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Abstract: Intercellular communication orchestrates important tissue processes in

all multicellular organisms. Recent advantages in single-cell and spatial transcrip-

tomics unveil new possibilities in analysing cell-cell communication. Up-to-date

workflows of both revolutionary methods are described and complemented with

relevant novel tools. By merging detailed genome-wide single-cell sequencing

information with preserved spatial context, it is possible to capture tissue organ-

isation in great detail. Knowledge-graph-based tool SpaTalk is used to reveal

signalling pathways in mouse brain after cerebral ischaemia. The results show

significant role of adhesion-related and tissue-densification-related signalling

events in the intercellular communication at the lesion border. Detailed signalling

mechanisms among proliferating microglia, astrocytes, and oligodendrocytes

ongoing in the lesion are also revealed.
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Abstrakt: Mezibuněčná komunikace řídí důležité procesy v tkáních všech mno-

hobuněčných organismů. Nedávné pokroky v oblastech jednobuněčné a pros-

torové transkriptomiky otevřely nové možnosti analýzy mezibuněčných komu-

nikací. V práci jsou uvedeny současné postupy obou těchto revolučních metod

doplněny o relevantní nástroje. Spojením detailní celogenomové jednobuněčné

sekvenace se zachovanou prostorovou informací je možné zachytit detaily v orga-

nizaci tkáně. Nástroj SpaTalk je použit pro analýzu signalizačních drah v myším

mozku postiženém cerebrální ischemií. Výsledky analýzy ukazují význam mezi-

buněčné komunikace spojené s adhezí a kompaktací tkáně na hranici léze. Práce

také odkrývá signalizační mechanismy mezi buňkami proliferujících mikroglií,

astrocytů a oligodendrocytů.
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Introduction

To understand complex tissue processes in health and disease, one must inevitably

comprehend communication events across cellular network. From the plethora

of possible ways information is passed in the tissue, the importance of ligand–re-

ceptor protein interactions has been obvious for a while now (Bongrand, 1999).

Until recently, only low-throughput methods with considerable limitations were

widely available (J. Zhu et al., 2023). With recent breakthroughs in transcriptome

sequencing, as summarised by T. Hu et al. (2021), in capturing heterogeneity of

tissue with spatial information preserved, what Ståhl et al. (2016) invented, and

in-depth genome-wide analysis in single cell, as discussed in this article from

Kharchenko (2021), new possibilities in studying interactions arises.

One of the novel software tools, SpaTalk from Shao, C. Li, et al. (2022), is

used in this thesis to ascertain ongoing communication events in injured mouse

brain. The results show significant communication in the affected tissue mostly

related to immune response and overall high levels of cell stress in the area.

It also localises the venue of most communication events in the lesion and its

surroundings. The findings are presented in a biological context.

First, single-cell and spatial transcriptomics are briefly described whilst high-

lighting important properties to take into account in interpretation of the results.

In the second chapter, results are presented and discussed along with data sources

and pipeline description.
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Chapter 1

Cell-cell communication review

1.1 Cell-cell interactions

Since the beginning of evolution, multicellular organisms have to invent strategies

in order to coordinate all of their cells. Cell-cell interactions are the fundamen-

tal principles in maintaining the organism in homeostasis and keeping it alive.

Studying those interactions is crucial for understanding the processes in a variety

of physiological mechanisms, including numerous pathological states. Recent

advances in multiple sequencing techniques enable large scale analysis, which

helps to gain valuable insights into numerous yet unexplored phenomenons.

1.2 Single-cell transcriptomics

The ability to analyse the whole transcriptome of a single cell in large quantities

is the main advantage of single-cell transcriptomics. Usage of next generation

sequencing methods (NGS) have shown, how important are sensitive methods

for meaningful transcriptome analysis (Tang et al., 2009). Conventional bulk

transcriptome sequencing does not provide the information about differences
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in expression counts in various cells. It has been observed, that even indistin-

guishable cells from a homogeneous tissue sample can differ greatly in the gene

expression levels (Shalek et al., 2014).

1.2.1 Single-cell transcriptomics workflow

Data preprocessing

Acquiring dissociated cells The first main step is obtaining the single-cell

material, from which RNA of interest can be sequenced separately for each

cell. The selection of method depends on the accessibility of the undamaged

suspended cells. If the tissue of interest does not allow gathering of intact cells,

usage of single-nuclei RNA sequencing is also feasible. Those methods dissolve

all cellular membranes and directly accessing the RNA (Grindberg et al., 2013).

More frequent approach include separation of individual cell by mechanical and

enzymatic means (Xin Wang et al., 2003; Muraro et al., 2016).

Cell Isolation To facilitate sequencing of individual cells, they are required

to be separated in distinct spaces. Advanced high-throughput methods used for

this task are microfluidic-based or plate-based. Microfluidic-based methods allow

parallel cell capture using specific devices as presented by Marcus, Anderson,

and Quake (2006) where a continuous flow of suspension is separated using

valves or systems where each cell is inserted into an emulsion droplet (Guo et al.,

2012). Plate-based methods use fluorescence activated cell sorting (FACS) as

demonstrated by Bonner et al. (1972) to guide cells into plate wells.

RNA sequencing - Library preparation Next step is to sequence isolated

transcripts to obtain raw reads. RNA amplifying and sequencing in each of the

isolated volumes is not financially and practically feasible. Usage of cellular bar-
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codes and UMIs (unique molecular identifiers) enables pooling and multiplexing

of the samples. To distinguish reads from individual cells , transcripts are attached

a cellular barcodes (a nucleotide sequence attached to the RNA transcripts, unique

for each cell) (Macosko et al., 2015). To distinguish differences in gene expression

from amplification bias, transcripts are also attached a UMI (Islam et al., 2014).

After reverse transcription and second strand synthesis, to obtain cDNA and

amplification of the material to improve the probability sparsely represented

genes of being sequenced, raw reads are sequenced with NGS tools (Hwang, J. H.

Lee, and Bang, 2018).

Raw data Preprocessing Typical input for the single-cell analysis tools is a

matrix of reads. In order to extract meaningful data from such matrices, steps to

identify reads from individual cells and to remove bias from cDNA amplification

have to be taken (Wilkins et al., 2021). First steps are: alignment of reads, ”demul-

tiplexing” - separating reads appertaining to individual cells from the sequenced

pool by their cellular barcodes, and removing amplification noise from PCR reads

with same UMI to subsequently obtain original counts in each cell to detect expres-

sion level differences (Weber et al., 2021; Parekh et al., 2018). Separated raw reads

are mapped to the annotated sequences of studied species using variations of

dynamic programming to perform global or local alignments and multiple heuris-

tics (Johansen and Quon, 2019). Available tools differ in alignment approaches and

used reference sequences - whether the alignment resource is whole genome or

only known transcripts. One advanced tool is STARsolo from Kaminow, Yunusov,

and Dobin (2021) capable of incorporating demultiplexing, cell assignment using

cellular barcodes and sequence alignment with gene assignment into a single

tool.
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Quality Control This step aims to filter out abnormal cell reads which corre-

spond to defective or damaged cells or an error in workflow. Unwanted situations

include cells with torn membrane, dying cells, doublets (a situation where two

(or more) cells are incorrectly captured in a single, discrete space instead of one

cell (Germain et al., 2021)) and unsuccessful captures (Lun, McCarthy, andMarioni,

2016). Popular and well established doublet detection tool is Scrublet by Wolock,

Lopez, and Klein (2019) or a novel tool SoCube by H. Zhang et al. (2023) which

utilises neural networks for doublet detection.

Normalisation Matrices of scRNA-seq data are sparse. Zeros are predominant

due to high variability in gene expression among individual cells and technical hin-

drances in processing low quantities of mRNA (sampling effect) (L. Lun, Bach, and

Marioni, 2016). Compared to bulk sequencing, single-cell resolution highlights the

expression differences greatly. Normalisation step addresses this issue and tries

to make expression profiles comparable. It is also important to account for ”batch

effects” which arises from noise, artifacts and dissimilarities in isolated experi-

ments (Leek, 2014). Simple and commonly used but non-optimal method is CPM

(counts per million) which does not assumes differences in count depth (Luecken

and Theis, 2019). Selection of the normalisation method always affects down-

stream analysis and has to be tailored for individual applications (Vallejos et al.,

2017). Recently Lause, Berens, and Kobak (2021) showed, that method utilising

analytic approximation of Pearson residuals presented by Hafemeister and Satija

(2019) outperforms other methods and is capable of capturing more relevant

biological variation. It utilises the Pearson residuals to estimate the technical

artifacts of the experiment and thus enabling to remove them.

Feature selection Filtering the large amount of genes is necessary to capture

biological relevance. Feature selection isolates only informative genes for down-
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stream analysis. Classical approach from Brennecke et al. (2013) is to identify

highly variable genes. This is unfortunately susceptible to normalisation methods.

Therefore, Townes et al. (2019) suggested using deviance for feature selection,

which describes how well each gene matches constant, null expression model.

Informative genes are those with dissimilar expression among cells, such genes

fit purely the null model.

Dimensionality reduction With a similar purpose as feature selection di-

mensionality reduction extracts informative data to reduced space for further

downstream algorithms to work with. Such step is possible due to the fact that

scRNA-seq data have intrinsically low dimensionality (Moon et al., 2018). While

commonly used PCA (principal component analysis) suffers from normalisation

techniques as Townes et al. (2019) showed, generalised PCA is more suitable.

However, both are not the best suitable for 2D visualisation, unlike superior graph

based UMAP. Besides that, authors McInnes, Healy, and Melville (2018) state its

weakness in interpretability in comparison with PCA.

Cellular structure and cell populations (Intermediate analysis)

Clustering For scRNA-seq data, without spatial information, clustering pro-

vides way of grouping cells together based on similarity of their expression

profiles. Community detection algorithms are one way to divide distinct groups.

Recently developed Leiden algorithm by Traag, Waltman, and Van Eck (2019)

is a successor to widely used Louvain algorithm which may not recognise all

groups sufficiently. Both utilises KNN (k-nearest neighbours graph) as a base

structure. Clustering can also be performed using machine learning methods.

Such approaches iteratively recalculate centroids of clusters and form groups

from closest cells (Petegrosso, Z. Li, and Kuang, 2020).
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Annotation Created clusters distinguish cells with similar expression profiles,

which corresponds to similar cell types. Annotation of these clusters assign each

cell a particular cell type. This is ambiguous because of the nature of scRNA-seq

data, which captures a single snapshot in life of a cell and therefore different cell

states or subtypes modify the observation (Zeng, 2022). Depending on application,

different level of distinction is desired to be captured. Annotation always work

on previously annotated atlases of reference data or marker genes databases.

Annotating whole clusters is faster and may benefit from consensus expression

profile among cells in cluster, although annotating each cell separately will not

hide subtle differences, which may be crucial (Clarke et al., 2021). One example is

an automated annotation tool scAnvi by C. Xu et al. (2021). It merges multiple

datasets to gain less dataset-biased information.

Trajectory inference Differentiation and developmental transitions are impor-

tant in understanding underlying processes in health and disease (Bendall et al.,

2014). Current trajectory inference methods differ in types of topologies they are

capable detecting and whether the inferred topology is fixed or changeable in

progress (Saelens et al., 2019). Slingshot algorithm by Street et al. (2018) uses a

minimum spanning tree to identify branches and fit the structure with examined

data afterwards. In reverse order works novel scTEP from authors Y. Zhang et al.

(2023), who first determine the pseudotime (path of expression profiles similarity

of cells) from which the trajectory is modelled. It is always important to assess

the proposed trajectories with awaited results as they don’t necessary represent

real biological processes (Sundell et al., 2023).

Gene regulatory networks Another useful information to obtain from scRNA-

seq data is to determine transcription factors pathways. It is possible to identify

groups of co-regulated genes and the regulatory structure called regulon (Keene,

9



2007). Although Efremova and Teichmann (2020) stated, that inferring regulons

only from scRNA-seq is not sufficient due to histons, accessibility of the chromatin

and other DNAmodifications, several tools exists. GRNBoost2 uses machine learn-

ing method gradient boosting, which is reducing bias (Moerman et al., 2019). Very

recent SCENIC+ combines single-cell count matrix with chromatin accessibility

to infer regulons (Bravo González-Blas et al., 2023).

Cell-cell signalling The core of inferring cell-cell communication and sig-

nalling pathways are protein-protein (mostly ligand-receptor) interactions (De

Las Rivas and Fontanillo, 2010). By utilising prior knowledge of interacting pro-

tein pairs, it can be predicted that two cells expressing each protein of the pair can

interact. However, as Armingol, Officer, et al. (2021) summarised in their review,

multiple factors need to be considered. Those include: sequenced mRNA counts

might not reflect true protein quantities in a cell, the pure fact that protein is

synthesised in a cell does not have to guarantee communication events to happen,

and proteins composed of multiple sub-units. Besides these limitations, spatial

information is due to the tissue dissociation step inherently lost. This crucial

disadvantage in resolved with incorporation of spatial transcriptomics.

1.3 Spatial transcriptomics

In 2016, the first method allowing collection of transcriptomic data while pre-

serving spatial information was published by Ståhl et al. (2016). The method

uses oligonucleotides on a glass slide, which are barcoded with unique sequence

for distinct positions. On those probes, mRNAs from tissue placed above are

caught and sequenced with their spatial position in the sample preserved. Since

then different technologies were used to profile gene expression while preserving

spatial information.
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Emerging spatial transcriptomics methods allows single-cell or even sub-

cellular resolution of space (Savulescu et al., 2020). However, such methods are

usually costly, have insufficient sensitivity or are not transcriptome wide (Yue

et al., 2023). When predicting cell-cell communication, integrating spatial data

with single-cell data allow employing spatial methods with multi-cell resolution

without losing the accuracy.

1.3.1 Spatial transcriptomics workflow

The wide range of available spatial transcriptomics methods can be divided in

two main groups: sequencing-based and imaging-based. They differ in the way

they capture the spatial and mRNA abundance information. While imaging-based

insert (usually fluorescent) visible markers into the sample, either directly, as Ke

et al. (2013) first demonstrated, or by hybridisation, sequencing-based methods

rely on NGS after adding position-specific barcodes (Ye Wang et al., 2023).

Preprocessing For sequencing-based methods initial quality control steps as

well as normalisation and selection of highly (spatially) variable genes are similar

to single-cell analysis procedure (Walker et al., 2022). State-of-the-art, recently

updated toolkit Seurat by Hao et al. (2023) offers method SCTransform for statis-

tical normalisation among many other analytical tools for spatial transcriptomics

data pipeline.

Image-based methods require processing of acquired images using computer

vision techniques. Noise reduction algorithms are used to remove technical

artifacts from imaging and backgrounds are removed (Williams et al., 2022). Each

hybridisation or sequencing round, an image is taken, again due to limitations

of microscopic imaging techniques, all images must be aligned so that a single

observed point is matched throughout the imaging (Kleino et al., 2022). Once
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aligned, sequence of intensities is measured and matched to known transcripts

fluorescence signals sequence, if possible (Cisar et al., 2023). Segmentation is a

preprocessing method, which can be used to detect cell boundaries. One of the

latest tools for segmentation is Baysor by Petukhov et al. (2022).

Spatial clustering Common approach to clustering in spatial data is adapting

single-cell methods and algorithms for spatial usage (J. Li, Shyr, and Q. Liu, 2023).

Many of these methods use k-nearest neighbours graph. Quality of results based

on kNN graphs strongly depends on the selection of k, which leads to inaccuracies

in clustering rare or abundant cell types (Dries et al., 2021). Novel DR-SC from

authors W. Liu et al. (2022) unifies dimensionality reduction with clustering to

enhance the quality of its overall output.

Deconvolution Most broadly available genome-wide methods for spatial tran-

scriptomics with sufficient sequencing depth are still in multi-cell resolution.

This limitation is tackled with algorithms capable of inferring specific cell type

proportions on each spot (Cable et al., 2022). Some methods can decompose cell

types without single-cell reference data, one of them is STdeconvolve from Miller

et al. (2022) which uses generative probabilistic model. Different approach to

decomposition is coalescing spatial with single-cell data as a reference for cell

type inference. Gold standard is a tool from Cable et al. (2022) called RCTD. It

calculates mean expression of marker genes in reference scRNA-seq dataset and

uses it to model probabilities how would a particular single cell contribute to

spot expression levels. Redeconve is a recent tool by Z. Zhou et al. (2023) who

claims it outperforms other deconvolution tools by using linear regression model.

Performance of these tools depends greatly on the strength of match between

spatial and single-cell data. Authors Lopez et al. (2022) created tool named DestVI

which might benefit from also considering sub-cell-type variations.
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Gene imputation When single-cell data are used as a supporting evidence, it is

possible to fill in the missing gene expression information (Biancalani et al., 2021).

Gene imputation tools aim to learn translation function from overlapping genes

(in spatial and single-cell datasets) and utilise that knowledge to fill the gaps in

spatial expression profiles with profiles, present in single-cell dataset (Qiao and

Huang, 2023).

Data integration The most widespread spatial transcriptomics methods come

with limited sample sizes for a single run. This might lead to necessity of multiple

runs. Other possibility is that the nature of experiment requires runs separated

in time. Both of these eventualities result in data which cannot be simply merged

owing to batch effects and other non-identical conditions (R. Li, X. Chen, and

X. Yang, 2024). The issue is solved by the methods of integrative analysis. The ob-

jective is to capture similar spots between each run, anchor those and reconstruct

3D space from gathered connections (X. Zhou, K. Dong, and S. Zhang, 2023).

1.4 New generation of tools for inferring cell-cell

communication in spatial data

From the numerous ways cells interact in organisms, usage of transcriptomic

methods limit the spectrum of detectable interactions to those where both ends

of the communication (sender and receiver) are proteins or other sequenceable

molecules (Dimitrov, Schäfer, et al., 2023). Prevalent target of studies are ligand-

receptor pairs, because of the simplicity of their acquirement and extensive

literature-curated databases (Armingol, Officer, et al., 2021).

The basic premise is that it is possible to identify communicating cells by

analysing expression levels of ligand and receptor in the corresponding cells and

13



that those levels can be used to measure communication strength (Armingol,

Ghaddar, et al., 2022). Directly measuring if a communication event occurs in

living tissue would provide better image, but this is currently not possible. For

algorithm to successfully reveal communication it is required that both sender

and receiver cell types are sufficiently abundant, expressions of both interacting

proteins are sufficient for capturing sensitivity in sequencing algorithms, and

previous knowledge of interactions between these specific proteins is described

and ideally confirmed (Almet et al., 2021).

1.4.1 Selected tools

According to very recent study by Armingol, H. M. Baghdassarian, and Lewis

(2024) there are over one hundred tools for communication inferencewith different

localisation, scalability, accuracy, sensitivity and performance. SpaTalk from Shao,

C. Li, et al. (2022) is the one chosen for the analysis in the second chapter. Here is

presented a brief theoretical summary and comparison of tools comparable with

SpaTalk.

CellChat and CellChat v2 First CellChat tool presented in article by Jin,

Guerrero-Juarez, et al. (2021) was able to calculate probability of intercellular

interactions from scRNA-seq data. Although it has been highly scored as a

tool with stable consistency in this study from Z. Liu, Sun, and C. Wang (2022)

comparing CCC (cell-cell communication) inference tools, hardly any other studies

benchmarking CCC tools exists. CellChat package includes its own custom ligand-

receptor database CellChatDB and authors claim, that its advantage is inclusion

of multimeric protein complexes and cofactors. Although study comparing CCC

tools and resources by Dimitrov, Türei, et al. (2022) clearly states, that most

available resources share a common origin and therefore lacks overall uniqueness.
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That perhaps opens possibilities for a new, frequently updated universal consensus

database.

The second, updated version of this tool is able to incorporate spatial dataset as

a guidance for proximal interactions (Jin, Plikus, and Nie, 2023). Major disadvan-

tage of both versions is the conception of one ”spot”. Cell groups, as they call them,

consist of single most abundant cell type, this wastes measured heterogeneity

and limits the potential of full performance.

stLearn Python based software stLearn offers spatially-centred approach with

great efforts to minimise false positives (Pham et al., 2023). For its optimal

performance it also accepts, aside of gene expression and spatial guidance, tissue

morphology images. Those images facilitates adjustments of the sequencing

data. In the same comparison study from Z. Liu, Sun, and C. Wang (2022) where

CellChat scored high, stLearn succeeds in human dataset, but on the whole was

below-average. It should be noted that even authors ascribe that to properties of

their specific metric.

SpaTalk This recent R-compatible graph-based tool for CCC inference created

by Shao, C. Li, et al. (2022) directly combines scRNA-seq and spatial data. No rel-

evant let alone independent studies compared SpaTalk with other CCC inference

tools as of time of writing this thesis. Nevertheless, authors J. Zhu et al. (2023) of

this article declare, that far too much predicted interactions are shared among

dissimilar cell types. On a theoretical level, SpaTalk constructs KNN graph from

euclidean distance matrix and obtains significantly co-expressed ligand-receptor

pairs from sufficiently neighbouring cells. It than scores the predicted interac-

tion pairs by their influence on the corresponding receptor cells. The greater

the number of activated transcription factors and terminal downstream target

genes, the higher score the interaction gets. Important benefit of SpaTalk is the
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possibility to input data after deconvolution, which gives users the opportunity

to incorporate different deconvolution tools. Unlike CellChat, SpaTalk considers

cell types proportions in each spatial spot.

1.4.2 Specific approaches

Among all tools based on coalescing spatial with single-cell data, some methods

approach CCC inference differently. One example comes from Boisset et al. (2018)

whose method guarantees spatial closeness by intentionally dissecting doublets

or triplets for sequencing.
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Chapter 2

Implementation of SpaTalk on

cells in the mouse brain affected by

ischaemic brain injury

In this section is described, how the previously mentioned SpaTalk tool from Shao,

C. Li, et al. (2022) was used to infer communication between mouse brain cells

after cerebral ischaemia. As an input, outputs from recent spatial transcriptomics

and single-cell sequencing methods were used in tandem. The package version

1.0 was running in R version 4.3.3 environment.

2.1 Data analysis using SpaTalk

2.1.1 Used datasets

The spatial dataset used for the analysis from Zucha et al. (2023) is a section

of mouse forebrain after middle cerebral artery occlusion. The data processing

was performed as described in Zucha et al. (2023). In short, the spatial dataset
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was processed using 10X Visium platform and the data processed using Seurat

pipeline (Hao et al., 2023). For deconvolution of the spatial dataset, RCTD decon-

volution algorithm from Cable et al. (2022) was used with reference single-cell

dataset from Milich et al. (2021). The same spinal cord injured mouse dataset

by Milich et al. (2021) was used as a single-cell input for the SpaTalk communi-

cation inference module. The merged data contains 17 distinct cell types of two

categories: CNS cells and immune system cells. The default SpaTalk databases

served as knowledge base for the analysis, namely: ligand-receptor database

CellTalkDB from Shao, Liao, et al. (2021), database of transcription factors An-

imalTFDB curated by H. Hu et al., 2019, and downstream pathways databases

Reactome from Milacic et al. (2024) and KEGG (Kanehisa et al., 2023).

2.1.2 SpaTalk workflow description

First of all, SpaTalk object was created with createSpaTalk() function with pre-

processed spatial dataset and parameters: species = "Mouse", if_st_is_sc =

FALSE and spot_max_cell = 25. Initial object creationwas followed by incorpo-

ration of single-cell data. The dec_celltype() function was called with single-

cell expression matrix and already deconvoluted spatial data as dec_result

argument. Next, by calling find_lr_path() function, communication path-

ways were found using the default ligand-receptor database. At last with the

dec_cci_all() function, all proximal cells interactions were found. All infor-

mation for the following plots was contained in the SpaTalk object at this point.

2.2 Results of the performed data analysis

As already mentioned in the section 2.1.1 Used datasets, 17 distinct cell types were

analysed with SpaTalk. Out of 272 result pairs produced by the algorithm (all
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pairs minus signalling between cells of the same type), 4 selected are presented

here. Namely proliferating microglia sending to astrocytes, the reverse direction,

where astrocytes are sending, microglia sending to oligodendrocytes, and its

reverse. Those were selected mainly for their high abundance in the datasets and

their crucial role in response to the injury.

2.2.1 Proliferating microglia to astrocytes signalling

The analysis shown considerable changes occurring in the lesion area in the

sample from day 3 post injury. Astrocytes are equally distributed in healthy areas

as expected, whereas proliferating microglia are gathered in lesion, especially

at the border of healthy and damaged tissue (figure 1A). Neither astrocytes nor

microglia are plentifully present in already destroyed tissue (figure 1A and fig-

ure 1B). The maximum of inferred communication events occurs at the lesion

boundary (figure 1B). Lipid associated Apoe ligand in proliferating microglia sup-

ports the inflammatory state of those cells and signals to the astrocytes through

the Sdc4 receptor, significantly activating three downstream pathways (figure 1C

and figure 1D). Great levels of transmission are realised via Itgb1 and Itgav re-

ceptors activation (figure 1C). This integrin-related signalling conforms with the

cell adhesion in tissue undergoing immune response. The complex branching

(figure 1E) shows the extensive downstream activation power of Sdc4 receptor.

2.2.2 Astrocytes to proliferating microglia signalling

Although the overall number of communication events measured in the direction

from astrocytes to proliferating microglia is greater than the opposite (figure 1A

and figure 2A), when monitoring ligand Vcan and receptor Tlr2, the plot is much

more sparse (figure 2B). Much less astrocytes express Vcan compared with Sdc4

across the whole tissue sample, not clustering on the lesion area border (figure 2B).
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Figure 1 Visualisation of proliferating microglia signalling to astrocytes

A) Point plot with spatial distribution of proliferating microglia and astrocytes with

highlighted significantly communicating cells. B) Inset point plot of lesion area. Straight

lines represent ligand-receptor pairs of Apoe and Sdc4 genes in interacting proliferating

microglia with astrocytes. C) Table containing ligand-receptor pairs significantly enriched

in proliferating microglia and astrocytes. Ligands produced by proliferating microglia are

on the y-axis, while on thy x-axis are corresponding astrocytes receptors. Fields marked

with an * (asterisk) are the ones most enriched. D) Alluvial plot of significantly activated

pathways downstream to Sdc4. On the gene-axis, strata are related downstream genes

of astrocytes and strata on pathway-axis are significantly used pathways. E) Network

plot mapping the extent of downstream gene pathways in receipting cells.
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Figure 2 Visualisation of astrocytes signalling to proliferating microglia

A) Point plot with spatial distribution of astrocytes and proliferating microglia with

highlighted significantly communicating cells. B) Inset point plot of lesion area. Straight

lines represent ligand-receptor pairs of Vcan and Tlr2 genes in interacting astrocytes with

proliferating microglia. C) Table containing ligand-receptor pairs significantly enriched in

astrocytes and proliferating microglia. Ligands produced by astrocytes are on the y-axis,

while on thy x-axis are corresponding proliferating microglia receptors. Fields marked

with an * (asterisk) are the ones most enriched. D) Alluvial plot of significantly activated

pathways downstream to Tlr2. On the gene-axis, strata are related downstream genes of

proliferating microglia and strata on pathway-axis are significantly used pathways. E)

Network plot mapping the extent of downstream gene pathways in receipting cells.
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By contrast, proliferating microglia with abundantly expressed Tlr2 are almost

solely present in the lesion boundary (figure 2B). As a result, number of detected

communication events through the mediation of Vcan-Tlr2 pair, is low (figure 2B).

However apart from Vcan, other astrocytes ligands (Cd14, Hmgb1, Ccn1, and Bgn)

are also received by Tlr2 (figure 2C). Similarly to communication in section 2.2.1,

different integrin subunit gene Itgb2 is also redundantly activated by multiple lig-

ands (Icam1, C3, Tln1, Cd14, Vcam1, Jam3, and others), again showing high levels

of cell adhesion (figure 2C). Another significantly enriched receptor receiving

in microglia is the Cd44 (figure 2C) involved in lymphocyte homing and again

in cell adhesion. The network of activated downstream pathways in microglia

is extensive and highly interconnected with Tlr2 as a key gene in most of the

pathways (figure 2D and figure 2E). Tlr2 being a member of Toll-like receptor

family, plays significant role in pathogen recognition and immunity triggering.

This fact is also supported in figure 2D with the number of cell defence-related

activated pathways. In summary, astrocytes response to proliferating microglia

is triggering multiple mostly stress-related pathways.

2.2.3 Proliferating microglia to oligodendrocytes signalling

The topological structure of Tnfrsf1a downstream pathways show the richest

branching in the last level (figure 3A). While the Tnf-Tnfrsf1a cascade show

few major controlling genes, triggering large quantity of downstream targets

in the last level, Vcan-Tlr2 cascade is much more interconnected (figure 2E and

figure 3A). Areas of inferred communication between proliferating microglia

and oligodendrocytes are especially in places where nerve fibres, myelinated by

oligodendrocytes, meet damaged tissue. In thementioned area in figure 3B, plotted

ligand-receptor pair Tnf and Tnfrsf1a interacts in similar numbers as Vcan and Tlr2.

Similarly to both previous communicating pairs, integrin subunits genes are also
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Figure 3 Visualisation of proliferating microglia signalling to oligodendrocytes

A) Network plot mapping the extent of downstream gene pathways in receipting cells.

B) Inset point plot of lesion area. Straight lines represent ligand-receptor pairs of Tnf

and Tnfrsf1a genes in interacting proliferating microglia with oligodendrocytes. C) Table

containing ligand-receptor pairs significantly enriched in proliferating microglia and

oligodendrocytes. Ligands produced by proliferating microglia are on the y-axis, while

on thy x-axis are corresponding oligodendrocytes receptors. Fields marked with an *

(asterisk) are the ones most enriched. D) Alluvial plot of significantly activated pathways

downstream to Tnfrsf1a. On the gene-axis, strata are related downstream genes of

oligodendrocytes and strata on pathway-axis are significantly used pathways.
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significantly enriched in oligodendrocytes. This is done through multiple ligands

(Adam15, Spp1, Thbs1, Postn and others) again indicating strong adhesion and

tissue densification (figure 3C). Tnfrsf1a triggers a plethora of activated pathways,

most of which are related with cell stress, survival, apoptosis, and inflammation

(figure 3D). The large number of significantly activated pathways show how

massive is the response to lesion-related events in participating oligodendrocytes.

It is also worth to notice, how some genes (Tnfrsf1a, Pik3r1, Jun, Fos, and Mapk3)

are involved in multiple activated pathways and others (Prkcz, Vim, Pdgfa and,

others) only in one or few pathways (figure 3D).

2.2.4 Oligodendrocytes to proliferating microglia signalling

In comparison with astrocytes distribution across the sample tissue as discussed

in section 2.2.2, oligodendrocytes are located more densely in the inner regions of

the hemisphere and the corpus callosum (figure 4A). Semaphorine gene Sema6d

abundantly expressed in some oligodendrocytes being received in microglia

indicates chronic inflammation of some of the cells at the lesion border (figure 4B).

Chemokine signalling is also enriched in signalling between oligodendrocytes and

proliferating microglia through ligands Ccl3, Ccl4, Ccl5, etc. and receptors Ccr1

and Ccr5. This suggests signal transduction and effector immune cells homing

(figure 4C). The figure 4D shows very high abundance of the proteasome subunit

genes (Psma4, Psmb5, Psmc1, Psmd12, etc.) suggesting that protein metabolism

in proliferating microglia is at full speed. Likewise speaks the activated pathways,

ongoing immune response utilise all pathways including tyrosine-based DAP12

immunoreceptor pathway (figure 4D). The topology of pathways downstream

to Trem2 is noticeably different from Tnfrsf1a downstream topology (figure 4E).

While pathways downstream to Tnfrsf1a branches mostly in the last level and

also most of the genes in the pathways tree are leaves, Trem2 as well as Tlr2
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Figure 4 Visualisation of oligodendrocytes signalling to proliferating microglia

A) Point plot with spatial distribution of oligodendrocytes and proliferating microglia

with highlighted significantly communicating cells. B) Inset point plot of lesion area.

Straight lines represent ligand-receptor pairs of Sema6d and Trem2 genes in interacting

oligodendrocytes with proliferating microglia. C) Table containing ligand-receptor pairs

significantly enriched in oligodendrocytes and proliferating microglia. Ligands produced

by oligodendrocytes are on the y-axis, while on thy x-axis are corresponding proliferating

microglia receptors. Fields marked with an * (asterisk) are the ones most enriched. D)

Alluvial plot of significantly activated pathways downstream to Trem2. On the gene-axis,

strata are related downstream genes of proliferating microglia and strata on pathway-

axis are significantly used pathways. E) Network plot mapping the extent of downstream

gene pathways in receipting cells.
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downstream pathways branches more, even in the first levels, and the numbers

of genes in each level are more similar across levels (figure 4E).

2.2.5 Communication summary

All of the tracked communication pairs, show strong signalling related to cell

adhesion and tissue densification through multiple subtypes of integrines (fig-

ures 1 to 4C). Proliferating microglia at both receiving ends expressed abundantly

receptors Tlr2, Cd44, Itgam, Itgb2, Itgav, Tnfrsf1a. It is also noticeable, how pro-

liferating microglia are gathered at the borderline between healthy and damaged

tissue (figures 1, 2 and 4A). This is with agreement with the expectations, as

microglia being the pivotal cell type in the immune response in brain tissue. It is

also in accordance with the expected results, that an intensive communication

would be observed between proliferating microglia and two other neuroglial cell

types in the affected area at the global scale.
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Conclusion

Recent tools allowing cell-cell communication inference emerged recently. Their

functionality depends on advances in single-cell sequencing and spatial transcrip-

tomics techniques. This thesis summarises latest workflow methodologies of both

of these methods and highlights their significant aspects. It also states possible

hindrances which may arise from the workflow and provides guidance through

the complex pipeline. Selected tools with some significant properties were also

stated.

In this rapidly developing field, the latest cell-cell communication inference

tools lack unbiased and independent benchmarks forbidding other than theoretical

comparison. Despite that, very recent tools were stated and their strengths and

limitations were articulated.

In the second chapter, one of the most recent tools, SpaTalk, was used on

dataset from mouse cells after ischaemic brain injury. The analysis have revealed

extensive communication occurring in the lesion area. All of the examined cell

types shown high levels of signalling related with cell adhesion and tissue densi-

fication. Immune response triggering and other stress-related communication

was also strongly present in all cell types. The analysis also highlighted the

localisation of most of the communication events is in the injured area or at its

borders. This results might be used to better understand ongoing processes in

brain tissue after injury and the nature of its functioning generally.
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The results demonstrate the extent of information obtainable from the gath-

ered spatial and single-cell sequencing data. This can be done with data from

other single-cell and spatial transcriptomics experiments beyond their initial

objective to deepen the knowledge.

It is possible to extend the analysis to all other cell types and through days

1 and 7 post injury in this exact dataset. Further applications of this exact or

similar computational tools opens up great new opportunities to study cellular

processes and identify novel targets for therapy. It can also be applied in many

other biological fields. As long as the required background knowledge grows

and improves in quality, those tools and their future successors will continue to

provide valuable insight into the functioning of living organisms.

Code and data availability

All used datasets are available from the corresponding articles as specified in

section 2.1.1. Source codes are provided in the supplementary files.
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