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Abstract: The evaluation of protein-ligand binding site similarity is crucial in
many fields, from drug repurposing trials to evolutionary studies. Current state-
of-the-art methods achieve good results on the benchmarking datasets. However,
the current approaches operate over pairs of binding sites and are not applicable
for searching databases of unprocessed protein structures. In cases when the
binding sites are unknown, they have to be firstly located by using binding site
prediction algorithms. That significantly increases the upfront costs of creating
large databases of similar binding sites. This work covers the current methods for
assessing binding site similarity and explores the possibility of fast searching of
large databases of related structures by presenting a simple method that allows
faster than linear search without the need for identification of the precise locations
of the putative binding sites. The proposed approach shows promising preliminary
results that merit further investigation, although more insight is still needed.

Keywords: protein-ligand interaction binding site similarity database searching

il



Nazev prace: Detekce podobnych vazebnych mist v databazich proteinovych
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Autor: Jakub Telcer
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Abstrakt: Vyhodnocovani podobnosti protein-ligand vazebnych mist je dilezité v
mnoha oblastech, jako je vyzkum novych vyuziti stavajicich léciv nebo evolu¢ni
studie. Nejmodernéjsi soucasné pristupy dosahuji dobrych vysledku, ale pracuji
pouze s definovanymi vazebnymi misty, coz neni mozné v nepfedzpracovanych
proteinovych databazich. Pokud tato mista nejsou znama, je nejprve nutné
prohledat proteinové struktury nastroji pro jejich predikci. To vyznamné navysuje
cenu velkych databazi podobnych vazebnych mist. Tato prace se zaméfuje na
popis stavajicich metod pro hodnoceni podobnosti protein-ligand vazebnych mist
a zkouma moznosti rychlého vyhledavani podobnych mist ve velkych databazich
pfibuznych struktur. Je zde navrzena jednoducha metoda umoznujici rychlejsi
nez linearni vyhledavani bez nutnosti predikce potencialnich vazebnych mist.
Predbézné vysledky naznacuji, ze tento pfistup je hoden dalsi pozornosti, ackoliv
je stale zapotrebi vice vhledu do dané problematiky.

Kli¢ova slova: protein-ligandové interakce vazebna mista podobnost databazové
vyhledavani
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Introduction

Protein-ligand interactions play a key role in all living organisms. From enzymatic
reactions to signaling pathways, the binding of non-protein molecules is essential
to the correct function of our cells. Understanding these interactions allows us to
inspect various metabolic and signaling pathways more thoroughly, shed light
on unknown protein functions, detect potential side effects of medications due to
off-target binding of drugs, potentially discover new treatments by repurposing
existing drugs, and understand evolutionary relationships between proteins.

Unraveling the intricate details of some protein-ligand interactions might not
be possible without the use of more sophisticated methods, such as molecular
simulations or docking. However, many workflows require fast and accessible
large-scale searching and screening of proteins for similar binding sites. Various
tools that simplify the problem to a matter of correct spatial distribution of
chemically suitable atoms, residues or interaction-capable points exist. However,
their usage is limited to proteins with pre-identified binding sites, as these tools
only compare defined binding sites and assess their similarity. That can be
achieved by using various existing putative pocket detection tools.

For certain applications, searching large databases, such as the Protein Data
Bank with more than 200,000 entries or the AlphaFold database with more than
200,000,000, is required. Although many databases of similar binding sites already
exist, they are usually limited in size to, at most, tens of thousands of protein
structures. Just to locate the potential cavities in the AlphaFold database, a
prerequisite for searching similar binding sites, current state-of-the-art methods
for detecting putative binding sites would require months of CPU time on dozens
of cores. Subsequent searches might be faster, depending on the used method,
nonetheless the upfront costs would be significant.

This work dives into the current state-of-the-art methods for comparing
binding sites and assessing their similarity, compares their performance on exem-
plary datasets and explores the possibilities of faster than linear search in large
databases without the need for costly screening of all structures for putative bind-
ing sites. One such approach, based on the idea of exploiting the partial structural
similarity of related structures, is proposed. Its implementation is shown along



with preliminary results on multiple datasets.
Implications of this novel approach are discussed, and the directions for future
work are highlighted at the very end of this work.



Chapter 1

Literature Overview

Binding site similarity is a very helpful concept. It is particularly important
in fields such as drug repurposing [1], drug promiscuity 2], protein and protein-
complex function prediction [3, 4], drug design [5], RNA-binding drug discovery [5],
precision medicine [5] and others.

However, the exact definition of similarity is highly dependent on a given
context and is often defined based on the sought objective. For example, in drug
repurposing assays, the goal might be to either (i) Find known drugs that bind to
a specific protein or (ii) Find different proteins binding to a known drug.

Based on this objective, we could infer a reasonable definition of similarity for
this specific purpose, i.e., similar binding sites bind similar ligands. The similarity
between the ligands, usually small molecules, could be then assessed via multiple
methods [6].

However, for the prediction of protein function, the objective is to find, e.g.,
active sites similar to those known and well-annotated. From this, it may be
possible to deduce the protein function. That needs a slightly different definition,
though, as the ligand needs to be bound in the same manner. Consider the
difference between the enzymatic binding of a ligand as the substrate, a molecule
on which the enzyme acts, or as an effector, which modulates the enzyme’s
activity.

In an evolutionary examination of binding site similarity, the need is to
determine whether the binding sites are related, that is, whether they originated
from the same ancestor. However, that might not mean the ligand is bound still in
the same way, nor even that the sites still bind the same or at least similar ligand,
as required by the ’definition’ used in drug repurposing.

The variation and contradiction of the ’definitions’ imply no ultimate defi-
nition of binding site similarity exists. As Christiane Ehrt et al. stated in their
ProSPECCTs benchmark compilation, “binding site similarity ’lies in the eye of
the beholder’” [7].



For purposes of this work, we suppose binding sites are similar, provided
they share common physicochemical (similar amino acid residues) and structural
(relative spatial positioning of given residues) features. This 'definition’ neglects
the inherent flexibility of binding sites, phenomenons such as induced fit, con-
formational selection, flexibility of the ligand, and other factors. However, these
simplifications need to be done to reduce the sheer difficulty of the problem. The
effects of these simplifications can later be evaluated on the existing datasets, and
findings concerning related and unrelated binding site similarities are discussed.

1.1 Pocket Detection

Correct pocket identification is a prerequisite of reliable comparative methods.
Many different approaches can be utilized; some rely on the presence of the ligand,
so-called ligand-centric, and some rely on statistical descriptions of binding sites,
called ligand-free approaches. In these methods, some frequent characteristics of
binding sites are searched. For example, the complementarity of protein-protein
interfaces is frequently driven by apolar contacts [8] whilst polar interactions
and existing shape complementarity between protein and the binding molecule
tends to be more important in protein-ligand complexes [9].

Ligand-centric approaches usually delimit the binding site by a specific dis-
tance cutoff from the ligand or its heavy atoms. Commonly used cutoffs are 4 to
6.5 A. However, more intricate approaches were also used [10] to increase the
specificity of the method and more carefully select the residues or atoms that
interact with the ligand. An example of such an approach is finding protein-
ligand interaction fingerprints from docking poses in a discretized grid around
the ligand.

Ligand-free approaches are more useful in terms of detecting putative binding
pockets in large databases, where the ligands are very likely to be absent. They
can be classified as geometric, energetic, or data-driven.

Geometric methods use various methods of identifying sufficiently buried
zones free of protein atoms. Many utilize grid-searching strategies to do so [12,
13, 14, 15]. Another frequent strategy is to use spherical probes to fill the cavity
or to coat the surface [16, 17].

Energetic methods use the theoretical potential energy of probes distributed
on the protein surface [18] or in a discrete grid surrounding the protein [19].

Different ligand-free methods, such as ConSeq [20], locate binding sites using
sequential information. In the case of ConSeq, the predictions are also made
based on solvent-accessibility and evolutionary rates [20].

Lastly, data-driven approaches utilize supervised machine learning trained on
known binding sites. They differ in the selected features and their representations,
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Figure 1.1 Classification of binding site detection methods. Adapted from Eguida and
Rognan [11].

machine learning models, hyper-parameters, pre-processing and training datasets.
For example, P2Rank [21] is based on a random forest classifier having local
solvent-exposed atoms encoded into topological and physicochemical feature
vectors as inputs. Recently, methods using convolutional neural networks, such as
DeepPocket [22], PUResNet [23], or DeepSite [24], 3D point cloud deep learning
and 3D sparse convolution [25] have emerged.

Overall, the methods seem to be quite reliable in detecting known binding
sites on holo datasets, although they usually tend to predict more potential binding
sites than reported in literature [21].

1.1.1 Runtime of Current State-of-the-art Methods

The runtime of the methods is heavily dependent on the size of the protein
structure. Fpocket [26] and P2Rank [21] have reported single-core runtimes
in seconds on most of the structures [21]. LIGSITE [27] takes between 5 to 20
seconds on a single core per the prediction of medium-sized protein [28].



1.2 Existing Methods for Protein Binding Site Sim-
ilarity Evaluation

Once the pockets are delimited, they can be compared. Current state-of-the-art
methods for evaluating protein binding site similarity are all based on pairwise
comparisons. The similarity itself is not a metric! though, which prevents the
usage of many helpful techniques that eliminate the need for pairwise comparisons
of all-vs-all>. However, some, e.g., SiteMine [29], are extended with a more
conventional database search, where the found matches are then aligned and
scored. The current methods usually expect either the delimited binding site as
an input or perform the binding site detection, and the user can later specify the
site of interest. In the latter case, the binding site detection algorithm, as the ones
mentioned above, is used prior to the comparison. Many require the ligand as
an input to perform the binding site isolation or require its presence to correctly
locate the protein-ligand interactions.

For comparing two given pockets, the methods usually follow these three
steps: (i) Convert the cavities into appropriate representations; (ii) Locate patterns
shared between the two compared cavities; (iii) Score the match between them
based on the found patterns.

1.2.1 Site Representation

Initially, the binding site has to be converted to a suitable representation. That
means selecting important features and characteristics relevant to the problem
and ignoring unnecessary information. Almost all of the methods consensually
presume that the 3D location of residues and their selected attributes (as size,
physicochemical properties, flexibility) explain the specific binding, or recognition,
of the ligands in the cavity [30, 2].

Subsequently, they usually differ in the following aspects:

1. The level of simplification of the cavity
Whether to work with an all-atom model of the cavity, residues, or even
coarser representations

2. Considered viewpoint

The protein viewpoint considers points at the protein surface, however,
a few methods adapt the ligand viewpoint, e.g., by projecting the cavity

'Binding site similarity cannot be considered a metric as it does not adhere to the axiomatic
definition of metric, as triangle inequality and symmetry are required.
2Such as metric trees, locality-sensitive hashing, metric embedding or nearest neighbor search.



features onto a polyhedron, voxels, or points, which should represent the
ligand and thus can be used for comparisons of the environments in which
the ligands would reside (if they would bind).

3. The physicochemical features

The shape information of the cavity alone is insufficient for the correct
similarity estimation [31] when the bound ligand similarity is also of inter-
est. Thus, almost all methods annotate the selected points with pharma-
cophoric® features. In coarse-grained representations, the C, or C s atoms
are usually annotated based on the properties of their residues. The residues
are frequently binned into a few classes based on properties like hydropho-
bicity or interaction capabilities. Some tools allow residue to be in multiple
classes (e.g., SiteAlign). Single or groups of atoms are often discriminated
based on their interaction capabilities (CavBase). The amount of defined
pharmacophoric classes is usually in the span of five to eight but can range
up to 40 (e.g., PocketFEATURE [33]). Some methods consider more specific
properties like atomic density, types of individual atoms, or geometrical
patterns. For example, CavBase and RAPMAD [34] use the directionality
of polar features represented by vectors along with other properties.

The approaches to cavity representation are quite diverse, although all tools
seek to find the optimum between detailed representation with high resolution,
tolerating greater shape variations, and coarser representation, usually lowering
the noise floor and providing a significant speedup.

1.2.2 Methods for Similarity Matching

Once the cavities are converted to their respective representations, common
patterns or features usually shared between similar cavities are located. Based
on the specified approach and subsequently used algorithm, we can classify the
methods into multiple categories, see Figure 1.2.

Geometric Matching

The first category of methods focuses on matching geometrical patterns—
mostly pairwise distances, angles, or shapes, such as triangles or polyhedrons—
complemented by matching of chemical constraints (similar or compatible
residues, atoms, or point types). Imperfect matches are expected, given the 3D

$Pharmacophore is an abstract concept in medicinal chemistry. It describes an ensemble
of different features essential for specific supramolecular interactions with distinct biological
target [32].
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structure resolution (more than 84 % of structures in PDB come from X-ray
crystallography?, while the most common resolution of structures is around 2 A®).
The flexibility of proteins and the objective of searching unobvious similarities
also contribute to the difficulty of finding correct matches. Thus, a certain margin
of error (both geometric and chemical) is allowed.

PocketMatch [31] represents each site by 90 lists of sorted distances, capturing
all combinations of residue groups (five groups based on physicochemical proper-
ties) and type of points (Cp, Cg, and Ceensroig — the mean position of all atoms of
the side chain of the residue). The distance lists are compiled from all possible
pairs of points in the cavity belonging to the given groups and being of the given
point types. Similarity score (PMScore) is computed by comparing distance sets
with their corresponding equivalents by aligning them (in the alignment, the
corresponding distances in the sets, i.e., distances differing only by the method
parameter 7, are matched) using a greedy strategy. The net average of the number
of matching distances in all of the 90 lists as a fraction of the total number of
distances in the bigger list is marked as PMScore.

P.A.R.LS. [36] compares the cavities, represented as a 3D point cloud of atoms,
using a convolutional Gaussian kernel of (i) the pairwise distances of atoms in
the cavity, and (ii) Gaussian kernel of partial charges of atoms. The principal idea
is that the role of a single atom in one cavity could be overtaken by a group of
atoms in the other. Hence, by considering the neighborhood (the importance of
nearby atoms is set with the parameter o of the Gaussian kernel), the method can
eliminate the effect of single or multiple atom changes, where the surrounding
group of atoms remains similar. The comparison between atom-centered kernels
requires the knowledge of the optimal superposition between the pockets. The
optimum with respect to a distribution of masses defined as a sum of Gaussian
functions centered on a given atom x from the pocket is found by the gradient
ascent algorithm. The distributions of masses, fpi, is defined as in 1.1,

12
kel

fo =D ¢ 7 (1.1)

XjEPi

where P, is the given pocket, and x; are atoms belonging to P;. The partial charges
are computed in a similar manner. The optimal rotation and translation maximizes

*RCSB PDB Statistics Summary, see at www.rcsb.org/stats/summary or on the Internet Archive:
web.archive.org/web/20240213022155/https://www.rcsb.org/stats/summary

SRSCB  PDB  Statistics PDB  Data  Distribution by  Resolution, see
at rcsb.org/stats/distribution-resolution or on the Internet Archive
web.archive.org/web/20240416131257/https://www.rcsb.org/stats/distribution-resolution
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the sum of the Gaussian functions over all atoms from the superimposed cavities,

asin 1.2,
=Ry DI

e o? (1.2)
xjePl,yjeP2

where R is an orthonormal rotation matrix, and T is a translation vector. Since
the gradient of 1.2 can be calculated, the gradient ascent algorithm can be used.
Since many local minima exist, the alignment rotation is seeded by superposing
the principal axes of the pockets and the translation vector by superposing the
centroids (mean position of all atoms) of the pockets. The best-achieved maxima
of 1.2, labeled sup — CK, is then used for the similarity scoring.

APoc [37] in the first phase guesses several alignments based on gapless se-
quential alignments, secondary structure comparison, alignments of fragments
and local contact pattern alignments. Then, it employs dynamic programming
to iteratively improve the sequential alighment between the two pockets. Lastly,
an iterative procedure searching for non-sequential alignment is used, and such
solutions are accepted, provided they score better (have a higher PS-score) than
the optimal sequential alignment. To find the optimal non-sequential alignment,
it solves the Linear Sum Assignment Problem, an equivalent of maximum weight
matching in a weighted bipartite graph. For that, they implemented the short-
est augmenting path algorithm [38] with polynomial time complexity of O(N?),
where N is the largest of C, atom counts in the cavities. For scoring, the authors
developed PS-score. A scoring function based on (i) alignment length, (ii) distance
of aligned residues, (iii) differences of angles between C, and Cg atoms of aligned
residues, (iv) the chemical similarity of the aligned residues.

SiteMine [29] populates a classical relational database with information about
each atom in the indexed cavities (source molecule type and element, type of the
atom and the residue, solvent-exposed surface area, functional group, and the
secondary structure of the fragment the atom belongs to) along with distances to
all other search points (indexed atoms) closer than 15 A. This allows SiteMine to
perform classical database searching, apart from comparing pairs, by searching for
similar tetrahedrons with similar vertices (entries in the database). The similarity
is then evaluated based on scoring matches of close atoms in the found alignment.

Other global alignment methods (SiteHopper, Shaper) try to maximize the
overlap between the cavities (similarly to P.A.R.ILS. but not necessarily by com-
paring the Gaussian kernels). ProCare [39] is built around the cloud registration
concept, where each point is characterized by a 41-bin histogram describing both
pharmacophoric features and shape. Many methods perform the alignment in two
stages. Firstly, by identifying equivalent points by the random sample consensus

12



algorithm [40], and secondly, by refining the alignment by the iterative closest
point algorithm [41].

Graph Matching

The cavity can be identified by a graph® with vertices labeled by point labels (e.g.,
atoms, residues, or pseudo-centers) and edges by the distances between the given
points. The problem can be then translated to the problem of finding the largest
common subgraph in the graphs of the two cavities while allowing the graphs to
differ partially in both the distances and the point labeling.

To achieve this, a product graph’ is built by associating similar points (e.g.,
atoms of the same type or amino acid residues belonging to the same group under
a particular grouping scheme) and edges of comparable length.

Then, the largest common subgraph can be identified by finding the maximum
clique® using conventional clique detection algorithms. Commonly used are the

Bron-Kerbosch algorithm [42] with an asymptotic runtime complexity of O(33),

being an optimum in the worst case, as any n-vertex graph can have at most 32
maximal cliques [43]. In practice, the Bron-Kerbosch algorithm runs very fast and
is used to this day, as it remains an algorithm of choice in cases, where all maximal
(not just the maximum) cliques need to be reported. Other variations of the Bron-
Kerbosch algorithm are also used [44], as well as different algorithms, such as the
algorithm of Carraghan and Pardalos [45], which was shown to be several times
faster on molecular 3D structures than the Bron-Kerbosch algorithm [46].

The methods for binding site similarity prediction subsequently differ in the
construction of the product graph—which points and distances are used and
associated—and scoring of the matches.

CavBase [47] represents the cavity with a 0.5 A grid of points that are in
contact with the protein surface. The points are assigned a property of possible
interactions of the nearest close-by residue (only interactions that have meaningful
directionality are taken into account; those that are directed towards the protein
interior are ignored).

®For a given finite set of vertices V and list of edges E, where E C V x V, we denote G = (V, E)
as a simple undirected graph.

’Given graphs G, = (V}, E;), G, = (V,, E,), graph product is a graph G = (V, E) where V C V;xV,
and edge e = (v, v), (+?,v})) is added given a certain condition is satisfied (e.g., distance between
v and v’ matches the distance between v¢ and v2).

8A clique is a subset of the vertices where all the vertices are adjacent. In other words, a
subgraph induced by the clique is complete. Maximal clique is clique that cannot be extended by
adding any vertex. Maximum clique is the largest of all maximal cliques in a graph.

13



IsoMIF [48] uses Molecular Interaction Fields? (MIFs) to encode the physico-
chemical environment of the pocket. The cavity is discretized into a grid where
each point is assigned a MIF based the on interaction potential energies of six
different chemical probes. Fields of the matched cavities, composed of the MIFs
from the grids, are subsequently matched using the Bron-Kerbosch algorithm.
IsoMIF performs best when the bound ligand is present. By relying on predicted
binding sites, its performance significantly decreases.

Fingerprint and Histogram

These methods do not directly compare the pockets but rather generate specific
fingerprints or histograms of the pockets, and these are later compared (e.g.,
by cosine distance). BSSF [50], KRIPO [51], and FuzCav [52] compute n-tuples
(couples or triplets) of certain pharmacophoric features, which are separated by
binned distances. Some methods count the number of such triangles found in
the cavity, e.g., KRIPO only marks whether the given combination is present
in the cavity. SiteAlign projects the properties of the residues on an 80-face
polyhedron. Binkowski et al. [53] and RAPMAD are based on comparison of
distance distributions of certain features in the cavities. For example, RAPMAD
generates multiple distance histograms for given pharmacophoric features and
center points. These histograms are then compared. Although these methods
generally suffer from the simplification and loss of information (e.g., the numbers
of specified triplets are valid, but their actual geometrical conformation is different
and unrelated), some of them are particularly suited for database applications, as
the search is quite straightforward and computationally undemanding,.

Machine Learning

The latest state-of-the-art methods focus on leveraging data-driven approaches,
typically binary classifiers based on neural networks. DeepDrug3D [54] and
DeeplyTough [55] use convolutional neural networks and deep learning to com-
pare the discretized cavities. Site2Vec [56] uses a different approach — the trans-
formation of the cavities’ features into vectors of fixed lengths that can be sub-
sequently fed into a random forest classifier or clustered using conventional
clustering algorithms.

Generally, these methods suffer from a lack of balanced, representative and
diverse datasets, as well as from the low interpretability of predictions. Deep
neural networks are also more heavyweight and usually require GPUs to run at
practical speeds.

°A molecular interaction field describes the interactions formed around a given point using a
three-dimensional map [49].
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1.3 Evaluation of Existing Methods

With the plethora of methods for estimating the similarity of binding sites, a
good benchmarking method is needed to select the optimal one for the specified
purpose. That will always be dependent on the specified task, however, more
generalized dataset also exist.

1.3.1 Datasets

With the focus of various binding site similarity estimating methods on different
aspects of the problem (e.g., methods focusing on interaction patterns or meth-
ods focusing on the overall similarity), many datasets are used for the method
optimization and testing. Frequent choices are binding sites in one protein family
or enzymes with identical EC numbers. Datasets prepared for evaluating certain
tools exist as well, e.g., the APoc dataset [37]. However, the universal dataset used
to evaluate most of the methods was for a long not available. Thanks to the work
of Christiane Ehrt et al., the ProSPECCTs dataset [7], covering multiple areas
of interest, was compiled. Her group also evaluated the performance of many
standalone tools. Also, new methods are frequently validated using this dataset.
Another benchmarking dataset is the Vertex dataset [57], published earlier than
ProSPECCTs, although not as comprehensive. A common source of active protein-
ligand pairs is the sc-PDB database [9] containing 16,034 protein-ligand pairs!°,
where proteins with suitable drug-like binding pockets were extracted from the
PDB.

A different approach was taken by the authors of the THOUGH-M1 dataset,
where only sequentially and structurally dissimilar binding sites were gathered.

Most of the datasets consider binding sites binding similar ligands as similar
and usually disregard the effect of different ligand binding modes on the site
similarity. However, the source of the data is often shared — the Protein Data Bank.
Thus, many datasets might adopt the existing bias in the PDB, as disulfide bonds,
metal binding sites, and sites involved in enzyme activity are over-represented,
while others, as low-complexity regions or transmembrane structures, were
found to be underrepresented!! [58]. Bias in the training and evaluation dataset
has already been found to negatively influence the performance of data-driven
approaches in similar tasks [59].

10As of April 2024. Last update was done in 2017 based on frozen PDB data from November of
2016.
"'Tn comparison to SwissProt using PDB version from 2003.

15



ProSPECCTs [7]

ProSPECCTs (Protein Site Pairs for the Evaluation of Cavity Comparison Tools)
contains seven subsets focused on different aspects of binding site similarity
and different challenges therein. It contains sequentially identical pairs, NMR
structures dataset (focused on sensitivity with respect to the flexibility of the bind-
ing sites), identical pairs with multiple artificial residue substitutions in the site
(subset containing only physicochemical changes and subset containing physico-
chemical and shape changes), the dataset of Kahraman and his co-workers [60]
(compiled to assess binding site and ligand shape complementarity), Barelier data
set [61] (containing pairs of identical ligands binding to unrelated structures),
and the dataset of successful applications (protein-ligand pairs described in the
literature).

TOUGH-M1 [62]

The TOUGH-M1 dataset compiled by Rajiv Gandhi Govindaraj and Michal Brylin-
ski contains globally dissimilar pairs of structures from the Protein Data Bank
(PDB) binding similar drug-like molecules (positive and negative pairs bind lig-
ands with Tanimoto Coefficient!? > 0.7 and < 0.4 respectively). The TOUGH-M1
dataset contains 505,116 positive cases—pairs of dissimilar proteins binding simi-
lar ligands—and 556,810 negative cases—protein pairs with different structures
binding dissimilar ligands.

1.3.2 Results of Existing Methods on ProSPECCTs

The following results show the performance of various methods on the ProSPEC-
CTs dataset. From the seven subsets, three subsets were selected: (i) the NMR
structure dataset, which was selected as it highlights the differences between
predicted and ligand-based binding site definitions and various approaches for
similarity estimation; (ii) the Kahraman dataset, as it still poses a major challenge
for many methods; (iii) the dataset of successful applications, which would ideally
represent the discussed pairs, relevant for the problem of protein-ligand binding,
and is expected to be more representative.

The benchmark distinguishes the tools based on what is compared—the
residue-based methods compare the geometrical and physicochemical similar-
ity of residues in space. The surface-based methods discretize the surface and
compare these points (atoms, pseudo-centers or other representations). The

2Commonly used measure of similarity of molecules, represents the ratio of intersection of
molecular fingerprints over their union [63].
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Figure 1.4 Evaluation of different binding site comparison tools with respect to the
NMR structures. A-C) ROC curves for residue (A), surface (B) and interaction-based
(C) methods. The names are sorted in descending order with respect to the method’s
AUC. D-F) Enrichment factors for the residue, surface and interaction-based comparison
methods. A linear color gradient from white (highest value) to black (lowest) was applied.
Thin and dashed lines correspond to the tools of the same colour with differently set
parameters. Adapted from Ehrt, Brinkjost, and Koch [7]

interaction-based methods compare the spatial coordination of different types of
chemical interactions.

TM-align [64], not a binding site alignment method but a global structural
alignment tool, aligns the cavities based on residues at a distance of less than 10

A from the ligand.

NMR dataset. Figure 1.4 shows the results for various tools tested by Ehrt
et al. on the NMR dataset. The NMR dataset includes structures where the
similar pockets contain larger and smaller conformational variations, resulting
from induced fit and conformational selection [65]. Cavbase and RAPMAD
show significant AUC decrease compared to the other tools in the residue-based
category which can be explained by the different cavity definition—both methods
use LIGSITE [27] pocket identification instead of the ligand-based delimitation.
This approached omits some pockets and was unable to compare all the pairs in
the dataset.

The sub-optimal performance of some residue- and surface-based methods
most probably stems from the structural changes of the structures, which could
be probably mitigated by first compiling an ensemble of many similar or identical
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Figure 1.5 Evaluation of different binding site comparison tools with respect to the

dataset of Kahraman structures [60] after the exclusion of phosphate binding sites. A-C)
ROC curves for residue (A), surface (B) and interaction-based (C) methods. The names
are sorted in descending order with respect to the method’s AUC. D-F) Enrichment
factors for the residue, surface and interaction-based comparison methods. A linear
color gradient from white (highest value) to black (lowest) was applied. Thin and dashed
lines correspond to the tools of the same colour with differently set parameters. Adapted
from Ehrt, Brinkjost, and Koch [7]

binding sites with different conformations and subsequently performing the
matching.

Interaction-based methods struggle similarly. The conformational changes
induce a shift in the interacting atoms, and thus, the interaction patterns might
change slightly. The results of IsoMIF are particularly affected by the pocket’s
flexibility, whereas KRIPO, an interaction fingerprinting method that introduces
fuzziness into the fingerprints to account for the flexibility, performs convincingly
better.

Kahraman structures. The dataset of Kahraman and his co-workers [60] is
commonly used for the evaluation of different binding site comparison methods.
It consists of different cofactor sites and cavities binding small molecules. The
dataset was compiled to assess the cavity-ligand shape complementarity. Kahra-
man et al. concluded, that the shape complementarity alone is not sufficient to
determine, whether the ligand will bind, as multiple differently shaped cavities are
able to bind the same ligand, however, the shape complementarity is an important
driver for the recognition of the ligand.
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Figure 1.6 Evaluation of different binding site comparison tools with respect to the
dataset of successful application. A-C) ROC curves for residue (A), surface (B) and
interaction-based (C) methods. The names are sorted in descending order with respect
to the method’s AUC. D-F) Enrichment factors for the residue, surface and interaction-
based comparison methods. A linear color gradient from white (highest value) to black
(lowest) was applied. Thin and dashed lines correspond to the tools of the same colour
with differently set parameters. Adapted from Ehrt, Brinkjost, and Koch [7]
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434.8 1357 687 378 264 198 158

Figure 1.5 portrays the results with the exclusion of the phosphate binding
sites, as due to their small size and a low number of interactions or important
residues, some methods failed to process them. Interaction-based methods clearly
outperform almost all others. KRIPO, an interaction-based method, outperformed
all except SiteHopper [66]. Both KRIPO and IsoMIF show high early enrichment
and their early EFs are the highest from the interaction-based methods when all the
structures are considered. SiteHopper and IsoMIF also significantly outperform
many other methods, which is to be expected in the case of IsoMIF, as it was
validated and perhaps optimized for this dataset [48].

Dataset of successful applications. It was compiled from known binding
site similarities that appeared in literature [35]. This dataset is an sc-PDB [9]
subset and portrays a realistic scenario in the binding site similarity estimation.
Ideally, all the tools should be able to reliably detect similar pairs. These are
not just pairs with obvious similarities within one protein family but also pairs
that are otherwise unrelated. Figure 1.6 shows that most residue-based methods
outperform the methods based on surface or interaction similarities. From the
interaction-based methods, KRIPO and IsoMIF show the highest early enrichment.
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Figure 1.7 Binding site alignments of high-scoring pairs of the Barelier data set gener-
ated by (A) Cavbase, (B) TM-align, (C) SMAP, and (D) Shaper. While some superpositions,
as in (A) seem reasonable, other such as (C) seem incorrect, as the ligands are not super-
posed. Adapted from Ehrt, Brinkjost, and Koch [7].
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Method Site2Vec [56]  BindSiteS-CNN [68] DeeplyTough [55]

Identical Sequences 1.00 0.94 0.95
NMR Structures 1.00 0.83 0.90
Decoy Structures Rational  0.99 0.91 0.76
Decoy Structures Shape 0.99 0.79 0.75
Kahraman 0.86 0.66 0.63
Barelier 0.53 0.62 0.54
Successful Applications 0.66 0.78 0.83
Mean 0.87 0.79 0.77

Table 1.1  Performance of three machine-learning-based methods on all the subsets
of the ProSPECCTs benchmark dataset. For each subset, AUCs? of the methods are
reported. BindSiteS-CNN is uses a spherical convolutional network for the classification
of binding sites as either similar or dissimilar.

?Area under the ROC (receiver operating characteristics) curve.

Tools offering visual inspection of the resulting alignment are valuable, as
it still proves to be a crucial step in the assessment of the significance of the
identified match. In Figure 1.7, the SMAP alignment does not superpose the
ligands and seems to be incorrect. Hence, tools that provide this visual feedback
should be used, preferably in low-throughput scenarios.

Predominantly hydrophobic pockets might be a harder case for the similarity
estimation, as many promiscuous and super-promiscuous ligands bind in extreme
binding modes often driven by apolar contacts [67] and thus, lower accuracy is
generally expected when confronting the methods with such cavities.

On the subject of binding modes, the overall similarity of the binding sites does
not necessarily imply identical or even similar binding modes. Rather, hydropho-
bic and aromatic ligands can adopt various binding modes [7, 67]. Additionally,
multiple acceptable alignments are possible for highly hydrophobic pockets, and
it might not be possible to distinguish the correct ones.

Performance of Machine-learning Methods

Results for the newer data-driven approaches are reported in Table 1.1. Site2Vec
performs the best with the mean area under the curve (AUC) of 0.87 and outper-
forms all other methods, algorithmic or data-driven, on most of the datasets.

1.3.3 Runtime Analysis

Ehrt et al. also analyzed the runtime cost of the methods, which varies greatly.
For reference, consider matching one query site versus all binding sites in the
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method data basis for run time preparation [s] (number of run time comparison |total run time | average run time per
comparison structures) [s] [s] comparison [s]
PocketMatch[24] distance lists 28.97* 0.28 29.25 0.000028
KRIPO[56] fingerprint 446.50 0.92 447.42 0.000092
RAPMAD(31] histogram 71.42 (100) 2.36 73.78 0.000285
(8,281)
FuzCav(36] fingerprint 399.88 (96) 5.59 405.47 0.000607
(9,216)
FuzCav(PDB)[36] fingerprint 236.73 (96) 5.64 242.37 0.000612
(9,216)
TM-align[27] matrix 25.72* 65.96 91.68 0.006596
Shaper(PDB)[23] 3D points (grid) 181.16 (96) 364.42 (9,216) 545.58 0.039542
Shaper[23] 3D points (grid) 384.21 (96) 367.21 (9,216) 751.42 0.039845
VolSite/Shaper([23] 3D points (grid) 537.00 (76) 248.77 (5,776) 785.77 0.043070
ProBiS[48] graph 6.95 479.32 486.27 0.047932
VolSite/Shaper(PDB) | 3D points (grid) 259.54 (57) 162.26 (3,249) 421.80 0.049942
[23]
TIFP[19] fingerprint 228.30 (77) 550.88 (5,929) 779.18 0.092913
TIFP(PDB)[19] fingerprint 194.36 (47) 205.56 (2,209) 399.92 0.093056
Grim(PDB)[19] graph 169.33 (96) 1,714.49 (9,216) 1,883.82 0.186034
Grim[19] graph 220.17 (95) 2,104.99 (9,025) 2,325.16 0.233240
IsoMIF[22] graph 752.83 2,561.44 3,314.27 0.256144
SiteHopper([25] 3D points 154.01 3,828.61 3,982.62 0.382861
Cavbase([20,21] graph 67.89 (100) 21,823.71 (8,281) 21,891.60 2.635396
SMAP[43] graph 1.69 42,346.74 42,348.43 4.234674
SiteEngine[51] 3D points 328.81 81,193.54 81,522.35 8.119354
SiteAlign[18] fingerprint 28.97" 286,326.41 286,355.38 28.632641

* exemplary run times for methods that demand a pre-processing by the user

https://doi.org/10.1371/journal.pcbi.1006483.t006

Figure 1.8 Run time evaluation of different binding site comparison methods with
respect to the data set of Kahraman et al. The numbers in brackets signify how many
pockets were sucesfully prepared for the comparisons or the number of comparisons
respectively. The test was performed on an Intel Xeon workstation (E5-2690 with 2.90GHz
and 32 GB RAM) using a single core. Adapted from Ehrt, Brinkjost, and Koch [7].

sc-PDB [9]. SiteAlign would perform such a task in a matter of days, whereas
PocketMatch would do so in less than a second. The results can be seen in
Figure/Table 1.8.

The histogram and fingerprint-based methods, such as PocketMach, KRIPO,
RAPMAD and FuzCav, were unsurprisingly the fastest, usually taking milliseconds
(or a fraction of a millisecond in the case of PocketMatch) per comparison on
average on a single CPU core. The exception was TIFP, which was significantly
slower than all others and required tens of milliseconds per comparison. The
geometrical methods, based on 3D point comparisons, usually required tens of
milliseconds, although SiteEngine required more than 8 seconds per comparison
on average. Graph matching methods were one of the slowest, as they usually
required hundreds of milliseconds per comparison with the notable exception of
ProBis, requiring only tens of milliseconds. The slowest method analyzed was
SiteAlign, which needed more than 28 seconds per comparison.

The analysis was done in bulk for more matches whenever possible.
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1.4 Existing Databases

Many online comparison services already exist. Some are only online versions of
the same comparison tools intended to match two structures against each other,
such as SiteEngine [69]!3. However, complete databases containing thousands
and even millions of protein pockets also exist. Some, such as CavSimBase [70],
pre-calculated all the similarities and are basically constituted by a single similar-
ity matrix, where all the pair combinations were evaluated prior to the search.
Some store the pockets in the form of indexed points, triangles or tetrahedrons
with certain properties, that can be searched more effectively. The matched
points are later extended and joined to either calculate a possible alignment or to
evaluate the score of the given match. Here we can mention IsoMIF Finder [71] or
SiteMine [29]. Databases directly derived from the PDB are also available, such as
the aforementioned sc-PDB [9], which contains over 16,000 pocket-ligand pairs
corresponding to roughly 4,700 unique structures.

PLIC [72] clusters pockets of structures of protein-ligand complexes from the
PDB based on binding site similarity calculated by PocketMatch. It currently
contains over 80,000 pocket-ligand pairs from roughly 30,000 proteins.'*

ProBis [73] uses the ProBis algorithm [74] to compare the query structures
against more than 42,000 structures from the PDB. The algorithm runs parallel,
and a single comparison should take several minutes (excluding queue time). Since
2015, it also allows geometry optimization and interaction energy calculation®®
using the CHARMMing [75] web servers.!®

SiteMine [29] populates a classical relational database with all atoms from each
binding site, along with their properties and distances to all other search points
closer than 15A. Tetrahedral search patterns are later processed and searched
using GeoMine [76] to retrieve the matches. Although the SiteMine algorithm
performs very well on multiple benchmarking datasets, it is not freely accessible
at the time of writing.

PoSSuM [77] encodes each binding site as a vector of 1,540 elements, where
each element denotes the frequency at which certain triangle types appear in
the pocket. Triangles are sets of three residues categorized based on the vertex

B Accessible at http://bioinfo3d.cs.tau.ac.il/SiteEngine/php.php
4 Accessible at http://proline.biochem.iisc.ernet.in/PLIC/.

15 Accessible at https://probis.nih.gov/.

16 Accessible at http://probis.cmm.ki.si/
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label (four residue labels) and edge label (binned length of the edge between
the residues). Multiple feature vectors are created for seven residue classes (e.g.,
triangles from only positively charged or only aromatic residues are considered).
Searching is done using the neighbor-search algorithm SketchSort [78], which
searches the feature vectors. Neighbors are later compared using cosine similarity,
and pairs of high cosine similarity are aligned using TM-align [64]. PoSSuM can
search in multiple databases. PoOSSUMAF was created from over 20,000 AlphaFold
protein models from the Homo sapiens reference genome. PoSSuM database
contains about 10,000,000 putative and known binding sites from structures from
the PDB. Putative binding pockets in the AlphaFold models and PDB structures
were located using the GHECOM [79] program that searches for concave regions
on the protein surface.

All aforementioned databases either use only known ligand-binding sites
(sites that appear in the PDB as protein-ligand complexes) or screen all entries
for putative pockets which are later indexed in the database. Some even compare
all the pockets to speed up the subsequent searches. However, this comes at a
cost—e.g., CavSimBase authors estimated preparing the database on a regular
consumer machine would require approximately 50 years, and by leveraging
parallel execution on enterprise-grade hardware (Intel Xeon X5570, 22 GB RAM,
two NVIDIA Tesla M2050 GPUs with 2 GB RAM) this would be reduced to about
206 days. After running on eight instances parallel, the computation took 22 days,
and the financial cost was over US $7,000 [70]. For context, CavSimBase contains
248,686 putative binding sites extracted from 61,516 protein structures using the
LigSite [27] algorithm.
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Chapter 2

Proposed Method

Given the size of current large protein structure model databases, such as the
AlphaFold database, and given the costs required to perform the location of the
putative pockets and pairwise matching for even small subsets, a question arises
whether there is a possibility of reducing the upfront costs of building such
database. Most promising methods use histogram- and fingerprint-based searches
in classical database systems, which comes at the cost of accuracy, and the results
should ideally be filtered again using more precise algorithms. That still requires
the knowledge of the location and the definition of all putative binding sites
that shall be compared. Skipping this step could enable a drastic decrease in the
upfront costs, but it has to be done in a way that does not lead to overly slow
(and expensive) searches.

From the results of various methods on the ProSPECCTs dataset, TM-align [64]
stands out. TM-align is not a binding site similarity assessment tool but an algo-
rithm that identifies the best structural alignment between two protein structures.
It firstly aligns the secondary structures of the two proteins using dynamic pro-
gramming, secondly it uses threading to get a gapless alignment of the structures,
and finally iteratively optimized the current alignment. TM-align scores surpris-
ingly well on the testing datasets, which implies that purely structural alignment
is a good indicator of binding site similarity. That is in line with other research
showing that structural similarity is an utmost important factor in binding site
similarity and ligand binding specificity, although it does not explain it com-
pletely [80]. Another interesting thing is the partial similarity of the protein
sequences, which is exploited by APoc [37] in the first phase.

Although the structural and sequential similarities hold mainly for related
proteins, as structurally similar cavities of unrelated proteins binding identical
ligands are rarely known and usually differ substantially [61]. Even in cases
where the partial similarity of unrelated sites is present, one site is rarely more
than approximate of the other [61].
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Figure 2.1 The number of ligands in the sc-PDB binned by the number of targets in
the sc-PDB. Adapted from Ehrt, Brinkjost, and Koch [35].

On the other hand, super-promiscuous ligands binding to many unrelated
structures are also not as common, Figure 2.1 shows that most ligands in the
sc-PDB are indeed not super-promiscuous and bind to smaller amount of targets.

At the same time, when two proteins are related, the active sites tend to
be more evolutionary conserved [81]. This conservation is very apparent for
catalytic sites and residues near bound ligands [82]. Combined with the fact that
structure is more conserved than sequence [83, 84], related binding sites have a
high probability of being matched by comparing conserved structural motifs near
the pockets.

This alone is not sufficient to build a robust tool that would surpass the current
state-of-the-art methods in terms of its accuracy. But most current methods
also struggle with unrelated binding sites, which most probably stems from the
significant structural difference of unrelated sites mentioned above. However,
to search in related proteins, this information could allow a search without the
need for pre-indexing of the putative pockets, as we expect their resemblance
to their homologs. Provided we have clusters of related and similar structures,
only search across the cluster representatives would have to be carried out using
the more sophisticated method, which is able to identify similarities even for
unrelated proteins. Later, to identify similar cavities within the cluster, a method
relying on the structural similarity could be used.

Effective matching of similar structures can be done in multiple ways, common
is matching of secondary structure elements (as used in the mentioned TM-
align [64]), however interesting and highly scalable approach is conversion to
“structural alphabet’. This is not a novel idea [85, 86, 87, 88], but it was recently
very successfully applied in FoldSeek [89]. FoldSeek’s alphabet differs from the
traditional structural alphabets describing the backbone, as its 3D alphabet rather
describes the interaction and geometric conformation of each residue with its
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spatially closest residue. The authors of FoldSeek claim their alphabet has the
following advantages: (i) Weaker dependency of consecutive letters; (ii) More
even distribution of state frequencies, which should enhance the information
density and reduce false positives; and, finally (iii) The highest information density
in conserved protein cores and the lowest the non-conserved regions, whereas
backbone structural alphabets seem to have this reversed [89].

This approach is expected to be particularly well suited for searching con-
served substrings in related proteins. FoldSeek also provides a clustered version
of the AlphaFold database [90], clustered by sequential and structural identity.
This reduces the size of the AlphaFold database from over 200 million entries
to over 50 million after sequential clustering and later down to 2.3 million after
structural clustering and removal of fragments and singletons (clusters with only
one structures).

Searching across the clusters would be done most efficiently by encoding each
putative pocket by a numerical, easily searchable and indexable representation.
That can be done using histogram- or fingerprinting-based methods or by using
vectorizers based on machine learning, such as Site2Vec [56], currently also one
of the best methods of assessing binding site similarity (based on the ProSPECCTs
dataset [7]). These putative pockets would have to be located using cavity-
detection algorithms.

Hence, the proposed method aims to provide faster than linear search in the
related structures by locating spatially constrained structurally similar K-mers,
which would not require screening most of the structures for the putative binding
sites. However, complete development, thorough evaluation, and deployment of
a final version of such a tool are beyond the scope of this work. The next sections
focus on the proposal, implementation and testing of an approach meant as a
proof-of-concept.

2.1 Method Implementation

2.1.1 Algorithm Overview

Given query pocket Q in a protein P, represented as a list of residue indices
in the protein P, the algorithm shall find structurally conserved cavities in the
pre-defined list of related proteins (given their structures). This pre-defined list
is referred to as a database, where each protein’s structure (and thus also the
sequence) is stored.

To prevent confusion, multiple terms have to be defined first. Query site,
pocket, or cavity mean the residues, that interact the ligand, along with their
structure. Conserved region, or substring, is a continuous part of the protein
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sequence, that had undergone minimal changes in time. K-mer is a substring of
the protein sequence of defined length K (usually odd). K-mer center is the residue
on the middle position of the K-mer sequence. Alignment of two structures, or
point clouds, is their superposition, usually defined by specified rotation and
translation of one of the structures.

The proposed method consists of four major steps for each search query: (i)
Identifying proteins in the database, whose sequences contain similar regions
(finding conserved regions); (ii) Locating sites enriched by multiple occurrences
of the conserved regions (clustering); (iii) Fast optimal superposition of the found
clusters with the query pocket and possible refinement of the mapping; (iv)
Scoring the found match.

2.1.2 Identifying Sequences with Conserved Regions — K-
mer Searching

Firstly, the searched sequences have to be prepared. However, we expect that
the residues in the query pocket do not form a continuous stretch of the protein
sequence. Thus, each position of the protein, that is in the query pocket, is treated
as potentially isolated. A short substring of length K around every such position is
extracted from the protein sequence and is called a K-mer. These short substrings
are centered on the given position (for simplicity, positions at the ends of the
protein sequence are ignored).

By searching only substrings of fixed length (the generated K-mers) in the
databse, the initial filtering can be done very effectively by using a hash table
with asymptotic complexity ©(1) on average or direct indexing with asymptotic
complexity of O(1) in the worst case per one substring lookup in the hash table.
To prepare this table, for every unique K-mer list of proteins containing this K-mer
are stored. That can be done asymptotically linearly with respect to the total
length of all proteins in the database.

However, the K-mers cannot be expected to be conserved perfectly, i.e., no
change in the sequences occurred. In reality, it is expected that many changes
might have happened, but the different sequences remained closely similar®. To
find also these similar matches, we can query the hash table with many K-mers
from a universum of similar K-mers:

Uk ={K’ | sim(K’,K) > {} (2.1)

The subject of sequential similarity of proteins is a known and well studied topic and various
methods of scoring the sequence similarity exist. Here, we expect no insertions or deletions to
the short sequences and compute their score as a direct sum of similarity scores of residues on
the corresponding positions given a scoring table.
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where K is one K-mer, sim(a, b) is a similarity scoring function (for natural se-
quences the BLOSUM 62 scoring matrix [91] was selected), and {'is a parameter
of the method.

Subsequently, only proteins from the database, whose sequences contain a
certain number of the searched K-mers are reported and evaluated in the next
step. For a hash table H, queried for substring s as H|[s], the element H[s] is
a list of identifiers of sequences containing the given K-mer, as can be seen in
Algorithm 1.

Algorithm 1  Function to locate proteins with enough similar K-mers. Only distinct
K-mers are counted, and proteins with less than 7 distinct similar K-mers are filtered
out. Hash table H on position H[k] contains a list of protein identifiers marking proteins
containing the exact match of K-mer k.

function FILTERSEQUENCESUSINGKMERS(Hash table H, List of searched K-mers
L, Similarity threshold {; Minimum K-mers 7)
f < an empty list of found protein identifiers
0 < empty mapping /maps identifiers to the number found unique K-mers
for K-mer K € Ly do
Uk <« set of K-mers {-similar to K
for K-mer K’ € Uk do
Append all H[K"] to f
end for
for Identifier p € fdo
if p € othen
Increment o[ p] by one
else
seto[p] « 1
end if
end for
f < emptylist
end for
r < empty list of identifiers
for Identifier p € 0 do
if o[P] > rthen
Add Ptor
end if
end for
returnr
end function

As an optimization for the subsequent steps, the hash table can also map the
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substrings to their respective positions in the original protein sequence, thus
bypassing the K-mer search in the next step.

2.1.3 Locating Sites with Multiple Conserved Regions —
Clustering

The similar K-mers for every positively evaluated protein from Step 1 are located.
This steps focuses on clustering of the spatially close K-mer hits in each of the
filtered structures from the database. The spatial regions in each of the positively
evaluated protein structure from the database with a high density of conserved
K-mers are located using a conventional clustering algorithm. Each conserved
K-mer is represented as one 3D point (the center of mass of the residue at the
sequential center of the K-mer). Ideally, the algorithm should locate sites where
are many different conserved K-mers, so clusters that contain many K-mers that
resemble only one of the query K-mers are ignored. However, that would be
more complicated and it is not used in this implementation, as the generated
false-positives should be filtered out in the next step.

Many different clustering algorithms exist, such as the commonly used K-
means [92]. However, the requirement of knowledge of the number of clusters
prior to the clustering is a limiting factor here. The only known information
about the clusters is their approximate maximum size (approximately the size
of the query cavity; the minimum cannot be set due to the potential loss of part
of the cavity resulting from lack of conservation). The second requirement is
the hard minimal limit of required similar K-mers. (The next phase requires at
least 3 points. However, a higher hard limit could be set to lower the amount of
potential false positives.)

A handful of various clustering algorithms were compared on a simple 2D
datasets. Even on comparably easy datasets, some methods struggled with
noisy data. Particularly interesting were DBSCAN [93], HDBSCAN [94] and
OPTICS [95], which performed well on all the supplied datasets. Another evalu-
ated option were hierarchical linkage clustering methods, as single or complete
linkage clustering. These generally seemed to struggle more with noisy data.
However, in this case the noisy data are to be expected, as similar K-mers might
be randomly distributed in the protein sequences. Thus, these did not seem as an
ideal option.

Based on the performance on the artificial datasets, OPTICS [95], an algorithm
based on DBSCAN [93], was chosen for the clustering of the K-mers. It shows
satisfactory performance even on real data, and its implementation is available in
Scikit-learn (a library used for the clustering). However, the optimal clustering
strategy should be more explored in future work.
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OPTICS is a density-based clustering algorithm improving DBSCAN, mainly
in the detection of meaningful clusters in noisy data of varying density. It has
two parameters: €, which describes the maximum distance for two points to be
considered as neighbors, and MinPts, a minimum number of points capable of
forming a cluster. These are set accordingly to the maximal distance of two points
within the query cavity with a given margin . The MinPts is set to 3, as at least
3 points are required in the alignment step.

2.1.4 Query and Putative Binding Site Superposition

From the previous step, we end up with many clusters in various protein structures
from the database. These clusters might be putative binding sites, some of which
might be similar to the query pocket, some might not. At the same time, a
coincidental cluster of similar K-mers (without any resemblance to the query
pocket) is still possible. To discriminate between these cases and to rate the
structural similarity between the query and the possible hit, the query pocket and
the found cluster are superposed. This at the same time provides a useful visual
feedback to the user, which itself is a very good indicator of the grossest errors
(e.g., by visualizing the ligand binding to the query pocket in the alignment, it
can be easily seen, whether the binding seems possible or not and how well do
the structures correspond).

The superposition of the query and the potential pocket (a chance of finding a
coincidental cluster has to be kept in mind) is done geometrically whilst respecting
the found K-mer similarities. For the purposes of this section, the pockets can be
represented by a set of points in the three-dimensional space. Also, we’ll suppose,
that if the pockets can be overlapped, there exists a mapping of corresponding
points from the query to the points in the putative pocket. Superposition of
the query pocket and the putative pocket (now two sets of points) is defined by
a rotation and translation of the putative pocket, which results in an optimal
overlap of the two pockets, i.e., rotation and translation that minimizes the
RMSD 2 between the mapped points. Finding such rotation and translation is not
as difficult, if we known the mapping between the cavities, and is briefly covered
in section 2.1.4.

Optimal Superposition of Points

The actual problem of aligning two ordered sets of points (finding alignment
that minimizes the RMSD between the corresponding points) is well-known and

Root Mean Square Deviation, calculated as \/ [Points| 3 ,, \epoints |Pa — Poll> Where p, and

pp are the overlapped points represented as vectors in the 3D space. Points is a set of pairs of
corresponding points.

31



explored. Many different solutions exist, the most notable are the Kabsch algo-
rithm [96], which uses the singular value decomposition (SVD) of the correlation
matrix to find the optimal rotation. Another interesting approach uses quaternions
to find the optimal rotation as a leading eigenvector of a specific matrix [97]. Both
methods have asymptotically linear complexity of O(n), although the Kabsch
algorithm seems to perform slightly better in terms of required computing time
when executed on random structures [98].

Hereafter, the algorithm to find the optimal rotation and translation of two
ordered sets of points to minimize the RMSD is referred to as Superpose(A, B),
where point A; corresponds to point B;.

Finding the Optimal Mapping

However, finding the best possible mapping is not a trivial task. The optimal
mapping could be found by using, e.g., graph matching, as described in 1.2.2.
However, probabilistic methods are used instead to improve the runtime signif-
icantly. The problem now is to find such mapping, that minimizes the RMSD
of the mapped points after the optimal superposition. However, we also have
to respect the properties of the residues, as once we map the points, we’ve also
mapped the residues between the pockets. Instead of restricting the mapping of
points only to other points, whose underlying residues are similar, we enforce
that the K-mers surrounding these residues in the respective protein sequences
have to also be similar. Thus, this mapping has to respect the given minimal
similarity score sim(kmer,, kmer,) > { between the K-mers, which are extracted
from the protein sequences around the mapped residues. We’ll denote a function
®, where ®(a, b) = 1 for points a, b (a € the query pocket, b € the putative pocket),
whose underlying K-mers are {-similar, else 0.

We can leverage the required minimal similarity score to build a table of all
possible mappings of points from the potential pocket to points in the query
pocket, based on similarity comparisons of the K-mers around the residues iden-
tified with these points. Generation of this table can be done naively in o(n?),
however, a more effective version of the algorithm that pre-generates all the
K-mers similar to the query cavity K-mers and stores them in a hash table can be
used, which lowers the asymptotic complexity down to O(n) on average, where n
is the number of residues in the potential cavity. The pre-generation of all the
K-mers in the query pocket is done only once for all the searched structures. It
can be done in O(m), where m is the size of the query pocket (number of residues
in the query pocket), and the asymptotic constant is dependent on { (depends
on how many similar K-mers will be generated for each original K-mer). The
pre-calculation of the hash table can be neglected for a high number of searches.
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Identification of Shared Primitives

The algorithms that seek to identify the optimal mapping between the points
(residues) in the query and putative pockets, are based on checking whether a
certain geometrical constrains are fulfilled. A small subset of points of fixed
length from each pocket, called a primitive, is selected first; similarity between
the two selected primitives is evaluated and provided they match (are similar) the
alignment is later extended or this information is used otherwise. As a primitive,
one can consider e.g., a triangle, or a tetrahedron, from points in the pocket,
which now represent vertices of the primitive. The primitive is thus represented
by an ordered set of points from each pocket. The similarity is assessed while
supposing that the i-th point from the first primitive corresponds to the i-th point
from the second primitive. This section covers the methods used to examine the
similarity of such primitives.

We’ll work with two primitives, S, and H, of size n (they consist of n vertices)
as an input. S; denotes the i-th vertex of the primitive S, the same applies for
the primitive H. The goal is to output 1, if these primitives are similar, else
0. We cannot expect a perfect geometrical match of the primitives, same as
the geometrical methods mentioned in 1.2.2. Additionally, the vertices of the
primitives correspond to the residues in the query and the putative pocket, and the
similarity of these residues has to be respected. For this, the function @ is utilized.
It distinguishes the residues in the pockets, that can be mapped on each other
based on the similarity of their underlying K-mers. If for any two vertices, the
function ® # 1, the primitives are rejected as dissimilar. The second requirement
is, that the overall shape of the primitives is similar (e.g., for primitives of size 4,
we’d like to know, if the shape of the tetrahedrons is similar).

A commonly used solution for evaluating similarity of such three-dimensional
polyhedrons (and triangles) is based on transforming the primitives to distance
matrices® and later applying spectral analysis and measuring so-called spectral
distance using the found eigenvalues of the distance matrices [99]. While this
method is very interesting, it requires time O(nk>) to compare the first k eigen-
values for primitive with n vertices. Due to the required complexity, other more
simple and faster methods were selected in this work.

These accept the given primitives as similar, provided the differences in the
pairwise distances between the vertices are absolutely or relatively bound in a
certain range. Suppose two distance matrices of the two compared primitives,
D@, D € R™". The primitives will be accepted as similar, if the selected require-
ment is satisfied. Here, multiple different possible requirements are listed.

The most straightforward is themaximal allowed absolute deviation of differ-

’For a set of points P, distance matrix D has on position D, the distance between point P, and
P;. Equivalently D;; = ||P, — Pj|| for all 0 < i, j < |P|.
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ences of the lengths of the edges of the primitives, see 2.2. § is a parameter of the
method.

V0 <ij<n:|DS-DH<s (2.2)

Maximal allowed relative deviation normalizes the deviation in the lengths of
the edges of the primitives by the length of the edge of the first (query) primitive,
as in 2.3.

;- D}
VO<ij<mi#j:——r < (2.3)
D2

LJ

The evaluation time for both of these is identical, as 2.3 can be rewritten as 2.4,
where the matrix of minimal and maximal allowed distances can be pre-calculated

and thus requires only two comparisons.

80 <ij<nizj:(1-6DS<DH<1+5DS (2.4)

The maximal allowed absolute deviation has the drawback of preferring short
distances, e.g., those found on the protein backbone. The relative, on the other
hand, neglects the limitations imposed by the structures’ resolutions. Also, neither
takes into account all the deviations in that sense, that they do not penalize the
primitives, that have all the deviations in the lengths of the edges large. Potentially,
the limitation of the mean square error (MSE) or of the mean deviation is also
possible, as in 2.5, which limits the mean relative error.

2 %5 1

n_nl()]H-l DQ

DH|

(2.5)

The specific used primitive matching is another parameter of the method.
Hereafter, it will be referred to as a function Similar Primitives(A, B, ®, §).

Random Consensus Algorithm

As the methods for finding the optimal superposition require knowledge of the
mapping between the points, it is required to identify this mapping very quickly.
One such potential mapping comes from mapping residues from the query pocket
to those in the putative pocket, which share the similar K-mer around them. That
is unfortunately not possible, as while lowering of the K-mer similarity threshold,
{, many, not just one, K-mers from the putative pocket become similar to each
K-mer from the query pocket.

34



Naively, one might try to consider all possible reasonable pairwise mappings
between the points, however, such approach has a fatal flaw—in the case of
multiple feasible mappings, which generate distinct rotations and translations, this
approach tries to consider them all at once, subsequently generating nonsensical
superposition of the points.

The random sample consensus algorithm [40] based on work by Martin A.
Fischer and Robert C. Bolles is approaching the problem differently. Rather than
trying to consider all the mappings at once, it uses the smallest possible randomly
selected subset of points (a triangle) along with their mappings, and tries to
expand it as much as possible. The selected triangle with the respective mapping
is enough to distinguish, whether all the other points can be reasonably mapped
to anything and if so, what mapping would fit the best. This is done iteratively
for many different random starting subsets and the largest found mapping, called
the consensus, is reported. The algorithm might terminate after specified number
of rounds, or after the mapping is of a satisfactory size.

The implementation of the algorithm for the problem of finding the best
mapping, along with the optimal superposition, is illustrated in Algorithm 2.
The negative of this algorithm is its slower runtime. For each random triangle,
it checks all other points along with their potential mappings. Although in
theory, certain optimizations can be done to speed up this repeated checking.
The resulting alignment and superposition can be later refined using the iterative
closest point algorithm 2.1.4.

Iterative Closest Point

To refine the found superposition, the iterative closest point algorithm [41] by
Paul J. Besl and Neail D. McKay is used. Given set of points A and B in some
(not yet optimal) superposition specified by given rotation and translation, it
iteratively maps each point in A to the closest point in the transformed set B?,
and then it recalculates the superposition of the two sets (hence, a new rotation
and translation is generated).

Here, a modified version of the iterative closest point is used. It aims not just
to refine the alignment of the already mapped points but also tries to extend the
mapping by trying to map all the points from the first set to the closest points
in the other set (after the transformation of the points using the found rotation
and translation). However, only points closer than a certain threshold, i, are
considered.

For two sets of points A, B, rotation matrix Rot, translation vector Trans, the
mapping function @ (defined as in ??), distance threshold 1, and termination thresh-

By transformation is meant the application of rotation and translation to the given set of
points.
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Algorithm 2 A stochastic algorithm based on the random sample consensus paradigm.
The algorithm seeks to find the largest possible subset of points from set A that corre-
spond to points in B, along with their mappings, with respect to the parameter § and
mapping function ® (constraints on which points can be mapped on each other). It
returns the found mapping, rotation matrix Rot, translation vector Trans, and the RMSD
of the alignment.

function RANDOMCONSENSUSALIGNMENT(Point set A, Point set B, Mapping
function @, Primitive similarity cutoff §, Satisfactory threshold ¢, Max Rounds
R)
best « None
i< 0
while i < R and |best| < t do
model « (triangle a C A, triangle b C B), that satisfies
Similar Primitive(a, b, §)
consensus < empty mapping
for pointain A\ado
for point b in B\ b where ®(a,b) == 1 do
expanded < model
expanded[a] < b
if Similar Primitive(expanded n A, expanded n B, §) then

consensus[a] « b
end if
end for
end for
if |consensus| > |best| then
best «— consensus
end if
i<—i+1
end while
Rot, Trans, RMSD <« Superpose(ordered keys from best, corresponding val-
ues from best)
return best, Rot, Trans, RMSD
end function
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old 7 and the maximal number of rounds R, the algorithm can be implemented as
in 3.

Algorithm 3 Variation of the iterative closest point algorithm, which tries to refine the
superposition of the sets and expand the mapping as much as possible, while respecting
the mapping constraints imposed by the function ®. Rot is a rotation matrix, Trans is
a translation vector. transform(B, Rot, Trans) is a function that applies the specified
rotation and translation on all points in the set B. The function returns the found
mapping, refined rotation matrix Rot, refined translation vector Trans, and the RMSD of
the alignment.

function ITERATIVECLOSESTPOINTREFINEMENT(Point set A, Point set B, Rota-
tion Rot, Translation Trans, Mapping function @, Distance threshold 1, Termina-
tion threshold 6, Max Rounds R)
rmsd « Inf
ClosestMappings < Empty mapping
i< 0
while i < R and rmsd > rdo
transformed <« transform(B, Rot, Trans)
ClosestMappings < Empty mapping
for Pointa € A do
closest « ¢ € transformed such as ®(a,c¢) == 1 and no other d €
transformed for which ®(a,d) == 1 and |la —d|| < |la — ¢||
if ||closest — a|| < :then
ClosestMappings[a] <—c
end if
end for
Rot, Trans,rmsd < Superpose(ordered keys from ClosestMappings, cor-
responding values from ClosestMap pings)
end while
return ClosestMappings, Rot, Trans, rmsd
end function

2.1.5 Scoring of Found Alignments

For the scoring of the found alignments, various different scoring functions
and metrics were evaluated; see Figure 2.2. The most promising were different
measures of overlap of the query binding site with the entire structure, which had
potentially similar putative binding sites. This overlap is based on the rotation
and translation found in the previous phase. On various datasets (the metrics were
mostly inspected on the TOUGH-M1 dataset), one of the most discriminatory
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metrics was the RMSD in an optimal alignment of residues (their centers of
masses) from the query cavity and their closest counterparts from the putative
cavity, while not enforcing any required similarity between the residues. More
intricate approaches, combining various other metrics were inspected, however,
to prevent the introduction of new parameters and potentially fitting them to one
specific dataset, they were not used at the end.

The use of the full-site RMSD has the advantage of being easily interpretable
while admittedly losing some information, particularly on harder datasets with
more structurally similar positive and negative pairs (or even positive pairs being
very dissimilar). The final score is counted as pseudocounted inverse of the RMSD,
as in 2.6, where 0 < Score < 100.

1

Score = ——— (2.6)
RMSD + 0.01

2.1.6 Used Parameters

Many parameters were introduced during the method presentation; however, the
best values were not identified. The values currently used for all the testing come
from empirical observation and intuition rather than from a well-established
analysis. Further inspection of these is required in the future.

K..3 Prim. Sim. Metric®... Mean Rel-

o ative Error
K-mer similarity (...13

Scoring Table...BLOSUM 62 Prim. Similarity - 4...0.15
Min. K-mers T% of query K- Random Cons. Rounds...10007
mers

el ) . Sufficient Expansions...15%
Primitive Size...3 (triangle)

OPTICS - €...1.2 x max q. dist. 5 ICP Close Point Cutoff...10 A

OPTICS - MinPts...3 ICP Rounds...3

2.1.7 Implementation Notes

The current implementation is written in Python to decrease the development
time. The implementation itself is rather a proof-of-concept, as the work is still

®Metric used for the evaluation of primitive similarity.

71000 tries to find a similar primitive, if found, it is then expanded.

8After finding 15 similar primitives in the random consensus algorithm, the execution is
interrupted.
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Figure 2.2 Considered Scoring Metrics on the Review Structures Dataset. Ligand
distance is the measured distance of the actually binding ligands after the found rotation
and translation and is reported purely for comparison, as it cannot be known without the
knowledge of the actual binding ligands. The third column shows the number of similar
K-mers found in the whole sequence of the potential match divided by the number of
K-mers generated from the query. Nearby fraction shows how many residues from the
query had a counterpart in the other structure within 1 A normalized by the size of the
query pocket. The BLOSUM Score was calculated by summing scores of the closest

residues between the pockets in the BLOSUM 62 scoring matrix.
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in the exploratory phase. Major optimizations and the most effective algorithms
or approaches were not included in the current implementation, although they
are partially described in the following sections, as the method’s runtime is a key
factor in its applicability. Minor optimizations are not mentioned.

The method currently uses natural protein sequences instead of artificial
sequences over the structural alphabet. The implementation itself won’t change;
only the data inserted into the database (and the search query) need to be trans-
lated appropriately.

Used External Libraries

The following external Python libraries are used in the implementation:

NumPy. A comprehensive mathematical library covering random number gen-
erators, linear algebra, and more.

BioPython. Various tools for computational biology and bioinformatics. Used
for loading of the PDB or mmCif structures and subsequent processing.

SciPy. A library providing many algorithms for scientific computing. Used for
indexing 3D protein structures using KD-trees.

Scikit-learn. Library for machine learning in Python. Used for clustering of
K-mers, evaluation and generation of machine-learning based scoring functions.

Matplotlib. Library for creating visualizations in Python. Used for figure
generation.

Seaborn. Statistical data visualization library, used along matplotlib to generate
figures and for data analysis.

Pandas. Library for data analysis and manipulation. Used for data analysis.

Code Availability

The latest version of the code is publicly accessible at https://gitlab.mff.
cuni.cz/telcerj/detectionofsimilarbindingsites and is distributed un-
der the MIT licence. Note that the tool is currently not meant for standalone
use.
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Chapter 3

Results

For evaluation of the method the ProSPECCTs benchmark was chosen. The
results are rather preliminary as the parameter optimization was not carried
out. Results on the same three datasets from the ProSPECCTs benchmark, as
in section 1.3, are shown along with the analysis of the TOUGH-M1 dataset to
explore the hypothetical performance on unrelated structures.

Usually, the performance of the binding site similarity estimation methods is
measured by calculating so-called ROC cruve, or Receiver operating characteristic
curve, which is often used to visualize the performance of a binary classifier (the
reported similarity score of the two pockets can be seen as a measure of probability,
that the pockets are similar). The ROC curve plots the true positive and false
positive rates at various thresholds of the probability that the pockets are similar.
For direct comparisons, the AUC, or area under the ROC curve, is calculated. The
higher it is the more confident are the predictions of the classifier (AUC of 1 means
that all the positive examples were correctly identified and no false positives were
reported; AUC of 0.5 is equivalent to random choice). However, the performance
evaluation of this method is not as straight forward as for methods that are based
on the scoring of pairs and it is not directly comparable, as this method is not
a binary classifier but a database searching tool which searches databases of
unprocessed structures (where the putative binding sites are not known). As it
applies a series of filters (only sequences with similar K-mers are selected, this
is later filtered to only structures with sufficiently large spatial clusters of the
K-mers, and these are later aligned and scored), it can happen that some pairs
are not scored at all, if e.g., the protein sequence did not contain enough similar
K-mers. Such entries are assigned default score of —1.

Also, as the putative binding sites are not known, the method tries to discover
them. However, it can happen that multiple putative binding sites are found
in one protein structure and all can be aligned and scored. In such cases, only
the highest scoring match is kept for the given protein structure. Nevertheless,
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even the high-scoring putative binding sites might still be incorrect as a different
putative site, or not a binding site at all, might had been aligned instead. To
eliminate this, for each reported hit the distance between center of mass of the
ligand binding to the query site and the center of mass of the ligand binding to
the structure containing the aligned cluster is measured, hereafter reffered to
as ligand distance. Subsequently, ROC curves where hits whose superpositions
generated higher then the specified ligand distance, are marked as false negatives.
Each structure in the dataset contains only one ligand, which is also used for the
delimitation of the query binding site in the distance of 4 A.

Finally, the ROC curves are calculated as follows: for each pair of protein
structures in the dataset, the pocket of the first structure is used as a query to
search the database. Score of this pair is either the score of the second structure
in the returned results or —1 if the second structure was not discovered. In the
ROCs where the ligand distance is limited by a certain threshold (such as 1 A),
all positive pairs that were superposed with ligands farther apart than was the
specified distance are marked as false negatives (receive a score of —1). Thus,
these aren’t counted in the true positives.

For the comparisons, the random module and numpy.random, were both
seeded with 0.

3.1 Results on the ProSPECCTs Dataset

3.1.1 NMR Structures

Figure 3.1 shows the performance of the method on the NMR structures dataset.
Similarly as for other tools tested on the ProSPECCTs dataset, the distances of the
ligands after the optimal alignments were not checked. The confusion matrix can
be seen in Figure 3.5. Out of the 7,729 total positive cases, 7,517 were reported as
positive with 5,724 having the distance of centers of the aligned ligands below
one A. Out of the 100,512 negative pairs, 99.76 % received score —1 and were not
aligned (either no sufficient mapping was found, or the sequences did not pass
through the K-mer filter). Figure 3.2 shows the histogram of the ligand distance
after the alignment.

For scoring, the pseudocounted inverse of the full site RMSD was used. The
ability of the scoring metric to discriminate well-aligned pairs can be seen in
Figure 3.4. The performance on the NMR dataset is directly comparable with the
current state-of-the-art methods, such as FuzCav. It even outperforms RAPMAD,
PocketMatch, Shaper, VolSite, ProBis, KRIPO, IsoMif and all other interaction
based methods.
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Figure 3.1 ROC curve of the proposed method with respect to the NMR structures
dataset. The random consensus algorithm was used for the mapping. No restrictions
on the maximal allowed ligand distance were imposed. For scoring, the pseudocounted
inverse of full site RMSD was used.
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Figure 3.2 Histogram of binned distances of ligands of aligned pairs after applying
the found rotation and translation with respect to the NMR dataset.
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Figure 3.3 ROC curves for the proposed method on the NMR dataset, where found
matches with high distance of the superposed ligands are labeled as false negatives.
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Figure 3.4 ROC curve when the classifying task is to discriminate superpositions of
structures resulting in closely superposed ligands (ligand distance less than 5 A) without
any requirement on the binding site similarity.
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Figure 3.5 Confusion matrix on the NMR dataset. All matches with score at least 0
were taken as positive.
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3.1.2 Kahraman Structures

Performance on the Kahraman structures is very poor. When labeling matches
with distance of the superposed ligands more than 1 A as false negatives, it
decreases to the chance level, as shown in 3.6. Out of 1,320 positive pairs, only 158
were labeled as positive, with only 92 having ligand distance below 1 A. Although
the median ligand distance of the aligned positive pairs was 1.15 x 107® A, that
was likely due to the correct identification of identical pairs (in the Karhaman
dataset, identical structures are labeled as positive pairs). The confusion matrix is
in Figure 3.7. Despite the poor performance, the method is still comparable with
methods such as RAPMAD, FuzCav or SiteAlign.

3.1.3 Review Structures

The AUC on the review structures dataset is significantly better than on the
Kahraman structures, although not as good once the matches with high distance
of the superposed ligands are labeled as false negatives, as can be seen in Figure 3.8.
Out of 115 positive pairs, 67 were retrieved, while 48 had ligand distance under
1 A. The confusion matrix, in Figure 3.9, shows that significantly more incorrect
matches had higher than negative score (they were superposed). On this dataset,
the method seemed to perform similarly as RAPMAD, Grim or Shaper.

However, while inspecting the negative hits, multiple pairs labeled as negative
in the dataset generated exceptional alignments. Some resembled almost identical
matches, as in Figure 3.10, some weren’t as close, nonetheless the found alignment
still seamed reasonable, as in Figure 3.11.

3.2 Runtime Analysis

The execution time of the searches was meassured using Python’s timeit module,
using the timeit.default_timer. All tests were performed on a single core of
Intel(R) Core(TM) i7-10750H processor with base clock of 2.60GHz. Times for the
three evaluated datasets are reported in Table 3.1.

Such a low runtimes make this method comparable to the fingerprinting and
histogram based methods as all other, except TM-align, are more than 10 times
slower per comparison. The most similar was the mentioned TM-align, which
needs around 6 milliseconds per comparison. However, PocketMatch, the fastest
of all methods in the ProSPECCTs benchmark, is more than 100 times faster.
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Figure 3.6 ROC curve of the classifier on the Kahraman structures dataset, where
found matches with high distance of the superposed ligands are labeled as false negatives.
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Figure 3.7 Confusion matrix on the Kahraman structures. All matches with score at
least 0 were taken as positive.

Dataset Elapsed Time (s) Time Per Comparison (ms)
NMR Structures 220.391 2.036
Kahraman Structures 63.348 6.335
Review Structures 149.310 2.647
Average - 3.673

Table 3.1 Runtimes of searches in the evaluation datasets. Elapsed times are sum of
running times for all IDs that were the first in any active pair in the dataset. The tests
were executed serially on a single CPU core. Times don’t include the required time to
load the query structure and isolate the cavity, as well as the time needed to initialize
and create the database.
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Figure 3.8 ROC curves on the review structures dataset. Orange and green curves

show the ROC when matches with high distance of the superposed ligands are labeled
as false negatives.
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Figure 3.9 Confusion matrix on the review structures. All matches with score at least
0 were taken as positive.

Figure 3.10 Chain A of 1gvr (green) aligned with chain A of 3p74 (magenta). Both
bind flavin mononucleotide (FMN). More than half of the structures is mapped to the
other (in cyan, cartoon drawing). Labeled as inactive pair with dissimilar binding sites in
the ProSPECCTs dataset.
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Figure 3.11 Reported alignment of chain A of 1bOu (green) and chain A of 3ux8
(magenta). Found mappings between the two are in cyan. While 1bOu binds ATP, 3ux8
binds ADP. Labeled as inactive pair with dissimilar binding sites in the ProSPECCTs
dataset.

3.3 Analysis of the TOUGH-M1 Dataset

To inspect the similarities of pockets binding similar ligands, while differing in
their sequence and structure, the TOUGH-M1 dataset was analyzed. The proposed
searching method was able to reliably locate at most 10 % of the positive pairs,
while generating significant amount of noise. To inspect the similarities and
determine whether to blame the implementation of the method, or the nature of
the problem, positive and negative pairs in the dataset were aligned based on an
optimal alignment of their ligands.

For each of 100 randomly selected proteins, which had a binding site similar
to at least one other binding site of different protein in the dataset, up to 100 of
the other positive (similar) binding sites were selected randomly. The ligands
of the similar pairs were then aligned using an evolutionary algorithm that
tried to minimize the RMSD between the ligands and the number of atom type
mismatches, while trying to map the entire smaller structure to the larger one.
This was repeated for 50 structures participating in negative pairs, along with
their dissimilar binding sites. This way, 4,677 similar binding sites pairs and 879
dissimilar, were aligned. In this alignment, multiple features were calculated.
Such as, the total BLOSUM 62 score of the nearest residues from the second pocket
to residues of the first pocket, the fraction of residues from the first pocket having
any residue from the second structure nearby (with cutoff values of 1, 2, 3, 4, and
5 A), the total number of K-mers of length K and similarity at least s around
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Figure 3.12 Total score of the closest residues between the two pockets after the
alignment. Scores of negative pairs (dissimilar pockets) are in red, scores of positive pairs
(similar pockets) are in blue.

residue from the first pocket and it’s closest residue from the second pocket, the
total number of similar K-mers of specified length and minimal similarity, and
the total number of such K-mers of minimal similarity that were no farther then
4 A apart in the found alignment.

Figure 3.12 shows the distribution of the scores in the cavities. The medium
number of shared K-mers on close positions in the alignment is shown in Fig-
ure 3.13.

To compare the distributions of the total number of shared K-mers between
similar and dissimilar binding sites, the tables of the total number of shared close
K-mers were summed to calculate the percentile distributions. Figure 3.14 shows
the corresponding percentiles.
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Figure 3.13 Median count of K-mers with their center residues being the closest ones
in the alignment of positive pairs. On each position is the total number of K-mers of
length specified by the vertical axis and with minimal BLOSUM 62 score specified by
the horizontal axis. Such table was calculated for each pair and the median table for
positive pairs is reported.
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Figure 3.14 Corresponding percentiles of the total number of shared K-mers of all
lengths and non-negative similarities between positive and negative pairs. For example,
50 on the horizontal axis corresponds to roughly 70 on the vertical, thus, the 70th
percentile of the sum of shared K-mers in negative pairs corresponds to the 50th percentile
of shared K-mers in positive pairs.
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Chapter 4

Discussion

The optimistic results on the NMR dataset, where the method outperformed
methods as RAPMAD, PocketMatch, or IsoMIF, and the dataset of successful ap-
plications (review structures) indicate a certain potential of the proposed method.
While the performance on the Kahraman structures and the TOUGH-M1 dataset
is rather underwhelming, it should be noted that many other methods do struggle
with these datasets as well. One of the underlying reasons might be the frequent
significant difference in the structure of unrelated binding sites, even though the
same or similar ligand is bound, as described by Barelier et al. [61]. Once we
inspect the similarities in the shared K-mers, the TOUGH-M1 datasets provides
a similar point of view, as to reject at least 60 % of the negatives and find 60 %
of the positives, a certain point where the dissimilar binding sites begin to have
more shared K-mers with the query than the actual similar binding sites on close
position is reached. However, this method is not intended for searching unrelated
or very distant binding sites. The high early enrichment, even on the dataset of
review structures, indicates that similar structures are located very easily, while
the more distant ones are rather not found at all using this method. The reported
runtime is also very promising, as, without any optimizations running in pure
Python, apart from the clustering and linear algebra functions, the time is in single
milliseconds per comparison. Such speeds are only achieved by TM-align, and
the fingerprinting or histogram based methods. That is particularly promising,
mainly in terms of large-scale database searching.

The most notable discovery is that such a simple method, without any knowl-
edge of the actual binding sites, can confidently locate and match them and, on
the easier datasets, be almost equivalent to other currently used methods.

However, the question of the required similarity remained unanswered. If
the required clusters of similar sequences would have to be of a minimal size,
then all the advantages of this method would disappear. Also, highly similar
sequences can already be searched more effectively using conventional sequential
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search. A more thorough examination of this is required to decide on the method’s
applicability. Another area of future interest should be the optimization of various
parameters, translation of the sequences to FoldSeek’s structural alphabet, and

possibilities of parallelization.
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Conclusion

In this work, the current state-of-the-art approaches for the evaluation of binding
site similarity were discussed, along with their weaknesses—such as the costly
requirement of screening the whole database for putative binding sites and some-
times even the need for all versus all pairwise comparisons. A simple method
for the identification of related binding sites based on locating the persisting
sequential and structural similarity was presented, along with preliminary results
on three testing datasets.

Despite the inferior performance on the hard datasets, the method is compa-
rable, or on certain datasets even better, than current state-of-the-art methods
for assessing binding site similarity, even without the exact knowledge of the
location of the putative binding sites. The results show a certain potential worth
exploring in the future. However, one should remain cautious, as many questions
were left unanswered. More thorough testing and evaluation of the method, using
a wider range of parameters, is still required.

In conclusion, the performance of the proposed method encourages a slight
optimism and proves this area is worth more attention in the future.
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