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Abstract

The literature on returns to schooling is among the largest and most scrutinised
fields in economics, yet it has historically overlooked the significance of ability
bias. To this date, there is no consensus on the extent to which general intelli-
gence influences the estimated returns to schooling. In this work, I assemble a
dataset containing 1754 from 154 studies, and attempt to systematically anal-
yse the role of ability in the context of the Mincer equation. I first check for
publication bias, and find that controlling for it lowers the returns to education
by roughly one percentage point to roughly 6-7%. Then, using model averag-
ing, I identify 19 highly relevant variables that influence the effect, including
education type, education level, gender, or the estimation method. Lastly, in
the context of twin studies where ability is assumed identical, I construct a
new dataset comprised of 154 estimates across 13 studies, and find that the
influence of education drops even further, to a staggering 4-6% returns to an
additional year of schooling.
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Abstrakt

Literatura o návratnosti školství patří mezi nejrozsáhlejší a nejdu̇kladněji zk-
oumané oblasti v ekonomické teorii, přesto věnuje velmi málo pozornosti prob-
lému dovednostního zkreslení. Dosud neexistuje shoda ohledně míry, do jaké
lidská inteligence a schopnost ovlivňuje návratnost do školství. V této práci ses-
tavuji dataset čítající 1754 pozorování ze 154 studií a pokouším se systematicky
zanalyzovat roli dovednosti v kontextu Mincerovy rovnice. Nejprve prověřuji
publikační zkreslení a zjišťuji, že jeho zohlednění snižuje návratnost vzdělání
o přibližně jeden procentní bod na zhruba 6-7%. Poté pomocí bayesovského
pru̇měrování identifikuji 19 du̇ležitých proměnných, které významně ovlivňují
efekt, jako je např. typ nebo úroveň vzdělání, pohlaví, nebo ru̇znící se methoda
odhadu. Nakonec prozkoumám kontext studií zaměřené na dvojčata, kde se
předpokládá identická schopnost jedincu̇. Sestavuji proto zcela nový dataset
čítající 154 odhadu̇ z 13 studií a zjišťuji, že vliv vzdělání klesá v tomto případě
ještě více, na neuvěřitelných 4-6% návratnosti do vzdělání za každý další rok
ve školství strávený.
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Chapter 1

Introduction

In psychology, general intelligence has long been recognized as one the most
reliable predictors of one’s financial and, in fact, general success in life (Deary
et al. 2007; Gottfredson 1997). This is also true in economics, where the eco-
nomic returns to schooling are often estimated to be the highest for those with
the highest cognitive abilities (Herrnstein & Murray 2010). Even through revi-
sion and scrutiny, it holds that among all other factors, general intelligence, or
so-called g-factor (Olea & Ree 1994), is the most important predictor of one’s
life outcomes (Ganzach & Patel 2018). However, tying this predictive power to
policy-making can prove rather tricky, as policy analysis requires causal effects
to assess its impact - something unavailable in the predictive analysis which
works with correlations.

Still, it remains a fundamental goal of policymakers to improve a person’s
probability to succeed in the labor market, and in doing so they rely a great
deal on the predicted returns to education. In other words, how much will an
investment into schooling pay off in the future for an individual. The most
prominent model to estimate these returns is undeniably the Mincer equation
(Mincer 1974), which suggests that each additional year of education produces
a private (i.e. individual) rate of return to schooling of about 5-8% per year,
ranging from a low of 1% to more than 20% in some countries (Psacharopoulos
& Patrinos 2018). However, the Mincer equation is a rather simplistic model
and thus fails to account for many existing biases in the literature, such as the
ability bias, which is the tendency for the economic returns to schooling to rise
among those with high ability (Griliches 1977; Heckman & Vytlacil 2001). This
may pose a problem, as the estimated effect of education could be biased, and
the suggested returns to schooling could thus be inflated.
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In the literature, the approach towards ability bias is all but unified. Some,
including Ashenfelter & Rouse (1999), pay it little heed and suggest that the
bias is of little importance. Others, such as Wincenciak et al. (2022), claim that
the bias does have a significant impact on the estimates of return to schooling,
and should be accounted for. Consequently, many questions arise as to the
validity of the Mincer equation, and the numerous findings presented on the
topic thus far. How large is the ability bias in the literature? How much, if at
all, does it affect the estimated returns to schooling? What role does it play in
regard to the predictive power of general intelligence?

I hypothesize that general ability, being the most important predictor of
life outcomes in psychology literature, has an important role in the economic
literature as well. Almost surprisingly, I found only a single meta-analysis of
the vast literature on private returns to schooling that would systematically
analyze the topic of ability bias (Wincenciak et al. 2022) - not nearly enough
given the importance of the topic to be considered conclusive evidence. This
thesis aims to fill this gap and provide a systematic analysis of the role of ability
bias in the context of the Mincer equation.

For this analysis, I first dive into the issue of publication bias - a researcher’s
preference to publish significant results over insignificant ones (Stanley 2001).
In an extensive dataset of 174 studies, I find mild conclusive evidence for the
presence of this bias, after treating for which the returns to education drop by
less than a percentage point. Next, I focus on heterogeneity and the influence
of individual variables on the overall effect. Along with identifying several
variables with negative influence (e.g., region type, study publication status),
and others with a positive one (e.g., higher education, the method employed), I
also single out the contribution of ability. As it turns out, including a measure
of ability in the model, or a proxy for it, significantly reduces the overall effect
of the returns to schooling. This finding is further supported in a chapter
fully dedicated to the issue of natural experiments, or so-called twin studies.
Here, only a subset of identical twins is used, for which the innate ability is
assumed to be equal. When analyzing an entirely new dataset comprised of
only identical twins, I conclude the returns to schooling drop even further, by
up to two to three percentage points. With these findings, I altogether aim to
bring a compelling argument to the field that ability bias is a significant issue
in the literature and should be accounted for in future research.

The present thesis is structured as follows: Chapter 2 delves into the existing
literature and theoretical background of the topic. Chapter 3 describes the data
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collection process and explores the described data. Chapter 4 is dedicated to
detecting publication bias through means of both standard and novel methods.
Chapter 5 focuses on heterogeneity through means of model averaging. Chapter
6 presents calculations of the best-practice effect in the literature. Chapter 7
explores the issue of ability bias in the context of natural studies. Chapter 8
concludes the thesis.



Chapter 2

Private returns to education

2.1 Human capital theory and Mincer equa-
tion

The backbone of research into the returns to schooling topic lies in the Human
Capital Theory, conceptualized first by Becker (1962). The idea is simple - in-
vestments in education should improve one’s productivity, resulting in increased
income over time. The author bases the calculation on a simple cost-benefit
relationship; if an individual puts time, effort, and money into their education,
this investment should bring returns later on in the form of increased earnings.
Schultz (1961) then argue that the crucial factor behind the increase in earn-
ings is the heightened productivity of the individual gained during the years
spent in school.

Roughly a decade later, Mincer (1974) proposed a vital extension to this the-
ory, quantifying this relationship in a model called the Human Capital Earnings
Function (HCEF). In this equation, usually referred to as the Mincer equation,
the log of one’s earnings can be expressed as an additive function of a linear
education term and a quadratic experience term. Rigorously, we can write this
semi-logarithmic relationship as

ln(Yi) = α + βSi + γ1Xi + γ2X
2
i + ϵi, (2.1)

where ln(Yi) denotes the log of earnings of an individual i, Si represents
their attained years of schooling, Xi stands for the years of work experience
of said individual, and ϵi captures the individual-specific error. In cases where
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the individual’s experience is absent, Mincer (1974) proposes using a measure
of potential experience instead. This can be calculated as

Xi = Ai − Si − 6, (2.2)

where Xi denotes the potential experience, Ai represents the individual’s
age, and Si stands for the completed years of schooling. Six is a constant; we
assume that the individual starts their education at age six.

Over the decades, this equation has been subjected to the scrutiny of many
research papers (Ashenfelter & Krueger 1994; Heckman et al. 2006; Card &
Krueger 1992); naturally, this scrutiny raised several questions regarding the
functional form of the equation. Heckman et al. (2003) subject the equation
to a thorough analysis by relaxing the proposed functional form, and arrive at
results that differ substantially from the ones drawn from the Mincer equation.
As for specific extensions to the existing equation, Card (1999) proposed adding
control variables to the Mincer equation, including race, geographic region, and
union membership. Using these new controls, they highlighted the importance
of an individual’s location factors and their role in determining one’s income.
Psacharopoulos & Patrinos (2004) highlighted the importance of the individ-
ual’s socioeconomic background as a predictor for earnings with findings that
firmly back up their claim. Belzil & Hansen (2004) then extend the equation
to account for individual heterogeneity by employing a dynamic programming
model of schooling decisions.

Among the many available methods for estimating this relationship, OLS
is the most common approach (Ashenfelter et al. 1999; Card 1999). However,
OLS estimates suffer from several estimation problems, including sample selec-
tivity, omitted variable bias, and measurement error bias, as noted by Aslam
(2007), among others. Equations using year cohorts (Angrist & Pischke 2009),
Heckman’s correction for sample selectivity (Heckman 1979), or fixed-effects
are among the several that tackle these issues.

Still, there exists one other important issue in the literature that plenty of
authors choose to avoid, one I firmly believe should be addressed - the issue of
unobserved ability.
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2.2 Ability bias in the Mincer regression

One variable stands out among the many that could be included in the Mincer
regression, and the omission of which may lead to biased estimates - individual
ability. There exists a plethora of research in psychology to show that general
intelligence is one of the most reliable predictors of one’s success (Gottfredson
1997; Deary et al. 2007; Deary 2020; Ozawa et al. 2022). This measure can
then be quantified; researchers refer to it as the g-factor. When this factor is
included in the regression, other determinants of an individual’s life outcomes
suddenly lose their predictive power, coining the phrase "not much more than
g" (Ree et al. 1994). Heckman & Rubinstein (2001) support this claim by
examining the role of non-cognitive abilities in determining earnings and edu-
cational attainment, finding out that they serve as crucial predictors in these
areas of economic development.

Regarding policy making, the predictive analysis prevalent in psychology
helps us only a little (Almlund et al. 2011). While highly useful when placing
an individual into the labor market, predictive analysis deals with correlations
rather than causal effects, which are the focus of policy analysis. Indeed, with-
out a way to assess the impact of the policy changes, evaluating the quality of
said change is impossible. Undoubtedly, one of the major objectives of educa-
tion policies lies in the improvement of one’s capacity to succeed in the labor
market. However, if the estimate of the returns to education is biased, these
policies could quickly be rendered inefficient and misguided.

Herrnstein & Murray (2010) bring these two issues together in a study
that reveals how economic returns tend to rise with higher individual ability.
Bowles et al. (2001) provide more evidence by showing that the returns to
schooling in the Mincer equation tend to be inflated when ability (or other
measure of cognitive performance) is omitted. Over the years, the term ability
bias that describes this phenomenon has been subjected to the scrutiny of
research (Heckman & Vytlacil 2001). Multiple researchers attribute little to no
importance to this issue (Ashenfelter & Rouse 1999). Apart from suggestions
for its omission (Blackburn & Neumark 1993), some claim that non-cognitive
abilities hold no less predicting weight (Heckman & Rubinstein 2001). Griliches
(1977), for example, finds out that the bias is either small or negative, and
Patrinos (2016) argues that adding more variables to the equation will not
solve the problem; instead, it may introduce new biases on its own.

A whole new branch of research into ability bias lies within natural experi-
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ments. Some economists (Ashenfelter & Krueger 1994; Berman et al. 2003), for
example, turned to twin studies to identify the role of education, as other fac-
tors (such as socioeconomic background, abilities, preferences, etc.) are nearly
identical with twins. I must, however, address two points of criticism prevalent
in the literature (Kenayathulla 2013). Firstly, there is no way to guarantee the
exogeneity of ability. In other words, if ability would have both an individual
and a family component, the latter would be endogenous to schooling, failing
to a potentially still biased estimate. Secondly, measurement errors pose a
particular threat to the result validity, as those errors could explain most twin-
level differences across the population (Ashenfelter et al. 1999). Nonetheless,
twin studies provide an intriguing alternative way to survey the ability bias
issue from another perspective, although most authors overlook this possibility
entirely.

On balance, the ability bias issue lives in a niche spot of researchers’ con-
sciousness. On top of the lack of consensus on the theoretical side of the
research, the practical side is just as discordant. A growing practice has had
researchers choosing a proxy in their estimation to control for ability indirectly,
usually with parental education, marital status, or distance to school, among
others (Blundell et al. 2001). The authors often acknowledge that their esti-
mates could be plagued by this bias but fail to obtain the data necessary for its
treatment (Agrawal 2012; De Brauw & Rozelle 2008). Other times, the issue
gets overlooked entirely, and the authors focus either on the simplest or a more
complex form of the Mincer regression (Angrist 1995; Sinning 2017). Given
the disunified practice, I proceed to answer the following questions. Does this
ability bias matter? How large is it? If we control for this bias, how do the
returns to education change?

2.3 Existing research

Before answering the questions, it is crucial to look at and acknowledge the
existing meta-analyses that have already tackled these issues before me. As of
me writing this paper and to the best of my knowledge, these are all of the
meta-analyses that have been conducted on the topic of returns to education
thus far - Psacharopoulos (1994); Fleisher et al. (2005); Churchill & Mishra
(2018); Psacharopoulos & Patrinos (2018); Patrinos & Psacharopoulos (2020);
Cui & Martins (2021); Iwasaki & Ma (2021); Ma & Iwasaki (2021); Wincenciak
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Table 2.1: Existing meta-analyses choose to tackle different issues

Study name AB AB* PB PB* Method

Psacharopoulos (1994) . . . . .
Fleisher et al. (2005) . . . . ✓
Churchill & Mishra (2018) . . ✓ ✓ ✓
Psacharopoulos & Patrinos (2018) . . . . .
Patrinos & Psacharopoulos (2020) . . . . .
Cui & Martins (2021) . . ✓ ✓ ✓
Iwasaki & Ma (2021) . . ✓ . ✓
Ma & Iwasaki (2021) . . ✓ ✓ ✓
Wincenciak et al. (2022) ✓ ✓ . . ✓
Horie & Iwasaki (2023) . . ✓ . .

Number of studies: 1 1 5 3 6
Percentage of studies: 10% 10% 50% 30% 60%

Note: This table lists (to my knowledge) all existing meta-analyses on the topic of
returns to education, along with information about methodology each of them chooses
to employ. A check-mark means the study does tackle the corresponding issue. The last
two rows display the number of studies dealing with each issue in absolute and relative
terms. AB = The study analyses ability bias as a predictor for returns to schooling,
AB* = The study finds that ability bias is a strong predictor for returns to schooling,
PB = The study addresses publication bias, PB* = The study finds publication bias in
its data, Method = The study addresses the type of methodology used by the examined
studies.

et al. (2022); Horie & Iwasaki (2023). In Table 2.1, I outlined how each of these
studies tackles the several main points of existing research.

Out of these ten studies, only the paper by Wincenciak et al. (2022) at-
tempts to directly answer the role of ability in estimating returns to schooling.
They find that ability is a significant predictor of returns to education (about
0.8-0.9% points) when controlled for. They conclude that the omission of ability
bias may lead to biased estimates of the discussed effect. As for other studies,
Fleisher et al. (2005) and Patrinos & Psacharopoulos (2020) acknowledge the
presence of ability as a potential predictor in the Mincer regression but either
dismiss its validity or choose not to analyze the issue in depth.

Five studies then deal in any form with publication bias (for brevity, I will
not list them; refer to Table 2.1 for detail). Three of these studies then find a
presence of publication bias in the literature, while the other two do not.

Lastly, six of the ten existing meta-analyses include control in any form for
methodology in their approach. Mainly, this involves putting a single control
such as Instrumental Variable (IV) or Ordinary Least Squares (OLS) into their
models. None of the studies then compare more methods to each other.

Indeed, no single study exists that would bring all these issues together and
try to answer all of them. This, together with other vital points, should be the
main focus of this thesis, as explained in the following section.
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2.4 My contribution

What I hope to bring into the field with this thesis can be summarized in the
following way.

First, as outlined in Section 2.3, only one meta-analysis on the role of abil-
ity bias in returns to education exists thus far (on top, this paper has been
published only after conceptualizing this thesis). Although I may not be the
first to consider ability bias as a significant predictor of the effect of education,
it is far from feasible to claim that the ability bias issue has been explored - far
from it. I hope to thoroughly examine how ability plays its part as a predic-
tor of returns to schooling, observe whether it is statistically and economically
significant and whether it should be treated for. Furthermore, the existence of
a meta-analysis on the topic means that I can now compare my results with
the existing ones, which should ultimately bring more credibility to the issue
overall.

Second, by clearing up the uncertainty regarding the influence of ability bias
on one’s future income, I can suggest more efficient ways to indirectly control
for ability or even highlight the importance of obtaining data through which
the researchers can control for this bias. Given the existing heterogeneity in
the current research (especially regarding ability bias), this may help guide the
authors in their estimation strategies and finally contribute to the quality of
research findings in the future.

Third, I hope to identify the individual effects that different estimation
methods may systematically have on returns to education. Even though over
half of the existing meta-analyses address this issue, none directly compares
all of the available methodologies within the literature. Given that the dataset
I will assemble and use to test for this relies primarily on a search query for
the choice of studies, the literature set should provide the most representative
form of the existing literature possible and capture nearly all methods used in
practice.

Fourth, I will focus thoroughly on the issue of publication bias to find
systematic misuse of result reporting. By employing the most modern state-
of-the-art methodology such as the MAIVE estimator (Irsova et al. 2023) or
Robust Bayesian Model Averaging (Maier et al. 2022) in addition to the battery
of the standard FAT-PEESE-PET tests and more, I attempt to bring the most
robust results out of all existing analyses thus far. Looking at the results of the
five that have tried to answer the issue, no consensus exists here either (three
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claim the presence of publication bias, while two argue for the lack thereof).
More scrutiny should help clear out the uncertainty about publication bias and
provide even more robustness to the results.

Fifth, I will look at the role of individual variables regarding the effect
behavior using novel technology such as Bayesian and Frequentist Model Av-
eraging. Which variables are the most influential drivers of the returns to
education effect? What is their economic significance? What would be the
true effect if a best-practice effect could be derived from the literature that
would correct for the aforementioned detected biases? None of the existing re-
search tackles any of these questions, and I hope this approach will contribute
to their clarification.

Sixth, I will construct an entirely new dataset including only natural ex-
periments conducted on twins (so-called twin studies) and rerun the analysis
using this dataset. By removing the differences in socioeconomic factors that
usually exist in the subject sample, this approach should serve as a robustness
check to more precisely identify education’s role in affecting the twins’ future
earnings. To keep things concise and not branch off too far, I intend to skip (or
at most, gloss) over the results regarding publication bias, heterogeneity, and
best-practice estimate. Instead, I shall focus on how ability bias changes with
this new twin study dataset. In any case, this should help me further validate
the robustness of my results.

Next, I present several technical extensions as an improvement to the code
quality of the analysis. As the first one, I provide R code for the Endogenous
Kink method by (Bom & Rachinger 2019). So far, to the best of my knowledge,
the code for this method is publicly available only in the STATA software. I
hope to facilitate research to a potentially sizable pool of researchers who do
not work with or hold the license to STATA by providing the code for said
method purely in the programming language R. Several validity checks are also
included in the new code to make sure it runs smoothly and without hiccups.
Albeit a trifling task, I believe it will aid further researchers shine a brighter
light on their results.

As the second technical extension, I upgrade the existing code of the STEM
method (Furukawa 2019) to work up to orders of magnitude times faster than
the available source code.1

As the last extension, I provide an all-encompassing R code in the form
1Tested on the full master dataset of length 1754, the improvement cuts down the source

code run time of 99.52 seconds to only 2.84 seconds, averaged over ten runs.
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of several scripts that can be used together to replicate the whole analysis
without effort.2 With over 7000 lines of code, the project allows the user
to run, see, and customize every method from a single point of entry. All
results are automatically exported and saved in a single, small-sized, and easily
distributable .zip file. With best-practice methods from software engineering,
including tests, validation checks, a cache system, and much more, anyone can
now access complex meta-analysis methods and run them all in seconds.

2Available at https://github.com/PetrCala/Diploma-Thesis.

https://github.com/PetrCala/Diploma-Thesis


Chapter 3

Data

3.1 Literature search

I make use of the Google Scholar search engine with its full-text search capa-
bilities to assemble my dataset. A query constructed using a combination of
keywords helps me narrow down the results into studies dealing with ability
bias, private returns, and education. After several modifications to ensure the
query generates consistent results within the scope of interest, I finalized the
query into a form denoted in Appendix A.

I ran the definitive search on January 23, 2023, and received 574 hits. To
achieve absolute consistency, I employed web scraping and automatic data pre-
processing tools and denoted all vital information about all 574 studies during
a single day. These included the authors’ names, publication information, the
number of citations, and the impact factor of the journal the study was pub-
lished in1. To avoid duplicate results and guarantee the uniqueness of each hit,
I also extracted the study result IDs.

I then went through the first 200 studies and deemed 78 as eligible for data
collection. For this preliminary check, I considered only whether each study was
relevant to the topic, and whether it reported the necessary statistics, namely
an estimate of a returns to schooling regression, the corresponding standard
error, etc. Although a sizable number of studies failed to report collectible
data completely, 129 of the 200 studies (over 60% of the surveyed sample) were
at least relevant to the topic, validating thus the quality of my query.

In accordance with the reporting guidelines for meta-analysis by Havránek
et al. (2020), I define the following criteria that will help me narrow down the

1In case of an unpublished study, I set the impact factor to 0.
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study list into its final form. For a study to be included in the dataset, it must
fulfill the following criteria.

First, the study must report one or more estimates from an equation of
any form of wage on a schooling variable (years of schooling or completed level
of education), along with their standard errors or corresponding t-statistics.
Without the last two mentioned, there would be no way to compare effect
strength across observations. Furthermore, there must either be a traceable
statistic associated with every estimate that signifies the number of degrees
of freedom or sample size from the regression or, in case neither of these is
provided, there must be a number denoting the number of subjects for the
experiment. In such cases, it must be evident that the sample size corresponds
to the reported estimates. Due to the thoroughness of the initial screening,
only four studies of the 78 did not fulfill these criteria and were thus removed.
This leaves a total of 74 studies eligible for collection.

To retain as much information about the research field as possible, I choose
not to discard studies of varying quality, including unpublished papers, grad-
uate theses, dissertations, etc. There is no consensus in the existing literature
on which approach should be taken, as highlighted by Stanley (2001). Even
though the author advises careful consideration when including unpublished
studies, he also acknowledges that their omission could create a new publi-
cation bias instead. The inclusion approach is also supported by Cook et al.
(1993), who found that numerous meta-analysis researchers and methodologists
believe data from unpublished studies should not be discarded if one aims to
synthesize the available information objectively.

However, upon closer inspection of the initially generated list of studies,
I observed that several highly influential studies from the field were missing,
such as those by Angrist & Krueger (1991), Staiger & Stock (1997), or Heckman
et al. (2006). These failed to get identified as relevant by the query and did not
appear in the search results. To ensure the whole field of relevant literature
is encompassed, I employ the snowballing method to incorporate these crucial
studies.

The use of the snowballing method itself is debatable too , and an argument
can be made for its avoidance, as the data search suddenly becomes hard to
replicate. Indeed, having only one search query would be ideal, but the unfor-
tunate failure of the query to detect many of the most important studies in the
field seemed a reason enough to give snowballing a green flag. As an example,
the meta-analyses of (Psacharopoulos 1994; Fleisher et al. 2005; Psacharopoulos
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& Patrinos 2018), and some highly cited studies including (Card 1995; Heck-
man et al. 2006; Psacharopoulos & Patrinos 2018), have all presented results
that have since been many times reviewed and are undeniably well-established.
Omitting these crucial studies from the final dataset, which would be the un-
biased choice if I left out snowballing completely, seems purely detrimental to
the quality of the analysis.

With the decision to add these studies, I conducted a meticulous search
of bibliography references from the already identified studies, capturing thus
an individual’s highest attained level of education, rather than the number of
years spent in school. This search then yielded 55 additional papers that signif-
icantly contribute to the topic. After applying the earlier-mentioned criteria,
I narrowed this list to 41 highly relevant and collectible papers. Combined
with the 74 studies identified during the query search, the final list consists
of 115 studies, which I will refer to these as the primary studies, the main
dataset, or simply the dataset. These studies should thoroughly encapsulate
the existing literature’s findings and methodologies and provide a more robust
representation than the query search subset. The final list of studies can be
found in Appendix A, together with a PRISMA flow diagram summarizing the
literature search.

3.2 Interpreting of the Effect in Question

A glance into the assembled literature set reveals an important issue I must
address before explaining the data collection process. That is, what is the effect
that we are collecting?

Many studies in the set (Sackey 2008; Leigh 2008; Bartolj et al. 2013) use
schooling in levels rather than years. The most prominent argument for this
choice is undoubtedly the lack of data on the exact years of education. Further,
this approach is certainly a valid way of estimating the Mincer equation, as one
can observe how different levels of educational attainment contribute to the log
of an individual’s earnings. Quantitatively, we can extend the Equation 2.1 to
the following form:

ln(Yi) = α + β1PRIMi + β2SECi + β3HIGHERi + γ1Xi + γ2X
2
i + ϵi, (3.1)

where PRIM , SEC, and HIGHER represent dummy variables for pri-
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mary, secondary, and higher education, respectively. The rest of the variables
and their explanation is the same as in Equation 2.1. Note that the levels
included in the regression do not necessarily have to conform to the three dum-
mies outlined here; quite the contrary. In practice, the authors (Gill & Leigh
(2000) as an example) choose schooling levels that best represent their data.
This includes adding in variables representing attainment of a Bachelor’s de-
gree, Master’s degree, or even country-specific education levels.

The critical question is, having these different levels of schooling, can you
calculate the returns to an additional year of schooling for all these level coef-
ficients so that the estimates are directly comparable? The answer is yes, you
can. When comparing returns of one schooling level to another, variations of
the following formula (such as in Agrawal (2012)) can be used to quantify the
relationship between schooling in levels and years of schooling:

Si = (1 + βi,higher − βi,lower)
1

Yi,higher−Yi,lower − 1, (3.2)

where Si denotes the effect an additional year of schooling has on the log
wage of an estimate i, βi,higher and βi,lower are the coefficients from the Mincer
regression associated with the higher and lower schooling levels respectively.
Finally, Yi,higher and Yi,lower are the years it takes to complete the higher and
lower schooling level, respectively.

This form of the equation assumes there are two levels of schooling present
in the regression, and its result is the return to a year of schooling within
these two (i.e., when comparing primary to secondary schools, the resulting
coefficient would denote how much each year of secondary school contributes
to an individual’s earnings). Suppose no other level is available for comparison,
such as when calculating the returns to schooling for the first level coefficient
in the equation. Then we can plug 0 for the other schooling level’s coefficients,
which reduces the equation to the following form:

Si = (1 + βi)
1

Yi − 1. (3.3)

Here, βi is the Mincer regression coefficient associated with the attained
schooling level of an estimate i, and Yi denotes the years required to obtain
said education level.

After transforming the effect, one must also handle the standard errors and
resulting t-statistics. Given that the standard error does not directly carry
through nonlinear transformations (which both Equation 3.2 and Equation 3.3
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are), it is necessary to derive the standard error in another way. For this, I use
the delta method (Ziegel 2002), which helps me calculate the standard error. I
run most of the calculations using the R deltamethod function (Fox & Weisberg
2018), where only the functional form is required along with the respective
coefficients. I calculate the t-statistics only after obtaining the transformed
estimates and their standard errors; this ensures the validity of publication
bias methods used later in the work. Further, I scale all the numbers by a
factor of 100 for direct interpretability of the effect as a percentage return to
an additional return of schooling.

The last important question to answer is whether, after unifying the differ-
ent types of the effect, there would not appear any kind of systematic pattern
in the literature that could invalidate the results. Indeed, in the meta-analysis
of Churchill & Mishra (2018), the authors use the FAT-PET-PEESE tests to
(among other things) study whether the reported returns to an additional year
of schooling vary systematically depending on the education type measure.
They find that studies using years of schooling report higher estimates than
those using education levels. Given this finding, I choose to include a variable
in my dataset that controls for the type of estimate reporting used. In theory,
such a coefficient should be 0 (meaning there is no systematic difference be-
tween reporting in years and levels). Chapter 5 reveals whether whether this
holds.

3.3 Dataset assembly

Having the effect interpretation cleared up, I proceeded with data collection.
From 115 relevant studies, I collected 1754 estimates of the effect together
with dozens of other variables that helped me capture heterogeneity within the
literature. Apart from the necessary numeric statistics such as standard error,
t-statistic, or degrees of freedom, I also collected over 40 variables categorizing
the effect type, study characteristics, spatial/structural variation, estimation
method, and publication characteristics. See Table 5.1 for a complete list of
these variables. The table also contains descriptions and summary statistics of
the variables.

Upon closer inspection, I observed that studies in my dataset can be split
into four categories based on their approach toward ability. I capture this in
the variable Ability, where the categories can be defined as follows:
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• Ability: Direct - The study directly includes a measure of ability in the
regression. This can mean a score from an IQ test, a measure of language
ability, or any other kind of ability. Grogger & Eide (1995) or Van Praag
et al. (2013) are good examples of this approach.

• Ability: Proxy - The authors use a proxy for ability instead, such as a
relative’s education level or the number of siblings. Often, this is asso-
ciated with the use of Instrumental Variable regression. Card (1995) or
De Brauw & Rozelle (2008) use such proxies.

• Ability: Uncontrolled - The authors address the issue of ability bias in
their work but can not or choose not to add any measure or proxy for
ability into the regression. This could be due to a lack of data or their
reasoning for the inconsequentiality of ability bias. (Angrist & Krueger
1991; Fang et al. 2012)

• Ability: Unmentioned - There is no mention of ability or ability bias
anywhere in the study. The results are typically reported in the form of a
simple Mincer regression. Staiger & Stock (1997) or Acemoglu & Angrist
(1999) fall into this category.

As far as the other variables are concerned, I was, in most cases, able to
collect all the necessary data. However, some variable groups still had to be
dropped for the lack thereof. Topics such as education field (STEM, Medicine,
Law,...), regression type (Mincer vs. Discounting), or school type (Private vs.
Public) were all addressed within only a few, if any, studies, making them in-
feasible to collect. On the flip side, I identified and added a handful of variables
I had not intended to add initially, such as marriage control or residential area
type (rural vs. urban). I also added data on the country-year-specific level
(meaning it differs for each country-year pair), such as minimum wage or me-
dian household expenditure. I also added a variable on the country-year level
capturing the Academic Freedom index, the data for which I obtained from the
dataset by Coppedge et al. (2023).

Regarding study-specific variables, such as the number of citations, publica-
tion status, or impact factor, I ensured that all these could be directly compara-
ble by measuring them in a single day - January 23, 2023. Any changes within
these variables for the included studies after this date are not considered.

Further, I can use the human capital earnings function described in Chap-
ter 2 and take the potential experience measure from Equation 2.2. Using this
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relationship, it is possible to derive missing values of either one of the mean
years of schooling, the mean years of experience, or the mean age, provided the
other two statistics are reported. For example, if a study includes the subjects’
mean age and mean years of schooling but omits the mean experience, it can
be calculated as age - schooling - 6 (Mincer 1974). On the flip side, there are
times when a study fails to report at least two of these variables. In those
cases, I leave the underivable values empty.

However, methods used later in this work require the absence of missing
observations in the data. To treat this, I use clever interpolation to fill in the
missing observations to copy the existing information as closely as possible.
For variables of float type, such as minimum wage, age of subjects, or freedom
index, and variables of dummy type, such as wage earners vs. self-employed, I
use the median of the existing data for the given variable. At other times, the
variable can be aggregated at the country level. In that case, the interpolation
happens at the same level, meaning that the medians are calculated for indi-
vidual countries, not across the whole dataset. For percentage variables (such
as the ratio of subjects living in urban vs. rural areas), the mean of the data is
used, aggregated again on a country-specific level. This ensures that the ratios
always sum up to one and simultaneously capture the situation representing
the study’s environment as closely as possible.

With these transformations, I obtained the final form of the dataset with
1754 observations and more than 150,000 data points in total. To see the data
frame, refer to the files appended with this work. Alternatively, you can also
find the data set on the project’s GitHub page2.

3.4 Initial analysis

After cleaning the dataset and double-checking that all calculations were cor-
rect, I checked the effect behavior through various subsets of data. In Table 3.1,
you can find the summary statistics of the effect under these subsets, while Fig-
ure 3.1 offers a graphical insight instead. When splitting the data into subsets
where it was unclear what point to choose for the split (such as the case of
Observations, Data Year, or Citations), I used the median of the variable in

2The missing values are interpolated only upon the script run and not within the
raw data. Running the code will also inform you about the missing values, their han-
dling, etc. Find the code within the appended files, also, or on the following website:
https://github.com/PetrCala/Diploma-Thesis.

https://github.com/PetrCala/Diploma-Thesis
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question. At other times, such as for variables reported in ratios, I used 0.5
(50% of observations) as the split point.

Allow me now to I quickly address the numeric results. As a baseline for the
rest of the work, we can observe that the unweighted mean of the effect across
all data equals 7.476 (7.674 for the data weighted by the number of estimates
reported per study). As a reminder, this can be interpreted as a 7.456% increase
in log wage per additional year of attained schooling and falls well into the
expected range, comparing this estimate to the results of other works. As such,
this brief insight can serve as a sanity check that there is nothing immediately
wrong with the data collection. When comparing to individual studies, this
mean is slightly lower than Psacharopoulos & Patrinos (2018) who claim about
9% average returns to schooling, but a bit higher than the findings of Fleisher
et al. (2005) who report returns between 5 and 6 percent on average. My
results also align well with the only study dealing in detail with ability bias,
Wincenciak et al. (2022), where the authors also report a 7% figure for the
average effect. Note that the suggested figure of 7.476 does not account for
publication bias and should thus be treated only as a benchmark for further
comparisons.

Concerning other subsets of data, there appears to be variety in several
variable categories, including the age of data, economic status of countries,
study publication status, or, perhaps more interestingly, ability. Estimates
aggregated on the city level can be associated with higher estimates of the effect
(8.5%), yet this difference disappears entirely after accounting for the study
size (7.6%). The same is true for estimates from unpublished studies (8.3% vs.
7.7%). On the other hand, estimates associated with other variables remain
higher than their counterparts, even through weighting. These include smaller
sample size estimates, smaller studies, newer data, estimates for subjects with
higher education, countries with low income, female subjects, or studies with
a smaller impact factor. Perhaps most interestingly, the mean estimate is also
higher for studies that proxy for ability and marginally for those that do not
control for it.

However, given the wide confidence intervals associated with all these sub-
sets, one should take all these claims with a grain of salt. Furthermore, these
differences are only marginal and should not serve as concrete evidence of a
clear trend. Moreover, the mean could hardly be considered a statistical mea-
sure with perfect information; more data scrutiny will surely be necessary. This
I will focus on in Chapter 5.
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Table 3.1: Mean statistics across various subsets of data

Unweighted Weighted

Mean 95% conf. int. Mean 95% conf. int. N. obs

All Data 7.476 -1.224 16.176 7.674 -1.026 16.374 1,754

Estimate characteristics
Estimate: City 8.579 -2.201 19.359 7.674 -3.106 18.454 208
Estimate: Sub-region 7.025 -2.334 16.384 7.674 -1.685 17.033 174
Estimate: Region 7.231 -1.079 15.541 7.590 -0.720 15.900 542
Estimate: Country 7.478 -0.505 15.461 7.664 -0.319 15.647 692
Estimate: Continent 7.331 -1.565 16.227 7.999 -0.897 16.895 138
Observations >= 6476 7.150 -0.392 14.692 7.524 -0.018 15.066 882
Observations < 6476 7.806 -1.888 17.500 7.832 -1.862 17.526 872

Data Characteristics
Study Size >= 20 7.187 -1.766 16.140 6.928 -2.025 15.881 884
Study Size < 20 7.769 -0.631 16.169 7.938 -0.462 16.338 870
Yrs. of Schooling >= 10.9 7.692 -0.358 15.742 7.793 -0.257 15.843 881
Yrs. of Schooling < 10.9 7.257 -2.039 16.553 7.562 -1.734 16.858 873
Yrs. of Experience >= 19.48 7.595 -0.564 15.754 8.104 -0.055 16.263 901
Yrs. of Experience < 19.48 7.350 -1.885 16.585 7.243 -1.992 16.478 853
Cross-sectional Data 7.559 -0.990 16.108 7.520 -1.029 16.069 634
Panel Data 7.429 -1.358 16.216 7.771 -1.016 16.558 1,120
Data Year >= 1999 8.214 -1.349 17.777 8.276 -1.287 17.839 901
Data Year < 1999 6.696 -0.693 14.085 7.144 -0.245 14.533 853

Spatial/structural variation
Higher Education >= 0.5 8.599 2.556 14.642 9.035 2.992 15.078 311
Higher Education < 0.5 7.234 -1.870 16.338 7.414 -1.690 16.518 1,443
Wage Earners >= 0.5 7.523 -1.234 16.280 7.731 -1.026 16.488 1,632
Self-employed > 0.5 6.848 -0.986 14.682 6.846 -0.988 14.680 122
Male >= 0.5 7.180 -1.440 15.800 7.450 -1.170 16.070 1,298
Female > 0.5 8.318 -0.406 17.042 8.439 -0.285 17.163 456
Private Sector >= 0.5 7.628 -1.186 16.442 7.772 -1.042 16.586 1,540
Public Sector > 0.5 6.377 -1.126 13.880 7.022 -0.481 14.525 214
Rural >= 0.5 7.080 -3.255 17.415 7.388 -2.947 17.723 176
Urban > 0.5 7.520 -0.978 16.018 7.712 -0.786 16.210 1,578
High Income Countries 7.023 -0.260 14.306 7.141 -0.142 14.424 889
Middle Income Countries 7.868 -1.914 17.650 8.035 -1.747 17.817 761
Low Income Countries 8.476 -1.994 18.946 9.716 -0.754 20.186 104
Mean Age >= 37 7.570 -0.380 15.520 8.180 0.230 16.130 900
Mean Age < 37 7.376 -2.051 16.803 7.142 -2.285 16.569 854

Estimation method
Ability: Direct 6.233 -0.419 12.885 6.417 -0.235 13.069 236
Ability: Proxied 8.906 -2.705 20.517 9.040 -2.571 20.651 357
Ability: Uncontrolled 7.675 -0.529 15.879 7.619 -0.585 15.823 745
Ability: Unmentioned 6.604 -0.211 13.419 7.106 0.291 13.921 392
Control: Age 8.320 -1.202 17.842 8.598 -0.924 18.120 604
Control: Age2 9.094 -0.039 18.227 9.296 0.163 18.429 482
Control: Experience 7.002 -1.385 15.389 7.130 -1.257 15.517 1,064
Control: Experience2 7.177 -1.396 15.750 7.139 -1.434 15.712 898

Publication characteristics
Impact Factor >= 0.191 7.021 -0.874 14.916 7.338 -0.557 15.233 877
Impact Factor < 0.191 7.930 -1.427 17.287 8.068 -1.289 17.425 877
Citations >= 80 7.178 -0.826 15.182 7.531 -0.473 15.535 892
Citations < 80 7.784 -1.547 17.115 7.815 -1.516 17.146 862
Study: Published 7.222 -0.739 15.183 7.654 -0.307 15.615 1,340
Study: Unpublished 8.298 -2.300 18.896 7.758 -2.840 18.356 414

Note: This table presents basic summary statistics of the returns to an additional year of
schooling coefficient calculated on various subsets of the data. Unweighted = Original dataset is
used. Weighted = Estimates are weighted by the inverse number of estimates reported by each
study. OLS = Ordinary Least Squares. For cutoff points, medians are used except for dummy
variables, where the cutoffs are 0.5.



3. Data 21

Figure 3.1: Graphically observing the effect across subsets of data
(a) Education type (b) Data type

(c) Highest education (d) Gender

(e) Country wealth (f) Estimation method

(g) Ability (h) Citations

Note: This figure displays histograms and density lines for different subsets of
data, where the effect of an additional year of schooling on returns is displayed on
the x-axis against its density on the y-axis. For Figure 3.1h, the data median is
used to determine the subsets. For a description of variables used in this figure,
see Table 5.1.
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As for the graphical insights that can be obtained from the data, Figure 3.1c
confirms that the distribution of estimates associated with higher education
holds perhaps estimates of higher returns than its counterparts. Further, the
right tail of the Ability: Proxied variable distribution appears the heaviest out
of the four subcategories. This may suggest that including a proxy for ability
often yields higher estimates in ranges that other approaches seldom report.
The right-side distribution tails also vary notably for the Method variable,
with IV regression approach reporting the highest estimates of all techniques.
In contrast, methods such as Probit or OLS sporadically yield coefficients of
unusually high value.

To highlight the differences between individual studies, I also include box
plot of study-level clustered data in figures 3.2 and 3.3 (in the Appendix A,
you may also find a country-level box plot for additional insight into the data).
For clarity of presentation, I present two plots instead of one due to the large
number of studies within the dataset. The split is done arbitrarily after 60
studies, ordered alphabetically. Despite the evident presence of outliers in some
cases (Asadullah 2006; Harmon et al. 2002), the studies, in most cases, report
results close to the mean; only a handful of studies stand in the plot far out
from the mean line. Studies of Depken et al. (2019); Girma & Kedir (2005), or
Mphuka & Simumba (2012) report peculiarly high estimates, while studies like
Angrist (1995); Li & Urmanbetova (2007), or Webbink (2004) never report an
estimate above 5% according to my calculations. To detect and amend for any
potential miscalculations and human error, I double-checked the source data
along with the calculations and, after this validation, proclaimed the dataset
as final.
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Figure 3.2: Box plot of estimates across individual studies - first part

Note: This figure shows the first part of a box plot, where the reported estimates are grouped at
the study level. The first 60 studies from the dataset are displayed in alphabetically ascending
order. The red line represents the average effect across the literature. Each box’s length represents
the interquartile range between the 25th and 75th percentiles. The dividing line within each box
indicates the median value. The whiskers extend to the highest and lowest data points within 1.5
times the range between the upper and lower quartiles. Outliers are depicted as blue dots. The
red line depicts the mean of the effect within the data. The data is winsorized at 1% level.
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Figure 3.3: Box plot of estimates across individual studies - second
part

Note: This figure shows the second part of a box plot, where the reported estimates are grouped
at the study level. Fifty-five remaining studies from the dataset are displayed in alphabetically
ascending order. The red line represents the average effect across the literature. Each box’s length
represents the interquartile range between the 25th and 75th percentiles. The dividing line within
each box indicates the median value. The whiskers extend to the highest and lowest data points
within 1.5 times the range between the upper and lower quartiles. Outliers are depicted as blue
dots. The red line depicts the mean of the effect within the data. The data is winsorized at 1%
level.



Chapter 4

Publication bias

An investment in knowledge pays the best interest.

— Benjamin Franklin

It is widely acknowledged that attending school brings numerous benefits
for one’s future. To claim the opposite would simply appear foolish, consider-
ing the vast quantities of existing literature that explore the positive impact of
schooling (Oreopoulos & Petronijevic 2013; Ritchie & Tucker-Drob 2018; Heck-
man et al. 2010; Psacharopoulos & Patrinos 2004). However, what happens if
a researcher conducts an experiment, and the results suggest that education
hurts the prospects of the subjects that took part? Such an experiment will
most likely be viewed skeptically, if not frowned upon. The initial response of
the publishers presented with such results might, in most cases, go more along
the lines of "Perhaps there is something wrong with your setup?" rather than
"Heureka, what a discovery!" In expectation of such a response and considering
the time and often money invested into the experiment, the researcher is posed
with a tough decision - keep the results as is, or sacrifice legitimacy in return
for better publication prospects?

The issue described above is commonly referred to as publication bias and
is exactly what this part of the paper explores. Among the many forms this
malpractice can take, perhaps two are the most prominent. Firstly, studies can
remain unpublished due to the discrepancy between their results and the exist-
ing knowledge, also known as the file drawer problem (Stanley 2005). Secondly,
the results within those studies may be modified to gain higher order of statis-
tical significance; this can be done by modifying the standard error or even the
effect itself - a form of malpractice sometimes referred to as p-hacking (Sim-
mons et al. 2011). Luckily, this manipulation can be detected within the data
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using various statistical tests, given the unnatural patterns that the p-value
distribution tends to exhibit in case such practices are employed.

Regarding publication bias in the literature on returns to education, five of
the ten existing meta-analyses address the issue, as mentioned in Chapter 2.
Out of these five studies, three detect the presence of publication bias, while
two do not. These conflicting results leave a lot to be desired. For this, I find
it crucial to shed more light on the publication bias issue and hope to bring
further vital evidence.

In the rest of this chapter, I will first graphically explore the relationship
between the effect and the standard effect using a simple visual test. Next, I will
conduct multiple linear and non-linear tests to determine whether a quantifiable
link exists between the two variables. I will also employ methods that do not
assume any prior form of the relationship and test for structural breaks in the
distribution of t-statistics in the data. Lastly, I will bring three completely
new methods into the picture. These should help me detect p-hacking in the
data and link the results together across multiple models with means of model
averaging.

4.1 Funnel Plot

I first test for publication bias using the funnel plot (Egger et al. 1997; Stanley
2005). The genius of the method lies in its simplicity, where the main effect
is plotted on the x-axis against a measure of precision on the y-axis. Usually
(and in this case, too), the precision is calculated simply as the inverse of the
standard error. Although Stanley (2005) suggests that alternatives can be used,
such as the square root of the degrees of freedom, I opt for the standard error.
After the plot is constructed, the most precise estimates should be clustered
around the true effect mean, assuming that the data contains no publication
bias, systematic heterogeneity, or small-sample effects. As precision decreases,
the estimates get more scattered, creating an inverted funnel shape. In this
shape, gaps or holes hint that data tampering exists within the literature.

As mentioned above, I construct the funnel plot using the inverted standard
error as the measure for precision because all estimates in the dataset have their
standard error reported (this was one of the conditions during data collection,
as described in Chapter 3). Apart from a funnel plot with all collected data
points, I also present a figure that displays only the medians of the effect for
all 74 studies. These two graphs appear in the sub-figures of Figure 4.1.
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Figure 4.1: The funnel plot shows no immediately suspicious patterns

(a) All observations (b) Study medians

Note: This figure displays two funnel plots as per Egger et al. (1997), where the percentage
returns to an additional year of schooling are plotted on the x-axis against precision on the y-
axis, measured as 1/SE (Standard Error). Plot (a) shows the funnel plot for all observations
within the data (1754 data points), while plot (b) shows only the medians of each study (115
data points). The red line marks the mean of these data points. In case of no publication
bias, these funnel plots should be symmetrically centered around the true mean.

No apparent asymmetry nor holes appear at first glance in the plot with
all observations. The less telling plot with study medians exhibits a little more
"emptiness" at places, but we can take this simply as a cause of the lower
observation count. The crucial takeaway from the latter plot is the lack of
suspicious outliers in either direction. Despite this relative consistency, both
graphs are perhaps a little more dispersed for higher precision values than the
ideal shape might have it. In any case, this is far from enough evidence to
claim the presence of publication bias and, contrarily, a hint that the data may
be relatively normal.

4.2 Funnel Asymmetry Tests

The funnel plot itself, albeit a quick and easy way of detecting obvious publica-
tion bias, is still a less precise method that relies on eye-balling and subjective
interpretation, both hardly rigorous ways of conducting research. To establish
the results quantitatively and more robustly, I turn first to the Funnel Asym-
metry Tests - Precision Effect Testing (FAT-PET) (Egger et al. 1997; Stanley
2005; 2008).

These techniques test for the funnel plot asymmetry using a simple equation
that regresses the effect on its standard error to uncover any correlation between
the two. If such a correlation exists, it can be interpreted as a systematic



4. Publication bias 28

relationship between the effect and its standard error, indicating publication
bias. Algebraically, the relationship can be written as:

Sij = β0 + β1 ∗ (SES)ij + uij, (4.1)

where S represents the returns to schooling effect for the i-th observation
of the j-th study in the dataset, and SES corresponds to the effect’s standard
error. The slope coefficient, β1, then measures the publication bias in the
data, while the intercept coefficient, β0, captures the "true" effect of returns
to schooling corrected for publication bias. uij stands for the error regression
term. In the tables below, I will refer to the slope coefficient with the label
Publication bias, while the intercept will be labeled as Effect beyond bias.

If no publication bias is present in the data, the slope coefficient will be
either 0 or close to it. Conversely, higher absolute values would indicate the op-
posite correlation between the effect and its standard error, thereby suggesting
publication bias is present in the data. This is motivated by the assumption
that both the effect and its standard error should be, statistically speaking,
drawn from an independent, statistically symmetrical distribution. However,
practically speaking, this is rarely the case.

The results of the funnel asymmetry tests can be viewed in Table 4.1.
Firstly, I include a simple OLS model, followed by two models accounting for
unobserved heterogeneity in the form of Fixed effect and Random effect esti-
mators. Lastly, I introduce two models that weigh the equation, first by the
inverse of the number of observations reported per study and second by preci-
sion. The motivation behind the last two models is to account for unobserved
heterogeneity and heteroskedasticity, respectively. For robustness, I cluster all
standard errors at the study level, and append wild bootstrap confidence in-
tervals where possible. These I calculate using an iteration sample of 100 for
each method.

Looking at concrete results, four out of five of these methods find a sta-
tistically significant presence of publication bias, and all claim the underlying
effect lies within the range of 6 and 7 percent. This indicates that the under-
lying effect might be slightly lower than the simple estimates’ average, approx-
imately by one percentage point. Furthermore, the lowest predicted value can
be associated with the study-size weighted model (∼6.3), suggesting perhaps
that studies of larger size drive the effect upwards. However, it is essential to
note that this difference is relatively small compared to the other estimates.
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Table 4.1: Linear tests for publication bias

OLS Study Precision

Publication Bias 0.832** 1.169*** 0.262
SE (0.097) (0.121) (0.425)
Bootstrap CI [0.624, 1.035] [0.92, 1.405] [-0.833, 1.091]

Effect Beyond Bias 6.408*** 6.294*** 6.54***
SE (0.118) (0.153) (0.168)
Bootstrap CI [6.164, 6.639] [6.04, 6.645] [6.189, 6.918]

Total observations 1,754 1,754 1,754

FE BE RE

Publication Bias 0.746*** 0.752*** 0.747***
SE (0.06) (0.244) (0.058)
Bootstrap CI [0.514, 0.995]

Effect Beyond Bias 6.517*** 6.741*** 6.708***
SE (0.107) (0.418) (0.294)
Bootstrap CI [6.398, 6.965]

Total observations 1,754 1,754 1,754
Note: The table displays the results obtained from estimating Equation 4.1 SE = Standard
Error, CI = Confidence Interval, OLS = Ordinary Least Squares. FE = Fixed Effects.
BE = Between Effects. RE = Random Effects. Precision = Estimates are weighted by the
inverse standard error. Study = Estimates are weighted by the inverse number of observations
reported per study. Standard errors, clustered at the study level, are included in parentheses.
Wild bootstrap confidence intervals at 95% confidence level, bootstrapped over 100 iterations,
are reported in brackets. ***p<0.01, **p<0.05, *p<0.1

The discrepancy between the study-size weighted model and the fixed-effects
model, the latter of which predicts the highest rate of returns to education at
6.7 percent, is less than half a percentage point. All of these results also pose
a rather high level of statistical significance, save for the precision-weighted
model. Apart from this model, too, the wild confidence intervals align with the
study-level clustered ones. The precision-weighted model’s publication bias co-
efficient casts a shadow of suspicion on the influence of highly precise studies.
Given the wide confidence interval, it appears unfeasible to claim that an un-
expected effect is at place, but rather that there is a lack thereof. Perhaps
further tests may help shed more light on the issue.

4.3 Non-linear Tests

The relationship between the effect and its standard error, as described in
Equation 4.1, is assumed to be linear in the funnel asymmetry tests. However,
it is crucial to acknowledge that this assumption does not always hold. In cases
where the relationship behaves less straightforwardly, the FAT-PET tend to un-
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derestimate the underlying effect if it differs from zero (Stanley & Doucouliagos
2014). In the context of my data, this concern may be valid since most of the
data points are positive and occasionally even reach double digits. To address
potential non-linear forms of the relationship that may appear in the data, I
present six techniques that relax the linearity assumption.

The first is the Weighted Average of Adequately Powered (WAAP), intro-
duced by Ioannidis et al. (2017). Their proposition involves the application of
unrestricted Weighted Least Squares (WLS) only on observations of adequately
powered studies. "Power" here refers to a study’s ability to detect whether an
effect if it is truly present in the data. The more power a study has, the bigger
its reliability. In technical terms, the power is calculated using the statistical
significance of estimates and then compared to their standard errors. As per
the original paper, I kept only the estimates of studies that display power over
80%. Strikingly, 1469 out of the 1754 estimates in my dataset get identified as
adequately powered. Using these estimates, WAAP then proposes an estimate
of 6.9% which is slightly higher than any of the linear models presented in
Table 4.1.

The second approach, proposed by Stanley et al. (2010), entails discarding
90% of data and keeping only the top 10 percent with the highest precision.
This somewhat paradoxical approach stems from the idea that most researchers
use statistical significance as the primary benchmark for deciding whether to
publish the estimate. Stanley et al. (2010) show that if most of the less precise
estimates are discarded, the publication bias within the data sample drops
considerably. In my data, 10% of estimates correspond to 176 observations.
The Top10 model yields a modest result of 6.4%.

Furukawa (2019) chooses a similar tactic by selecting a specific number
of the most precise estimates. The cutoff is determined by minimizing mean
square error; this aims at striking a balance between variance/efficiency and
bias. The selected points from what is referred to as "stem" are those with the
lowest mean square error. The author suggests using a representative sample
for the calculation, rather than a full data sample. Arbitrarily, I chose study
medians to generate this subsample, which yielded a total of 115 data points.
You may find a visual representation of this method in Figure 4.2. The rate of
returns to education suggested by this approach is at around 6.7%, very much
in line with the other regression-based results obtained thus far.

Further, I estimate the Hierarchical Bayes model by Allenby & Rossi (2006).
The procedure employs Bayesian statistics to leverage variability within indi-
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Figure 4.2: Stem-based method

Note: This figure displays a non-linear estimation
of the true effect (Furukawa 2019). The main ef-
fect, labeled Coefficient β, is plotted on the x-axis
against precision, calculated as log(SE) (Standard
Error). The yellow diamond and the whiskers of
the same color denote the 95% confidence interval
of the stem-based estimate of the effect. The dark
grey line indicates the predicted estimates through-
out various levels of data, while the purple diamond
shows the minimal precision value above which lies
the stem. The blue circles then represent the indi-
vidual effect estimates. Median of each study was
the measure chosen as the representative sample
of observations for the input data, resulting in 115
total data points.

vidual studies to determine the weights of individual observations aggregated
at the study level. The model parameters get treated as random variables in-
stead of fixed numbers, allowing for variability at multiple levels within the
dataset. As such, different units can have comparable sharing strength, allow-
ing for more robust estimates. The hierarchical part stems from the fact that
priors are specified using another model (called hyperprior) instead of a direct
specification, as is usually done in Bayesian modeling. This complex multi-level
modeling framework yields an estimate of 6.8% in my case. Additionally, the
analysis suggests the presence of publication bias at a significance level of 1%.

The next test is the Selection model proposed by Andrews & Kasy (2019).
The authors argue that the publication probability for estimates remains con-
stant at similar levels of statistical significance, a concept called "conditional

Table 4.2: Nonlinear tests for publication bias

WAAP Top10 Stem Hier AK Kink

Publication Bias 0.504*** 2.764*** 0.262
SE (0.165) (0.112) (0.39)

Effect Beyond Bias 6.9*** 6.439*** 6.783*** 6.801*** 6.548*** 6.54***
SE (0.092) (0.146) (1.055) (0.269) (0.091) (0.054)

Total Observations 1,754 1,754 115 1,754 1,754 1,754
Model observations 1,469 176
Note: The table reports estimates of the effect beyond bias using six non-linear methods and estimates
of the publication bias obtained using two of these methods. WAAP = Weighted Average of the
Adequately Powered (Ioannidis et al. 2017). Top10 = Top10 method by Stanley et al. (2010). Stem =
the stem-based method by Furukawa (2019) where P represents the probability of results insignificant
at 5% being published relative to the probability of the significant ones at the same level. Hier =
Hierarchical Bayes model (Allenby & Rossi 2006). AK = Andrews & Kasy (2019)’s Selection model.
Kink = Endogenous kink model by Bom & Rachinger (2019). SE = Standard Error. Standard errors,
clustered at the study level, are included in parentheses. ***p<0.01, **p<0.05, *p<0.1
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publication probability." Once a certain statistical significance threshold is
crossed, the publication probability changes. Andrews & Kasy (2019) then
demonstrate how this probability can be calculated non-parametrically, and
utilizing the inverse of this probability as new weights, they obtain a non-biased
distribution of the estimates. Using a t-distribution at the 5% significance level
(cutoffs for p(.) set to 1.96), I obtain the result of around 6.5%. The method
also proposes that estimates at the 5% significance level are more likely to be
published than insignificant ones (P = 2.7).

As the last of the non-linear techniques testing for publication bias, I add the
Endogenous Kink (EK) model introduced by Bom & Rachinger (2019). Using
the argument that the publication bias is usually absent for sufficiently large
studies, the EK model finds a cutoff value below which publication bias should
not appear. Bom & Rachinger (2019) then fit a piecewise linear regression with
a kink at this cutoff point, allowing non-linearity in the model. An advantage
of this approach is that this method reduces to a simple linear model as the
effect approaches zero, where said linear methods perform well. As such, the
EK approach should provide more robust results than its linear counterpart.
In my case, the suggested value of the main effect is 6.54%, which falls right
into the average of the rest of the (both linear and non-linear) results. The
model also provides a non-significant estimate of the presence of publication
bias. This marks the last of non-linear methods; all of the results obtained
from these estimations can be found in Table 4.2.

Every single one of the six models propose a statistically significant effect
beyond bias within the 6 to 7 percent range. These results align with the linear
approach and confirm the behavior observed thus far. The Hierarchical Bayes
indicates a strong presence of publication bias, while the Endogenous Kink
method result is insignificant. Finally, the Selection model proposes that results
at the 5% significance level have a considerably higher chance of publication
than insignificant ones.

4.4 Tests Without the Exogeneity Assumption

Until now, the publication bias tests have been based on the assumption that
the correlation between the effect and the standard error indicates publication
bias. However, this introduces, by definition, endogeneity into the equation.
To see how this issue can be treated, it is essential to understand how it arises
in the first place.
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The correlation in the data, and thus endogeneity, can come from several
sources. First, it could be a simple measurement error or wrong calculation
procedure that introduces correlation into the data; the standard error, too, is
an estimate, after all. Second - this is what the publication bias gets associ-
ated with perhaps the most - the endogeneity may arise from a conscious and
deliberate tampering of the standard error to improve significance. And lastly,
any unobserved heterogeneity may also introduce correlation, this time in the
form of inherent methodological differences that may systematically influence
the results. To display the estimate-error relationship clean of endogeneity, I
utilize two techniques - IV regression and p-uniform* (van Aert & van Assen
2021).

First, the IV regression, for which we need an instrument. The criteria for
finding a valid one are relatively simple - it should be a metric that somehow
captures the behavior of (correlates with) standard error while having no rela-
tionship to the estimate. Using such metric, it should be possible to derive the
publication bias coefficient (β1 from Equation 4.1) not poisoned by endogeneity.
Several instruments appear valid here, including 1√

nobs
, 1

nobs
, 1

n2
obs

, and log(nobs),
where nobs stands for the number of observations associated with each esti-
mate. The number of observations variable holds several inherent properties
that make all these instruments valid options. Firstly, the size of an exper-
iment, or the number of subjects in the study, does not directly change the
population-wide effect. If such a true effect exists, it should be independent
of how many subjects we include in the analysis. Secondly, the standard er-
ror decreases as the sample size increases. This is a fundamental principle of
statistics. In other words, the more subjects there are in the study, the bigger
the confidence that the findings based on that sample are close to the results
had the whole population been used for calculation.

Still, which of these four proposed instruments is the best? To find out, I
wrote a helper function in R that automatically detects the best-performing in-
struments based on the results of several specification tests. These are, namely,
the Underidentification test, the Weak identification test, the Stock-Yogo weak
ID test, and the Sargan statistic.1 I omit the numeric results of these tests
as they are not crucial for interpreting the results, and only mention that

1√
nobs

performed the best out of the four instruments, with Anderson-Rubin
F-statistic for the first stage of nearly 30. Using this strong instrument, the IV

1All of these specification tests are in-built into the ivreg function of the ivreg R package,
which I used to estimate this method. Source here.

https://cran.r-project.org/package=ivreg
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Table 4.3: Relaxing the exogeneity assumption

IV p-uniform*

Publication Bias 1.295*** L = 9.439
SE (0.281) (p = 0.002)

Effect Beyond Bias 5.813*** 9.52***
SE (0.354) (3.291)

Observations 1,754 1,754
F-test 29.153
Note: IV = Instrumental Variable Regression; one over
the square root of the number of studies is used as
an instrument for the standard error. Standard er-
rors, reported in parentheses, are also clustered at the
study level. p-uniform* = method proposed by van
Aert & van Assen (2021); L represents the publication
bias test t-statistic; the corresponding p-value can be
found in parentheses. F-test = Anderson-Rubin statis-
tic (Anderson & Rubin 1949), SE = Standard Error.
***p<0.01, **p<0.05, *p<0.1

regression gives 6.1% as an estimate of returns to education, which coincides
with the estimates computed up to this point.

As another way of estimating the effect-error relationship without prior as-
sumptions about its form, I turn to the p-uniform* method. This approach,
proposed by van Aert & van Assen (2021), builds on the p-uniform method
(Van Aert et al. 2016). The core idea stems from the principle that the p-values
in the data should be uniformly distributed at the true effect size. This line
of thinking requires no assumptions about the form nor correlation of the rela-
tionship and helps search for publication bias in a novel way. The p-uniform*
method, then, improves the p-uniform approach in efficiency, precision, and
between-study variance detection. In my data, this technique estimates the
effect to be 9.52% and indicates the presence of publication bias, both at high
levels of significance. Results of both methods can be found in table Table 4.3.

While the instrumental variable approach proposes rather sensible results,
the p-uniform* is an outlier among previous estimates. This is perhaps more
perplexing given that, were between-study to cause the effect’s overinflation, p-
uniform* is a method that should account for this. Among various possibilities,
these results may stem from a calculation error or, perchance, a hidden trend
or anomaly within the data, which is hard to detect. Suffice it to say I dug
into the calculation multiple times to validate that all specifications and other
inputs were sensible; still, I could not find anything out of the ordinary. As
such, I present the results with a grain of salt but believe them to be fully valid.
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4.5 Caliper Tests

Yet another method I will use to search for deviations from normality in the
reported literature results are Caliper tests, developed by Gerber et al. (2008).
Their proposed approach does not assume any prior relationship between the
effect and the standard effect, similar to the tests from Section 4.4. Here, t-
statistics are subjected to scrutiny, and the authors argue that upon looking at
the immediate vicinity of a conventional significance level, no structural breaks
in the distribution of t-statistic should occur. In other words, the t-statistic
distribution should, in theory, behave relatively normally, and any large jumps
may indicate the presence of publication bias.

Going into more detail, Gerber et al. (2008) suggest observing the number
of t-statistics around significant t-statistic thresholds, such as 1.69 or 1.96, in
intervals of varying widths, called Caliper widths. If, within any half of that
interval, there is a significant imbalance in the number of t-statistics compared
to the other half, it indicates a structural break around the observed thresh-
old. In my case, I will explore how the t-statistics included from all studies
of the data set behave around thresholds 1.645, 1.96, and 2.58, with Caliper
widths of 0.05, 0.1, and 0.15. The choice of the latter is arbitrary, while the
choice of the former stems from the fact that the three values correspond to
the 1%, 5%, and 10% significance levels. In academia, it is a common practice
to append asterisks to results when presenting estimates together with their
standard errors and hence, t-statistics. Unfortunately, this practice inadver-
tently emphasizes results marked with these asterisks (Simmons et al. 2011).
As such, researchers may be tempted to include these asterisks in their tables
at the cost of honesty, leading them to tamper with their figures (most notably
standard errors). Consequently, publication bias may arise.

In Figure 4.3, you may find the distribution of t-statistics in my data,
while Table 4.4 reports the results of Caliper tests described in the previous
paragraphs.

Two quick notes about the results are in order. First, there are very few
(only 34 out of the 1754 observations) estimates with negative t-statistics.
Looking at the distribution from a purely statistical standpoint, it appears
peculiar that the other 1730 are all associated with a positive t-statistic. From
a practical perspective, however, this makes a lot of sense if we presume that
the true effect indeed lies around 7%. This assumption appears quite feasible,
given the consistency of the tests carried out in the previous sections.
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Table 4.4: Caliper tests at values 1.645, 1.96 and 2.58

Threshold 1.645 Threshold 1.96 Threshold 2.58

Caliper width 0.05 0.517*** 0.243*** 0.152***
SE (0.084) (0.063) (0.046)
Observations 7 17 18

Caliper width 0.1 0.467*** 0.23*** 0.183***
SE (0.069) (0.051) (0.037)
Observations 13 25 28

Caliper width 0.15 0.483*** 0.269*** 0.186***
SE (0.042) (0.041) (0.028)
Observations 26 37 45

Note: The table shows the results of three sets of Caliper tests by Gerber et al. (2008) These sets
are carried out around t-statistic thresholds of 1.645, 1.96 and 2.58, which correspond to the 1%,
5%, and 10% t-statistic significance levels. Caliper width denotes the width of the interval around
the t-statistic, e.g., Caliper width 0.05 for threshold 1.96 means t ∈< 1.91; 2.01 >. A test statistic
of 0.243 means that roughly 74% of estimates appear above the threshold and roughly 26% below
it. SE = Standard Error. Observations = Total number of observations in the interval around the
threshold. Standard errors, clustered at the study level, are included in parentheses.

The second note should be addressed to the results of the Caliper tests.
The jumps around thresholds could be described as striking, considerable, and
mild, talking about the 1%, 5%, and 10% thresholds, respectively. Speaking
more bluntly, the words high, medium, and low could be used. The t-statistics
just above the thresholds of 1.645 and 1.96 are being over-reported in the data
sample to some degree. So far, we have obtained somewhat skeptical views on

Figure 4.3: The distribution of t-statistics is heavily skewed

(a) All t-statistics (b) Close up around zero

Note: The figure depicts the distribution of t-statistics associated with estimates within the
dataset. Plot (a) shows all t-statistics in the dataset, while plot (b) focuses on a close up view
around 0. The two red lines mark the critical significance values -1.96 and 1.96 (from left
to right) at the 95% confidence level. The dotted orange line represents the mean t-statistic
within the data. Outliers are hidden for clarity of presentation, but we included them in the
calculations.
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publication bias presence in the dataset, but perhaps these thresholds could
represent initial tangible indications of reporting misbehavior.

4.6 Novel Tests for Detecting Publication Bias

As the last chapter of my hunt for publication bias, I present three new methods
that further explore the issue of publication bias. The first two methods deal
with p-hacking and have been developed very recently. They are, in order,
the Elliott tests by Elliott et al. (2022) and the Meta-Analysis Instrumental
Variable Estimator (MAIVE) estimator by Irsova et al. (2023). While the former
paper analyzes the distribution of p-values across different studies, the latter
focuses on the issue of spurious regression and how p-hacking precision can
produce biased results. As the last new method, I add Robust Bayesian Model
Averaging (RoBMA) (Maier et al. 2022), a technique that can produce results
of unparalleled quality and precision (Bartoš et al. 2023).

First, let us talk about the Elliott tests. Elliott et al. (2022) propose an
approach where no p-hacking in the literature is considered as a null, and using
a set of general assumptions, they test this hypothesis against an alternative of
p-hacking in the literature. The p-curves for various subsets of the true effects
should be non-increasing and continuous, providing p-hacking is absent. For
p-values based on t-tests, the authors then devise a new set of assumptions

Table 4.5: P-hacking tests

Panel A: P-hacking tests by Elliott et al. (2022)
Test for

non-increasingness
Test for monotonicity

and bounds

p-value 0.819 0.871
Observations (p ≤ 0.1) 1,610 1,610
Total observations 1,754 1,754

Panel B: MAIVE estimator (Irsova et al. 2023)
MAIVE coefficient

Coefficient 5.736***
Standard Error (0.460)
Observations 1,754
F-test 12.491
Note: This table shows the results of two techniques that detect p-hacking. Panel A shows
the results of p-hacking tests by Elliott et al. (2022), namely the histogram-based test for non-
increasingness and the histogram-based test for monotonicity and bounds. Panel B reports the
results of the spurious precision robust approach using the MAIVE estimator by Irsova et al.
(2023). F-test = Test statistic of the IV first step F-test. Cluster-robust standard errors are used
in the MAIVE estimation. These are reported in parentheses. ***p<0.01, **p<0.05, *p<0.1
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under which the lack of p-hacking should lead to a monotonous form of the
p-curve. The advantage of the method lies in the fact that no threshold for the
t-statistic needs to be specified; the technique only focuses on the p-curves. In
my case, I present the results of the two tests I vaguely described - the test for
non-increasingness of the p-curve and the test for monotonicity and bounds.
With sufficiently low p-values, we could reject the null hypothesis of no p-
hacking, but that is not the case in my dataset. Both tests yield p-values over
0.8, so there is insufficient evidence to reject the null in favor of the alternative
(p-hacking).

Next, the MAIVE estimator developed by Irsova et al. (2023). The authors
argue that precision, one of the critical metrics in meta-analytic research, is
prone to p-hacking. In their paper, Irsova et al. (2023) raise several points
of concern regarding the metric. First, the author must calculate the metric
using reported standard errors; this makes the calculation easily ’p-hackable.’
Second, even small amounts of p-hacking can profoundly impact the results.
Precision is often used as a weighting metric in methods such as linear tests,
plus it holds a vital role as one of the main axes of the funnel plot. As a remedy
for this, Irsova et al. (2023) propose a new estimator utilizing the instrumental
variable approach (MAIVE), where the reported variance is instrumented using
the inverse sample size. This approach should help mitigate the impact of
spurious precision in the data. This estimator suggests around 5.7% percent
returns to education, a figure lower than any of the tests conducted thus far.
The F-statistic of around 12.5 then shows the inverse sample size to be a good
instrument for reported variance. The results of both p-hacking tests are shown
in Table 4.5.

The last of the procedures exploring publication bias is the RoBMA by Maier
et al. (2022). The idea lies in estimating multiple meta-analytic models and
combining them using Bayesian model averaging. Each model is assigned a
different weight, and individual components, such as the presence or absence
of an effect, are tested using Bayes factors. In Table 4.6, I present two panels:
the first panel displays the model-averaged estimates of the effect, while the
second panel summarizes the individual components - effect, heterogeneity, and
publication bias. The effect estimates propose a mildly confident claim that
the effect lies just above 7% percent, which is slightly more positive than the
estimates of both linear and non-linear models. Among the four models used
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Table 4.6: Robust Bayesian Model Averaging

Panel A: Model-averaged estimates
Mean Median 0.025 0.975

Coefficient 7.123** 7.122** 6.946** 7.299**
Standard Error (3.506) (3.504) (3.373) (3.645)
Observations 1,754 1,754 1,754 1,754

Panel B: Summary of individual components
Models Prior Prob. Post. Prob. Inclusion BF

Effect 2/4 0.500 1.000 ∞
Heterogeneity 2/4 0.500 1.000 ∞
Bias 0/4 0.500 0.000 0.000
Note: This table shows the Robust Bayesian Model Averaging method by Maier et al. (2022).
Panel A contains four descriptive statics of the estimates obtained from model-averaging -
mean, median, 2.5th quantile, and 97.5th quantile. Standard errors are reported in parenthe-
ses. In Panel B, the summary of three individual components is displayed - effect, heterogene-
ity, and publication bias. Models = Probability of each model assuming a given individual
component. Prior Prob. = Prior Probability. Post. Prob. = Posterior Probability. Inclusion
BF = Inclusion Bayes Factor. ***p<0.01, **p<0.05, *p<0.1

to estimate individual components2, the probability of a model assuming the
presence of effect or heterogeneity is 2/4 (50%), while for publication bias it is
0/4 (0%).

To summarize, all models agree that schooling positively affects log wage
(rate of returns to an additional year of schooling of 5.7-9.5%), and most sug-
gest it lies somewhere between 6 and 7 percent. The vast majority of results
associated with these techniques are also highly statistically significant. As for
publication bias, the story is a bit more tangled. Some linear and non-linear
methods argue for its presence, while others are against it. Even when relaxing
the assumption of exogeneity of the standard error, the results appear mixed.
Novel methods almost uniformly suggest the lack of publication bias, apart
from MAIVE, which predicts lower returns to education when instrumenting for
study variance. Lastly, the Caliper tests show that sizeable jumps exist in the
distribution of t-statistics around 1% and 5% significance levels. Perhaps too
many cooks spoil the broth, so a single interpretation appears unfeasible, and
I would suggest considering the results of the presented methods individually.

2I used the base specification of the RoBMA method. For the list of models and other
parameters used, see the source code of the method, available here.

https://github.com/FBartos/RoBMA/


Chapter 5

Heterogeneity

Thus far, my analysis has focused primarily on the relationship between the
true effect and its standard error. Several methods from the previous chapter,
such as the IV regression, p-uniform*, or RoBMA, provided us with a quick
glimpse into the topic of systematic heterogeneity. However, none delivered a
more complex overview of the data’s nature. This chapter aims to do precisely
that - delve deeper into the study design and search for systematic patterns
that may reveal more about the behavior of the effect. For this purpose, I will
utilize two methods, Bayesian Model Averaging (BMA) and Frequentist Model
Averaging (FMA). These should help me identify the influence of different
variables on the effect behavior and quantitatively capture the magnitude of
this influence. Before constructing any models, however, it is crucial to explain
and explore the dataset structure first.

5.1 Variables

I constructed the dataset aiming to comprehensively capture the most impor-
tant categories that define the context of the collected data and the studies
they come from. As such, I identified six categories, which I named as follows:
the actual estimates along with their descriptive statistics, estimate charac-
teristics, data characteristics, spatial/structural variation, estimation method,
and publication characteristics. Across these six categories, I collected 37 dis-
tinct variable groups. Note that a group here could mean either a standalone
variable (i.e., data year) or a group of variables (i.e., low/middle/high-income
country). In the latter case, the variable groups consist either of dummies, or
ratios, such as the ratio of subjects living in an urban area. The list of all quan-
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tifiable, relevant variables can be found in Table 5.1. To keep visual clarity,
I excluded variables that could not be easily quantified, such as the country
where the study was conducted, or variables irrelevant to the effect behavior
explanation, such as observation id.

Table 5.1: Definition and summary statistics of regression variables

Variable Description Mean SD

Effect The effect of an additional year of schooling on logarithmic
wage.

7.476 4.439

Standard Error The standard error of the main effect. 1.284 1.693

Estimate characteristics
Estimate: City =1 if the estimates within the study can be aggregated on

a city level.
0.119 0.323

Estimate: Sub-region =1 if the estimates within the study can be aggregated on
a subregional level.

0.099 0.299

Estimate: Region =1 if the estimates within the study can be aggregated on
a regional level.

0.309 0.462

Estimate: Country =1 if the estimates within the study can be aggregated on
a country level.

0.395 0.489

Estimate: Continent =1 if the estimates within the study can not be aggregated
on a country level or smaller (reference category).

0.079 0.269

Data characteristics
Study Size The logarithm of the number of estimates collected from the

study.
2.942 0.637

Yrs. of Schooling The average number of years of schooling attained by the
subjects.

11.116 3.461

Yrs. of Experience The average number of years of experience attained by the
subjects.

18.351 7.450

Education: Years =1 if authors report schooling in years. 0.634 0.482
Education: Levels =1 if the authors report schooling in levels (e.g., attained

college degree) (reference category).
0.366 0.482

Wage: Log Hourly =1 if the dependent variable in the regression is log hourly
wage.

0.531 0.499

Wage: Log Daily =1 if the dependent variable in the regression is log daily or
weekly wage.

0.095 0.293

Wage: Log Monthly =1 if the dependent variable in the regression is log monthly
wage.

0.211 0.408

Wage: Annual Earnings =1 if the dependent variable in the regression is log of mean
annual earnings (reference category).

0.162 0.369

Micro Data =1 if the study uses micro data. 0.177 0.382
Survey Data =1 if the study uses data from a survey. 0.534 0.499
National Register Data =1 if the study uses data from a national register (reference

category).
0.289 0.453

Cross-sectional Data =1 if the study uses cross-sectional data. 0.361 0.481
Panel Data =1 if the study uses panel data (reference category). 0.639 0.481
Data Year The logarithm of the average year of the study’s time span 7.599 0.006

Spatial/structural variation
No Education The percentage of subjects that attained no education (ref-

erence category).
0.126 0.148

Primary Education The percentage of subjects that attained only primary edu-
cation.

0.177 0.151

Secondary Education The percentage of subjects that attained only secondary ed-
ucation.

0.388 0.196

Higher Education The percentage of subjects that attained any form of higher
education.

0.309 0.247

Wage Earners The ratio of wage earners to self-employed subjects in the
study ( = 1 if wage earner, = 0 if self-employed).

0.837 0.205

Self-Employed The ratio of self-employed to wage earners subjects in the
study ( = 1 if self-employed, = 0 if wage earner) (reference
category).

0.163 0.205

Continued on next page
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Table 5.1: Definition and summary statistics of regression variables
(continued)

Variable Description Mean SD

Male The ratio of male to female subjects in the study ( = 1 if
male, = 0 if female).

0.650 0.350

Female The ratio of female to male subjects in the study ( = 1 if
female, = 0 if male) (reference category).

0.350 0.350

Private Sector The ratio of private to public sector workers ( = 1 if private
sector worker, = 0 if public).

0.596 0.163

Public Sector The ratio of public to private sector workers ( = 1 if public
sector worker, = 0 if private) (reference category).

0.404 0.163

Ethnicity: Caucasian The ratio of Caucasian to non-Caucasian subjects in the
study ( = 1 if Caucasian, = 0 if not).

0.227 0.419

Ethnicity: Other The ratio of non-Caucasian to Caucasian subjects in the
study ( = 1 if non-Caucasian, = 0 if Caucasian) (reference
category).

0.773 0.419

Rural The ratio of rural to urban workers ( = 1 if rural worker, =
0 if urban).

0.297 0.191

Urban The ratio of urban to rural workers ( = 1 if urban worker,
= 0 if rural) (reference category).

0.703 0.191

Reg: Advanced Econ. =1 if the study was conducted in a country with advanced
economy. (reference group)

0.498 0.500

High Income Countries =1 if the study was conducted in a high income country
(reference category)

0.507 0.500

Median Expenditure The logarithm of the median expenditure in the country in
a given year.

8.584 1.420

Minimum Wage The logarithm of the minimum wage in the country in a
given year.

5.853 1.536

Academic Freedom Index The academic freedom index reported for the country in a
given year.

0.712 0.266

Estimation method
Method: OLS =1 if the authors use Ordinary least squares (reference cat-

egory).
0.664 0.473

Method: Cohort/FE =1 if the authors use Cohort-type or Fixed-effects estima-
tion.

0.058 0.234

Method: 2SLS =1 if the authors use Two-Stage least squares estimation. 0.095 0.294
Method: Heckman =1 if the authors use Two-step estimation (Heckman and

Polachek, 1974).
0.062 0.240

Method: Probit =1 if the authors use Probit estimation. 0.022 0.147
Method: IV =1 if the authors use Instrumental variables estimation. 0.111 0.314
Ability: Direct =1 if the authors include a direct measure of ability in their

study.
0.135 0.341

Ability: Proxied =1 if the authors use a proxy for ability in their study. 0.204 0.403
Ability: Uncontrolled =1 if the authors acknowledge, but do not control for ability

in any way in their study.
0.425 0.494

Ability: Unmentioned =1 if the authors do not mention ability anywhere in their
study (reference category).

0.223 0.417

Control: Age =1 if the authors control for age in the regression. 0.344 0.475
Control: Age2 =1 if the authors control for age in quadratic form in the

regression.
0.275 0.447

Control: Experience =1 if the authors control for experience in the regression. 0.607 0.489
Control: Experience2 =1 if the authors control for experience in quadratic form

in the regression.
0.512 0.500

Control: Ethnicity =1 if the authors control for ethnicity in the regression. 0.251 0.434
Control: Health =1 if the authors control for health in the regression. 0.135 0.342
Control: Gender =1 if the authors control for gender in the regression. 0.367 0.482
Control: Marriage =1 if the authors control for marriage in the regression. 0.361 0.480
Control: Occupation =1 if the authors control for occupation of the subjects in

the regression.
0.142 0.349

Control: Firm Char. =1 if the authors control for firm characteristics in the re-
gression.

0.149 0.357

Control: Area =1 if the authors control for area type in the regression (e.g.,
urban, rural).

0.418 0.493

Control: Macro Var. =1 if the authors control for macroeconomic variables in the
regression.

0.347 0.476

Continued on next page
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Table 5.1: Definition and summary statistics of regression variables
(continued)

Variable Description Mean SD

Publication characteristics
Impact Factor The logarithm of the Journal Citations Report impact fac-

tor of the study (as of January 2023; = 0 in case of no
publication).

-0.906 1.533

Citations The logarithm of the mean number of Google Scholar cita-
tions received per year since the appearance of the study in
Google Scholar (as of January 2023).

4.029 2.177

Study: Published =1 if the study was published in a journal. 0.764 0.425
Study: Unpublished =1 if the study was not published in a journal (reference

category).
0.236 0.425

Publication Year The logarithm of the number of years between the publica-
tion (or issuing) of this study and the publication year of
the earliest published study in the sample.

3.332 0.339

Note: This table presents the summary statistics and descriptions for various study characteristics
eligible for inclusion in Bayesian Model Averaging. Variables marked as reference categories were
automatically excluded from the procedure, as this would create a dummy variable trap. SD = standard
deviation, OLS = Ordinary Least Squares, FE = Fixed Effects, 2SLS = 2 Stage Least Squares, IV =
Instrumental Variable.

Let us take a closer look at five of the six1 variable categories and try to
understand the reasoning behind my choices of this particular variable setup.

5.1.1 Estimate Characteristics

There are only a handful of variables that I identified as vital as far as effect
characteristics are concerned. Moreover, variables such as the number of ob-
servations, or degrees of freedom, are not telling enough to be included in the
model averaging. As such, the only full-fledged variable group included in this
category is the estimate type, when divided into the size of the region. The
estimates of over 70% of studies in the dataset can be clustered into regional
or country levels. Examples of such studies include Walker & Zhu (2008); Fang
et al. (2012), or Angrist & Krueger (1991). Sporadically (Krafft et al. 2019;
Chanis et al. 2021), the authors focus on the city/sub-region level estimates or
aggregate their results at a level of a continent or a group of countries.

5.1.2 Data Characteristics

Two variables are perhaps the most important in the category of data char-
acteristics - years of schooling and years of experience. These represent the
founding blocks of the Mincer equation and can be linked together using the
age of subjects as described in Equation 2.2. Across all studies in the data, the
average reported number of schooling years equals 11.1, while 18.3 represents

1The statistical properties of the estimate have already been described in Chapter 3.
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the average reported experience of subjects. Given that 781 observations in the
data (roughly 44% of all observations) are not directly reported, the years of
experience variable may be inflated by the calculation. Indeed, upon removing
all observations that had to be manually calculated using Equation 2.2, the
average years of experience in the sample drops to 15.6. Nonetheless, to the
best of my knowledge, there is no other way to circumvent this shortcoming.
Consequently, I use the reported number of 18.3 in further calculations. To see
examples of studies that fail to report years of schooling and/or experience, see
Pischke & von Wachter (2005); Psacharopoulos (1982), while for studies that
report both, see Belzil & Hansen (2002); Girma & Kedir (2005).

Another crucial variable captures how education is reported - years or levels2

In about two-thirds of all studies, years of attained education is used instead of
the highest attained level (primary school, secondary school, etc.). It should be
noted here that in cases a study reported both types, but the results captured
the same outcome, I chose to collect only the number of years and discard the
estimates in levels. This is to avoid collecting duplicate results. Harmon et al.
(2002) is an excellent example of a study that utilizes reporting of schooling
years, while Duraisamy (2002) provides a counterexample.

The last variable worth a mention from this category is the variable denoting
cross-section/panel data. Initially, I coded a short/long run variable under the
estimate characteristics that divided studies according to their run-time into
those of length above and below one year. However, after the collection, I found
that the cross-section/panel variable almost entirely captured this information,
so I kept only this variable in the data. Nearly two-thirds of the collected
experiments work with panel data such as longitudinal surveys (see Harmon
et al. (2003)). On the other hand, one-third of them deal with cross-sectional
data (Lemieux & Card (2001) as an example).

The rest of the variables in this category is self-explanatory. For the com-
plete list, see Table 5.1.

5.1.3 Spatial/Structural Variation

A whole array of variables that capture study variation are all coded under the
category spatial/structural variation. In most cases, this refers to either char-
acteristics of the study subjects or the country in which the study is conducted.
Pointing out a handful of crucial statistics that tie to these variables, we can

2See Section 3.2 for more details about this classification.
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see that most of the data sample consists of wage workers (83.7%), 65% of the
subjects are male, 22.7% come from the Caucasian ethnicity, 70.3% live in the
urban area, about half of them (49.8%) come from a country with an advanced
economy, and their average age is 35.69. To see the rest of the statistics, see
Table 5.1.

Most of the choices regarding the variables themselves should be more or
less straightforward. As such, I would like to focus on the calculation behind
some of these instead. For example, the variables median expenditure and
minimum wage are notably coded on the country-year level, meaning a data
point exists for every unique country-year pair. This is to account for country-
level heterogeneity, as well as inflation. Another variable, the academic freedom
index, is too coded in this way.

Some variables, such as the rural/urban sector, are set up as ratios. For
example, Paweenawat & Vechbanyongratana (2015), report exactly 47.4% of
subjects that live in rural areas, and 57.6% that live in urban ones. This
variable structure allows us to retain more information while behaving as a
simple dummy in case only one of the alternatives is present in the data, such
as when all subjects live in a city. I also employ this ratio-type setup with
multiple categories in the variable that denotes the highest attained education.
Here, the choices are split between primary, secondary, and higher education,
as well as no education. When the authors report only several of these but
not all, such as in the case of Chanis et al. (2021), I set the remaining variable
categories to 0.

A more complex issue arises when more data points are missing, however.
As an example, 32.5% of the 1754 studies do not report whether their subject
pool consists of wage workers or self-employed individuals. 53.4% then omit
the information on area type (urban/rural), and 60.5% fail to specify whether
the subjects work in a private or a public sector. To run the model averaging,
the dataset has to contain no missing points in the employed variables. As
such, I resort to interpolation, whose specifics I explained earlier in Chapter 3.

5.1.4 Estimation Method

Regarding the actual estimation of the Mincer equation, the practices literature
can be explained by three major variable sub-categories. Firstly, the estimation
method used by the studies. Two-thirds of studies in the dataset (66.4%) use
simple OLS for the estimation, while the rest use one of several other methods,
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including the Fixed-effects, Probit model, Instrumental variable regression, or
Two-stage least squares. Several studies, such as De Brauw & Rozelle (2008),
employ a two-step estimation described in Heckman & Polachek (1974).

Secondly, the ability variable, described in Chapter 2, is also coded here. We
can see that 13.5% of studies include ability directly in the regression, 20.4%
use a proxy of some kind, 42.5% do not control for ability but are aware of it,
and 22.3% do not mention ability or ability bias in any way.

Lastly, I add information on whether a study controls for variables such as
age, experience, ethnicity, health, gender, marital status, etc. Usually, such
as in the case of Girma & Kedir (2005) or Harmon et al. (2002), only one of
the two variables of age and experience are included. On the other hand, the
included variable comes very frequently with the squared term, as described
in the original Mincer equation. As for the other controls, there seems to be
no obvious pattern in the studies, and the authors appear to be choosing the
controls arbitrarily based on their study goals, data availability, or personal
preferences.

5.1.5 Publication Characteristics

The last of the variable categories that I chose to employ denotes various pub-
lication characteristics of the included studies. The number of Google Scholar
citations, the year of publication, or the Journal Citations Report impact fac-
tor are among the handful of variables within this category. As described in
Chapter 3, I collected all journal/study data at a single time point, namely in
January 2023. Although it is possible that the status of several of the included
studies changed from then, I still value direct comparability more than keeping
the information up-to-date with the latest changes.

Interestingly, but perhaps not surprisingly, 76.4% of studies within the sam-
ple were published in a journal, and the mean number of citations for a study
comes up to 56.2. This relatively high figure ties directly to the fact that
roughly a third of the dataset consists of studies identified by snowballing - an
activity aimed at targeting the most relevant and well-established relevant pa-
pers on the topic. Understandably, all of these papers have attained publication
status, or their credibility would not be established.

With the variable setup out of the way, we can move on and employ these
variables in exploring the effect behavior in a more detailed way.
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5.2 Model Averaging

With the large number of variables my dataset holds, it is a rather complex
and no doubt challenging task to pick those that could explain the effect be-
havior the best. Indeed, traditional methods such as OLS are prone to over-
specification bias, so simply dumping all collected variables into a single model
does not appear like the best approach. Is there a way, then, where we could
somehow discern the importance of the collected variables without knowing
anything about them a priori? One such technique, called BMA, appears suit-
able for the task and is precisely what the following sections will focus on.

Pioneered over two decades ago in papers such as Hoeting et al. (1999) or
Raftery et al. (1997), the technique provides a balanced approach that consid-
ers a multitude of statistically plausible models and assigns different weights
to them using the Bayes’ theorem and posterior inclusion probabilities. As
explained in Hoeting et al. (1999) and Amini & Parmeter (2011), the process
then highlights the importance of each variable based on these weights. For
the procedures employed in this thesis, it is crucial to understand two metrics
- Posterior Model Probability (PMP) and Posterior Inclusion Probability (PIP).
For each variable, PMP denotes how well each model fits the data. In contrast,
PIP is the sum of posterior model probabilities across the models in which that
variable is included. The higher PIP, the higher the variable’s importance for
explaining the effect’s behavior.

I use a combination of the default Zellner’s g-prior and the dilution prior
for this particular analysis. The choice of the former stems from the fact that
this setup allows for more control over collinearity in the data, an issue that
may arise with the high number of variables. In my case, the number of eligible
individual variables fed into the process once is 52 once reference variables are
removed, making the collinearity treatment seem wise. 3

Crucially, there exists one relationship among these variables that needs to
be explicitly addressed at this point. Assuming that the equation 2.2 holds,
the inclusion of all three variables of that relationship (years of schooling, years
of experience, and age) in the model averaging would create a dummy variable
trap. Removing one of these variables from the model averaging should solve

3Here, an individual variable refers to each sub-group of a dummy variable group or any
other variable that contains multiple categories. For example, the highest achieved education
variable, as explained in Subsection 5.1.3, would account for four individual variables (none,
primary, secondary, and higher).
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this issue; I arbitrarily opt for subject age. As such, 51 variables are now
marked as eligible for inclusion.

To ensure the carried information is unique for every variable, I also check
the variance inflation factors of the included variables. This check revealed
the sound design of the dataset, as all 51 variables, when lumped into a single
model, hold a variance inflation factor no larger than 10. As for other parts
of the setup, the last point of interest lies perhaps in the choice of the sam-
pler, where I choose to use the default Markov Chain Monte Carlo algorithm
(Zeugner & Feldkircher 2015).

Figure 5.1: Bayesian model averaging results

Note: This figure shows the results of the Bayesian model averaging using the uniform g-prior and
dilution prior. The response variable, percentage returns to a year of schooling, is measured on the
horizontal axis as cumulative posterior model probabilities. The explanatory variables are ranked in
descending order on the vertical axis according to their posterior inclusion probability. Purple color
(light in greyscale): the variable is included in the model and has a positive sign. Blue color (dark
in greyscale): the variable is included in the model and has a negative sign. Numerical results of the
estimation can be found in table 5.2. For a detailed explanation of the variables, see table 5.1.
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As an additional robustness check, I also include FMA with Mallow’s criteria
for weights (Hansen 2007) and orthogonalization of the model space as per
Amini & Parmeter (2012). The reasons for this include higher resiliency against
model misspecification or the reduction of model uncertainty. In other words,
FMA provides a good sanity check that the BMA setup is not misspecified or
overly complex.

I first present graphical results in Figure 5.1. Each variable’s contribution
is marked by one of two colors - purple (light in greyscale) means a positive
influence on the effect, while blue (dark in greyscale) represents a negative
influence. The columns in the figure each represent a single regression model,
while the rows display the inclusion of variables in these models. The left-hand
side of the figure shows the best models that best fit the data. The width
of each column then captures the individual model’s PMP. The proportion of
models a variable is included in gives that variable’s PIP. For example, if it is
included in 50% of models, its PIP will be 0.5. Based on the paper by Kass &
Raftery (1995), simple guidelines indicate that PIP values between 0.5 and 0.75
suggest a weak influence on the effect, 0.75-0.9 indicate solid importance of the
variable, values over 0.9 and below 0.99 mean strong influence and values over
0.99 are decisive in telling this variable is essential for explaining the effect’s
behavior. Even glancing into the figure, it is evident that over 15 variables
have a PIP over 0.5 in the averaging process. Looking at the fittest model, 19
variables out of 51 are included.

Next, I compare the results for both BMA and FMA, this time quantitatively
using numeric coefficients associated with the variables. These are displayed
in Table 5.2, where variables with PIP over 0.5 in the BMA have this statistic
highlighted. There are 20 variables with PIP over 0.5 in total. When it comes
to FMA, p-values of many variables are below 0.001, confirming that the models
could identify a large amount of highly important effect drivers.

Looking at these in more detail, the publication bias stands out immedi-
ately. Despite the mixed or otherwise lukewarm claims about its presence in
Chapter 4, both presented models strongly suggest that publication bias ap-
pears in the data. The standard error coefficients are 0.375 and 0.516 for both
respective models; both these coefficients are statistically significant. The PIP

of 1.000 associated with the coefficient in the BMA model is the highest possible,
and the p-value for the FMA model is also below 0.01.

Let us now explore those variables that negatively influence the effect.
Firstly, regional and sub-regional data appear to diminish the effect’s mag-
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nitude, as does reporting the wage in daily units or having a male or Caucasian
subject group. Furthermore, published studies are likewise associated with
lower effect in both models, although the FMA p-value tied to this claim does
not hold enough significance. While the linear age coefficient pulls the effect
heavily in the negative direction, the quadratic coefficient works in the oppo-
site direction, ultimately contributing positively to the overall effect. Perhaps
the most interesting out of the negative drivers, however, is the direct ability
variable. Out of the other ability variables, it is associated with the highest PIP

and has the biggest influence on the effect. This potential evidence for ability
bias is weakened only by the FMA robustness check, where the p-value is not
small enough to claim statistical significance.

Regarding variables that exert a positive influence on the effect as opposed
to a negative one, two coefficients stand out the most. These are, first, primary
education; second, higher education. Although the secondary education coeffi-
cient is insignificant for the BMA model, this may further prove that education
truly matters. Apart from this foreseeable conclusion, we can also see that
data collected on the micro level positively influence the overall effect, as does
estimating the equation using 2-stage least squares or an instrumental variable
regression. Controlling for the type of area in which the subjects work also has a
significant positive effect, as do the earlier mentioned age squared and standard
error. Lastly, I would like to give attention to the Education: Years variable,
which also exhibits a significant positive impact on the effect. In line with
Churchill & Mishra (2018), reporting the estimates in years rather than levels
seems to be of systematic importance rather than a fluke. I can think of two
sources of this phenomenon - the functional form of Equation 3.2 and human
error. While the former may be induced purely by imperfect modeling of the
relationship between an attained level of education and the returns associated
with each year spent studying for that level, the latter appears less stream-
lined. Given that all estimates reported in levels had to be transformed and
unified using a calculation with incomplete information (sometimes the number
of years necessary to finish a certain degree was missing), this uncertainty may
give rise to the systematic influence we observe.

As the last piece of information added to the model averaging topic, I also
present the differences between posterior inclusion probabilities of models ran
under different specifications, namely different priors. Apart from the above-
mentioned uniform g-prior and dilution model prior, I run the estimation for
three unique pairs of priors. These are, listed in an arbitrary order, uniform
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Figure 5.2: Inclusion probability varies little across different model
specifications

Note: This figure shows how much variables used in Bayesian model averaging con-
tribute to the returns to education effect under different model specifications. The
variables are displayed on the x-axis against their posterior inclusion probabilities on
the y-axis. PIP = Posterior Inclusion Probability, UIP = Uniform g-prior, Dilut =
Dilution Prior, Uniform = Uniform Model Prior, BRIC = Benchmark g-prior, Random
= Random Model Prior, HQ = Hannan-Quinn Criterion. For the explanation of the
variables and their detailed interpretation, see table 5.1.

g-prior & uniform model prior, benchmark g-prior & random model prior, and
Hannah-Quin criterion g-prior & random model prior. The posterior inclusion
probabilities of variables ran under all these specifications are displayed in
Figure 5.2. The results appear highly stable and invariable towards different
specifications, and I find no further need to dig deeper in this regard. For a
graphical display of results under each of the three additional specifications,
see Appendix B.

This concludes the chapter on model averaging. In Appendix B, you may
find several robustness check figures, including the correlation table of utilized
variables, graphical results, and a comparison of BMA models ran under differ-
ent specifications.
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Table 5.2: Model averaging results

Response variable: Bayesian model averaging Frequentist model averaging

Returns to Year of Schooling Post. mean Post. SD PIP Coef. SE p-value

(Constant) -4.729 NaN 1.000 4.838 350.491 0.989
Standard Error 0.375 0.064 1.000 0.516 0.201 0.010

Estimate characteristics
Estimate: City -0.006 0.081 0.013 0.000 1.109 0.000
Estimate: Sub-region -1.479 0.346 1.000 -0.612 1.677 0.715
Estimate: Region -1.334 0.260 1.000 -0.699 1.292 0.589
Estimate: Country -0.030 0.146 0.055 0.000 0.909 0.000

Data Characteristics
Study Size -0.002 0.029 0.014 0.000 0.373 0.000
Yrs. of Schooling 0.000 0.003 0.007 0.000 0.003 0.000
Yrs. of Experience 0.000 0.001 0.006 0.000 0.013 0.000
Education: Years 1.149 0.219 1.000 1.328 0.619 0.032
Wage: Log Hourly -0.432 0.465 0.511 0.000 0.713 0.000
Wage: Log Daily -1.611 0.623 0.963 -0.595 1.129 0.598
Wage: Log Monthly -0.671 0.622 0.602 0.000 1.011 0.000
Micro Data 1.374 0.309 0.997 0.612 0.820 0.455
Survey Data -0.104 0.238 0.192 0.000 0.584 0.000
Cross-sectional Data -0.001 0.017 0.005 0.000 0.122 0.000
Data Year 1.172 6.961 0.037 0.000 46.426 0.000

Spatial/structural variation
Primary Education 3.455 0.855 0.996 1.409 2.030 0.488
Secondary Education -0.003 0.121 0.008 0.000 0.382 0.000
Higher Education 5.397 0.599 1.000 4.140 1.514 0.006
Wage Earners 0.882 0.791 0.621 0.000 1.411 0.000
Male -1.202 0.273 1.000 -0.657 0.698 0.347
Private Sector 0.800 0.944 0.474 0.000 2.073 0.000
Ethnicity: Caucasian -1.460 0.258 1.000 -1.097 0.546 0.045
Rural -0.091 0.338 0.083 0.000 1.260 0.000
Median Expenditure -0.004 0.029 0.032 0.000 0.164 0.000
Minimum Wage -0.002 0.020 0.021 0.000 0.011 0.000
Academic Freedom Index -0.018 0.126 0.027 0.000 0.098 0.000

Estimation method
Method: Cohort/FE 0.005 0.063 0.012 0.000 0.240 0.000
Method: 2SLS 1.529 0.411 0.996 0.640 0.989 0.517
Method: Heckman -0.001 0.031 0.006 0.000 0.063 0.000
Method: Probit -0.003 0.076 0.008 0.000 0.083 0.000
Method: IV 2.651 0.348 1.000 1.701 0.901 0.059
Ability: Direct -1.218 0.486 0.930 -0.632 0.699 0.366
Ability: Proxied 0.085 0.277 0.104 0.000 0.924 0.000
Ability: Uncontrolled 0.492 0.406 0.696 0.000 0.950 0.000
Control: Age -1.921 0.408 1.000 -0.983 1.106 0.374
Control: Age2 2.992 0.432 1.000 2.049 1.118 0.067
Control: Experience -0.021 0.118 0.042 0.000 0.686 0.000
Control: Experience2 -0.001 0.025 0.007 0.000 0.185 0.000
Control: Ethnicity 0.000 0.022 0.006 0.000 0.206 0.000
Control: Health 0.049 0.188 0.080 0.000 0.600 0.000
Control: Gender 0.000 0.011 0.002 0.000 0.241 0.000
Control: Marriage 0.003 0.038 0.015 0.000 0.254 0.000
Control: Occupation -0.009 0.079 0.019 0.000 0.005 0.000
Control: Firm Char. -0.022 0.121 0.045 0.000 0.597 0.000
Control: Area 1.784 0.234 1.000 0.840 1.083 0.438
Control: Macro Var. 0.000 0.019 0.007 0.000 0.126 0.000

Publication characteristics
Impact Factor -0.215 0.088 0.931 -0.105 0.165 0.524
Citations 0.000 0.006 0.006 0.000 0.111 0.000
Study: Published -1.157 0.280 0.999 -0.430 1.242 0.730
Publication Year 0.000 0.017 0.003 0.000 0.044 0.000

Note: This table presents the results of the Bayesian and Frequentist model averaging. Post. mean
= Posterior Mean, Post. SD = Posterior Standard Deviation, PIP = Posterior Inclusion Probability,
Coef. = Coefficient, SE = Standard Error, OLS = Ordinary Least Squares, FE = Fixed Effects, 2SLS
= 2 Stage Least Squares. The variables with PIP > 0.5 are highlighted. For a detailed explanation of
the variables, see table 5.1.



Chapter 6

The best-practice estimate

In this chapter, I would like to focus on one other method that can be used to
gain more insight into the effect’s behavior. The technique in question involves
utilizing the BMA model coefficients from Chapter 5 and actual data values
to obtain a best-practice estimate of the effect under different specifications.
With this, I hope first to uncover more detail about how different experiment
setups change the observed effect and second to bring even more insight into
the question of individual variables and the magnitude of their influence on the
effect.

6.1 Modelling the best-practice

With the BMA model coefficients from Table 5.2, let us first model a baseline
subjective practice by plugging in mostly arbitrary data values. Once this
subjective best-practice is obtained, we can then compare it to individual setups
of other studies. Regarding the values used for the subjective evaluation, I opt
to keep most of them at their mean. It is unclear and, at times, impossible to
objectively discern between one and another value of a variable and say which
is better. There are, however, two notable exceptions. First, I set the standard
error equal to zero, as publication bias is never desirable in the data sample.
Second, I utilize the highest available values of the journal impact factor and
number of citations available. This stems from the assumption that highly cited
studies from top journals should bring more credibility and present estimates
close to the true effect.

Apart from this subjective best-practice estimate, I also computed best-
practice estimates for all other studies in the dataset. When doing so, an im-
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portant question arose of which specifications to use in case a study reported
multiple estimates. To align with the idea of the best practice in the literature,
the values chosen from each study as representative should adhere to the speci-
fications outlined in the previous paragraph as much as possible. For example,
I mentioned that the standard error should be set to zero in the computation,
as publication bias is generally undesirable. I will carry over this strong restric-
tions into the computation and set standard error to zero for all other studies
as well. In regards to more lenient restrictions, such as using the maximum
value of a variable, I will choose as representative the value from among the
actual values reported in the study. If, say, a study reports the highest achieved
education as 12 years, I will use that value as the representative, even if the
study also reports the number of years of education as 10.

Table 6.1: Implied best-practice

Study Estimate 95% Confidence Interval Studies

Author 6.536 (5.762; 7.310) 0
Query 7.529 (3.552; 11.506) 74
Snowballing 6.346 (2.530; 10.162) 41
All studies 7.109 (3.046; 11.17) 115

Note: The table reports estimates of the best-practice estimate
according to the author’s subjective best-practice, two subsets of
the literature, and the whole data sample. For the latter three,
the figures are computed by averaging the best-practice estimates
of all studies within that data subset. 95% confidence interval
bounds are constructed as an approximate using OLS with study
level clustered standard errors. Query = Studies identified by
query, Snowballing = Studies identified by snowballing, Studies
= Number of studies used for the estimation.

As a baseline, I present the results of the implied best-practice calculation
using my subjective setup. Then, I display estimates calculated across different
subsets of literature for studies identified separately by the query and by the
snowballing. Furthermore, I construct an estimate using all studies in the
dataset. These can all be found in Table 6.1. The subjective best-practice
estimate equals 6.5% with a relatively narrow confidence band. The estimates
for the two literature subsets then fall within 1% of the subjective estimate;
the query literature predicts a rate of 7.5% returns to schooling, while the
snowballing literature suggests 6.3%. Understandably, the confidence bounds
for these two estimates are much wider, given the large number of studies used
in the estimation, together with the fact that this lumps together studies of a
much different nature. Still, one could argue that the query studies tend to
report higher estimates than their snowballing counterpart, although this claim
would lack the statistical significance backup. When looking at the whole
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dataset, the suggested estimate tallies up to 7.1% with a confidence bound
much too wide to hold any statistical power. Despite this, I believe this number
should serve, above all, as a good sanity check, and I think it does just that,
given its proximity to the simple literature effect mean identified in Table 3.1.

6.2 Implied best-practice within subsets of lit-
erature

To better understand how the implied best-practice behaves within the litera-
ture, I calculated how the estimates changed when observed for different data
subsets. Using the same variable grouping logic described in Section 6.1, I split
the data into an array of subsets and present these in an intuitive graphical
format. I choose this approach over focusing on individual studies as I believe
it holds more information about individual variables’ influence, but I append
the best-practice estimates for all 115 studies in Appendix C for completeness.

Before getting to the actual results, several points about the technical proce-
dure should be addressed, starting with a point on how the subsetting is done.
Different variable types call for a different approach. In my data, I treated
these different data types as follows. For dummy variables, the subset consists
of studies where that dummy is equal to 0. For variables defined as ratios, such
as the ratio of urban vs. rural workers, the subsets include studies where a
given variable is the highest out of all its alternatives. For example, suppose
that after choosing the most frequent values of the urban vs. rural workers
variable, the ratio comes up to 0.25 vs. 0.75 (urban vs. rural). In that case,
such a study gets put into the ’rural workers’ category, given that these com-
prise the majority of the sample. The same is true for variables with multiple
alternatives, such as for the variable capturing the highest achieved education.
Suppose further that the ratio is the same for all variables of the same group.
In that case, the representative is chosen randomly, eliminating potentially any
bias given a large enough number of studies in the subset. Consequently, results
from a sample containing fewer studies should be viewed with caution. And
lastly, one note on handling float-type variables. Here, I use the median as the
split point and divide the dataset into studies whose representative estimate is
above and below this point.

The graphical results can be found in Figure 6.1. For presentation of clarity,
I choose to omit several data subsets, and present only the ones that align with
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the focus of this work. With the formidable number of estimates included in
each data subsample, I firmly believe the shown results accurately represent
the overall behavior within the literature and that they paint a clear enough
picture.

Several crucial points can be drawn from these graphs. First and foremost,
it is vital to bear in mind the underlying large confidence interval with which
these results are presented. Despite the lack of confidence bound curves in
Figure 6.1, the reader should bear in mind that the confidence range for these
is quite wide. Second, as I pointed out earlier, some of these results are drawn
from data subsets containing only a handful of studies, and should thus also be
viewed with discretion, as they may be plagued with insufficient data sample
bias. These include, but are not limited to, the subsamples of higher and
primary education, low income countries, and several of the methodological
subsamples.

With these considerations in mind, I dare to point out several intriguing
patterns within the results. The left-hand side of distributions is visibly more
prominent for studies focusing on female subjects, suggesting lower rate of
returns to education associated with a greater amount of studies. A sizable
bump of low percentage estimates also appears in the distribution of estimates
for studies focusing on uneducated subjects. Still, due to the low number of
studies in this subset, it is likely caused by an anomaly in one or two studies’
calculations. The biggest takeaway from these results, however, should perhaps
be unambiguous difference between the distributions of studies that control
for ability (either directly or through a proxy), versus those who do not. The
former group of studies displays a clear left skew, with the majority of estimates
falling below the average of the whole literature. In contrast, the latter group
of studies shows a right skew, with the majority of estimates falling above the
average. This is in line with the results from Chapter 4, where I found that
controlling for ability directly diminishes the overall effect, while leaving the
ability out of the equation is associated with higher returns to education.

6.3 Economic significance

Let us now return to the subjective best-practice estimate and consider the role
of individual variables again. Namely, I will calculate the economic significance
of some prominent variables, which means observing how much each of these
variables contributes to the implied best practice when its value is changed.
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Figure 6.1: Implied best-practice across various subsets of data
(a) Education type (b) Data type

(c) Highest education (d) Gender

(e) Country wealth (f) Estimation method

(g) Ability (h) Citations

Note: This figure displays density lines for best-practice estimates of studies employ-
ing different variable setups. Each density line corresponds to a subset of studies
whose setup involves a particular variable, as described in each graph’s legend. The
effect of an additional year of schooling on returns is displayed on the x-axis against
its density on the y-axis. For Figure 6.1h, the data median is used to determine the
subsets. For a description of the variables used in these figures, see Table 5.1.
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Variables with low PIP in the model averaging could be argued to have little
impact on the effect in the first place, so for this case, I will be considering
only those variables that had PIP at least 0.5. In the case of the BMA model
outlined in Chapter 5, that totals up to 19 variables. To determine their impact
on the effect, I will calculate first how much the implied best-practice changes
when there occurs a one standard deviation change in each variable, and then
how much that change will be when the variable shifts from its lowest reported
value to its highest. The results of these calculations can be found in Table 6.2.

Table 6.2: Economic significance of key variables

One SD change Maximum change
Effect on Returns % of BP Effect on Returns % of BP

Standard Error 0.635 9.78% 3.399 52.37%
Estimate: Sub-region -0.442 -6.81% -1.479 -22.79%
Estimate: Region -0.616 -9.5% -1.334 -20.55%
Education: Years 0.554 8.53% 1.149 17.71%
Wage: Log Hourly -0.216 -3.32% -0.432 -6.66%
Wage: Log Daily -0.472 -7.27% -1.611 -24.81%
Wage: Log Monthly -0.274 -4.22% -0.671 -10.34%
Micro Data 0.525 8.09% 1.374 21.17%
Primary Education 0.522 8.04% 3.455 53.23%
Higher Education 1.336 20.58% 5.397 83.14%
Wage Earners 0.181 2.78% 0.882 13.59%
Male -0.420 -6.48% -1.202 -18.51%
Ethnicity: Caucasian -0.612 -9.43% -1.460 -22.49%
Method: 2SLS 0.449 6.91% 1.529 23.55%
Method: IV 0.832 12.81% 2.651 40.84%
Ability: Direct -0.416 -6.41% -1.218 -18.77%
Ability: Uncontrolled 0.243 3.75% 0.492 7.58%
Control: Age -0.913 -14.07% -1.921 -29.6%
Control: Age2 1.336 20.58% 2.992 46.1%
Control: Area 0.880 13.56% 1.784 27.48%
Impact Factor -0.330 -5.08% -1.501 -23.13%
Study: Published -0.491 -7.57% -1.157 -17.82%

Note: This table lists individual effects of variables on returns to schooling, ceteris
paribus. Only varaibles identified as important (PIP ≥ 0.5) during the Bayesian Modal
Averaging are listed. One SD change = How much the effect changes when the vari-
able changes by one standard deviation. Maximum change = How much the effect
changes when the variable changes from its lowest to its highest value. The variables
are compared against a baseline of 6.536% returns to education (author’s subjective
best-practice estimate). For an exmplanation of all the listed variables, refer to Ta-
ble 5.1. SD = Standard deviation, 2SLS = Two-stage Least Squares, IV = Instrumental
Variable.

With 6.536% as the reference value of the effect against which the economic
significance is compared, there are nine variables with negative influence. In
contrast, ten variables pull the effect in the positive direction. Understandably,
the standard error is among the variables with a positive sign (0.635 for 1 SD
change, 3.399 for maximum change), as an increase in standard error should
highly correlate to an increase in the effect. Otherwise, there would have been
an unmistakable publication bias in the literature, which the tests in Chap-
ter 4 failed to provide conclusive evidence for. As for the rest of the variables,
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higher finished education, IV regression, age in the quadratic form, and con-
trolling for area display the highest positive impact among the rest. However,
the coefficient for the age squared is offset by its linear counterpart, giving
the expected convex shape to the Mincer equation and predicting a substantial
increase in earnings later in life. Out of the other variables with positive di-
rection, Education: Years stands out the most, underlining the suspicion that
estimates reporting education in highest achieved levels instead of in years tend
to underestimate the returns to education.

As for the variables with a negative influence on the effect, the most signifi-
cant change is associated with the aforementioned linear age coefficient. Apart
from said coefficient, regional and sub-regional level estimates also diminish
the overall effect, as does being a male or Caucasian ethnicity. Further, studies
with a high impact factor or studies published in journals tend to report higher
estimates than their less recognized counterparts. And last but not least, the
issue of ability. As has been the case thus far, controlling for ability directly
diminishes the overall effect, while leaving the ability out of the equation is as-
sociated with higher returns to education. The size of this ability bias, at least
when looking at the economic significance of variables, is relatively smaller. De-
spite this, its presence is unmistakable and in line with all the results presented
thus far.



Chapter 7

Doubling the evidence: Addition
of twin studies

So far, I have explored the role of schooling and its contribution to an indi-
vidual’s future earnings. Furthermore, I tried to answer the question of what
role ability plays in this equation and whether or not it should be accounted
for. Even though I claim that some magnitude of ability bias exists in the rela-
tionship, one crucial question remains unanswered. That question is - to what
extent is the increase in earnings influenced by schooling and to what extent
by ability? Is there a way to separate these two and isolate the effect schooling
has on an individual’s wage, regardless of their ability? As it turns out, there
is. Using a sample of identical twins, one may theoretically rule out the role
of ability and family background and observe the unbiased influence of edu-
cation on earnings. In the following chapter, I attempt to take this approach
by constructing an entirely new dataset containing only natural twin studies.
With this dataset, I will run the analysis anew and try to determine whether
individual differences and innate ability play a crucial role in determining one’s
future or whether it is all just a matter of education.

7.1 Understanding natural experiments: Is it
all intertwined?

For this analysis, it is vital to understand how being a twin plays a significant
role in the matter. We can identify two types of twins - monozygotic and dizy-
gotic. Monozygotic twins (marked further as MZ twins, or Identical twins),
come from a single zygote and thus share the same genetic information. For
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this, it is reasonable to assume they share the same innate ability, and any
noteworthy differences that arise during their lifetime should come from their
environment, schooling, family background, etc. Dizygotic twins (marked fur-
ther as DZ twins, or Non-dentical twins), on the other hand, come from two
different zygotes, and their genetic information thus differs slightly. As such,
these may be looked at more as siblings of the same age. For our purposes,
monozygotic twins are of particular interest, for if we subset the data to in-
clude only these, we can theoretically rule out the role of ability and family
background and observe the unbiased influence of education on earnings.

Undoubtedly, this simple line of thinking has its cavetas, as there could still
exist bias in the within-twin pair estimators, as pointed out, for example, by
Bound & Solon (1999), or Nakamuro & Inui (2012). What is more, given that
most of the data on twin samples comes from reported estimates, a measure-
ment error is likely to arise in the sample. This is well demonstrated in two of
perhaps the most prominent studies in the field, Ashenfelter & Krueger (1994)
and Ashenfelter & Rouse (1998), where the authors construct a survey and
study samples of twins to find that the OLS estimate of returns to schooling
is upward biased. To understand why this could be, it is a good idea at the
approach Ashenfelter & Krueger (1994) take when measuring returns to educa-
tion for twins. In simplicity, the authors try to combat the measurement error
by collecting the information about the number of years spent in education
from both twins, and then constructing the final estimate from the within-twin
comparison. This involves taking one twin’s report of the within-twin schooling
as an instrument for the other twin’s report. The benefit of this approach lies
in addressing the possible measurement error that sometimes arises in school-
ing reports. Several other studies, including Behrman et al. (1994), Isacsson
(1999), or Bonjour et al. (2003), too follow a similar approach and provide a
solid theoretical background to the matter.

Another vital issue, as well as a critique of the twin approach, lies in the idea
that the within-twin schooling differences may not be random but endogenous
with respect to wages. Bound & Solon (1999), for example, argue that ability
can be influenced by factors other than genes and that using methods such
as IV regression to remedy the measurement error can simultaneously increase
the omitted ability bias. On the other hand, using techniques such as Fixed-
effects estimator may remove the omitted variable bias but does so at the cost
of introducing even greater bias in measurement error (Ning 2005).

For the purpose of this study, given that its main focus is to determine



7. Doubling the evidence: Addition of twin studies 62

the extent of the omitted ability bias, I choose not to focus on the issues of
measurement error or endogeneity in the twin studies. Instead, holding the
simple assumption that ability is inherently the same for identical twins, I
will assume that no ability bias exists in the twin data samples, and that the
data are not plagued by measurement error or endogeneity. These strong and
perhaps rather simplistic assumptions will allow me to directly compare the
obtained results to those of the previous chapters, where the omitted ability
bias was present. If I discover the results differ, it shall be an argument for
the presence of ability bias under the ealier-mentioned simplistic assumptions.
With the benefits of brevity, simplicity, and direct comparability, I find this
approach the most fitting for the scope of this thesis.

7.2 What do you mean there are two?: Making
a twin dataset

I will construct the new dataset, comprising natural experiments, with two
analysis goals in mind. First, as described in the previous section, I will attempt
to quantify the omitted variable bias, and second, I will want to compare the
results with the conclusions obtained from the earlier chapters. As such, the
form of the dataset will be nearly identical to the one described in Chapter 3,
with slight modifications to accommodate the specific design of the included
studies.

As for the studies themselves, I start with the literature review of Nakamuro
& Inui (2012) and Li et al. (2012), and from there, perform snowballing to
identify as many relevant studies on the topic as possible. Using this approach, I
identified, in total, 16 collectable studies. However, three of these only reported
data on mixed samples (both MZ and DZ twins, or MZ twins and non-twins),
so I decided to exclude them from the dataset. The remaining 13 studies, which
I will use for the analysis, are listed in Appendix A. Given how intertwined the
studies on the topic are, perhaps due to the relatively small scope of the topic,
the choice of which papers to include was somewhat streamlined. Possibly, I
may have missed several studies, but I am highly confident that this set should
provide a highly representative sample of the literature.

The most important criteria for the selection of each of these studies was
for them to feature data on monozygotic twins. Given that most of the papers
featured data on dizygotic twins, or non-twins subjects as well, I decided to
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collect all available information for further analysis in the future. However, for
the purpose of this analysis, I subset the data only to the observations that
concern monozygotic twins. During the collection, it also became apparent
that some variables were unusable for this particular use case. Two variables,
Sector: Public/Private, Sector: Urban/Rural, had no observations, while the
variables Control: Experience squared, Control: Occupation, and Education:
Primary/Secondary/... had fewer than ten. As such, I removed all these vari-
ables from the dataset, together with the Ability variable, for the approach
to measuring ability bias is slightly different now, as explained in Section 7.1.
For some variable groups, only some sub-categories had no data, such as Es-
timate: Sub-region/Continent, Micro Data, Region: Lat-America/Middle East
and North Africa/South Asia/Saharan Africa, Income: Low, Instrument: Dis-
tance to school, and finally, Control: Health. On the other hand, I also added
a handful of new variables, including:

• White/Non-white - Ratio of white subjects to non-white subjects.

• Married/Unmarried - Ratio of married subjects to non-married subjects.

• Identical/Non-identical/No twins - Ratio of subjects that are either iden-
tical (MZ) or non-identical (DZ) twins or are not twins at all.

• Method: Selection/FE - =1 if the authors use Selection-effects or Fixed-
effects estimation.

• Method: IV First-differenced - =1 if the authors use First-Differenced IV
estimation.

• Instrument: Smoking - =1 if the authors use smoking as an instrument
in the regression.

For the list of all variables used in the analysis and their descriptive statis-
tics, see Table 7.1. For the list of descriptions of the rest of the variables, see
Table 5.1. The final form of the new dataset includes 154 observations across
13 studies and can be found in the online appendix.

The most immediate information that can be derived from the summary
statistics lies in the overall mean effect. Whilst in the main data frame, I
found it to be around 7.4%, in the data capturing only identical twin subjects,
the mean effect drops down to 6.8%, hinting at a presence of ability bias. As
for the other statistics, we can see that about two thirds of the subjects are
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married, roughly 56% are white, and around 75% live in high-income coun-
tries. The subjects spend, on average, around 12.4 in school and 17.8 years
working. For over 90% of them, the schooling statistic is reported in years, as
opposed to levels. Other statistics, including variable groups capturing data
type, estimation method, publication characteristics, etc., can all be found in
the aforementioned Table 7.1.

Table 7.1: Variables of the twin dataset

Variable Mean SD Obs Variable Mean SD Obs

Effect 6.819 3.349 154 Income: Middle 0.26 0.44 40
Estimate characteristics Median Expenditure 9.166 1.386 154

Standard Error 1.544 1.055 154 Minimum Wage 6.607 1.042 154
Estimate: City 0.597 0.492 92 Academic Freedom Index 0.749 0.279 154
Estimate: Region 0.065 0.247 10 Estimation method
Estimate: Country 0.338 0.474 52 Method: OLS 0.26 0.44 40
Data characteristics Method: GLS 0.143 0.351 22

Study Size 1.304 0.939 154 Method: Selection/FE 0.208 0.407 32
Yrs. of Schooling 13.061 0.999 154 Method: FD 0.065 0.247 10
Yrs. of Experience 15.639 4.891 154 Method: IV-FD 0.104 0.306 16
Education: Years 0.929 0.258 143 Method: IV 0.221 0.416 34
Education: Levels 0.071 0.258 11 Instr.: Sibling Ed. 0.188 0.392 29
Wage: Hourly 0.403 0.492 62 Instr.: Smoking 0.104 0.306 16
Wage: Monthly/Annual 0.597 0.492 92 Control: Age 0.617 0.488 95
Survey Data 0.909 0.288 140 Control: Age2 0.513 0.501 79
National Register Data 0.091 0.288 14 Control: Experience 0.325 0.47 50
Cross-sectional Data 0.578 0.496 89 Control: Ethnicity 0.169 0.376 26
Panel Data 0.422 0.496 65 Control: Gender 0.539 0.5 83
Data Year 3.300 0.863 154 Control: Marriage 0.539 0.5 83
Spatial/Structural variation Control: Firm Char. 0.097 0.297 15

Wage Earners 0.913 0.062 32 Control: Area 0.039 0.194 6
Gender: Male 0.429 0.231 129 Control: Macro Var. 0.071 0.258 11
Gender: Female 0.571 0.231 25 Publication characteristics
White 0.573 0.444 87 Impact Factor 0.139 0.86 110
Ethnicity: Caucasian 0.201 0.402 31 Citations 3.844 2.357 124
Married 0.679 0.155 88 Study: Published 0.714 0.453 110
Unmarried 0.321 0.155 66 Study: Unpublished 0.286 0.453 44
Income: High 0.74 0.44 114 Publication Year 1.383 0.743 130
Note: This table presents basic summary statistics for variables of the new twin dataset. Some
variables are omitted for the sake of brevity. For detailed descriptions of all variables unmentioned
in this chapter, see Table 5.1. For values of the omitted variables, see the source twin dataset in
the appendix. SD = Standard Deviation, OLS = Ordinary Least Squares, GLS = Generalized
Least Squares, FE = Fixed-Effects, IV = Instrumental Variable.

7.3 Empirical analysis: Are the results just
identical?

To determine whether the returns to educations are different for identical twins,
and to what extent if so, I will employ the same methods as in the previous
chapters. The main focus will be on the effect size, which is assumed to be
unbiased by ability in the twin dataset. First, I include several graphs that
allow us to glance into the data to spot any immediate patterns. For these, see
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the subsection below. Second I take another look the publication bias models
explained in Chapter 4, and whether or not they yield different results in the
context of natural studies. These results can be found in Table 7.2.

Graphical patterns and immediate takeaways

First, in Figure 7.1, I present the funnel plot, as described in Chapter 4. As
a reminder, the plot should show the data symmetrically distributed around
the mean in case of no publication bias. For our purpose, this will allow us to
determine the behavior of the data after the ability bias is accounted for, and
see whether we can spot any obvious changes in said bevaior.

To complement the funnel plot, I also present a box plot in Figure 7.2,
which displays estimates of all studies in the twin dataset, clustered at study
level. This plot will allow us to see the distribution of the data from another
perspective, and spot any outliers that may be present.

Figure 7.1: The twin studies funnel plot

(a) All observations (b) Study medians

Note: This figure displays two funnel plots as per Egger et al. (1997), where the percentage
returns to an additional year of schooling are plotted on the x-axis against precision on the y-
axis, measured as 1/SE (Standard Error). Plot (a) shows the funnel plot for all observations
within the twin data (154 data points), while plot (b) shows only the medians of each study
(13 data points). The red line marks the mean of these data points. In case of no publication
bias, these funnel plots should be symmetrically centered around the true mean.

The funnel plots in Figure 7.1a both tell a similar story - the overall effect
tends to be lower than in the case of the main dataset. Moreover, the data
points are not symmetrically distributed around the mean, but rather skewed
to the right. This suggests that publication bias is present in the twin dataset,
and that the effect of schooling on earnings is likely overestimated.

The box plot in Figure 7.2 further supports this notion, although not as
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Figure 7.2: Box plot of estimates natural studies

Note: This plot shows a box plot for data of the twin dataset, where the esimates are grouped at
the study level. The red line represents the average effect across the literature. Each box’s length
represents the interquartile range between the 25th and 75th percentiles. The dividing line within
each box indicates the median value. The whiskers extend to the highest and lowest data points
within 1.5 times the range between the upper and lower quartiles. Outliers are depicted as blue
dots. The red line depicts the mean of the effect within the data. The data is winsorized at 1%
level.
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clearly. While most of the studies report effects that are lower than the mean,
there are several outliers that report higher effects. This is in line with the fun-
nel plot, where a non-negligible number of estimates appear above the mean,
although their precision is not high enough to be considered significant. Pe-
culiarly, the studies of Ashenfelter & Krueger (1994) and Ashenfelter & Rouse
(1998) report the highest effects, which may be stemming from their novel ap-
proach, as discussed in Section 7.1. Given the simplistic assumptions about
the dataset, that aim to isolate the effect of schooling from ability bias, many
other effects are sure at play here that may influence the results. This includes
the aforementioned measurement error, together with endogeneity, and other
biases that may arise in the twin studies.

Twin studies and publication bias

Next I take a quick look at the size of returns to schooling when treated for both
the ability bias and for publication bias in a rigorous manner. Here, similarly
to Chapter 4, I will utilize a battery of tests, including linear and non-linear
methods, as well as methods that relax the exogeneity assumption. Given that
I could not hope, nor intend to include all models listed in Chapter 4, I will
focus on the core stack, including OLS, Fixed Effects, Random Effects, WAAP,
Top10, Stem, AK, Kink, IV, and p-uniform*. The results of these tests can be
found in Table 7.2.

A clear takeaway from these tests, which holds across different methods
and approaches, is that publication bias is present and prominent in the twin
dataset. Further yet, if we look at the effect beyond bias, which represents
here returns to schooling after ability bias and publication bias are accounted
for, we can see that the effect drops even further, on average by roughly two
to three percentage points. To be concrete, the STEM-based method suggests
returns to education of 4.2%, while the Endogenous Kink approach claims 3.7%.
On the other end of the spectrum, WAAP and the Selection model report the
highest returns, 6.2%, and %, respectively, which still lower than the dataset
average effect of 6.8%. In fact, the only method that suggests a coefficient of
returns toschooling higher than the simple data average is p-uniform*, where
we have no information on the standard error, and thus significance.

All in all, the checks presented here suggest that the returns to schooling
are lower than previously estimated, and that ability bias is indeed present in
the data. Accounting for this bias, the returns to schooling drop by roughly 2-3
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Table 7.2: Twin studies and publication bias

Panel A: Linear methods
OLS FE RE Study Precision

Publication bias 1.306*** 0.369*** 2.497*** 0.620*** 2.486***
(Standard error) (0.209) (0.231) (0.737) (0.226) (0.459)

Effect beyond bias 4.776*** 6.221*** 3.126*** 5.681*** 3.714***
(Constant) (0.399) (0.403) (1.130) (0.571) (0.393)

Observations 154 154 154 154 154

Panel B: Non-linear methods
WAAP Top10 Stem AK Kink

Publication bias 2.912*** 2.486***
(0.157) (0.436)

Effect beyond bias 6.212*** 4.576*** 4.263*** 6.037 3.714***
(0.280) (0.441) (0.490) (NA) (0.142)

Observations 154 154 13 154 154

Panel C: Methods relaxing the exogeneity assumption
IV p-uniform*

Publication bias 2.191*** L = 1.205
(0.275) (p = 0.272)

Effect beyond bias 3.409*** 7.658
(0.505) (NA)

Observations 154 154
Note: Panel A: Results obtained from estimating the linear equation Equation 4.1. Stan-
dard errors, clustered at the study level, are included in parentheses. OLS = Ordinary
Least Squares. FE = Fixed Effects. RE = Random Effects. Precision = Estimates
are weighted by the inverse of their standard error. Study = Estimates are weighted
by the inverse number of observations reported per study. Panel B: Estimates of the
effect and publication bias using five non-linear methods. WAAP = Weighted Average
of the Adequately Powered (Ioannidis et al. 2017), Top10 = Top10 method by Stanley
et al. (2010), Stem = the stem-based method by Furukawa (2019) where P represents
the probability of results insignificant at 5% are published relative to the probability
of the significant ones at the same level, AK = Andrews & Kasy (2019)’s Selection
model, Kink = Endogenous kink model by Bom & Rachinger (2019). Standard errors,
clustered at the study level, are included in parentheses. Panel C: Estimates of the
effect and publication bias using two techniques that relax the exogeneity assumption.
IV = Instrumental Variable Regression; the inverse of the square root of the number of
observations is used as an instrument for the standard error. Standard errors, reported
in parentheses, are also clustered at the study level. P-uniform* = method proposed
by van Aert & van Assen (2021); L represents the publication bias test t-statistic, the
corresponding p-value can be found in parentheses. ***p<0.01, **p<0.05, *p<0.1
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percentage points to around 4-6%, which is a significant decrease compared to
results of some prominent studies in the field (see Chapter 2). The results drawn
from the methods in this chapter, and chapters prior, all seem to be hinting at
a similar conclusion - that the returns to schooling are lower than previously
estimated, and that ability bias is indeed present in the data. However, the
approach I took to get to this conclusion is, in many ways, all but impeccable.

If given the opportunity, the next step would be to further explore the twin
dataset, and perhaps try to account for the measurement error, endogeneity,
and other biases that may arise here. The collected dataset should theoretically
already hold enough information to calculate the influence of some of these
factors, if not all. What is more, the extent of this twin dataset also captures
most of the modern prominent literature on the topic, so it could be a great
starting point for futher analysis, either to add the latest missing studies or to
expand it with more variables.

As for the bulk of the focus of this thesis, the main dataset, I see the biggest
issue in the vast number of resources available for analysis. With many bril-
liant, novel methods at a meta-analyst’s disposal (MAIVE, Elliot’s p-hacking
tests, and many more), it is hard to choose which to include in the analysis.
Perhaps the future lies in more meta methods such as RoBMA, which aim to
aggregate the results of multiple models into one, and combat thus the ever-
growing myriad of new tools. As for my contribution, I aim to provide a fully
transparent, replicable approach to the presented results through the means of
an open-source project, available to everyone on this GitHub page. If you, the
reader, encounter any potential faulty steps I took in this analysis (of which I
am certain there are more than few), do feel free to make use of the automatic
replication tool available at your disposal to criticize, correct, and perhaps even
improve the results I here present. The future of meta-analysis, as I see it, lies
in the hands of the community, and I am excited to see where it will take us
next.

https://github.com/PetrCala/Diploma-Thesis


Chapter 8

Conclusion

In this thesis, I take a modern look at the relationship between education and
earnings with the aim to discover whether and to what extent it is influenced
by ability. From a large dataset of 154 studies, I colect 1754 estimates, and
through a meticulous scrutiny of the latest meta-analytic research methods, I
discover that ability bias is a significant factor in returns to schooling. Contrary
to the conventional wisdom, which suggest returns of around 7%, I propose that
the true returns are significantly lower.

As a baseline, I report an average effect of returns to education around 7.4%,
which is very much inline with the previous literature. With this in mind, I run
a battery of statistical tests that account for publication bias in the literature, I
find that this baseline drops by roughly a full percentage point when publication
bias is accounted for. I treat the data for endogeneity, which suggests an even
lower effect (around 5.5%), study structural breaks, and make use of the latest
methodology including Elliot’s p-hacking tests (Elliott et al. 2022), the MAIVE
estimator (Irsova et al. 2023), or the Robust Bayesian Model Averaging (Bartoš
et al. 2023). Although the results of some of the newer methods are mixed,
the takeaway idea is that the returns to schooling are in general posioned by a
small, but significant publication bias.

To see what role ability and other individual variables play in the picture (of
which I collect more than 30), I make use of Bayesian Model Averaging. I find
that ability is a highly important factor in determining one’s future earnings,
and that controlling for ability in the Mincer equation ((Mincer 1974)) has a
significant negative impact on returns to education. Together with this finding,
I identify a total of 19 variables that have a large impact on the returns to
schooling, including the type of education one attains, their gender, ehtnicity,
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wage type, or the type of method used to estimate the returns. I run several
different specifications of the model, including different model priors, g-priors,
etc. to enhance the robustness of my findings.

Next, I calculate my subjective best-practice estimate, which I compare
against the estimates of all individual studies in the dataset, as well as different
subsets of these. Here, I mostly observe trends that are in line with the previous
findings. To give a more deatiled picture of the results, I pool the best-practice
estimates of each study into subsets by their study specifications, allowing me
to single out effects of individual variables on returns to schooling. Further, I
calculate the economic significance of every variable flagged as important during
the Bayesian Model Averaging. These procedures, in general, agree with the
results from the previous chapters. In other words, the notion persists that the
studies whose authors control for ability, yield, on average, smaller coefficients
of returns to education than their counterparts.

As the last, but not insignificant part of the analysis, I collect an entirely
new dataset, comprised wholly of experiments whose subjects were identical
twins (natural studies), in effort to observe the role of education on earnings
in a setting where ability is assumed constant. I find that simply by limiting
the pool of subjects to identical twins, the returns to education drop by a full
percentage point. When controlling for publication bias, the returns drop even
further, to an astonishing two to three percentage points difference.

All in all, I argue that once the data is clear of two important biases (ability
and publication), the investment to schooling pays a considerably smaller in-
terest, namely 4-6% increase in log wage for an additional year spent in school,
as opposed to the widely suggested 7%. This is a crucial finding, as it suggests
that the returns to schooling are not as high as previously thought, and that
the role of ability in determining one’s future earnings is more significant than
previously assumed.

However, my approach in getting to these conclusions is not without its
faults. Given the limited scope of the thesis, I opt to not to delve into the
issues of measurement error and endogeneity when dealing with the natural
experiments. The collected dataset provides enough resources to allow this
kind of analysis, but perhaps another paper could be necessary to fit all of these
results. Moreover, I find little time to focus on the implications of inidividual
variables, both for the main dataset, and for the twins alike, although for
an interested reader, they can be uncovered and scrutinized quite easily by
replicating the analysis with the provided code.
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As the last of my contributions, I would like to mention the existence of an
open-source project I created along with this thesis that can be used to quickly
and reliably replicate the whole analysis (see this link). Further even, this
project allows anyone with a completed meta-analysis dataset to automatically
construct their own models, and export the results of these in a compact format
that includes .csv files, graphs, tables, console logs, and more. With the vast
number of methods this tool utilizes, I opted to delve into the inner workings of
several of them (including the STEM method by Furukawa (2019), or the AK
model by Bom & Rachinger (2019)), and either improved the speed of their
code by a factor of up to 30x, or rewrote the whole methods to allow native
execution in the R runtime. All of this creates a seemless user experience for
anyone trying to conduct their own meta-analysis.

https://github.com/PetrCala/Diploma-Thesis
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Literature Exploration

Figure A.1: PRISMA Flow Diagram
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Note: This figure displays a PRISMA flow diagram that graphs the study inclusion process. I use
the following Google Scholar query in the search: ("ability bias" OR "intelligence bias") AND
("private returns") AND ("income" OR "earnings") AND ("schooling" OR "education").
The query search was conducted during a single day on January 23, 2023. The snowballing was
conducted roughly a month later. For the list of the 115 studies included in the analysis, see
Table A.1. PRISMA = Preferred Reporting Items for Systematic Reviews and Meta-Analyses. In
constructing the diagram, I follow the advice of Moher et al. (2009) and Havránek et al. (2020).



A. Literature Exploration II

Table A.1: Studies used in the analysis

Panel A: Studies identified by the query
Acemoglu & Angrist (1999) Leigh (2008)
Agrawal (2012) Li & Urmanbetova (2007)
Arkes (2010) Lillo (2006)
Aromolaran (2006) Lillo-Ban̋uls & Casado-Díaz (2010)
Aryal et al. (2022) Maluccio (1998)
Asadullah (2006) Mazrekaj et al. (2019)
Aslam (2007) Mishra & Smyth (2012)
Ayyash et al. (2020) Mishra & Smyth (2014)
Bakis et al. (2013) Morgan & Morgan (1998)
Bartolj et al. (2013) Mphuka & Simumba (2012)
Bergman & Schöön (2018) Okuwa (2004)
Blundell et al. (2001) Patrinos et al. (2021)
Botchorishvili (2007) Paweenawat & Vechbanyongratana (2015)
Campaniello et al. (2016) Peters et al. (2022)
Campos & Reis (2017) Purnastuti (2013)
Casado-Díaz & Lillo-Ban̋uls (2005) Purnastuti et al. (2015)
Chanis et al. (2021) Qiu (2007)
De Brauw & Rozelle (2008) Sackey (2008)
Depken et al. (2019) Sakellariou & Fang (2016a)
Doan et al. (2020) Sakellariou & Fang (2016b)
Dumauli (2015) Salas-Velasco (2006)
Fang et al. (2012) Salehi-Isfahani et al. (2009)
Fersterer et al. (2008) Sinning (2014)
Frazer (2023) Sinning (2017)
Gibson & Fatai (2006) Sohn (2013)
Giles et al. (2019) Umar et al. (2014)
Girma & Kedir (2005) van der Hoeven (2013)
Glewwe (1996) Van Praag et al. (2013)
Guifu & Hamori (2009) Vasudeva Dutta (2006)
Harmon et al. (2002) Vivatsurakit & Vechbanyongratana (2020)
Hawley (2004) Walker & Zhu (2008)
Himaz & Aturupane (2016) Wambugu (2003)
Joseph (2020) Warunsiri & McNown (2010)
Kenayathulla (2013) Webbink (2004)
Kolstad & Wiig (2015) Wincenciak (2020)
Krafft (2018) Zhong (2011)
Krafft et al. (2019) Zhu (2012)

Panel B: Studies identified by snowballing
Aakvik et al. (2010) Heckman et al. (2006)
Angrist (1995) Hubbard (2011)
Angrist & Krueger (1991) Ichino & Winter-Ebmer (1999)
Belzil & Hansen (2002) Ichino & Winter-Ebmer (2004)
Brainerd (1998) Jones (2001)
Breda (2014) Kane & Rouse (1993)
Capatina (2014) Kijima (2006)

Continued on next page



A. Literature Exploration III

Table A.1: Studies used in the analysis (continued)

Card (1995) Kingdon (1998)
Carneiro et al. (2011) Leigh & Ryan (2008)
Chase (1998) Lemieux & Card (2001)
Devereux & Hart (2010) Light & Strayer (2004)
Dougherty & Jimenez (1991) Moretti (2004)
Duflo (2001) Munich et al. (2005)
Duraisamy (2002) Pischke & von Wachter (2005)
Fortin (2008) Psacharopoulos (1982)
Gill & Leigh (2000) Psacharopoulos & Layard (1979)
Gorodnichenko & Peter (2005) Staiger & Stock (1997)
Grogger & Eide (1995) Stephens Jr & Yang (2014)
Harmon & Walker (1995) Taber (2001)
Harmon & Walker (1999) Troske (1999)

Panel C: Twin studies
Ashenfelter & Krueger (1994) Li et al. (2012)
Ashenfelter & Rouse (1998) Miller et al. (1995)
Behrman & Rosenzweig (1999) Miller et al. (2004)
Bingley et al. (2009) Nakamuro & Inui (2012)
Bonjour et al. (2003) Ning (2005)
Isacsson (1999) Rouse (1999)
Isacsson (2004)
Note: This table lists all studies used in the analysis. Panel A shows 74 studies identified by the
main Google Scholar query; panel B shows 41 studies identified by snowballing. These two panels
together present 115 studies from the main dataset, explored in Chapter 3. Panel C displays 13
studies from the twin dataset, explored in Chapter 7.



A. Literature Exploration IV

Figure A.2: Box plot of estimates across countries

Note: This figure shows a box plot where the reported estimates are grouped at the country level.
The data of all 48 countries from the data set is displayed. The red line represents the average
effect across the literature. Each box’s length represents the interquartile range between the 25th
and 75th percentiles. The dividing line within each box indicates the median value. The whiskers
extend to the highest and lowest data points within 1.5 times the range between the upper and
lower quartiles. Outliers are depicted as blue dots. The data is winsorized at 1% level.



Appendix B

Bayesian model averaging
robustness check

Figure B.1: BMA - uniform g-prior and uniform model prior

Note: This figure unveils the results of running the Bayesian model averaging using
different specifications, namely the uniform g-prior and the uniform model prior. BMA
= Bayesian model averaging. For further explanation of the procedure and individual
variables, see Figure 5.1 and Table 5.1.



B. Bayesian model averaging robustness check VI

Figure B.2: BMA - benchmark g-prior and random model prior

Note: This figure unveils the results of running the Bayesian model averaging using different
specifications, namely the benchmark g-prior and the uniform model prior. BMA = Bayesian
model averaging. For further explanation of the method and the employed variables, see Figure 5.1
and Table 5.1.



B. Bayesian model averaging robustness check VII

Figure B.3: BMA - HQ g-prior and random model prior

Note: This figure unveils the results of running the Bayesian model averaging using different
specifications, namely the Hannan-Quinn criterion g-prior and the uniform model prior. BMA =
Bayesian model averaging. HQ = Hannan-Quinn Criterion. For further explanation of the method
and the employed variables, see Figure 5.1 and Table 5.1.
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Figure B.4: Bayesian Model Averaging - Correlation Table

Note: The figure shows the correlation between variables employed in the Bayesian model aver-
aging. These variables are depicted on both axes. Purple color indicates a positive correlation;
blue color indicates a negative correlation. Uniform g-prior and dilution model prior are used in
the analysis. For results of the actual estimation, see Chapter 5. For a detailed explanation of the
variables used, see Table 5.1.



Appendix C

Implied best-practice across
literature

Table C.1: Comparing best-practice estimates across literature

Study Estimate 95% Confidence Interval

Author’s subjective estimate 6.849 (6.098; 7.6)

Panel A: Studies identified by query (subset)
Leigh (2008) 8.347 (6.838; 9.856)
Bartolj et al. (2013) 8.117 (7.472; 8.762)
Salas-Velasco (2006) 6.381 (5.209; 7.553)
Lillo-Banuls & Casado-Diaz (2010) 7.000 (5.751; 8.249)
Wincenciak (2020) 4.062 (2.839; 5.285)
Okuwa (2004) 6.713 (5.19; 8.236)
Webbink (2004) 10.158 (8.218; 12.098)
Kenayathulla (2013) 9.194 (7.501; 10.887)
Asadullah (2006) 5.781 (4.284; 7.278)
Maluccio (1998) 9.221 (8.041; 10.401)
Depken et al. (2019) 12.190 (10.581; 13.799)
Purnastuti et al. (2015) 10.625 (8.594; 12.656)
Umar et al. (2014) 8.514 (7.095; 9.933)
Sinning (2014) 11.477 (10.43; 12.524)
Agrawal (2012) 7.156 (5.729; 8.583)
Sackey (2008) 6.196 (5.273; 7.119)
Patrinos et al. (2021) 7.593 (6.301; 8.885)
Giles et al. (2019) 6.597 (5.78; 7.414)
van der Hoeven (2013) 7.747 (5.74; 9.754)
Acemoglu & Angrist (1999) 6.546 (5.425; 7.667)
Vivatsurakit & Vechbanyongratana (2020) 10.587 (9.337; 11.837)
Qiu (2007) 5.846 (4.792; 6.9)
Mphuka & Simumba (2012) 12.434 (10.558; 14.31)
Aslam (2007) 10.169 (8.521; 11.817)

Continued on next page
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Table C.1: Best-practice across literature (continued)

Study Estimate 95% Confidence Interval

Himaz & Aturupane (2016) 8.043 (6.336; 9.75)
Warunsiri & McNown (2010) 9.298 (7.583; 11.013)
Aromolaran (2006) 6.633 (5.622; 7.644)
Salehi-Isfahani et al. (2009) 5.032 (4.03; 6.034)
Botchorishvili (2007) 6.285 (5.013; 7.557)
Girma & Kedir (2005) 6.822 (4.727; 8.917)
De Brauw & Rozelle (2008) 7.791 (6.394; 9.188)
Chanis et al. (2021) 8.575 (7.132; 10.018)
Paweenawat & Vechbanyongratana (2015) 10.628 (9.274; 11.982)
Vasudeva Dutta (2006) 3.614 (2.144; 5.084)
Gibson & Fatai (2006) 6.318 (5.166; 7.47)
Hawley (2004) 6.405 (5.074; 7.736)
Sohn (2013) 9.375 (7.932; 10.818)
Harmon et al. (2002) 10.018 (9.024; 11.012)
Lillo (2006) 5.093 (4.137; 6.049)
Zhong (2011) 8.776 (7.135; 10.417)
Krafft (2018) 7.518 (5.57; 9.466)
Walker & Zhu (2008) 9.720 (8.722; 10.718)
Wambugu (2003) 9.906 (7.789; 12.023)
Aryal et al. (2022) 6.996 (5.593; 8.399)
Bakis et al. (2013) 6.087 (5.336; 6.838)
Campaniello et al. (2016) 4.931 (3.604; 6.258)
Joseph (2020) 9.501 (7.706; 11.296)
Dumauli (2015) 10.443 (8.997; 11.889)
Fersterer et al. (2008) 5.062 (3.28; 6.844)
Sinning (2017) 11.524 (10.372; 12.676)
Purnastuti (2013) 4.965 (3.366; 6.564)
Arkes (2010) 7.378 (6.151; 8.605)
Glewwe (1996) 7.346 (5.298; 9.394)
Blundell et al. (2001) 6.033 (4.636; 7.43)
Ayyash et al. (2020) 8.716 (7.138; 10.294)

Panel B: Studies identified by snowballing
Aakvik et al. (2010) 5.961 (4.683; 7.239)
Angrist (1995) 7.419 (6.417; 8.421)
Angrist et al. (1991) 8.807 (7.625; 9.989)
Belzil et al. (2002) 5.943 (4.828; 7.058)
Brainerd (1998) 2.465 (1.136; 3.794)
Breda (2014) 0.884 (-0.494; 2.262)
Capatina (2014) 6.357 (5.759; 6.955)
Card (1995) 6.127 (5.031; 7.223)
Carneiro et al. (2011) 6.852 (5.251; 8.453)
Chase (1998) 3.115 (2.11; 4.12)
Devereux et al. (2010) 6.210 (4.485; 7.935)
Dougherty et al. (1991) 6.067 (4.677; 7.457)
Duflo (2001) 7.471 (6.215; 8.727)

Continued on next page
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Table C.1: Best-practice across literature (continued)

Study Estimate 95% Confidence Interval

Duraisamy (2002) 6.473 (5.785; 7.161)
Fortin (2008) 4.105 (3.537; 4.673)
Gill et al. (2000) 7.270 (6.486; 8.054)
Gorodnichenko (2005) 4.944 (4.029; 5.859)
Grogger et al. (1995) 3.367 (2.567; 4.167)
Harmon et al. (1995) 10.136 (8.619; 11.653)
Harmon et al. (1999) 9.261 (7.664; 10.858)
Harmon et al. (2003) 7.878 (6.688; 9.068)
Heckman et al. (2006) 8.440 (7.372; 9.508)
Hubbard (2011) 7.005 (6.174; 7.836)
Ichino (1999) 7.507 (6.123; 8.891)
Ichino et al. (2004) 10.498 (8.981; 12.015)
Jones (2001) 6.154 (4.512; 7.796)
Kane et al. (1993) 6.584 (5.739; 7.429)
Kijima (2006) 2.899 (2.039; 3.759)
Kingdon (1998) 7.976 (6.553; 9.399)
Leigh (2008) 8.277 (7.132; 9.422)
Lemieux et al. (2001) 6.230 (5.321; 7.139)
Light et al. (2004) 8.067 (7.001; 9.133)
Moretti (2004) 6.581 (5.074; 8.088)
Munich et al. (2005) 5.043 (3.653; 6.433)
Pischke (2005) 6.801 (5.282; 8.32)
Psacharopoulos (1982) 3.714 (2.318; 5.11)
Psacharopoulos (1979) 7.461 (6.058; 8.864)
Staiger et al. (1997) 7.507 (6.298; 8.716)
Stephens Jr et al. (2014) 6.126 (4.95; 7.302)
Taber (2001) 6.277 (5.119; 7.435)
Troske (1999) 3.728 (2.574; 4.882)
Note: The table reports estimates of the implied best-practice across studies of the main dataset, as well
as the author’s subjective best-practice. For clarity of presentation, I arbitrarily removed several query-
identified studies from the table. 95% confidence interval bounds are constructed as an approximate
using OLS with study level clustered standard errors.
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