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Abstract: Moran process is a model used in evolutionary dynamics to study
natural selection. In this process, a population of individuals evolves in steps.
In one step a random individual is selected with probability proportional to its
fitness and spreads to its randomly selected neighbor. The classical course of
study is to consider an individual with a hereditary mutation and examine the
fate of this mutation in time.
This thesis investigates a modified version of the Moran process that corresponds
to the strong selection, as in the dynamics of invasive species. In this process, only
the mutant individuals spread and eventually conquer the whole population. The
key quantity that we study is the so-called fixation time, which is the expected
time until all individuals become mutants.
We give tight upper and lower bounds for fixation time on a general population
structure and refine them for some classes. Additionally, we compute the precise
fixation times on some specific population structures.
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Abstrakt: Moranův proces je model, který se používá v evoluční dynamice ke
studiu přírozeného výběru. V tomto procesu máme populaci jedinců, která se
vyvíjí v krocích. V jednom kroku je vybrán náhodný jedinec s pravděpodobností
úměrnou své zdatnosti (fitness), a ten se rozšíří do svého náhodně vybraného
souseda. Klasickým předmětem studia je uvažovat jedince s dědičnou mutací a
zkoumat osud této mutace v čase.
Tato práce se zabývá upravenou verzí Moranova procesu, která odpovídá silné
selekci, tak jako je tomu například v dynamice invazivních druhů. V tomto procesu
se rozmnožují pouze mutantní jedinci, kteří nakonec ovládnou celou populaci.
Klíčovou veličinou, kterou studujeme, je tzv. čas fixace, tedy očekáváná doba než
se všichni jedinci stanou mutanty.
V práci ukazujeme těsné horní a dolní odhady na čas fixace pro obecnou strukturu
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fixace pro některé konkrétní struktury populace.
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1 Introduction
Imagine a homogeneous population of some individuals that evolves in time.

The individuals reproduce at some given rate, and the new offsprings gradually
replace others. Suppose that, at some point, one individual acquires a hereditary
mutation that affects its reproductive rate. This mutation may evolve in many
ways; its frequency fluctuates; maybe at some point many individuals have this
mutation, and at other times it is rare. But eventually, the mutation either spreads
throughout the whole population or goes extinct. Depending on the reproductive
advantage of the new mutation and the population structure, we may investigate
the probable fates of this mutation. For example, how likely this mutation is
to conquer the whole population or how long it will take in expectation. These
quantities are called fixation probability and fixation time, respectively.

One of the classical tools to model natural selection and evolution is the
so-called Moran process. This process was first introduced by P. A. P. Moran in
the late ’50s [1] and considers a well-mixed population with n individuals. That
is, each individual directly interacts with all the others. The key parameter that
affects the outcome is the relative strength of mutant selection r with respect to
the background residents. For fixed r > 1 and large n it can be shown that the
fixation probability tends to 1 − 1

r
and the fixation time scales roughly as n log n.

In 2005 the model was extended in a way that the population structure is
represented by a graph [2]. The vertices correspond to the individuals and the
edges to the interactions between them. The standard Moran process with the
well-mixed population thus corresponds to the complete graph. Since then there
has been extensive research regarding fixation probability considering different
population structures and different values of the mutant advantage r. For example,
the limit r → 1 called weak selection corresponds to the setting where mutants
have only marginal advantage [3]. For any fixed r > 1 there are structures
called amplifiers that increase the fixation probability of mutants, see [4, 5]. Less
is known about the fixation time. The fixation time on undirected graphs is
polynomial as shown in [6]. On the other hand in the case of directed graphs it
can be exponential [7]. For more information about the Moran process on graphs
see [8] for a recent survey.

In this thesis, we study the Moran process in the limit r → ∞. Concretely, we
imagine some super advantageous mutation such that once this mutation arrives,
only the individuals with this mutation reproduce. This can also be viewed as
the arrival of an invasive species into an environment where the species lacks a
natural predator. For most sensible population structures this kind of mutation
always eventually expands throughout the whole population, thus the fixation
probability is equal to 1. Because of that, our main interest will be to investigate
the fixation time.
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1.1 Preliminaries

Moran process
Our model consists of a graph G (directed or undirected) representing a

population structure. The vertices of G denoted by V (G) correspond to the
individuals in the population. Two vertices directly interact if one is a neighbor of
the other, meaning there is an edge between them. At any point, the individual
associated with a given vertex can be either a mutant or a resident. Let us call a
setting where a particular subset of vertices are mutants as a state. More formally:

Definition 1. We call a tuple (G, M) a state where G is a directed or undirected
graph representing a particular population structure. And M ⊆ V (G) is the set of
mutant vertices. Then, V (G) \ M is the set of resident vertices. We will usually
denote |V (G)| = n the number of individuals in our population.

The population evolves in time, transiting to different states according to the
so-called Moran birth-death process. Considering some fixed value r, every vertex
has assigned a fitness value (the rate at which it reproduces). The fitness is r > 1
for mutants, and 1 for residents (regardless of the vertex position in the graph G).
We will refer to this Moran process with finite r > 1 as a finite case. One step
of the classical Moran birth-death process consists of two phases – selection and
reproduction (sometimes also called birth and death). In the selection phase, an
individual u for reproduction is selected proportionally to its fitness. Then, in the
reproduction phase, it chooses a uniformly random neighbor v in the graph G
into which it spreads. That means if u is a mutant, then v becomes a mutant,
and if u is a resident, then v becomes a resident. Note that if both u and v are of
the same type, the state doesn’t change. Otherwise, the new state is the same
except for exactly one vertex.

Figure 1.1 One step of the Moran process.

These steps are repeated until the process reaches absorption, that is until all
of the vertices become mutants (a state known as fixation) or all of them become
residents (a state known as extinction). Note that on a general graph, the process
may never be absorbed. However, we will consider only those population structures
such that the absorption happens with probability 1. Once the absorption is
ensured, we may investigate some values associated with it. The probability that
the process ends in fixation is called fixation probability. We can also consider a
random variable counting the number of steps until the process reaches absorption.
The expected value of this variable is then called absorption time. Similarly, we
define the fixation time to be the expected value of the same random variable
conditioned on the fixation event. That means we look only at those trajectories
that end in fixation.
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Moran process at r → ∞
In this thesis, we consider a modified version of the classical Moran birth-death

process, which captures the idea of a strong selection of mutants, meaning that
only mutants can reproduce.

We define two different processes that capture this idea. They differ in the
probability that a particular mutant vertex is selected for reproduction. The first
process corresponds to the scenario when we pick a uniformly random vertex, and
then if it is a mutant, it reproduces; otherwise, we pick again.

Definition 2 (Continuous process). Consider a given graph G and its state (G, M).
One step of the continuous process is defined as follows:

1. (birth) A uniformly random vertex is selected. If it is a mutant, it reproduces
and continues to the death phase. However, if it is a resident, nothing
happens and we repeat this phase. Thus a particular mutant vertex m ∈ M
is selected for reproduction with probability 1

|V (G)| and the probability that
some mutant vertex is selected is |M |

|V (G| .

2. (death) A neighbor u of m is selected uniformly at random and m spreads
into u. The probability of picking a given neighbor u of m is thus 1

deg(m) .

Alternatively, we can consider only those steps at which a mutant vertex is
picked in the birth phase. This process can also be obtained as the limit of the
Moran birth-death process when considering r → ∞.

Definition 3 (Limit process). Consider a given graph G and its state (G, M).
One step of the limit process is defined as follows:

1. (birth) A mutant vertex m ∈ M is selected for reproduction with probabil-
ity 1

|M | .

2. (death) A neighbor u of m is selected uniformly at random and m spreads
into u. The probability of picking u is thus 1

deg(m) .

In Chapter 5, we argue why we think the first process is more natural, and
thus, we will consider it to be the default one.

Note that in these processes once a vertex becomes mutant it stays mutant
forever. Therefore absorption occurs if and only if fixation occurs. Hence, if some
resident vertex is not reachable by a path from any mutant vertex, the process
never ends in absorption. We will thus consider only these starting states:

Definition 4. A starting state is a state (G, M) such that for every resident
vertex u ∈ V (G) \ M there exists a path from some mutant vertex v to the vertex u
(directed path if G is a directed graph).

If the process begins in a starting state, with probability 1 it ends in fixation
in finite time. Note that for undirected graphs, all states are starting states if and
only if the graph G is connected (for disconnected graphs, no states with exactly
one mutant are starting states). We will often consider starting states that consist
of only one mutant vertex.
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Similarly to the classical Moran birth-death process, we can consider the
absorption and fixation times. Because in this particular case, the process ends
in fixation with probability one, the absorption and fixation time coincide. Both
of them count the expected number of steps until all vertices become mutants.
We will denote by T(G, v) the fixation time under the continuous process with
starting state (G, {v}). Similarly, we denote an analogous quantity by TL(G, v)
for the limit process. We will often study the worst-case scenarios in order to
prove upper bounds on the quantities T(G, v) and TL(G, v). Thus we also denote
T(G) = maxv∈V (G) T(G, v) the maximum expected fixation time over all starting
vertices and similarly TL(G) = maxv∈V (G) TL(G, v).

Note that in each step of both of these processes, the new state either remains
the same or gains a new mutant. Hence, we are gaining the mutants one by one,
and thus we can divide the steps of the process into stages.

Definition 5. Let us fix a starting state (G, {v}). We break the time needed
for all the vertices to become mutants into n − 1 stages. One stage consists of
gaining one more mutant, meaning in stage k, we start with k mutants and end
with k + 1 mutants. With a slight abuse of notation we denote the probability of
gaining a new mutant in stage k as Pk and the expected time until this happens as
E[tk] = 1

Pk
. Formally, this depends not only on k but also on the current state.

To distinguish the steps in which the state does change from those when it
doesn’t, we define the notion of an active edge and an active vertex:

Definition 6. An active edge is an edge between a mutant vertex and a resident
vertex. An active vertex is a vertex that is incident to at least one active edge.

With these definitions, we can show our first result. It states that the limit
process is always the same or faster than the continuous one.

Theorem 1. For any graph G (directed or undirected) and any vertex v we have
T(G, v) ≥ TL(G, v).

Proof. Consider any configuration X of nodes currently occupied by mutants.
Denote the number of mutants by |X| = k. Recall that Pk is the probability of
gaining a mutant in a single step in the continuous process. Similarly, for the
limit process, denote the probability of gaining a mutant in a single step by P L

k .
We claim that Pk = k

n
· P L

k . Indeed, in the continuous process, the probability
of picking a particular mutant for reproduction is 1

n
, whereas it is 1

k
in the limit

case. Plugging in k ≤ n we find Pk ≤ P L
k and so E[tL

k ] ≥ E[tk]. As this holds for
any k and any mutant configuration X with k mutants, we get the desired result
T(G) ≥ TL(G).

Remark. Throughout this text, we will also use the asymptotic notation o(·), O(·),
Ω(·) and Θ(·) to denote that some function f is asymptotically strictly smaller
than some other function g (denoted f = o(g)), asymptotically smaller than or
equal to (f = O(g)), asymptotically larger than (f = Ω(g)) and asymptotically
equal to (f = Θ(g)). We will also use the symbol ≈ to denote ”approximately
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equal to,” meaning f(n) ≈ g(n) if f(n) = g(n) + o(g(n)). For example 1
2n2 + 3n =

o(n3) = O(n2) = Ω(n log n) = Θ(n2). For more details, see [9].
In the later chapters, we also use Hn to denote the harmonic number. That is

the partial sum of harmonic series, meaning Hn = ∑︁n
k=1

1
k

≈ log n.

1.2 Results and organization of the thesis
In this work, we study the behavior of the continuous and limit processes.

In the second chapter, we give upper bounds on its fixation times. We show a
general upper bound O(n3) that applies to all spatial structures (that is, for both
directed and undirected graphs) and prove it is tight. This polynomial upper
bound contrasts with the Moran process with finite r > 1. As described in [7],
there exists an infinite family of directed graphs with exponential absorption time.

Then, we proceed by improving this upper bound to O(n2) for regular graphs
and to O(n2√n) for undirected graphs. We consider this to be nontrivial and one
of the most interesting results of this thesis. Note that this bound for general
undirected graphs doesn’t hold in the case with finite r > 1. As shown in [10],
there exists a graph (the double star graph) with fixation time Ω(n3). Also, the
best-known upper bound for the class of undirected graphs, in this case, is O(n3+ϵ)
for arbitrarily small ϵ > 0.

In the third chapter, we shift our attention to lower bounds. We prove the
asymptotical lower bound O(n log n) for both processes. Surprisingly, we also
show that the complete graph is not the fastest when counting the number of
steps precisely starting with a fixed mutant vertex. Our result also translates
to the case with finite (sufficiently large) r > 1. This contributes to the open
question of whether there exists a faster graph than the complete graph in terms
of absorption time (when averaging over all vertices as possible starting mutant
vertex) mentioned in [11] or stated as Open Problem 4 in [12].

In chapter four, we compute asymptotically precise fixation times for some
specific graphs. We show that the fixation time on the cycle is Θ(n2). On the
complete graph, it is Θ(n log n), the same as in the case of finite r > 1 [1]. The
star graph is the slowest undirected graph we found with fixation time Θ(n2 log n),
again the same as in the finite case. On the other hand, for the double star, the
fixation time is asymptotically as fast as for the star graph. This is not true for
the finite case, for which it can be shown that the fixation time of the double star
is at least Ω(n3) [10].

In the final chapter, we discuss the differences between the two notions of
time. We show that the two processes are really different by providing an example
of a graph on which the fixation times of the processes asymptotically differ.
Next, we show that the limit time is not necessarily monotone (see the details in
Section 5.2). With these observations, we argue why the continuous process is
more reasonable than the limit one.

We conclude with a summary of our results. We also state some open problems,
showing the direction of possible future research we find interesting.
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2 Upper bounds
2.1 General upper bound

By Theorem 1, the limit process is always faster (or as fast as) the continuous
process. Therefore, in this section, we prove the upper bounds for the continuous
process, which proves the bounds for both processes.

Theorem 2. Let Gn be a graph (directed or undirected) with n nodes. Then
T(Gn) ≤ 1

2n3 − 1
2n2 = 1

2n3 + o(n2).

Proof. We have at least one active vertex in the k-th stage and probability 1
n

to pick this vertex. Let us denote by a the number of active edges, and by b the
number of non-active edges incident to this vertex. We can have at most k − 1
non-active edges from this vertex, and so b ≤ k − 1. The probability of picking an
active edge incident to this vertex is thus a

a+b
≥ a

a+k−1 ≥ 1
k
. In total, that gives

us probability ≥ 1
n·k to gain a mutant in one step. The expected time until this

happens is thus at most nk in the k-th stage. When we sum this over all stages,
we get that the expected time is at most ∑︁n−1

k=1 nk = n · (n−1)·n
2 = 1

2n3 − 1
2n2.

Remark. As mentioned, the bound in Theorem 2 applies also to the limit process.
Using the same arguments for the limit process, we can improve the constant in
the bound to obtain TL(Gn) ≤ (n−1)·n·(2n−1)

6 = 1
3n3 + o(n3).

We proved that for every graph Gn on n vertices, the process will take at
most O(n3) time. This contrasts with the classical Moran process with finite
r > 1 which can be on some spatial structures exponential. Even more, the bound
in Theorem 2 is exactly tight. We identify the slowest population structure that
achieves this bound, concretely, the backward graph.

Definition 7 (Backward graph). For every n, consider a directed graph Bn defined
as follows: vertices are denoted {1, 2, . . . , n}, and there are forward and backward
edges. Forward edges are of the form (i, i + 1) for every i ≤ n − 1. Backward
edges lead between every pair of vertices (j, i) such that i < j (see Fig. 2.1).

Figure 2.1 Backward graph B6.

Theorem 3. For every n there exists a directed graph Gn and an initial mutant
node v of Gn such that T(Gn, v) = 1

2n3 − 1
2n2 = 1

2n3 + o(n2).
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Proof. We set Gn = Bn and v as the node labeled 1 (the leftmost node). It is
easy to see that in that case, we have to gain the vertices in the order 2, 3, . . . , n.
In the k-th stage, we always have one active vertex k with k − 1 non-active
(backward) edges and only one active (forward) edge. Therefore, in k-th stage,
the probability of gaining a new mutant is exactly 1

nk
(that means the bounds

used in Theorem 2 are satisfied with equality). And so the expected time until all
vertices become mutants is in total exactly n2·(n−1)

2 = 1
2n3 + o(n2).

Moreover, we can show that asymptotically, the bound is tight also for DAGs.
We use the half-path graph as an example of a DAG with the expected fixation
time O(n3).

Definition 8 (Half-path graph). For every even n = 2k, we define a half-path
graph (denoted as HPn) as a DAG with vertices {1, 2, . . . , n = 2k}, and edges
leading as follows: The edges form a path in the first half of the vertices, meaning
(i, i + 1) is an edge for i ∈ {1, 2, . . . , k − 1}. The second half is connected to every
vertex in the first half, meaning we have an edge (i, j) for all i ∈ {1, 2, . . . , k},
j ∈ {k + 1, k + 2, . . . , 2k} (see Fig. 2.2).

Figure 2.2 Half-path graph HP10.

Theorem 4. For every even n there exists a directed acyclic graph Gn and an
initial mutant node v of Gn such that T(Gn, v) = 1

4n3 + o(n2).

Proof. We set Gn = HPn and v as the node labeled 1 (the leftmost node). To get
to the state where all vertices are mutants, we must follow the path in the first
half of the vertices. This path has length k − 1, and the probability of gaining
one vertex on this path is 1

n(k+1) , so the expected time is n(k + 1). Altogether the
total expected time is at least n(k + 1)(k − 1) = n(n

2 + 1)(n
2 − 1) = 1

4n3 + o(n2).

We state two remarks.
First, in the proof, we don’t care how long it takes for mutants to claim the

second half of the vertices. Just looking at the first half of the vertices, it already
takes Ω(n3) time in expectation.

Second, for simplicity, the definition of the half-path graph considers only
even n, but it is easy to generalize this also for odd n. For n = 2k + 1, we can do
the same construction as for 2k and then add the vertex n + 1 to the second half

12



of the vertices, meaning that we also add the edges of the form (i, n + 1) such that
i ≤ k. Following the same arguments proves the same for this modified graph
with odd n.

2.2 A stronger bound for regular graphs
As we showed in the previous section, the expected time can be as large

as Ω(n3). In this section, we prove stronger upper bounds for particular classes of
graphs. First, we look at d-regular undirected graphs.

Theorem 5. Let Gn be a regular undirected graph with n nodes. Then T(Gn) =
O(n2).

Proof. The idea of the proof is as follows. We look at the stages in which
the mutants conquer the graph. A stage is fast if there are many active edges
compared to the regularity constant d. Hence, we care only about the slow stages
with a few active edges. But at the end of a slow stage, we gain a new mutant
such that necessarily most of this mutant’s neighbors are residents. As these new
active edges are all incident to one mutant vertex, their number can decrease only
by one per stage. That means that in the next d

2 stages, the number of active
edges will be large. Hence, we can aggregate the time spent on the one slow stage
with the upcoming d

2 fast stages and conclude that, on average, we spent linear
time per stage, thus giving us the desired bound O(n2).

More precisely, consider stage k and let ek denote the number of active edges.
As the graph is d-regular, the probability of gaining a mutant in stage k is ek

d·n .
The idea is to distinguish two cases: Either ek is large, and so the probability of
gaining a mutant is large as well; Or ek is small, but then the new mutant will
have many active edges, so if we look at the expected time needed to gain several
new mutants, the process will again be reasonably fast.

Formally, we distinguish two cases: either ek ≥ d
4 or ek < d

4 .

1. If ek ≥ d
4 , then the probability of gaining a new mutant is ek

d·n ≥
d
4

d·n = 1
4n

.

2. If ek < d
4 , then ek+1 ≥ 3

4d (because graph G is d-regular) and similarly
ek+2 ≥ 3

4d − 1 and so on until ek+ d
2

≥ d
4 + 1. For us it will be sufficient to

know that ∀i ∈ {1, 2, . . . , d
2} we have ek+i ≥ d

4 . Then ∀i ∈ {1, 2, . . . , d
2} we

get:

Pk+i = ek+i

d · n
≥

d
4

d · n
= 1

4n
,

and so E[tk+i] = d·n
ek+i

≤ 4n. Also, as d
4 > ek ≥ 1 we have Pk = ek

d·n ≥ 1
d·n and

so E[tk] ≤ d · n. Now we can sum the expected times for the next d
2 + 1

stages as:

E[tk] +
d
2∑︂

i=1
E[tk+i] ≤ dn +

d
2∑︂

i=1
4n = dn + 2dn = 3dn.

Now, we will compare the expected time of gaining a new mutant or mutants in
both of these cases with the case when ek = d

8 for every stage k.
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1. In the first case, if ek = d
8 , then Pk =

d
8

d·n = 1
8n

and so E[tk] = 8n ≥ 4n so
we see that it is greater or equal to the result in the first case.

2. In the second case we have Pk+i =
d
8

dn
= 1

8n
and so E[tk+i] = 8n. If we sum

this through the d
2 + 1 stages we get

d
2∑︂

i=0
8n = 4dn + 8n ≥ 3dn.

So again, we see that the expected time for gaining the next d
2 + 1 mutants

would be greater if it were the case ek = d
8 for all k.

Altogether, we see that our d-regular graph is not slower than if it was the
case that ek = d

8 for every stage k. But if all ek = d
8 , then the stage k has

expected time 8n and so expected time summed through all stages would be∑︁n−1
k=1 8n = 8n(n − 1) = O(n2). And as our d-regular graph is not slower than this

it follows that T(Gn) = O(n2).

Note that the constant in the big O doesn’t depend on the regularity constant d.
Also, in general, this asymptotic bound is tight because as we will show in
Theorem 10 it holds T (Cn) = O(n2), where Cn is the cycle on n vertices.

2.3 Relaxing the regularity condition
Next, we relax the condition of regularity to allow vertices to have degrees in

some fixed range [d, D].
Theorem 6. For undirected graph G with minimum degree d and maximum
degree D such that D ≤ c · d for some constant c ≥ 1 it holds T (Gn) = O(n2).

Proof. Very similar to the previous proof. Again, we distinguish two cases ek ≥ d
4

and ek < d
4 .

1. If ek ≥ d
4 , then the probability of gaining a new mutant is at least

ek

D·n ≥
d
4

cd·n = 1
4cn

.

2. In the case ek < d
4 let us denote d + x to be the degree of the mutant gained

after k–th stage. Clearly x ≥ 0. Then ek+1 ≥ d + x − d
4 = 3

4d + x. and
ek+ d

2
≥ d + x − d

4 − d
2 = d

4 + x and so again we get ∀i ∈ {1, 2, . . . , d
2}:

Pk+i = ek+i

(d + x) · n
≥

d
4 + x

(d + x) · n
≥ 1

4n
.

In the k–th stage, we have at least one active edge incident to the mutant
with a degree at most D. So Pk ≥ 1

D·n and E[tk] ≤ D · n. If we again sum
this together with E[tk+i] ≤ 4n we get similar sum as before:

E[tk] +
d
2∑︂

i=1
E[tk+i] ≤ Dn +

d
2∑︂

i=1
4n = Dn + 2dn ≤ cdn + 2dn = (c + 2)dn.

The average time spent per one stage in this case is thus at most (c+2)dn
d
2 +1 .
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Again we can compare it with the situation when ∀k ∈ {1, . . . , n − 1} : ek = d
8c

. In
this case, the probability of gaining a new mutant in one stage is at most

d
8c

dn
= 1

8cn
.

Hence, the expected time until this happens is at least 8cn. We want to show that
this time is slower than the average time at one stage in the original process. In
the first case, we get the inequality 8cn ≥ 4cn, which is always satisfied. In the
second case, we want to prove:

8cn ≥ (c + 2)dn
d
2 + 1

.

That is equivalent to 8c · dn + 16cn ≥ (2c + 4)dn. And as c ≥ 1, we have
8c ≥ 2c + 4, and thus the inequality is satisfied. So again, we see that our graph
is not slower than a graph with ek = d

8c
for all k. In this setting, the probability

of gaining a mutant at each step is at least
d
8c

Dn
≥ 1

8c2n
and the expected time for

one stage is thus 8c2n. Because the original process is faster than this, we get
T(Gn) = O(n2).

2.4 A stronger bound for undirected graphs
We have seen that for regular undirected graphs, we can get an upper bound

of O(n2). However, this cannot be generalized for all undirected graphs because,
as we prove in Theorem 12, there exists an undirected graph, notably the star, on
which the continuous process takes Ω(n2 log n) time in expectation. We prove a
slightly weaker bound here.

Theorem 7. Let Gn be an undirected graph with n nodes. Then T(Gn) ≤
4n2√n + o(n2√n) = O(n2√n).

Proof. Let d =
√

n be an auxiliary threshold value. Let us call any vertex with
degree ≥ d a large vertex. Vertices that are not large are called small. We will
prove that, on average, one stage takes roughly n

√
n steps (up to a constant).

Formally, consider stage k and let ek denote the number of active edges. We
distinguish several cases.

1. Suppose that ek ≥ 1
4d. For each active edge, the probability that the

reproduction event happens along precisely that edge is at least 1
n

· 1
n−1 ≥ 1

n2 .
Thus, the probability of gaining a new mutant in the next step is at least
Pk ≥

1
4 d

n2 = d
4n2 and the expected time until this happens is E[tk] ≤ 4n2

d
=

4n
√

n, where in the inequality we used d ≥
√

n.

2. Suppose that ek < 1
4d. Then, we have three sub-cases depending on the

situation of large resident vertices.

(a) There exists a large resident vertex with a mutant neighbor.
Call the large resident vertex v and its mutant neighbor u. Since
ek < 1

4d, at least d − ek > 3
4d of v’s neighbors are residents. We will
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prove that the expected time per stage over the next 1 + 1
2d stages is

at most 2n
√

n.
First, we wait until v becomes mutant. The probability that edge (u, v)
is selected for reproduction is at least 1/n2, which takes at most n2

steps in expectation.
Second, once v becomes a mutant, we wait until at least 3

4d of v’s
neighbors are mutants. Note that some of them might have become
mutants while we were waiting for v. Also, note that once 3

4d of v’s
neighbors are mutants, we have indeed gained at least 1 + 3

4d − 1
4d =

1 + 1
2d mutants. As long as at most 3

4d of v’s neighbors are mutants,
at least d − 3

4d = 1
4d of v’s neighbors are residents, and therefore

there are at least 1
4d active edges incident to v. The probability of

gaining a mutant in one step through one of these edges is thus at least
1
n

·
1
4 d

d
= 1

4n
, and so the expected time is at most 4n. In total, over the

next 1 + 1
2d stages we spend at most 1 · n2 + (1

2d) · 4n = n2 + 2nd steps.
The average time per stage is thus at most

n2 + 2nd
1
2d + 1 ≤ nd2 + 2nd

1
2d + 1 =

(1
2d + 1)(2nd)

1
2d + 1 = 2nd ≤ 2n

√
n,

where in the two inequalities, we used n ≤ d2 and d ≤
√

n.
(b) Case (a) does not occur, and there exists a large resident vertex some-

where in the graph.
We find and fix some shortest path v0, v1, v2, . . . , vl between a mutant
vertex and some large resident vertex. That is, v0 is a mutant vertex,
v1, v2, . . . , vl−1 are small resident vertices, and vl is a large resident
vertex. Then we wait until v1, . . . , vl and at least half of vl neigh-
bors become mutants. Note that since we consider the shortest path,
vertex vl initially has no mutant neighbors.
We proceed as in case (a). First, node v1 becomes mutant in at most n2

steps in expectation. Since vertices v1, . . . , vl−1 are small, each vertex
v2, . . . , vl becomes mutant in at most 1/( 1

n
· 1

d
) = nd steps in expectation.

Once the large vertex vl becomes mutant, we wait until at least d/2
of its neighbors are mutants. Using the same method as in (a), we
aggregate the first “slow” stage (in which v1 becomes mutant) and the
remaining (l − 1) + 1

2d ≥ 1
2d “fast” stages. By the same algebra as

in (a), the average time per stage will again be at most 2nd ≤ 2n
√

n
in expectation.

(c) Cases (a) and (b) do not occur; that is, all resident vertices are small.
Once this happens, we aggregate the time spent from this moment
on until all vertices become mutants. Therefore, this case happens
only once. Suppose it happens at stage k. We know that at this
point ek < 1

4d. First, we wait until all these ek edges are used for
reproduction. Each one of them is used after at most n2 steps in
expectations, so in total, we wait at most ek · n2 ≤ 1

4n2d ≤ 1
4n2√n

steps in expectation. From that point on, all active vertices will be
small vertices. As we computed in (b), the expected time until we use
an edge from a small vertex is at most nd ≤ n

√
n.
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In each case, we spend, on average, at most max(4n
√

n, 2n
√

n, n
√

n) steps per
one stage. Plus, once during the process, we wait at most 1

4n2√n steps in
case (c). Since there are n − 1 < n stages, the total expected time is at most
(n − 1) · 4n

√
n + 1

4n2√n = 4n2√n + o(n2√n) = O(n2√n).
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3 Lower bounds
3.1 Lower bound for the continuous process

First, we prove a general lower bound for both directed and undirected graphs.

Theorem 8. Let Gn be a graph (directed or undirected) with n nodes and v any
initial mutant node. Then T(Gn, v) ≥ n · Hn−1 = Ω(n log n).

Proof. To gain a new mutant, we must first pick a mutant vertex. In stage k,
the probability of picking a mutant is k

n
and therefore Pk ≤ k

n
and so E[tk] ≥ n

k
.

When we sum this up over the n − 1 stages, we get

T(Gn) ≥
n−1∑︂
k=1

E[tk] ≥
n−1∑︂
k=1

n

k
= n log n + o(n log n).

3.2 Lower bound for the limit process
Note that as we showed in Theorem 1, the limit process is always faster than

the normal process. So, when proving upper bounds, it was sufficient to prove
them only for the continuous process. When proving lower bounds, we consider
both processes separately. In the next theorem, we prove that the lower bound
for the limit process is asymptotically the same as in the previous theorem. As a
useful tool in the proof, we will use the notion of the temperature of a vertex.

Definition 9. Let Gn = (V, E) be a graph. A temperature of a vertex u, denoted
as temp(u), is defined as temp(u) = 1

n
·∑︁v,(v,u)∈E

1
deg(v) .

We note that ∑︁u∈V temp(u) = 1. The idea behind defining the temperature is
to measure how often a particular vertex is being replaced. Or, in other words,
up to a constant, how long would it take for this vertex to become mutant if all
its neighbors were already mutants.

Theorem 9. Let Gn be a graph (directed or undirected) with n nodes and v any
initial mutant node. Then TL(Gn, v) = Ω(n log n).

Proof. Let us refer to a vertex with temperature < 3
n

as a cold vertex and
denote the number of cold vertices by c. The remaining n − c vertices with
temperatures ≥ 3

n
are called hot. Let S be the sum of temperatures of all hot

vertices. Since S ⊆ V we get S ≤ 1. Therefore

1 ≥ S ≥ (n − c) · 3
n

n ≥ 3n − 3c

c ≥ 2
3n
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Let us now look at the process of gaining mutants and stop it at the moment
when there are exactly n

2 mutants. As c ≥ 2
3n there are at least 2

3n − 1
2n = 1

6n
resident vertices which are cold.

Now, we make the following observation: In stage k, the probability that a
vertex u becomes a mutant in the next step is at most n

k
· temp(u). To prove the

observation, let Mu
k be the set of all mutant neighbors of u in stage k. Then

the probability of gaining u in the next step is ∑︁v∈Mu
k

(︂
1
k

· 1
deg(v)

)︂
which is less

than or equal to the case when we sum this throughout all neighbors of u to get
1
k

·∑︁v,(v,u)∈E(Gn)
1

deg(v) = n
k

· temp(u). Hence, the observation is proved.
Let us look at the second half of the stages. In stage k ≥ n

2 the probability that
in the next step we gain a fixed cold vertex u is ≤ n

k
· temp(u) ≤ n

n
2

· 3
n

= 6
n
. Thus,

after half of the vertices become mutants, we have at least n
6 events (cold vertices

becoming mutants) each with probability ≤ 6
n
, and we have to wait until all of

these events happen. The best scenario is when there are only n
6 such vertices,

and each of them has probability 6
n
. The expected time until all of these events

happen can be then computed by using a coupon collector approach. Suppose
that i of these events already happened and let ti be the expected time until one
of the remaining n− i events occurs. In this case, we have the probability that one
of the non-happened events occurs to be pi =

(︂
n
6 − i

)︂
· 6

n
. Thus ti = 1

pi
= n

6·
(︁

n
6 −i
)︁ .

By linearity of expectation, the expected time until all of the events happen is:

t0 + t2 + · · · + tn−1 =
n
6 −1∑︂
i=0

n

6 ·
(︂

n
6 − i

)︂ = n

6

n
6 −1∑︂
i=0

1
n
6 − i

= n

6 · Hn
6

= Ω(n log n).

Hence, the expected time until all these events happen is Ω(n log n).

3.3 A graph faster than the complete graph
In this section, we describe a graph and a starting node such that the absorption

time is shorter than that on the complete graph in the continuous Moran process.
Note that in the continuous process, the fixation time and absorption time are the
same quantity because the process always ends with a fixation. Finally, we show
that this result translates also to the classical Moran process with sufficiently
large finite r.

Consider the following graph G11 with 11 vertices. The graph consists of three
layers such that the first two layers are independent sets of size 1 and 4 the third
one of size 6 is a complete graph. The edges between consecutive layers create
a complete bipartite graph. Let us denote the only vertex in the first layer as v.
See Fig. 3.1.

Given a graph and a starting node, the fixation or absorption time can be
computed exactly using numerical computation (see for example [13]). If we
compute this for the graph G11 and starting node v we find that T(G11, v) ≈
58.4975 while for the complete graph on 11 vertices it is T(K11) ≈ 58.5793. So
there exists a graph and a vertex v such that the continuous process on this graph
starting from v is faster in expectation than on the complete graph.

19



v

Figure 3.1 A 3-layer graph G11 with layers of sizes 1, 4, 6.

Similarly, for the limit process, we get TL(G11) ≈ 28.6494 while TL(K11) ≈
29.2896. Because the limit process corresponds to taking the limit of the mutation
fitness r → ∞ in the classical Moran process, this result also translates into
the Moran process with finite r > 1. That is, when taking suitably large r the
absorption time on the complete graph K11 is larger than on the graph G11 in the
classical Moran process. In figure Fig. 3.2 we can see the comparison between
these two absorption times plotted as a function of the mutation fitness r.
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Figure 3.2 Comparison between absorption times on complete graph K11 and the
3-layer graph G11. The plotted values of r are integers between 2 and 100.

The question of whether the complete graph is the fastest in terms of absorption
or fixation time has been raised before. For example, in [12], the stated Open
Problem 4 asks the question of whether there exist graphs that are faster than
the complete graph in terms of the absorption time. Here, we found a graph and
a particular starting mutant vertex such that it is indeed faster. Note that the
overall absorption time (which is average through all vertices) on this particular
graph G11 is not faster than on the complete graph.
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4 Specific graphs
In this chapter, we show how fast is the continuous process for some specific

graphs. We analyze cycles, cliques, star graphs, double stars, and total order
graphs.

4.1 Cycle
Theorem 10 (Cycle). Let Cn be a cycle with n nodes. Then T(Cn) = Θ(n2).

Proof. At each stage, the mutants cover a consecutive segment of the cycle.
Hence, at every time, there are exactly two active edges connecting the ends of
the mutant segment with the rest of the cycle. To pick an active edge we need to
select the incident mutant which is done with probability 1

n
and then pick this

particular edge. But because the degree of each node is 2 this has probability 1
2 .

The two active edges are thus picked with probability 2 · 1
n

· 1
2 = 1

n
independently of

the stage number. The expected time until we gain a new mutant is then always n.
Because we have n − 1 stages, in total the expected time is n(n − 1) = Θ(n2).

4.2 Clique
Theorem 11 (Complete graph). Let Kn be a complete graph with n nodes. Then
T(Kn) = 2(n − 1) Hn−1 = Θ(n log n).

Proof. In the k-th stage, we have the probability k
n

of picking a mutant vertex.
Every mutant vertex then has n−k active edges. Hence, the probability of picking
one is n−k

n−1 . In the k-th stage, the probability of gaining a mutant is thus k·(n−k)
n·(n−1)

and the expected time until this happens is E[tk] = n·(n−1)
k·(n−k) = (n − 1) · ( 1

k
+ 1

n−k
).

Summing this over all stages, we get:

T(Kn) =
n−1∑︂
k=1

(n − 1) ·
(︃1

k
+ 1

n − k

)︃
= (n − 1) · 2 ·

n−1∑︂
k=1

1
k

= 2n log n + o(n log n).

4.3 Star and double star graphs
Definition 10 (Star graph). For every n = k + 1, we define a star graph (denoted
as Sn) as an undirected graph with vertices {1, 2, . . . , n = k + 1}. We call the
vertex k + 1 to be the center and all the other vertices to be leaves. The edges
connect all leaves to the center, meaning that for every i ∈ {1, . . . , k} the pair
(i, k + 1) is an edge (see Fig. 4.1a).
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The double star graph can be obtained by gluing two copies of the same star
graph together.

Definition 11 (Double star graph). For every even n = 2k + 2 ≥ 4, we de-
fine a double star graph (denoted as Dn) as an undirected graph with vertices
{1, 2, . . . , n = 2k + 2}. This graph is obtained by taking two star graphs, one
with center k + 1 and leaves 1, 2, . . . , k and the other one with center 2k + 2 and
leaves k + 2, . . . , 2k + 1 and joining them by an edge connecting their centers
(k + 1, 2k + 2) (see Fig. 4.1b).

(a) Star graph Sn (b) Double star graph Dn

(c) Complete graph Kn (d) Total order graph TOn

Figure 4.1 Specific graphs.

Next, we prove the asymptotic fixation times on star and double star graphs.
Note that the star graph is the slowest unoriented graph we found for the continuous
process. We also prove that the double star is asymptotically as fast as the star.
However, for the Moran process with finite r > 1, this is not true. In the finite
case, it can be proven that the star takes Θ(n2 log n) time and double star at
least Ω(n3).

Theorem 12 (Star graph). For a star graph Sn with n nodes and any initial
mutant node v we have T(Sn, v) = Θ(n2 log n).

Proof. The first stage takes n steps on average. After that, it is always the case
that mutants occupy the center of the star and one leaf, no matter where the
initial mutant started. In the k-th stage (k ≥ 2), there are k − 1 mutant leaves
and n − k non-mutant leaves. The probability of gaining a new vertex is therefore
1
n

· n−k
n−1 . The expected time until this happens is thus n·(n−1)

n−k
. If we sum this up

over all the stages, we get the following:
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T(Sn) =
n−1∑︂
k=1

n · (n − 1)
n − k

= n · (n − 1) ·
n−1∑︂
k=1

1
n − k

= n · (n − 1) ·
n−1∑︂
k=1

1
k

= n2 log n + o(n2 log n).

Theorem 13 (Double star). For a double star graph Dn with n = 2k + 2 ≥ 4
nodes and any initial mutant node v we have T(Dn, v) = Θ(n2 log n).

Proof. Let us denote the two centers of the double star as x1 and x2. WLOG, we
start in the left half of the graph. Let us divide the process into two phases.

The first phase will end when we gain the vertex x2, and the rest of the
process will be the second phase. The expected time of the first phase is surely
≤ n

k+2 · T(Sk+2) ≤ 2 · T(Sn) = Θ(n2 log n), because we can look at the left star
with center x1 and its neighbors (including x2) as a star graph with k + 2 vertices.
The constant n

k+2 is there to adjust to the fact that the probability of picking a
particular vertex in the double star is 1

n
whilst it is 1

k+2 in the star Sk+2 .

x1 x2 x

D2k+2 S2k+1

Figure 4.2 A double star D2k+2 and its comparison to star S2k+1 in the second phase.

In every stage in the second phase, the vertices x1 and x2 are already mutants
and also some leaves. Suppose there are a mutant leaves next to x1 and b mutant
leaves next to x2. We want to compare this process with the process on a star
graph S2k+1 with mutant center x and a + b mutant leaves. Then, the probability
of gaining one more mutant in the next step in the double star case is:

1
n

· k − a

k + 1 + 1
n

· k − b

k + 1 = 2k − a − b

n(k + 1) .

On the other hand in the star graph S2k+1 in stage m + n + 1 the probability is:

1
n − 1 · 2k − a − b

2k
.
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We would like to know when the first probability is larger, for that we can compare
only the denominators:

1
n(k + 1) ≥ 1

(n − 1) · 2k

(n − 1) · 2k ≥ n(k + 1)
2nk − 2k ≥ nk + n

nk − 2k − n ≥ 0
(n − 2) · (k − 1) = 2k · (k − 1) ≥ 2

The last inequality is true whenever k > 1. The probability of gaining a mutant
in the double–star case is thus always greater than the probability of gaining
a mutant in the star graph. So altogether, we see that the second phase has
expected time at most T(S2k+1) = T(Sn−1) = Θ(n2 log n). Both phases of the
double star graph together thus have expected time O(n2 log n).

For the lower bound it is sufficient to notice that the double star contains the
star graph Sk+2 as a subgraph (with center x1 and its neighbors) as we did in
the first phase above. The fixation time of the double star is thus at least the
expected time until mutants gain this subgraph Sk+2. This we already computed
in the upper bound of the first phase and it is n

k+2 · T(Sk+2) = Θ(n2 log n).

4.4 Total order graph
Definition 12 (Total order graph). For every n, we define a total order graph
(denoted as TOn) as a directed graph with vertices {1, 2, . . . , n} and edges (i, j)
for every i, j ∈ {1, 2, . . . , n} such that i < j (see Fig. 4.1d).

Theorem 14 (Total order). For a total order graph TOn with n nodes and a
mutant node v being the first node we have T(TOn, v) = Θ(n2).

Proof. First, we prove the lower bound T(TOn) = Ω(n2). The probability that
in a single step, the first resident vertex becomes mutant is 1

n·(n−1) . The expected
time until this happens is n · (n − 1) = Ω(n2). Thus T(TOn) = Ω(n2) as required.

Second, we prove the upper bound T(TOn) = O(n2). It is sufficient to prove
the bound for n of the form n = 2k, so suppose our n is a power of 2. We divide
our n vertices into k + 1 blocks from left to right, and we index them from zero
(as block 0, 1, 2, . . . , k). The sizes of the blocks will be 1, 1, 2, 22, 23, . . . , 2k−1. We
begin with the first vertex; therefore, the zero block is already mutant. In step i,
we wait until the vertices in the i-th block become mutants. There are 2i−1 vertices
in the block i and 2i−1 vertices in the previous blocks 0, 1 . . . , i − 1. Therefore,
before any mutant in the i-th block is present, there are 2i−1 · 2i−1 active edges
incident to i-th block. The probability of using one particular edge is at least 1

n2

and so the probability of gaining one vertex from the i-th block is at least 2i−1·2i−1

n2 .
After gaining one mutant we have 2i−1 · (2i−1 − 1) active edges incident to i-
th block and generally after gaining m mutants this number of active edges is
2i−1 · (2i−1 − m). The probability of gaining one more mutant in this situation
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is thus at least 2i−1·(2i−1−m)
n2 so the expected time until this happens is at most

n2

2i−1·(2i−1−m) . Together the expected time until all vertices in the i-th block become
mutants is then at most:

2i−1−1∑︂
m=0

n2

2i−1 · (2i−1 − m) = n2

2i−1 ·
2i−1−1∑︂

m=0

1
(2i−1 − m) = n2

2i−1 ·
2i−1∑︂
m=1

1
m

=

= n2

2i−1 · H2i−1 ≈ n2

2i−1 · (i − 1)

And if we sum this over all the blocks, the expected time until all vertices become
mutants is at most:

k∑︂
i=1

n2

2i−1 · (i − 1) = n2 ·
k−1∑︂
i=0

i

2i
≤ n2 ·

∞∑︂
i=0

i

2i
= 2n2 = O(n2).
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5 Comparison of the two notions
of time

In this chapter, we show that the two notions of time (limit time and continuous
time) are substantially different. In particular, we prove that on some graphs, the
continuous time is asymptotically larger than the limit one. Moreover, we show
that the limit time is not monotone in the sense described below.We interpret this
as an indication that perhaps the continuous time is more natural.

To illustrate these two claims, we use the lollipop graph as an example.
Definition 13 (Lollipop graph). For every n, consider an undirected graph Ln

defined as follows: vertices are denoted {1, 2, . . . , n}, and there are two parts of
the graph. The first part consists of vertices 1, 2, . . . ,

√
n and a path between them,

meaning there are edges (i, i + 1); ∀i ∈ {1, 2, . . . ,
√

n − 1}. The second part of the
graph is a clique, meaning there are edges (i, j); ∀i, j ∈ {

√
n + 1, . . . , n}. These

two parts are then connected by an edge (
√

n,
√

n + 1) (see Fig. 5.1).

1 2 · · ·
√
n

n−
√
n

Figure 5.1 A lollipop graph Ln on n nodes consists of a path of length
√

n that is
connected to a clique of size n −

√
n.

5.1 The two notions of time are different
First, we show that the limit time and the continuous time are substantially

different on this lollipop graph. The intuition is that when we fix a particular
state with k mutants, depending on the value of k the two processes become more
similar as k gets larger. That is for the continuous process the probability of
picking a mutant in stage k is 1

n
in comparison with 1

k
for the limit process. Hence,

if k is large (of order n), then these processes have probabilities scaled just by some
constant, but when k is small (sublinear to n) there is an asymptotic difference
between these probabilities. Hence, the limit process can be asymptotically faster
in these steps. With this intuition, the lollipop graph is chosen exactly in a way
to ensure this as we will see in the proof of the following theorem.
Theorem 15. There exists a graph Gn and an initial mutant node v of Gn such
that T(Gn, v) = Θ(n

√
n) while TL(Gn, v) = Θ(n log n).

Proof. We set Gn = Ln and v as the node labeled 1 (the leftmost node). To get
to the state where all vertices are mutants, we must first follow the path and then
spread through the whole clique.
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First, consider the continuous process. Vertex i in the first part will propagate
with probability 1

2n
if i ̸= 1 and with probability 1

n
if i = 1. Thus, the expected

time until the node
√

n + 1 becomes mutant is n +∑︁√
n

i=2 2n = 2n
√

n − n. Then,
similarly to Theorem 11, we can compute the expected time until all nodes become
mutants. When there are k mutants already in the clique, the probability of
gaining a new one is k

n
· n−

√
n−k

n−
√

n−1 , thus the expected time until this happens is
n
k

· n−
√

n−1
n−

√
n−k

= n · n−
√

n−1
n−

√
n

·
(︂

1
k

+ 1
n−

√
n−k

)︂
. Summing this over all k we get:

n · n −
√

n − 1
n −

√
n

·
n−

√
n−1∑︂

k=1

(︄
1
k

+ 1
n −

√
n − k

)︄
=

= n · n −
√

n − 1
n −

√
n

· 2 Hn−
√

n−1 ≈ 2n log n.

For the continuous process, the first part of the graph thus takes Θ(n
√

n)
steps, and the second part takes Θ(n log n) steps in expectation. Altogether, the
process takes Θ(n

√
n) steps in expectation as claimed.

For the limit process, we proceed similarly. In the first part, vertex i will
propagate with probability 1

2i
if i ̸= 1 and with probability 1 if i = 1. Thus, in total

the time until the node
√

n + 1 becomes mutant is in expectation 1 +∑︁√
n

i=2 2i =√
n · (

√
n − 1) − 1 = n −

√
n − 1 = Θ(n).

In the second part, the expected time can be computed in exactly the same
way as for the continuous process, only with the difference that when we have k
mutants in the clique already, the probability of picking a mutant node in the
clique is k√

n+k
instead of k

n
. Following the same algebraic modifications, we get

that the total expected time for the limit process in the second part is

n −
√

n − 1
n −

√
n

·
n−

√
n−1∑︂

k=1
(
√

n + k) ·
(︄

1
k

+ 1
n −

√
n − k

)︄
=

n −
√

n − 1
n −

√
n

·

⎛⎝2
√

n · Hn−
√

n−1 +
n−

√
n−1∑︂

k=1

(︄
1 + k

n −
√

n − k

)︄⎞⎠ =

n −
√

n − 1
n −

√
n

·

⎛⎝2
√

n · Hn−
√

n−1 +
n−

√
n−1∑︂

k=1

n −
√

n

k

⎞⎠ =

n −
√

n − 1
n −

√
n

· (n +
√

n) · Hn−
√

n−1 =

≈ n log n.

For the limit process, the first part of the graph thus takes Θ(n) step and the
second part takes Θ(n log n) steps in expectation. Altogether, the limit process
takes Θ(n log n) steps in expectation as claimed.

5.2 Limit time doesn’t have to be monotone
Next, we prove that the limit time is not necessarily monotone. That is, we

show that if we add additional mutants to the starting configuration, the expected
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time until fixation might increase, even asymptotically. When considering fixation
probability rather than the absorption time, this kind of monotonicity is sometimes
called subset domination and it is known that it is satisfied by the Moran process
with finite r > 1 on undirected graphs [7].

Theorem 16. There exists a directed graph Gn, an initial mutant node v of Gn

and a subset of vertices {v} ⊆ X ⊆ V (Gn) such that TL(Gn, v) = Θ(n log n) while
TL(Gn, X) = Θ(n

√
n).

Proof. Let us consider a directed lollipop graph L′
n, which is obtained from Ln

by orienting the edges in the first part from left to right, meaning we will have
directed edges (i, i + 1); ∀i ∈ {1, 2, . . . ,

√
n} on the path. The edges in the clique

remain undirected. Then we set Gn = L′
n,, the starting node v as the node

labeled 1 (the leftmost node), and X = {
√

n + 1, . . . , n} ∪ {v}. In other words, X
is a set containing all vertices of the clique and the starting node.

It is easy to see that TL(L′
n, v) is almost the same as TL(Ln, v), which we

computed in the proof of Theorem 15. The only difference is that along the path
we gain a new vertex with probability 1

n
instead of 1

2n
. Asymptotically this is the

same. Hence TL(L′
n, v) = Θ(n log n).

Now let us look at TL(L′
n, X). Since no edge is going out of the mutant clique,

the only way to turn all vertices into mutants is to follow the path in the first
half of the graph. As the out-degree of the nodes in this path is one, to infect the
(i + 1)-th node on this path, we need to pick its mutant predecessor i. If node i is
the last mutant along the path, it is picked with probability 1

n−
√

n+i
. Thus the

expected time until it happens is n −
√

n + i. Summing this over all vertices on the
path, we get that the total time until all vertices become mutants in this setting
is:

TL(L′
n, X) =

√
n∑︂

i=2
(n−

√
n+i) = (n−

√
n)·(

√
n−1)+

√
n · (

√
n + 1)

2 −1 = Θ(n
√

n).

Let us remark that considering the directed lollipop, starting with the clique
being mutant using the limit process is asymptotically as fast as considering
the undirected lollipop and using the continuous process with only one mutant
vertex. That makes sense because, for the continuous case, the first part of the
lollipop was the asymptotically slowest part. And as we previously observed the
probabilities of picking a mutant vertex in k-th stage between those two processes
become more similar as k gets larger. As we start with n −

√
n + 1 mutants in

the limit case, these probabilities are already quite similar.
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Conclusion
In this thesis, we studied the Moran process in the limit r → ∞. We introduced

two possible notions of time, the continuous one and the limit one, and stated
that we will use mostly the continuous one. We proved the upper bound of O(n3)
for the fixation time on arbitrary spatial structures. And we also identified the
exact slowest graph. Then we improved the bound to O(n2) for regular graphs
and to O(n2√n) for all undirected graphs. Note that for fixed finite r > 1 some
undirected graphs are slower than this, namely Ω(n3). We continued by showing
the lower bound O(n log n) for both processes. Moreover, we provided an example
of a graph and a starting vertex such that its fixation time is faster than on
the complete graph, both in the setting of limit r → ∞ and for sufficiently
large finite r. Then we computed the fixation times on some specific graphs and
obtained Θ(n2) for cycles, Θ(n log n) for complete graphs, Θ(n2 log n) for stars
and double stars, and Θ(n2) for total order graphs. In the end, we discussed
the differences between the two notions of time and argued why we think the
continuous one is more natural. The results are summarized in Fig. 5.2. The
lower orange area corresponds to everything below the lower bound and the upper
blue area corresponds to everything above the proved upper bound. Thus there is
no graph with fixation time in those areas.
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Figure 5.2 Summary of the proved fixation times. Lines correspond to the plotting of
the exact results proved in this thesis, dots correspond to numerical simulations. Both
plots are log-scaled.

5.3 Open questions
To conclude we discuss open questions. In general, we proved some upper

and lower bounds and for some of them we were able to show that they are tight.
However, there are still some bounds with a notable gap that could be improved.

We proved in Theorem 7 that the continuous process on every undirected
graph takes O(n2√n) time in expectation. We also showed in Theorem 12 an
example of a graph (the star graph) on which it takes Θ(n2 log n). So there is
a notable gap between this lower and upper bound. Is it really so that the star
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graph is the slowest one among the undirected graphs? If so, can it be proven that
the upper bound is also O(n2 log n)? And if not, what is the slowest undirected
graph instead? Note that double star, which is the slowest known undirected
graph in case of finite r > 1, is also only O(n2 log n). The computer simulations on
small graphs don’t show any other good candidate for the slowest graph, however,
that doesn’t imply anything when considering the asymptotics for large n.

Open problem 1. What is asymptotically the slowest undirected graph for the
continuous process?

Another direction is to consider the fastest graphs. As we showed in Section 3.3
there exists a graph and a node v such that the absorption time when starting from
this node v is shorter than that on the complete graph. Both when considering the
continuous process and the Moran process with sufficiently large finite r. There
appear to be many interesting questions worth exploring in this direction. For
instance:

Open problem 2. What is the fastest graph for the continuous process?

We found a particular 3-layer graph G11 on 11 vertices that is faster than K11 .
This result then translates into the classical Moran process with sufficiently large r.
Thus answering this open question might also help with understanding the finite
case which is generally more complicated.

Maybe a bit easier question might be to answer what is the fastest graph
among a particular class of graphs. The construction of a graph G11 may be
generalized to an arbitrary 3-layer graph consisting of three layers with sizes 1, a,
and n − 1 − a. Let us call this graph Gn,a. We again consider the first two
layers to be independent sets and the third layer to be a complete graph. The
edges between the consecutive layers create a complete bipartite graph. Thus the
graph G11 corresponds to this generalized 3-layer graph G11,4. Hence, we may ask
this simplified version of Open problem 2:

Open problem 3 (Subproblem of Open problem 2). If we fix the number of
vertices n, what is the best value of a? Meaning for which a is the 3-layer
graph Gn,a fastest?

The numerical simulations for small n seem to suggest that the optimal value
of a could be of order

√
n.

The other interesting direction would be to prove or disprove that in general
for every n the fastest 3-layer graph is indeed faster than the complete graph. If
this is true we could also ask how much faster. We know, as proved in Chapter 3,
that it cannot be asymptotically faster, but is it faster by a constant factor? And
if so, what is the constant?
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