(not velocity Verlet)

(c) Velocity at t− dt/2 (d) Velocity and force
at t

Figure 4.2: Process before the velocity Verlet

After the process in Figure 4.2 we are at the starting point for the velocity Verlet
cycle. It starts by calculating the velocity at half of the time step dt, at t+dt, v(t+dt/2)
using

v(t+ dt/2) = v(t) +
F (x(t), v(t− dt/2), t)

m
dt/2 (4.4)

shown in Figure 4.3a. Then we calculate the new position of the particle at time t+dt,
x(t+ dt) using

x(t+ dt) = x(t) + v(t+ dt/2)dt (4.5)

shown in Figure 4.3b, the total force acting on the given particle F

F = F (x(t+ dt), v(t+ dt/2), t+ dt) (4.6)
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shown in Figure 4.3c and the new velocity at time t+ dt, v(t+ dt)

v(t+ dt) = v(t+ dt/2) +
F (x(t+ dt), t+ dt)

m
dt/2 (4.7)

shown in Figure 4.3d. At the end of this cycle we are back in the starting point we
were in in Figure 4.2d and the cycle can start again. A schematic of the pre-velocity Verlet
process along with two velocity Verlet cycles is shown in Figure 4.4 (pink area represents
pre-velocity Verlet process, green area is for the first cycle of the velocity Verlet and the
orange one is for its second cycle).

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Figure 4.3: The velocity Verlet cycle
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Figure 4.4: The velocity Verlet method

4.2.2 Constant temperature: The Langevin thermostat

The Langevin thermostat is defined using the Langevin equation which is a differential
equation describing the Brownian motion of particles in a liquid and several other physical
systems[30].

At first, we can define velocity v⃗(t) using angular momentum p⃗ as

dr⃗

dt
= v⃗(t) =

p⃗

m
(4.8)

and force F⃗ using acceleration a⃗ or using the change in angular momentum p⃗ over
time t as

F⃗ = ma⃗ = m
dv⃗

dt
cont.m
=

d(mv⃗)

dt
=

dp⃗

dt
(4.9)

where m is a mass of a particle.

Then the total force F⃗ acting on the particle

F⃗ =
dpi⃗
dt

= fi(xi⃗ , vi⃗, t)− γmvi⃗(t) +
√︁
2γmkBT

dw⃗

dt
(4.10)

is calculated as the sum of the deterministic force calculated from the interactions
fi(xi⃗ , vi⃗, t), a negative term containing the friction coefficient γ and a term representing
the thermal force containing the temperature T . The symbol kB represents the Boltz-
mann constant and w⃗ is a (3N-dimensional) Wiener process[30].

To maintain a constant temperature T we have to add random forces mimicking col-
lisions with solvent particles at a given temperature (the thermal force term in Equation
4.10), but at the same time we have to add friction forces (the negative term with γ in the
same equation) that will partially compensate the thermal forces. Nevertheless, Langevin
dynamics is already an advanced method and a more detailed description is beyond the
scope of this paper.
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4.2.3 Reactions in a simulation

4.2.3.1 The constant-pH method (cpH)

The constant-pH method (cpH) is a Monte Carlo method designed to study acid-base
behavior at a given pH.

In this method, during the sampling of the system, a randomly selected ionizable
group is changed according to the acid-base reaction, for an acid

HA −−⇀↽−− A− +X+ (4.11)

or for a base.

BH+ −−⇀↽−− B + X+ (4.12)

These equations basically represent Equations 2.1 and 2.2 with a few differences. First
of all, in our simulation we do not have an explicit solvent (individual water particles)
and thus we do not have a given solvent in the equations. And secondly, there is not
directly a hydrogen ion H+, but a general counterion X+. Generally, this is because in
a real system a hydrogen ion can react with a basic buffer to form a BH+ ion and the
electroneutrality of the system must be preserved in our simulation. We can choose an
arbitrary counterion that will be formed during the acid-base reactions (Equations 4.11
and 4.12). For our simulation we chose the sodium ion Na+.

When we perform the change of a randomly selected ionizable group (Equations 4.11
or 4.12), we calculate the probability of acceptance of this reaction P cpH.

P cpH = min(1, e−β∆U±ln (10)(pH−pKa)) (4.13)

4.2.3.2 The reaction ensemble MC method (RxMC)

This method ensures a constant chemical potential of the salt particles throughout the
simulation box and thus the desired salt concentration in a bulk. The chemical potential
of salt particles is directly related to the equilibrium cosntant KNaCl

KNaCl = e
µ
Na+

+µ
Cl−

kBT (4.14)

We can think of this approach as if our simulation box were connected to an infinite-
ly large reservoir filled with salt particles with a constant chemical potential of these
particles, and ion pairs were exchanged between this reservoir and our simulation box.

∅ −−⇀↽−− Na+ + Cl− (4.15)

The Equation 4.15 is characterized by its equilibrium constant KNaCl

KNaCl = (aNa+)(aCl−) =
(︂cNa+

c◦−
γNa+

)︂(︂cCl−

c◦−
γCl−

)︂
=
(︂csalt

c◦−
γ±

)︂2
(4.16)

where csalt is the desired salt concentration in bulk, c◦− is the standard concentration
(1 mol/l) and γ± is the dimensionless mean activity coefficient. The input parameter of
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this method is the chemical potential of the salt ion pair, which we try to estimate using
the desired salt concentration and the mean activity coefficient γ±. The coefficient can
be calculated using Equation 2.20.

4.3 Data analysis

The direct output of the simulation is the time evolution of a given quantity. The
quantity can be, for example, the total energy of the system and the kinetic energy.
However, it can also be a charge of a side chain of a particular amino acid in a specific
molecule. Then, we can simply average the values from this time series and thus obtain
the sample mean X

X =
1

n

n∑︂
i=1

Xi
n→∞
= ⟨X⟩ (4.17)

where n is the number of values we average (number of samples).
The value of the sample mean X approaches the true mean ⟨X⟩ when the number of

our samples approaches infinity.

However, how do we determine that we have a sufficient number of samples and that
our value of the sample mean well represents the true mean of the given quantity? For
statistical data processing, there are several procedures for approaching the true mean of
a given quantity and for determining its accuracy, standard deviation σ2

X .

σ2
X = ⟨(X − ⟨X⟩)2⟩ (4.18)

Since we start from a completely random configuration, our entire simulation can be
divided into two parts: the equilibration and the production part. The equilibration is
discarded and not included in further statistical data processing.

However, we also need to visually check that the production part graphically looks
like random noise and that there are no long-term fluctuations in the order of 10 % of
the entire production part. If there are long-term fluctuations, we need to run a longer
simulation.

Furthermore, we must also take into account the fact that our data are correlated,
they depend on each other. When we let the system evolve over time, we observe for
some time that the new configuration depends on the configuration of the previous one.
In the plot of time evolution of a particular quantity we observe a certain increasing or
decreasing trend. If we had uncorrelated data (they would not depend on each other), we
could calculate the standard deviation σ2

Xi

σ2
Xi

=

∑︁n
i=1(Xi −X)2

n
(4.19)

Nevertheless, the simulation data are mostly correlated and therefore the calculation
needs to be adjusted accordingly. We can modify Equation 4.19 to
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σ2
Xi

=

∑︁n
i=1(Xi −X)2

n
(1 + 2τ) =

∑︁n
i=1 ∆Xi

2

n
(1 + 2τ) (4.20)

where τ is the autocorrelation time. It is the time scale on which the system loses
memory of its previous state.

Therefore, for the calculation of standard deviation of the simulation (correlated) da-
ta, we need to know the estimate of the autocorrelation time τ . For this purpose we can
use the block method.

At first, we calculate the sample mean X of all data from the production part using
Equation 4.17 and calculate the standard deviation σ2

X using Equation 4.19 (using the
procedure as if our data were uncorrelated). Then we divide the data into several blocks,
b, (we chose b = 16) where each block contains k samples and the total number of samples
is n (then n = bk). We calculate the arithmetic mean of each block Xj (Equation 4.17)
and the standard deviation σ2

B of these means Xj from X.

σ2
B =

∑︁b
i=1(Xj −X)2

b
(4.21)

The error of the given quantity ϵ is calculated as

ϵ =

√︃
σ2
B

b
(4.22)

Finally, we calculate the autocorrelation time τ corr

τ corr = ∆t
k

2

σ2
B

σ2
Xi

(4.23)

and the number of effective samples neff.

neff =
n

2τ corr
(4.24)

We chose an arbitrary criterion to have at least 5 effective samples per block, neff ≥
5b. When this condition is met, the blocks are mutually uncorrelated and the result of
our simulation can be written as result = X ± ϵ.
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5. Simulation protocol

The simulation itself was performed using the ESPResSo software (Extensible Simu-
lation Package for Research on Soft Matter)[31]. For Short peptides we used ESPResSo
version 4.2.0 and for the Aβ-(1–42) peptide version 4.2.1. The peptide model was built
using the software pyMBE: the Python-based Molecule Builder for ESPResSo[14].

5.1 Short peptides

This simulation was performed in a cubic simulation box. The contents of the box
consisted of one peptide molecule, explicit salt particles (NaCl) and an implicit solvent
that was set there (the solvent was not represented by particles, but only by the sol-
vent permittivity value). The peptide was represented by the two-bead model. During
this simulation, we used the velocity Verlet method for calculating particle motion, the
Langevin thermostat to maintain a constant temperature, and the constant-pH method.

Figure 5.1: Simulation box
with pentapeptide nGEAHGc
and salt particles. Dark gray
beads represent non-ionizable
groups, blue ones are for basic
ionizable groups, red ones are
for acidic ionizable groups, or-
ange ones are for sodium ions
Na+ and green ones are for
chloride ions Cl−.

All parameters mentioned in Section 4.1, peptide and salt concentrations used in our
simulation and approaches from Dobrev et al.[8] are summarized in Table 5.1.

Table 5.1: Parameters of our simulations, compared to the simulations and NMR
experiment from Dobrev et al.[8]

Parameter
Our work
CG model

Dobrev et al.[8]
AA model

Dobrev et al.[8]
NMR

kh [kJ mol−1 nm−2] 992 1000 —
ϵ [kBT] 1 — —
σ [nm] 0.35 — —
T [K] 298.15 300 300
cpeptide [mol l−1] 0.00769 0.00769 0.01
csalt [mol l−1] 0.15 0.15 0.15
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5.2 The Aβ-(1–42) peptide at a charged surface

Unlike the previous section 5.1, where we performed the simulation in a cubic simula-
tion box, this time we used a different shape of the box. We inserted a square base of our
simulation box to the xy plane at z = 0, where we placed a grid of charges representing
the surface of the nanoparticle. These charges had a fixed position and a constant charge.
We chose the length of the simulation box in the z-axis Lz to be 4 times longer than the
length in the x- (or y-) axis (4Lx = 4Ly = Lz). We used this setting in order to minimize
the surface of the base (xy plane) and thus the number of charges on the surface due to
lower computational demands (in general, fewer charges in the simulation box mean lower
computational complexity). However, in order to be able to simulate adsorption on the
one hand and the peptide in the bulk on the other hand, we had to extend the system in
the z-axis as already mentioned.

Even before we put anything in the simulation box, we have to somehow ensure that
the mirror images in the z-axis do not interact with each other; to really ensure ”space
nearby the nanoparticle” and ”space far from the nanoparticle” (in other words bulk). For
this purpose we chose the Electrostatic Layer Correction (ELC) ESPResSo functionality.
However, ELC is already an advanced method and a detailed description of its principle
is beyond the scope of this paper[32][33]. What ELC does in practice is it inserts an extra
layer in the xy plane that cancels the electrostatic contribution of the periodic images
in the z-direction. Thus it converts the 3D method to a 2D method (we only consider
periodic images in the x and y direction). This layer is above the Lz (so the actual
dimensions of the simulation box even with ELC gap are [Lx, Ly, (Lz+ELC gap)]).

When we have a simulation box prepared in this way, we can insert one peptide
molecule, explicit salt particles (NaCl) and an implicit solvent into the simulation box
(the solvent is not represented by particles, but only by the solvent permittivity value).
The peptide was represented by the two-bead model. During this simulation, we used
the velocity Verlet method for calculating particle motion, the Langevin thermostat to
maintain a constant temperature, the constant-pH method and the reaction ensemble MC
method to ensure a constant chemical potential of the salt in all parts of the simulation
box. All the parameters are in Table 5.2.

Table 5.2: Parameters of our simulations, compared to the simulations from Blanco et
al.[24]. Blanco et al.[24] used a hard sphere potential instead of the LJ potential, so it is

not possible to compare values of ϵ and σ.

Parameter
Our work
reference

Our work
with charged surface

Blanco et al.[24]
reference

kh [kJ mol−1 nm−2] 992 992 240
ϵ [kBT] 1 1 —
σ [nm] 0.35 0.35 —
T [K] 298.15 298.15 298.15
cpeptide [mol l−1] 0.0008 0.0008 0.0002
csalt [mol l−1] 0.13 0.13 0.1

Figure 5.2 shows the final form of the simulation box together with all its contents.

26



Figure 5.2: Simulation box with Aβ-
(1–42) peptide and salt particles in the
presence of a charged surface. In the
lower part, the particles of the nega-
tively charged surface are shown in cyan
color. The sodium ions are shown in or-
ange and chloride ions are represented
in green. An increased concentration of
sodium ions can be seen near this sur-
face compared to the rest of the simula-
tion box. In the middle part, we can see
the Aβ-(1–42) peptide, its non-ionizable
groups are depicted in dark gray, acidic
ionizable groups are red, and basic ion-
izable groups are depicted in blue. In
the very top part of the simulation box,
we can see zero concentration of salt
particles. This is because there is an
ELC gap in which there are no parti-
cles at all.
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6. Results and discussion

6.1 Short peptides

6.1.1 Degree of ionization
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H4 CG

Figure 6.1: Degree of ionization as a function of pH for nGEAHGc sequence with
permanently charged ends from CG simulation. E2 represents glutamic acid at position
2 in the sequence and H4 histidine at position 4. Each orange or green circle in Figure
6.1 represents one simulation performed using the constant-pH ensemble method. The
black dashed line without dots represents the ideal behavior for glutamic acid described
by the Henderson-Hasselbalch equation corrected by the Debye-Huckel correction (E
HH+DHc) and the black dashed line with dots represents this ideal behavior for

histidine (H HH+DHc). The vertical orange dashed line represents the DHc-corrected
simulation pKa input for glutamic acid (E input pKa+DHc), and the vertical green
dashed line represents the DHc-corrected simulation pKa input for histidine (H input
pKa+DHc). All simulation results in this figure were simulated with permanently

charged ends (PCE) of the peptide.

In Figure 6.1, there is an example of the coarse-grained (CG) model results where we
can see the pH dependence of the degree of ionization of two side chains in nGEAHGc
peptide, namely the glutamic acid at position 2 (E2) and histidine at position 4 (H4).
We simulated short peptides with permanently charged ends because in Dobrev et al.[8]
they also used permanently charged ends in the AA simulation and we wanted to make
a comparison as representative as possible. For the salt and the peptide concentration
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Figure 6.2: Degree of ionization as a function of pH for nGEAEGc sequence from CG
simulation, PCE. An explanation of the individual labels can be found in Figure 6.1.

we chose the same values as Dobrev et al.[8] used for their AA simulation (also because
of a representative comparison). However, we also wanted to study the influence of the
ends ionizability so we also performed a simulation with non-permanently charged ends
(NPCE). For this aim we chose an arbitrary pKa set (Nozaki et al.[34]) and took the pKa

values of n-terminus and c-terminus from this pKa set.
We can notice that our results for E2 and H4 systematically deviate from the ideal

curve corrected using Debye–Hückel correction (HH+DHc) in Figure 6.1. Both in the
case of E2 and H4 it is an increase in the degree of ionization compared to ideal behav-
ior (HH+DHc). A rough first estimate of the cause of this increase in ionization can be
attributed to the fact that in the nGEAHGc sequence there are ionizable groups dis-
tributed on the alternation. The positively charged side chain (H4) is located between
the two negatively charged ionizable groups (E2 and the c-terminus) and the negatively
charged side chain (E2) is located between the two positively ionizable groups (the n-
terminus and H4). In contrast, in Figure 6.2 we can observe a decrease in the degree of
ionization for individual side chains in the nGEAEGc sequence where the E4 side chain
is located between the two negatively charged ionizable ends (E2 and c-terminus).

However, it should be noted that these changes in the degree of ionization depend
not only on the order of ionizable groups in the sequence, but also on other parameters,
namely on the geometry of the molecule and the choice of the pKa value as an input
parameter of the simulation.

Results for all other sequences are similar and can be found in Appendix (Figures
7.9-7.16).
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6.1.2 Data fitting and obtaining pKa(eff) values

From all CG data we can obtain effective pKa values, pKa(eff). For this purpose we
simply fit our data with either the Henderson-Hasselbalch equation (Equation 2.18 for
an acid and 2.19 for a base) or the Hill equation (Equation 2.26 for an acid and 2.27
for a base). Then we get the effective pKa value pKa(eff) as a fitting parameter. The
advantage of the Hill equation is that we can find out the slope of the titration curve of
our fitted data (n parameter in Equation 2.26 and 2.27).

In Figure 6.3 we can see the same results as in Figure 6.1 but here they are fitted by
the Henderson-Hasselbalch equation (Equation 2.18).

resα = α(simulation)− α(fit) (6.1)
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Figure 6.3: Fit using the Henderson-Hasselbalch equation of degree of ionization as a
function of pH for nGEAHGc sequence from CG simulation, PCE. The fit of E2 is

represented by the solid orange line and the solid green line represents the fit for H4. We
can also see the residuals at the bottom of the plot, that is the difference between the
value of the degree of ionization obtained by simulation α(simulation) and the value of
the degree of ionization from the given fit α(fit) (Equation 6.1). An explanation of the

other labels can be found in Figure 6.1.

For the nGEAHGc sequence, both fits, the Henderson-Hasselbalch fit in Figure 6.3 and
the Hill fit in Figure 6.4, are almost the same and our CG data are equally distributed
around the fit in the pH range 1-9.

However, for sequences with two same side chains (nGEAEGc and nGHAHGc) dis-
tribution of our CG data around the fit is pretty different. For the nGEAEGc sequence
we can observe a significant wave in residuals, positive resα value for pH

.
= pKa−0.5

and negative resα value for pH
.
= pKa+0.5 (Figure 6.5). This observation is even more

significant for the NPCE (Figure 6.6). It means that at a pH value which is a bit lower
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Figure 6.4: Fit using the Hill equation of degree of ionization as a function of pH for
nGEAHGc sequence from CG simulation, PCE. An explanation of the individual labels

can be found in Figures 6.1 and 6.3.

than the pKa value the degree of ionization of a particular amino acid in the oligopeptide
is higher than in the case of an ideal isolated amino acid. At a bit higher pH value the
situation is opposite, the degree of ionization is lower. For the nGHAHGc sequence we
can also observe this wave - lower degree of ionization for pH

.
= pKa−0.5 and higher for

pH
.
= pKa+0.5 (Figures 6.7 and 6.8, also bigger wave for NPCE).
In the Figure 6.6, the wave occurs because at pH < 4 only the n-terminus is charged,

1 positive charge in the whole molecule, and thus the ionization of another acidic group
is supported compared to ideal behavior. Then, at a pH value a bit higher than the pKa

value the degree of ionization is lower compared to the ideal behavior because the number
of negative charges in the molecule increases and these charges repel each other. There is
an analogous explanation for the nGHAHGc sequence in Figure 6.8.

Results for all other sequences for the data fitting can be found in the Appendix
(Figures 7.17-7.32).
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Figure 6.5: Fit using the Henderson-Hasselbalch equation of degree of ionization as a
function of pH for nGEAEGc sequence from CG simulation, PCE. An explanation of

the individual labels can be found in Figures 6.1 and 6.3.
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Figure 6.6: Fit using the Henderson-Hasselbalch equation of degree of ionization as a
function of pH for nGEAEGc sequence from CG simulation, NPCE. An explanation of

the individual labels can be found in Figures 6.1 and 6.3.
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Figure 6.7: Fit using the Henderson-Hasselbalch equation of degree of ionization as a
function of pH for nGHAHGc sequence from CG simulation, PCE. An explanation of

the individual labels can be found in Figures 6.1 and 6.3.

pH
0.0

0.2

0.4

0.6

0.8

1.0

de
gr

ee
 o

f i
on

iza
tio

n,
 

nGHAHGc, NPCE

H HH+DHc
H input pKa+DHc
H2 fit HH
H4 fit HH
H2 CG
H4 CG

3 4 5 6 7 8 9
pH

0.025
0.000
0.025

re
s

c(salt): 0.15 mol/l
c(peptide): 0.0077 mol/l

Figure 6.8: Fit using the Henderson-Hasselbalch equation of degree of ionization as a
function of pH for nGHAHGc sequence from CG simulation, NPCE. An explanation of

the individual labels can be found in Figures 6.1 and 6.3.
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Figure 6.9: pKa(eff) values obtained using our CG results and input pKa values from
Dobrev et al.[8]. Values of pKa(eff) are represented by stars in the plot, filled stars are

for permanently charged ends (PCE) and an empty stars are for non-permanently
charged ends (NPCE). Every sequence is represented by its own color which is the color
of the frame around the schematic of that molecule in Figure 6.9. The small number

below the star represents the position of an amino acid in the molecule, 2 is closer to the
n-terminus and 4 is closer to the c-terminus. Dashed vertical lines represent input pKa

values corrected by the Debye–Hückel correction.

6.1.3 pKa(eff) and ∆pKa values for various pKa sets

We also wanted to study the effect of various pKa values as a simulation input, so we
chose several pKa sets and performed the simulation at these values. At first, we ran a
simulation on pKa values for glutamic acid and histidine from Dobrev et al.[8] and pKa

values for n-terminus and c-terminus were taken from an arbitrarily chosen pKa set -
Nozaki et al.[34]. And then we performed a simulation for two other arbitrarly chosen
pKa sets, Nozaki et al.[34] and Thurlkill et al.[35]. All the pKa values are in Table 6.1.
When we ran the simulation for permanently charged ends (PCE) we set up the pKa of
n-terminus for value of 20 and pKa of c-terminus for value of −5.

Table 6.1: pKa values for various pKa sets

pKa set n-terminus (n) glutamic acid (E) histidine (H) c-terminus (c)
Dobrev et al.[8] 7.5 4.08 6.54 3.8
Nozaki et al.[34] 7.5 4.4 6.3 3.8
Thurlkill et al.[35] 8.00 4.25 6.54 3.67

We can see the results for the pKa(eff) obtained using our CG results and input pKa

values from Dobrev et al.[8] in Figure 6.9. Results for the other pKa sets are in Figure
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7.33 in Appendix. Exact values of pKa(eff) can be found in Tables 6.2 and 6.3.

Table 6.2: pKa(eff) values for various pKa sets for permanently charged ends (PCE)

CG model
PCE

Side
chain

Dobrev
pKa set

Nozaki
pKa set

Thurlkill
pKa set

AA model[8]

E2 3.92 4.23 4.09 3.81±0.05
nGEAEGc

E4 4.11 4.44 4.29 4.09+0.05−0.04
E2 3.75 4.07 3.92 3.60±0.05

nGEAHGc
H4 6.96 6.72 6.95 6.77±0.05
H2 6.79 6.55 6.79 6.24±0.04

nGHAEGc
E4 3.91 4.23 4.08 3.92±0.04
H2 6.60 6.35 6.60 6.07±0.05

nGHAHGc
H4 6.80 6.56 6.78 6.58±0.05

Table 6.3: pKa(eff) values for various pKa sets for permanently charged ends (NPCE)

CG model
NPCE

Side
chain

Dobrev
pKa set

Nozaki
pKa set

Thurlkill
pKa set

NMR[8]

E2 3.88 4.21 4.06 4.06±0.01
nGEAEGc

E4 4.06 4.40 4.24 4.04±0.01
E2 3.71 4.05 3.91 3.76±0.02

nGEAHGc
H4 6.97 6.74 6.96 6.59±0.02
H2 6.82 6.59 6.80 6.14±0.01

nGHAEGc
E4 3.85 4.20 4.05 3.81±0.01
H2 6.62 6.38 6.62 6.23±0.01

nGHAHGc
H4 6.80 6.57 6.80 6.66±0.03

Green cells in Tables 6.2 and 6.3 represent results of our CG model which agree with
the result of Dobrev et al.[8] on the same line.

Another quantity which we can monitor is delta ∆pKa (Equation 2.24) which in this
case we can calculate as

∆pKa = pKa(eff)− pKa(HH+DHc) (6.2)

As we can notice, ∆pKa for PCE almost does not depend on the input pKa values or
the chosen pKa set (see Table 6.4). For NPCE, the values differ slightly for individual
pKa sets although they are still very close to each other (see Table 6.5).

Green cells in Table 6.5 represent results of our CG model which agree with the result
of Dobrev et al.[8] on the same line.
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Table 6.4: ∆pKa values for various pKa sets for permanently charged ends (PCE)

CG model
PCE

Side
chain

Dobrev
pKa set

Nozaki
pKa set

Thurlkill
pKa set

AA model[8]

E2 0.01 0.01 0.02 −0.27
nGEAEGc

E4 0.21 0.21 0.22 0.01
E2 −0.15 −0.15 −0.16 −0.48

nGEAHGc
H4 0.24 0.24 0.24 0.23
H2 0.07 0.08 0.07 −0.30

nGHAEGc
E4 0.01 0.01 0.00 −0.16
H2 −0.12 −0.13 −0.12 −0.47

nGHAHGc
H4 0.08 0.08 0.07 0.04

Table 6.5: ∆pKa values for various pKa sets for permanently charged ends (NPCE)

CG model
NPCE

Side
chain

Dobrev
pKa set

Nozaki
pKa set

Thurlkill
pKa set

NMR[8]

E2 −0.03 −0.01 −0.01 −0.01
nGEAEGc

E4 0.16 0.18 0.16 −0.03
E2 −0.19 −0.17 −0.16 −0.31

nGEAHGc
H4 0.25 0.26 0.25 0.04
H2 0.10 0.11 0.09 −0.41

nGHAEGc
E4 −0.05 −0.03 −0.02 −0.26
H2 −0.10 −0.10 −0.10 −0.32

nGHAHGc
H4 0.09 0.09 0.08 0.11

Then, we can calculate difference between ∆pKa from the simulation and from an
experiment using Equation 2.25. Results of the ∆∆pKa are in Table 6.6.

Orange cells in Table 6.6 represent results of our CG model which are closer to the
value of 0 than the result of Dobrev et al. on the same line (which means that this
particular line in Table 6.6 our CG model is more accurate than the AA model from
Dobrev et al.).
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Table 6.6: ∆∆pKa values for various pKa sets for permanently charged ends (NPCE)

CG model
NPCE

Side
chain

Dobrev
pKa set

Nozaki
pKa set

Thurlkill
pKa set

Dobrev et al.

E2 −0.02 0 0 −0.25
nGEAEGc

E4 0.19 0.21 0.19 0.05
E2 0.12 0.14 0.15 −0.16

nGEAHGc
H4 0.21 0.22 0.21 0.18
H2 0.51 0.52 0.50 0.10

nGHAEGc
E4 0.21 0.23 0.24 0.11
H2 0.22 0.22 0.22 −0.16

nGHAHGc
H4 −0.02 −0.02 −0.03 −0.08

6.1.4 Hill coefficient n

The very last monitored variable is the Hill coefficient n (see in Equation 2.26 and
2.27). In the case of ideal behavior, in the Henderson-Hasselbalch equation, n equals 1.
In case of n > 1 the slope of the titration curve is greater then for an ideal curve and the
middle part of the curve is more vertical. For n < 1 the slope of the titration curve is less
steep than for an ideal curve and the middle part of the curve is more horizontal. Values
of the n coefficient can be obtained by simple fitting of the data from CG simulation using
the Hill equation (Equation 2.26 and 2.27). The Hill coefficients for the CG model, the
AA model and the NMR experiment can be found in Table 6.7 and 6.5.

Table 6.7: Hill coefficients for various pKa sets for permanently charged ends (PCE)

CG model
PCE

Side
chain

Dobrev
pKa set

Nozaki
pKa set

Thurlkill
pKa set

AA model[8]

E2 0.95 0.96 0.96 1.08+0.1−0.09
nGEAEGc

E4 0.96 0.96 0.96 1.04+0.09−0.08
E2 1.00 0.99 1.00 1.05+0.1−0.08

nGEAHGc
H4 1.01 1.00 1.00 0.97+0.08−0.07
H2 1.01 1.00 1.01 0.92+0.06−0.05

nGHAEGc
E4 0.99 0.99 1.00 1.12+0.08−0.07
H2 0.95 0.95 0.95 0.91+0.07−0.06

nGHAHGc
H4 0.96 0.94 0.94 1.02+0.09−0.07

Green cells in Tables 6.7 and 6.8 represent results of our CG model which agree with
the result of Dobrev et al.[8] on the same line.

In Figure 6.10, we can see that the all-atom model has significantly larger error bars
than our coarse-grained model and also the AA model deviates from the value of 1 in the
opposite direction than the experimental value in 5 out of 8 cases.
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Table 6.8: Hill coefficients for various pKa sets for permanently charged ends (NPCE)

CG model
NPCE

Side
chain

Dobrev
pKa set

Nozaki
pKa set

Thurlkill
pKa set

NMR[8]

E2 0.92 0.92 0.93 0.90±0.02
nGEAEGc

E4 0.88 0.89 0.90 0.79±0.02
E2 0.96 0.97 0.96 0.94±0.03

nGEAHGc
H4 0.98 0.98 1.00 0.91±0.03
H2 0.96 0.96 1.00 0.96±0.01

nGHAEGc
E4 0.93 0.94 0.92 0.90±0.02
H2 0.92 0.93 0.94 1.06±0.03

nGHAHGc
H4 0.93 0.92 0.95 0.85±0.04
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Figure 6.10: Hill coefficients for all side chains of all studied sequences. AA symbolizes
the results of the all-atom simulation and together with NMR represent the results from
Dobrev et al.[8]. Our coarse-grained results are shown by empty circles for permanently

charged ends and full circles for non-permanently charged ends.
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6.2 The Aβ-(1–42) peptide at a charged surface

6.2.1 Simulation of salt particles at a charged surface

First, we had to test whether the RxMC method itself reliably maintains a constant
chemical potential in the simulation box and the desired salt concentration in the bulk.
For this purpose, we ran a simulation of salt particles at a charged surface without the
Aβ-(1-42) peptide. As input parameters, we chose the test desired salt concentration,
0.01M, and the activity coefficient calculated using the DHc (Equation 2.20). In this
simulation of salt particles at a charged surface, we achieved a concentration of 0.01M in
the bulk. The resulting density profile for salt particles is shown in Figure 6.11. Based
on this simulation of salt particles in the presence of a charged surface without Aβ-(1–42)
peptide, we conclude that the RxMC method reliably maintains a constant chemical
potential in the simulation box and the desired salt concentration in bulk.
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Figure 6.11: Density profile of Na+ and Cl− particles in a simulation of salt particles at
a charged surface. Size of the simulation box: 4Lx = 4Ly = Lz = 32 nm.
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6.2.2 Verification of the suitability of selected parameters

Before running the simulation to obtain results for the acid-base behavior of the Aβ-
(1–42) peptide in the presence of a charged surface, we had to use test simulations to
determine the correct technical parameters of the simulation that will not affect the phys-
ical and chemical properties of our study system.

6.2.2.1 Box size and density profiles of salt particles

The first parameter was the box size determined on the density profile of the salt
particles. A test simulation designed to determine the correct box size contained the Aβ-
(1–42) peptide in the presence of a charged surface and salt particles (NaCl). The RxMC
method was used in this simulation to ensure a constant chemical potential of the salt
throughout the simulation box. The input parameters were a salt concentration of 0.15 M
and the mean activity coefficient for this concentration calculated using DHc (Equation
2.20).
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Figure 6.12: Density profile of Na+ and Cl− particles in simulation boxes with various
simulation box edge lengths in z-direction, Lz. Size of the simulation box: Lx = 8 nm.

It can be seen from Figure 6.12 that for these lengths the density profile near the
surface is very similar. Therefore, out of these tested box sizes we chose the smallest box
size due to the shortest computation time.
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Although we chose the required salt concentration to be 0.15M, the final concentra-
tion in the bulk was a bit lower, around 0.132M. It was due to the fact that the DHc
applies only to a certain range of salt concentrations, approximately for concentrations
lower than 0.01M. To achieve a concentration of 0.15M it is necessary to use more pre-
cise relations suitable for other ranges of salt concentrations, for example, the McInnes
approximation[36]

− log10 γ± =
A|z+z−|

√
I

1 + 1.5
√
I

(6.3)

where A represents coefficient and its value can be found in Table 2.2, or the Davies
equation[37].

− log10 γ± = 0.5|z+z−|

(︄ √
I

1 +
√
I
− 0.2I

)︄
(6.4)

10 4 10 3 10 2 10 1 100

concentration [mol/l]

0.6

0.7

0.8

0.9

1.0

m
ea

n 
ac

tiv
ity

 c
oe

ffi
cie

nt
, 

±

theory - DHc
theory - McInnes approximation
theory - Davis equation
experiment - Robinson et al.
experiment - Pitzer et al.
ideal

Figure 6.13: Mean activity coefficient depending on NaCl concentration in an aqueous
solution. Black crosses represent experimental data from Robinson et al.[38] and pink

crosses are for experimental data from Pitzer et al.[39].

6.2.2.2 Thickness of the ELC gap

Another parameter was the thickness of the ELC gap. Here it was necessary to verify
that the density profile does not deviate in any way from the required salt concentration
in the places farthest from the surface, around 30 nm on the x-axis in Figure 6.14. Here
we can see that even a very thin ELC gap layer, 0.8 nm, effectively shields the charged
surface effect in periodic boundary conditions. To be safe, we chose a slightly wider ELC
gap of 4 nm.
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Figure 6.14: Density profile of Na+ and Cl− particles in simulation boxes with various
ELC gap thicknesses. Size of the simulation box: 4Lx = 4Ly = Lz = 32 nm.

6.2.3 Net charge on the peptide

After determining all the necessary parameters, we ran a simulation of the Aβ-(1–42)
peptide in the presence of a charged surface and salt particles to determine the acid-base
behavior of the Aβ-(1–42) peptide in the presence of a charged surface. We first focused
on the net charge on the peptide. In Figures 6.16 and 6.17, we compared the data of the
net charge as a function of pH for the peptide in the presence of a charged surface to two
reference simulations.

One reference simulation was performed by us. In this simulation we set up exactly
the same peptide and salt concentration as we set for the simulation with the charged
surface and the peptide was also represented by CG, 2-bead model. However in this
simulation there was no charged surface. In Figure 6.15, there is a snapshot of our
reference simulation. We found the second reference simulation in Blanco et al.[24] where
they studied the Aβ-(1–42) peptide using the coarse-grained simulation, however they
used the 1-bead model. This model only has a backbone, there are no side chains, and it
differs from the 2-bead model mainly in the geometry of the molecule.

An overview of all the parameters of the simulations can be seen in Table 6.9.

As we can notice in Figures 6.16 and 6.17, at low value of pH, 1 < pH < 4, the peptide
has a positive charge and its net charge is strongly influenced by the negatively charged

42



Table 6.9: Parameters of all the simulations of Aβ-(1–42) peptide

Our simulation
of the peptide
without surface

Our simulation
of the peptide
with charged surface

Simulation
of the peptide
from literature[24]

LxLyLz [nm3] 8×8×32 8×8×32 22×22×22
model CG, 2-bead CG, 2-bead CG, 1-bead
cpeptide [mol l−1] 0.0008 0.0008 0.0016
csalt [mol l−1] 0.13 0.13 0.1
presence of the surface no yes no

Figure 6.15: Snapshot of our refer-
ence simulation of the Aβ-(1–42) pep-
tide. The sodium ions are shown in
orange and chloride ions are represent-
ed in green. In the middle part, we
can see the Aβ-(1–42) peptide, its non-
ionizable groups are depicted in dark
gray, acidic ionizable groups are red,
and basic ionizable groups are depict-
ed in blue.

surface. The net charge of the peptide in the presence of a charged surface is higher than
the net charge of the Aβ-(1–42) peptide in both reference systems.

In Figure 6.17, we can also see a slight shift of the isoelectric point pI towards lower
pH values compared to the ideal curve.
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Figure 6.16: Net charge on the Aβ-(1–42) peptide as a funtion of pH. Our reference
simulation is shown in orange, our simulation of the Aβ-(1–42) peptide in presence of a
charged surface in blue and reference simulation from Blanco et al.[24] is shown in green.

Figure 6.17: Net charge on the Aβ-(1–42) peptide as a funtion of pH in absolute value.
An explanation of the individual labels can be found in Figure 6.16.
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6.2.4 Radius of gyration Rg

In Figure 6.18, we can see the dependence of the radius of gyration Rg on pH for the
3 simulation systems described in Section 6.2.3.

All the curves in Figure 6.18 have a minimum around the isoelectric point pI. This is
quite an expected fact, since the isoelectric point pI is characterized by a zero net charge of
the peptide. Therefore at pH = pI, both positive and negative charges are present on the
peptide, and the peptide assumes a collapsed conformation. In contrast, at lower pH, 1 <
pH < 4, the peptide has an overall positive charge, it assumes a stretched conformation,
and the more the mass is spread out in space, the greater the radius of gyration. The
higher pH region, 6 < pH < 12, has an analogous explanation as region 1 < pH < 4 but
there is an overall negative charge on the peptide.

As we can notice in Figure 6.18, similarly to the net charge on the peptide, Rg of the
Aβ-(1–42) peptide in our reference system differs from Rg of the Aβ-(1–42) peptide in the
presence of a charged surface mainly at low pH values, 1 < pH < 4.

Interestingly, the radius of gyration for the 1-bead model is significantly higher than
that of the 2-bead model. We have not yet found an explanation for this observation.
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surface (CG, 2-bead model)
Blanco et al. (CG, 1-bead model)

Figure 6.18: Radius of gyration of the Aβ-(1–42) peptide. An explanation of the
individual labels can be found in Figure 6.16.
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6.2.5 Probability density of the Aβ-(1–42) peptide

Figure 6.19 shows that for low pH values, 1 < pH < 4, the probability density is
significantly higher near the surface, up to 5 nm from the surface, than in other parts
of the simulation box. This is an indication that most likely at low pH, 1 < pH < 4,
adsorption of the Aβ-(1–42) peptide to the negatively charged surface occurs. However,
our simulation of the Aβ-(1–42) peptide in the presence of a charged surface was not
sufficiently sampled and thus these results can only be considered preliminary.
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Figure 6.19: Probability density function of observing the Aβ-(1–42) peptide at a
particular distance z from the charged surface at various pH values
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Figure 6.20: Probability density function of observing the Aβ-(1–42) peptide at a
particular distance z from the charged surface at various pH values, y-axis in log scale
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7. Conclusion

7.1 Short peptides

In this project, we have used our coarse-grained model to investigate the degree of
ionization of the side chains of four oligopeptides - nGEAEGc, nGEAHGc, nGHAEGc
and nGHAHGc. We then compared our results with other methods, with a computa-
tionally more demanding all-atom model and with NMR experiment. The goal was to
find out how accurate our model is in determining the acid-base behavior of short peptides.

After a thorough examination of our data we can say that our results of a coarse-
grained model systematically deviate from the ideal behavior described by the Henderson
Hasselbalch equation corrected by the Debye–Hückel correction due to the presence of
salt in the solution. This deviation was characterized in most cases of an acid (Glu) as
an increase in the degree of ionization for pH

.
= pKa − 0.5 and as a decrease in the

degree of ionization for pH
.
= pKa + 0.5. For a base (His) it was an increase in the

degree of ionization for pH
.
= pKa + 0.5 and a decrease at pH

.
= pKa − 0.5. This sys-

tematic deviation was even more significant for the oligopeptides with two identical side
chains and for the setting of non-permanently charged ends in the peptide. This happens
because of the non-zero charge on the peptide at the extremes of pH, pH < pKa(acid)
and pH > pKa(base). With a non-zero charge on the peptide, ionization of the ioniz-
able group with opposite polarity is always promoted, as a compensation for the given
non-zero charge on the peptide. However, at a pH closer to neutral, pH = pKa(acid) +
0.5 or pH = pKa(base) − 0.5, more charges are already present on the peptide, repul-
sion between individual charges occurs and ionization of non-ionized groups is suppressed.

When we then compared our results with the reference data from Dobrev et al.[8], we
found that our results differ significantly in pKa(eff) values compared to the AA model or
the NMR experiment (despite the fact that we used the same input pKa values as in the
AA simulation). Nor the ∆pKa values were in good agreement with the reference data
from Dobrev at al.[8]. Nevertheless, the final ∆∆pKa values are in most cases very small.
On the other hand, the Hill coefficients n of our coarse-grained model are more consistent
with both the AA model and the NMR experiment than the pKa(eff) values.

In conclusion, our coarse-grained model describes acid-base behavior qualitatively
rather than quantitatively. However, if we chose some more suitable pKa values for these
short peptides, then our results could be even better and perhaps even quantitative.
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7.2 The Aβ-(1–42) peptide at a charged surface

In our second project, we have tried to determine the conditions under which the Aβ-
(1-42) peptide adsorbs onto a charged surface. Despite some inaccuracies that we want
to improve in the future, we can draw some conclusions from our preliminary results.

First, for pH lower than 4, we have observed for the Aβ-(1–42) peptide an increase
in the net charge on the peptide in the presence of a charged surface compared to the
reference state without a charged surface.

Furthermore, at this pH, 1 < pH < 4, we have observed a slight increase in the radius
of gyration Rg for the Aβ-(1–42) peptide in the presence of a charged surface compared
to the peptide in the reference system without a charged surface. This conclusion agrees
with the result for the net charge on the peptide. If we have several negative charges
in a molecule, then these charges repel each other, the molecule stretches and thus Rg

increases. However, it was surprising that the radius of gyration values for our 2-bead
model were significantly lower than Rg values for the 1-bead model from Blanco et al.[24]
for the pH range 1-9. We do not yet have an explanation for this observation.

Last but not least, we focused on the probability of occurrence of the Aβ-(1–42) pep-
tide at a charged surface. From this observation, we found that at pH, 1 < pH < 4, there
is a significantly higher probability of the Aβ-(1–42) peptide occurrence at the charged
surface compared to pH > 4. For pH > 5, the probability of occurrence was already evenly
distributed throughout the system and there was no preferential site of occurrence.

From these data, we can say that at pH < 4 there is strong adsorption of the amyloid
peptide on the negatively charged surface.

However, it should be noted that the system with the amyloid peptide in the presence
of a charged surface was undersampled because we did not use any preferential sampling.
Our data is therefore of lower quality, and in the future it will be necessary to focus on a
way to better sample our system.
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Appendix

Reference data for short peptides
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Figure 7.1: All-atom data for nGEAEGc sequence from Dobrev et al.[8]. An explanation
of the individual labels can be found in Figure 6.1.
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Figure 7.2: NMR data for nGEAEGc sequence from Dobrev et al.[8]. An explanation of
the individual labels can be found in Figure 6.1.
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Figure 7.3: All-atom data for nGEAHGc sequence from Dobrev et al.[8]. An
explanation of the individual labels can be found in Figure 6.1.
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Figure 7.4: NMR data for nGEAHGc sequence from Dobrev et al.[8]. An explanation of
the individual labels can be found in Figure 6.1.
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Figure 7.5: All-atom data for nGHAEGc sequence from Dobrev et al.[8]. An
explanation of the individual labels can be found in Figure 6.1.
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Figure 7.6: NMR data for nGHAEGc sequence from Dobrev et al.[8]. An explanation of
the individual labels can be found in Figure 6.1.
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Figure 7.7: All-atom for nGHAHGc sequence data from Dobrev et al.[8]. An
explanation of the individual labels can be found in Figure 6.1.
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Figure 7.8: NMR data for nGHAHGc sequence from Dobrev et al.[8]. An explanation of
the individual labels can be found in Figure 6.1.
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Degree of ionization of short peptides
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Figure 7.9: Degree of ionization for nGEAEGc sequence from CG simulation, PCE. An
explanation of the individual labels can be found in Figure 6.1.
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Figure 7.10: Degree of ionization for nGEAEGc sequence from CG simulation, NPCE.
An explanation of the individual labels can be found in Figure 6.1.
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Figure 7.11: Degree of ionization for nGEAHGc sequence from CG simulation, PCE. An
explanation of the individual labels can be found in Figure 6.1.
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Figure 7.12: Degree of ionization for nGEAHGc sequence from CG simulation, NPCE.
An explanation of the individual labels can be found in Figure 6.1.
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Figure 7.13: Degree of ionization for nGHAEGc sequence from CG simulation, PCE. An
explanation of the individual labels can be found in Figure 6.1.
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Figure 7.14: Degree of ionization for nGHAEGc sequence from CG simulation, NPCE.
An explanation of the individual labels can be found in Figure 6.1.
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Figure 7.15: Degree of ionization for nGHAHGc sequence from CG simulation, PCE. An
explanation of the individual labels can be found in Figure 6.1.

58



3 4 5 6 7 8 9
pH

0.0

0.2

0.4

0.6

0.8

1.0

de
gr

ee
 o

f i
on

iza
tio

n,
 c(salt): 0.15 mol/l

c(peptide): 0.0077 mol/l

nGHAHGc, NPCE

H HH+DHc
H input pKa+DHc
H2 CG
H4 CG

Figure 7.16: Degree of ionization for nGHAHGc sequence from CG simulation, NPCE.
An explanation of the individual labels can be found in Figure 6.1.
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Fits of degree of ionization of short peptides
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Figure 7.17: Fit using Henderson-Hasselbalch equation of degree of ionization for
nGEAEGc sequence from CG simulation, PCE. An explanation of the individual labels

can be found in Figures 6.1 and 6.3.
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Figure 7.18: Fit using Henderson-Hasselbalch equation of degree of ionization for
nGEAEGc sequence from CG simulation, NPCE. An explanation of the individual

labels can be found in Figures 6.1 and 6.3.
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Figure 7.19: Fit using Hill equation of degree of ionization for nGEAEGc sequence from
CG simulation, PCE. An explanation of the individual labels can be found in Figures

6.1 and 6.3.
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Figure 7.20: Fit using Hill equation of degree of ionization for nGEAEGc sequence from
CG simulation, NPCE. An explanation of the individual labels can be found in Figures

6.1 and 6.3.
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Figure 7.21: Fit using Henderson-Hasselbalch equation of degree of ionization for
nGEAHGc sequence from CG simulation, PCE. An explanation of the individual labels

can be found in Figures 6.1 and 6.3.
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Figure 7.22: Fit using Henderson-Hasselbalch equation of degree of ionization for
nGEAHGc sequence from CG simulation, NPCE. An explanation of the individual

labels can be found in Figures 6.1 and 6.3.
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Figure 7.23: Fit using Hill equation of degree of ionization for nGEAHGc sequence from
CG simulation, PCE. An explanation of the individual labels can be found in Figures

6.1 and 6.3.

63



pH
0.0

0.2

0.4

0.6

0.8

1.0

de
gr

ee
 o

f i
on

iza
tio

n,
 

nGEAHGc, NPCE
E HH+DHc
E input pKa+DHc
H HH+DHc
H input pKa+DHc
E2 fit Hill
H4 fit Hill
E2 CG
H4 CG

1 2 3 4 5 6 7 8 9
pH

0.025
0.000
0.025

re
s

c(salt): 0.15 mol/l
c(peptide): 0.0077 mol/l

Figure 7.24: Fit using Hill equation of degree of ionization for nGEAHGc sequence from
CG simulation, NPCE. An explanation of the individual labels can be found in Figures

6.1 and 6.3.
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Figure 7.25: Fit using Henderson-Hasselbalch equation of degree of ionization for
nGHAEGc sequence from CG simulation, PCE. An explanation of the individual labels

can be found in Figures 6.1 and 6.3.
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Figure 7.26: Fit using Henderson-Hasselbalch equation of degree of ionization for
nGHAEGc sequence from CG simulation, NPCE. An explanation of the individual

labels can be found in Figures 6.1 and 6.3.
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Figure 7.27: Fit using Hill equation of degree of ionization for nGHAEGc sequence from
CG simulation, PCE. An explanation of the individual labels can be found in Figures

6.1 and 6.3.
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Figure 7.28: Fit using Hill equation of degree of ionization for nGHAEGc sequence from
CG simulation, NPCE. An explanation of the individual labels can be found in Figures

6.1 and 6.3.

pH
0.0

0.2

0.4

0.6

0.8

1.0

de
gr

ee
 o

f i
on

iza
tio

n,
 

nGHAHGc, PCE

H HH+DHc
H input pKa+DHc
H2 fit HH
H4 fit HH
H2 CG
H4 CG

3 4 5 6 7 8 9
pH

0.025
0.000
0.025

re
s

c(salt): 0.15 mol/l
c(peptide): 0.0077 mol/l

Figure 7.29: Fit using Henderson-Hasselbalch equation of degree of ionization for
nGHAHGc sequence from CG simulation, PCE. An explanation of the individual labels

can be found in Figures 6.1 and 6.3.
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Figure 7.30: Fit using Henderson-Hasselbalch equation of degree of ionization for
nGHAHGc sequence from CG simulation, NPCE. An explanation of the individual

labels can be found in Figures 6.1 and 6.3.
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Figure 7.31: Fit using Hill equation of degree of ionization for nGHAHGc sequence from
CG simulation, PCE. An explanation of the individual labels can be found in Figures

6.1 and 6.3.
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Figure 7.32: Fit using Hill equation of degree of ionization for nGHAHGc sequence from
CG simulation, NPCE. An explanation of the individual labels can be found in Figures
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Figure 7.33: Various pKa sets. An explanation of the individual labels can be found in
Figures 6.9.
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