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1. Introduction 
 

An exciting new field of study has emerged in recent decades. Machine 

learning has only just begun to influence everyday aspects of our lives and its impact 

has already been immense. The potential for its application is vast, including a 

plethora of scientific disciplines. And condensed-matter physics is no exception in 

this regard.  

Materials studied in condensed-matter physics, such as strongly correlated 

electron systems, typically have extremely complex phase diagrams [1, 2]. 

Moreover, the identification of distinct phases is a very complicated problem since 

the way in which to choose order parameters may not always be obvious. It happens 

that new phases are found even in materials or models that have already been 

investigated for decades [1, 3, 4]. Such was the case of the Anderson Insulator (AI) 

phase in the Falicov-Kimball model [5]. Sometimes, the information about the new 

phase may even be present in the old data, yet a conventional analysis may overlook 

it [6].  

The development of techniques capable of distinguishing distinct phases in 

these materials is therefore of a paramount importance in condensed-matter physics 

[7, 8, 9]. The rapid progress in machine learning (ML) methods and data analysis has 

led to the existence of methods and techniques that aim to do exactly that. Ideally, 

these methods should be unsupervised, meaning that they do not require any prior 

knowledge about the correct phase diagram. Because that way, we can discover new 

phases that were not discovered before.  

With exponential increase in memory and computing power that has been 

going on for several decades now, big datasets are readily available in many areas of 

modern science. As a result, data analysis has become an important part of a great 

number of research fields, including experimental particle physics, cosmology, 

quantum computing or biophysics. Experiments such as ATLAS and CMS at the 

LHC in CERN or cosmology projects like Sloan Digital Sky Survey are just a few 

examples of using big datasets and data analysis methods in modern science. 

Furthermore, ML and data science have also become key stones in many aspects of 

modern technology, such as image recognition, natural language processing, medical 

diagnostic [10], self-driving cars, biotechnology or smart devices [11].  

Recently, ML methods have started to become widely implemented in 

condensed-matter physics as well, although there have already been some isolated 

applications of machine learning in years prior. Together with Monte Carlo [12, 13, 

14] data, ML methods have been used in recognizing phase transitions [15, 16, 17, 

18, 19, 20] or to explore overcoming the sign-problem bottleneck [18].  

Both learning from labeled data (supervised learning) [15, 21], as well as 

learning from unlabeled data (unsupervised learning) [16] have been successfully 

applied in condensed-matter physics. The latter approach is especially appealing 

since it can be used to find patterns and structures without any prior knowledge about 

the underlying physics.  
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However, there are still challenges ahead. The ML methods are not always 

capable of finding all phase transition boundaries, as was evident from the article by 

Richter-Laskowska et. al  [22]. In this article, learning by confusion (LBC) method 

was applied to several different models, including the Falicov-Kimball model. 

Although the method was able to find the critical temperature for the continuous 

phase transition, it had problems finding it for the discontinuous phase transition. 

The critical temperature for the discontinuous phase transition was correctly 

determined for the Blume-Capel and the q-state Potts models, but not for the Falicov-

Kimball model [22]. This shows that even though ML methods perform good, they 

still do not always work ideally and it is therefore important to improve this methods 

or to develop new and better ones.  

1.1. State of the art 
 

One of the main objectives of many researchers in the field of condense-

matter physics is to develop algorithms that are capable of learning from data 

automatically. There have been quite a lot of ML techniques introduced, some of 

which were even successful to a lesser or greater extent. Here we focus on methods 

relevant to this study with the most important ones being later discussed in detail.  

One of them is learning by confusion (LBC), which was recently proposed in 

[17]. This approach utilizes methods of supervised learning in a clever way that 

allows it to make predictions without any prior knowledge about the data. The key is 

to label some of the data deliberately incorrectly, which leads to the confusion of the 

predictor, hence the name. Based on the amount of incorrectly labeled data, the 

predictor´s performance is better or worse, which can be used to discern correct 

labelling. This proved to be useful in determining the critical temperature of phase 

transitions without any prior knowledge, as has been done in [22].  

However, this approach is not without its difficulties, as it was recently 

shown for the Falicov-Kimball model [22]. In general, phase transitions are classified 

into two main classes, namely discontinuous (first-order) and continuous (second-

order). Although learning by confusion is capable of finding the critical temperature 

for the continuous phase transition, finding it for the discontinuous phase transition 

depends on the system, as has been demonstrated in [22], where the discontinuous 

phase transition was found for the Blume-Capel and the q-state Potts models, but not 

for the Falicov-Kimball model.  

Another example of an effective approach was the divergent vector field 

method, also called the prediction-based method. In this method, the difference 

between true parameters of the examined model and parameters inferred from some 

properties of the system is used to identify phase boundaries. This method was 

introduced in [23], where it was applied to the two-dimensional Ising model in 

equilibrium, and the dissipative Kuramoto-Hopf model out of equilibrium. This 

method was also successfully applied to several problems, such as symmetry-

breaking [23] or quantum, and topological phase transitions [24] in various systems.  
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The mean-based method, which was introduced in [6], is another great way of 

tackling the phase classification problem. This method builds on the prediction-based 

method mentioned above. The advantage of the mean-based method is that it, unlike 

other methods mentioned before, does not rely on a black-box predictive technique. 

Instead, it uses the difference between mean input features as an indicator for phase 

transitions [6]. As a result, it is computationally cheap and directly explainable.  

Principal component analysis (PCA) is a standard method used for 

dimensional reduction of the input data in ML. Nevertheless, it was recently shown 

that it can be utilized for an unsupervised investigation of phase transitions. In 

particular for studying phase transitions in the Ising, Blume-Capel, BSI and XY 

models [25]. This method is useful even if no obvious order parameter is present 

since it can bring out the subtle ones. This was the case for triangular-lattice Ising 

model (TLIM), as shown in [25]. The evolution of the principal component 

distribution can be used to distinguish between continuous and discontinuous phase 

transitions, which was also shown in  [25].  

A plethora of phenomena is commonly investigated using the Falicov-

Kimball model, such as crystallization [26, 27, 28], metal-insulator and valence 

transitions  [29, 30] or nonlocal correlations  [31, 32, 33, 34]. Also, thanks to its 

relative simplicity, this model has become a standard for the development of new 

methods for identifying phase transitions and distinguishing different phases in the 

context of strongly correlated systems [35, 36, 37, 38, 39, 40, 41, 42, 43, 44] and 

recently machine learning [41, 45]. 

 Unsupervised prediction-based methods built on deep learning, as well as the 

mean-based method (both already mentioned in the text above) have recently been 

applied to the Falicov-Kimball model to find phases in its rich ground-state phase 

diagram [6]. Furthermore, these methods led to more general approaches [46].  

 The aforementioned learning by confusion method was also applied to the 

Falicov-Kimball model [22], however it did not perform sufficiently well on this 

model, as it was not capable of finding the discontinuous phase transition in this 

model.  

 In this study, we show that several unsupervised methods, including methods 

that are simpler than LBC, can be used to correctly identify the phase transition 

boundary between the ordered and the disordered phase of the Falicov-Kimball 

model irrespective of the type of the phase transition. Moreover, some of these 

methods can also find other phase transition boundaries, namely the boundary 

between the weakly localized phase and the Anderson insulator phase.  

1.2. Outline of our research 
 

In our study we investigate the phase diagram of the Falicov-Kimball model, 

which describes a correlated electron system on a two-dimensional lattice and will be 

introduced in detail in the next chapter. This model is well known for its complicated 

phase diagram and as such presents a great test bed for the ML classification 

techniques.  
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We focus on three main techniques: principal component analysis (PCA), 

isometric feature mapping (Isomap) and the prediction-based method, which will all 

be described in further detail in the Model and Methods chapter. All of these 

methods were applied to the Falicov-Kimball model, which is one of the standard 

models in condensed matter physics, also used for example in  [6, 22, 23, 47]. The 

main advantage of this model is its relative simplicity, which is utilized for the 

development of new methods for identifying phase transitions and distinguishing 

different phases.  

Two different convolutional neural networks (CNNs) and one random forest 

regressor were used in this study as a predictor for the prediction-based method. All 

predictors are described in the Predictors subchapter (2.7 Predictors).  

The primary results of this study are: The ordered and the disordered phase in 

the Falicov-Kimball model are readily distinguishable when performing principal 

component analysis and the correct phase boundary can be easily found this way. 

Furthermore, the phase transition boundary between the weakly localized phase and 

the Anderson insulator phase (the WL-AI boundary for short) can be found using the 

PCA method as well.  

Isometric feature mapping (Isomap) can be used in a similar way as PCA to 

distinguish the ordered and the disordered phase two phases as well. Crucially, 

Isomap in combination with eigenenergies of electron configurations is capable of 

distinguishing the weakly localized phase and the Anderson insulator phase.  

Finally, the prediction-based method performed great in finding the phase 

boundary between the ordered and the disordered phase in the Falicov-Kimball 

model for several different predictors (neural networks or random forest regressor). 

This method was also capable of finding hints of the boundary between the WL and 

AI phases, although it was not as clear cut as the boundary between the ordered and 

the disordered phase.  

 

 

 

 

 

 

 

 

 

 

 

 

 



6 

 

2. Model and Methods 

2.1 Falicov-Kimball model  
 

A physical system examined in this study was a two-dimensional spinless 

Falicov-Kimball model (FKM). Originally proposed to explain the metal-

semiconductor transition in SmB6 and metal oxides [48], it is one of the simplest 

models used to describe interaction of correlated electrons with heavy localized 

particles.  

The main advantage of FKM comes from its accessibility by exact methods, 

because it is solvable exactly in the limit of infinite dimensions using dynamical 

mean-field theory (DMFT) [35, 44, 49, 50]. And in finite dimensions, it can be 

addressed by an exact, sign-problem-free Monte Carlo (MC) method [41, 42, 43, 51]. 

This is possible thanks to the fact that in the FKM, both quantum and classical 

degrees of freedom are combined [47].  

Moreover, there exist several simplified cases of the Falicov-Kimball model, 

which can be solved analytically even in finite dimensions. Examples of these cases 

include the non-interacting case (U = 0) and the staggered potential  

(𝑈 =  𝛥∑ (−1)𝑙𝑛𝑙𝑙 , where nl is the occupancy of the lattice site l). These cases are 

presented in the Attachments (A Attachments) to this study (the non-interacting case 

is shown in the Attachment A.1, the staggered potential in the Attachment A.2) 

Despite its relatively simple nature, research of this model has led to many 

new findings, even for the simplest spinless version of the model. For example, the 

interplay of topology and interaction at finite temperatures can be studied using 

simple generalizations of the FKM  [52]. Another important result was a derivation 

of universal features of the critical metal-insulator transition that are transferable to 

other Hubbard-like models  [53, 54].  

 

The Hamiltonian of the spinless FKM at half filling is [47]:  

 
𝐻𝐹𝐾 = −𝑡∑(𝑑𝑖

†𝑑𝑗 + 𝑑𝑗
†𝑑𝑖)

〈𝑖,𝑗〉

+ 𝑈∑(𝑓𝑖
†𝑓𝑖 −

1

2
)

𝑖

(𝑑𝑖
†𝑑𝑖 −

1

2
), (1) 

Where 𝑑𝑖
†(𝑑𝑖) and 𝑓𝑖

†(𝑓𝑖) are creation (annihilation) operators for light (d) particles 

and heavy (f) particles at lattice side i. For simplicity, from now on, we will call them 

f and d electrons, respectively. U is the Coulomb strength present at the site of 

interaction and t denotes the hopping integral. All energy values are expressed in 

terms of t in this study. Altogether, the first term represents a nearest-neighbor 

hopping of spinless d electrons on a lattice. The second term then describes a local 

Coulomb-like interaction between the localized f electron and an itinerant d electron 

on the lattice side i. The factors  in the second term are used to set the half-filling 

conditions  [6, 47] for chemical potential μ = 0.  

The phase diagram of this model (see Fig. 1) consist of three main phases. 

The first one is an ordered charge-density wave (CDW) phase (OP), from now on 
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referred to as the ordered phase, that exists at low temperatures [49, 50, 51, 55, 56]. 

The other two main phases are disordered: a gapless disordered phase for weak 

interaction U and high temperatures (DPw), and a gapped disordered phase for strong 

interaction U and high temperatures (DPs)  [35, 57]. These two disordered phases are 

also called a metal phase and an insulator phase  [58], due to the presence of a gap in 

the density of states (DOS) at the Fermi level in the case of the DPs phase (insulator) 

and the absence of such gap in the case of the DPw phase (metal or “metallic” 

phase), as can also be seen from the DOS subgraphs in Fig. 1 for distinct phases.  

However, the study of Antipov et al. revealed that this metal-insulator 

boundary may not be as clear as previously thought, because the "metallic" phase 

shows Anderson localization and, therefore, might be isolating in the thermodynamic 

limit as well [5]. At finite size, there is a smooth transition from Fermi gas at U = 0 

through the weak localization phase to the Anderson localized phase, which all form 

parts of the ”metallic” DPw phase. The schematic phase diagram from the cited 

study is also shown in Fig. 1.  

The main phases were identified both for finite, as well as infinite 

dimensions. However, other less prominent and less understood phases are present in 

the phase diagram as well. For example, the gaped and gapless regimes in the 

ordered phase [47, 59]. These phases are not shown in Fig. 1, because their 

boundaries are not yet fully known for finite dimensional system.  

 

 
 

Fig. 1: Left picture: Simplified phase diagram of the spinless FK model on a square 2D 

lattice with the ordered CDW phase (OP) and disordered phases in weak (DPw) and strong 

(DPs) interaction regimes. Typical d-electron DOS in respective phases are also shown  [6]. 

(Used with permission of the author).  

Right picture: Phase diagram of the particle-hole symmetric FK model, consisting of 

different phases: Fermi gas (FG) at U = 0, charge-density wave insulator (CDW) at a low 

temperature, and all nonzero values of U. High-temperature phases: Anderson insulator (AI) 

at intermediate values of U crossing over to a weakly localized (WL) at smaller U, Mott-like 

insulator (MI) at large U. The points and lines show phase boundaries; the dashed line 

indicates the first-order phase transition between WL and CDW phases. Inset: Extrapolation 

to the thermodynamic limit. 
"Reprinted figure with permission from A. E. Antipov, Y. Javanmard, P. Ribeiro and S. Kirchner, 

Physical Review Letters, vol. 117, 146601, 2016. 

http://dx.doi.org/doi:10.1103/PhysRevLett.117.146601  

Copyright 2023 by the American Physical Society." 

http://dx.doi.org/doi:10.1103/PhysRevLett.117.146601
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The properties of all phases play an important role when investigating a great 

number of physical phenomena, including metal-insulator and valence transitions  

[29, 60, 61, 62, 63], or localization and correlations [5, 33, 34, 47, 53, 64, 65].  

Finally, the type of phase transition in the Falicov-Kimball model depends on 

the U/t ratio. If the ratio is sufficiently small, the phase transition is discontinuous, 

whereas for interactions that are stronger than a critical value U*/t ≈ 1, the phase 

transition is continuous  [22].  

On top of that, the phase diagram of the Falicov-Kimball model becomes 

even more complex away from the half-filling [2, 66, 67]. Due to this complexity, 

the classification of the ground state phases was a long and difficult task that had to 

be done manually. This complex nature makes the model quite a challenge for 

unsupervised phase classification methods, but also makes it a good model to test 

these methods.   

2.2 Data generation  
 

The data used in this study were generated using a sign-problem-free Monte 

Carlo (MC) method  [12, 13, 14]. This method will be explained briefly in the 

following subchapter. For a given combination of temperature T and potential U, 20 

independent MC simulations were performed producing 20 different files. Each file 

consisted of 500 MC snapshots of the f-electron configurations and related d-electron 

densities, which were stored as row vectors. We are focusing on this type of data 

because it is a natural outcome of simulation. Also, this type of data can be easily 

accessed in some types of experiments, e.g., cold atoms trapped in optical lattices  

[68].  

In this study, four different lattice sizes in the Falicov-Kimball model were 

examined. The shapes of these lattices were 6 × 6, 8 × 8, 10 × 10 and 12 × 12. For 

brevity, these lattices will be denoted as L6, L8, L10 and L12 in the rest of the study.  

Multiple configurations were generated for different combinations of potential U and 

temperature T. The range of the temperature was (0.005, 0.300) with step 0.005, 

which means that 60 different temperatures were considered in this study. The range 

of potential U was (0.25, 12.0) with step 0.25, meaning 48 different values of 

potential. The values of both U and T are expressed in terms of the hopping integral 

t, as was already stated in the previous subchapter.  

2.2.1 Monte Carlo method for data generation 

We use the fact that the f-particle quantum number operators 𝑛𝑖
𝑓
, which are 

defined as: 𝑛𝑖
𝑓
= 𝑓𝑖

†𝑓𝑖, are good quantum numbers with respect to the Falicov-

Kimball Hamiltonian (1). Therefore, they can be replaced by their eigenvalues fi = 1 

or fi = 0 for occupied or unoccupied site respectively. The classical MC procedure 

[42, 43, 51, 69] was then used to sample over the space of possible f-configurations.  

 Quantum problem for d electrons is solved at each MC update by exact 

diagonalization:  
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𝐻𝑆
𝑓(𝒇) =∑ℎ𝑖𝑗(𝒇)𝑑𝑖

†𝑑𝑗 −
𝑈

2
(𝑁𝑓 −

𝐿2

2
)

𝑖,𝑗

=∑𝜆𝛼(𝒇)𝑏𝛼
†𝑏𝛼

𝛼

−
𝑈

2
(𝑁𝑓 −

𝐿2

2
) 

(2) 

where ℎ𝑖𝑗(𝒇) = 𝑈 (𝑓𝑖 −
1

2
) 𝛿𝑖𝑗 − 𝑡𝑖𝑗 and 𝑡𝑖𝑗 are the elements of hopping matrix which 

are one for nearest neighbors and zero otherwise. 𝑁𝑓 is the total number of f electrons 

and L2 is the number of lattice sites. The unitary transformation performed after the 

second equal sign expresses the diagonal matrix 𝜆𝛼(𝒇) of eigenvalues (in ascending 

order) of the Hamiltonian 𝒉(𝒇) for a particular f-electron configuration. This 

transformation can be written as 𝝀(𝒇) = 𝑼(𝒇)𝒉(𝒇)𝑼†(𝒇), where 𝑼(𝒇) is the matrix 

of eigenvectors.  

 We can calculate average occupancy of site j by d-electrons for given f-

electron configuration from the eigenvalues and eigenvectors using the following 

formula:  

 
〈𝑛𝑑
𝑗 (𝒇)〉 = ∑

𝑼𝑗𝛼(𝒇)𝑼𝛼𝑗
† (𝒇)

1 + 𝑒𝑥𝑝[𝛽𝜆𝛼(𝒇)]

𝐿2

𝛼=1

 
(3) 

 

where 𝛽 = 1/𝑇 is the inverse temperature of MC simulation and the sum goes over 

all eigenvalues.  

2.3 Principal component analysis 
 

Principal component analysis (PCA) is one of the most commonly used 

techniques in modern data science, being employed in such diverse fields as 

computer graphics and neuroscience  [70]. PCA serves as a dimension reduction 

technique and hence is a typical tool for reducing complex data sets into a lower 

dimension, which often helps to uncover underlying structures in data that show no 

obvious order. PCA performs its job by quantifying how important each dimension 

of the data is for describing the variance of the data set.  

A very important feature of PCA is that it is non-parametric. Therefore, it can 

be applied to any data set without the need to adjust any parameters. This also means 

that the method has no regard for how the data was recorded  [70].  

One of the main limitations of PCA comes from the fact that it is a linear 

method. Although the assumption of linearity is usually useful and makes the method 

simple, yet effective, it also limits its applicability. Therefore, non-linear patterns in a 

data set cannot be found using PCA.  

Another limitation of PCA is caused by assuming orthogonality of principal 

components. This decorrelates the data by removing second-order dependencies. 

However, if such dependencies exist in the original data, their removal leads to the 

situation where the reduced representation of the data is not optimal. A parametric 

approach known as kernel PCA can be used to solve this issue. In this approach, a 

prior knowledge about the problem is utilized by applying a nonlinearity (i.e., kernel) 
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to transform the data to the basis that is more appropriate and to which PCA can be 

better applied. However, since it relies on prior knowledge about the data, the kernel 

PCA technique was not used in this study, as our goal was to explore and utilize 

methods that work without any prior knowledge.  

 

Explanation of the method: PCA works by transforming data to a new coordinate 

system, therefore it can be defined as an orthogonal linear transformation  [71]. An 

easy intuition as to what PCA is comes from thinking about it as fitting a p-

dimensional ellipsoid to the data, where the length of each axis of the ellipsoid 

describes the importance of a principal component (the longer the axis, the more 

important the principal component). But before fitting the ellipsoid, its center needs 

to be found. It is natural for the center to be 0. Therefore, to center each variable 

around 0, the first step of performing PCA analysis is subtracting the mean of the 

variable's observed values from each of those values.  

Let then X be a n × p data matrix (with already transformed values centered 

around 0), where each of the p columns represents some feature and each of the n 

rows can be thought of as a different instance of an experiment. Here, the first of the 

assumption of PCA comes in play and that is linearity.  

We want to find another basis, which will be a linear combination of the 

original basis. This new basis should be able to best describe the data set used. Let 

then Y be a new data matrix (also n × p matrix), which is a new representation of the 

data set. Matrices X and Y are related by an equation: 

 
 

(4) 

where P is a linear transformation that was applied to matrix X. 

Geometrically speaking, P is a rotation and a stretch that was used to transform X 

into Y. Another way to interpret the equation above is that the rows of P, {p1,...,pm}, 

form a new basis of vectors for expressing the columns of X  [70]. 

 

 
Fig. 2: An example of data having high  

signal-to-noise ratio (SNR).  
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In order to find the good choice of basis P, more assumptions are needed. 

One of these assumptions is that large variances have important structure  [70]. For 

this assumption to be useful, we must also assume that the data has a high signal-to-

noise ratio (SNR), such as is the case for data shown in Fig. 2.  

This means that the data are not too noisy and that the variances are caused by 

the dynamics of interest. If we therefore maximize the variance (and also SNR), we 

find the appropriate rotation of the original basis.  

Next step in performing PCA is calculating a covariance matrix. For a m × n 

matrix X, the definition of the covariance matrix is:  

 𝑪𝑿 =
1

𝑛
𝑿𝑿𝑻 (5) 

The covariance matrix may help us in deciding whether some variables are 

redundant or not. Because the off-diagonal terms represent the covariance between 

different variables, they should ideally be zero, since then the variables are not 

correlated and are thus not redundant. This means that the covariance matrix should 

be a diagonal matrix.  

One way to achieve this for a matrix CY which is a covariance matrix 

calculated from Y, is for matrix P to be an orthonormal matrix, which is exactly what 

PCA assumes it to be. Then, the rows of P, {p1,...,pm} are the principal components, 

provided they are also ordered in such a way that the dimensions of Y are rank-

ordered according to variance. This rank-ordering aids us in determining the 

importance of each principal direction.  

As a side note, principal component analysis is closely related to another 

matrix factorization method, the singular value decomposition (SVD), as we only 

briefly show here. If we define the aforementioned matrix Y as: 𝒀 =
1

√𝑛
𝑿𝑻, then:  

 
𝒀𝑻𝒀 = (

1

√𝑛
𝑿𝑻)

𝑇 1

√𝑛
𝑿𝑻 = 

1

𝑛
𝑿𝑿𝑻 = 𝑪𝑿 

(6) 

 

Calculating SVD of Y gives us: 𝒀 = 𝑼𝜮𝑽𝑻, where the columns of V contain 

the eigenvectors of 𝒀𝑻𝒀 = 𝑪𝑿. The matrix 𝜮 has the variance of data 𝝈2 on its main 

diagonal. Since the principal components of X are the eigenvectors of 𝑪𝑿 as was 

mentioned earlier, the columns of V are the principal components of X. Therefore, 

finding the principal components is equivalent to finding an orthonormal basis that 

spans the column space of our original data matrix X  [70].  

Finally, it is worth noting that in the case of the Falicov-Kimball model, 

which was examined in this study, the explained variance ratio of the first component 

(termed the first explained variance ratio for brevity in any further text) plays the role 

of the order parameter. The explained variance ratio is the explained variance divided 

by the sum of all explained variances and is therefore normalized to one.  

Therefore, in the ordered phase, the first component explains almost 

everything and the first explained variance ratio is almost 1, and in the disordered 

phase, all components are important and so the first explained variance ratio goes to 

zero. Hence, the first explained variance ratio plays the role of the order parameter.  
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Furthermore, the explained variance ratio of the second component (the 

second explained variance ratio) plays the role of susceptibility.  

2.4 PCA Eigenpictures 
 

The idea behind this approach is that we can imagine that configurations for 

different U and T values are images of different faces and face recognition 

techniques can be performed on them.   

It was shown by Sirovich and Kirby that PCA can be applied to create a set of 

basis features given a collection of face images  [72]. These basis feature create basis 

images (also called eigenpictures) of the given collection of face images. Therefore, 

a linear combination of the basis images can reconstruct the original images in the 

collection. An example of eigenpictures of face images is shown in Fig. 3.  

 

 
Fig. 3: An example of eigenpictures of face images [73]. These 

eigenpictures were created from The Olivetti faces dataset [74].  

Since our data represent snapshots of f-electron configurations and related d-

electron densities on a 2-dimensional lattice, it is possible to reshape each snapshots 

into a 2-dimensional L times L array, where L is the size of the lattice. The snapshots 

can be therefore thought of as images (of electron configurations) with L times L 

pixels.  

Therefore, basis images of electron configurations that could reconstruct our 

original configurations can be created in the same way as if we had a collection of 

face images.  
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2.5 Isometric feature mapping 
 

Isometric feature mapping (Isomap) is a non-linear dimensionality reduction 

technique introduced in [75]. This method builds upon the PCA method (introduced 

in the previous section) and the multidimensional scaling (MDS) method. However, 

thanks to its non-linearity, the Isomap method is capable of finding patterns in the 

data that these linear methods are not able to discover  [76, 77, 78]. Finally, 

according to its authors  [75]: the Isomap algorithm “efficiently computes a globally 

optimal solution” and, given sufficient amount of data, “is guaranteed to converge 

asymptotically to the true structure.“ 

The Isomap algorithm consists of three steps  [75]: In the first step, distances 

in the input space between pairs of points are used to identify neighboring points on 

the manifold M and a neighborhood graph N is created using this information. The 

shortest path distances in this graph N are utilized in the second step to estimate 

geodesic distances between all pairs of points. In the last step, an embedding of the 

data in a p-dimensional Euclidean space is constructed with the aid of classical MDS.  

2.6 Prediction-based method 
 

The prediction-based method, which was introduced in [23], is a method used 

to identify phase boundaries. It was already successfully applied to the two-

dimensional Ising model and the dissipative Kuramoto-Hopf model [23].  

This method is based on using a predictor (such as a neural network) for 

learning parameters of the physical system depending on the state of that system. It 

then uses the deviation of these inferred parameters from the correct ones to predict 

phase transitions. This approach assumes that the predictions of the predictor will get 

more susceptible to the change of system parameters the closer to phase boundaries 

the system is. At this instant, the vector field divergence of predictions will reach its 

maximum, which suggests a presence of a phase transition.  

One of the advantages of this method is that it is economical in computational 

resources, because it requires only one training procedure. Crucially, no prior 

knowledge concerning either correct labels or even the number of different phases is 

required. Furthermore, it can be applied to phase diagrams of arbitrary parameter 

dimension [23].  

A predictor capable of resolving different phases is needed for this method to 

work. Unsurprisingly, increasing resolution of the predictor leads to more structure in 

the phase diagram being revealed. Typically, deep neural network (DNN) is used as 

such predictor to achieve a desired resolution. The disadvantage of DNNs is that its 

internal workings are usually unknown due to its hidden layers. This means that the 

predictor functions as a black-box model. It is also important for the predictor to be 

as good as possible. Therefore, we tested three different predictors, which we will 

discuss later in the 2.7 Predictors subchapter.  
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Explanation of the method: The predictor is trained in such a way that its 

predictions ppred inferred from the state of the system minimize the expectation value 

of the loss function L: 

 𝐿 =  |𝛿𝑝|2 (7) 

where δp = ppred – p0 is a difference between predicted and correct labels.  

 

If we assume that the predictor is capable of distinguishing between different 

phases, but not among the different states within the same phase, then the optimal 

choice to minimize the loss function is placing every prediction at its center of mass. 

As a result, prediction deviations near a phase boundary have opposite orientations. 

To quantify this property, the vector field divergence was introduced  [23]:  

 

𝑑𝑖𝑣(𝛿𝑝) = ∇ ∙ 𝛿𝑝 =  ∑
𝜕𝛿𝑝(𝑛)

𝜕𝑝0
(𝑛)

𝑑

𝑛=1

 (8) 

where n denotes the index of the vector and d is the dimension of the parameter 

space.  

Local maxima of (8) will generally occur at those parameter values, where the 

system state is most susceptible to the change of system parameters [23]. This 

suggests the presence of a phase boundary at these parameters.  

2.7 Predictors 
 

Two convolutional neural networks (CNNs) were used in this study as 

predictors for the prediction-based method: Simple neural network (SNN) and 

Modified SENet neural network (SENet), which will both be described in this 

section. A random forest regressor was applied as another predictor for this method 

and will also be described in this section.  

2.7.1 Neural Network basics 

 

In this part, some basic concepts concerning neural networks that were 

utilized in this study will be described. If the reader is already familiar with neural 

networks, this subsection may be skipped.  

2.7.1.1 Neural network 

 

Artificial neural networks are ML techniques that were inspired by biological 

neurons  [79]. Therefore, the basic unit of every neural network is called a neuron as 

well. Each neuron receives some input, from which it computes an internal potential 

z, which is a weighted sum of the input terms plus a bias term (also called threshold)  

[79]. Some activation function f is then applied to the internal potential, which 

determines the output value of the neuron. The use of activation functions ensures 

that a non-linear operation is performed on the input data, because without it the 
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neural network would just give a linear combination of its input. The formula for the 

output value 𝑎𝑗
(𝑙)

 of a j-th neuron in l-th layer is shown in (9): 

 𝑎𝑗
(𝑙)
= 𝑓(𝑧𝑗

(𝑙)
) = 𝑓(∑ 𝑤𝑗𝑘

𝑙 𝑎𝑘
𝑙−1 + 𝑏𝑗

𝑙𝑛
𝑘=1 ), (9) 

where 𝑧𝑗
(𝑙)

 is an internal potential of a j-th neuron in l-th layer, 𝑤𝑗𝑘
(𝑙)

 is weight 

of the connection between the k-th neuron of (l-1)-th layer and the j-th neuron of the 

l-th layer,  𝑏𝑗
(𝑙)

 is the bias of the j-th neuron in the l-th layer and 𝑎𝑘
(𝑙−1)

 is the 

activation of k-th neuron in the (l−1)-th layer 

Some examples of the most commonly used activation functions are Rectifier 

Linear Unit (ReLU), hyperbolic tangent (Tanh), Sigmoid activation function or 

Softmax activation function. Graphs of these activation functions are shown below in 

right part of Fig. 4.  

Typical neural network is comprised of several layers of neurons, with each 

layer consisting of hundreds or thousands of individual neurons. First layer of 

neurons is called an input layer, last layer of neurons is called an output layer and all 

the layers in between are called hidden layers. An example of a neural network is 

shown in Fig. 4. If each neuron from every layer is connected to all neurons of the 

next layer, the neural network is said to be fully connected.  

 

 

  

  

Fig. 4: Graphs of common activation functions (right) 

Structure of a fully connected neural network with 2 hidden layers (left).  

From “Machine Learning Tips and Tricks for Power Line Communication” by A. M. 

Tonello, N. A. Letizia , D. Righini, and F. Marcuzzi, IEEE Access, vol. 7, p. 82434-82452, 

2019. doi: 10.1109/ACCESS.2019.2923321 

CC BY 4.0 

Weights and biases for each neuron are adjusted during the process of 

training the neural network in such a way that the performance of the network is 

optimized. The learning of neural networks happens through a process called 

backpropagation.  

 First, a forward pass is performed, when prediction 𝒚 is made for each 

training instance x. Then, the loss function 𝐿(𝒚, 𝒚̂) is calculated. Commonly used 

loss function for regression problems is the mean squared error: 
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 𝐿(𝒚, 𝒚̂) =
1

𝑛
∑(𝑦𝑗 − 𝑦̂𝑗)

2
𝑛

𝑗=1

 (10) 

After the forward pass is complete, a reverse pass is made, which measures 

the error contribution of each connection. The derivates of the loss function L with 

respect to each weight and bias are calculated. First, we define error of j-th neuron in 

l-th layer as: 

 
𝛿𝑗
𝑙 =

𝜕𝐿

𝜕𝑧𝑗
𝑙 (11) 

 The error of output layer (l = L) is: 

 𝛿𝑗
𝐿 =

𝜕𝐿

𝜕𝑧𝑗
𝐿 =∑

𝜕𝐿

𝜕𝑎𝑘
𝐿

𝜕𝑎𝑘
𝐿

𝜕𝑧𝑗
𝐿

𝑘

=
𝜕𝐿

𝜕𝑎𝑗
𝐿

𝜕𝑎𝑗
𝐿

𝜕𝑧𝑗
𝐿 (12) 

We express errors 𝛿𝑗
𝑙 of hidden layers in terms of errors 𝛿𝑗

𝑙+1 of next layer:  

 𝛿𝑗
𝑙 =

𝜕𝐿

𝜕𝑧𝑗
𝑙 =∑

𝜕𝐿

𝜕𝑧𝑘
𝑙+1

𝜕𝑧𝑘
𝑙+1

𝜕𝑧𝑗
𝑙

𝑘

=∑
𝜕𝑧𝑘

𝑙+1

𝜕𝑧𝑗
𝑙 𝛿𝑗

𝑙+1

𝑘

 (13) 

Using formula for internal potential from (9), we can substitute for 
𝜕𝑧𝑘
𝑙+1

𝜕𝑧𝑗
𝑙 : 

 
𝜕𝑧𝑘

𝑙+1

𝜕𝑧𝑗
𝑙 = 𝑤𝑗𝑘

𝑙+1𝑓´(𝑧𝑗
𝑙) (14) 

Which gives us formula for errors of hidden layers:  

 𝛿𝑗
𝑙 =∑𝑤𝑗𝑘

𝑙+1𝑓´(𝑧𝑗
𝑙)𝛿𝑗

𝑙+1

𝑘

 (15) 

 This allows us to calculate the rate of change of the loss function with respect 

to any weight in the network:  

 
𝜕𝐿

𝜕𝑤𝑗𝑘
𝑙 = 𝛿𝑗

𝑙𝑎𝑘
𝑙−1,     

𝜕𝐿

𝜕𝑏𝑗
𝑙 = 𝛿𝑗

𝑙 (16) 

Where we used: 

 
𝜕𝐿

𝜕𝑤𝑗𝑘
𝑙 =

𝜕𝐿

𝜕𝑧𝑗
𝑙

𝜕𝑧𝑗
𝑙

𝜕𝑤𝑗𝑘
𝑙 = 𝛿𝑗

𝑙 𝜕

𝜕𝑤𝑗𝑘
𝑙 ∑[𝑤𝑗𝑖

𝑙 𝑎𝑖
𝑙−1 + 𝑏𝑗

𝑙]

𝑖

= 𝛿𝑗
𝑙𝑎𝑘
𝑙−1 (17) 

 

Finally, using equation (16) the connection weights 𝑤𝑗𝑘
𝑙  and biases 𝑏𝑗

𝑙  are 

changed using gradient descent method to reduce the error:  

 𝑤𝑗𝑘
𝑙 ← 𝑤𝑗𝑘

𝑙 − 𝜂
𝜕𝐿

𝜕𝑤𝑗𝑘
𝑙 ,            𝑏𝑗

𝑙 ← 𝑏𝑗
𝑙 − 𝜂

𝜕𝐿

𝜕𝑏𝑗
𝑙 (18) 

where 0 < η ≪ 1 is the learning rate.  
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2.7.1.2 Convolutional neural networks (CNNs) 

 

CNNs are another type of architecture of neural networks that in addition to 

previously mentioned fully connected layers use two additional layers: convolutional 

layers and pooling layers. These networks have been used in image recognition since 

1980s [79]. A typical architecture of a sequential CNN is shown in Fig. 5. Sequential 

means that several convolutional and pooling layers are applied in a sequence.  

 

 
Fig. 5: Typical network architecture of a sequential CNN 

From “Optimal Design of Convolutional Neural Network Architectures Using Teaching–

Learning-Based Optimization for Image Classification” by Ang, K.M.; El-kenawy, E.-S.M.; 

Abdelhamid, A.A.; Ibrahim, A.; Alharbi, A.H.; Khafaga, D.S.; Tiang, S.S.; Lim, W.H, 

Symmetry, vol. 14(11),  

p. 4, 2022. (https://doi.org/10.3390/sym14112323) CC BY 

 

Neurons in the first convolution layer are connected only to those pixels from 

the input that are in their receptive field. Neurons in next convolution layers are 

connected in a similar way and their receptive field always corresponds to a small 

rectangle in the previous layer 

Weights of neurons are represented by a matrix which has the size of the 

neuron´s receptive field. These matrices are called filters or kernels [79]. As was the 

case for weights and biases in the deep neural network, the weights in the kernels are 

learned automatically during the CNNs training.  

Similarly to convolutional layers, pooling layers are also connected only to 

some small amount of pixels in their rectangular receptive field. The inputs of the 

pooling layer are combined into a single value, usually maximum or mean of the 

input values. This accomplishes the main goal of the pooling layer, which is to 

reduce the number of parameters of the neural network [79].  

 

Following three sections describe predictors used in this study (two neural 

networks and one random forest regressor).  

 

https://doi.org/10.3390/sym14112323
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2.7.2 Simple neural network  

 

Simple neural network is a simple convolutional neural network consisting of 

only four layers: a convolutional layer, two hidden dense layers and an output layer.  

The network starts with a convolution layer that consists of 4 filters (matrices) of the 

same shape, which is 1 × 2 × 2. The movement of these filters was naturally chosen 

to be (1,2,2) meaning that after its movement the filter did not overlap with its 

previous position.  

Two hidden dense layers follow the convolution layer. These dense layers 

consist of 512 and 256 neurons. The activation function for these two layers is 

Rectified Linear Unit (ReLU), which is one of the standard activation functions 

utilized in neural networks. Also, in order to avoid overfitting, L2 regularization is 

introduced to both hidden layers.  

The final output layer of the network consists of two neurons, which 

correspond to the number of features the network is supposed to predict, which is 

temperature T and potential U in this case. ReLU activation function is used in the 

output layer as well.  

2.7.3 Modified SENet neural network  

 

Squeeze-and-Excitation Network (SENet) [80] was the winning architecture 

of ILSVRC 2017 challenge [79], which is an annual contest aimed at creating neural 

networks that would excel at image classification.  

Due to the fact that a typical image size is 256 × 256, but the shape of our 

input was significantly smaller, the SENet network had to be modified. This was 

done by removing last three convolution layers from the network, as each 

convolution layer makes its input smaller and so due to our original input being 

smaller in the first place, it was impossible to make it any smaller after several 

convolutional layers of the SENet network have already been applied.  

SENet network was chosen in this study due to a part of its architecture called 

an SE block, which makes this network particularly suitable for our problem. The SE 

block analyzes exclusively the depth dimensions of the data and learns which 

features are typically active together [79]. In our case, the depth dimension of the 

input data was 2, one for f and one for d electrons configuration. Therefore, the SE 

block was intended to provide some information about the correlation of f and d 

electrons.   

2.7.4 Random Forest 

 

Random forest is one of the most powerful ML algorithms [79]. It is an 

ensemble of decision trees, meaning that several different decision tree classifiers are 

trained on different subsets of the data set and their predictions are then combined. 

Typically the class of the training instance chosen by majority of the decision trees is 

the class chosen by the random forest classifier.  
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Decision trees are simple ML algorithms that perform segmentation of the 

multidimensional data space. This simply means that they divide space into number 

of high dimensional rectangles. A new instance of data is classified according to the 

major group in its box. The set of splitting rules used for space segmentation can be 

summarized in a tree, hence the name of the algorithm.  

Because the number of parameters is not determined prior to training, 

decision trees belong to a class of models called nonparametric models [79]. As a 

result, decision trees are likely to overfit the data. Therefore, some form of 

regularization is needed. There are several ways of doing that [79].  

Setting the maximum depth of the tree is one of them. Another is to set the 

minimum number of samples in a node before it can be split or the minimum number 

of samples needed for a node to have in order to be created. Finally, a maximum 

number of nodes in a tree can be used as well.  

Although we tested several different random forest regressors in our study, 

the main one, which was used for creating the graphs shown in the Results (3.3.3 

Random Forest section) consisted of 20 decision trees with no regularization.  
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3. Results  

3.1 Principal component analysis  

3.1.1 Simple PCA 

 

Our quest for identifying correct phases in the Falicov-Kimball model has 

begun with applying principal components analysis (PCA) to our data. The idea 

behind our approach was to discover how important the first few explained variance 

ratios are in describing the f and d electron configurations for a given combination of 

temperature T and potential U. Or in other words, how much of the information 

about the configuration can be explained by only these first few explained variance 

ratios.  

To find out, we calculated a participation ratio for both f and d electrons for 

all possible T and U combinations. The participation ratio tells us a number n of the 

first n explained variance ratio components needed to describe more than x % of 

variance in the data, where x is some arbitrary value. We have chosen x to 

successively be 95, 90, 80 and 60 %. A graph of n depending on U and T for f 

electrons for L12 lattice is shown in Fig. 6. The same graph for L12 lattice, but for d 

electrons is present in Fig. 7. The percentage x is written in the upper left corner of 

each graph.  

 

 

Fig. 6: The participation ratio for f electrons in L12 lattice. The percentage x of 

the described variance in the data is written in the upper left corner of each graph. 
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Fig. 7: The participation ratio for d electrons in L12 lattice. The percentage x of 

the described variance in the data is written in the upper left corner of each graph.  

From both figures, it is clear that two different phases exist in our data. In the 

lower part of our graphs (yellow in color), only a few first explained variance ratio 

components describe most of the variance in data. This suggests that the data has 

some well-defined structure, i.e., most configurations are alike. This is true for the 

ordered phase where a checkerboard pattern of f-electrons is expected.  

On the contrary, for the data in the upper dark blue part of our graphs, not 

even the first 20 explained variance ratio components are enough to describe its 

variance. (And possibly many more components would be needed, but only the first 

20 were computed during our analysis, as having more of them would be of a little 

additional benefit). This indicates that the data in this part of the phase diagram is 

disordered. 

Interestingly, the shape of the division in the graph exhibits a close 

resemblance to the shape of the phase boundary between the ordered and the 

disordered phase for the Falicov-Kimball model, which was shown in Fig. 1. And 

crucially, the behavior of these phases matches too. This means that principal 

component analysis can be used to distinguish the ordered and the disordered phase 

in the Falicov-Kimball model, although it is not yet clear where exactly their 

boundary should be, as the lower part of the graph gets bigger as we decrease the 

percentage x of the variance we want to be described.  

To proceed our analysis further, we created graphs of the dependence of only 

the first explained variance ratio on U and T for L12 lattice for both f and d electrons. 

This is a sensible thing to do, since the first explained variance ratio plays the role of 

the order parameter, as was already mentioned in the section about the PCA method. 

These graphs are shown in Fig. 8.  
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Fig. 8: The first explained variance ratio for L12 lattice for f electrons (left picture) and d 

electrons (right picture) 

The blue line with x symbols in Fig. 8 represents positions of maxima of the 

specific heat from the MC simulation. This shows a different way to estimate critical 

points where the phase transition between the ordered and the disordered phase 

occurs. 

Both graphs show a large value of the first explained variance ratio in the 

bottom yellow part. This means that the data for the corresponding U and T 

combinations is ordered because the order parameter is high and most of the variance 

in the data can be explained by the first explained variance ratio alone, which agrees 

with graphs of the participation ratio in Fig. 6 and Fig. 7. Unsurprisingly, the value of 

the first explained variance ratio is small in the upper dark blue part of the graph, 

where the data is disordered.  

We further support the conclusions from graphs in Fig. 8 by showing a cut 

through these graphs for two different fixed values of potential U, namely U = 4.0 

and U = 8.0 in Fig. 9. These graphs show the dependence of the first explained 

variance ratio on temperature only and for all lattice sizes (L6, L8 and L10, in 

addition to L12). Configurations of d electrons were used for these graphs, but 

graphs for f electrons look alike.  

The first explained variance ratio is high for low temperatures, indicating an 

ordered structure, and then steeply falls down as the structure of the data becomes 

disordered. The point at about halfway through the fall of the curve signifies the 

presence of a critical temperature of the phase transition. Moreover, we can see that 

this temperature is a little bit different for the two fixed values of U (lower for 

U = 8.0), as is expected in accordance with the phase boundary between the ordered 

and the disordered phase from Fig. 8.  
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Fig. 9: Graphs of the dependence of the first explained variance ratio on temperature for 

fixed potential for d electrons. U = 4.0 for the left graph and U = 8.0 for the graph on the 

right.   

Fig. 9 also illustrates, why mostly the L12 lattice will be used to present our 

results: Due to the finite size of all the lattices, the first explained variance ratio, 

which plays the role of the order parameter, does not fall sharply to zero at the 

critical temperature, but exhibits a continuous behavior instead. With larger lattice, 

this decline of the first explained variance ratio gets sharper, more closely 

approximating the ideal (but in practice unfeasible) case of the lattice of an infinite 

size.  

Another way to confirm the correct identification of the critical temperature is 

presented in Fig. 10. There, for the same two fixed values of potential U as before 

(U = 4.0 and U = 8.0), the dependence of the normalized second explained variance 

ratio on temperature is shown, again for all lattices. The normalization was done by 

multiplying the second explained variance ratio by the number of sites in the lattice 

(144 for L12, 100 for L10, etc.). That way, all the curves in the graph should land on 

each other for sufficiently high temperatures. As before, d electrons were utilized to 

obtain these graphs, but graphs for f electrons look the same. 

It was shown by Hu et al. that the second variation ratio can play a role of an 

effective susceptibility [25]. The susceptibility reaches its peak at the critical 

temperature of phase transition. However, we noticed that in our case the correct 

critical temperature more close matches the inflex point of the curve. 

Therefore, the critical temperature can clearly be identified from both graphs 

in Fig. 10. Again, same as for Fig. 9, we can see that the critical temperature is lower 

for the graph with U = 8.0, which agrees with presence of the phase boundary 

between the ordered and the disordered phase from Fig. 8.  
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Fig. 10: Graphs of the dependence of the normalized second explained variance ratio on 

temperature for fixed potential for d electrons. U = 4.0 for the left graph and U = 8.0 for the 

graph on the right.   

 

Finally, graphs of the second explained variance ratio dependence on U and T 

for L12 lattice were created for both f and d electrons, similar to the graphs of the 

first explained variance ratio in Fig. 8. These new graphs can be seen in Fig. 11. 

The blue line symbols in Fig. 11 again represents positions of the maxima of 

the specific heat from the MC simulation, estimating critical points of where the 

phase transition between the ordered and the disordered phase occurs.  

Both graphs in Fig. 11 show a small value of the second explained variance 

ratio for the ordered part, which is understandable, since most of the variance in the 

data is already accounted for by the first explained variance ratio, leaving little left to 

explain for the remaining explained variance ratios.  

 

  
Fig. 11: The second explained variance ratio for L12 lattice for f electrons (left picture) and 

d electrons (right picture) 

However, the second explained variance ratio is small for the disordered parts 

of the graphs as well, albeit bigger than for the ordered parts, as can be seen from the 

scale of the graphs, which shows that the second variance ratio does not explain more 

than 4,8 % of the data variance in vast majority cases. This also makes sense, since 
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the data in the rest of the graph is disordered and all the explained variance ratios are 

small for this type of data.  

Although areas where the second explained variance ratio is slightly larger 

exist, there is no apparent boundary between different phases within the disordered 

part of the graph. Consequently, the second explained variance ratio, taken separately 

for f electrons and for d electrons, fails to provide information needed to discern the 

metal phase from the insulator one. But local differences within the disordered area 

still give us hope that some information needed to find the metal-insulator phase 

boundary may be present in the data.  

3.1.2 PCA – Difference between explained variance ratios 

 

 Another attempt to find the phase transition boundary between different 

phases within the disordered part of the phase diagram using PCA was to subtract 

some explained variance ratio of d electrons from the same explained variance ratio 

of f electrons. The logic behind this approach was that the positions of d electrons 

with respect to f electrons provides information about the degree of correlation of the 

studied system. Therefore, it offers hope that we can find the phase transition 

between the DPs and DPw phases within the disordered phase using this information, 

because it can be expected that f and d correlation will be strong in the strong 

coupling regime and weak in the weak coupling regime. Luckily, this attempt proved 

to be successful.  

 Difference between first explained variance ratios for lattice L12 is shown in 

the left part of Fig. 12, while the difference between second explained variance ratios 

for the same lattice is shown in the right part of Fig. 12. Note that for the graph of 

second explained variance ratios, the scale of the colorbar was chosen in such a way 

that zero is in white color in the middle of the color range.  

 

 
 

Fig. 12: Difference between first explained variance ratios of f electrons and d electrons 

(left). Difference between second explained variance ratios of f electrons and d electrons 

(right). 

 

In the left graph, we can see in white the phase transition boundary between 

the ordered phase and the weakly localized phase from the disordered phase. This 
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phase transition is discontinuous, as was discussed in section about the Falicov-

Kimball model.  

In the same graph, the continuous phase transition boundary between the 

ordered phase and the rest of the disordered phase can also be seen in a darker shade 

of blue than its surroundings, although this boundary is not as clear as in prior 

graphs. Importantly, this graph shows that we can distinguish the type of phase 

transition (continuous vs. discontinuous). 

In the right graph, the ordered phase is white in color, meaning that second 

explained variance ratios for f and d electrons are the same for this phase. Moreover, 

there is a difference between phases within the disordered phase. These phases are 

separated by a white stripe at approximately U = 4.0, where second explained 

variance ratios for f and d electrons are the same. The phase on the left has smaller 

second explained variance ratio for f electrons than for d electrons and is therefore 

red in the graph. The phase on the left is blue in the graph due to having bigger 

second explained variance ratio for f electrons than for d electrons.  

The position of this boundary suggests that it is not a boundary between the 

metal phase and the insulator phase, but rather a boundary between the weakly 

localized phase and the Anderson insulator phase. This is an exciting discovery, 

since to our current knowledge, no ML based method was yet able to find a phase 

transition boundary between these two phases.  

3.1.3 PCA Eigenpictures 

 

To understand the character of ordering in different phases of the Falicov-

Kimball model, it is useful to study the decomposition of electron configurations into 

their basis components. This is can be understood as an alternative to the structure 

factor. Therefore, in this section, we used the PCA method to create basis images 

(eigenpictures) of the electron configurations in our data, as was described in the 

corresponding Model and Methods subsection (2.4 PCA Eigenpictures). We never 

mixed f electrons configurations with d electrons configurations when creating 

eigenpictures. All eigenpictures shown in this section are created from L12 lattice 

configurations.  

First, we created eigenpictures separately for some combinations of U and T. 

We chose U and T values in such a way that we covered the whole phase diagram, 

while having more eigenpictures towards lower U, where most changes between 

eigenpictures happen.  

We chose potentials from U = 0.5 to U = 10.5 with step going from 0.5 at the 

beginning to 1.0 in the middle and to 2.0 at the end. Temperatures were chosen 

approximately uniformly from T = 0.035 to T = 0.275 with step 0.060.  

In the following figures, we show how first and second eigenpictures change 

across the phase diagram both for f and for d electrons. First eigenpictures for f 

electrons are shown in Fig. 13, second eigenpictures for f electrons are depicted in 

Fig. 14. For d electrons, first and second eigenpictures for different U and T 

combinations are shown in Fig. 15 and Fig. 16 respectively.  
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Fig. 13: First eigenpictures for f electrons for different combinations of U and 

T across the phase diagram. Temperature and potential values are written 

above each eigenpicture 

From this figure, we can see that first eigenpictures for the ordered phase look 

like a checkerboard. The same can be said for the majority of first eigenpictures of 

the disordered phase, although parts of the checkerboard look sometimes a little 

“fuzzy”. For low values of U and higher temperatures (see eigenpictures in the upper 

left part of the figure), no clear structure can be determined.  

This agrees with our prior results when we calculated the participation ratio 

(see Fig. 6). There, we have shown that the data in the lower part of the phase 

diagram is ordered and almost everything is explained by the first component. Here 

we see the same thing as first eigenpictures (corresponding to the first component) 

are the checkerboard, which is the expected ordering of electron configurations in 

this part of the phase diagram, and therefore explain most of the variance in the data.  

 

 
Fig. 14: Second eigenpictures for f electrons for different combinations of U 

and T across the phase diagram. Temperature and potential values are written 

above each eigenpicture 
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Second eigenpictures for low U and high T again show no obvious structure. 

For low T in ordered phase, second eigenpictures consist only of one or two small 

colored squares with rest of the picture having a uniform ocean color. This means 

that the electron configurations are highly ordered for these points of the phase 

diagram and second eigenpictures show a single or double site defects, which are 

deviations from the ordered checkerboard structure.  

This again agrees with our prior results for the participation ratio (see Fig. 6). 

Since almost all variance was already explained by the first component, only a little 

to explain is left for the other components including the second one. Here, second 

eigenpictures represent only small deviation from the ordered checkerboard structure 

(see Fig. 14), which corresponds to the second component already explaining only a 

little.  

The eigenpictures for the disordered phase and higher temperatures of the 

ordered phase consist of parts of the checkerboard and fuzzy parts between them. 

These eigenpictures resemble the ones that we would get if we used different fillings 

for Falicov-Kimball model [67] (as opposed to the half-filling used here), i.e. 

configurations which consist of checkerboard and homogeneous orderings. Because 

we have used grand canonical ensemble when generating our configurations, we can 

interpret our results like this: some eigenpictures resemble configurations from the 

half-filling and other encode configurations away from it.  

This means that phases of the Falicov-Kimball model that are not half-filled 

can be seen in these eigenpictures, which in itself is exciting. However, there is no 

clear change in eigenpictures when going from the ordered to the disordered phase. 

Therefore, eigenpictures for f electrons do not enrich us with clear means of 

distinguishing phases of the half-filled Falicov-Kimball model.  

 

 
Fig. 15: First eigenpictures for d electrons for different combinations of U and 

T across the phase diagram. Temperature and potential values are written above 

each eigenpicture 
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First eigenpictures for d electrons look mostly the same as the first 

eigenpictures for f electrons (see Fig. 13). Only difference is visible for low U and 

high T eigenpictures, where a “fuzzy” checkerboard is present for d electrons, 

whereas no obvious structure was identifiable for f electrons.  

Similarly, second eigenpictures for d electrons look mostly the same as the 

second eigenpictures for f electrons (see Fig. 14), with the only difference again 

being visible for low U and high T eigenpictures, where parts of checkerboard are 

present for d electrons, whereas no obvious structure was identifiable for f electrons. 

This means that d electrons are more ordered than f electrons for the upper left part 

of the phase diagram. Therefore, both the first and the second explained variance 

ratio for d electrons will be higher than for f electrons in this part of the phase 

diagram. This is in accordance with our findings from Fig. 12, where we showed 

difference between first and then second explained variance ratios of f and d 

electrons, which was negative (and therefore higher for d electrons).  

 

 
Fig. 16: Second eigenpictures for d electrons for different combinations of U and 

T across the phase diagram. Temperature and potential values are written above 

each eigenpicture 

Also, similarly as for f electrons, eigenpictures for d electrons agree with 

prior results obtained for the participation ratio of d electrons (see Fig. 7).  

However, there is still no clear change in eigenpictures when going from the 

ordered to the disordered phase. To better see the difference between eigenpictures of 

different phases, we chose some combinations of U and T, for which we show first 5 

eigenpictures. These combinations of U and T were chosen in such a way that two 

were from the ordered phase (OP), one from the disordered phase for weak 

interaction (DPw) and one from the disordered phase for strong interaction (DPs). 

All these eigenpictures are shown in Fig. 17. Each set of eigenpictures is labelled 

with corresponding temperature and potential values, while information about the 

type of phase for given U and T is provided in the description of the figure. Because 
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eigenpictures for f and d electrons are mostly the same, we show only eigenpictures 

for d electrons here 

The chosen temperatures and potentials were: T = 0.045, U = 3.5 and T = 

0.075, U = 8.5 for ordered phase, T = 0.235, U = 2.5 for DPw phase and T = 0.205, 

U = 11.5 for DPs phase.  

 

 

 

 

 
Fig. 17: First 5 eigenpictures for d electron configurations for 4 different U and T 

combinations. Last two combinations are for the ordered phase, first combination is for the 

DPw phase and the second combination is for the DPs phase.  

We can clearly see that the last combination of U and T belong into the 

ordered phase, as only the first eigenpicture is a checkerboard and all the remaining 

eigenpictures have little to no structure.  

However, for the third combination of U and T, the eigenpictures after the 

first eigenpicture have parts of checkerboard visible in them. Although these 

checkerboard parts are not as prominent as for the first two combinations of U and T 

that belong to the disordered phase, they suggest that a clear boundary between the 

ordered and the disordered phase cannot be found using the eigenpictures alone. 

Moreover, the figures show that as we increase the temperature, the electron 

configurations become more and more disordered even within the ordered phase.  
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Furthermore, Fig. 17 shows that eigenpictures across the disordered phase 

look alike. Consequently, we cannot distinguish different phases of the disordered 

phase using their eigenpictures.  

Finally, we wanted to see how eigenpictures look, if we perform PCA on all 

our data. That is, we effectively created a global basis for all our configurations. Here 

we show first 5 eigenpictures for d electron configurations in Fig. 18 and first 5 

eigenpictures for f electron configurations in Fig. 19. From both figures, we can 

clearly see that bases for f and d electrons are similar. This was expected from 

previous eigenpictures for local configurations, which were also mostly similar for 

both types of electrons.  

 

 
Fig. 18: First 5 eigenpictures for d electron configurations 

 
Fig. 19: First 5 eigenpictures for f electron configurations 

From these figures, we see that the first component of the basis for all 

configurations is the checkerboard. The remaining four eigenpictures are parts of the 

checkerboard that corresponds to phases of Falicov-Kimball model outside of the 

half-filling [67].  

3.2 Isometric feature mapping – Results  

3.2.1 Simple Isometric feature mapping 

 

Since the PCA method is a linear method, as was mentioned before, we have 

followed its mostly successful application by using some type of a non-linear method 

to reveal other patterns in our data that might have been missed by PCA.  

The chosen approach in this study was isometric feature mapping (Isomap) 

[81] which was implemented using the sci-kit learn software [82]. The Isomap 

method was applied to our data in a similar fashion to the PCA method before and 

both to f electrons and d electrons as well. The only difference was that instead of 

calculating explained variance ratios as PCA does, Isomap calculated a 

reconstruction error. The reconstruction error is the mean squared Euclidean 
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distance between the data and reconstructed data and as such quantifies the loss of 

information [83].  

A bitmap of the value of the reconstruction error for concrete values of 

potential U and temperature T was created. The bitmap for L12 lattice for f electrons 

is shown in Fig. 20.  

 
Fig. 20: The bitmap of the reconstruction error dependence on 

the temperature T and the potential U for f electrons for L12 

lattice. The white area is caused by numerical instabilities.  

Again, a clear distinction between the ordered and the disordered phase can 

be seen from Fig. 20. The ordered phase is dark blue in color this time, which 

corresponds to a low value of the reconstruction error. This means that the Isomap 

method has almost no trouble reconstructing the data, which suggests that its 

structure is regular and ordered, as it should be. The disordered phase is yellow in 

this figure, meaning higher value of the reconstruction error, which indicates that the 

data is disordered as the Isomap method has some trouble in reconstructing it.  

However, no division is apparent within the disordered phase from these 

graphs for f electrons. That is why a similar bitmap was constructed for d electrons, 

which is shown in Fig. 21. 

Here we can see that the reconstruction error for d electrons is not only low 

for the ordered phase, but also for the part of the disordered phase where the values 

of potential U are low. As a result, the distinction between the ordered and the 

disordered phase for low U values is unclear from this graph.  

More importantly, two distinct phases can be seen within the disordered 

phase. However, the boundary between them is somewhat blurred as the 

reconstruction error changes continuously from low to high values. The reason for 

this very broad transition is not yet clear to us. However, we speculated that it is 

related to the transition from the weakly localized to the Anderson localized regime 

within the DPw phase described by Antipov et. al [5]. This would confirm our earlier 

findings from PCA approach, though the boundary between the two phases seems to 

be shifted here towards even lower U than U = 4.0 when doing PCA.  
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Fig. 21: The bitmap of the reconstruction error 

dependence on the temperature T and the potential U for 

d electrons for L12 lattice. The white area is caused by 

numerical instabilities. 

 

To further confirm our findings, we combined the Isomap method with 

eigenenergies for particular configurations.  

3.2.2 Isomap + Eigenenergies 

 

Although the boundaries between the ordered and the disordered phase, and 

between the Anderson insulator phase and the weakly localized phase from the phase 

diagram of the Falicov-Kimball model from Fig. 1 were found, we have not yet 

found the boundary between the Anderson insulator phase and the Mott-like insulator 

phase. The information about this phase transition should be present in the single 

particle eigenenergies for particular configurations, because the Mott-like insulator 

phase has a finite gap in the density of states, which is not present in the density of 

states of the “metallic” phases.  

Therefore, we investigate properties of the Falicov-Kimball model that are 

not available in experiment, but are accessible in MC simulation: The eigenenergies 

of electron configurations.  

We diagonalized the Falicov-Kimball Hamiltonian (1) for fixed f electron 

configurations to get the diagonalized Hamiltonian (2) (see 2.2.1 Monte Carlo 

method for data generation subchapter) and obtained its eigenvalues. For each 

combination of U and T we calculated eigenvalues for each of the electron 

configurations and placed these eigenvalues into a new matrix. This meant that we 

had a 500 × 144 matrix for L12 lattice, because we had 500 configurations for each 

U and T and each hopping matrix had 144 eigenvalues.  

We applied the Isomap algorithm to each of these matrices and calculated the 

reconstruction error, which is shown in Fig. 22. We have also added an expected 

position of the phase boundary between the Anderson insulator phase and the Mott-
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like phase (as a yellow dashed line with points) to our graph. This boundary was 

created manually from the phase diagram of the Falicov-Kimball model (see the right 

part of Fig. 1), which was taken from the study by Antipov et al. [5].  

Note that due to some outliers, for which reconstruction error was very high, 

we had to set the color bar limits manually to clearly see the difference between 

points in the disordered phase. We can observe that the reconstruction error is close 

to zero for the ordered phase and for the weakly localized part of the disordered 

phase. Whereas for the other parts of the disordered phase, reconstruction error is 5 

or larger.  

 
Fig. 22: The bitmap of the reconstruction error dependence on the temperature T and the 

potential U for eigenvalues calculated for L12 lattice configurations. The yellow dashed line 

with points shows an expected position of the phase boundary between the Anderson insulator 

phase and the Mott-like phase.  

The points and the boundary are taken from the work of Antipov et. al [5]  

(See Fig. 1 for full phase diagram from the aforementioned paper).  

 

But it is worth mentioning that the reconstruction error within the disordered 

phase increases with increasing U and that the WL-AI boundary is not so clear. 

However, there are couple of points at about U = 4.0 and U = 5.0  where the 

reconstruction error is higher and it is likely that these points suggest a presence of 

the phase transition boundary.  

 More importantly, this method was not able to find the phase transition 

boundary between the Anderson insulator phase and the Mott-like insulator phase, as 

it seems that it found the WL-AI boundary instead. This can be also seen from the 

fact that the yellow dashed line with points representing the searched for boundary 

does not separate red and blue areas on the graph in Fig. 22.  

 

In the next subchapter, we applied another ML technique, the prediction-base 

method, to further investigate presence of phase transition boundaries. 
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3.3 Prediction-based method – Results  
 

After successfully applying both PCA and Isomap methods, we wanted to 

support our findings with another, preferably more elaborated method. The method 

we chose was the prediction-based method, primarily for its ability to identify phase 

boundaries, which was needed to aid in distinguishing the phases found within the 

disordered phase by our previous methods. As was described in the Predictors 

subchapter (2.7 Predictors), two different neural network types (Simple neural 

network, abbreviated SNN, and Modified SENet neural network) and one random 

forest regressor were used as predictors for this method. We first started with the 

Simple Neural Network.  

3.3.1 Simple neural network (SNN) 

3.3.1.1. d electrons 

 

Because our previous results showed that d electron snapshots are more 

promising in distinguishing different phases within the disordered phase, we started 

with training our predictor on d electron configurations only. 

To create a meaningful physical representation of our data for the neural 

network to train on, we had to modify the shape of our data a little bit. Therefore, for 

each combination of U and T, we took 16 random lines (configurations) from the 

corresponding file. Then we reshaped each of these lines into a square matrix, 

corresponding to the lattice, and stacked these matrices behind each other. To have 

multiple data points that would also be mostly independent, we repeated this process 

several times with other sets of random lines, which is also why only 16 out of 500 

lines from each file were taken. Overall, we ended with approximately 100 different 

configurations for each U and T combination just for training the predictor, with 

different configurations being later used for evaluation. A different number of 

matrices could have been used, as a non-linear reader of this study might already 

know, however 16 seemed to be a good compromise between speed and precision.  

When training our predictor, we trained it long enough so that the loss 

function of the validation data stopped changing significantly. However, to avoid 

overfitting, we stopped soon enough, so that the loss function of the validation data 

did not increase. A typical learning curve for the SNN can be seen in Fig. 23. Our 

testing showed that 20 epochs are enough for training the SNN. 

Several different graphs were created for each lattice, but only the ones for 

L12 lattice will be shown here (as will be the case for all predictors used in the 

prediction-based method). Firstly, graphs showing the difference (in absolute value) 

between the temperature predicted by the SNN and the correct temperature at each 

given data point are shown in Fig. 24.  
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Fig. 23: Learning curve for the SNN for d electrons for L12 lattice. The blue 

triangles represent the loss function of the train data. The orange triangles 

represent the loss function of the validation data.  

The left graph in Fig. 24 was created using the SNN that was trained on all 

temperatures. This graph shows that it is possible to distinguish the ordered and the 

disordered phase based on temperature. However, within both of these phases, the 

SNN is somewhat confused. A dark blue band across the whole graph within what 

should be the disordered phase is an example of this confusion. The explanation of 

this band is that the SNN cannot predict the temperature of different configurations 

within the disordered phase and so to minimize its loss, it predicts approximately the 

middle temperature from the disordered phase. 

 

  
Fig. 24: Temperature predictions (by the SNN) for d electrons in L12 lattice. For the right 

image, only temperatures below 0.240 were used for training the predictor, whereas for the 

left image, all temperatures were used for training.  

This explanation is supported by performing training of the SNN only on 

configurations with temperatures lower than 0.240. In that case, the dark blue band 

moves lower in accordance with the explanation, as is shown in the right image in 
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Fig. 24. A slightly darker blue area within the ordered phase in both graphs in Fig. 24 

is likely an another example of the same phenomenon.  

Similar graphs showing the difference (in absolute value) between the 

potential predicted by the SNN and the correct potential at each given data point are 

shown in Fig. 25. 

 

  
Fig. 25: Potential prediction for d electrons in L12 lattice. For the image on the right, only 

potentials below 8.0 were used for training the predictor, whereas for the left image, all 

potentials were used for training. 

The left graph in Fig. 25 was made using the SNN that was trained on all 

potentials. Although a little bit unclear, a boundary between the ordered and the 

disordered phase can be seen in this graph. Moreover, in the upper left portion of the 

graph, the SNN finds it easier to predict the correct potential, which suggests a 

presence of distinct phase within the disordered phase, but the boundary of this phase 

again seems to be shifted to the left to lower U values than what is expected from the 

phase diagram for the Falicov-Kimball model from Fig. 1. 

There is another part where the SNN is good at identifying the correct 

potential and that is a dark blue vertically oriented scimitar-shaped band in the 

disordered phase in the region approximately bounded by potential values of 7 and 

10. The explanation of this band is the same as for the horizontal band in the case of 

temperature. This is proved by training the SNN only on potentials below 8.0, which 

leads to this band moving to the left as expected, which is shown in the right image 

in Fig. 25.  

After that, a graph of the divergence of difference between the correct and 

predicted temperature with respect to temperature was created. Similarly, a graph of 

the divergence of difference between the correct and predicted potential with respect 

to potential was produced. Both these graphs are shown in Fig. 26.  

For the temperature divergence, the phase boundary between the ordered and 

the disordered phase is clearly visible (in yellow). However, no such clear boundary 

exists when observing the potential divergence graph. The potential divergence is 

slightly higher where the WL-AI boundary could be, as well as where the boundary 

between the ordered and the disordered phase should be, especially for lower U 
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values. Unfortunately, none of these hints of phase boundaries could be considered 

significant.  

 

  
Fig. 26: Graphs of divergence with respect to temperature (left) and potential (right) for 

difference between the correct and predicted temperatures (left) and potentials (right) for d 

electron configurations in L12 lattice 

 

Still, we would like to stress again that the method finds the phase transition 

boundary between the ordered and the disordered phase for all U values, which was 

not the case for the learning by confusion method [22].  

3.3.1.2 f + d electrons 

As our next step, we tried combining f electrons with d electrons, as it was 

unlikely that f electrons alone could fare any better than d electrons. Another 

argument for this approach was that it may be possible for the predictor to learn the 

strength of correlation between f and d electrons which could help in differentiating 

phases in the Falicov-Kimball model, as was the case for the PCA method when we 

subtracted explained variance ratios of d electrons from explained variance ratios of f 

electrons.  

The input data for the predictor was prepared in a similar way as when using 

d electron alone. But to make our predictor even less computationally demanding, we 

used only two square matrices placed behind each other as an input, one for f 

electrons and the other for d electrons. (Multiple different number of matrices behind 

each other were tested, including up to 16 matrices, however all these attempts 

performed rather worse or equally at best compared to using two matrices only).  

In the same way as for only d electrons before, graphs showing an absolute 

value of the difference between the correct and predicted values for both temperature 

and potential were created and are shown in Fig. 27.  

The graph for temperature predictions is very similar to the one for d 

electrons only from Fig. 24. Therefore, temperature prediction is unlikely to offer 

any clues about distinct phases within the disordered phase. 

The graph for potential predictions is in much darker shade of blue in the 

ordered phase. This means that the addition of f electrons into the mix helped the 
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predictor in predicting the correct potential for the configurations from the ordered 

phase.  

  

Fig. 27: Temperature (left) and potential (right) predictions (using the SNN) for f + d 

electrons in L12 lattice 

The upper left portion of the graph of potential predictions is also dark blue, 

same as in Fig. 25. This finding further supports the existence of a distinct phase in 

that area, which is likely to be the weakly localized phase from the phase diagram of 

the Falicov-Kimbal model in Fig. 1, judged by its position in the phase diagram.  

Finally, the vertical blue band in the graph of potential predictions present 

around a potential of 9.5 is again caused by the fact that the predictor cannot 

distinguish different configurations within the right area of the disordered phase and 

predicts approximately a middle potential value from this area to minimize the loss 

function, as was already discussed before.   

We also show here graphs of the mean-squared error for the difference 

between the correct and predicted values for both temperature and potential. These 

graphs are presented in Fig. 28.  

 

  
Fig. 28: The mean-squared error of the difference between the correct and predicted (by 

the SNN) values for temperature (left) and potential (right) 

Graphs of the mean-squared error in Fig. 28 exhibits similar patterns as 

graphs of the difference between the correct and predicted values in Fig. 27, giving 

us yet another option of identifying phases in the Falicov-Kimball model.  
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To conclude this part of the study, in Fig. 29 we show graphs of divergence 

similar to the ones for d electrons only, but for f + d electrons this time.  

The temperature divergence shows the boundary between the ordered and the 

disordered phase in the same way as it already did for d electrons in Fig. 26. The 

potential divergence again hints at a possible presence of the WL-AI boundary 

within the disordered phase, as it did in Fig. 26 for d electrons only. However, still 

no clear boundary within the disordered phase exists as it does in the case of the 

ordered and the disordered phase when using divergence of temperature. 

 

  
Fig. 29: Graphs of divergence with respect to temperature (left) and potential (right) for the 

difference between the correct and predicted (by the SNN) temperatures (left) and potentials 

(right) for f + d electron configurations in L12 lattice 

 

One additional type of graph was created for f + d electrons and that is the 

graph of the divergence of the difference between the correct and predicted 

temperatures with respect to the potential U. This graph is shown in Fig. 30.  

 

  

Fig. 30: Graph of the divergence with respect to potential for the difference between the 

correct and predicted temperatures (using the SNN) for f + d electron configurations in L12 

lattice. Two different scales are used for the same divergence values.  
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Two distinct phase boundaries can be seen in this graph, one clearly visible in 

blue, other less visible in bright yellow. To show the second phase boundary better, 

the same graph in a different scale is presented in the right part of Fig. 30.  

These two distinct phase boundaries further support the idea that two distinct 

phases exist within the disordered phase, as each boundary likely correspond to a 

boundary between the ordered phase and a different part of the disordered phase. 

Crucially, their place in the graphs corresponds to when our previous analysis has 

shown these two phases to be, further supporting our results.  

3.3.2 Modified SENet neural network 

 

After applying the prediction-based method with the Simple neural network 

mostly successfully to the phase classification in the Falicov-Kimball model, we 

decided to confirm our results by using a different neural network as a predictor 

instead. We chose Squeeze-and-Excitation Network (SENet) [80], which is a 

publicly available neural networks that was already known to perform well on an 

image classification task, which bears many similarities to our problem due to the 

structure of our input data. We decided to use this particular neural network, because 

its architecture seemed to be best suited for our problem due to the presence of an SE 

block, as we have already explained in the Predictors subchapter (2.7 Predictors).    

Due to the fact that the SENet network was suited for classifying images, 

which have the sizes of 256 × 256, we have to modify it by removing several 

convolution layers, as was already mentioned in the Predictors subchapter (2.7 

Predictors). To avoid unnecessary large computational demand, we again stacked 

only two square matrices behind each other, one from f electron configurations and 

the other from d electron configurations. Also, only the results for f + d electrons 

combination are shown here, because this combination yields better results than d 

electrons (or f electrons) alone, as was also the case for the prediction-based method 

with the SNN as its predictor.  

To avoid overfitting, in a similar fashion to the SNN, we stopped soon 

enough during the training of the SENet network, so that the validation function did 

not increase. However, due to the large size of the Modified SENet network 

compared to the Simple neural network, each training epoch of the predictor took 

much more time, which led to less epochs needed to train the predictor. Usually, 

around 5 to 7 epochs were enough to satisfy our demands. An example of learning 

curve for the Modified SENet neural network can be seen in Fig. 31.  
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Fig. 31: Learning curve for the Modified SENet neural network for  

f + d electrons for L12 lattice 

The same graphs as for the Simple neural network were created using the 

Modified SENet network. The graphs showing an absolute value of the difference 

between the correct and predicted values for both temperature and potential are 

shown in Fig. 32.  

 

  
Fig. 32: Temperature (left) and potential (right) predictions (using the Modified SENet 

neural network) for f + d electrons in configurations in L12 lattice 

 

A similar pattern to the one found in Fig. 27 when using the SNN can be 

observed. This further aids in confirming that the results using the Simple neural 

network were correct. However, potential predictions are much better using the 

Modified SENet network, especially within the area of the disordered phase. This, 

ironically, does not help our case, as the difference between phases within the 

disordered phase is no longer apparent from the graph of potential predictions.  

Graphs of the mean-squared errors also exhibit a similar pattern to their 

counterparts from Fig. 28 using the SNN, as is evident from Fig. 33. However, there 

is no evidence for the WL-AI boundary within the disordered phase in these graphs, 

which was somewhat hinted at in the graph of mean-squared error of potential when 

using the Simple neural network. 
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Fig. 33: The mean-squared error of the difference between the correct and predicted (by the 

Modified SENet neural network) values for temperature (left) and potential (right) 

Finally, the graphs of divergence are shown in Fig. 34 and Fig. 35.  

 

  

Fig. 34: Graphs of divergence with respect to temperature (left) and potential (right) for the 

difference between the correct and predicted (by the Modified SENet neural network) 

temperatures (left) and potentials (right) for f + d electron configurations in L12 lattice 

 

The phase boundary between the ordered and the disordered phase is clearly 

visible from the graph of temperature divergence in Fig. 34, although it is less 

prominent than when using the Simple neural network. The graph of the divergence 

of the potential in Fig. 34 offers little to no clues about any phase boundary.  

Two distinct phase boundaries are again visible in the graph of the 

temperature divergence with respect to potential in Fig. 35. However, the boundary 

between the ordered phase and what is supposed to be the insulator phase is much 

less visible and may not be considered significant at all. Therefore, the same graph in 

different scale is shown in the right part of Fig. 35 to make this boundary somewhat 

visible.  
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Fig. 35: Graph of divergence with respect to potential for the difference between the correct 

and predicted temperatures using the Modified SENet neural network for f + d electron 

configurations in L12 lattice. Two different scales are used for the same divergence values. 

To summarize this section, we have shown that a larger neural network may 

not always be a better predictor, as the Modified SENet network performed worse 

than the Simple neural network beforehand.  

It is also worth noting that during our study, the application of the Modified 

SENet neural network has not always led to desired results, which is not obvious 

from the graphs shown here, because we only show the instances when it worked. 

The network was not able to train itself every time, especially in predicting the 

correct temperature. This was probably due to a random initialization of weights for 

different neurons in the network, which may have caused the predictor to get stuck in 

some local minima of loss function.  

3.3.3 Random Forest 

 

Random Forest is relatively simple, yet one of the most powerful ML 

algorithms, as was already mentioned in 2.7.4 Random Forest subchapter. Therefore 

we wanted to test if applying this algorithm as a predictor for the prediction-based 

method may offer some insight for distinguishing phases in the Falicov-Kimball 

model.  

We followed a similar path with our use of the random forest regressor, as 

with the Simple neural network in subchapter 3.3.1 Simple neural network (SNN). 

However, we added predictions using f electrons alone, to see how well this method 

compares to other methods used in this study.  

It is also worth noting that the random forest algorithm is not capable of 

reading 3-dimensional data and we had to adjust structure of our data accordingly as 

a result. In practice it meant that we did not reshape our electron configurations into 

2D matrices as was the case for neural networks. Rather we kept our configurations 

as lines. Combining more configurations for one U and T was done by adding these 

lines below each other into a 2D matrix.  
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We tested several number of lines to use for one data point in our data. It 

turned out that 4 randomly chosen lines were optimal for our predictor´s 

performance, i.e. the predictor was working well enough and did not run too long.  

3.3.3.1 f electrons 

 

We tested several random forest regression predictors with different 

parameters. We settled on the predictor that consisted of 20 different decision trees 

and for which no regularization was present.  

 Although none of our random forest predictors trained on f electrons only was 

able to predict values of potential U well, the prediction of temperature T was much 

better, which is shown by the left part of Fig. 36, where the absolute value of the 

difference between the correct and predicted temperatures for each point of the phase 

diagram is shown. As a result, performing divergence on the difference between the 

correct and predicted temperature values, as was done for neural networks, produced 

a phase transition boundary between the ordered and the disordered phase, which can 

be seen in the right part of Fig. 36.  

 

  
Fig. 36: Temperature predictions (left) and divergence with respect to temperature (right) 

for the difference between the correct and predicted (by the random forest regressor) 

temperatures for f electron configurations in L12 lattice.  

3.3.3.2 d electrons 

 

 The same predictor used for f electron configurations was also applied to d 

electron configurations (after being trained on these configurations). Fortunately, this 

predictor worked much better for d electrons. Not only did the difference between 

the correct and predicted temperatures improved, as can be seen from the left part of 

Fig. 37, but the predictor was also capable of predicting potential values very well, 

which is shown in the right part of Fig. 37.  
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Fig. 37: Temperature (left) and potential (right) predictions (using the random forest 

regressor) for d electrons in configurations in L12 lattice 

Consequently, the divergence of both temperature and potential showed 

promising results, though the divergence of potential offered only small hints about 

the phase transition boundary within the disordered phase. The graphs of both 

divergences are shown in Fig. 38.  

 

  
Fig. 38: Graphs of divergence with respect to temperature (left) and potential (right) for the 

difference between the correct and predicted (by the random forest regressor) temperatures 

(left) and potentials (right) for d electron configurations in L12 lattice 

  The left graph in Fig. 38 clearly shows the phase transition boundary (in 

yellow for lower U values and in light green for bigger U values) between the 

ordered and the disordered phase.  

The right graph in Fig. 38 shows (in dark blue) the first part of the phase 

transition boundary between the ordered and the disordered phase, but only up until 

U values around 3. However, the ordered phase can still be identified from this graph 

thanks to the fact that the divergence is zero for all points within the disordered 

phase.  

Some hints of the boundary within the disordered phase at values of U 

between 3 and 4 can also be seen in yellow in the potential divergence graph. The 

position of this boundary suggests that it should be the WL-AI boundary. However, 

this boundary is not very sharp and it is impossible to say if the higher divergence 

values were not caused by some artefacts in the random forest regressor.  
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Also note, that the color scale for the potential divergence graph had to be 

limited from below at -0.20 to actually see the hints of boundary. The reason for this 

modification of color scale was that due to us having data only for finite potentials 

the regressor´s predictions did not work well for the boundary values of potential 

(that is U = 12.0). As a result, the divergence for this value of potential was negative 

and very high in absolute value (almost -1). And in the correct scale, the possible 

phase transition boundaries are more difficult to see.  

3.3.3.3 f + d electrons 

 

Finally, we tried combining configurations for both f electrons and d 

electrons. We used the same random forest regressor as for separate f and d electrons 

before (trained on configurations of f + d electrons). The structure of our data points 

was also the same: We took four random lines (electron configurations) and placed 

them below each other. First and third of these lines were f electron configurations, 

while the other two were configurations of d electrons.  

Predictions of both temperature and potential, shown in Fig. 39, seemed to be 

similar to the ones for d electrons alone. Unfortunately, divergences did not show 

any new insights, as is evident from Fig. 40. 

 

  

Fig. 39: Temperature (left) and potential (right) predictions (using the random forest 

regressor) for f + d electrons in configurations in L12 lattice 

 

To summarize, the prediction-based was capable of reliably distinguishing the 

ordered phase from the disordered phase for all different predictors used (two neural 

networks and one random forest regressor). However, this method was not able to 

decisively distinguish different phases within the disordered phase.  

To achieve that, we next tried combining the prediction-based method with 

the PCA method, because the latter one was able to find other phase transition 

boundaries.  
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Fig. 40: Graphs of divergence with respect to temperature (left) and potential (right) for the 

difference between the correct and predicted (by the random forest regressor) temperatures 

(left) and potentials (right) for f + d electron configurations in L12 lattice 

3.3.4 Random Forest on PCA  

 

The last method used in this study was a combination of two previously 

applied methods: PCA and random forest. First, PCA was applied to the data in the 

same way as before (see section 3.1) and first twenty explained variance ratios were 

calculated for both f and d electrons and for each combination of temperature T and 

potential U. The output of PCA was then used as the input for the random forest 

regressor. 

The structure of input for the random forest for each T and U was: 20 

explained variance ratios (evrs for short) of f electrons, followed by 20 evrs of d 

electrons, which were followed by the differences between the evrs of f and d 

electrons, multiplied by the size of the lattice L, which was either 10 or 12 based on 

the lattice used.  

Due to having only one set of explained variance ratios for a given 

combination of U, T, electron type and lattice size L, it was necessary to use several 

lattice sizes in assessing the performance of our predictor. Because we needed the 

random forest regressor to make predictions for each input point from the phase 

diagram (that is for each combination of U and T) and we did not want to make 

predictions on points already included in training, we trained the random forest on 

data for one lattice size and made predictions on different lattice size. This turned out 

to work pretty well. The best results were obtained when using largest available 

lattice sizes. Therefore we train on data from lattice L12 and made predictions on 

data from lattice L10.  

This strategy (training on smaller lattice calculated numerically and making 

predictions for larger lattice) can potentially be used for making predictions on real 

experimental data. It seems viable to train a predictor on smaller lattice and then 

apply it to much bigger real world lattice that was measured in an experiment, such 

as the cold atoms trapped in optical lattices [68].  

We made similar graphs as those in subsections about random forest and 

Neural networks predictors. The graphs showing an absolute value of the difference 
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between the correct and predicted values for both temperature and potential are 

shown in Fig. 41.  

 

  
Fig. 41: Temperature (left) and potential (right) predictions on data from PCA using the 

random forest regressor trained on L10 lattice and making predictions on L12 lattice 

For temperature, we can see that the predictor is able to make pretty accurate 

prediction in the ordered phase, but its predictions get less accurate with higher 

temperatures in the disordered phase. Moreover, there seems to be a difference in 

prediction accuracy for high temperatures in disordered phase at approximately 

U = 4.0, which suggests that there may be a boundary between two different phases. 

Although this in itself is not enough evidence for the existence of this boundary, it 

offers us hope that calculating the divergence of the difference might find the 

boundary.  

Similarly, there is a clear line of decreased accuracy (in light green) for the 

right graph of potential predictions at approximately U = 4.0. This line even extends 

into the ordered phase, suggesting that maybe other aspects of the Falicov-Kimball 

model may be revealed when divergence will be performed on these predictions.  

Fueled by hope from the predictions graphs, we created all four graphs of 

divergence - the divergence of both difference between the correct and predicted 

temperatures and the correct and predicted potentials with respect to both 

temperature and potential. However, since the graphs of divergence with respect to 

potential do not reveal any information about phase boundaries, they are not shown 

here. Graphs of the divergence with respect to temperature are present in Fig. 42.  

Both graphs show us a boundary at approximately U = 4.0. For the 

divergence on temperature predictions, this boundary is in dark blue, whereas the 

divergence on potential predictions shows this boundary in light green. The place of 

this boundary suggests that it is the WL-AI boundary (see right phase diagram in Fig. 

1), rather than the boundary between the metal and the insulator. This supports our 

findings from one of the PCA subsections, where we plotted the difference between 

explained variance ratios of f and d electrons, where we have also found this 

boundary.  
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Fig. 42: Graphs of the divergence with respect to temperature for the difference between the 

correct and predicted temperatures (left) and for the difference between the correct and 

predicted potentials (right). Predictions are made on data from PCA using the random forest 

regressor trained on L10 lattice and making predictions on L12 lattice.  

Moreover, hints of the boundary (again in blue) between the ordered phase 

and the weakly localized part of the disordered phase are present in the left graph. 

But this boundary was already found in this study using plethora of other methods 

In the right graph, the light green line that is supposed to be a boundary 

between two types of disordered phase leaks into the ordered phase as well. This may 

suggest that it may be possible to distinguish some parts of the ordered phase, 

although it cannot be ruled out, that this extension of the line is just an artefact of the 

random forest regressor used for making predictions.   
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4. Discussion  
 

The development of methods capable of distinguishing distinct phases in 

correlated electron systems without any prior knowledge is of great importance in 

condensed-matter physics. This study advanced this issue by demonstrating that the 

phase boundary between the ordered and the disordered phase in the Falicov-Kimball 

model is easily found, as virtually every method applied was capable of finding this 

boundary. 

To our best knowledge, no one before has developed any unsupervised 

machine learning phase classification method capable of distinguishing the weakly 

localized and the Anderson insulator phase within the disordered phase of the 

Falicov-Kimball model. The results of this study indicate that this distinction is 

possible. Moreover, our findings suggest that the transition between the metal and 

the insulator might be more complicated than suggested by the presence or absence 

of a gap in the density of states (DOS) at the Fermi level, as mentioned in the 2.1 

Falicov-Kimball model subchapter.   

Our results support the existence of the two main phases in the Falicov-

Kimball model: the ordered phase and the disordered phase. The fact that these 

phases were distinguishable using the principal component analysis method alone 

illustrates how powerful a tool this simple method can be. The Falicov-Kimball 

model is therefore another model, to which the PCA method can successfully be 

applied, adding to its previous application to the Ising, Blume-Capel, BSI and XY 

models  [25]. 

Crucially, the PCA method was also capable of finding the WL-AI boundary, 

which was demonstrated in 3.1.2 PCA – Difference between explained variance 

ratios subchapter, where the difference between explained variance ratios for f 

electrons and for d electrons revealed this boundary. 

The application of the isometric feature mapping (Isomap) proved to be 

another success of this study, as it was capable of distinguishing two different phases 

within the disordered phase. Moreover, this method, when applied to eigenenergies 

of electron configurations, was able to find a division between the weakly localized 

phase and the Anderson insulator phase in the Falicov-Kimball model, further 

supporting our findings from the application of the PCA method. 

The prediction-based method was less successful in finding this division. 

Although hints at the presence of the WL-AI boundary were evident when using this 

method, the results are not conclusive. Therefore, further research is still needed to 

improve the prediction-based method in such a way that it will be able to precisely 

locate the WL-AI boundary using just raw Monte Carlo data or experimental 

snapshots. However, the application of this method is still deemed as a success, 

since, in contrast to other methods [22] it was capable of distinguishing the ordered 

and the disordered phase for all three different predictors used (two neural networks 

and one random forest regressor) in the whole range of U values.  

Finally, application of the random forest regressor on data from PCA was also 

successful, as it again found the WL-AI boundary, and thus even more cementing 
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one of the main results of this study. Surprisingly, this method was not able to 

distinguish between the ordered and the disordered phase, but it did not matter to us, 

as this distinction was already achieved by every other method used in this study and 

was not main goal of applying the random forest regressor on PCA data.  

It is important to acknowledge that lattices of a finite size were used in this 

study and that using larger lattices might provide additional information. We have 

shown that the boundary between the ordered and the disordered phase was 

becoming sharper by using larger lattice size. Therefore, it is possible that with even 

larger lattices, the WL-AI phase boundary could become sharper and hence more 

visible as well even for the prediction-based method.  

Another limitation comes from the fact that our methods detect the presence 

of different phases, but does not interpret their behavior. Therefore, we may know 

that different phases exist, but not what their character is. Here the PCA method 

comes to rescue. This method can give us information about the orderliness of the 

phase, as we have shown. Furthermore, when creating eigenpictures of 

configurations using this method, we can actually see what the configurations of 

electrons look like in different parts of the phase diagram.  

Although the prediction-based method performed great in finding phase 

transitions, it is not without its limitations. The main one comes from the fact that the 

predictor of the prediction-based method serves as a black box, which causes a lack 

of interpretability for some of the results.  

Moreover, caution is needed when trying to make sense of the results, as we 

tried to illustrate (see Fig. 24 or Fig. 25) with areas in phase diagrams where 

predictors used in this method performed exceptionally well, even though nothing 

distinguished the data in these areas from the neighboring data. Therefore, some 

features in phase diagrams that had no scientific background may appear when using 

only the prediction part of this method. However, the main part of the method, the 

divergence, seem to be mostly unaffected by this problem. Still, some predictors 

were sometimes unable to find the desired features or found features that were not 

relevant to the given problem.  

Furthermore, a predictor used in this method plays a significant role. Firstly, 

large enough resolution is needed for the method to work. With enough resolution, 

the main features are commonly found for all predictors. Such was the case for the 

phase boundary between the ordered and the disordered phase in this study. 

However, more hidden features may be difficult to find, as was the case for the 

WL-AI phase boundary.  

We have also shown that a larger neural network may not always be a better 

predictor, as the Modified SENet network performed worse than the Simple neural 

network. It is worth noting that the application of the Modified SENet neural 

network has not always led to desired results. The network was not able to train itself 

every time, especially in predicting the correct temperature. This was probably due to 

a random initialization of weights for different neurons in the network, which may 

have caused the predictor to get stuck in some local minima of loss function.  
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5. Conclusion and outlook 
 

The aim of this study was to perform an unsupervised phase classification of 

the Falicov-Kimball model using machine learning methods. Several different 

techniques were applied to this task, including principal component analysis (PCA), 

isometric feature mapping (Isomap) and the prediction-based method, for which two 

different neural networks and one random forest regressor were used as predictors. 

All these methods proved to be successful in distinguishing between the ordered and 

the disordered phase.  

Moreover, all methods were able to reproduce the correct position of the 

boundary between these phases. Importantly, in contrast to previously applied 

learning by confusion, techniques used in this study worked reliably even for the 

first-order phase transition, which is the case for low values of potential U.  

Crucially, the PCA method was capable of finding the boundary between the 

weakly localized phase and the Anderson insulator phase (the WL-AI boundary) 

within the disordered phase. This boundary was found by subtracting the second 

explained variance ratio of d electrons from the second explained variance ratio of f 

electrons 

Furthermore, several other methods from this study supported the finding of 

the WL-AI boundary. Performing Isomap method on eigenenergies of electron 

configurations found this boundary. Random forest regressor applied to data from the 

PCA method also found the WL-AI boundary. And finally, some hints of this 

boundary were also present when using the prediction-based method with neural 

networks as its predictors.  

The boundaries between the ordered and the disordered phase, and between 

the Anderson insulator phase and the weakly localized phase in the Falicov-Kimball 

model were found in this study by a plethora of techniques that were not applied 

before to this problem.  

However, one of the main phase boundaries, the one between the Anderson 

insulator phase and the Mott-like insulator phase, from the phase diagram of the 

Falicov-Kimball model was not found. This is a problem for the future.  

 

Outlook: Further possibilities remain as to how to find the remaining phase 

transition boundary in the phase diagram. For example, one of the unsupervised 

techniques that could be applied to this problem is an autoencoder. And even if the 

unsupervised methods fail, there still remains a possibility of using supervised 

learning for identifying the correct phases instead, although success in that case 

would be a bit less satisfying. All these options provide an excellent starting point for 

following studies. Moreover, it may also be helpful to test the methods on larger 

lattice sizes, however this is bound to be computationally more demanding.   

Another interesting area of study may be the application of the Isomap 

method, which performed more than well in this study, to other model systems in 

condensed-matter physics. It is possible that hidden patterns in corresponding 
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structures may be revealed, leading to better understanding of phase diagrams of 

other models. Moreover, combining the Isomap method with eigenenergies of 

electron configurations worked surprisingly well. Therefore this technique is in our 

point of view also worth of further exploration.  

Finally, since most of our methods performed well in finding phase transition 

boundaries in the phase diagram of the Falicov-Kimball model, the logical next step 

is to try applying these methods to other models, such as the t-J model, the 

Heisenberg model, the Hubbard model and their generalizations.  

Overall, the study can be deemed successful, albeit great challenges still lie 

ahead.  
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A Attachments 
In this section, we present several simplified cases of the Falicov-Kimball 

model. In the attachment A.1, we consider the non-interacting case (U = 0). In the 

attachment A.2, we consider the case of a checkerboard staggered potential.  

A.1 The non-interacting Falicov-Kimball model 
If we assume a non-interacting case (U = 0), then the Hamiltonian from (1) 

changes to:  

 𝐻𝐹𝐾 = −𝑡∑(𝑑𝒊
†𝑑𝒋 + 𝑑𝒋

†𝑑𝒊)
〈𝒊,𝒋〉

, 
(A1) 

since the other term is zero.  

We perform a canonical transformation on creation and annihilation 

operators:  

 
𝑐𝒌
† =

1

√𝑁
∑𝑒𝑖𝒌∙𝒍𝑑𝒍

†

𝒍

, (A2) 

where 𝑑𝒍
†
 is a creation operator in real space and 𝑐𝒌

†
 is a creation operator in 

the momentum space.  

We can use the following orthogonality identitites to invert (A2) and to rewrite the 

Hamiltonian (A1) in terms of operators from the momentum space [84]: 

 1

𝑁
∑ 𝑒𝑖(𝑘𝑚−𝑘𝑛)𝑙𝑙 = 𝛿𝑚,𝑛     and      

1

𝑁
∑ 𝑒𝑖𝑘𝑛(𝑙−𝑗)𝑛 = 𝛿𝑙,𝑗 

(A3) 

To invert the equation for the creation operator in real space (A2), we first 

multiply both sides of the equation (A2) by 
1

√𝑁
 and by 𝑒−𝑖𝒌∙𝒋, then we sum both sides 

of the equation over k to get:  

 1

√𝑁
∑𝑒−𝑖𝒌∙𝒋𝑐𝒌

†

𝒌

=
1

𝑁
∑∑𝑒𝑖𝒌∙(𝒍−𝒋)𝑑𝒍

†

𝒍𝒌

 (A4) 

We can reorganize terms on the right-hand side of the equation and use the 

second identity from (A3) to get:  

 1

𝑁
∑∑𝑒𝑖𝒌∙(𝒍−𝒋)𝑑𝒍

†

𝒍𝒌

= ∑
1

𝑁
∑𝑒𝑖𝒌∙(𝒍−𝒋)𝑑𝒍

† = ∑𝛿𝒍,𝒋𝑑𝒍
† = 𝑑𝒋

†

𝒍𝒌𝒍

 
(A5) 

The inverted form of equation (A2) therefore is:  

 
𝑑𝒋
† =

1

√𝑁
∑𝑒−𝑖𝒌∙𝒋𝑐𝒌

†

𝒌

 (A6) 

Similarly, we can obtain a formula for the annihilation operator in real space 

by applying complex conjugation on the equation (A6).  
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𝑑𝒋 =

1

√𝑁
∑𝑒𝑖𝒍∙𝒋𝑐𝒋
𝒍

 (A7) 

Now, we can rewrite our Hamiltonian (A1) in terms of momentum operators. 

We will ignore the first term in the sum for now, because the formula for this term 

can be obtained by applying the complex conjugation to our formula for the second 

term, which we derive in the following text.  

First, we substitute for our creation and annihilation operators 𝑑𝒋
† and 𝑑𝒊:  

 
∑𝑑𝒋

†𝑑𝒊 =∑ 
1

√𝑁
∑𝑒−𝑖𝒌∙𝒋𝑐𝒌

† 1

√𝑁
∑𝑒𝑖𝒍∙𝒊𝑐𝒍
𝒍𝒌〈𝑖,𝑗〉

 
〈𝒊,𝒋〉

 
(A8) 

Then, we use the fact that we are summing over nearest neighbors only, 

denoted by 〈𝒊, 𝒋〉. We can instead sum over i and α, where α indicates we are 

summing over nearest neighbors. We are effectively making a substitution 𝒋 = 𝒊 +

 𝜶. We get:  

 
∑𝑑𝒋

†𝑑𝒊 =
1

𝑁
∑∑∑∑𝑒−𝑖𝒌∙𝒊𝑒−𝑖𝒌∙𝜶𝑒𝑖𝒍∙𝒊𝑐𝒌

†𝑐𝒍
𝒍𝒌𝜶𝒊

 
〈𝒊,𝒋〉

 
(A9) 

We can reorganize our terms. When doing so, we write parentheses around 

the term on which the first identity from (A3) will be applied.  

 
∑𝑑𝒋

†𝑑𝒊 =∑∑∑(
1

𝑁
∑𝑒𝑖(𝒍−𝒌)∙𝒊

𝒊

)𝑒−𝑖𝒌∙𝜶𝑐𝒌
†𝑐𝒍

𝒍𝒌𝜶

 
〈𝒊,𝒋〉

 
(A10) 

Applying the identity and using properties of Kronecker delta we get:  

 ∑𝑑𝒊
†𝑑𝒋 =∑∑∑𝛿𝒍,𝒌𝑒

−𝑖𝒌∙𝜶𝑐𝒌
†𝑐𝒍

𝒍𝒌𝜶

= ∑∑𝑒−𝑖𝒌∙𝜶𝑐𝒌
†𝑐𝒌

𝒌𝜶〈𝒊,𝒋〉

 
(A11) 

We can obtain similar expression for the sum of first term in Hamiltonian 

(A1): 

 ∑𝑑𝒋
†𝑑𝒊 = ∑∑𝑒𝑖𝒌∙𝜶𝑐𝒌

†𝑐𝒌
𝒌𝜶〈𝒊,𝒋〉

 
(A12) 

Substituting for both sums in Hamiltonian (A1), we get:  

 𝐻𝐹𝐾 = −𝑡∑∑(𝑒𝑖𝒌∙𝜶 + 𝑒−𝑖𝒌∙𝜶)𝑐𝒌
†𝑐𝒌

𝜶𝒌

= −2𝑡∑∑𝑐𝑜𝑠(𝒌 ∙ 𝜶)𝑐𝒌
†𝑐𝒌

𝜶𝒌

 

(A13) 

Using the fact that α indicates we are summing over nearest neighbors, we 

can rewrite our Hamiltonian as a sum of cosines.  

 

𝐻𝐹𝐾 = −2𝑡∑∑𝑐𝑜𝑠(𝑘𝑖)𝑐𝒌
†𝑐𝒌

𝐷

𝑖=1𝒌

, (A14) 
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where D is a dimension of the lattice.  

We can also rewrite our Hamiltonian like this:  

 𝐻𝐹𝐾 =∑𝜀𝒌𝑐𝒌
†𝑐𝒌

𝒌

, (A15) 

where 

 

𝜀𝒌 = −2𝑡 ∑𝑐𝑜𝑠(𝑘𝑖)

𝐷

𝑖=1

 (A16) 

The Hamiltonian (A15) can be written in a matrix form, if we replace the 

summation by integration and integrate over the Brillouine zone [47]:  

 

𝐻𝐹𝐾 =∏∫
𝑑𝑘𝑖
2𝜋

𝜋

−𝜋

∫
𝑑𝑘1
2𝜋

× (𝑐𝒌
† 𝑐𝒌

†)

𝜋
2

−
𝜋
2

(
𝜀𝒌 0
0 𝜀𝒌

) (
𝑐𝒌
𝑐𝒌
)

𝐷

𝑖=2

 (A17) 

From this form, it is clear that eigenvalues are:  

 𝜆𝒌 = 𝜀𝒌 (A18) 

The eigenvalues are degenerate and two eigenvectors belong to each 

eigenvalue. These two eigenvectors are the same for each eigenvalue and look like 

this:  

 𝑣𝒌
+ = (

1
0
)    and    𝑣𝒌

− = (
0
1
) (A19) 

A.2 The staggered potential for the Falicov-Kimball model 
For the case of the checkerboard staggered potential, our Hamiltonian looks 

like this [84, 47]:  

 𝐻𝐹𝐾 = −𝑡∑(𝑑𝒊
†𝑑𝒋 + 𝑑𝒋

†𝑑𝒊)
〈𝒊,𝒋〉

+ 𝛥∑(−1)𝒍

𝒍

𝑑𝒍
†𝑑𝒍 (A20) 

We will again apply the same canonical transformation (A2) and express the 

Hamiltonian in terms of operators from the momentum space. Since the hopping 

term of Hamiltonian (A20), is the same as for the non-interacting case, this part of 

the Hamiltonian will be the same as in (A15).  

Therefore, we only need to find the formula for the potential term of 

Hamiltonian (A20). Similarly as previously, we substitute for creation and 

annihilation operators from the real space using equations (A6) and (A7). We also 

rewrite -1 using imaginary exponential to get:  

 
𝛥∑(−1)𝒍

𝒍

𝑑𝒍
†𝑑𝒍 = 𝛥∑𝑒𝑖𝝅∙𝒍

𝒍

1

√𝑁
∑𝑒−𝑖𝒌∙𝒍𝑐𝒌

† 1

√𝑁
∑𝑒𝑖𝒋∙𝒍𝑐𝒋
𝒋𝒌

 (A21) 

We reorder terms and write in parentheses the term, to which we apply the 

first identity from (A3).  
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𝛥∑∑(

1

𝑁
∑𝑒𝑖(𝒋+𝝅−𝒌)∙𝒍

𝒍

) 𝑐𝒌
†𝑐𝒋

𝒋𝒌

 (A22) 

Applying the identity and using properties of Kronecker delta we get: 

 𝛥∑∑𝛿𝒋+𝝅,𝒌𝑐𝒌
†𝑐𝒋 = 𝛥∑𝑐𝒌

†𝑐𝒌+𝝅
𝒌

 

𝒋𝒌

 
(A23) 

The Hamiltonian for staggered potential in terms of operators from the 

momentum space therefore is:  

 𝐻𝐹𝐾 =∑𝜀𝒌𝑐𝒌
†𝑐𝒌

𝒌

+ 𝛥∑𝑐𝒌
†𝑐𝒌+𝝅

𝒌

 
(A24) 

where 𝜀𝒌 is again given by (A16).  

This Hamiltonian can be rewritten in a matrix form similar to Hamiltonian 

(A17) [47, 84]:  

 

𝐻𝐹𝐾 =∏∫
𝑑𝑘𝑖
2𝜋

𝜋

−𝜋

∫
𝑑𝑘1
2𝜋

× (𝑐𝒌
† 𝑐𝒌+𝝅

† )

𝜋
2

−
𝜋
2

(
𝜀𝒌 𝛥
𝛥 𝜀𝒌+𝝅

) (
𝑐𝒌
𝑐𝒌+𝝅

)

𝐷

𝑖=2

 (A25) 

From the matrix form, we can easily find eigenvalues. When doing so, we 

utilize the following identity:  

 𝑐𝑜𝑠(𝑘 + 𝜋) =  −𝑐𝑜𝑠(𝑘) (A26) 

The eigenvalues are:  

 
𝜆𝒌
± = ±√𝜀𝒌

2 + 𝛥2 (A27) 

The corresponding orthonormal eigenvectors are:  

 

𝑣𝒌
+ = 

(

 
 
 
 

𝜀𝒌+√𝜀𝒌
2+𝛥2

√𝛥2+(𝜀𝒌+√𝜀𝒌
2+𝛥2)

2

𝛥

√𝛥2+(𝜀𝒌+√𝜀𝒌
2+𝛥2)

2

)

 
 
 
 

   and    𝑣𝒌
− = 

(

 
 
 
 

𝜀𝒌−√𝜀𝒌
2+𝛥2

√𝛥2+(𝜀𝒌−√𝜀𝒌
2+𝛥2)

2

𝛥

√𝛥2+(𝜀𝒌−√𝜀𝒌
2+𝛥2)

2

)

 
 
 
 

 (A28) 

 


