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Abstract: Proteins, as the main functional molecules of the cell, play a critical role

in shaping phenotypic traits. This thesis investigates the application of proteomics

data, obtained via LC-MS/MS, to understand the link between protein expres-

sion and resulting phenotypes. Various bioinformatic approaches are discussed,

including data preprocessing, normalization techniques, and missing value impu-

tation methods, to ensure the reliability and accuracy of downstream analyses.

Furthermore, this work describes how one can gain insights into phenotypic traits

across species or medical conditions by employing differential expression analy-

sis, evolutionary modeling using the Ornstein-Uhlenbeck process, and machine

learning algorithms.
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Abstrakt: Proteiny, jakožto hlavní aktéři v buněčných procesech, mají zásadní roli

ve formování fenotypových znaků. Tato práce zkoumá aplikaci proteomických

dat, získaných pomocí LC-MS/MS, pro pochopení vztahů mezi expresí proteinů

a výslednými fenotypy. Diskutuje různé bioinformatické postupy, od předzpra-
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logických stavů za užití analýzy diferenciální exprese, evolučního modelování
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Introduction

In an organism, all cells share the same genetic information; nevertheless, they

can fundamentally vary. This variation is present because different genes are

expressed in cells at different times and amounts. Differences in gene expression

are believed to be a major contributor to the phenotypic diversity observed

between species. These differences, along with DNA polymorphisms in coding

sequences, have profound effects on how organisms develop and function [1, 2].

The study of gene expression is not straightforward and is a complex process.

This relates not only to data acquisition but also to data processing and analysis. In

this thesis, we focus on proteomics, which is the study of the entire set of proteins

expressed by a genome, cell, tissue, or organism at a particular time. Proteins are

key players in almost all biological processes. Abnormalities in protein expression

can lead to diseases as it is one of the most prominent factors in pathologies, and

understanding the proteome can help to develop new treatments and diagnostics

[3]. The aim is to describe how to utilize the proteomics data to better understand

gene expression itself, how it relates to the evolution of species of interest and

most importantly, uncover its link to phenotypic traits.

Most techniques to achieve this have been developed for the RNA-seq data.

However, fundamental differences exist between the acquisition, processing, and

even meaning of RNA-seq and proteomics data. Also, several challenges are solely

related to proteomics data; therefore, applying these methods to proteomics data is

not straightforward [3]. Understanding each step in the data processing workflow

is therefore crucial for interpreting the results correctly, avoiding common pitfalls,

and understanding the limitations of the data.

In this thesis, we propose a proteomic processing pipeline to achieve this

goal. The first chapter describes proteomic data acquisition techniques using

LC-MS/MS experiments, how to match the obtained spectra to peptides, and

how to quantify the proteins. The second chapter focuses on data preprocessing,

including quality control, describing which normalization method to choose and

which missing value imputation algorithm to use so the data can be used for

further analysis. The last chapter describes how to analyze the data to obtain the

most information regarding the phenotypes. This includes differential expression
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analysis, machine learning, and evolution modeling using Brownian motion and

Ornstein-Uhlenbeck processes.

Raw data 
acquisition

Protein 
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and 
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Preprocessing

Quality checks, 
visualizations
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Missing values 
imputation

Differential 
expression 
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modeling

Machine 
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Figure 1 Proposed proteomic processing pipeline.

Throughout this thesis, proteomic data analysis from sperm cells across 34

passerine species acquired via LC-MS/MS LFQ will be used to exemplify the

discussed methods.
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Chapter 1

LC-MS/MS Proteomics, Protein
Identification and Quantification

The first proteomic studies date back to 1975 when O’Farrell introduced two-

dimensional gel electrophoresis (2-DE). Since then, tremendous progress has

been made, primarily due to the development of mass spectrometry (MS) and

liquid chromatography (LC) techniques, which have increased the sensitivity

and accuracy of protein identification and quantification by several orders of

magnitude [4]. LC-MS/MS is currently the go-to method for proteomic studies [4,

3, 5, 6].

There are several types of proteomics:

• Structural proteomics focuses on the 3D structure of proteins and their

complexes.

• Functional proteomics studies the function of proteins and their interac-

tions.

• Expression proteomics studies the expression of proteins in a given cell

or tissue and compares it to other cells or tissues.

Here, the emphasis is on the usage of expression proteomics. Nevertheless, results

obtained from the expression proteomics can be coupled with results from the

other types of proteomics to give a more comprehensive understanding of the

biological system under study.

1.1 Mass Spectrometry
To begin with, it is essential to clarify that the method described here is known

as "bottom-up proteomics," which involves the digestion of proteins into peptides
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before analysis. This contrasts with "top-down proteomics," where intact proteins

are analyzed directly. While top-down approaches are also valuable, they are not

as commonly used in this context as bottom-up approaches and thus will not be

discussed further here [3].

First, proteins must be extracted from biological samples and then digested into

peptides, usually by trypsin. Then, peptides are purified from salts, detergents, and

other contaminants. Nevertheless, the sample preparation for each experiment

can differ depending on the biological system under study and the proteins of

interest. Extra care is needed, for example, when dealing with membrane proteins

or serums, as described by Chandramouli and Qian [7].

Peptides are then separated by liquid chromatography, and this is then fol-

lowed by tandem mass spectrometry (LC-MS/MS), where resolved peptides are

ionized and analyzed in two stages by the mass spectrometer. In the first stage

(MS1), mass-to-charge (m/z) ratios of the peptides are measured, and in the second

stage (MS2), the peptides are further fragmented, and their subsequent m/z ratios

are measured [3, 7, 6].

1.2 Protein Identification

1.2.1 Peptide identification
After the raw data (fragmentation spectra) are collected, peptide sequences must

be identified. Two main approaches are used for this purpose:

• Searching against the fragmentation spectra database, where peptide

spectrum match (PSM) score is calculated for each peptide against all theo-

retical spectra from the database. The peptide with the best score can be

considered a candidate for the peptide sequence [3].

• De novo sequencing, where the peptide sequence is reconstructed solely

from the fragmentation spectra without a database. This is usually done by

Graphical Probabilistic Models or Hidden Markov Models [3].

1.2.2 Protein inference
Once the peptide sequences are identified, they are mapped to the protein se-

quences. This task is not straightforward, as the same peptide can be present in

multiple proteins. To handle these so-called degenerate peptides, many different

models were built to assign these peptides to correct proteins.
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Several software tools can be used for peptide identification and subsequent

protein inference. Chen et al. [3] comprehensively reviews the most popular ones

and discusses their advantages and disadvantages. In our study of passerine sperm

cells, MaxQuant[8] was used for protein identification along with its integrated

search engine Andromeda[9].

1.3 Protein Abundance Quantification
Most experimental quantification methods fall into two following categories:

Labeled methods These methods utilize isotopic or chemical labels to differ-

entially mark proteins or peptides from various samples, enabling their quantifi-

cation through mass spectrometry. Labeled approaches are further subdivided

based on the stage of mass spectrometry where quantification occurs:

• In MS1-based labeling, peptides from different conditions are chemically

tagged before the LC-MS/MS analysis, so there are shifts in their m/z ratios.

These labeled peptides are then co-analyzed in a single LC-MS/MS run,

and the quantification is done in the MS1 stage by comparing the isotopic

variants in the MS1 spectra, with each variant representing a different

condition [3]. Techniques such as ICAT, SILAC, and ICPL are among this

category’s most widely used ones [3].

• In MS2-based labeling, the quantification occurs in the MS2 stage. Here,

peptides are labeled with tags that not only change their m/z ratios but

also release reporter ions upon fragmentation. This makes it possible to

quantify relative protein abundances in a single LC-MS/MS run from all

conditions - usually, up to 11 samples can be in one experiment when using

TMT [3, 10].

Label-free methods In label-free quantification (LFQ), spectra for different

samples are obtained from separate LC-MS/MS runs, contrary to labeled meth-

ods, and do not use any labels. In data-dependent acquisition (DDA), the most

abundant precursor ions are selected for fragmentation. On the contrary, Data-

independent acquisition (DIA) selects a window of m/z ratios for fragmentation

at each chromatographic time point, which can increase the number of quanti-

fied peptides selected without bias. The downside of DIA is that the resulting

fragmentation spectra are more complex and harder to interpret than those from

DDA; therefore, DDA is more commonly used [3, 11]. In DDA LFQ methods, the

quantification can be divided into two main categories:
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• Spectral counting estimates the protein abundance from the number of

MS/MS spectra of peptides mapped to the given protein [11].

• Peak intensity-based approach quantifies the proteins according to the

ion intensities of the detected peptides [11].

Zhao et al. [11] comprehensively evaluated the performance of 7 commonly used

LFQ methods and found that MaxQuant in MaxLFQ mode had the best accuracy

and precision but had high missing values. Meanwhile, using SEQUEST as a

search engine, the Proteome Discoverer performed superiorly in quantifiable

low-abundance proteome coverage [11].

However, LFQ bears an inherent problem - samples are not directly compara-

ble due to many unwanted variations and biases, so normalization is needed [3,

12, 13, 14]. So-called spike-in standards can help with this problem of absolute

protein quantification in LFQ experiments. Nevertheless, this method increases

the costs and complexity of the process [3].

When it comes to choosing between labeled and label-free methods, several

factors need to be considered:

• Number of samples: Labeled methods are typically limited in the number

of samples that can be analyzed simultaneously, while LFQ offers greater

flexibility in this regard.

• Accuracy and precision: Labeled methods generally provide higher accu-

racy and precision, especially for low-abundance proteins.

• Cost and time: Labeled methods require specialized reagents and expertise,

making them more expensive and time-consuming than LFQ.

• Research question: The specific research question and the desired level

of quantitative accuracy will influence the choice of method.

Labeling methods are the way to go when one has money, time, and few

samples or when high accuracy is needed. On the other hand, when one has

many samples, LFQ is the better choice, and it is also more cost-effective and less

time-consuming. Another advantage of LFQ is that it requires less specialized

manipulation and treatment of samples, which lowers the risks of altering the

proteins in any manner in the labeling process [15].
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Chapter 2

Proteomic Data Preprocessing

Once the proteins and their abundances are known, it is usually desired to apply

certain cutoffs for minimum peptide numbers matched to specific proteins to

increase the reliability of the data [3]. Often, software tools mentioned earlier

responsible for identifying and quantifying proteins allow setting these cutoffs

and providing values for the number of peptides matched to each protein, Q values

measuring the false discovery rate (FDR) for each protein, and other valuable

statistics. However, data quality checks need not only rely on these tools, and

other software such as MsQuality developed by Naake, Rainer, and Huber [16]

can be used to assess the quality of the raw data.

It might also be desirable to inspect the data visually and perform some

exploratory data analysis (EDA) to understand the data better. In our case of

passerine sperm, we noticed that the proteins with the highest intensities across

species were HBAA and LOC100222646, which are blood proteins and should not

be in our sperm samples, indicating blood contamination.

2.1 Normalization
Nevertheless, as mentioned earlier, expression data in the current state are not

directly comparable, and normalization is needed. This step is crucial as choosing

different normalization methods can lead to different conclusions in subsequent

analyses [17].

Normalization aims to deal with systematic biases in the data arising from

technical variations, such as differences in sample preparation and handling,

spectrometer calibration, or even temperature changes. Unfortunately, the exact

reasons for these biases are often unknown and, therefore, cannot be accounted

for by adjustment of the experimental design [18].

Many of the normalization methods used in proteomics come from transcrip-
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tomics. Most of these methods assume that most proteins are not differentially

expressed, but this does not always hold [18, 19].

Some of the most popular normalization methods are described below.

Quantile Normalization Quantile normalization aligns the distribution of

protein expression levels across multiple samples. For n samples, this technique

adjusts the expression so that the distribution of quantile values is consistent,

forming a line in n-dimensional space along the unit vector
1√
n

(1, . . . , 1). The

k-th quantiles for all samples qk = (qk1, . . . , qkn) are projected onto the unit

diagonal d = 1√
n

(1, . . . , 1) as follows:

projdqk =
⎛⎝ 1

n

n∑︂
j=1

qkj, . . . ,
1
n

n∑︂
j=1

qkj

⎞⎠
as described by Bolstad et al. [20].

Median Normalization This method assumes that the samples are proportion-

ally related and share equivalent medians, adjusting the data by a scaling factor

accordingly [18].

Cyclic Loess Normalization In Cyclic Loess normalization, each pair of sam-

ples is MA-transformed. Log-ratios M are plotted against mean log intensities

A and then normalized iteratively. Specifically, Cyclic Loess cyclically performs

this transformation, iterating through all possible sample pairs and repeating the

cycle three times to ensure stability [18].

Variance Stabilizing Normalization (VSN) Originally developed by Huber

et al. [21] for microarray data, VSN is based on the assumption that the variance

of the expression levels is proportional to the mean. This method aims to make

the variances nondependent of their mean and bring it to the same scale for

all samples [18]. It assumes that this transformation can be achieved through

affine-linear mappings. For which the parameters are calculated using maximum

likelihood estimation [21].

The methods mentioned here are manipulating data after log2-transformation

(except VSN) as other methods in literature usually do. R packages such as pro-
teiNorm[22] or NormalyzerDE[23] provide user-friendly interfaces to normalize

proteomic data using several methods of choice. Nevertheless, choosing the right

normalization method is not an easy task. NormalyzerDE and proteiNorm provide

visualizations comparing the results of different normalization methods, which

10



can be used in decision-making processes to determine which method to use.

Providing Pooled intragroup Coefficient of Variation (PCV), Pooled intragroup

Median Absolute Deviation (PMAD), Pearson and Spearman correlation, MA-

plots, and several other metrics. Descriptions on how to interpret them can be

found in [23].

However, the normalization method should not be chosen only based on these

metrics, as they can be slightly deceiving. For example, it is to be expected that

Cyclic Loess will have the nicest MA plots, as this is the metric against which

the algorithm optimizes. Simultaneously, having a high intragroup correlation

is meaningless if the intergroup correlation is also very high. For these reasons,

Valikangas, Suomi, and Elo [18] compared the performance of popular normaliza-

tion methods on spike-in datasets. VSN normalization consistently outperformed

other methods in terms of AUC when finding differentially expressed proteins;

also, it has decreased PMAD significantly more than other methods and had the

highest Pearson correlation coefficient between technical replicates. Chawade,

Alexandersson, and Levander [23] also considered VSN one of the most suitable

methods for the normalization of proteomic data. However, VSN consistently

underestimated the logFCs of the spike-in proteins in benchmarks by Valikangas,

Suomi, and Elo [18], which can be seen as a potential downside, particularly when

examining the exact logFCs of proteins as they note.

For our data, we have chosen the VSN normalization, as it had good perfor-

mance based on the report generated by NormalyzerDE and also because it had

great performance in the benchmarks mentioned earlier.

2.2 Missing Values
Unlike RNA-seq, proteomics is significantly challenged by missing values (MVs),

detrimentally affecting the outcome of downstream analyses and even rendering

certain methods inapplicable due to their inability to handle MVs. This issue is

primarily attributed to protein abundances falling below the detection threshold

and various technical constraints of mass spectrometry; this includes sample

loss during preparation, peptide miscleavage, and poor ionization efficiency [24].

Furthermore, MVs in proteomics can stem from coverage missingness, which

occurs when a protein is not observed in any sample despite its known presence,

in addition to inconsistency missingness, where a protein is observed in at least

one instance but not others [25].

MAR and MNAR MVs can be broadly classified into missing at random (MAR)

and missing not at random (MNAR). MAR MVs often arise from technical limita-

tions and stochastic fluctuations independent of protein abundance [24]. Con-
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versely, MNAR MVs are typically abundance-dependent, attributed to the non-

measurability of specific peptides [24]. The distinction between MAR and MNAR

is crucial for understanding the underlying reasons for data incompleteness and

informs the selection of appropriate mitigation strategies.

Addressing Coverage Missingness Coverage missingness presents a great

challenge in proteomics. Unlike inconsistency missingness, which can be some-

what mitigated through missing value imputation (MVI) algorithms, coverage

missingness requires more comprehensive approaches. These may include data

integration techniques, leveraging observed proteins alongside reference net-

works and prior knowledge to infer the presence of unobserved proteins [25].

However, in many cases, compensating for coverage missingness is unnecessary,

as the focus is on the proteins observed, such as in our case of passerine sperm

cells.

As dealing with inconsistency missingness is a more common problem [25],

we will focus on this type of MVs in the following section and how to handle

them.

2.2.1 Missing Values Imputation
Many different imputation methods have been developed to address MVs in

proteomics, each with its strengths and weaknesses. The choice of imputation

method is crucial, as it can significantly impact the results of downstream analyses

[24, 25]. Nevertheless, it is nontrivial to determine which method will yield the

most accurate results. Examples of imputation methods are provided below. See

Jin et al. [24] and Kong et al. [25] for more comprehensive reviews.

Naïve Imputation

Naïve imputation is a straightforward approach where missing values are filled

in with simple guesses like zero, mean or median values. While easy to do, using

a constant value can sometimes make it hard to see differences between samples,

which might not be great for understanding actual protein levels. Some basic

methods, like MinProb, work well when data mostly lacks information because

it’s not strong enough to be detected. This method puts in random values that

are very low, fitting for when missing data is because something was too faint to

see. Surprisingly, a method called SampMin, which puts the lowest seen values in

place of missing ones, has shown to be pretty effective, especially when trying

to find out which proteins are more or less abundant than usual. This might be

because it puts in values close to what the instruments can just about detect,

making it a more accurate guess for missing data due to low intensity [25].
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Feature-based and Ensemble Imputation Approaches

Feature-based and ensemble imputation approaches offer more advanced strate-

gies for handling missing values in proteomic data, with methods like K-nearest

neighbors (KNN), GSimp, and Random Forests (MissForest) being particularly

effective [25], will be here described in more detail. It is important to note that

many other methods exist [25, 24].

K-nearest Neighbors (KNN) KNN imputes missing values by identifying the

k closest samples in the dataset and averaging their values to fill in gaps. This

method considers the similarity between samples based on features like protein

levels, making it particularly useful for datasets where similar samples can provide

meaningful information for imputation. KNN variants, such as KNN-Euclidean

(KNN-EU), KNN-Correlation (KNN-CR), and KNN-Truncation (KNN-TN), adapt

the basic approach to more closely fit the specific characteristics of proteomic

data, offering flexible solutions to address Missing at Random (MAR) and Missing

Not at Random (MNAR) types of missingness [25].

GSimp GSimp enhances the Quantile Regression Imputation of Left-Censored

Data (QRILC) by incorporating a two-step refinement process. This approach

uses an elastic net model combined with a random Gibbs sampler to provide a

more accurate imputation for data assumed to have linear relationships. GSimp

is particularly effective for datasets where parameters are estimated under the

assumption of normality, but its accuracy can be bad if the data does not adhere

to these assumptions [25].

Random Forests (MissForest) R package MissForest[26] utilizes the Random

Forest algorithm to handle missing data by constructing multiple decision trees

and using their aggregated predictions to impute missing values. This method has

shown to perform exceptionally well with MAR data [25, 24], outperforming other

imputation methods in terms of the ability to recover the original distribution

of the dataset. While it may not be as effective for left-censored MNAR data

compared to QRILC, MissForest’s robustness makes it a preferred choice for

proteomic datasets that contain a mix of MAR and MNAR missingness [25].

Kong et al. [25] in their paper provide a decision tree as to which method

to use under what circumstances. However, this decision tree is not based on

rigorous benchmarking but on assumptions about the methods and data. Jin et al.

[24] tested the performance of several popular imputation methods on proteomic

data where they introduced different rates of MVs and their types. They found
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that MissForest consistently outperformed other methods with the lowest NRMSE,

high TPs, and average FADR < 0.05.

Nevertheless, caution is needed when using Random Forest imputation meth-

ods, as when the percentage of MVs is too high (e.g., > 30%), the imputation

can be inaccurate and misleading. Regardless of the chosen method, the yield of

an experiment will increase as sensitivity is expected to increase in subsequent

analyses, but unfortunately, the false discovery rate will increase too, and one

has to account for this fact [27].

2.3 EDA and Visualizations
Now that the proteomes are directly comparable, starting with a deeper ex-

ploratory analysis (EDA) is possible. First of all, it might be helpful to view

correlations between samples as one can detect outliers or other issues in the data.

From figure 2.1, it can be seen that several samples such as S7, S19, S52, and several

others seem to be exhibiting low overall correlation - they have low intragroup

and even outgroup Pearson correlation even though the other replicates seem

to be okay. This could have occurred for several reasons, such as poor sample

extraction, preparation, or contamination. Keeping data like that could obscure

the results by falsely increasing variance.

Both from figure 2.1 and 2.2 outlier species with distant proteome profiles can

be seen - e.g., Pyrrhula pyrrhula, Locustella lusciniodes or Lanius collurio. These

species might have curious evolution histories or phenotypes forcing proteome

to be that way, and it might be interesting to investigate them further.
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Figure 2.1 Pearson correlation plot of the passerine sperm cells proteome samples.
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Figure 2.2 Principal component analysis of the passerine sperm cells proteome samples.
Only two samples (ones with the highest pairwise Pearson correlation) are shown per
species, as the plot would be too cluttered otherwise.

15



2.3.1 Gene expression phylogenies
Brawand et al. [28] showed that gene expression data (from RNA-seq) can be

used to infer phylogenetic relationships between mammalian species. First of

all, the gene expression profiles cluster by tissue and then secondly by species.

Suggesting that regulatory changes accumulate over time, such that more closely

related species have more similar expression levels. This also shows that gene

expression has strong tissue and even sex-specific constraints [29]. Pal, Oliver,

and Przytycka [29] reached the same conclusion when exploring gene expression

in the Drosophila genus. Nevertheless, testis showed the highest variance, and

the reconstructed phylogeny did not perfectly match the real phylogeny in the

case of the mammals [28].

Both teams used Spearman correlation to measure the similarity between

gene expression profiles and then constructed a phylogeny using the neighbor-

joining method from the distance matrix. For proteomics normalized and log2-

transformed data, we have considered using Euclidean distance as a more ap-

propriate metric. They used Spearman correlation because it is more robust to

outliers[28, 29], but in log2-transformed data, this problem diminishes. Further-

more, using Spearman correlation on VSN normalized data would have the same

result as on unnormalized data, as VSN, in the end, does a generalized logarithm

of affine-linear mappings on the vectors. When x is greater than y, then too

glog2(ax + b) > glog2(ay + b), implying that the ranks of the vector would not

change. Therefore, the Spearman correlation would be the same.

As Witten [30] explains, squared Euclidean distance is equivalent to a log-

likelihood ratio statistic under a Gaussian model for the data. Given the model

Xij ∼ N(µij, σ2), Xi′j ∼ N(µi′j, σ2),

we have the log-likelihood ratio statistic for testing H0 : µij = µ′
ij against

Ha : µij ̸= µ′
ij , it is proportional to

p∑︂
j=1

(︃
Xij − Xij + Xi′j

2

)︃2
+

p∑︂
j=1

(︃
Xi′j − Xij − Xi′j

2

)︃2
∝

p∑︂
j=1

(Xij − Xi′j)2

= ||xi − xi′ ||2.

This demonstrates that squared Euclidean distance is a natural choice for data

following a Gaussian distribution as it corresponds to the log-likelihood ratio

test statistic under the null hypothesis. Thus, in the context of normalized log2-

transformed proteomics data, Euclidean distance may provide a more sensitive

and accurate reflection of the phylogenetic relationships inferred from gene

expression levels.
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Unfortunately, Pal, Oliver, and Przytycka [29] did not mention how they han-

dled having more replicates for each species, but Brawand et al. [28] constructed

all possible phylogenies where the species profile was represented by one of the

replicates. After that, a majority-rule consensus tree was constructed from these

phylogenies. However, this method is not feasible when the number of species

and replicates is high. In our case of passerine sperm cells, this would amount

to 334
possible phylogenies, which are too much to calculate. Therefore, using

the Monte Carlo approach can be appropriate for such cases or simply averaging

the replicates for each species and constructing the phylogeny. Nonetheless, we

could not obtain a meaningful majority-rule consensus tree from the Monte Carlo

approach as our data had too much variability. Therefore, we have calculated the

average tree [31] using the phytools package [32] in R. After obtaining the tree,

we have compared it to the real phylogeny of the species. This can be done using

phytools cophylo function.

As constructing phylogenies from genomic data is a tedious and time-

consuming job, I have developed an open-source Python package PhyloBuilder1

that can speed up the process of obtaining relevant FASTA files and aligning

them for the subsequent tree construction.
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Figure 2.3 Comparison of the real phylogeny (1000 trees were downloaded from
www.birdtree.org and average tree using phytools was computed from them) of the
species and the phylogeny constructed from the proteomic data.

1https://github.com/Desperadus/PhyloBuilder
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Chapter 3

Downstream Analysis

After data preprocessing, one can finally start analyzing the data to obtain in-

formation regarding the phenotypes. This chapter describes several methods

that can be used for this purpose. First, an explanation of enrichment analysis is

needed, as this method will be used later to interpret the results from subsequent

methods.

3.1 Enrichment Analysis
Enrichment analysis is a method used to identify genes, proteins, or metabolites

over-represented in a set of interest compared to a background set. The set of

interest is usually a list of genes that have the same function or are involved

in the same pathway [3]. This is done because after the differential expression

analysis, OU modeling, or machine learning, we have a list of genes that showed

up as significant (differentially expressed, under selection, or important for the

model predictions), that we want to interpret. As discussed in the seminal work

by Subramanian et al. [33], traditional gene expression analysis methods, which

might focus on individual genes showing, for example, significant differential ex-

pression, face several limitations. These include the modest biological differences

being obscured by noise, the uneasy task of interpreting long lists of significant

genes without a unifying biological theme, and the potential to overlook crucial

effects on pathways where sets of genes act together [33]. The authors argue

that cellular processes often impact multiple genes within a pathway, making

the collective effect more significant than changes in any single gene. Therefore,

looking at the data more holistically is needed, rather than focusing on individual

genes alone.
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3.1.1 Gene Ontology (GO)
The most widely used method for enrichment analysis is the Gene Ontology (GO)

project. GO terms are a set of predefined categories that classify genes and their

products into three main domains: Molecular Function, Cellular Component,

and Biological Process [3, 34]. Each GO term provides a specific descriptor

representing the role of genes and gene products, and the terms are connected

to other terms in a directed acyclic graph (DAG) structure, forming a hierarchy

[34]. When specific terms are over-represented in a set of interest than we would

expect by chance, it suggests that the proteins are together involved in a specific

biological process, molecular function, or cellular component. However, as Chen

et al. [3] points out, the GO terms usually represent ORF products rather than the

mature proteoforms themselves. One must carefully examine the GO terms to

ensure they relate to the proteoform of the corresponding gene. If specific protein

annotations are missing, homology-based methods can transfer annotations from

similar proteins, with several tools available for this purpose [3].

3.1.2 Pathways
Knowledge about regulatory pathways or diseases in which proteins participate

can also be utilized for enrichment analysis. Kyoto Encyclopedia of Genes and

Genomes (KEGG) is a widely used database representing molecular functions as

interaction networks [3, 34]. Beyond KEGG, Reactome is another resource for

pathway enrichment analysis. Reactome offers a detailed and curated database

of biological pathways across various organisms [3, 34]. Enrichment analysis

using pathways can provide a more detailed view of the biological processes and

pathways affected by the significant genes.

ClusterProfiler [34] is an R package designed for performing enrichment analysis

with GO terms or KEGG pathways. Additionally, it allows using the enricher and

GSEA functions for enrichment analysis with any user-provided gene annotations,

including those from databases like Reactome. The package also provides com-

plementary functions that enable the user to compare the results among different

conditions or groups and visualize the results as enrichment map networks, GSEA

enrichment plots, UpSet plots, and many more [34].

3.2 Differential Expression Analysis
Differential expression analysis is one of the most commonly employed methods

in the downstream analysis of gene expression data. It is used to identify whether

differences in means of genes between two conditions are significantly higher
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than one would expect by chance caused by biological or technical variation

[35]. For example, suppose one explores a particular type of cancer. In that case,

it is possible to compare the gene expression profiles of cancerous and healthy

tissues to identify genes that are up- or down-regulated in the cancerous tissue

with respect to the healthy tissue. This might provide valuable insights into the

molecular mechanisms of the disease and help find genes responsible for the

resulting negative phenotype, which drugs or other therapies could later target.

3.2.1 Statistical Methods
First of all, one must estimate the variance of the data. Non-log-transformed

data seem to have a mean-dependent variance, Pavelka et al. [35] propose that

the gene variances follow the power law relationship log(geneS.D.) = k ·
log(geneMean) + c + ϵ, where k is the slope of the power law, c is the in-

tercept, and ϵ is an error term. Other models propose modeling the variance using

a Quasi-Poisson or Negative Binomial distribution [15].

However, relying on the variance estimation from only one sample is not

ideal, as it is susceptible to sampling error and will not explain all of the biological

variation present in the condition. Therefore, having multiple replicates for

each condition is crucial for more robust results. Ooijen et al. [27] showed that

having less than three replicates has drastically decreased the predictive power

of differential expression analysis of peptides.

The limma package in R/Bioconductor is a popular tool for analyzing gene

expression data and estimating variances [36]. Limma employs an empirical

Bayes approach to moderate the gene-wise variances towards a common or

trended variance. This method borrows information across genes, leading to

more stable and reliable variance estimates, especially for experiments with

small sample sizes. Additionally, limma offers the ability to incorporate quality

weights and model correlations between samples, further enhancing the accuracy

and robustness of variance estimation and downstream differential expression

analysis [36].

Once the variances are estimated, one can further proceed with the differential

expression analysis. The most commonly used methods are moderated t-statistics

and F-statistics to assess the significance of differential expression for each gene.

For simple two-group comparisons, moderated t-tests are employed, comparing

the mean expression levels between the groups while taking into account the

estimated variances. For more complex experimental designs with multiple factors

or groups, moderated F-tests are used to evaluate the overall significance of

differential expression across the different conditions [36, 3, 27].

Regardless of the statistical model used, correcting for multiple hypothesis
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testing is necessary. The most commonly used methods for this purpose are

the Benjamini-Hochberg (BH) correction and FDR estimation from permutation

[3]. The result can be visualized using volcano plots, MA plots, or heatmaps.

Further, the results can be enriched, as mentioned in the previous section about

Enrichment Analysis 3.1. This might provide deeper insight into which types of

genes are differentially expressed and what the underlying motif is. For example

Harel et al. [37] have constructed proteomaps using KEGG pathway annotations

and found out that people who have responded to anti-PD-1 and TIL therapy for

melanoma had a higher expression of proteins involved in metabolism than those

who have not responded. In figure 3.1, one can see a visualization of the results

of differential expression between two conditions.

3.2.2 Available Tools for Differential Expression Analysis
of Proteomics Data

Many tools have been developed for analyzing expression data from microarrays

or RNA-seq, with most of them being directly applicable to proteomics data.

However, several tools have been made directly with the proteomics data in mind.

Bai et al. [38] comprehensively evaluated various R packages and other soft-

ware tools designed for differential expression analysis of LFQ proteomics data.

While these packages offer diverse functionalities and approaches, it’s crucial to

acknowledge that their benchmarking results may not be directly comparable due

to differences in normalization and missing value imputation methods. Therefore,

the performance of the differential expression analysis is not the only thing being

evaluated. They found that different packages resulted in different proteins being

identified as differentially expressed; however, this could have also been caused by

different normalization and MV imputation methods, as mentioned earlier. They

have concluded that MSstats is one of the most well-maintained and documented

packages with competitive performance, yet Perseus, prolfqua, and LFQ-Analyst
had the best performance in their benchmarks [38].

Lin et al. [39] have done benchmarking too on LFQ spike-in datasets, com-

paring EdgeR, DESeq2, limma, DEqMS, SAM and ROTS. They have found that

packages made for RNA-seq data such as DESeq2, EdgeR, and ROTS had the best

performance on their datasets. DEqMS seems to have better performance than

limma as it is able to incorporate information from PSM/peptide counts. Their

paper and supplementary materials also provide tables of the performances when

they used different normalization and MV imputation methods.

Nevertheless, benchmarking a larger number of packages together, with differ-

ent normalization and MV imputation methods on several datasets, is needed to

determine which methodological approach is the best for differential expression
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analysis on proteomics data.

Figure 3.1 Visualization of differential expression analysis of soluble mouse proteome
from nasal cavity done by Kuntová, Stopková, and Stopka [40] between male and female
mice. In the B plot, one can see the MA plot, where the x-axis represents the average
expression level of the gene, and the y-axis represents the fold change. In the C plot, one
can see the volcano plot, where the x-axis represents the log-fold change, and the y-axis
represents the − log10 of the p-value.
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3.3 Evolution Modeling
Selection acting on proteins was and still is mainly studied on the sequence level.

Methods like dN/dS ratios might give us insights about the selection acting on

the protein sequence/structure, altering its function. However, these methods do

not provide any information about the selection acting on the protein abundance,

which might be just as important for the phenotype [3, 2, 1]. Therefore, methods

that model the evolution of gene expression have been developed to study this

phenomenon.

In the past, methods of continuous traits have used inappropriate models that

only assumed a purely neutral evolution - Brownian motion (BM). Felsenstein

identified two scenarios where the BM model might not accurately represent

evolutionary processes: firstly, if selection continues over time, leading to corre-

lated evolutionary changes across successive branches; and secondly, if various

lineages experience identical selection pressures [41]. With this problem in

mind, Hansen proposed to model the evolution of a continuous trait using the

Ornstein-Uhlenbeck (OU) process, which can have multiple evolutionary optima

[41]. Butler and King [41] have developed an R package OUCH that can be used

to model the evolution of quantitative traits (such as gene expression) using the

OU process.

3.3.1 Ornstein-Uhlenbeck Process
Consider a quantitative trait X (e.g., gene expression, height, tail length) evolving

along one branch of a phylogenetic tree. The following differential equation

defines the OU process:

dX(t) = α[θ − X(t)]dt + σdB(t). (3.1)

This equation expresses an increment of X in an infinitesimally short time

interval. The change of X can be decomposed into two parts: deterministic and

stochastic:

• The term dB(t) represents a Wiener process, Butler and King [41] describe

it as a white noise; that is, identically distributed random variables with

mean zero and variance dt. The term σ is the intensity of the random

fluctuations. One can imagine this as being the drift of the trait due to

randomness.

• The term α[θ−X(t)]dt is the deterministic part of the process. θ is the local

optimal value of the trait in a fitness landscape, and α is the strength of the

pull towards the optimal value. This term makes it so that the trait evolves
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in the direction of the optimal value. When the trait is under significant

selection pressure, α will be high, leading to rapid evolution towards the

optimal value. If there is no selection pressure, α will be zero, and therefore,

the deterministic part of the process will completely disappear, and the

evolution of the trait will be purely a stochastic BM process.

Figure 3.2 Visualizations are taken from Butler and King [41]. In the first two plots, A
and B, one can see the effect of σ on the evolution of a trait that is not under selection.
In the second two plots, C and D, one can see the effect of α on the evolution of a trait
that has an evolutionary optimum θ. Each line represents a simulated evolutionary path
of a trait under the OU model, where the y-axis is the trait value, and the x-axis is time.

Before one can use the OU model to infer the historical values of a given trait

using maximum likelihood estimation or to test hypotheses about the selection

acting on it, one needs three components to do the analysis [41]:

1) A set of data that includes the trait values for the species of interest In

our case of passerine sperm cells, it is the gene expression values of a given gene

for each of the bird species. OUCH does not account for interspecies variation

and accepts only one value per species. Therefore, for the value of the gene, we

have chosen the mean of the gene expression values of the given gene in the two

species that had the highest pairwise Pearson correlation. Implications of not

accounting for the variation and potential circumventions will be discussed later.

So that the data are more comparable for runs with different genes, we have

made the expression values dimensionless as described by Cressler, Butler, and

King [42]. Gene expression values were divided by subtracting a minimum value

from the maximum value of a given gene’s expression values.
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2) A phylogenetic tree with branch lengths The tree can also be made

dimensionless by dividing the branch lengths by the overall tree depth [42].

3) One or more hypotheses about the selective regimes (amount and lo-
cation of optima) acting on the trait on each branch in the evolutionary
history The selective regimes should be chosen based on a biological hypothe-

sis and knowledge about the species in question. In our case of passerine birds,

we have chosen to model the evolution of gene expression under the OU process

with one optimum and more complex regimes, such as optima being different for

each superfamily.

The problem is when one has to select regimes for the branches before the

last speciation event, as the data are not available for the internal nodes of

the tree (species are extinct). This can be dealt with with additional biological

knowledge or logical anticipation, where one expects that when both species are

promiscuous, the last common ancestor is also promiscuous and will have the

same selection pressures acting. However, this is not, unfortunately, always the

case. Another option is to generate multiple possible "paintings" (by painting, we

mean assigning regimes (optima) to the branches) of the tree and then compare

the likelihoods of the data under each painting. Cressler, Butler, and King [42]

propose using a Monte Carlo approach to this. However, when the hypothesis

is compatible with more than one painting, the uncertainty in the regime as-

signments remains, and rejection of any painting does not force rejection of the

hypothesis [42].

Having these three components, one can use the OUCH package to fit the

model. The package uses a maximum likelihood approach to find the best fitting

values (i.e., the gene expression values in the ancestral nodes and the parameters

α, θ, and σ).

Hypothesis Testing

After fitting each model, for example, one for neutral evolution (pure BM stochas-

tic process), another for stabilizing/conserved selection (OU process with one

optimum), and one for more complex selection regimes - adaptive evolution (OU

process with more optima), one can use the likelihoods of the data under each

model to calculate statistical support. Given two models H0, H1, with parameters

θ0, θ1, and likelihoods L0, L1, the likelihood ratio is defined as L1/L0 = λ. By the

result of Wilks [43], the test statistic −2 log(λ) is asymptotically χ2
distributed

with degrees of freedom equal to the difference in dimensionality between the

two models (between the BM and OU models, this will be equal to the amount of

selective optima in the OU model) [29].
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Pal, Oliver, and Przytycka [29] consider gene to be under stabilizing selection

if the likelihood ratio test between the OU model with one optimum and the

BM model is significant, and under adaptive selection if the likelihood ratio test

between the OU model with more optima and the OU model with one optimum

is significant and also if it is significant against the BM model. However, this

type of hypothesis testing biases to report the gene as under the stabilizing

selection. Claiming that the gene is under stabilizing selection might not be the

best interpretation, as it is somewhat under some kind of selection to which the

extent and mechanism remains partially unknown.

As each gene is tested separately, the problem of multiple hypothesis testing

arises, so a correction is needed. One can, for example, employ the Benjamini-

Hochberg correction for this.

3.3.2 Approaches to OU Modeling and Their Limitations
Hansen originally proposed using the OU model for general continuous quantita-

tive traits. Bedford and Hartl have suggested that it might also be an appropriate

model for gene expression evolution [44]. Brawand et al. [28] have made one of

the first studies with a large impact using the OU model to study the evolution

of gene expression in 10 species of mammals and from 6 different tissues. They

found that most of the genes were under the stabilizing selection, and only a

smaller fraction was under adaptive selection. Nevertheless, different genes were

under different selection pressures when expressed in different tissues. This

suggests that the selection pressures acting on the gene expression are highly

tissue-specific - even more than species-specific.

Chen et al. [44] expand on methodology from Brawand et al. [28] where

they studied evolution across 17 mammalian species. They also considered using

the OU model to predict deleterious levels of gene expression and tested it on

identifying a gene responsible for muscular dystrophy.

However, the OUCH package only allows one to input one value for each

species, which in turn cannot account for the intra-species variation. For this

reason, [29] have developed an R package EvoGeneX, which uses additional

parameter γ2
to account for the intra-species variation. Unfortunately, the

package has incorrectly declared dependencies, making installation difficult and

requiring a repository fork. Also, it does not provide a function to easily create

the regime assignment table, which OUCH does.

When inspecting the equation 3.1, one can see that the OU model is addi-

tive in the stochastic part, meaning that when the given feature is, for example,

equal to 1000, then its evolution to value 2000 would be just as likely as its

evolution from 10000 (if it ever were to reach this value) to 11000, when given the
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same amount time to evolve neutrally. In the case of RNA-seq data normalized

using TPM or RPKM methods, we do not expect the evolution of gene expression

to follow an additive model; rather, it tends to be multiplicative. Evolutionary

changes, such as modifications in the promoter region or enhancer sequences (or

proteins acting on them), typically alter gene expression through multiplicative

factors. This is because changes in transcription factor affinity usually affect

gene expression proportionally by a certain percentage, not incrementally in an

absolute way. Therefore, taking a logarithm of the expression values might be a

more appropriate scale for the OU model, as additive changes in the log scale are

multiplicative in the original scale. Pal, Oliver, and Przytycka [29] and Brawand

et al. [28] in their papers do not do this transformation to their data (at least it

is not described in their methodology and supplementary materials); however,

Chen et al. [44] have used a log-transformed data.

We could not find any papers that would have used the OU model to study

the evolution of gene expression values obtained from LC-MS/MS proteomics

data. Based on the previously discussed section, we have used VSN normalized

data, which are already log-transformed, and we have used the OUCH package

to model the evolution of gene expression in passerine birds. We have also tried

doing the same analysis on exponentiated data from the VSN normalization, and

interestingly, the results did not significantly differ when testing for constrained

evolution. However, in a few cases, the results were very different. For example,

in the case of the EZR gene, the protein was under stabilizing selection (stabilizing

according to Pal, Oliver, and Przytycka [29] interpretation of test results, described

earlier) when using the log-transformed data (BH adjusted p-value < 0.05) but

not when using the exponentiated data.

When doing the OU modeling of adaptive evolution, where the optima were

selected differently for each bird superfamily, we failed to find any statistically

significant genes that would be under adaptive evolution (when compared to the

stabilizing selection model). We hypothesize that this could have occurred due to

several things:

• The adaptive evolution of the sperm proteome is not so dependent on the

bird superfamily but rather on the species itself and more on its mating

strategy. This assumption is supported by section 2.3.1, where we have

shown that the proteomes follow the phylogeny of the birds only in a

limited way.

• The adaptive model is more complex (has more degrees of freedom) than

the stabilizing model; therefore, the likelihood ratio test is less in favor of

the adaptive model.

• Overall, the data quality is insufficient to detect adaptive evolution.
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Figure 3.3 Painting of the regime assignments to the passerine bird tree. The painting
has eight optima, one for each bird superfamily and then for their common ancestors.
Note that there is no trifurcation in the tree; it is just that the branch length is too short
to be seen.

3.4 Machine Learning
Over the years, machine learning (ML) has proven to be a powerful tool for

analyzing large or highly complex datasets. It is used in various fields, from

economics to biology. ML can be utilized for several goals in the context of

gene expression data. One might care if a patient with cancer will respond to a

particular therapy, or even if the patient has cancer at all, and if yes, at what stage.

ML can also be used in explanatory analysis as certain algorithms can provide

insights into which features are important for the prediction of a given phenotype

and can then be considered as potential biomarkers.

Machine learning is mainly divided into two categories: supervised and unsu-

pervised learning.
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3.4.1 Supervised Learning
Supervised learning is a type of ML where the algorithm learns from labeled data.

For example, one can have a proteomic profile of a patient and a label indicating

whether the patient has cancer. The algorithm then learns to predict the label

based on the proteomic profile. And then, one can use the model to predict the

label of a new patient based on their profile. Bostanci et al. [45] have done exactly

this, but using the RNA-seq data, with the model’s accuracy being above 95% for

both cancer and stage prediction.

Here, we propose a basic pipeline for supervised learning on proteomic gene

expression data:

1. Data Preprocessing: Presumably, one of the most important things for

the model’s success is feature preparation when using gene expression data

rather than the actual choice of algorithm [45, 37, 46]. Gene expression

datasets usually contain hundreds if not thousands of features (genes); how-

ever, not all are relevant for predicting the phenotype. Therefore, feature

selection is crucial. One can utilize information gain to assess how well

individual features separate the classes based on entropy reduction when

dealing with categorical target variables. This method quantifies the de-

crease in entropy—representing disorder or unpredictability—achieved by

segmenting the dataset according to each feature, thus identifying those

that are most effective at predicting the target variable [45]. Another option

might be to use genes that are significantly differentially expressed be-

tween the conditions, as these genes might be important for the phenotype.

ANOVA-based feature selection can be used for this purpose [37]. Evolu-

tionary information can also be utilized to select features. For example,

Cheng et al. [47] have used genes whose response to nitrogen treatment

was conserved within and across different species when predicting the

efficiency of nitrogen metabolism. We hypothesize that results from OU

modeling can be utilized for this purpose as well. Lastly, one can utilize

packages explicitly designed for feature selection regardless of the data

type. One such example is FeatureWiz[48], which can add new features

using autoencoders and then select the most relevant features using the

SULOV method that finds highly correlated variables and keeps those with

the highest mutual information score with the target variable. Lastly, by

running a recursive XGBoost, it selects the most important features from

the SULOV selected features. Features can also be further transformed

using PCA, UMAP, SVD, autoencoders, or other dimensionality reduction

methods. However, one then loses the interpretability of the model as the

features no longer represent the individual genes.

29



Another common problem with gene expression data is that the number

of samples is too small, and even with smaller feature sets, the models

still overfit. To mitigate this, one can artificially enlarge the dataset. For

categorical target variables, one can use the SMOTE method to generate

synthetic samples of the minority class (but not only as it can be done on

the whole dataset) [45]. SMOTE generates synthetic samples by selecting

two or more similar samples and creating a new sample that is a linear

combination of the selected samples. For continuous target variables, the

problem is more complicated. However, few methods, such as SMOGN[49]
or Variational Autoencoders (VAE), have been developed to achieve this,

yet their use in practice is limited.

In our case of passerine sperm cells, data imputed from MissForest per-

formed better than when using original VSN normalized data with naive

zero imputation.

2. Model Selection: After the feature selection, one can proceed with the

data modeling. The choice of the model depends on the data and the

problem at hand. Random Forests (RFs) and Gradient Boosted Decision

Trees (GBDTs) have proven to be the most successful models for tabular

data. Nevertheless, they can be more prone to overfitting than other models.

However, one of the great advantages of these models is that they can

provide feature importance [50], which can be used for interpretability and

finding which genes are important for the prediction and, therefore, are

likely to be involved in the phenotype [3]. However, genes highly correlated

with these genes could have been removed in the feature selection process,

yet they could play a crucial role in the phenotype. Of course, non-ensemble

models such as SVMs, logistic or ridge regression, or deep neural networks

(DNNs) can also work well with expression data [45, 37], and also allow

for feature importance extraction when coupled with for example ANOVA-

based feature selection. Nonetheless, it is not as straightforward as with RFs

or GBDTs [51]. Tyanova et al. [51] have used SVMs to find proteins related to

specific breast cancer subtypes and their processing pipeline is implemented

in the Perseus[52] software. In the case of colon cancer predictions, 1D-

CNNs and Bi-LSTM models have achieved the best performance, even

beating out the Random Forest classifier [45].

3. Model Evaluation: It is always necessary to evaluate the model’s per-

formance on unseen data. The most common metrics for classification

tasks are accuracy, precision, recall, F1 score, and AUC-ROC. RMSE, MAE,

R-squared, or correlation coefficient can be used for regression tasks. The

evaluation needs to be done on a separate dataset that was withheld from
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the training process. Cross-validation can be utilized to evaluate the model

on the whole dataset accurately. The dataset is divided into k folds, and the

model is trained on k − 1 folds and evaluated on the remaining fold. This

process is repeated k times, and the results are averaged. This method can

provide a more robust evaluation of the model’s performance [45].

Of course, this pipeline is not universal and exhaustive, and one might need

to adjust it based on the data and the problem at hand. Nevertheless, it provides a

good starting point for supervised learning on gene expression data. We used this

to predict the sperm mid-piece length and other phenotypic traits of passerine

birds. With only 102 samples, we were able to get meaningful predictions, signi-

fying the relationship of the proteome with the phenotype. Unsurprisingly, when

trying to predict plumage score, the model made basically random predictions

(Pearson correlation of -0.05 using GBDT model and 0.02 using SVR), as the sperm

proteome is not expected to be related to the plumage.
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Figure 3.4 Plot of the observed sperm mid-piece lengths against the predicted values
of mid-piece lengths of passerine birds using the Support Vector Regressor (SVR). Group
k fold validation was done to evaluate the model. The model achieved an average of 0.73
Pearson correlation coefficient and 36.28 RMSE on the test sets. However, it can be seen
the model doesn’t generalize that well on rare expression profiles but works decently
well on common ones.

3.4.2 Unsupervised Learning
Unsupervised learning is a type of ML where the algorithm learns from unlabeled

data. Usually, the goal is to find certain patterns in the data, such as clusters of
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similar samples or features, or to reduce the dimensionality of the data. Unsu-

pervised learning can go hand in hand with exploratory data analysis, as it can

provide insights into the data structure and can aid with hypothesis generation

or help with data quality assessment. As shown in 2.3, we used PCA to visualize

the bird samples. Methods like t-SNE, UMAP or newly developed methods like

PaCMAP [53] can also be used for data visualization and clustering purposes.

However, it is important to note that methods like UMAP or PaCMAP assume

that the data points lie on a Riemannian manifold, and this assumption might not

always hold. Usually, these methods are used for single-cell transcriptomics data,

where the assumption is more likely to hold.

K-means is another unsupervised learning algorithm that can assign data

points to clusters. For example, it can be used to find subgroups of cancer patients

based on their gene expression profiles. However, K-means has several limitations,

such as the need to specify the number of clusters beforehand, the assumption

that the clusters are spherical, and the sensitivity to outliers. To find the optimal

number of clusters in K-means, one can use the elbow method, silhouette score,

or gap statistics.

Another popular method is hierarchical clustering, which creates a tree-like

structure (dendrogram) of the data points based on their similarity. When doing

hierarchical clustering on genes, one can find groups of genes that might be

co-regulated, co-expressed, or related to a given phenotype [51].

TDA methods utilizing algebraic topology, such as Mapper, can be used to

visualize high-dimensional data in a lower-dimensional space and find clusters or

topological features in the data. Li et al. [54] have used TDA to find and describe

subgroups of patients with type 2 diabetes based on their electronic medical

records (EMRs). Nonetheless, one can use proteome profiles instead of EMRs to

calculate the distance between the patients. Yet, TDA methods have not been

widely used in the context of proteomics, and this might be an exciting area for

future research as TDA is proving very useful in single-cell transcriptomics.
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Discussion and Conclusion

Discussion
This thesis explored the journey of interpreting and analyzing proteomic data to

understand phenotypic traits. The complexities of LC-MS/MS, protein identifica-

tion, quantification methods (both labeled and label-free), and the critical role of

data preprocessing in ensuring reliable downstream analysis were described, and

its potential shortcomings were discussed. Furthermore, several bioinformatics

approaches to obtain biological insights from the proteomics data were presented

with corresponding software tools to perform them.

However, these tools can differ significantly in their performance, and the

choice of the tool can significantly impact the results. Therefore, several de-

scriptions with corresponding assumptions and benchmarks of the tools were

presented here to aid in selecting the right software or algorithm. Unfortunately,

due to a lack of gold-standard datasets and usually a small sample size of com-

pared tools, the benchmarking results can be biased, and more work in this area

is needed to ensure that researchers can choose the right tool for their specific

needs.

Nevertheless, in many cases, VSN has proven to be a reliable normalization

method, beating other methods on several benchmarks and datasets. In the case

of missing values imputation, MissForest has shown to be a good performer for

data that contain both missing at-random and not-at-random values and GSimp

has proven to be a good choice for left-censored data.

Also, new adaptations of methodologies here have been proposed to analyze

proteomics data, such as constructing an evolutionary tree from proteomic pro-

files or using the Ornstein-Uhlenbeck process to model the evolution of protein

abundances. Several problems with the OU modeling were identified that had

not been addressed in previous studies, signifying the need for carefulness when

interpreting the results from these methods and further research. Lastly, machine

learning approaches were discussed, and how one can utilize them in overall pro-

teomic data analysis. Furthermore, how they can help with medicinal diagnostics

and biomarker discovery research was described.
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Conclusion
The field of proteomics has great potential to help us to uncover relationships

between proteins and phenotypic traits. However, the road to understanding these

relationships is long and complex, and many challenges need to be addressed,

as incorrect decisions can lead to misleading results. Also, analyzing the data

correctly still requires much work and expert knowledge, making it difficult for

researchers to utilize proteomics data to its full potential. Hopefully, this thesis

has provided a comprehensive overview of the field and the tools available to

researchers to make the journey easier.
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