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Introduction
The evolution of physics and derived natural sciences is only possible with im-
provements in how physical laws are written, interpreted, and used in the context
of their predictive power. A successful theory is distinguished by incorporating
interpretable constants, which derive their roots from a profound comprehension
of potential limitations. Often, an idea is formulated in full generality that applies
to a broad set of systems, but for most, except a few trivial ones, it is not expected
to be used in practice. In science and engineering, a successful method designed
for practical applications must rigorously consider two fundamental facets: the
complexity and computational cost for realistic systems, and carefully evaluate
the simplifications and reductions needed to satisfy the operational constraints
of its users.

When evaluating the trade-off between complexity and computational cost,
the pursuit of an optimal configuration for a specific task demands advanced
insights and intuition. This quest for optimality depends upon the capacity to
sustain the desired level of precision while minimizing associated costs or, con-
versely, adhering to acceptable costs while maximizing precision. The approach
of reducing the complexity of a particular model is one of the most essential
concepts during physical model creation and implementation.

One of the ways to capture physics and knowledge of natural laws into the
reduced models is through mathematics. The branch investigating geometry nat-
urally provides an elegant and often intuitive way to write complex theory in a
more approachable and compact manner. Geometrical interpretation also con-
nects multiple disciplines and allows us to visualize and interpret results, uncov-
ering relationships between physics and its mathematical language.

When reducing the complexity and dimensionality of models, incorporating
geometry becomes even more critical as a blindly constructed model reduction of-
ten lacks a theoretical framework and basis to anchor it within the laws of physics.
Geometry gives interpretability and forms a foundation for deeper understanding.

There are examples from history where scientists approached the relationship
of geometry and physics from both directions. A case of geometry yielding a phys-
ical theory can be illustrated by the formation of the general theory of relativity
[1]. Albert Einstein utilized the geometrical concepts of curved Riemann geome-
try when he formulated General Relativity in the early 20th century. Riemannian
geometry became crucial for Einstein to describe the curvature of spacetime as
being due to the presence of various forms of matter. On the contrary, Quantum
Mechanics became useful before its complete mathematical framework, functional
analysis, was developed. The immense importance and experimental evidence of
validity became the driving force behind improvements in operator theory and
mathematics of infinite dimensional spaces.

A typical way to create a reduced model is to formulate a series of equations
with a small set of fittable constants, e.g., material parameters. The correct values
in this set are then found by various methods, for example, by least square fitting
or gradient-based methods [2]. The resulting model is considered optimized and
can be used to simulate and model various scenarios using its predictive power.

With the emergence of machine learning (ML), a new way to construct re-

2



duced representations of physical relationships emerged. Instead of modeling an
equation that has been designed specifically to accommodate a small number of
fittable parameters, we can now use the original model in full generality and rep-
resent the building blocks as flexible functions with many parameters, optimizing
them by advanced techniques such as backpropagation. We are able to pivot from
optimizing a small set of physical constants to fitting a function with thousands
of parameters thanks to the improvements in ML achieved in recent years.

However, this new frontier of model construction comes with the risk of ’blind
fitting,’ where ML algorithms, with their flexible, functional forms and vast pa-
rameter spaces, can fit data without regard to any form of underlying physics.
While these models may deliver impressive results on training datasets, their abil-
ity to generalize beyond that and their interpretability can be severely limited.
This predicament often leads to models that are impressive at first glance yet of-
ten lack their primary purpose of providing trustworthy and immediately usable
information about the system of interest.

This thesis advocates for a more conscious and careful use of ML models in
capturing physical laws. The approach presented here emphasizes the importance
of interpretability and the integration of domain knowledge into the learning
process. By connecting theoretical principles with data-driven methods, we can
guide the learning algorithms to respect the constraints and symmetries inherent
in physical systems.

We aim for a paradigm where ML is not merely a statistical tool but a means
to extend our understanding of physics. By carefully crafting the architecture
of the models to mirror the structured knowledge of physics and implementing
regularization techniques inspired by physical insights, we can embed the essence
of physical laws into the models. This incorporation allows the models to learn
not just patterns but the governing principles coming directly from geometry and
mathematical laws.

The thesis first introduces basic concepts of ML to the audience with a back-
ground in mathematics, physics, or chemistry, presenting basic concepts like back-
propagation or a loss function. Later, we dive into the details of Hamiltonian
learning and chemical reactions, showing how ML impacts those fields.

The thesis provides an overview of three of the papers that were published
during the course of the PhD study program. The first one [3] is discussed in
Chapter 2, and its main results are summarized. The other two papers [4] and [5]
are the basis for the Chapter 3, and they offer two approaches to the modeling
of chemical reactions on the molecular level.
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1. Machine learning in science
Machine learning, a subfield of artificial intelligence, has helped advance a num-
ber of scientific disciplines in recent years. The advances in ML methods and
improvements in its critical components (e.g., better neural network architec-
tures) enabled computational systems to adaptively improve their performance
by assimilating information from data, thereby progressively refining their pre-
dictive or decision-making capabilities [6]. This also meant the necessity for the
development of firm theoretical foundations, which sought to comprehend the
computational and representational capabilities of neural architectures [7].

The advent of ML can be split across several epochs, beginning with simple
models, like perceptron introduced by [8]. The progress continued with notable
contributions in the conceptualization and development of Support Vector Ma-
chines (SVMs), which enriched the landscape of ML by introducing novel tools
for regression and classification, underpinned by the robust theoretical framework
of statistical learning theory [9]. Decision Trees [10], and subsequently Random
Forests [11], offered an alternative of simple, robust models, well equipped for
various data formats and a wide variety of tasks [12].

An era of ’deep learning renaissance,’ defined by the breakthroughs achieved
through multi-layered neural architectures, has consistently extended the frontiers
of feasibilities in ML [13]. This epoch has been characterized by the amplification
of model capacities and the augmentation of computational resources, which col-
lectively have led to unprecedented successes in tasks such as image classification,
natural language processing, and reinforcement learning [14].

1.1 Science and ML
The advances in computer science have been quickly translated to other sciences
that commonly use computing power to process, generate, and simulate data. In
scientific exploration, particularly within physics and chemistry, machine learning
(ML) has emerged as a helpful tool, dramatically altering traditional methodolo-
gies and enhancing the capabilities of researchers. The infusion of ML in these
fields synthesizes a new paradigm where predictive modeling, data interpretation,
simulation, and experimentation converge to accelerate discovery and innovation.

In physics, machine learning contributes significantly to areas demanding vast
computational resources or those involving incomprehensibly large data sets. One
such critical area is high-energy physics. Experiments in large hadron colliders
produce enormous amounts of data, which traditional data analysis methods
struggle to process. ML algorithms help in filtering and analyzing it, enabling
researchers to identify novel particles and understand fundamental forces of the
universe more efficiently [15].

Moreover, in the realm of condensed matter physics, ML assists in the ex-
ploration of phase transitions and the identification of material properties, tasks
that typically require intensive computational simulations [16]. Astrophysicists
equally leverage ML, employing sophisticated algorithms for the classification and
understanding of celestial objects, aiding in the deciphering of cosmic events from
data accrued through telescopes and space observatories [17].
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In chemistry, machine learning facilitates a new era of accelerated experi-
mentation and discovery. The field of chemical synthesis is notably impacted,
with ML models predicting possible reaction outcomes or recommending novel
pathways, thereby expediting the synthesis of desired compounds [18]. These
advancements are particularly pertinent in drug discovery, where ML algorithms
search vast chemical spaces to identify potential therapeutic compounds, signifi-
cantly shortening development timelines and reducing costs.

Furthermore, in materials science, a discipline interlinked with chemistry, ML
is instrumental in the discovery and design of new materials. By integrating
historical data on material properties, ML models can predict the properties of
unknown compounds, guide the synthesis of materials with desired characteristics,
and considerably lower the need for expensive and time-consuming physical trials
[19].

Quantum chemistry also benefits immensely, with ML models assisting in
solving Schrödinger’s equation for increasingly complex systems more efficiently
than traditional numerical methods, offering profound insights into molecular
behavior and interactions [20].

1.2 Neural Networks
In this thesis, we will be working with neural networks as building blocks. We
shall, therefore, briefly explain their functionality. Neural networks serve as in-
terpolators projecting inputs to outputs via a non-linear function parametrized
by a vector of so-called weights. As they consist of several interconnected layers
of neurons, they can be seen as compositions of high-dimensional mappings. Per
the Universal Approximation Theorem, every continuous function from Rn to Rm

can be approximated by a neural network with one hidden layer and a non-linear
activation function [21, 22, 23]. These multi-layered architectures have shown a
great capability for tasks like image recognition, natural language processing, and
other applications of deep learning [13].

To understand how a simple neural network works, let us consider a perceptron
first. The input of a perceptron is a vector of numbers x = [x1, x2, . . . , xn] and
a vector of weights w = [w1, w2, . . . , wn]. On the output, a scalar product is
computed, including a bias term b as

z = w1x1 + w2x2 + . . .+ wnxn + b = w⊤x + b (1.1)

This output z is then passed through an activation function f . Since a perceptron
was initially a binary classifier, a step function was used

f(z) =
⎧⎨⎩1 if z ≥ θ

0 if z < θ.
(1.2)

To iteratively train the perceptron, we use a simple training algorithm. Assume
yj is the output and tj is the ground truth value for a datapoint xj. For all
misclassified data points, we then do the weight update:

wi+1 = wi + tjxj
i , (1.3)
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while for correctly classified examples, we do nothing. This forms a simple bi-
nary classifier that can only guarantee the classification of linearly separable data.
While its initial use was, therefore, limited, by modifying and extending percep-
tron, we can build the modern theory of neural networks.

Instead of classifying the data, we can, with a different choice of an activation
function, predict a continuous value. Moreover, by stacking multiple perceptrons,
we can increase the ability of a network to capture more complex relationships,
creating a so-called multi-layer perceptron (MLP), sometimes named a dense or
fully connected neural network. An MLP is, to this day, an important component
of many deep learning architectures and designs. Contrary to a single percep-
tron, an MLP contains the so-called hidden layers, the intermediary outputs of
perceptrons before the final layer. The output of a perceptron in a hidden layer
becomes a vector, and weights become matrices W. The equation then may look
like:

y1 =f(W1x + b1)
y2 =f(W2y1 + b2)
y3 =f(W3y2 + b3)
y =W4y3 + b4

(1.4)

See Figure 1.1. The mathematical operation each neuron typically carries out can
be understood as an affine transformation of the inputs followed by the application
of a non-linear activation function [14]. Parameters of the affine transformation
(weights and biases) are then subject to the optimization procedure, where they
are sought so that a prescribed loss function is minimized. The activation function
plays a crucial role as it provides non-linearity to the neural network, enabling it to
approximate more complicated functions. To understand how such extension can
be trained, we need to dive into concepts of loss function and backpropagation.

1.2.1 Loss function and Maximum Likelihood Principle
A loss function will serve as a measure of how far we are from the optimal outcome.
It is designed such that when the network predicts the correct value, the loss is
zero. An example of a popular loss is a mean squared error between the predicted
and actual values

MSE = 1
n

n∑︂
i=1

(yi − ŷi)2 (1.5)

where:

• n is the number of observations.

• yi is the actual value of the i-th observation.

• ŷi is the predicted value of the i-th observation.

A reader familiar with numerical mathematics may instead know this loss by the
term average l2 error.

There are, however, many more loss functions we can use. We need to look at
the Maximum Likelihood Principle to understand where they come from and lay
the foundations for deriving various types of losses suitable for different objectives
and tasks.
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Schematic of Neural Network
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Figure 1.1: The structure of a typical neural network. In this example, we show
a neural network used for energy prediction from 3D coordinates of a rigid body
from [3]

The common guiding principle in statistics and machine learning, the Max-
imum Likelihood Principle, is a fundamental parameter estimation concept. It
provides a principled way to determine the parameter values of a statistical model
that best fits the observed data. In essence, the Maximum Likelihood Principle
seeks to find the parameter values that maximize the likelihood of observing the
given data under a statistical model. Suppose the likelihood function is denoted
by K(θ, ti, xi) and depends on the model parameters, inputs to the model, and
true values. In that case, we may find the optimal parameters θ by maximizing
the likelihood of seeing true values for given inputs. We will continue to denote
likelihood as K to avoid confusing it with a loss function L.

θ̂ = arg maxK(θ) (1.6)

Assume a Gaussian (normal) distribution for the target variable y given the
input features X, and the model’s predictions are denoted as ŷ. We aim to
maximize the likelihood of observing the data (X, y). Since the data distribution
is normal, we can express the likelihood by

K(θ) =
n∏︂

i=1

1√
2πσ2

e− 1
2σ2 (yi−ŷi(θ))2 (1.7)

where n is the number of data points, σ is the standard deviation of the Gaussian
distribution, and yi and ŷi are the observed and predicted values for the i-th data
point, respectively.

7



We start by taking the logarithm since maximizing a function, and its loga-
rithm is equivalent:

lnK(θ) = −n

2 ln(2πσ2) − 1
2σ2

n∑︂
i=1

(yi − ŷi(θ))2. (1.8)

Equivalently, we can minimize the negative log-likelihood:

− lnL(θ) = n

2 ln(2πσ2) + 1
2σ2

n∑︂
i=1

(yi − ŷi(θ))2. (1.9)

This term is proportional to the Mean Squared Error (MSE) loss (1.5) since the
first term is just a constant dependent on the properties of the data distribution.
Hence, by maximizing the likelihood, we derive the MSE loss, which is commonly
used in linear regression.

Entropy and cross-entropy

Before we continue with different possible loss functions, let us recall two impor-
tant information theory fundamentals.

1. Entropy: The concept of entropy is defined in multiple areas of science. In
physics, entropy represents the disorder of a physical system. It can be properly
defined, has its physical unit (J/K), and is a fundamental quantity of thermody-
namics. Similarly, in the context of information theory, entropy is a measure of
the unpredictability or randomness of a system containing certain information.
It can be measured in bits and quantifies the average amount of information (or
uncertainty) in a random variable’s possible outcomes. The Shannon entropy [24]
H(X) for a discrete random variable with probability distribution P (x) is defined
as:

H(X) = −
∑︂

x

P (x) logP (x) (1.10)

Here, log is the logarithm base 2, and the sum is over all possible outcomes
of the random variable X.

2. Cross-Entropy: Cross-entropy, also defined in [24] is used to measure the
difference between two probability distributions, especially in machine learning
for classification problems. For two discrete probability distributions, P (the true
distribution) and Q (the predicted distribution), the cross-entropy of Q relative
to P is:

H(P,Q) = −
∑︂

x

P (x) logQ(x) (1.11)

This measures the average number of bits needed to identify an event from a
set of possibilities using the predicted distribution Q instead of the true distribu-
tion P .

Cross-Entropy Loss

In classification problems, where the goal is to assign data points to discrete
classes or categories, the Cross-Entropy Loss (also known as log loss) is a common
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choice. It is derived using a probabilistic model predicting each data point’s class
probabilities. The likelihood function for a binary classification problem is:

K(θ) =
n∏︂

i=1
(pyi

i · (1 − pi)1−yi), (1.12)

where n is the number of data points, pi is the predicted probability that the
i-th data point belongs to class 1, and yi is the actual binary label (0 or 1) for
the i-th data point.

To find θ̂, we maximize the likelihood, or equivalently, as previously, its loga-
rithm

lnK(θ) =
n∑︂

i=1
(yi ln(pi) + (1 − yi) ln(1 − pi)). (1.13)

To derive the loss it is more convenient to not maximize but minimize the negative
of previous expression:

− lnK(θ) = −
n∑︂

i=1
(yi ln(pi) + (1 − yi) ln(1 − pi)). (1.14)

This term is proportional to the Cross-Entropy Loss:

Cross-Entropy Loss = − 1
n

n∑︂
i=1

(yi ln(pi) + (1 − yi) ln(1 − pi)). (1.15)

Thus, by maximizing the likelihood of correct classification, we derived the Cross-
Entropy Loss, which is commonly used in logistic regression and other classifica-
tion models. Upon a closer look, the cross-entropy loss is just a special case of
a cross-entropy function, as a formula for cross-entropy, a measure of difference
between two distributions, can be estimated from examples by

H(p, q) = −
∑︂

i

p(i) log(q(i)). (1.16)

1.2.2 Backpropagation
Since the losses we just derived are differentiable, we may want to update model
parameters θ until they reach optimal value by gradient descent. This is advan-
tageous when a model itself can be differentiated with respect to its parameters
and when the exact formula for the optimal θ cannot be efficiently used. Since
we will be dealing with neural networks, let’s explain how to get the gradient of
the loss with respect to θ.

The mean squared error (MSE) loss for a single data point i is defined as:

MSEi = 1
2(yi − ŷi)2 (1.17)

where yi is the true target value, and ŷi is the predicted value for data point
i. The overall MSE loss for the entire dataset is the average of the individual
MSE values:

MSE = 1
N

N∑︂
i=1

MSEi, (1.18)

9



where N is the number of data points.
Backpropagation is used to efficiently compute the gradients of the loss with

respect to the network’s parameters (Wi and bi) such that we can then update
the parameters in the direction opposite to the gradient of the loss and this way
minimize the loss. The gradients are computed recursively from the output layer
back to the input layer. The output layer is simple, with only a trivial chain rule

∂MSE
∂y

= y − ŷ (1.19)

∂MSE
∂W4

= ∂MSE
∂y

· yT
3 (1.20)

∂MSE
∂b4

= ∂MSE
∂y

(1.21)

Hidden Layer 3 (Layer 3)
∂MSE
∂y3

= ∂MSE
∂y

· W4 (1.22)

∂MSE
∂W3

= ∂MSE
∂y3

· yT
2 (1.23)

∂MSE
∂b3

= ∂MSE
∂y3

(1.24)

Hidden Layer 2 (Layer 2)

Analogous to the third hidden layer. Evaluate ∂MSE
∂W2

and then trivially use chain
rule.

Input Layer (Layer 1)

Evaluate ∂MSE
∂W2

using previous values and then obtain derivatives with respect to
the weights in layer 1.

Since we now have the gradient with respect to the parameters, we can triv-
ially use gradient descent. This process iteratively refines the parameters and
minimizes the MSE loss.

1.2.3 Batched backpropagation
It is not practical to evaluate an average gradient of the loss for the entire dataset
and do an update afterward. Instead, an approach called Stochastic Gradient
Descent (SGD) works by splitting a large dataset into smaller chunks - mini-
batches and then performing incremental updates along the loss gradient of the
corresponding batch. This way, many smaller updates are done instead of one
large update, contributing to more stochasticity and higher stability. Aggregating
data into batches also introduces possible parallelization opportunities. Modern
hardware, such as Graphical Processing Units and Tensor Processing Units, can
greatly benefit from simple parallel operations such as matrix multiplications.
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Many variations of this algorithm exist, such as the Adam algorithm (short for
Adaptive Moment Estimation) [25] that works like SGD but utilizes momentum
term to make the optimization smoother. We shall use Adam optimizer in this
work. Although much time could be spent on the various techniques of deep
learning, we refer an interested reader to book [14] and proceed to the actual
application in Hamiltonian systems.

11



2. Hamiltonian systems
Hamiltonian equations stand as a significant area of interest in learning and rep-
resentation theory. This stems from their remarkable ability to model many
practical and complex systems efficiently. Mechanical systems, such as particles
or rotating bodies, are described very intuitively using Hamiltonians and are often
used in practical numerical implementations. Hamiltonian equations for control
and learning of mechanical systems are, therefore, extensively studied in domains
like robotics, where the effective representation of systems is of paramount impor-
tance. Quantum mechanics also leverages the Hamiltonian approach to describe
and formulate theories, connecting seemingly unrelated and very different fields.

Moreover, the Hamiltonian equations find an important application in the
field of molecular dynamics, a branch of simulations indispensable in studying
the movement and behavior of atoms and molecules. Understanding them allows
researchers to understand complex interactions on the smallest of scales. Even
for such abstract objects, the motion follows from the scalar Hamiltonian, more
specifically from its potential energy surface and initial conditions. In Chapter
3, we will also investigate Hamiltonian learning in this context.

In this chapter, we seek to improve on the fundamentals of Hamiltonian learn-
ing. We shall investigate how to represent the equation’s building blocks and
discuss some further constraints on the formulations. We note that we will use
an Einstein summation convention unless explicitly written.

A canonical Hamiltonian equations are usually written in the form

q̇ = ∂H(q,p)
∂p

,

ṗ = −∂H(q,p)
∂q

.

(2.1)

in this work, we shall not restrict ourselves to this canonical form, but we will
work with a more general formulation using Poisson brackets. More specifically,
we shall follow the GENERIC formalism described, for example, in [26]. A Pois-
son bracket is a skew-symmetric bilinear algebra on the space F(M) of smooth
functions on M given by

{•, •} : F(M) × F(M) → F(M). (2.2)

One of the requirements is the Leibniz rule

{F,HG} = {F,H}G+H{F,G}, (2.3)

while another important concept is the Jacobi identity

{F, {H,G}} + {H, {G,F}} + {G, {F,H}} = 0. (2.4)

A manifold equipped with a Poisson bracket is called a Poisson manifold.
We can interpret Hamiltonian dynamics as an evolution on a Poisson manifold.

An evolution of a quantity x can be written as

ẋ = XH(x) = {x, H}. (2.5)
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The above properties have desired physical consequences. Skew-symmetry triv-
ially implies the conservation of energy

Ḣ = {H,H} = 0, (2.6)
while the independence on an additive constant to energy is secured by the Leib-
nitz rule. An object called a Poisson bivector can be obtained by calculating the
quantity

L(dF, dH) := {F,H}. (2.7)
Jacobi identity can be written, in a coordinate-free approach, as

LXH
L = 0, (2.8)

where LXH
is a Lie derivative along the Hamiltonian evolution [27]. The Lie

derivative is a concept in differential geometry and tensor calculus, named after
the mathematician Sophus Lie. It is a tool used to measure the change of a
tensor field along the flow of another vector field. In simple terms, it helps in
understanding how a quantity changes as you move along the curves defined by
a vector field. The equation (2.8) guarantees not only energy but also a Poisson
bivector is conserved along the evolution.

We can immediately illustrate the approach we just built on canonical Hamil-
tonian equations (2.1). We would consider a Poisson bracket in a form

{F,H} = Lkl ∂F

∂xk

∂H

∂xl
, (2.9)

and assuming a local coordinate system xi where x represents the pair (q,p) get

ẋi = Lij ∂H(x)
∂xj

(2.10)

One immediately sees that by choosing L as

L =
(︄

0 1
−1 0

)︄
(2.11)

Hamiltonian canonical equations follow(︄
q̇
ṗ

)︄
=
(︄

0 1
−1 0

)︄⎛⎝ ∂H(q,p)
∂q

∂H(q,p)
∂p .

⎞⎠ (2.12)

We will further need one more definition. A Casimir C of a Poisson bracket is a
function such that the following holds

{C,F} = 0 ∀F (2.13)
One can then define a symplectic system as one with only constant Casimirs,
while a non-symplectic system has a non-constant Casimir. While a definition via
symplectic form is usually used, we will be working with this equivalent definition
as it is sufficient for our purposes, since will also only consider finite dimensional
systems in this thesis. The definition naturally introduces two types of systems:
symplectic and non-symplectic. There has been considerable effort in efficient
Hamiltonian learning in recent years, yet the vast majority of publications focused
solely on the symplectic version of the equations. Notable works include, for
example, [28, 29]. Learning the same equations but following different initial
assumptions, namely action minimization, can be achieved by Lagrangian Neural
Networks [30].
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2.1 Non-symplectic systems
Much less attention has been given to the learning of non-symplectic systems
despite their importance in physics. Poisson Neural Networks PNN [31] and our
alternative Direct Poisson Neural Network DPNN [3] are, to our knowledge, the
only attempt made to address this issue.

PNN work leverages the Darboux-Weinstein theorem [32] and seeks transfor-
mation to Darboux-Weinstein coordinates where the Poisson bivector is constant.
DPNN paper, on the other hand, chooses to address the issue differently. The
Poisson bivector and Hamiltonian are learned simultaneously. To ensure the
system we are learning obeys all physical laws, the Jacobi identity is either im-
plicitly conserved by the neural network design or imposed with an additional
loss function. The problem of respecting and incorporating physical constraints
into the learning process is a highly discussed matter in the field of representation
and learning. In the case of our work DPNNs, we are dealing with the identity
LXH

L = 0 that appears to be simple and potentially easy to fulfill in computer
simulations. However, the contrary is true in the general case. To understand,
we need to transition to a coordinate system and express the Lie derivative. In
local coordinates xi, the identity becomes

J ijl = Lkl∂L
ij

∂xk
+ Lki∂L

jl

∂xk
+ Lkj ∂L

li

∂xk
= 0. (2.14)

This is a partial differential equation for Poisson bivector L. To solve it gener-
ally in high dimension (e.g., for a complicated multiparticle system), we need to
implement an efficient PDE solver in high dimension. Since our L is represented
by a neural network, it is straightforward to implement the equation solver by
introducing the loss function

(︂
J ijl

)︂2
. To minimize the loss, or in ML language,

to train the network to find the minimum with respect to the loss is then a way
to solve the (2.14).

Another way to approach such constraints is to seek analytical solutions when-
ever possible. Luckily, the Jacobi identity has been investigated thoroughly in
the past, and there are some interesting analytical solutions in 3D and partially
in 4D as well [33, 34, 35]. Using the well-known matrix-vector isomorphism in
3D

L =

⎛⎜⎝ 0 −Jz Jy

Jz 0 −Jx

−Jy Jx 0

⎞⎟⎠ ↔ J = (Jx, Jy, Jz). (2.15)

Jacobi identity becomes a 3D vector equation

J · (∇ × J) = 0, (2.16)

with a general solution in the form

J = 1
ϕ

∇C (2.17)

where C is, interestingly, a Casimir mentioned above and ϕ is a scalar function.
Thus, instead of learning the entire Posisson bivector, we can just learn two scalar
functions in 3D, and the Jacobi identity constraint will be automatically satisfied.
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What happens when we ignore the Jacobi identity altogether? Will the learn-
ing suffer? Will the learned system possess some inherent defects for certain
applications? Can we sometimes omit the constraint entirely? Such a question is
a topic of major discussion in the ML community.

2.2 Constrains and ML
Incorporating various levels of external knowledge in machine learning systems
has been used to improve the process of learning and pattern recognition. A
thesis is that methods tailored to a specific task tend to perform better as parts
of the problem are encoded in the general structure of the algorithm. Another
perspective is to look at constraints as part of a more significant concept called
inductive biases.

Inductive biases collectively create a set of assumptions that the model uses
to model the relationship between the data and its predictions. [36]. Examples
may include a linear regression assuming an approximately linear relationship or
a convolutional neural network leveraging the spatial structure of an image in its
kernel design and general architecture [37].

There is an ongoing and active discussion about the amount and purpose
of inductive inductive biases in ML tasks. While it might seem that the more
information we correctly assume, the easier will be the task of parameter fitting,
the contrary is often the case. Let us illustrate the dilemma in a simple example
from physics.

We consider the task of learning the forces of an unknown system via a neural
network approximator. We seek to find a function f such that it matches an
unknown Hamiltonian gradient on a set of points qi. In other words, we are
trying to get the best approximation

f(q, θ) ≈ ∇qH(q). (2.18)

We are, however, facing a dilemma. We can construct a network with the number
of inputs equal to the number of outputs, which is equal to the dimension of the
system. The other way would be to proceed in a more sophisticated way, design
a scalar function H ′(q, θ), and after the inference, calculate its gradient with
respect to q obtaining forces. The gradient calculation can be done efficiently
using automatic differentiation. A physicist would likely prefer the second option
as it guarantees the conservation of Hamiltonian when evolving the trajectory
field in time (see equation (2.6)). However, is it, besides capturing conservative
property, also learning more accurate forces, or is an extra gradient operation
creating a complicated system that is more difficult to train? Luckily, we are
able to compare in this case, as such a model problem has been investigated thor-
oughly in the domain of molecular dynamics with machine-learned Hamiltonians.
Hamiltonians are routinely trained when their ground truth is based on quantum
calculations because the inference from a machine learning model is much faster
than the quantum calculation itself. Given enough training points, we can thus
predict the result of a quantum calculation within an acceptable error. The paper
[38] concludes, that directly learning forces is more data efficient than learning
energy and proposes the constrain inclusion by other means, namely by error
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correction. On the other hand, most of the currently benchmarked and used
models, reported, e.g., here [39], use the learning of energies mainly because the
issue of non-conservativeness is considered critical and outweighs the benefits of
data efficiency. It is, therefore, not an easy task to judge the importance of a
physical constraint in learning workflows, and the purpose of the calculation must
be understood before making the decision.

2.3 Jacobi identity
Our work [3] discusses the constraints of Jacobi identity. How does it influence
learning errors, and when is it worth including it? The three versions of Jacobi
identity enforcement were selected.

• (WJ) Ignore Jacobi identity. Training L(x) and H(x) without the Jacobi
identity. The loss function consists only of the L2 error measuring the
discrepancy between the training steps and steps obtained by implicit mid-
point rule (IMR) iterations with bivector L and Hamiltonian H(x) encoded
by the networks:

LWJ = cmov
∑︂

n

|((xn+1)exact − xn) − ((xn+1)NN − xn)|2 (2.19a)

where n goes over all training steps. Each point (xn+1)NN is calculated
from xn by the IMR method (using the L and H that are being trained and
encoded by the neural networks). Prefactor cmov is used to scale the loss
function to numerically advantageous values (typically we use cmov = 10).

• (SJ) Training L(x) and H(x) with soft Jacobi identity, where the L2-norm
of the Jacobiator (2.14) is a part of the loss function. The loss function is
thus

LSJ = LWJ + cJac
∑︂

n

∑︂
ijk

|J ijk(xn)|2, (2.19b)

where i, j, and k go over the dimension of the system (here 3, 4, or 6).
Prefactor cJac is used to scale the loss function into better numerical values
(typically, we use cJac = 10).

• (IJ) Training C(x) and H(x) with implicitly valid Jacobi identity, based
on the general solution of Jacobi identity in 3D (2.20). The loss function is
the same as in the case of the WJ method, but this time Jacobi identity is
valid automatically,

LIJ = LWJ. (2.19c)

Schematically, the approaches are explained in 2.1 and 2.2. The (IJ) approach
leverages the fact that the general solution of the Jacobi identity (2.16) in 3D is
known. The general solution of Jacobi identity (2.16) is

J = 1
ϕ

∇C (2.20)

for arbitrary functions ϕ and C, where C is a Casimir function and ϕ is usually
called the Jacobi last multiplier. This way, if we parametrize functions H, ϕ,
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@

Skew-symmetrization

Figure 2.1: Scheme SJ (Soft Jacobi) of the methods that learn both the energy
and Poisson bivector.

J

Figure 2.2: Scheme IJ (Implicit Jacobi) of the learning method implicitly en-
forcing Jacobi identity.

and C by neural networks, we can learn the system that is automatically Jacobi
compatible.

The main examples areas where it was illustrated were a 2D particle in a
harmonic potential, a rotating rigid body described by the angular momentum
m, a 3D particle in a harmonic potential, heavy top dynamics, and an interesting
case of Shivamoggi equations.

1. 2D particle in harmonic potential: This example is a case of a sym-
plectic 4-dimensional physical system guided by a Hamiltonian function
H(q,p) = q2 + p2. We can simulate and learn the system easily. The
Jacobi identity was prescribed and investigated by implementing WJ and
SJ approaches.

2. Rigid body rotation: An example of a 3D non-symplectic system. Has
Casimirs. All three possibilities, WJ, SJ, and IJ, were used.

3. Heavy top rotations: Six dimensional non-sympectic system. WJ and
SJ were used.

4. 3D particle in a harmonic potential Same as 2D particle. Symplectic
dynamics with WJ and SJ compared.

5. Shiwamoggi equation A system described in works of [40, 41]. 4D Hamil-
tonian equations with an interesting form of Jacobi identity. WJ and SJ
used.

As non-symplectic systems might be unfamiliar to some readers, we shall
introduce rigid body dynamics here in full detail. In the context of this problem,
define a rigid body as a rotating object that is isolated from the outside world.
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For example, a rotating satellite in a vacuum. The state variable is a three-
dimensional vector M. The Poisson bracket for this system is

{F,H}(RB)(M) = −M · ∂F
∂M

× ∂H

∂M
, (2.21)

Notice that any function of the magnitude of M is conserved by the bracket and
is, therefore, a Casimir. Consider F(M2). By realizing that

∂F(M2)
∂Mi

= 2∂F(M2)
∂M2

M2

∂Mi

= 2Mi
∂F(M2)
∂M2 (2.22)

We can arrive to

Ḟ(M2) = −Miϵijk
∂F
∂Mj

∂H

∂Mk

= −2MiMjϵijk
∂F(M2)
∂M2

∂H

∂Mk

(2.23)

which is an expression simultaneously symmetric and antisymmetric in i, j, there-
fore necessarily zero. This is initially a counterintuitive example as it analogously
means that changing the energy by adding any function dependent on the mag-
nitude of angular momentum does not change the dynamics. In other words, we
can only determine the Hamiltonian or the energy of the system up to a func-
tion of M2. This is what a Casimir can look like in practice. The tensor of
inertia, often denoted as II, is a symmetric 3×3 matrix for a rigid body in three-
dimensional space. It’s defined with respect to a chosen origin, usually the center
of mass of the body or a fixed point in space. The elements of this tensor are
given by integrals over the mass distribution of the body. Before we formulate
the Hamiltonian, we need to introduce a tensor of inertia. The tensor of inertia
is a matrix

I =

⎛⎜⎝Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

⎞⎟⎠ (2.24)

With this form of inertia, we could write Hamiltonian as

H(M) = 1
2MiIijMj (2.25)

We can simplify the Hamiltonian by diagonalizing the tensor of inertia, meaning
finding and working in a coordinate system in which the tensor becomes a diagonal
matrix. In a diagonalized form, the tensor of inertia is written as:

I =

⎛⎜⎝I1 0 0
0 I2 0
0 0 I3

⎞⎟⎠
Here, I1, I2, and I3 are the principal moments of inertia, and they correspond to
the eigenvalues of the original tensor of the inertia matrix. The axes correspond-
ing to these principal moments are orthogonal and are the eigenvectors of the
tensor. This simplifies the Hamiltonian to

H = 1
2

(︄
M2

x

Ix

+
M2

y

Iy

+ M2
z

Iz

)︄
, (2.26)
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The full equations can now be written as

Ṁ = M × ∂H

∂M
(2.27)

We also showcase results on the rigid body system. We choose to do so because
the system implements all three approaches to fulfill Jacobi’s identity. We will
compare two aspects of learning. How close is the predicted trajectory to the
simulated ground truth, and how well is L matched? To quantify the match of
Poisson bivector L, we will introduce a compatibility relation. From the original
equation (2.10), it is clear that the multiplication of L by a constant K and
simultaneous division of H by the same constant maintains the overall dynamics.
To account for this, the compatibility condition for two Poisson bivectors

J1 · (∇ × J2) = J2 · (∇ × J1). (2.28)

is used. This way, we can distinguish whether the J1 and J2 are the same, except
for the constant factor, or whether they represent different Poisson bivectors
corresponding to the different Hamiltonian functions. It is desired and useful to
learn the original Hamiltonian function and J that was used to generate data
rather than a combination of different functions that just happens to fit the data
well. The known true J2 is obtained by the introduced matrix vector isomorphism
and compared with neural network predicted J1 by minimizing loss

Lcomp = (J1 · (∇ × J2) − J2 · (∇ × J1))2 . (2.29)

The detail about the network training can be seen in 2.3 The trajectory error
is similar for all three learning approaches (see figure 2.4. From the shape of
distributions, it is hard to judge the best method in this case. Our paper [3] also
calculated the average errors that were in favor of soft Jacobi implementation,
with implicit Jacobi being the second best. However, the differences are marginal
and could differ with, for example, different random seeds. A more important
difference was when we investigated the error from the true Poisson bivector
Jtrue. The result in the figure 2.4 suggests that the IJ version learns evolution
represented by L much closer to the real one. Following (SJ), we can arrive at
the perhaps unexpected conclusion that the Jacobi identity does not significantly
improve the error itself, yet the building blocks are constructed more in line
with the theoretical framework. Finally, Figure 2.5 shows errors in learning the
trajectories M(t). All three methods learn the trajectories well, but in this case,
the SJ method works slightly better.

2.4 Distinguishing Dissipative Evolution
Since Jacobi identity does not decrease the overall error of a predicted trajectory,
why implement it at all? When is a situation we care about, the building blocks of
an evolution important? Is there a practical use besides theoretical investigation?
An interesting use case of a developed framework arises when a dissipative system
is considered. We implement the equations

Ṁ = M × EM − τ

2Ξ · EM (2.30)
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Figure 2.3: Comparison of an exact trajectory (GT) and trajectories obtained by
integrating the learned models. All three methods fit the trajectories well. Here,
as well in the subsequent figures, mx stands for the x-component of vector m.
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Figure 2.4: Rigid body: Compatibility errors for RB evaluated as log10 of the loss
function 2.29. That equality is satisfied if and only if the two Poisson bivectors de-
scribe the same Hamiltonian system. The distribution of errors is approximately
log-normal. The Compatibility error of the IJ method is the lowest, followed by
SJ and WJ.

Figure 2.5: Rigid body: Distribution of log10 of squares of errors in M.

where τ is a positive dissipation parameter and where Ξ = LT · d2E · L is a
symmetric positive definite matrix (assuming that energy be positive definite)
constructed from the Poisson bivector of the rigid body Lij = −ϵijkMk and energy
E(M).
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We now construct two sets of data. The first one is generated by non-
dissipative dynamics, and the second by dissipative ones. Then, assuming we
do not know anything about the dissipative term, how do we distinguish these
two sets? In other words, how do we know a dissipative evolution based only
on the data points and nothing else? We attempt to learn both evolutions by
assuming they are non-dissipative, i.e., fitting (2.10) to the points and investi-
gating the loss. The trajectory (loss in predicted M is in the figure 2.6. We can
see that while WJ learned the evolution well in this case, probably by learning
a vector field close to dissipative evolution, not being too constrained. The SJ
struggles to capture the dynamics well while IJ straight-up fails. The constrained
conservative learning is unable to find evolution close enough to the dissipative
Hamiltonian field. Such a method inspired by machine learning of GENERIC
with constraints can thus be used to effectively distinguish dissipative and purely
reversible systems without any prior knowledge about the underlying building
blocks in (2.10).

Figure 2.6: Dissipative rigid body dynamics: Distribution of log10 of squares
of errors in M. Learned by a non-dissipative model with different methods of
enforcement of Jacobi identity.

22



3. Chemical reactions
Booming progress in chemistry accelerated by machine learning has been a driving
force of innovation in recent years. From works that investigate drug candidates
screening databases of billions of molecules [42] to machine-learned potentials
that are extremely accurate and orders of magnitudes faster than methods used
just a couple of years ago [43].

One of the promising areas of interest is the intersection of Hamiltonian sim-
ulation and chemical reaction exploration. By knowing the Hamiltonian function
of an atomistic system, we possess all the necessary information needed to capture
the evolution of the investigated system in silico [44]. Using simulations with the
trajectories of atoms and molecules governed by the laws of motion derived from
the Hamiltonian, scientists can analyze and predict the outcomes of chemical
reactions, exploring the energy landscapes and identifying stable conformations
and transition states [45].

The simulation of Hamiltonian evolution for molecular Hamiltonians is called
Molecular Dynamics (MD). This temporal evolution provides insights into the
thermodynamic properties, reaction kinetics, and mechanisms that underlie com-
plex chemical processes. Moreover, it illuminates reaction barriers — critical indi-
cators of reaction rates and pathways. By estimating these barriers, researchers
can predict not only the feasibility of reactions but also their spontaneity and
product yield under varying conditions.

The reaction barrier can be defined as a difference in energy a system needs
to overcome to traverse between two metastable states. To intuitively define
all the remaining necessary terms, a reactive event on a molecular level is a
structural change from one energy minimum to another along a transition path
that passes a saddle point we will call a transition state (TS). As a small change
in transition state energy translates to orders of magnitude different probability
of passing it, we consider only the most likely, lowest transition state energy path.
For simple low-dimensional systems, such a barrier isn’t hard to evaluate, and
most likely transition path is not hard to find with tools like the string method
[46] or Metadynamics [47]. Due to its small volume, it is possible to explore
virtually every corner of the space. The problem becomes rather complicated with
increasing dimensionality. Most of the systems we would like to understand in
chemistry are high-dimensional since every new atom means more bonds, angles,
and dihedral angles to consider. A small zeolite crystal can already have a couple
hundred variables that need to be accounted for to consider the landscape and
transition paths fully.

Naturally, therefore, it is beneficial to develop a dimensionality reduction tech-
nique that would project many degrees of freedom to only a few. This is a no-
toriously difficult yet important task in many areas across mathematics, physics,
economy, and virtually every scientific discipline. The fundamental problem of fo-
cusing only on the important and ignoring noise is arguably the basis and starting
point of every theory. The tools and methods we can use to address the issue vary
from simple intuition-guided selection to sophisticated machine-learning methods
that are improved with more and more data available on the subject.
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3.1 Dimensionality reduction
Let us have a set of points x ∈ X with dimensionality N . We seek to find
a mapping ξ to a set of points r ∈ D with dimensionality n ≪ N such that
ri = ξ(xi). The requirements on ξ can vary based on the broader context of
the assignment we are addressing. A famous general and widely used example
is Principal Component Analysis (PCA) [48]. This particular method constructs
an orthogonal linear transformation that projects the data to a low-dimensional
space such that the components capture as much variance in the data as possible.

3.1.1 Variational Autoencoder and reducing dimension
There are multiple variants of PCA that are capable of capturing non-linear re-
lationships, such as kernel variants of PCA or manifold learning methods like
Local Linear Embedding (LLE) [49]. Another widely used non-linear dimension-
ality reduction technique is called an autoencoder. In short, the autoencoder
has two neural networks as building blocks. One of them is called an encoder
z = E(x, ϕ) and the other a decoder x = D(z, θ). The encoder encodes from the
original space where information lives in (X ) to the reduced (D). The decoder
then projects back to the original space X . The main idea of this approach is
that the compression of the data in the reduced space captures the most impor-
tant and high-variance modes so that the decoder can then reconstruct as much
information as possible. To achieve this objective, we introduce a reconstruction
loss

LR = (x −D(E(x, ϕ), θ))2 (3.1)
A very popular extension of the Autoencoder, a Variational Autoencoder (VAE),
modifies the approach and introduces stochastic noise. While traditional autoen-
coders learn a deterministic encoding function, VAEs, as introduced by Kingma
and Welling [50], incorporate stochasticity by defining a probability distribution
for the latent representation. This fundamental shift allows VAEs not only to
perform dimensionality reduction but also to act as generative models.

In a VAE, the encoder network E(x, ϕ) maps inputs to a distribution over
the possible latent variables instead of a single point. This process is often rep-
resented by predicting not the values z directly but parameters of a Gaussian
distribution, i.e., a mean µ and a variance σ2, and then using a random num-
ber generator to obtain final z. The latent variable z is then sampled from this
distribution using a reparameterization technique that enables backpropagation
through stochastic nodes. The reparametrization trick, as it is called, can be
explained as follows. Consider a latent variable z which is drawn from a distribu-
tion qϕ(z|x), where ϕ are the parameters of the distribution, and x is some input
data. The reparametrization trick introduces an auxiliary variable ϵ and rewrites
z as a deterministic function of ϵ and ϕ. For instance, if z is normally distributed
with mean µ and standard deviation σ, we can express x as:

z = µ + σ · ϵ (3.2)
where ϵ ∼ N (0,1) (a standard normal distribution), and µ and σ are func-

tions of ϕ. This reparametrization allows for the computation of gradients of
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the loss function with respect to ϕ despite the stochastic nature of z. Since the
generated noise now simply acts as a constant during differentiation.

To properly introduce a loss function for the VAE, we must again employ
the maximum likelihood principle. This time, however, it will be impossible to
optimize the log-likelihood directly. The combination of two objectives, data
reconstruction and a requirement for regular latent space distribution, requires
the introduction of simplifications. To continue further, we shall remind the
reader of an important inequality. Jensen’s inequality states that for a convex
function f , a random variable X, and any probability distribution, the following
inequality holds:

f(E[X]) ≤ E[f(X)] (3.3)
where E[X] is the expected value of X. If f is a concave function, the in-

equality is reversed:

f(E[X]) ≥ E[f(X)] (3.4)

3.1.2 Evidence lower bound - VAE loss
First, we will define a Kullback–Leibler divergence. Kullback–Leibler divergence
is a measure of the difference between two distributions. It is not a metric as it
is not symmetric and does not fulfill triangle inequality. However, it proved to be
tremendously useful in generative modeling. Given two probability distributions
P and Q, we define the KL divergence as

KL(P ||Q) =
∫︂
P (x) log P (x)

Q(x) . (3.5)

Notice we are using a continuous version of the KL divergence. This is analogous
to the discreet one, only on continuous data distributions. By manipulating the
logarithm argument, we can arrive at a formulation

KL(P ||Q) =
∫︂
P (x) logP (x) −

∫︂
P (x) logQ(x) = H(P,Q) −H(P ) (3.6)

Where H(P ) is the entropy defined in (1.10) and H(P,Q) is the cross-entropy
defined in (1.11). The motivation behind using KL divergence comes from the
fact that for two same distributions, KL divergence vanishes, while cross-entropy
does not, giving us something closer to a notion of distance. A property that is
also useful is the non-negativeness, where we will use that log x ≤ x−1, or rather
a version of it multiplied by −1, − log x ≥ 1 − x

KL(P ||Q) =
∫︂
P (x) log P (x)

Q(x) = −
∫︂
P (x) log Q(x)

P (x) ≥

≥
∫︂
P (x)

(︄
1 − Q(x)

P (x)

)︄
=
∫︂
P (x) −

∫︂
Q(x) = 0

(3.7)

This also gives a so-called Gibs inequality

H(P,Q) ≥ H(P ) ∀Q (3.8)
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ELBO derivation

Consider data x and a corresponding set of latent variables z. The goal of vari-
ational inference is to approximate the true posterior distribution pθ(z|x) with a
variational distribution qϕ(z|x). The Evidence Lower Bound (ELBO) is derived
as follows: We try to maximize the log-likelihood of the observed data

log pθ(x) = log
∫︂
pθ(x, z) dz (3.9)

While we introduce variational distribution qϕ(z|x):

log pθ(x) = log
∫︂ pθ(x, z)qϕ(z|x)

qϕ(z|x) dz. (3.10)

In the next step, we apply the Jensen inequality for the concave function (the
logarithm)

log pθ(x) ≥
∫︂
qϕ(z|x) log pθ(x, z)

qϕ(z|x) dz (3.11)

Then, after simple rearrangement,

log pθ(x) ≥
∫︂
qϕ(z|x) log pθ(x|z)pθ(z)

qϕ(z|x) dz

=
∫︂
qϕ(z|x) log pθ(x|z) dz −

∫︂
qϕ(z|x) log qϕ(x|z)

pθ(z) dz
(3.12)

we get
log pθ(x) ≥ Eqϕ(z|x)[log pθ(x|z)] −KL[qϕ(z|x)||pθ(z)] (3.13)

Here, Eqϕ(z|x)[log pθ(x|z)] is the expected log-likelihood under the variational dis-
tribution, and KL[qϕ(z|x)||pθ(z)] is the Kullback-Leibler divergence between the
variational distribution and the prior over the latent variables.

Practically, the first term can lead to the reconstruction loss (3.1). The second
might seem unpractical, but if we choose the prior distribution pθ(z) conveniently,
we can analytically write the expression such that it is trivial to evaluate. More
about particular example cases can be found in [50]. To illustrate one of them
used in the following work, let us have a Gaussian prior of dimension J with
µ = 0 (zero mean for all components) and σ = I (identity matrix variance). In
that case

−DKL(qθ(z)||pϕ(z)) = 1
2

J∑︂
j=1

(1 + log(σ2
j ) − µ2

j − σ2
j ) (3.14)

The expression can be obtained easily by following the definition and integrating
Gaussian distributions.

Intuitively, VAE keeps the reconstruction loss as in autoencoders but intro-
duces an additional term, the Kullback-Leibler (KL) divergence
KL(qϕ(z|x)||pθ(z)), which measures how much the learned latent variable distri-
bution qθ(z|x) deviates from the prior pθ(z). This regularization term ensures
that the encodings are well-structured and interpretable in the latent space, lead-
ing to more controlled generation and better generalization. The overall objective
function of a VAE, therefore, combines the reconstruction loss with the KL di-
vergence term, balancing data fidelity with stochastic exploration. By optimizing
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this objective, VAEs learn to compress data into a probabilistic latent space and,
importantly, can generate new data by sampling from the prior pθ(z) and de-
coding these samples, thus serving as a bridge between dimensionality reduction
techniques and generative models.

3.2 VAEs as collective variable predictors
In molecular modeling, the reduced representation of a reaction is described by
a set of so-called collective variables (CVs). These CVs serve as a guide to which
regions of the chemical space to explore and focus on. A set of CVs should also
describe the transition from reactants to products as precisely as possible.

For some reactions, the identification of CVs is relatively easy. If there is a
particular bond breaking and the rest of the structure remains rigid, the bond
length would likely constitute a reasonable choice for a CV. If all dihedral angles in
a protein remain fixed except for a few, using these flexible dihedral angles likely
describes the conformational change well. In many cases, however, obtaining the
right CV poses a challenging task. In a complex crystal that overgoes a significant
structural change, having the right CVs would mean carefully understanding the
orchestration of events and encoding the logic in the projection constructed.

The idea of having machine-learned CVs has gained popularity in recent years.
Since generating a large amount of data is not difficult, a clever machine learning
tool that extracts insights could work well and automate the task. Recently,
the task of identifying CVs has been partially automatized by multiple machine
learning-based tools [51, 52, 53, 54, 55, 56]. The variational autoencoder approach
has also been implemented in [57].

The paper [4] then implements approaches inspired by transfer learning [58].
The main idea is to build a variational autoencoder on atomic representations of
a graph convolutional neural network (GCNN) [59, 60, 61] as inputs. The atomic
representation in a GCNN is an intermediate neural network layer that stores a
vector for every atom in the system. The vector should contain all the information
necessary for the evaluation of energy and, after automatic differentiation, the
evaluation of forces. It should respect all the invariances or equivariances of the
architecture and is usually the last step before the energy is evaluated as a sum
of atomic contributions. The reasons for such implementation can be attributed
to

• Automatic invariance and possibly equivariance of collective variables with
respect to rotation and translation. The invariance to the change in atom
ordering can be addressed by the VAE design based on the specific problem.

• The paper demonstrates that the information extracted by pre-trained rep-
resentations on forces and energies can significantly improve the ease of
learning.

• When running the simulation with a GCNN as a neural network potential
substituting the slow DFT-based approaches, we can get forces, energy, and
collective variables in one pass, speeding up the workflow.

The GCNN used in the paper is obtained with permission from the authors of [62]
and is compared with fixed (not pre-trained) Atom-centered symmetry functions
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(ACSF) [63, 64]. The VAE is not used as a generative model. Instead, the decoder
is only used in the training loop as a way to force CVs to be as expressive of
the reaction as possible. The scheme of training and evaluation can be seen in
Figure 3.1 while the evaluation scheme is in Figure 3.2. The paper illustrates
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Figure 3.1: Training of our collective variables.
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Figure 3.2: Single neural network for energy and collective variable prediction.

the approach of three reactions, ranging from a simple ket-enol transition to a
complex formation in a zeolite crystal.

The approach proposed in the paper has several drawbacks. First and fore-
most, there is no objective function to evaluate the quality of the proposed CVs.
The only way, and the approach presented in the paper, was to compare the
training result with the expertly chosen collective variables. The lack of a more
objective function describing the quality of a collective variable is described in
the paper [5]. To understand the paper, let us first introduce differentiable sim-
ulations as a concept.
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Figure 3.3: left Initial state. The path is initialized as an almost straight path.
right After 200 iterations of differentiable simulations training, the path approxi-
mates the true path. The difference between the true curve and the one obtained
by training is likely in the numerical scheme used to evaluate the integral.

3.3 Differentiable Simulations
Simulations that are fully differentiable (we will call them DiffSim) have been
developed for optimization, control, and learning of motion, [65, 66, 67, 68] but
also for the learning and optimization of quantities of interest in molecular dy-
namics [69, 70, 71]. Differentiating through simulations comes naturally from the
optimization of path-dependent quantities. As a toy problem, the paper [5] works
with the Brachystochrone example, demonstrating a differentiable simulation to
solve it. If the minimization of a loss function cannot be formulated separately for
every point in the path, then optimization has to include the whole path leading
up to it. While the results of DiffSims are often promising, it is well known [72]
that näıvely backpropagated gradients may vanish or explode, thus not leading to
a useful parameter update. How to control their behavior remains an open chal-
lenge. This problem of differentiable simulations is associated with the spectrum
of the system’s Jacobian [72, 73] and is closely connected to the chaotic nature of
the simulated equations. Therefore, in order to employ path differentiation, one
needs to find ways to produce well-behaved and controllable gradients.

The example problem we will be investigating is defined as such: Consider a
mass sliding without friction along a curve y = y(x) under the influence of gravity
g. The objective is to determine the curve connecting point A to a lower point B,
where the sliding duration is minimized. It is assumed that there’s no friction or
air resistance and that B is not vertically aligned under A. For easy analysis, A
is set as the coordinate system’s origin. The cycloid curve is the known solution
to this, discovered by Leibniz, L’Hospital, Newton, and the Bernoulli brothers, as
noted by [74]. There’s also an approach where only the vertical displacement ∆x
is specified, solved by Lagrange, and later detailed in the contemporary language
of variational formalism by [75]. Here, the solution is also a cycloid curve with
certain fixed parameters. We set the horizontal ∆x as π and seek a solution
through differentiable simulations. A basic fully connected neural network f(x)
is used as the curve’s derivative f(x) = dy(x)

dx
, allowing us to derive y(x) by path

integration of the neural network. Subsequently, the time for the simulated path
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is calculated numerically.

t =
∫︂ l

0

ds

v(x) =
∫︂ π

0

⌜⃓⃓⃓
⎷1 +

(︂
dy(x)

dx

)︂2

−2gy(x) dx (3.15)

and minimized. In the first integral, l represents the length of the curve. The
formula comes from the conservation of kinetic energy and from a Pythagorean
expression ds2 = dx2 + dy2. For the path construction and backpropagation, we
employ the torchdiffeq python package shipped with the paper [76]. The results
for a short training are in Fig. 3.3.

3.4 Enahnced Sampling of Rare Events Using
DiffSim

The main idea of the paper [5] is to define an objective function describing the
quality of the biased dynamics. The reaction frequency occurring in finite time is
selected and further modified to form a differentiable function. The final form of
loss function describes the minimal distance of any point in a trajectory starting
in the metastable state A to the metastable state B. The precise definition and
formulation can be understood from the paper. Since the loss function is only
defined in a single point where the distance is minimized, we leverage the DiffSim
approach to optimize the path leading to such a point. The method itself is an
iterative procedure and seeks to control the simulation by adding an additive
term B(x, θ) to the original potential function, such that the potential becomes

U(x, θ) = U0(x) +B(x, θ). (3.16)

The procedure is stopped once the sampling becomes more even and the transi-
tion from metastable state A to B and back becomes sufficiently common. The
properties of a reaction are then inferred from the form of B(x, θ). The unique
property of such a DiffSim tool is that it unites the collective variable selection
and biasing step, creating a powerful end-to-end approach to reaction biasing.
The results seen on a simple 2D toy potential are in Figure 3.4. The paper also
investigates a simple two amino acid model of a protein. The alanine dipeptide
serves as a standard benchmark for enhanced sampling methods and is, therefore,
very well studied with ideal CVs known and usable as reference. The comparison
of our method and commonly used benchmark is in the 3.5. We can see good
agreement with the reference. The main difference and advantage of our method
is that it did not require previous knowledge of the collective variables for the
biased dynamics, only for postprocessing and comparison with the methods used.
The results of transition path and reaction barrier magnitude are extensively em-
ployed in many workflows in material science, biochemistry, and computational
drug discovery. Predicting a material property of the ability of a novel drug can-
didate to bind to the target is all hidden in the knowledge of reaction dynamics.
The methods presented in this chapter promise to automatize the workflow and
introduce machine learning as a tool that helps with laborious collective variable
identification.
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Figure 3.4: Log-density of simulated points before (left) and after the training
(right) of bias function by differentiable simulations. The right plot shows how
well all important regions are sampled after training. The background of the
Figure is the UMB(x, y), the underlying Muller-Brown potential described in the
Appendix of [5]

Figure 3.5: left: Directly reweighted PMF from simulations with the bias poten-
tial projected on the Ramachandran plane. White regions are without sufficient
sampling. right: PMF of the ϕ-ψ-plane obtained from an eABF simulation.
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Conclusion
Throughout this dissertation, we explored the synergy between geometry, Hamil-
tonian mechanics, rare event sampling, and applications to physics and chem-
istry. In all of the discussed papers written during the course of the PhD studies,
we employed the Hamiltonian formalism and consciously considered the under-
lying physics. We introduce new approaches that connect physics and machine
learning, investigate their weaknesses and strengths, and find multiple interesting
directions for future research that are worth exploring.

Firstly, we explored a novel way of learning Hamiltonian equations by em-
ploying neural networks in the process. We studied different systems and various
scenarios on how to enforce the Jacobi identity. We proposed a new way to
identify dissipative dynamics without assuming anything more than a GENERIC
structure of an evolution. The methods and findings are proposed to be used in
the emerging field of model-based control, where insights and correct represen-
tation strategies are necessary. Our contribution focuses on the representation
learning for the non-symplectic systems and the ability to detect dissipation with
almost no prior knowledge about the system.

We contributed to the automated collective variable search efforts, which are
crucial in simplifying the high-dimensional complexity inherent in chemical reac-
tions. The application of variational autoencoders in combination with the use of
a pre-trained graph convolutional model promises a new approach in this context.
By integrating graph convolutional neural network (GCNN) representations, we
were able to impose essential physical constraints and exploit pre-trained knowl-
edge, leading to more robust and interpretable models. The proposed method
was then subsequently employed in further work that aimed to connect devel-
oped ML potentials and ML-guided CV search to create an efficient synergized
framework.

Furthermore, we pushed the frontiers of differentiable simulations, highlight-
ing their potential in optimizing path-dependent outcomes and explaining phe-
nomena in molecular dynamics. We first illustrate the phenomenon of differen-
tiable simulations on simple and well-known problems in physics and then apply
it to a more specific domain. While acknowledging the challenges, particularly
related to gradient behaviors and the chaotic nature of molecular systems, we
underscored the importance of pursuing more controlled and stable methods in
these simulations. The proposed modifications to the framework address the gra-
dient issue and push the boundaries of what is known on the path to solving this
complex problem.

Despite these promising advancements, several challenges and open questions
remain. The objective evaluation of CVs, which is critical for validating the effec-
tiveness of machine learning models in capturing chemical reaction nuances, still
lacks a standardized methodology. This gap signifies a crucial area for future re-
search, where developing metrics or benchmarks could profoundly enhance model
comparison and drive the field toward more reliable and interpretable solutions.

Moreover, while differentiable simulations hold immense promise, their cur-
rent limitations necessitate a focused research effort toward stabilizing gradient
behaviors and ensuring that these methods can consistently contribute valuable
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insights into molecular dynamics studies.
In conclusion, this work serves as a testament to the transformative power of

interdisciplinary approaches, melding machine learning’s computational approach
with the knowledge required to fully understand geometry and intricate chemical
systems. As we constantly see new, exciting progress in this area, the potential
for discovery and innovation attracts more talent and resources, promising to
unravel the fundamental mysteries too complex for humans alone. With the world
needing breakthrough technologies more than ever before to overcome mounting
challenges, progress in the realms of material science, biotechnology, and robotics
is a necessity rather than a luxury.
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