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INTRODUCTION

In March, 27th 2024, the Event Horizon Telescope Collaboration (EHT) released
an updated image of SgrA*, a supermassive black hole residing at the centre
of our galaxy. This remarkable achievement required a unique collaboration of
powerful radio telescopes from around the world, resulting in an unprecedented
resolution of approximately 50 µas. The new image reveals the linear polarization
of the photon ring, providing valuable insights into the surrounding electromag-
netic field and offering additional constraints on the black hole parameters. It
is worth noting however that “our” black hole is not the first observed. In early
2019, the same collaboration of radio telescopes unveiled the first-ever “silhou-
ette” of a black hole located in the heart of the M87 galaxy. Both images exhibit
remarkable agreement with the predictions, once again affirming the power of
general relativity.

Soon after, the LIGO and VIRGO detectors of gravitational waves will begin
their second part of the 4th observation run (O4), with KAGRA joining in late
2024. It is expected to detect roughly 90 events during the entire O4 run, which
is about the same number as has been observed since the famous first detection
on 14th September 2014. And this is certainly not the end. Further instrumental
improvements are already planned, which again should double the total number
of observations. The new generation of detectors, such as the Einstein Telescope
and Cosmic Explorer, are currently being actively discussed. Our exploration will
not be limited to the Earth’s surface. With a high level of confidence, around
the mid-2030s, we should witness the launch of the Laser Interferometer Space
Antenna (LISA), a space-based gravitational wave detector. LISA will add new
intriguing sources to our collection, including intermediate to extreme-mass-ratio-
inspirals, compact binaries in our Galaxy, supermassive-black-hole mergers, and
possibly the stochastic gravitational-wave background, echo of the early Universe.
With the increased precision of this new generation of experiments, we not only
expect to test general relativity in the strong-field regime, but also to probe the
black-hole environment through gravitational waves.

The recent fascinating achievements suggest that we are entering a new golden
age of black-hole physics. However, black holes were long seen as a mere mathe-
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matical curiosity, solutions to the gravitational equations which could never exist
in the real Universe. The general concept of such objects can be traced back to
Newtonian times. On 27th November 1783, a paper in the Philosophical Trans-
actions of the Royal Society of London appeared. The author, John Michell,
wrote

“If there should really exist in nature any bodies, whose density is
not less than that of the sun, and whose diameters are more than 500
times the diameter of the sun since their light could not arrive at us; or
if there should exist any other bodies of a somewhat smaller size, which
are not naturally luminous; of the existence of bodies under either of
these circumstances, we could have no information from sight; yet,
if any other luminous bodies should happen to revolve about them we
might still perhaps from the motions of these revolving bodies infer the
existence of the central ones with some degree of probability, ... ”

Of course, the proposed existence of “dark stars” was not taken very seriously
back then. However, on 25th November 1915, exactly 132 years minus two days
after Michell’s paper, there was a lecture at the Prussian Academy of Sciences
in Berlin. It was the last of a 6-lecture series that Autumn, where Albert Ein-
stein presented his final form of gravitational equations. By this moment, the
completely new theory of gravitation replaced more than 300 years of successful
Newton’s gravity. In just a month, on 22th December 1915, Karl Schwarzschild
wrote a letter to Einstein reporting that he had found the exact solution for a
point source. The letter was written under unbelievable circumstances. At that
time, Schwarzschild served in the war stationed on the Russian front. He wrote,
“As you see, the war treated me kindly enough, in spite of the heavy gunfire, to
allow me to get away from it all and take this walk in the land of your ideas.”
Pleasantly surprised Einstein “had not expected that one could formulate the exact
solution of the point problem in such a simple way.”

This was the first exact mathematical description of a black hole, namely
spherically symmetric one. In the spherical Schwarzschild coordinates, the solu-
tion has some surprising features. Apart from the expected singularity at r = 0
(after all, it is merely a point source), there is another singularity1 present at
r = 2GM/c2, where M is the mass of the source, G is the gravitational con-
stant, and c is the speed of light. Curiously, it is the same value that Michell
found for the radius of a dark star. Photons radiated below this sphere can not
escape to radial infinity. However, it still took 50 years from the Schwarzschild
discovery until black holes appeared in decent astrophysical conferences. Even
though, already in the 1930s, relativists predicted that a star more massive than
about 1.5 times the solar mass must undergo extreme contraction and that Ein-
stein’s equations predict gravitational collapse, the change was mainly due to the
observational discoveries of relativistic compact objects.

In 1962, astronomers discovered strong X-ray sources, quasars in 1963, and
pulsars in 1967. Strong gamma-ray bursts were also observed around the same

1Today, we know that it is an example of a coordinate singularity, not a physical singularity.
Nevertheless, the radius represents a mathematical boundary that causally disconnects the
interior from the outside; it is called the event horizon.
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time. Simultaneously, in 1963, Kerr solved the Einstein equations for a rotat-
ing black hole, which stimulated another rapid theoretical development. These
speculative compact objects quickly became suitable candidates for the newly
observed high-energy phenomena. Most pulsars were soon identified as neutron
stars, and other observations strongly pointed towards black holes. Although
we cannot directly see black holes, their presence is revealed through their in-
teraction with the surroundings. As sources of extreme gravity, black holes pull
matter which accelerates to high velocities often approaching the speed of light.
The infalling matter, however, does not reach the black hole’s horizon radially;
instead, it is captured by the gravity of the compact object, typically forming an
accretion disc. In this disc, a (quasi-)equilibrium is achieved through the mutual
balancing of gravitational and centrifugal forces. Due to the steep radial gradient
of the orbital velocity, the accreting matter is heated by the viscous friction of
the neighbouring layers to very high temperatures, emitting a significant amount
of energy in the form of radiation. Another source of activity is the formation
of relativistic jets: stable, collimated ejections of highly accelerated matter along
the rotational axis of the central black hole. The mechanism behind their for-
mation is still not fully understood, but the magnetic field likely plays a crucial
role. The total energy radiated from such systems can often be many orders of
magnitude larger than the integrated radiated energy from all the stars in the
Milky Way galaxy. Black holes drive the most powerful engines we know of!

In this thesis, we will study spacetimes that contain a black hole surrounded
by additional gravitating sources, specifically a ring or thin disc. However, the
non-linear nature of the Einstein equations makes the problem rather involved.
Properly modelling accretion requires advanced and computationally expensive
numerical methods. Nevertheless, if suitably simplified, there are still problems
that can be tackled analytically. The simplifications we consider are stationar-
ity, axial symmetry, and circularity. Such spacetimes can approximate steadily
rotating astrophysical bodies. There are two additional complications in general
relativity compared to Newton’s theory: self-gravitation, where the source feels
its own gravity, leading to a much more constrained system, and the (frame-
)dragging of the spacetime associated with rotation.

If we neglect the latter effect and consider only static spacetimes, the metric
outside of sources (in vacuum) can be described by just two functions. One of
these functions satisfies the linear Laplace equation, while the other is determined
by a quadrature. In this case, we can find exact and closed-form solutions for cer-
tain “superposition” problems involving multiple gravitating sources. But extra
caution must be taken. Even a simple source with a direct Newtonian counterpart
can result in a spacetime with rather peculiar properties, and the superposition
of such sources may lead to singularities or other pathologies, sometimes with
unclear physical interpretation.

In real astrophysical systems, however, the rotation is ubiquitous, and the
associated dragging effects introduce much more complexity to the problem. It
is highly unlikely to find an exact superposition of rotating sources, even in the
stationary regime. Instead, we must rely on approximation methods, such as
perturbations.

The thesis is organised as follows: The first chapter will be dedicated to the
basic concepts of stationary and axially symmetric (and circular) spacetimes. In
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the second chapter, we will present several results describing static superposi-
tions of a black hole with a disc or ring. The third chapter will focus on an
astrophysically motivated application, we will study the quasinormal response
of such a black hole. Then, in the last chapter, we will delve into the topic of
stationary perturbations of rotating black holes. After introducing the tetrad for-
malism, we will provide an explicit solution describing the electromagnetic field
of a ring source on the Kerr background. Finally, we will outline a similar proce-
dure for the gravitational perturbations, and conclude with a brief summary in
the Conclusions section. At the end of each chapter, we attach publications in
the Astrophysical Journal and Physical Review D. For the latter, preprints are
included due to the license restrictions of the journal.

Notation
We use metric tensor gµν with signature (−+++). All quantities are given in
geometrized units in which c = G = 1. Greek indices go through 0 − 3. We em-
ploy Einstein’s summation convention and use the index-posed comma to denote
partial derivative and the semicolon to denote covariant derivative. We also use
the operator notation for both derivatives ∂µ,∇µ, particularly in the context of
tetrad formalism. Riemann tensor is defined according to Vν;κλ−Vν;λκ = Rµ

νκλVµ,
where Vµ is an arbitrary covector. Ricci tensor is defined by Rνλ = Rκ

νκλ. We
use standard notation for complete elliptic integrals

K(k) =
∫︂ π

2

0

dφ√︂
1 − k2 sin2 φ

, E(k) =
∫︂ π

2

0

√︂
1 − k2 sin2 φ dφ ,

Π(n, k) =
∫︂ π

2

0

dφ
(1 − n sin2 φ)

√︂
1 − k2 sin2 φ

,

where k is the modulus.
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CHAPTER

1

CIRCULAR SPACETIMES

Circular spacetimes are of clear interest in general relativity since they describe
the gravitational field of axially symmetric rotating bodies. In this chapter, we
will introduce some basic concepts of such spacetimes. Apart from the features
presented in what follows, we will also assume that the spacetime is asymptoti-
cally flat, i.e., it approaches the Minkowski metric at spatial infinity. Moreover,
we will not deal with the cosmological constant Λ, which is set to zero.

Stationary and axially symmetric spacetime is a spacetime that admits two
commuting1 Killing vectors fields, one of them being asymptotically timelike ξµ

(t)
and the other, ξµ

(ϕ), asymptotically spacelike with closed orbits. In the adapted
coordinates (t, ϕ, x2, x3), such that ξµ

(t) ≡ ∂µ
t and ξµ

(ϕ) ≡ ∂µ
ϕ , the metric is time

independent and invariant under rotations, i.e.,

ds2 = gµν(x2, x3) dxµ dxν . (1.1)

We also presume existence of the rotation axis, which is a set of points where ξµ
(ϕ)

vanishes, so the integral-line circumference
∮︁ √

gϕϕ dϕ = 2π√
gϕϕ = 0 there as the

invariant norm gϕϕ ≡ gαβξ
α
(ϕ)ξ

β
(ϕ) → 0. The axis should also be elementary flat,

in other words, the length of a closed orbit of ξµ
(ϕ) should approach 2π times the

proper perpendicular distance of the orbit from the axis. Thus, the gradient of
the “circumferential radius” √

gϕϕ should satisfy (Stephani et al., 2003)

(gϕϕ),α(gϕϕ),α

4gϕϕ

−→ 1 (1.2)

in the limit at the rotation axis. Such a condition ensures that the axis is regular
and free of conical singularities.

1Carter (1970) showed that the commutative property is indeed general in the asymptotically
flat spacetimes.
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Static spacetime is stationary and invariant under time reversal. Geometrically,
it is true when the Killing vector field ξµ

(t) is hypersurface orthogonal, which
implies gti = 0 in the adapted coordinates.

The condition of circularity means that all elements of sources move only in
the directions given by the two Killing vector fields ξµ

(t) and ξµ
(ϕ). In other words,

the metric is invariant under the simultaneous transformation (t → −t, ϕ → −ϕ).
It is the best generalization of circular motion. In the language of differential
geometry, such a symmetry is called orthogonal transitivity, and it is expressed
by the condition

ξα
(t)R

[β
α ξ

γ
(t)ξ

δ]
(ϕ) = 0 = ξα

(ϕ)R
[β
α ξ

γ
(ϕ)ξ

δ]
(t) , (1.3)

where Rµν is the Ricci tensor. If the condition (1.3) holds, and there exists the
rotation axis where ξµ

(ϕ) = 02, then the 2-spaces which are orthogonal to both
ξµ

(t) and ξµ
(ϕ) are integrable (Wald, 1984). Then, we may choose the remaining

coordinates (x2, x3) in one of the integral 2-spaces and propagate them to the
rest of the spacetime along the integral lines of the Killing vector fields. Thus,
the metric takes a block diagonal form

ds2 = gpq dxp dxq + gij dxi dxj , (1.4)

where p, q = (t, ϕ) and i, j = (2, 3).

1.1 The metric and Einstein equations
Every 2-dimensional Riemannian manifold is conformally flat, so we can choose
the coordinates (x2, x3) in such a way that the gij dxi dxj part of (1.4) is diagonal.
These coordinates are called canonical Weyl coordinates (ρ ≡ x2, z ≡ x3) and the
metric in the Carter-Thorne-Bardeen form reads

ds2 = gtt dt2 + 2gtϕ dt dϕ+ gϕϕ dϕ2 + g22δij dxi dxj (1.5)
= −e2ν dt2 +B2ρ2e−2ν(dϕ− ω dt)2 + e2λ−2ν(dρ2 + dz2) . (1.6)

The symmetries reduced the problem to finding just 4 metric functions B, ν, ω,
and λ, which depend only on the coordinates (ρ, z). The Killing-part metric
functions are invariants,

gtt ≡ gαβξ
α
(t)ξ

β
(t) , gtϕ ≡ gαβξ

α
(t)ξ

β
(ϕ) , gϕϕ ≡ gαβξ

α
(ϕ)ξ

β
(ϕ) , (1.7)

thus
e2ν ≡ −gtt − gtϕω , ω ≡ − gtϕ

gϕϕ

(1.8)

also have invariant meaning. The function eν is known as the lapse function3 and
ω is the angular velocity which the local inertial systems “co-rotate” with the
sources. The function ν is also commonly referred to as the gravitational potential
because, in the static limit, it is the counterpart of the Newtonian gravitational
potential.

2In fact, this condition can be relaxed to the spacetimes where ξ(t)[µξ(ϕ)ν∇κξ(t)δ] and
ξ(t)[µξ(ϕ)ν∇κξ(ϕ)δ] vanish in at least one point (Wald, 1984).

3A normalization factor of the future-oriented unit normal to t = const hypersurfaces.
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The gravitational field described by the metric (1.6) is locally determined by
the Einstein equations, which link the Ricci curvature tensor Rµν to the stress-
energy tensor Tµν via

Rµν − 1
2Rgµν = 8πTµν , (1.9)

where R ≡ Rα
α, and where we set the cosmological constant Λ to zero. For the

circular metric (1.6), Einstein equations are reduced to a system of 6 coupled
nonlinear partial differential equations

∇ · (ρ∇B) = 8πBρ(Tρρ + Tzz) , (1.10)

∇ · (B∇ν) − B3ρ2

2e4ν
(∇ω)2 = 4πBe2λ−2ν(T i

i − 2ωT t
ϕ − T t

t ) , (1.11)

∇ · (B3ρ2e−4ν∇ω) = −16πBe2λ−2νT t
ϕ , (1.12)

λ,ρρ + λ,zz + ν2
,ρ + ν2

,z − 3B2ρ2

4e4ν

[︂
ω2

,ρ + ω2
,z

]︂
= 8πe2λ−2ν(T ϕ

ϕ − ωT t
ϕ) , (1.13)

λ,ρ(Bρ),ρ − λ,z(Bρ),z − Bρ
[︂
ν2

,ρ + ν2
,z

]︂
− 1

2
[︂
(Bρ),ρρ − (Bρ),zz

]︂
+

+ 1
4B

3ρ3e−4ν
(︂
ω2

,ρ − ω2
,z

)︂
= 4πBρ(Tρρ − Tzz) , (1.14)

λ,ρ(Bρ),z + λ,z(Bρ),ρ − 2Bρν,ρν,z − (Bρ),ρz + 1
2B

3ρ3e−4νω,ρω,z = 8πBρTρz ,

(1.15)

where ∇ and ∇· are the standard gradient and divergence in the flat 3D space in
cylindrical coordinates (ρ, ϕ, z). The number of independent equations is further
reduced by one (let’s say (1.13)) thanks to the Bianchi identities. When B, ν, and
ω are known, the remaining function λ follows from the line-integration (1.14)
and (1.15).

1.2 Boundary conditions and basic features of
the spacetime

On the rotation axis, the condition (1.2) translates to

lim
ρ→0

eλ

B
= 1 , (1.16)

which also ensures that the azimuthal coordinate ϕ is normalized to the usual
interval [0, 2π). Regular, i.e., strut-free axis, also requires vanishing derivatives
of the metric functions

ν,ρ, B,ρ, ω,ρ, λ,ρ −−→
ρ→0

0 . (1.17)

In radial infinity, we naturally assume that the spacetime is asymptotically
flat if dealing with isolated bodies. This means a particular asymptotic form of
the metric functions

ν = −M

r
+ O(r−2) , ω = 2J

r3 + O(r−4) ,

B = 1 + O(r−2) , λ = O(r−2) , (1.18)
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where r is any radial coordinate which is asymptotically
√
ρ2 + z2, and constants

M and J are interpreted as the total mass and angular momentum contained in
the spacetime. They follow from the notion of total energy and angular momen-
tum on a hypersurface in the asymptotic flat infinity motivated by the Hamil-
tonian formulation of general relativity by Arnowitt, Deser & Misner (ADM) in
(Arnowitt et al., 1962). More “covariant” prescription of those properties is due
to Komar (1959). The Komar mass and angular momentum are defined as con-
served quantities associated with the Killing symmetries ξµ

(t) and ξµ
(ϕ) respectively.

In particular

MK = 1
8π

∮︂
S∞

ξα;β
(t) dSαβ , (1.19)

JK = − 1
16π

∮︂
S∞

ξα;β
(ϕ) dSαβ , (1.20)

where we integrate over some 2-surface S∞ in the asymptotic infinity4. Note,
however, that while the ADM quantities can be defined in any asymptotically
flat spacetime, the Komar analogues require additional symmetries.

In the following, we will be mainly interested in spacetimes, where a black
hole is one of the sources. The classical definition of a black hole (Misner et al.,
2017) could go like this: A black hole is a region of spacetime from which no signal
(timelike or null) can escape and be detected a distant observer. The boundary of
that region is called the event horizon. In circular spacetimes, it is invariantly
given by vanishing lapse function (Carter, 1969)

0 = −gαβ(ξα
(t) + ωξα

(ϕ))(ξ
β
(t) + ωξβ

(ϕ)) = −gtt − gtϕω = e2ν . (1.21)

On the stationary horizon, the function ω is a constant ωH, i.e., the horizon
“rotates” with respect to the infinity as a rigid body. Thus, the event horizon
is also the Killing horizon as the Killing vector field ξµ

(t) + ωHξ
µ
(ϕ) becomes null

there. The metric coefficients should be regular on the horizon, thus because
e2ν = 0 and ω = const ≡ ωH, it follows from the regularity of gϕϕ and gρρ = gzz

that
Bρ −−→

→H
0 , e2λ −−→

→H
0 . (1.22)

1.3 Tρρ + Tzz = 0 case
For a special case of the stress-energy tensor, where Tρρ +Tzz = 0, which is valid,
in particular, for dust or vacuum, the first Einstein equation (1.10) reduces to an
axially symmetric Laplace equation in 4 dimensions

∆B ≡ B,ρρ + 2B,ρ

ρ
+B,zz = 0 . (1.23)

Any nontrivial solution of the above equation can be used, except B = ρ−1 which
does not preserve the axial symmetry, but leads to plane waves. The simplest

4Different signs origin in opposite normalization of ξµ
(t) and ξµ

(ϕ), while factor 2 is justified
from an additional boundary term in the covariant Hamiltonian formalism (Wald, 1993).
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solution B = 1 is commonly used, and it will be mostly employed in this thesis.
However, general B ̸= 1 is related by a coordinate transformation

ρ′ = ρB , z′ = ±
∫︂
ρB,z dρ− (ρB),ρ dz , (1.24)

where the coordinates which correspond to B = 1 are denoted by primes (ρ′, z′).
The form (1.24) follows from the metric coefficient gϕϕ and the redefinition of
z is chosen in a way that the (ρ, z) part of the metric remains isotropic. With
such a coordinate change, the metric function λ (recall that gρρ = gzz = e2λ−2ν)
transforms as

λ′ = λ− 1
2 log

[︂
(ρB,z)2 + (ρB)2

,ρ

]︂
. (1.25)

The case Tρρ +Tzz = 0 and B = 1 is often considered in the Weyl-Papapetrou
form of the metric

ds2 = −f(dt− A dϕ)2 + f−1ρ2 dϕ2 + e2γf−1(dρ2 + dz2) , (1.26)

where, instead of ν, ω, and λ, we have f, A, and γ, which are related by

f = e2ν − ρ2e−2νω2 , A = −ρ2e−2νω

f
, e2γ = fe2λ−2ν . (1.27)

1.4 Black holes
Mysterious, yet “simple” are isolated stationary black holes. In general, they
are fully characterized just by three parameters: mass, angular momentum, and
electric charge (if we ignore a hypothetical magnetic monopole). Relativists say,
they have “no-hair” – they are independent of any additional parameter. In this
thesis, we will consider only vacuum black holes (with no electric charge) which
will later be perturbed by some matter outside the horizon.

1.4.1 Schwarzschild solution
Any spherically symmetric vacuum spacetime is described by the Schwarzschild
metric (Schwarzschild, 1916; Birkhoff & Langer, 1923). In Weyl coordinates, it
is given by

νSchw = 1
2 log R+ +R− − 2M

R+ +R− + 2M , (1.28)

λSchw = 1
2 log (R+ +R−)2 − 4M2

4R+R−
, (1.29)

B = 1 , (1.30)

where M represents the total mass of the source and

R± =
√︂
ρ2 + (|z| ∓M)2 . (1.31)

For a point-like source – meaning that Tµν = 0 everywhere except at the very
centre – it represents a static and spherically symmetric black hole. However,
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Weyl coordinates (involving the choice B = 1) do not cover the black hole inte-
rior, and the functions (1.28) and (1.29) do not exhibit the spherical symmetry
explicitly. Instead, the horizon is rendered as a singular rod of length 2M placed
symmetrically on the z axis (ρ = 0, |z| ≤ M). To recover the explicit spherical
symmetry, we can transform to the Schwarszchild coordinates (r, θ) defined by

ρ =
√︂
r(r − 2M) sin θ , z = (r −M) cos θ , (1.32)

leading to the metric functions

νSchw = 1
2 log

(︄
1 − 2M

r

)︄
, λSchw = 1

2 log r(r − 2M)
r(r − 2M) +M2 sin2 θ

. (1.33)

By such a coordinate transformation, we recover the Schwarzschild metric in a
standard “textbook” form with the spherical horizon located at r = 2M ,

ds2 = −
(︄

1 − 2M
r

)︄
dr2 + dr2

1 − 2M
r

+ r2 dθ2 + r2 sin2 θ dϕ2 . (1.34)

Another possibility is to use spherical coordinates (R, ϑ) defined by a simple
transformation

ρ = R sinϑ , z = R cosϑ . (1.35)
However, if we keep B = 1, the horizon would be at R = 0, which does not
improve the situation that much. But, since the location of the horizon is given
by Bρ = 0 (1.22), another option is to use a coordinate system where B vanishes
on the horizon instead of ρ. Let say that it happens at R = const ≡ M

2 . The
simplest solution of (1.23) which satisfies this condition is

B = 1 − M2

4(ρ2 + z2) ≡ 1 − M2

4R2 . (1.36)

These new coordinates are commonly referred to as isotropic coordinates since
the metric functions become (taking into account (1.25))

νSchw = log 2R −M

2R +M
, λSchw = log

(︄
1 − M2

4R2

)︄
, (1.37)

and the metric itself acquires the isotropic form

ds2 = −
(︄

2R −M

2R +M

)︄2

dt2 +
(︄

1 + M

2R

)︄4

(dR2 +R2 dϑ2 +R2 sin2 ϑ dϕ2) . (1.38)

1.4.2 Kerr solution
Arguably more significant from the astrophysical point of view is a black hole,
which includes not only the mass but also a rotational angular momentum. Its
geometry is described by the famous Kerr metric (Kerr, 1963) – see also a recent
review by Teukolsky (2015). In the Weyl coordinates, the metric functions read

νKerr = 1
2 log Σ∆

A
, ωKerr = aM(2M +R+ +R−)

A
, (1.39)
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B = 1 , λKerr = 1
2 log ∆Σ2

A
R+R− , (1.40)

where

∆ = a2 −M2 + 1
4(R+ +R−)2 , (1.41)

Σ = 4a2(M +R+)(M +R−) −M2(2M +R+ +R−)2

4(a2 −M2) , (1.42)

A = 1
16

⎧⎨⎩[︂4a2 + (2M +R+ +R−)2
]︂2

− 4a2∆
[︄
4 + (R+ −R−)2

a2 −M2

]︄⎫⎬⎭ , (1.43)

R± =
√︂
ρ2 + (z ∓

√
M2 − a2)2 . (1.44)

We use the standard notation: M represents the mass of the black hole, and
J = Ma is the rotational angular momentum. In the limit a → 0+, the solution
goes to the Schwarszchild metric. The (outer) horizon is again rendered as a
massive line segment (ρ = 0, |z| ≤

√
M2 − a2).

Similarly to the Schwarzschild case, when discussing the horizon, it is better
to use more suitable coordinates, which cover also the interior of the black hole.
The standard choice is the minimal generalization of Schwarszchild coordinates
– spheroidal Boyer-Lindquist coordinates (r, θ) – related to the Weyl ones by

ρ =
√
r2 − 2Mr + a2 sin θ , z = (r −M) cos θ . (1.45)

Then (1.41)-(1.43) simplifies to

∆ = r2 − 2Mr + a2 , Σ = r2 + a2 cos2 θ ,

A = (r2 + a2)2 − ∆a2 sin2 θ , ωKerr = 2aMr

A
(1.46)

and the metric acquires the form

ds2 = −Σ∆
A

dt2 + A
Σ sin2 θ(dϕ− ω dt)2 + Σ

∆ dr2 + Σ dθ2 . (1.47)

recovering actually two horizons located at ∆ = 0 ⇔ r± = M ±
√
M2 − a2.

It is also possible to use the isotropic coordinates (1.35) with a slightly different
choice of B,

B = 1 − |M2 − a2|
4(ρ2 + z2)2 = 1 − |M2 − a2|

4R2 , (1.48)

with the (outer) horizon is located at R =
√

M2−a2

2 .

1.5 Thin discs and singular surfaces
When there are other sources around the black hole, we have to specify the
boundary conditions on their surfaces, and eventually also find their inner solution
for the full discussion. For simplicity, we will consider infinitesimally thin discs,
i.e., discs whose typical thickness is negligible compared to their radius. In such a
case, the stress-energy tensor Tµν is zero everywhere except a singular 2-surface,
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where it is proportional to a delta distribution. For a proper definition of the
surface stress-energy tensor, we will follow the approach due to Israel (1966), see
also Ledvinka & Bičák (2019).

Consider a singular 2-surface Σ located on the equatorial plane z = 0, which
separates the spacetime into two regions M + and M − with unit normals ±nα

in M ± respectively,
±nα = ±eν−λδα

z . (1.49)
Let us denote the projection tensor to the surface Σ as

±hαβ = gαβ − ±nα
±nβ , (1.50)

and the extrinsic curvature of Σ in M + and M −

±Kαβ = ±hγ
α

±hδ
β∇γ

±nδ . (1.51)

If the difference of the extrinsic curvatures [Kα
β ] ≡ −Kα

β − +Kα
β ̸= 0, we define

the surface stress-energy tensor as

Sα
β = 1

8π
(︂
[Kα

β ] − [Kγ
γ ]hα

β

)︂
, Kγ

γ = gγδKγδ . (1.52)

We consider the spacetime to be reflection symmetric with respect to the sur-
face Σ, thus the extrinsic curvatures are the same with opposite signs due to the
opposite orientation of the normal vectors, i.e., [Kµ

ν ] = −2 K+ µ
ν . It can then be

shown that Sµν corresponds to the integral of the full stress-energy tensor Tµν

over the infinitesimal thickness of the source Israel (1966),

Sµν = lim
ϵ→0+

∫︂ +ϵ

−ϵ
Tµν

√
gzz dz ⇐⇒ Tµν

√
gzz = Sµνδ(z) , (1.53)

which justifies the name surface stress-energy tensor. Its components read ex-
plicitly

8πBeλ−νSt
t = 2B,z + 2B(λ,z − 2ν,z) + e−4νB3ρ2ωω,z , (1.54)

8πBeλ−νSt
ϕ = −e−4νB3ρ2ω,z , (1.55)

8πBeλ−νSϕ
t = 2ω(B,z − 2Bν,z) + Bω,z(1 + e−4νB2ρ2ω2) , (1.56)

8πBeλ−νSϕ
ϕ = 2Bλ,z − e−4νB3ρ2ωω,z , (1.57)

4πBeλ−νSρ
ρ = B,z , (1.58)
Sρ

z = 0 , (1.59)
Sz

z = 0 , (1.60)

where all quantities are computed in the limit z → 0+.
Now, we want to physically interpret the obtained surface stress-energy tensor.

This can be easily done if Sµ
ν is in diagonal form. That involves solving the

eigenvalue problem
(Sµ

α − χδµ
α)V α = 0 . (1.61)

We find the eigenvalues

χ(±) = 1
2
[︂
St

t + Sϕ
ϕ ±

√
D
]︂
, χ(ρ) = Sρ

ρ , χ(z) = 0 , (1.62)

14



where the discriminant is

D = (Sϕ
ϕ − St

t)2 + 4St
ϕS

ϕ
t = (SA

A)2 − 4 detSA
B . (1.63)

Indices with the capital letters denote A,B = (t, ϕ). Components of the corre-
sponding eigenvectors are

V µ = V t(1,Ω, 0, 0) , W µ = W(gtϕ + gϕϕΩ,−gtt − gtϕΩ, 0, 0) , (1.64)
V µ

(ρ) = eν−λ(0, 0, 1, 0) , V µ
(z) = eν−λ(0, 0, 0, 1) , (1.65)

where

Ω =
Sϕ

ϕ − St
t −

√
D

2St
ϕ

, (1.66)

V t = 1√︂
−gtt − 2gtϕΩ − gϕϕΩ2

= 1√︂
e2ν − gϕϕ(Ω − ω)2

= e−ν

√
1 − v2

, (1.67)

W = V t√︂
g2

tϕ − gϕϕgtt

= V t

Bρ
, (1.68)

and v = √
gϕϕe

−ν(Ω−ω), represents a relative velocity of the disc element locally
measured by a ZAMO observer. If D ≥ 0, all eigenvalues are real, thus the
surface stress-energy tensor can be written in the form of an ideal fluid,

Sµν = σV µV ν + p(ϕ)W
µW ν + p(ρ)V

µ
(ρ)V

ν
(ρ) , (1.69)

with

• the surface energy density σ ≡ −χ(−),
• azimuthal pressure p(ϕ) ≡ χ(+),
• and radial pressure p(ρ) ≡ χ(ρ),

interpreted in the rest system of the fluid. The fluid four-velocity is the unit
timelike vector V µ, while W µ is the four-vector perpendicular to V µ pointing in
the azimuthal direction, and V µ

(ρ), V
µ

(z) span the remaining two spatial directions.
The quantity Ω represents an angular velocity of the fluid with respect to the flat
infinity. The zero eigenvalue χ(z) = 0 reflects the fact that no pressure can act
in the direction perpendicular to the disc. Notice that if B = 1, it automatically
follows from (1.58) that Sρ

ρ = 0, thus the disc can not have radial pressure for
this choice of B.

If D < 0, the eigenvalues and eigenvectors are complex and the interpretation
as an ideal fluid no longer applies. Moreover, since D = (Sα

βu
β
1u1α)(Sα

βu
β
2u2α)

for certain null vectors uα
1 and uα

2 , the case D < 0 violates the weak energy
condition. Then one of the observers in the limit near uµ

1 , or uµ
2 would measure

negative energy density (more on the energy conditions in Sec. 1.7).
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1.6 Circular orbits and counter-rotating inter-
pretation

Circular orbits are the most prominent and “natural” type of motion in axially
symmetric and stationary spacetimes. Such a motion respects the Killing sym-
metries, which in the Weyl coordinates means orbits (ρ = const, z = const) with
steady angular velocity

Ω = dϕ
dt . (1.70)

The corresponding four-velocity reads

uµ =
ξµ

(t) + Ωξµ
(ϕ)

|ξµ
(t) + Ωξµ

(ϕ)|
= ut(1,Ω, 0, 0) , (1.71)

where5

ut = 1√︂
−gtt − 2gtϕΩ − gϕϕΩ2

= 1√︂
e2ν − gϕϕ(Ω − ω)2

≡ e−ν

√
1 − v2

. (1.72)

If the motion is “free”, i.e., the particle follows a geodesic, the four-acceleration
aµ of the orbit

aµ = uµ;αu
α = 1

2
gtt,µ + 2gtϕ,µΩ − gϕϕ,µΩ2

gtt + 2gtϕΩ + gϕϕΩ2 (1.73)

must vanish. The symmetries require that the components at and aϕ are iden-
tically zero everywhere and in the equatorial plane az = 0 as well. Thus, the
only non-vanishing component is aρ. Requiring aρ = 0 gives the allowed angular
velocities

Ω± = − gtϕ,ρ

gϕϕ,ρ

±

⌜⃓⃓⎷(︄ gtϕ,ρ

gϕϕ,ρ

)︄2

− gtt,ρ

gϕϕ,ρ

=

= ω + gϕϕ

gϕϕ,ρ

ω,ρ ±

⌜⃓⃓⎷(︄ gϕϕ

gϕϕ,ρ

)︄2

ω2
,ρ + 2ν,ρe2ν

gϕϕ,ρ

, (1.74)

where all the functions are taken in the z = 0 limit. Such a value of the angular
velocity exists only if the expression under the square root is non-negative. Hence,
the basic condition for the free circular motion reads

4e4νν,ρ

[︂
(ρB),ρ − ρBν,ρ

]︂
+ ρ3B3ω2

,ρ ≥ 0 . (1.75)

When (1.75) is not fulfilled, the particle is pulled “outwards” too strongly so no
value of Ω is sufficiently small.

While the axial symmetry is “natural” to disc sources, the stationarity condi-
tion is more subtle. Such a state requires precise equilibrium of the gravitational,
inertial, and pressure forces. We have seen one interpretation of a thin disc in
the previous section, in particular, it led to an understanding of the disc as an

5Analogously to (1.67), v represents a local relative velocity of the particle on the circular
orbit with respect to a ZAMO observer.
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ideal fluid with azimuthal and radial stresses. However, there is another op-
tion used more in the astrophysical context. When the radial pressure vanishes
(Sρ

ρ = 0) ⇔ p(ρ) = 0, we can interpret the disc as it consisting of two counter-
rotating streams of dust on circular geodesics. The surface stress-energy tensor
can be decomposed into

Sµν = σ+U
µ
+U

ν
+ + σ−U

µ
−U

ν
− , (1.76)

where the sign ± refers to the direction of the stream with respect to the azimuthal
coordinate ϕ. The components of the four-velocities are simply (1.71) with the
geodesic values of Ω± (1.74), namely

Uµ
± = U t

±(1,Ω±, 0, 0) , U t
± = 1√︂

−gtt − 2gtϕΩ± − gϕϕΩ2
±

≡ e−ν√︂
1 − v2

±
. (1.77)

Clearly, the double-stream interpretation is only possible if the condition (1.75)
holds. From (1.76) we have

σ± = ±(gtt + 2gtϕΩ± + gϕϕΩ2
±)S

ϕϕ − SttΩ2
∓

Ω2
− − Ω2

+
. (1.78)

By equating (1.69) – with p(ρ) = 0 – and (1.76),

σV µV ν + p(ϕ)W
µW ν = σ+U

µ
+U

ν
+ + σ−U

µ
−U

ν
− (1.79)

we can identify the connection between both interpretations, namely from the
trace of the stress-energy tensor it immediately follows

σ+ + σ− = σ − p(ϕ) . (1.80)

From the projection onto V µV ν , W µW ν , and V µW ν we have

σ = σ+(Uα
+Vα)2 + σ−(Uβ

−Vβ)2

= 1
1 − v2

[︄
(1 − vv−)2

1 − v2
−

σ− + (1 − vv+)2

1 − v2
+

σ+

]︄
, (1.81)

p(ϕ) = σ+(Uα
+Wα)2 + σ−(Uβ

−Wβ)2

= 1
1 − v2

[︄
(v − v−)2

1 − v2
−

σ− + (v − v+)2

1 − v2
+

σ+

]︄
, (1.82)

0 = σ+(Uα
+Vα)(Uβ

+Wβ) + σ−(Uα
−Vα)(Uβ

−Wβ)

= 1
1 − v2

[︄
(1 − vv−)(v − v−)

1 − v2
−

σ− + (1 − vv+)(v − v+)
1 − v2

+
σ+

]︄
. (1.83)

To summarize, there are two possible physical interpretations of thin discs
with no radial pressure:

• a single-component ideal fluid of the surface density σ and azimuthal pres-
sure p(ϕ) – set of hoops with an internal pressure,

• two counter-rotating streams of dust following circular geodesics with the
surface densities σ+ and σ−.
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1.7 Energy conditions and physical properties
Not any value of the density or pressure is considered physically acceptable. First
of all, all the disc elements should move with subluminal velocities. In other
words, V µ should be normalized to −1, thus V t must be real. From (1.67) it
follows that it is true if |v| ≤ 1. The same should also hold for the counter-
rotating streams, i.e., |v±| ≤ 1.

The common additional requirements are energy conditions which attempt to
express the fact that any time-like (or null) observer uµ should agree that gravity
is attractive. More formulations are possible:

• weak energy condition (WEC): the energy density measured by any observer
is non-negative, Tαβu

αuβ ≥ 0,
• dominant energy condition (DEC): the current of energy (−T µ

α u
α) should

be time-like or null, i.e., T β
α Tβγ u

αuγ ≤ 0,
• strong energy condition (SEC): gravity is never repulsive, which requires(︂

Tαβ − 1
2Tgαβ

)︂
uαuβ = Tαβu

αuβ + 1
2T ≥ 0.

For the stress-energy tensor (1.69) the energy conditions in terms of physical
characteristics read

WEC ⇐⇒ σ ≥ 0 , σ + p(ϕ) ≥ 0 , σ + p(ρ) ≥ 0 ,
DEC ⇐⇒ σ ≥ 0 , p2

(ϕ) + p2
(ρ) ≤ σ2 ,

SEC ⇐⇒ σ + p(ϕ) ≥ 0 , σ + p(ρ) ≥ 0 , σ + p(ϕ) + p(ρ) ≥ 0 .

In the case of the counter-rotating interpretation (for which we assume p(ρ) = 0),
all energy conditions require σ+ ≥ 0 and σ− ≥ 0. It also implies that the
subdeterminant of SA

B should be negative,

det(SA
B) = −σp(ϕ) = − (v+ − v−)2

(1 − v2
+)(1 − v2

−)σ+σ− ≤ 0 . (1.84)

Hence, as expected, the counter-rotating interpretation is more restrictive, re-
quiring also p(ϕ) ≥ 0.

Finally, we remark that orbits in the counter-rotating interpretation should
be stable against radial and vertical perturbations. We will not discuss these
issues in this thesis, but we refer the reader to Semerák & Žáček (2000) and the
references therein. One should also check some general spacetime properties such
as the existence of singularities, closed timelike curves, or asymptotic behavior.

1.8 Mass and angular momentum
Assuming asymptotically flat spacetime, one way to obtain the total mass and
angular momentum contained within that spacetime is to read them out from
the asymptotic behaviour of the metric functions (1.18). However, using the
symmetries – stationarity and axial symmetry in this case – Komar integrals
(1.19) and (1.20) allow to assign both properties directly to the disc source.
By applying the Stokes theorem, the identity valid for any Killing vector field
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ξµ;β
β = −Rµ

βξ
β and the “trace-reversed” Einstein equations Rµ

ν = 4π(2T µ
ν −Tδµ

ν ),
we get

MK = 1
8π

∮︂
∂Σ
ξα;β

(t) dSαβ = 1
4π

∫︂
Σ
ξα;β

(t)β dΣα = −
∫︂

Σ
(2T α

β ξ
β
(t) − Tξα

(t)) dΣα , (1.85)

JK = − 1
16π

∮︂
∂Σ
ξα;β

(ϕ) dSαβ = − 1
8π

∫︂
Σ
ξα;β

(ϕ)β dΣα = 1
2

∫︂
Σ
(2T α

β ξ
β
(ϕ) − Tξα

(ϕ)) dΣα .

(1.86)

In the Weyl coordinates, we take the natural volume element of a slice t = const,
that is dΣµ = δt

µ

√
−g d3x = δt

µBρe
2λ−2ν dρ dz dϕ. For a thin disc characterized

by the surface stress-energy tensor (1.53), i.e., Tµν
√
gzz = Tµνe

λ−ν = Sµνδ(z), we
can perform the integration over z and ϕ coordinates resulting in

MK = 2π
∫︂ ∞

−∞
(Sρ

ρ + Sϕ
ϕ − St

t)Bρeλ−ν dρ , (1.87)

JK = 2π
∫︂ ∞

−∞
St

ϕBρe
λ−ν dρ . (1.88)

Substituting (1.54)-(1.58), we get the Komar mass and angular momentum in
terms of the metric functions and their normal derivatives to the disc plane,

MK = 1
2

∫︂ ∞

−∞
(2ν,z − B2ρ2e−4νωω,z)Bρ dρ , (1.89)

JK = −1
4

∫︂ ∞

−∞
B3ρ3e−4νω,z dρ . (1.90)
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CHAPTER

2

WEYL (STATIC) SPACETIMES

In this chapter, we focus on the static limit, i.e., when ω = 0, commonly referred
to as Weyl spacetimes. While most astrophysical objects presumably carry some
angular momentum, when the net rotation in the spacetime is negligible, or com-
pensated, it is an adequate approximation. Moreover, it may already help us to
understand some interesting implications of the disc’s gravity without the need
to deal with the mathematical complexity of the stationary case.

The Weyl metric reads

ds2 = −e2ν dt2 +B2ρ2e−2ν dϕ2 + e2λ−2ν(dρ2 + dz2) . (2.1)

Our attention will go towards the case Tρρ +Tzz = 0. As we discussed in Sec. 1.3,
then we can choose B = 1, which reduces the Einstein equations to

∆ν = 4πe2λ−2ν(T ϕ
ϕ − T t

t ) , (2.2)
λ,ρ − ρ

(︂
ν2

,ρ − ν2
,z

)︂
= 4πρ(Tρρ − Tzz) , (2.3)

λ,z − 2ρν,ρν,z = 8πρTρz , (2.4)

where ∆ is the standard 3D Laplace operator in cylindrical coordinates. What a
remarkable result! In vacuum (where Tµν = 0), the metric function ν satisfies the
Laplace equation. Thus, any vacuum axially symmetric gravitational field known
from Newton’s theory is a valid solution for ν in GR. However, the function ν
does not tell the whole story, as there is also another function λ present in the
metric. This can significantly deviate from the Newtonian picture. The second
metric function λ is determined by a line integration going through a vacuum
region,

λ =
∫︂
ρ
(︂
ν2

,ρ − ν2
,z

)︂
dρ+ 2ρν,ρν,z dz , (2.5)

where the integration usually starts at the symmetry axis where λ = 0 from the
regularity condition (1.16). Because the Laplace equation ∆ν = 0 is also the
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integrability condition for (2.5), the metric function λ is, in principle, obtainable
for any Newtonian potential ν. Notice that while the Laplace equation is linear,
the non-linearity of the Einstein equations is manifested in the equations for λ.

Even though the problem of finding a static and axially symmetric solution
to the Einstein equations is partially Newtonian, one has to be careful about the
physical interpretation of the obtained metric. For example, the simplest solution
of the Laplace equation is the Newtonian potential of a point mass M located at
the origin

ν = − M√
ρ2 + z2 . (2.6)

This potential is spherically symmetric, but the second metric function

λ = −M2ρ2

2(ρ2 + z2)2 (2.7)

is not! The solution was first considered by Curzon (1925) and Chazy (1924)
and as it later turned out, its interpretation is rather challenging. It describes
an asymptotically flat spacetime with a curvature singularity at ρ = 0, z = 0 not
covered by the horizon, although it is black due to the vanishing lapse function.
But the singularity is not point-like, instead the metric can be smoothly (but
not analytically) prolonged to a new asymptotically flat region which is more
consistent with a ring-like singularity – for more details see Griffiths & Podolský
(2009) and the references therein.

2.1 Axially symmetric Green function and the
Bach-Weyl ring

The axially symmetric Green function for the Laplace equation reads

G (ρ, z|ρ0, z0) = − 1
2π

∫︂ π

0

dϕ√︂
(z − z0)2 + ρ2 + ρ2

0 − 2ρρ0 cosϕ
, (2.8)

where the integration over ϕ gives

G (ρ, z|ρ0, z0) = − K(k)
π
√︂

(ρ+ ρ0)2 + (z − z0)2
, k =

2√
ρρ0

(ρ+ ρ0)2 + (z − z0)2 . (2.9)

The function K(k) is the complete elliptic integral of the first kind with mod-
ulus k. Physically, the Green function describes the Newtonian potential of a
singular ring of constant linear density ρ−1

0 .
In GR, such a ring was first considered by Bach & Weyl (1922). In particular,

the homogeneous singular ring with the mass M located in the equatorial plane
(z0 = 0) at the Weyl radius ρ0 = b is described by

νBW = − 2MK(k)
π
√︂

(ρ+ b)2 + z2
, (2.10)

λBW = − M2

4π2b2ρ

⎧⎪⎪⎨⎪⎪⎩(ρ+ b)
[︁
E(k) −K(k)

]︁2 +
(ρ− b)

[︂
E(k) − k′2K(k)

]︂2
k′2

⎫⎪⎪⎬⎪⎪⎭ ,

(2.11)
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where E is the complete elliptic integral of the second kind with the same modulus
as in (2.9) and k′ denotes the complementary modulus k′2 = 1 − k2.

The Bach-Weyl ring is another example of how a perfectly reasonable Newto-
nian solution, when generalized to GR, possesses rather unexpected properties.
Namely, due to the second metric function λ, the ring singularity is strongly di-
rectional, meaning that the meridional sections close to the ring are not isotropic.
The proper radius

∫︁ b
0

√
gρρ dρ of the ring is infinite, while the proper distance from

the outer half-plane ρ ≥ b to the ring is always finite (Semerák, 2016). D’Afonseca
et al. (2005) studied the geodesic structure finding that the ring is more attractive
from the inner part, but the test particles never reach the ring there, because it is
an infinite distance for them. In the limit b → 0+, both elliptic integrals approach
π/2 and the Bach-Weyl solution goes over to the Chazy-Curzon solution, which
preserves the directional property of the singularity as we briefly discussed in the
previous section.

2.2 Appell ring
Although the solutions to the Laplace equation are unique, which ensures that the
Bach-Weyl ring is the only correct “singular ring”, there are more exact solutions
which can be interpreted as ring-like. One of them is an old Appell ring obtained
(within electrostatics) already in the 19th century (Appell, 1887). It is described
by a potential of a point particle of mass M located at an imaginary extension
of the z axis (ρ = 0, z = ib), in particular

νApp = − M√︂
ρ2 + (z − ib)2

. (2.12)

Thanks to the linearity of the Laplace equation, the real part of such a Newtonian
potential is also a solution, singular at ρ = b in the equatorial plane z = 0. This
“ring” was first studied in GR by Gleiser & Pullin (1989), the metric functions
read explicitly

νApp = −Re

⎡⎢⎣ M√︂
ρ2 + (z − ib)2

⎤⎥⎦ = − M√
2Σ

√︂
Σ + ρ2 + z2 − b2 , (2.13)

λApp = M2

8b2

[︄
1 − ρ2 + z2 + b2

Σ − 2b2ρ2(Σ2 − 8z2b2)
Σ4

]︄
, (2.14)

where Σ =
√︂

(ρ2 − b2 + z2)2 + 4b2z2. As pointed out by Semerák et al. (1999), the
Appell ring has many similarities to the Kerr singularity, although no dragging
effects are present as the spacetime is static. It can be interpreted as an intrin-
sically flat disc (ρ ≤ b, z = 0) with an effective negative surface mass density

σ = − Mb

2π(b2 − ρ2)3/2 (2.15)

diverging towards the rim (ρ = b, z = 0) to −∞ while jumping to +∞ precisely
at the rim, so the total mass remains positive and finite. The second option is
that it represents a singular ring of mass M if the metric is smoothly extended
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through the inner (flat, disc-like) region to a new asymptotically flat manifold
where, however, the ring has a negative mass −M. In the limit b → 0+, we again
recover the Chazy-Curzon solution.

Regardless of the interpretation, it is clear that the ring sources are problem-
atic in GR. Especially if they should represent a limit of a real extended (toroidal)
astrophysical object. However, the situation is much better for infinitesimally thin
discs as we will see in the next sections.

2.3 Thin discs
Consider a thin (infinite or finite) axially symmetric disc lying in the equatorial
plane (z0 = 0) with the Newtonian surface density w(ρ). Then the solution of the
Poisson equation ∆ν = 4πw(ρ)δ(z) is given by an integral of the Green function
(2.8) over the disc density

νdisc(ρ, z) = 4π
∫︂ ∞

0
G (ρ, z|ρ0, 0)ρ0w(ρ0) dρ0 (2.16)

= −4
∫︂ ∞

0

ρ0w(ρ0)√︂
(ρ+ ρ0)2 + z2

K

⎛⎜⎝ 2√
ρρ0√︂

(ρ+ ρ0)2 + z2

⎞⎟⎠ dρ0 . (2.17)

The second metric function is then determined from (2.5). From the knowledge
of the Newtonian potential νdisc, we can recover the density by

w(ρ) = 1
2π lim

z→0+
ν,z , (2.18)

which follows from integrating the Poisson equation over the z coordinate, as-
suming that the spacetime is reflection symmetric.

Solving (2.17) directly is mostly not feasible, thus several other approaches
have been applied in the literature. One way is to start at the symmetry axis
where K(k) = π/2 and solve much simpler integration there. If the potential on
the axis can be expanded in power series of z, the solution may be constructed
everywhere. In particular, if

νdisc(ρ = 0, z) = −2π
∫︂ ∞

0

ρ0w(ρ0)√︂
ρ2

0 + z2
dρ0 =

∞∑︂
j=0

αjz
j + βjz

−j , (2.19)

where αj, βj are constant coefficients, then the potential at a generic location
(ρ, z) is given by

νdisc(ρ, z) =
∞∑︂

j=0

[︄
αj

(︃√︂
ρ2 + z2

)︃j

+ βj

(︃√︂
ρ2 + z2

)︃−j
]︄
Pj

(︄
z√

ρ2 + z2

)︄
, (2.20)

where Pj are the Legendre polynomials. However, the above recipe usually results
in the metric with infinite Legendre series with a rather poor convergence.

There is one exception found by Morgan & Morgan (1969), where the series
is finite. They used the fact that the axially symmetric Laplace equation is
separable in oblate spheroidal coordinates (ζ, ξ) defined as

ρ2 = b2(1 + ζ2)(1 − ξ2) , z = bζξ , (2.21)
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where b is a constant with the dimension of length. For an isolated thin disc
stretching from the origin (ρ = 0, z = 0) to some Weyl radius (ρ = b, z = 0), the
general form of the potential reads

νMM(ζ, ξ) = −M
b

∞∑︂
j=0

C2jiQ2j(iζ)P2j(ξ) , (2.22)

where P2j and Q2j are the Legendre polynomials of the first and second kind and
C2j are constants determined by the source. From (2.18) it follows that

wMM(ρ ≤ b) = M
2πb

1√
b2 − ρ2

∞∑︂
j=0

(2j + 1)C2jQ2j+1(0)P2j

⎛⎝√︄1 − ρ2

b2

⎞⎠ . (2.23)

By setting

C
(n)
2j =

⎧⎨⎩
(−1)j(4j+1)(2j)!(n+j)!
(j!)2(n−j)!(2n+2j+1)! , j ≤ n ,

0 , j > n ,

for an integer n, we obtain the Morgan-Morgan family of discs characterized by
the Newtonian surface density

w
(n)
MM(ρ ≤ b) = (2n+ 1)M

2πb2

(︄
1 − ρ2

b2

)︄n−1/2

. (2.24)

The second metric function can also be obtained in closed form by directly solving
case by case the vacuum Einstein equations (2.3) and (2.4) transformed to the
oblate spheroidal coordinates (2.21)

ζ2 + ξ2

ξ2 − 1 λ,ζ = −ζ(ξ2 − 1)ν2
,ξ − ζ(ζ2 + 1)ν2

,ζ + 2ξ(ζ2 + 1)ν,ζν,ξ , (2.25)

ζ2 + ξ2

ζ2 + 1 λ,ξ = ξ(ζ2 + 1)ν2
,ζ + ξ(ξ2 − 1)ν2

,ξ − 2ζ(ξ2 − 1)ν,ζν,ξ . (2.26)

Thanks to the integrability condition ∆ν = 0, it is sufficient to integrate the
second equation over ξ starting at the axis ξ = 1 where λ = 0. The integration
over ζ would give the same result.

If interested in annular discs, we can use another symmetry of the Laplace
equation – inversion with respect to a sphere, so-called Kelvin transformation.
Given a sphere of radius b, the inversion of a point (ρ, z) means the coordinate
transformation

ρ −→ b2ρ

ρ2 + z2 , z −→ b2z

ρ2 + z2 . (2.27)

Then, if ν satisfies the Laplace equation, the function

Kν(ρ, z) ≡ b√
ρ2 + z2ν

(︄
b2ρ

ρ2 + z2 ,
b2z

ρ2 + z2

)︄
(2.28)

solves the Laplace equation as well. Such a transformation maps spheres into
spheres and, in particular, the interior of the sphere is mapped into its exterior
and vice versa. Thus, a thin disc is transformed into a thin disc with a different
Newtonian density profile

w(ρ) −→ b3

ρ3w

(︄
b2

ρ

)︄
. (2.29)
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Inverting the Morgan-Morgan discs leads to new disc solutions with the Newto-
nian density

w
(n)
iMM(ρ ≥ b) = 22n(n!)2

(2n)!π2
Mb

ρ3

(︄
1 − b2

ρ2

)︄n−1/2

. (2.30)

They are spatially infinite, stretching from ρ = b to infinity, although having
a finite total mass M. These discs were first considered by Lemos & Letelier
(1994), where they were also superposed with a Schwarzschild black hole, see also
Semerák & Žáček (2000); Žáček & Semerák (2002); Semerák (2003) for a detailed
study of physical properties, including stability. The second metric function λ
has not been obtained analytically, until our recent work Kofroň et al. (2023) –
see Sec. 2.6.3.

2.4 Physical properties of static thin discs
When the spacetime is static and no radial pressure is present (p(ρ) = 0), the
stress-energy tensor (1.54)-(1.60) has only two non-zero components

St
t = −eν−λ

2π ν,z(1 − ρν,ρ) , Sϕ
ϕ = eν−λ

2π ρν,zν,ρ , (2.31)

where we used the vacuum Einstein equation (2.4) and assumed that B = 1. The
expression for density and azimuthal pressure becomes very simple,

σ + p(ϕ) = Sϕ
ϕ − St

t = eν−λν,z

2π = eν−λw(ρ) , (2.32)

p(ϕ) = Sϕ
ϕ = eν−λρw(ρ)ν,ρ , (2.33)

where w(ρ) is the Newtonian surface density (2.18). As expected, this Newto-
nian quantity is related to the sum of the physical density and pressure. The
eigenvectors of the stress-energy tensor are

V µ = e−ν(1, 0, 0, 0) , W µ = eν

ρ
(0, 1, 0, 0) (2.34)

and the counter-rotating parameters are simplified to

Ω± = ±e2ν

√︄
1
ρ

· ν,ρ

1 − ρν,ρ

, Uµ
± = e−ν

√︄
1 − ρν,ρ

1 − 2ρν,ρ

(1,Ω±, 0, 0) , (2.35)

and

σ± = σ

2 = 1
2e

ν−λw(ρ)(1 − ρν,ρ) , v2
± = ρν,ρ

1 − ρν,ρ

= p(ϕ)

σ
. (2.36)

Finally, all the energy conditions discussed in Sec. 1.7 are satisfied for both
interpretations if the linear velocities acquire timelike values 0 ≤ |v±| < 1.

The total angular momentum is, of course, zero and the total mass of the disc
matches the Newtonian expression

MK =
∫︂ ∞

−∞
ν,zρ dρ = 2π

∫︂ ∞

−∞
w(ρ)ρ dρ . (2.37)

25



2.5 Superposition of multiple sources
The static and axially symmetric problem is partially linear – it is possible to use
the superposition principle for the gravitational potential ν. However, the second
metric function λ does not “superpose” that simply. Even vacuum equations (2.3),
(2.4) are non-linear (quadratic in ν). Indeed, imagine two sources described by
the metric function ν1, ν2 and λ1, λ2 satisfying (2.5) respectively. Then, their
common gravitational field is given by

ν = ν1 + ν2 , λ = λ1 + λ2 + λint , (2.38)

where the “interaction” part λint satisfies

λint,ρ = 2ρ(ν1,ρν2,ρ − ν1,zν2,z) , (2.39)
λint,z = 2ρ(ν1,ρν2,z + ν1,zν2,ρ) . (2.40)

Typically, we will consider the Schwarzschild black hole (1.28), (1.29) as one of
the sources, and a static thin disc as the other.

2.6 Particular results

2.6.1 Polynomial and power-law discs
For a specific Newtonian density profile, the integration (2.17) can be performed
directly. However, we need to re-express the Green function in a more suitable
form. Already in electrostatics, then considered by Toomre (1963) and, more
recently, by Conway (2000) and us in Kotlařík et al. (2022), the axially symmetric
Green function (2.8) can be cast into the form

G (ρ, z|ρ0, z0) = −2πρ0

∫︂ ∞

0
J0(sρ0)J0(sρ)e−s|z−z0| ds , (2.41)

where J0 is the Bessel function of the order zero, and s is an auxiliary real
parameter with the dimension of inverse length. The Newtonian potential of a
thin disc lying in the equatorial plane z0 = 0 reads

νdisc = −2π
∫︂ ∞

0

∫︂ ∞

0
ρ0w(ρ0)J0(sρ0)J0(sρ)e−s|z| ds dρ0 . (2.42)

Remarkably, for the density profiles which are given as a general combination of
the even powers in ρ0 ∈ (0, b), the radial integration can be evaluated analytically
and expressed, again, in terms of the Bessel functions. In the end, the problem
is reduced to integrals of the type

I(α,β,γ) =
∫︂ ∞

0
sαJβ(sb)Jγ(sρ)e−s|z| ds , α ∈ Z, and β, γ ∈ N0. (2.43)

These “Laplace transformations of the Bessel functions products” were studied by
Conway (2000) thoroughly. In particular, general I(α,β,γ) leads to a specific com-
bination of the complete elliptic integrals. Gravitational potentials corresponding
to the negative powers ρ−2l−3

0 in the Newtonian density can also be found as they
follow from the Kelvin transformation (2.27), (2.28). Then, using the linearity
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of the Laplace equation, we obtained in Kotlařík et al. (2022) closed-form poten-
tials of the finite polynomial and infinite and finite annular power-law discs of
the Newtonian density profiles

σ
(m,2l)
pol (ρ ≤ b) =

(︄
m+ 1

l

m

)︄
M
πb2

⎛⎝1 − ρ2l

b2l

⎞⎠m

, (2.44)

σ
(m,2l)
pl (ρ ≥ b) =

(︄
m+ 1

2l

m

)︄
Mb

2πρ3

⎛⎝1 − b2l

ρ2l

⎞⎠m

, (2.45)

σ
(L)
bump(bin ≤ ρ ≤ bout) = −W0 +

L∑︂
j=0

(−1)jW−3−2j

ρ3+2j
, (2.46)

where l, L,m ∈ N0. In that paper, we list some explicit examples of the potentials
and check several basic physical properties.

2.6.2 Fully relativistic solution of a black hole encircled
by a thin disc

Kuzmin (1956) formulated a simple yet very useful method for deriving thin disc
solutions. Imagine a point mass M below the equatorial plane (z = 0) sitting
on the symmetry axis ρ = 0 at a distance b. Then, if we cut the resulting
gravitational field through the plane z = 0 and reflect the positive-z half-space
to the negative-z half-space, we obtain discontinuous normal derivatives of the
metric over the plane z = 0. That results in a surface mass density on that plane.
In particular, the Newtonian potential and the corresponding Newtonian surface
density read

νKuz(ρ, z) = − M√︂
ρ2 + (|z| + b)2

, wKuz(ρ) = lim
z→0+

ν,z

2π = 1
2π

Mb

(ρ2 + b2)3/2 . (2.47)

Evans & de Zeeuw (1992) showed that the Kuzmin solution can actually be
used as a building block for other axially symmetric discs. The interpretation
of the method could be twofold: (i) constructing new discs by a superposition
of Kuzmin discs with different b weighted by different weights W (b), or, (ii)
considering a gravitational field of a line distribution of matter described by the
weight function W (b), cut and reflected with respect to the equatorial plane. The
gravitational potential and the associated Newtonian surface density is

ν = −
∫︂ ∞

0

W (b) db√︂
ρ2 + (|z| + b)2

, w(ρ) = 1
2π

∫︂ ∞

0

W (b)b db
(ρ2 + b2)3/2 . (2.48)

Bičák et al. (1993a,b) introduced the technique to GR and derived the whole met-
ric for various classical discs such as Kuzmin-Toomre (Toomre, 1963), Kalnajs-
Mestel (Kalnajs, 1976; Mestel, 1963) and Schwarzschild discs (the latter corre-
sponds to a constant weight function W (b) = const).

In Kotlařík & Kofroň (2022), we took a certain combination of Kuzmin-
Toomre solutions proposed by Vogt & Letelier (2009), describing infinite thin
discs with the Newtonian density profiles

w
(m,n)
VL (ρ) = Mb2m+1(2m+ 1)

2π

(︄
m+ n+ 1/2

n

)︄
ρ2n

(ρ2 + b2)m+n+3/2 , (2.49)
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where M is the total mass of the disc, and m,n ∈ N0. When n ≥ 1, the density
drops to zero on the axis ρ = 0, thus the disc has an annular character. For such
discs, we derived the second metric function λ and superposed them with the
Schwarzschild black hole placed in their empty centre. The resulting superposed
metric is analytical and was found in closed form.

2.6.3 A new generic method for generating thin disc so-
lutions

Inspired by the Kuzmin trick (2.47), we developed a new method for generating
thin-disc solutions in GR (Kofroň et al., 2023). As the building block, instead of
a point particle on the negative half of the z axis, we use the Appell potential
(2.12). Assume a line distribution of matter along the imaginary part of the z
axis described by a real weight function f(q), and cut and reflect the resulting
gravitational field with respect to the equatorial plane (z = 0). The (complex)
potential simply reads1

νf (ρ, z) = −
∫︂ ∞

0

f(q) dq√︂
ρ2 + (|z| + iq)2

. (2.50)

Both the real and imaginary parts of (2.50) are solutions to the Laplace equation
which correspond to a layer of matter in the equatorial plane. However, from
the asymptotic behaviour of the potential, only the real part corresponds to
the physical mass, while the imaginary part represents a nonphysical dipole. In
particular, using the oblate spherical coordinates (2.21) we have

f(q)√︂
ρ2 + (|z| + iq)2

≈ −f(q)
bζ

+ ibξf(q)
b2ζ2 + O(ζ−3) (2.51)

for large ζ ≫ 1. Thus,
∫︁∞

0 f(q) dq may be interpreted as the total mass of the
disc, while we omit the imaginary part from further considerations.

Under reasonable conditions on the weight function f(q), we can show that
the resulting Newtonian surface density is given by an Abel transformation of the
weight function,

wf (ρ) = − 1
2π

∫︂ ∞

ρ

df
dq

dq√
q2 − ρ2 , (2.52)

and the inverted relation

f(q) = 4
∫︂ ∞

q

ρwf (ρ) dρ√
ρ2 − q2 . (2.53)

Hence, from the desired Newtonian density we can find the weight function f(q)
using (2.53) and then take the real part of the gravitational potential νf from the
integration (2.50). All the disc solutions discussed in the previous sections can be
reformulated in this way. Namely, the approach proved useful when deriving the
second metric function λ. We have been able to complete the metric for the in-
verted Morgan-Morgan discs (2.30), including the case when they are superposed

1Note that we use a slightly different notation in Kofroň et al. (2023), where we integrate
over a real variable w (not to confuse with the density w(ρ)), rather than q.
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with the Schwarzschild black hole. We also considered a more general family of
Morgan-Morgan discs (Letelier, 2007) – holey Morgan-Morgan discs – and their
inversions

w
(m,n)
hMM (ρ ≤ b) = M

2πb2+2m

(︂
3
2

)︂
m+n

m!
(︂

1
2

)︂
n

ρ2m

(︄
1 − ρ2

b2

)︄n−1/2

, (2.54)

w
(m,n)
ihMM(ρ ≥ b) = b2m+1(m+ n)!

π2
(︂

1
2

)︂
m

(︂
1
2

)︂
n

M
ρ2m+3

(︄
1 − b2

ρ2

)︄n−1/2

. (2.55)

Both metric functions were derived in closed forms. Notice that similarly to the
Vogt-Letelier discs (2.49), the densities (2.54) drop to zero on the axis ρ = 0 when
m ≥ 1, so a physically reasonable superposition with a black hole is also possible
for them.
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Abstract

The task of finding the potential of a thin circular disk with power-law radial density profile is revisited. The result,
given in terms of infinite Legendre-type series in the above reference, has now been obtained in closed form thanks
to the method of Conway employing Bessel functions. Starting from a closed-form expression for the potential
generated by the elementary density term ρ2 l, we cover more generic—finite solid or infinite annular—thin disks
using superposition and/or inversion with respect to the rim. We check several specific cases against the series-
expansion form by numerical evaluation at particular locations. Finally, we add a method to obtain a closed-form
solution for finite annular disks whose density is of “bump” radial shape, as modeled by a suitable combination of
several powers of radius. Density and azimuthal pressure of the disks are illustrated on several plots, together with
radial profiles of free circular velocity.

Unified Astronomy Thesaurus concepts: Relativistic disks (1388); Black holes (162)

1. Introduction

Disk sources of gravitation have a clear astrophysical importance. Disk configurations typically result from the combined effect of
central attraction—due to a central body or due to the disk itself—and centrifugal force due to orbital motion of the disk matter. In
Newton’s theory, the gravitational field is fully represented by potential, given by mass density through the Poisson equation. In
general relativity, where mass currents also contribute to the field, one has to also specify how the matter moves—i.e., how it orbits in
the disk case. Unfortunately, when there is some overall net rotation, Einstein equations lead to a difficult problem, usually not
solvable by analytical methods. On the other hand, if rotation can be neglected, or if it is compensated as in the case of two equal
counter-orbiting streams, the situation is much simpler. More specifically, in the static and axially symmetric vacuum (or possibly
electro-vacuum) case, the gravitational field can always be described by the spacetime metric of the Weyl type1

r f r= - + + +n n l n- -ds e dt e d e d dz , 12 2 2 2 2 2 2 2 2 2( ) ( )

where t, ρ, f, and z are the Weyl cylindrical coordinates, ν (counterpart of the Newtonian gravitational potential) is given by the
Laplace equation (so it behaves linearly), and λ is found (from ν) by quadrature

òl r n n r n n= - +
r

r rd dz2 , 2
z

z z
axis

,

,
2

,
2

, ,[( ) ] ( )

computed along any path going through the (electro-)vacuum region.
Therefore, the Laplace equation is the key to the external field in Newtonian gravitation, in electrostatics, as well as in static

general relativity. In the last case, however, the field is not in general represented completely by the thus determined potential; in the
axially symmetric case, specifically, it also depends on the second metric function λ, which influences the geometry of meridional (ρ,
z) sections and which can deviate the whole picture from the Newtonian form significantly. Still, the linearity of the Laplace equation
is a tremendous simplification, permitting, in particular, to obtain the field of multicomponent systems by mere superposition. One
can thus find, even in general relativity, the field of a static and axisymmetric system of a body encircled by a disk or a ring, as an
approximation of, e.g., a black hole surrounded by an accretion disk. Regarding the gravitational dominance of such a compact
source as the black hole, the matter in its surroundings is often treated as a test (non-gravitating), but higher (than first) derivatives of
the metric/potential are generally prone to subtle effects of “self-gravitation,” and since these are crucial for stability of the motion,
the (self-)gravitating matter may sometimes assume a considerably different configuration than the test matter.

The paper is organized as follows. First, we recall in Section 2 how the Poisson integral solution of the Laplace equation appears in
the case of a thin circular disk. Following the method suggested by Conway (2000), we then, in Section 3, rewrite that integral in
terms of Bessel functions and solve it for a simple power-law density profile. The case of more general power-law (polynomial)
density profiles is solved, in a closed form, in Section 4, both for solid and annular disks. In Section 5, the closed-form result is
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numerically checked against the series-expansion solution presented in Semerák (2004). After briefly explaining, in Section 6, why
the procedure only works for a density involving even powers of radius, we add in Section 7 how to obtain the potential of a finite
disk with “bump”-type density profile. Physical properties of the disk sources are illustrated in Sections 8 (radial profiles of density
and of azimuthal pressure) and 9 (radial profile of circular-geodesic velocity). Finally, we make several remarks in Section 10, mainly
mentioning similar results that have appeared in the literature recently.

2. Static Thin Circular Disks

Computation of the potential of static thin circular disks is a classical problem of the potential theory. In Newton’s theory of
gravitation, it is mostly solved while modeling the gravitational field of galactic disks, while in general relativity, one mostly tackles
it when modeling accretion disks around compact objects. Although it reduces to the Laplace equation in both theories, in the static
case, it remains a challenge, as it is best illustrated by the “trivial” case of uniform surface density when the result still involves
elliptic integrals of all three kinds (e.g., Lass & Blitzer 1983). For a thin disk lying in the equatorial plane (z= 0), with an outer rim
situated on some Weyl radius b, the Poisson integral for ν reads
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Integration with respect to r¢ leads to an expression containing Appell’s hypergeometric function of two variables, while that with
respect to f yields
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On the symmetry axis (ρ= 0), it simplifies considerably, because the complete elliptic integral of the first kind K(k) reduces to π/2.
In the axisymmetric case, knowledge of ν on the axis is crucial, since if the latter can be expanded as a power series in z,

ån a b= - +
=

¥ +

+
z

b

z

b

b

z
, 5

j
j

j

j j

j

j
0

1

1

 ⎜ ⎟⎛⎝ ⎞⎠( ) ( )

the potential at general location is obtained just by replacing z with r + z2 2 in the above sum and multiplying each of its terms by

the Legendre polynomial
r +

Pj
z

z2 2
⎛⎝ ⎞⎠. In (5), αj and βj are coefficients and represents the disk mass in our case.

If interested in annular disks rather than in finite solid ones, one can perform an inversion with respect to the rim at ρ= b (also
called the Kelvin transformation),
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Actually, such a transformation leaves the solution of the Laplace equation a solution, just that it corresponds then to an annular disk,
stretching from ρ= b to radial infinity.
Two additional features are required naturally: the spacetime should be reflection symmetric, so z must appear as |z| in odd powers;

and the potential should be finite everywhere, at the origin ( r + =z 02 2 ) and at infinity ( r +  ¥z2 2 ) in particular. Anyway,
the above recipe yields the result in terms of the Legendre-type series, which is not ideal, due to rather bad convergence properties. A
closed-form formula would definitely be more desirable. Unfortunately, such has been found only rarely, because the Poisson integral
(4) usually is not elementary. One of the simple exceptions is the Morgan–Morgan family of solutions (Morgan & Morgan 1969),
which corresponds, after inversion with respect to the rim, to the surface densities

r
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The corresponding ν potentials are expressed in terms of finite Legendre series (with m+ 1 terms), so there is no truncation issue.
The superposition of the Morgan–Morgan disks with a Schwarzschild-type black hole was studied by, e.g., Lemos & Letelier (1994)
and Semerák (2003).
In Semerák (2004), we derived the potentials for similar (also annular) disks with densities of the power-law form
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where m and n are natural numbers and the first parenthesis stands for binomial coefficient. These behave somewhat more regularly at
the inner rim and do not involve the square root. We were able to find the potential in closed form on the axis, but elsewhere it was
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only given in terms of an infinite Legendre sum. The purpose of the present paper is to show that it can be written in a closed form.
The key feature will be the relation between a complete elliptic integral of the first kind and an integral over a product of Bessel
functions and exponentials.

3. Potential in Terms of the Bessel Functions

The alternative formulation we will build on first appeared within electrodynamics and later was applied to galactic disks by
Toomre (1963). More recently, Conway (2000) developed it to obtain closed-form solutions for the potential of matter confined
within axisymmetric boundaries. It consists of expressing the axisymmetric Green function, i.e., the potential due to an infinitesimally
thin circular loop placed at r¢ ¢z,( ), as
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¥

- - ¢z J s J s e ds, 2 , 9s z z
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0
0 0( ) ( ) ( ) ( )∣ ∣

where J0 is the zero-order Bessel function of the first kind and s is an auxiliary real variable. The potential due to a thin source of
surface density r¢w ( ), placed at ¢ =z 0, can thus be written as
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The double integration of (10) looks more complicated than the single one in (4), but this is outweighed by having much better
knowledge of integrals involving Bessel functions.

3.1. Potential for Power-law Density Terms: Convolution with the Bessel Functions

Consider the density given by an even power of r¢ within some finite radial range (0, b),
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In such a case, the radial integration in (10) yields

ò r r r r¢ ¢ ¢ ¢ =
+

+ + -
+

w J s d
b

l
F l l

b s

2 2
1 ; 2 , 1;

4
, 11

b l

0
0

2 2

1 2

2 2
⎜ ⎟⎛⎝ ⎞⎠( ) ( ) ( )

with 1F2 the “1,2” generalized hypergeometric function. Employing the contiguous relation
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as a combination of Bessel functions, with a and c integers. In particular, regarding the symmetry 1F2(a; b, c; z)= 1F2(a; c, b; z), we
have
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Using the above relations, we can write the potential (10) of the power-law density term r r¢ = ¢w l2( ) ( ) as
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where we have denoted
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Conway (2000) studied this kind of “Bessel–Laplace” integral in his Appendix B.2 We collect the main results here. The lowest of
the integrals can be computed directly (see the Appendix of Conway 2001):3
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where Qγ−1/2 are Legendre functions of the second kind (toroidal functions).
For our potential formula (15), we first reduce the first index of -j j, ,0( ) to zero using (21) and then also do the same with the

remaining indices using (22)–(25) successively. Since =- -0, 1, 1 0,1,1 ( ) ( ), one ends up with just a combination of (17)–(19), which
means that ν(2 l) is obtained in closed form. However, the procedure grows cumbersome for higher exponents, because the order of
the polynomial “coefficients” in front of the resulting elliptic integrals gradually grows. It is thus useful to create, for evaluation of a
generic-case potential, a package in some symbolic-manipulation software; we have used Mathematica for that purpose.

Let us illustrate how the result (15) appears in specific cases. For l= 0, the density is just constant, which leads to the well-known
solution derived by, e.g., Lass & Blitzer (1983):

n r p r
r r

r
r
r r

r
r

= - - -
-

-
-
+

P
+

z z H b
b

k
E k

b

b
kK k

b

b

z k

b

b

b
k, 2

4 4
, . 260

2 2 2

2
⎜ ⎟⎛⎝ ⎞⎠( ) ∣ ∣ ( ) ( ) ( ) ( ) ( )( )

For l� 1, the potential can be expressed in a similar but generalized form,5
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2 Eason et al. (1955) called them “Lipschitz–Hankel” integrals for products of Bessel functions. They actually represent Laplace transform of products of two Bessel
functions—see also Hanson & Puja (1997) and Kausel & Baig (2012) for thorough treatments.
3 Conway writes 0,1,0( ) in terms of the Heuman lambda function, whereas we use its relation to complete elliptic integral of the third kind (Eason et al. 1955)
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4 Expressions (B27) (B26), (B23), (B12), and (B7) in Appendix B in Conway (2000).
5 The factor (b2 − ρ2) is really not present in front of K(k) anymore.
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where l2 ( ) are polynomials in ρ and z. Generally, l2 ( ) are even polynomials of the order 2l in the case of PH E
l
, ,

2 ( ) , and of the order

2l+ 2 in the case of K
l2 ( ). For the first few cases, the polynomials read
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Although the expressions show some clear combinatorial-type patterns, we have not been able to arrange them completely in a simple
closed formula, so it is better to keep the expanded form.

We may also add that, in the equatorial plane (z= 0), the exponential e− s| z| reduces to unity and integral (16) can be expressed in
terms of a hypergeometric function as
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where it is assumed that α< 1, α+ β+ γ+ 1> 0, and 0< ρ< b. (For ρ> b> 0, one just swaps ρ↔ b in the formula.) We are
specifically interested in the case α=− j, β= j, γ= 0 (yielding α+ β+ γ+ 1= 1) when the expression reduces to
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The potential due to the density terms given by negative powers of r¢ can be obtained by inversion (6). Under the inversion, our
r¢ l2( ) density and the corresponding potential transform as
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hence the density–potential pair
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More explicitly, the inverted potentials read
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denote the respective polynomials l2 ( ) “inverted” according to (6); modulus k of the elliptic integrals is invariant under

the inversion, so it keeps the same form (20). Note that we distinguish the inverted potentials by “i,” as opposed to the density w
whose character is apparent. Note also that the potentials do not yet have the correct dimension—rather than being dimensionless,
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ν(2 l) has the dimension [length]2l+1 while n - - l
i

3 2( ) has the dimension [length]−2l−2.

4. Circular Disks with Generic Power-law Densities

Due to the linearity of the Laplace equation, one can now obtain disk solutions with various power-law radial profiles of density
r¢w ( ) by superposition of elementary terms discussed above. Consider a circular thin disk extending from the center to some finite

radius r¢ = b, with surface density given by an even polynomial in the radial coordinate,
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where l and m are natural numbers and W is a normalization factor ensuring that the disk has the prescribed total mass. The radial
integration in (10) can, for such a density, be performed using binomial expansion (similarly as Conway 2000 did for l= 1), to obtain
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where PH E
m l
, ,
,2 ( ) are polynomials (in ρ and z) of the order 2lm while K

m l,2 ( ) are polynomials of the order 2lm+ 2. They are simply

related to those obtained for the r¢ l2( ) density terms in (28)–(36),
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4.1. The Case of Annular Disks

Annular circular disks are again obtained by inversion (39). Substituting the inverted density
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in order for the total mass of the disk to come out (i.e., in the same manner as in (8)),
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k of the elliptic integrals is invariant under the inversion, so it keeps the same form (20). The above potential already is
dimensionless, as it should be.

Below, we illustrate that the solution is the same as the one given, in the form of multipole expansion, in Semerák (2004), for even
n(≡ 2l).

4.2. Behavior of the Potential at Significant Locations

On the axis (ρ= 0), we have k= 0, so all the elliptic integrals reduce to π/2, and H(b)= 1, which yields
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An explicit result is obtained by substituting for
~
s, which means computing the respective polynomials r = 0m l,2 ( )( ) and

performing their inversion, which for ρ= 0 reduces to the change of z→ b2/z. Using computer algebra, one checks that it really
equals the formula
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given by Semerák (2004). Especially at the very center, (ρ= 0, z= 0), the potential amounts to
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This increases with m, whereas it decreases with n.
In the plane of the disk (z= 0), we were only able in Semerák (2004) to give the potential as an infinite series at ρ> b (i.e.,

“within” the disk), while in the empty region in the disk center, we wrote
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where 3F2 is the generalized hypergeometric function. Now we newly obtain, from (53), the equatorial expression
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valid both above and below the disk rim. At the very rim, ρ= b, both formulae simplify in an obvious manner. In particular, the first

one then involves the unity-argument 3F2 function, + +F , , 1 ; 1, 2 ; 1qn qn
3 2

1

2

1

2 2 2( ), which is commonly discussed in the special-
function literature. It may be worth noting that, in the even-n case, n = 2l, it can be expressed in the closed form (called Ramanujan’s 
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formula)
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In the second, elliptic-integral formula, one has (at the disk rim) k= 1, which is the singularity of K(k), but since the respective
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Several first values read, at the rim (ρ= b, z= 0),
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At radial infinity, the potential falls off as r- + z2 2 , which just confirms the meaning of.

5. Numerical Check of the Closed-form Formulae against Series Expansion

A closed-form solution has clear advantages over the series expansion, the more that the Legendre-type series do not tend to
converge safely. It is natural to compare the two solutions now, in order to support the reliability of both.

In Tables 1–3, we numerically compare several examples of the annular-disk potential (53) with the solution expressed in term of
the multipole expansion in Semerák (2004) (Equations (10) and (11) there). The main message of the tables is that the solutions are
really identical. The second observation is that the series expansion converges quite well even at radii close to that of the disk rim,
mainly for higher m and lower 2l, for which the density falls off (or rises) less steeply at the disk edge, making the field more regular.

6. Trouble with Odd Powers of Radius in Density

Up to now, we have been able to employ Conway’s method and reach the closed-form solution for even n(= 2l) in the density
prescription (8). However, the odd-exponent case, n= 2l+ 1, is more difficult, as already noticed in Semerák (2004) (the presence of
logarithmic terms hindered the standard way of extending the axial result to a generic location). The integration over the source (43)
in that case yields
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Here, the contiguous relation (12) does not always work, because the difference between the first and the third parameter of the above
1F2 is only an integer for an even q, which means that for odd q the counterpart of (14) would generally be an infinite sum.

7. Finite Disks with Bump-type Density Profiles

Finally, we derive, in a closed form as well, the potential of a finite annular disk. The respective density profile can be composed,
within a selected radial range (ρin, ρout), of the constant-density case plus the l= 0, 1, 2,K,L (with L� 1) sum of the (40) terms. Let
us illustrate the recipe on the simplest, L= 1 case. Consider, for  r r r¢in out, the density
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Such a combination of powers together yields a fairly reasonable “bump”-type profile. Since the total mass comes out
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The potential of the disk follows by subtraction
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where ν(0) is given by (26) and n -
i

3( ), n -
i

5( ) are given by (41) for l= 0, 1. The density and potential of this type of disk are illustrated in
Figure 1.

Higher bump-type disks can be constructed in a similar way. In general, one takes certain L� 1 and ρout> ρin> 0, considers
(within the interval  r r r¢in out) the density
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Table 1
Comparison between the Annular-disk Potential Computed in Closed Form (“Exact” Column) and in Multipole Expansion in the Vicinity of the Disk Rim

m = 1, 2l = 2 Number of Summed Terms

ρ z 5 10 20 30 50 exact

4.80 −0.10 −0.0817932 −0.0831299 −0.0836179 −0.0837455 −0.0836892 −0.0834522
4.88 −0.0826293 −0.0836648 −0.0839682 −0.0840259 −0.0840193 −0.0839459
4.96 −0.0834771 −0.0842840 −0.0844754 −0.0845019 −0.0845023 −0.0844883
5.04 −0.0843199 −0.0849521 −0.0850746 −0.0850870 −0.0850877 −0.0850859
5.12 −0.0851449 −0.0856429 −0.0857223 −0.0857282 −0.0857285 −0.0857283
5.20 −0.0859424 −0.0863368 −0.0863888 −0.0863916 −0.0863918 −0.0863917

4.80 −0.05 −0.0815217 −0.0829155 −0.0834898 −0.0837177 −0.0840046 −0.0834822
4.88 −0.0824742 −0.0835518 −0.0839048 −0.0840036 −0.0840816 −0.0839843
4.96 −0.0834240 −0.0842621 −0.0844825 −0.0845263 −0.0845487 −0.0845434
5.04 −0.0843561 −0.0850117 −0.0851513 −0.0851712 −0.0851779 −0.0851784
5.12 −0.0852591 −0.0857746 −0.0858644 −0.0858735 −0.0858756 −0.0858758
5.20 −0.0861245 −0.0865321 −0.0865905 −0.0865948 −0.0865955 −0.0865955

4.80 0 −0.0812375 −0.0826507 −0.0832549 −0.0835202 −0.0839615 −0.0834923
4.88 −0.0823142 −0.0834060 −0.0837762 −0.0838902 −0.0840054 −0.0839975
4.96 −0.0833721 −0.0842207 −0.0844512 −0.0845013 −0.0845332 −0.0845639
5.04 −0.0843981 −0.0850615 −0.0852072 −0.0852297 −0.0852390 −0.0852417
5.12 −0.0853826 −0.0859041 −0.0859974 −0.0860077 −0.0860106 −0.0860109
5.20 −0.0863186 −0.0867307 −0.0867912 −0.0867961 −0.0867970 −0.0867970

4.80 0.05 −0.0815217 −0.0829155 −0.0834898 −0.0837177 −0.0840046 −0.0834822
4.88 −0.0824742 −0.0835518 −0.0839048 −0.0840036 −0.0840816 −0.0839843
4.96 −0.0834240 −0.0842621 −0.0844825 −0.0845263 −0.0845487 −0.0845434
5.04 −0.0843561 −0.0850117 −0.0851513 −0.0851712 −0.0851779 −0.0851784
5.12 −0.0852591 −0.0857746 −0.0858644 −0.0858735 −0.0858756 −0.0858758
5.20 −0.0861245 −0.0865321 −0.0865905 −0.0865948 −0.0865955 −0.0865955

4.80 0.10 −0.0817932 −0.0831299 −0.0836179 −0.0837455 −0.0836892 −0.0834522
4.88 −0.0826293 −0.0836648 −0.0839682 −0.0840259 −0.0840193 −0.0839459
4.96 −0.0834771 −0.0842840 −0.0844754 −0.0845019 −0.0845023 −0.0844883
5.04 −0.0843199 −0.0849521 −0.0850746 −0.0850870 −0.0850877 −0.0850859
5.12 −0.0851449 −0.0856429 −0.0857223 −0.0857282 −0.0857285 −0.0857283
5.20 −0.0859424 −0.0863368 −0.0863888 −0.0863916 −0.0863918 −0.0863917

Note. The disk parameters are z = 0, =b 5, 2l = 2, and m = 1. Coordinates ρ and z are given in units of, while the potential values are dimensionless.
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Table 2
The Same Comparison as in Table 1, but for the Disk with 2l = 2, m = 2 (Top Table) and 2l = 2, m = 3 (Bottom Table)

m = 2, 2l = 2 Number of Summed Terms

ρ z 5 10 20 30 50 Exact

4.80 −0.10 −0.0681220 −0.0673768 −0.0672671 −0.0672524 −0.0672551 −0.0672715
4.88 −0.0681614 −0.0675781 −0.0675086 −0.0675019 −0.0675021 −0.0675059
4.96 −0.0682612 −0.0678022 −0.0677576 −0.0677545 −0.0677544 −0.0677550
5.04 −0.0684146 −0.0680515 −0.0680225 −0.0680211 −0.0680210 −0.0680211
5.12 −0.0686144 −0.0683259 −0.0683068 −0.0683061 −0.0683061 −0.0683061
5.20 −0.0688538 −0.0686233 −0.0686107 −0.0686103 −0.0686103 −0.0686103

4.80 −0.05 −0.0682020 −0.0674278 −0.0673005 −0.0672748 −0.0672552 −0.0672815
4.88 −0.0682156 −0.0676106 −0.0675308 −0.0675195 −0.0675140 −0.0675172
4.96 −0.0683011 −0.0678258 −0.0677751 −0.0677700 −0.0677684 −0.0677684
5.04 −0.0684493 −0.0680739 −0.0680412 −0.0680389 −0.0680384 −0.0680384
5.12 −0.0686508 −0.0683529 −0.0683315 −0.0683305 −0.0683303 −0.0683303
5.20 −0.0688970 −0.0686594 −0.0686453 −0.0686448 −0.0686448 −0.0686448

4.80 0 −0.0682504 −0.0674663 −0.0673330 −0.0673033 −0.0672737 −0.0672848
4.88 −0.0682413 −0.0676290 −0.0675456 −0.0675327 −0.0675247 −0.0675211
4.96 −0.0683159 −0.0678351 −0.0677822 −0.0677765 −0.0677742 −0.0677730
5.04 −0.0684620 −0.0680825 −0.0680485 −0.0680459 −0.0680452 −0.0680451
5.12 −0.0686684 −0.0683673 −0.0683452 −0.0683439 −0.0683437 −0.0683437
5.20 −0.0689244 −0.0686844 −0.0686698 −0.0686693 −0.0686692 −0.0686692

4.80 0.05 −0.0682020 −0.0674278 −0.0673005 −0.0672748 −0.0672552 −0.0672815
4.88 −0.0682156 −0.0676106 −0.0675308 −0.0675195 −0.0675140 −0.0675172
4.96 −0.0683011 −0.0678258 −0.0677751 −0.0677700 −0.0677684 −0.0677684
5.04 −0.0684493 −0.0680739 −0.0680412 −0.0680389 −0.0680384 −0.0680384
5.12 −0.0686508 −0.0683529 −0.0683315 −0.0683305 −0.0683303 −0.0683303
5.20 −0.0688970 −0.0686594 −0.0686453 −0.0686448 −0.0686448 −0.0686448

4.80 0.10 −0.0681220 −0.0673768 −0.0672671 −0.0672524 −0.0672551 −0.0672715
4.88 −0.0681614 −0.0675781 −0.0675086 −0.0675019 −0.0675021 −0.0675059
4.96 −0.0682612 −0.0678022 −0.0677576 −0.0677545 −0.0677544 −0.0677550
5.04 −0.0684146 −0.0680515 −0.0680225 −0.0680211 −0.0680210 −0.0680211
5.12 −0.0686144 −0.0683259 −0.0683068 −0.0683061 −0.0683061 −0.0683061
5.20 −0.0688538 −0.0686233 −0.0686107 −0.0686103 −0.0686103 −0.0686103

m = 3, 2l = 2 Number of Summed Terms

ρ z 5 10 20 30 50 Exact

4.80 −0.10 −0.0569667 −0.0577922 −0.0578323 −0.0578348 −0.0578347 −0.0578333
4.88 −0.0572943 −0.0579470 −0.0579729 −0.0579741 −0.0579741 −0.0579738
4.96 −0.0575848 −0.0581035 −0.0581204 −0.0581209 −0.0581209 −0.0581209
5.04 −0.0578497 −0.0582638 −0.0582749 −0.0582752 −0.0582752 −0.0582752
5.12 −0.0580979 −0.0584299 −0.0584373 −0.0584375 −0.0584375 −0.0584375
5.20 −0.0583363 −0.0586036 −0.0586086 −0.0586086 −0.0586086 −0.0586086

4.80 −0.05 −0.0569329 −0.0577875 −0.0578335 −0.0578378 −0.0578398 −0.0578382
4.88 −0.0572725 −0.0579474 −0.0579767 −0.0579787 −0.0579792 −0.0579791
4.96 −0.0575711 −0.0581066 −0.0581256 −0.0581265 −0.0581267 −0.0581267
5.04 −0.0578418 −0.0582688 −0.0582812 −0.0582816 −0.0582817 −0.0582817
5.12 −0.0580948 −0.0584367 −0.0584449 −0.0584451 −0.0584451 −0.0584451
5.20 −0.0583376 −0.0586125 −0.0586180 −0.0586181 −0.0586181 −0.0586181

4.80 0 −0.0569192 −0.0577836 −0.0578316 −0.0578365 −0.0578395 −0.0578398
4.88 −0.0572647 −0.0579469 −0.0579775 −0.0579797 −0.0579805 −0.0579809
4.96 −0.0575664 −0.0581076 −0.0581273 −0.0581283 −0.0581286 −0.0581286
5.04 −0.0578392 −0.0582705 −0.0582834 −0.0582838 −0.0582839 −0.0582839
5.12 −0.0580941 −0.0584393 −0.0584478 −0.0584480 −0.0584480 −0.0584480
5.20 −0.0583392 −0.0586167 −0.0586224 −0.0586225 −0.0586225 −0.0586225

4.80 0.05 −0.0569329 −0.0577875 −0.0578335 −0.0578378 −0.0578398 −0.0578382
4.88 −0.0572725 −0.0579474 −0.0579767 −0.0579787 −0.0579792 −0.0579791
4.96 −0.0575711 −0.0581066 −0.0581256 −0.0581265 −0.0581267 −0.0581267
5.04 −0.0578418 −0.0582688 −0.0582812 −0.0582816 −0.0582817 −0.0582817
5.12 −0.0580948 −0.0584367 −0.0584449 −0.0584451 −0.0584451 −0.0584451
5.20 −0.0583376 −0.0586125 −0.0586180 −0.0586181 −0.0586181 −0.0586181

4.80 0.10 −0.0569667 −0.0577922 −0.0578323 −0.0578348 −0.0578347 −0.0578333
4.88 −0.0572943 −0.0579470 −0.0579729 −0.0579741 −0.0579741 −0.0579738
4.96 −0.0575848 −0.0581035 −0.0581204 −0.0581209 −0.0581209 −0.0581209
5.04 −0.0578497 −0.0582638 −0.0582749 −0.0582752 −0.0582752 −0.0582752
5.12 −0.0580979 −0.0584299 −0.0584373 −0.0584375 −0.0584375 −0.0584375
5.20 −0.0583363 −0.0586036 −0.0586086 −0.0586086 −0.0586086 −0.0586086
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Table 3
The Same Comparison as in Tables 1 and 2, but for the Disk with 2l = 4, m = 1 (Top Table) and 2l = 6, m = 1 (Bottom Table)

m = 1, 2l = 4 Number of Summed Terms

ρ z 5 10 20 30 50 Exact

4.80 −0.10 −0.0909074 −0.0936320 −0.0945185 −0.0947409 −0.0946453 −0.0942394
4.88 −0.0922746 −0.0943892 −0.0949413 −0.0950419 −0.0950309 −0.0949059
4.96 −0.0936211 −0.0952718 −0.0956207 −0.0956669 −0.0956675 −0.0956439
5.04 −0.0949235 −0.0962192 −0.0964426 −0.0964643 −0.0964654 −0.0964624
5.12 −0.0961652 −0.0971877 −0.0973326 −0.0973429 −0.0973435 −0.0973431
5.20 −0.0973348 −0.0981457 −0.0982408 −0.0982458 −0.0982461 −0.0982460

4.80 −0.05 −0.0904014 −0.0932407 −0.0942827 −0.0946795 −0.0951708 −0.0942827
4.88 −0.0919799 −0.0941792 −0.0948207 −0.0949929 −0.0951267 −0.0949623
4.96 −0.0935060 −0.0952196 −0.0956208 −0.0956972 −0.0957356 −0.0957267
5.04 −0.0949607 −0.0963035 −0.0965581 −0.0965927 −0.0966042 −0.0966051
5.12 −0.0963312 −0.0973892 −0.0975529 −0.0975689 −0.0975725 −0.0975727
5.20 −0.0976094 −0.0984472 −0.0985539 −0.0985614 −0.0985626 −0.0985627

4.80 0 −0.0898955 −0.0927735 −0.0938696 −0.0943315 −0.0950867 −0.0942974
4.88 −0.0916961 −0.0939239 −0.0945965 −0.0947952 −0.0949925 −0.0949818
4.96 −0.0934096 −0.0951445 −0.0955638 −0.0956512 −0.0957058 −0.0957578
5.04 −0.0950222 −0.0963809 −0.0966463 −0.0966855 −0.0967015 −0.0967061
5.12 −0.0965254 −0.0975953 −0.0977655 −0.0977836 −0.0977884 −0.0977890
5.20 −0.0979147 −0.0987615 −0.0988722 −0.0988806 −0.0988822 −0.0988823

4.80 0.05 −0.0904014 −0.0932407 −0.0942827 −0.0946795 −0.0951708 −0.0942827
4.88 −0.0919799 −0.0941792 −0.0948207 −0.0949929 −0.0951267 −0.0949623
4.96 −0.0935060 −0.0952196 −0.0956208 −0.0956972 −0.0957356 −0.0957267
5.04 −0.0949607 −0.0963035 −0.0965581 −0.0965927 −0.0966042 −0.0966051
5.12 −0.0963312 −0.0973892 −0.0975529 −0.0975689 −0.0975725 −0.0975727
5.20 −0.0976094 −0.0984472 −0.0985539 −0.0985614 −0.0985626 −0.0985627

4.80 0.10 −0.0909074 −0.0936320 −0.0945185 −0.0947409 −0.0946453 −0.0942394
4.88 −0.0922746 −0.0943892 −0.0949413 −0.0950419 −0.0950309 −0.0949059
4.96 −0.0936211 −0.0952718 −0.0956207 −0.0956669 −0.0956675 −0.0956439
5.04 −0.0949235 −0.0962192 −0.0964426 −0.0964643 −0.0964654 −0.0964624
5.12 −0.0961652 −0.0971877 −0.0973326 −0.0973429 −0.0973435 −0.0973431
5.20 −0.0973348 −0.0981457 −0.0982408 −0.0982458 −0.0982461 −0.0982460

m = 1, 2l = 6 Number of Summed Terms

ρ z 5 10 20 30 50 Exact

4.80 −0.10 −0.0940721 −0.0990223 −0.1003870 −0.1007140 −0.1005770 −0.0999929
4.88 −0.0961241 −0.0999771 −0.1008290 −0.1009760 −0.1009610 −0.1007820
4.96 −0.0980710 −0.1010870 −0.1016260 −0.1016940 −0.1016950 −0.1016610
5.04 −0.0998925 −0.1022660 −0.1026120 −0.1026440 −0.1026450 −0.1026410
5.12 −0.1015770 −0.1034550 −0.1036790 −0.1036940 −0.1036950 −0.1036950
5.20 −0.1031180 −0.1046110 −0.1047580 −0.1047660 −0.1047660 −0.1047660

4.80 −0.05 −0.0932709 −0.0984244 −0.1000260 −0.1006080 −0.1013160 −0.1000470
4.88 −0.0956494 −0.0996529 −0.1006410 −0.1008940 −0.1010870 −0.1008530
4.96 −0.0978652 −0.1009940 −0.1016130 −0.1017250 −0.1017800 −0.1017680
5.04 −0.0999080 −0.1023660 −0.1027600 −0.1028100 −0.1028270 −0.1028280
5.12 −0.1017740 −0.1037150 −0.1039690 −0.1039920 −0.1039970 −0.1039980
5.20 −0.1034630 −0.1050040 −0.1051690 −0.1051810 −0.1051820 −0.1051820

4.80 0 −0.0925102 −0.0977323 −0.0994168 −0.1000940 −0.1011800 −0.1000650
4.88 −0.0952238 −0.0992782 −0.1003140 −0.1006050 −0.1008890 −0.1008780
4.96 −0.0977140 −0.1008800 −0.1015270 −0.1016550 −0.1017340 −0.1018080
5.04 −0.0999807 −0.1024670 −0.1028770 −0.1029350 −0.1029580 −0.1029640
5.12 −0.1020290 −0.1039910 −0.1042550 −0.1042820 −0.1042890 −0.1042890
5.20 −0.1038650 −0.1054230 −0.1055950 −0.1056070 −0.1056090 −0.1056090

4.80 0.05 −0.0932709 −0.0984244 −0.1000260 −0.1006080 −0.1013160 −0.1000470
4.88 −0.0956494 −0.0996529 −0.1006410 −0.1008940 −0.1010870 −0.1008530
4.96 −0.0978652 −0.1009940 −0.1016130 −0.1017250 −0.1017800 −0.1017680
5.04 −0.0999080 −0.1023660 −0.1027600 −0.1028100 −0.1028270 −0.1028280
5.12 −0.1017740 −0.1037150 −0.1039690 −0.1039920 −0.1039970 −0.1039980
5.20 −0.1034630 −0.1050040 −0.1051690 −0.1051810 −0.1051820 −0.1051820

4.80 0.10 −0.0940721 −0.0990223 −0.1003870 −0.1007140 −0.1005770 −0.0999929
4.88 −0.0961241 −0.0999771 −0.1008290 −0.1009760 −0.1009610 −0.1007820
4.96 −0.0980710 −0.1010870 −0.1016260 −0.1016940 −0.1016950 −0.1016610
5.04 −0.0998925 −0.1022660 −0.1026120 −0.1026440 −0.1026450 −0.1026410
5.12 −0.1015770 −0.1034550 −0.1036790 −0.1036940 −0.1036950 −0.1036950
5.20 −0.1031180 −0.1046110 −0.1047580 −0.1047660 −0.1047660 −0.1047660
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Figure 1. Meridional-plane contour plot of potential (58) of the disk with compact support at r r= =, 3in out ( ). The disk is indicated by the black line, and the
corresponding density profile (57) is inserted into the plot by the thick blue line. The potential value ranges from −0.285 (dark green) to −0.846 (white). The values at
the axes are in the units of.

Figure 2. Radial profiles of the surface density σ (left column) and of azimuthal pressure P (right column), as measured by local static observers, are plotted for several
disks of the infinite annular type (ρ � b)—i.e., those generating potentials (53)—encircling a Schwarzschild black hole (of mass M). Basic parameters are given in the
plots, with different (m, 2l) cases distinguished by color.
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and demands that

r r r r r r r r¢ = = ¢ = = ¢ > < ¢ <w w w0, 0, while 0 for .in out in out( ) ( ) ( )

For L= 1 (preceding paragraph), there are two parameters (W−3 and W−5) and two constraints, so no parameters are left free (besides
the overall scaling, as determined by through W0). For L= 2, the density contains three parameters (W−3, W−5, and W−7), which
again are bound by two constraints, so one of them effectively remains free. In general, L− 1 of the W parameters only remain
restricted by condition that the density must not have any root inside the radial range of the disk.

8. Radial Profiles of Density and of Azimuthal Pressure

Two simple types of physical interpretation of the disk sources involve: (i) a single-component ideal fluid with a certain surface
density (σ) and an azimuthal pressure (P), which keeps the orbits at their radius; or (ii) two identical counter-orbiting dust
components with proper surface densities σ+= σ− following circular geodesics with equal but opposite velocities relative to static
observers, v+ =− v− (see, e.g., González & Espitia 2003). In Figure 2, we show the radial profiles of surface density σ and of
azimuthal pressure P,6

s
n

p
rn

n
p

rn=
=

- =
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r r
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2
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2
,z z,
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( ) ( ) ( )

for several annular disks encircling a Schwarzschild black hole. Figure 3 illustrates the same parameters for several solid and several
bump-type disks. Some curves are seen to fall below zero around the inner disk edge, which means such orbits (understood as hoops)
would have to be in a state of tension in order to stay at their respective radii, i.e., they are attracted outward rather then downward,
due to a “too large” mass of the disk at larger radii. Such a circumstance corresponds to when free circular motion is impossible (see
the following section).

Figure 3. Radial profiles of the surface density σ (left column) and of azimuthal pressure P (right column), as measured by local static observers, are plotted for several
solid disks (ρ � b) with potentials (43) (top row), and for several finite annular disks (ρin � ρ � ρout) with potentials (58) with a Schwarzschild black hole at their
center (bottom row). Basic parameters are given in the plots, M is the black hole mass, and the different cases (m, 2l) are distinguished by color.

6 Quantities defined in this way sum to w ≡ σ + P = ν,z(z = 0+)/(2π), and exactly this sum satisfies the Poisson equation ∇2ν = 4πw(ρ)δ(z), so it is the counterpart
of Newtonian density.
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Figure 4. Radial profiles of circular-geodesic speeds as measured by local static observers, v(m,2 l), plotted for a Schwarzschild black hole (of mass M) encircled by
several disks of the annular type (ρ � b), i.e., those generating potentials (53). Basic parameters are given in the plots.
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9. Circular-velocity Profiles

One of useful illustrations of an axisymmetric-source field possessing a plane with respect to which it is reflection symmetric, at
least locally (it is called the equatorial plane), is the radial profile of circular velocity, i.e., of the velocity corresponding to free
circular orbits of test particles. In the Weyl-type spacetimes, such a (linear) velocity, measured by a static observer at the given radius,
is given by

s
rn
rn

º = =
-

r

r
+ -v v v

P

1
.2 2 2 ,

,
≕

We show how the rotation profile appears for the above disk sources in Figures 4 (annular disks around a black hole) and 5 (solid
disk without a black hole, and finite “bump”-type disk with a black hole). Since the equatorial plane in this case coincides with that of
the disks, the profiles tell, at the same time, where it is possible to interpret the disk in terms of two identical counter-orbiting
geodesic streams. In the figures, several occasions can be seen where the disk is so heavy that it is not possible to orbit freely below
its maximum (even a particle at rest is attracted outward to the disk, despite the opposite effect of the black hole).

10. Concluding Remarks

We have computed in closed form the potential of static thin circular disks with density given by a power law in radius, employing
the method suggested by Conway (2000). Starting with the contribution of the elementary density terms r¢ l2( ) (for solid disks) and
r¢ - - l3 2( ) (for annular disks reached by inversion), we wrote down the potential due to a generic static thin circular disk whose density
involves even powers of density. The results are expressed in terms of elliptic integrals multiplied by polynomials, which can readily
be found using Mathematica or a similar program.7 All the results are exact solutions of Einstein field equations (belonging to the
Weyl class of static and axisymmetric spacetimes). The annular disks resulting from inversion with respect to the rim are infinite (yet
with finite mass), but finite disks can easily be obtained as well by suitable superposition of the basic density terms. We performed a
numerical check of the results against Legendre-series expansion, which we used to solve the problem in the past (Semerák 2004).
We also illustrated the results on the radial profiles of basic physical parameters of the disks.

Finally, let us mention several closely related results from the literature. In astrophysics, disk sources are constantly under study.
This is particularly true in galactic dynamics, but also in relativistic astrophysics where accretion disks encircling compact objects are
central to the physics of active galactic nuclei and of X-ray binaries. However, in the latter case, it is rather rare that the disk-source
gravity is incorporated in an exact way. From the time we were interested in the problem in the 2000s, new exact analytical results on
thin disks have been obtained by Huré and collaborators, in particular by employing their semi-analytical method of tackling the
singularity of the Green function necessarily occurring inside the source (Huré & Pierens 2005)—see, e.g., Huré et al. (2007) for thus
computed potentials of power-law thin disks. Schulz (2009) gave exact analytical solutions for the first three disks of what in general
relativity is known as the counter-rotating Morgan–Morgan static thin disk family (Morgan & Morgan 1969), which we referred to in
Section 2. He also (Schulz 2012) found the exact closed-form potential and field of the Mestel finite disk (it is the one for which the
circular velocity is constant). Vogt & Letelier (2009) obtained new thin-disk solutions via special superpositions within the Kuzmin–
Toomre disk family. A new family of thin disks was also presented by González et al. (2009), but Gleiser (2012) showed that the
properties of these solutions are rather unsatisfactory. More physical results seem to have been obtained recently by Vieira (2020) via
the “displace, cut, and reflect” method applied to multi-black-hole solutions (which appear as N collinear rods located on the
symmetry axis in the Weyl coordinates).

Figure 5. Radial profiles of circular-geodesic speeds relative to local static observers, plotted for several solid disks (ρ � b) with potentials (43) (v(m,2 l), left), and for
several finite annular disks (ρin � ρ � ρout) with potentials (58) with a Schwarzschild black hole at their center (right). Basic parameters are given in the plots, andM is
the black hole mass.

7 However, algorithms that we have found in the literature either aim at numerical evaluation of the integrals (16), or they involve spherical Bessel

functions = p
+j x J xj x j2 1 2( ) ( )
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Abstract

We give a full metric describing the gravitational field of a static and axisymmetric thin disk without radial pressure
encircling a Schwarzschild black hole. The disk density profiles are astrophysically realistic, stretching from the
horizon to radial infinity, yet falling off quickly at both these locations. The metric functions are expressed as finite
series of Legendre polynomials. The main advantages of the solution are that (i) the disks have no edges, so their
fields are regular everywhere (outside the horizon), and (ii) all nontrivial metric functions are provided analytically
and in closed forms. We examine and illustrate basic properties of the black hole−disk spacetimes.

Unified Astronomy Thesaurus concepts: Relativistic disks (1388); Black holes (162)

1. Introduction

Black holes are once again in the spotlight of astrophysical
interest thanks to the unprecedented improvement of imaging
techniques in the past couple of years. The key aspect in
imaging a black hole shadow is the presence of accreting
matter. Having nonvanishing angular momentum, such matter
usually forms an accretion disk inspiraling into the black hole.
The usual simplification of this model is neglecting the disk
self-gravitation because the real accretion disks are supposed to
be much lighter than the central black hole. However, in many
situations, this is not necessarily true, and many disk properties,
such as stability and positions of significant orbits, are sensible
to the gravitational field. Thus, we should include also the
disk’s own gravity in our considerations.

Nevertheless, the complexity of Einstein’s equations makes
the treatment in the most general case almost impossible using
just analytical methods. We have to simplify the problem at
some point. A great source of difficulties is the presence of
overall net rotation and the resulting dragging effects. But if the
rotation can be neglected or if it is compensated by, e.g., two
equal counterorbiting streams, the situation is much simpler.
Namely, any static and axially symmetric vacuum spacetime
(or any nonempty spacetime where the condition T T 0z

z+ =r
r

for the stress–energy tensor holds) can always be described by
a Weyl-type metric

s e t e e zd d d d d , 12 2 2 2 2 2 2 2 2 2( ) ( )r f r= - + + +n n l n- -

where t, ρ, f, and z are Weyl coordinates and functions ν and λ

depend solely on ρ and z. In vacuum, the function ν satisfies the
three-dimensional Laplace equation (therefore ν is the counter-
part of Newtonian gravitational potential), and for λ we have

, 2 . 2z z z, ,
2

,
2

, , ,( ) ( )l r n n l rn n= - =r r r

Just like in electrostatics and Newtonian gravity, in order to find
the external gravitational field in general relativity (GR), we have
to solve the Laplace (or Poisson) equation. But that is only the
(Newtonian) part of the whole story. The field is not fully
determined only by the potential—there is also the second metric
function λ, which influences the geometry in the meridional (ρ, z)
plane. This feature can significantly deviate from the Newtonian
picture. Moreover, while the linearity of the Laplace equation
means a considerate simplification in obtaining the field generated
by more than one individual source (the potentials simply add up),
the nonlinear nature of Einstein’s equations exhibits itself in the
second metric function λ.
The first static superposition of a black hole and a thin disk

(inverted solution of Morgan & Morgan 1969) was considered
by Lemos & Letelier (1993) and further studied in, e.g.,
Semerák (2003). Later, Semerák (2004) found a potential of a
disk with a general power-law density profile in terms of
infinite series and studied its properties when superposed with a
black hole. In a recent revision of this topic in Kotlařík et al.
(2022), we provided this result in closed form. All these disks
are thin and infinite and have an inner rim, where higher
derivatives of curvature are singular. In addition, only the
Newtonian part (i.e., gravitational potential) of the super-
position is given analytically; the second metric function λ, if
needed, has to be solved numerically using Equation (2). Here,
we provide exact full relativistic solutions describing super-
position of a black hole with a disk that extends from the
horizon to infinity. The fields are everywhere regular, and both
metric functions of the superposition are obtained in closed
forms. It may seem inappropriate to consider disks that reach
down to the horizon, since the stationary horizons cannot host
any matter, and since quasi-stationary accretion disks are
assumed to end somewhere about the innermost stable circular
orbit. However, (i) our disk densities drop to zero toward the
black hole, so there is really no matter at the very horizon, and
(ii) the accretion disks around astrophysical black holes indeed
continue toward the horizon (at least partially), though their
matter is infalling there rather than orbiting in a quasi-circular
regime. (Below the last stable orbit, the disk should not be
interpreted in terms of stationary circular motion.) Hence, it is
in fact more realistic to model the gravitational field of an
accreting black hole employing a disk that does have a certain
modest density going down to the horizon.
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Before we proceed further, let us also mention other exact
static black hole–disk superposition, where both nontrivial
metric functions have been obtained. González et al. (2009)
found a family of infinite disks with an inner edge suitable for
the superposition with a black hole. However, Gleiser (2012)
showed that the disks have a problematic physical interpreta-
tion. A more realistic result was obtained by Vieira (2020)
using the “displace, cut, and reflect” method applied to
solutions of N black holes (singular rods in Weyl coordinates)
arranged in a linear chain on the symmetry axis.

The paper is organized as follows. First, in Section 2, we
review a family of thin infinite (in extent)—but of finite mass—
disks due to Kuzmin (1956) and Toomre (1963), which were
later studied in the context of GR by Bičák et al. (1993). Then,
by inversion (Kelvin transformation) of the potential with
respect to some Weyl radius, we find the potential describing,
again, thin infinite disks of finite mass, but in this case their
surface densities are zero at ρ= 0. The same potential has been
found before, as a special case, by Vogt & Letelier (2009) via
superposition within the Kuzmin–Toomre family. Here, we
contribute to this result with the second metric function λ and
thus obtain full relativistic solutions describing inverted
Kuzmin–Toomre disks. Moreover, in Section 3, we also
provide exact solutions of λ to all “single rings” found in
Vogt & Letelier (2009)—disks similar to the inverted Kuzmin–
Toomre ones, but their surface density falls faster. All these
disks are suitable for the superposition with a central black
hole, thanks to their “annular” character. This is done in
Section 4, where, again, both metric functions of the black
hole–disk superposition are derived. In the subsequent
Sections 5 and 6 we study some properties of the resulting
gravitational field, namely the disk’s influence on the black
hole horizon, radial profiles of densities, pressures, and circular
speeds in the equatorial plane. Finally, in Section 7 we make
several concluding remarks.

2. Kuzmin–Toomre Disks and Their Inversion

The n-order Kuzmin–Toomre disk, n� 0, is described by the
potential (Kuzmin 1956; Toomre 1963; Evans & de
Zeeuw 1992; Bičák et al. 1993)
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 stands for the total mass of the disk, and Pk are Legendre
polynomials. The corresponding Newtonian density1 reads
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Such a potential can be constructed by considering some mass
distribution along the negative half of the axis z< 0, then
cutting the solution along the equatorial plane z= 0, and
reflecting its upper part z> 0 to the negative part z< 0 of the
axis—the so-called “displace, cut, and reflect” method
(Kuzmin 1956; Vieira 2020). The resulting field is then

symmetric with respect to the equatorial plane z= 0 and given
by
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For the Kuzmin–Toomre solution, the weight function W is a
distribution given by some combination of the derivatives of
delta distribution (Bičák et al. 1993). Note that in Bičák et al.
(1993) the weight function given in Equation (2.23) does not in
fact correspond to the Kuzmin–Toomre disks, but rather to the
solution obtained by inversion with respect to ρ= b, only with
different normalization—see the explicit treatment below.
Inverted Kuzmin–Toomre disks are obtained by performing
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The inversion of Equation (3), after a suitable rearrangement
of the sum, is again separable in rb and cos bq and can be easily
derived from Equation (3) by (i) replacing b→−b, (ii)
multiplying each term by the hypergeometric function
F k k n k n1 , ; 2 ; 22 1( )+ - - , and (iii) fixing the normal-
ization, so the total mass of the disk is still . The inverted
potential reads3
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and the corresponding Newtonian density profile
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Similarly to the original Kuzmin–Toomre disks (Equation (3)),
the nth-order potential follows also from the recurrence relation

b

n b r2 1
, . 11n n n

b
1

i i i
0
i

( ) ( )n n n n= +
+

¶
¶

= -+

The Newtonian surface densities are depicted in Figure 1. The
shape of the disk potential along the equatorial plane and along
the axis is illustrated in Figure 2.
The second metric function λn can be also obtained

following the same steps as in Bičák et al. (1993). They
consist of rewriting the derivatives in Equation (2) in terms of
(rb, θb) and integrating from rb to infinity requiring λ→ 0 when

1
ν is the solution of Δν(ρ, z) = 4πw(ρ)δ(z), where Δ is the standard Laplace

operator in cylindrical coordinates and δ is the delta distribution.

2 Performing the inversion around an arbitrary radius a leads to the same
density profile but with different Weyl distance b⟶ a2/b.
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rb→∞ . Then,
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3. Vogt−Letelier Disks

Vogt & Letelier (2009) obtained a broader family of disks by a
superposition within the original Kuzmin–Toomre disks. They took
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where W(m,n) is a normalization factor dependent only on m, n.
Resulting disks are again of infinite extent with the surface

density
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which behaves as m2 3( )r- - at infinity; thus, the total mass of
each disk is again finite. We fix W(m, n), so the total mass of the
disk is still, more precisely
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For m= 0, we get the inverted Kuzmin–Toomre disks, which
we discussed in the previous section. Disks of higher m can be
obtained using a recurrence relation
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After substitution of the Kuzmin–Toomre potential into
Equation (16), the double sum can be rearranged and
performed over the k index. It leads to
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where we have already substituted W(m, n) from Equation (18)
and

where 3F2 is the generalized hypergeometric function.
The second metric function λ is again of the same structure

(Equation (12)) as the original or inverted Kuzmin–Toomre

Figure 1. Radial (Newtonian) surface density profiles of the nth-order Kuzmin–Toomre disks (left) and their inversions (right) corresponding to b 10= in both
plots. The horizontal axes are in units of the disk masses, and the vertical axes are in units of 2- . In the left panel the maxima lie at n b2 3maxr = .
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disks, but now
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while the polynomials k l, are the same as in Equation (12). A
shorter expression can be found by the off-diagonal resumma-
tion
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where P P cosu u b(∣ ∣)qº are the Legendre polynomials and we
set 0u

m n,( ) = for u>m+ n. For the inverted Kuzmin–Toomre
disks (i.e., m= 0) the coefficients are reduced, u
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Newtonian density profiles of several Vogt–Letelier disks
are plotted in Figure 3, and the behavior of disks’ potentials in
the equatorial plane and on the axis is illustrated in Figure 4.

4. Superposition with a Schwarzschild Black Hole

All Vogt–Letelier disks have a clear “annular” character—
their densities are exactly zero in the center (ρ= 0, z= 0).
Hence, it is physically reasonable to make a static superposition
of such a disk with a black hole. In Weyl coordinates, the
Schwarzschild black hole of the mass M is a singular rod
placed on the axis (ρ= 0, |z|�M) producing gravitational field
described by
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where d z M1,2
2 2(∣ ∣ )rº + . Then, the disk starts at the

black hole horizon, but the density drops to zero sufficiently
quickly there. Due to the linearity of the Laplace equation, the
superposition of gravitational potentials is a simple sum of the
individual sources, i.e., ν= νSchw+ νdisk. The nonlinearity of
the Einstein equations manifests itself in the second metric
function λ, which does not superpose that simply. In fact, for
two individual sources, a black hole and a disk, we can write
λ= λSchw+ λdisk+ λint, where λSchw and λdisk are contribu-
tions from the black hole and the disk alone (thus satisfying
Equation (2) with just νSchw and νdisk, respectively) and λint is
an “interaction” term for which
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Notice that these conditions are already linear in νdisk, i.e., if
the potential of the disk is a sum of two components, then also
λ must add in the same way. Hence, λint satisfies the same
recurrence relations given by Equation (11) for the inverted
Kuzmin–Toomre disks and Equation (19) for Vogt–Letelier
disks of higher m, namely
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Superposition with a black hole is best represented in
Schwarzschild coordinates4 (r, θ) introduced by

r r M z r M2 sin , cos . 29( ) ( ) ( )r q q= - = -

Figure 2. Coordinate plots of the inverted nth-order Kuzmin–Toomre disk potentials in the equatorial plane (left) and on the axis (right) corresponding to b 3= .
The horizontal axes are in units of the disk mass, while the vertical axes are dimensionless.

4 Note that Schwarzschild coordinates (r, θ) are different from those
coordinates with subscript b used in disks’ potentials.
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Figure 3. Newtonian surface densities of Vogt–Letelier disks for n = 1 and b 10= . Maxima lie at b2 n

mmax 3 2
r =

+
. The horizontal axis is in units of, while

the vertical axis is in units of 2- .

Figure 4. Coordinate plots of the Vogt–Letelier disks’ potential (n = 1) in the equatorial plane (left) and on the axis (right). In both panels, b 10= , the horizontal
axes are in units of, while the vertical axes are dimensionless.

Figure 5. Equatorial plots (in Weyl radius) of λext = λ − λSchw of the superposition of a black hole and a disk (inverted Kuzmin–Toomre disks in the left panel; Vogt–
Letelier disks in the right panel). Parameters of the disks are M= , b = 3M in the left panel and M3.8= , b = 10M in the right panel. The horizontal axes are in
units of M, while the vertical axes are dimensionless. In the right panel, the dashed black lines correspond to m = 1, 2, 3, 4, while the solid red lines correspond to
m = 5, 6, 7, 8. The (color) line differentiation is chosen only for the sake of clarity.
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Figure 6. Meridional plane ( constf = ) contour plots of the superposition of the black hole and the inverted third-order Kuzmin–Toomre disk. Namely, the
gravitational potential ν = νSchw + νdisk (top), the second metric function λext = λ − λSchw (middle), and the difference λext − νdisk (bottom) are shown in
Schwarzschild coordinates. The disk lies in the equatorial plane z = 0 and is highlighted by a thick black line. The thick blue line shows the Newtonian density profile
of the disk; the white circle in the origin shows the black hole. To illustrate how the field of the black hole is distorted by the presence of the disk, rather extreme
parameters are chosen in all plots—the mass of the disk M10= and b = 8M. Both axes are in units of the black hole mass M.

The Astrophysical Journal, 941:25 (11pp), 2022 December 10 Kotlařík & Kofroň

51



In these coordinates the black hole horizon is rendered really
spherical (at r= 2M), the Schwarzschild contribution becomes
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where λext≡ λ− λSchw= λdisk+ λint. In Figure 5, we show
radial plots of λext in the equatorial plane. The resulting field is
illustrated in Figure 6 on several contour plots.

5. Isometric Embedding of the Horizon

Even though the horizon of the black hole always lies at the
Schwarzschild radius r= 2M and remains “spherical” in the
Schwarzschild coordinates, its intrinsic geometry changes

owing to the presence of the surrounding matter distribution.
At any given (coordinate) time, the horizon is a 2D surface
(t= const, r= 2M) with an induced metric
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where disk
Hn is the limit of the disk potential at the horizon

(r→ 2M), and where we have already used solution
λH(θ)= 2νH(θ)− 2νH(θ= 0) valid on the horizon (for any
static or even stationary axially symmetric spacetime). For
isometric embedding to Euclidean 3-space, we use the method
by Smarr (1973). It consists in rewriting the 2-metric in terms
of the coordinate cosm q= , i.e.,
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Figure 7. Meridional section (f = const) of the isometric embedding of the black hole horizon to Euclidean 3-space. The black hole is distorted owing to the inverted
third-order Kuzmin–Toomre disk with b = 2M. The masses of the disk range as M M M M5 , 7.5 , 10 ,... 25= . The horizon becomes more and more flattened with
increasing. For the last two cases, the horizon is not globally embeddable into Euclidean 3-space. Both axes are in units of M.

Figure 8. Gauss curvature at the horizon on the axis is plotted against the disk mass (left) and b (right). The disks are inverted Kuzmin–Toomre of the third order.
In the left panel b = 0.75M is chosen, while in the right panel M3= is chosen. Gauss curvature turns negative if the disk is too massive or the density maximum is
sufficiently close to the black hole. Both horizontal axes are in units of M, while the vertical axes are in units of M−2.
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Then, the isometric embedding of the horizon 2-surface in
three-dimensional Euclidean space (x, y, z) is given by
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See Figure 7 for the numerical results. Another useful quantity

for any 2D surface is its Gauss curvature  R

2
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is the corresponding 2D scalar curvature. For the metric (32),
we have
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The Gauss curvature is plotted against  and b in Figure 8.
When the Gauss curvature turns negative, the horizon is not
globally embeddable into Euclidean 3-space. Both the embed-
ding and the Gauss curvature show flattened horizon in the
direction of the disk.

6. Physical Properties of Disks

Two rather simple physical interpretations of any static thin
disks are (i) a single-component ideal fluid with a certain
surface density σ and an azimuthal pressure P, or (ii) two
identical counterorbiting dust streams with proper surface
densities

2
s s= º s
+ - following circular geodesics. Both

characteristics follow from the discontinuities of normal
derivatives of the field over the equatorial plane
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where w(ρ) is the Newtonian density (10), or Equation (17).
The second interpretation is possible only when σ, P� 0.

6.1. Radial Profiles of Densities and Azimuthal Pressures

Density and pressure (Equation (37)) are not, yet, quantities
measured by any physical observer. Actually, an observer at
rest with respect to the disk would measure the density e ν−λσ
and the pressure e ν−λP (Bičák et al. 1993). We show radial
profiles of e ν−λσ and e ν−λP of the inverted Kuzmin–Toomre
disks in Figures 9 and 10 and of Vogt–Letelier disks (n= 1) in
Figures 11 and 12. The disk parameters in Figure 12 are rather
extreme (especially for higher orders in m, because the mass of
the disk is kept constant), but it shows the role of the
multiplication factor e ν−λ, where also the second metric
function λ is present. However, the circular velocities in the
disk plane (see the section below) would be superluminal in
some regions, so the double-stream interpretation of such disks
would not be possible.

Figure 9. Profiles of disk densities (top row), azimuthal pressures (middle row), and circular velocities (bottom row) in terms of the radial coordinate ρ (left column),
circumferential radius rcf (middle column), and proper distance from the horizon rprop (right column). Eight members of the inverted Kuzmin–Toomre family (n = 1,
2,...,8) are depicted in each panel. We chose the mass of the disks M= and b = 10M, where M is the mass of the central black hole. The horizontal axes are in
units of M, while the densities and pressures are in units of M−1 and the velocities in fractions of the speed of light.
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6.2. Circular-velocity Profiles

Another useful quantity is a physical speed v of circular
geodesics in the equatorial plane measured locally by a static
observer. Such a speed is given by

v
P

1
, 382 ,

,
( )

s
rn
rn

º =
-

r

r

and its time-like condition 0� v2< 1 covers both physical
requirements for the disk—the energy conditions and non-
negativity of azimuthal pressure. In Figures 9, 10, 11, and 13
we show velocity profiles for the inverted Kuzmin–Toomre
disks and Vogt–Letelier disks (n= 1).

6.3. Coordinate and Geometrical Measures

Most of the statements about the spacetime are given in
coordinate terms. Such statements have to be taken with some
caution, although the Weyl (or Schwarzschild) coordinates
represent some spacetime features adequately. In particular, we
should also check the physical properties of disks by employ-
ing invariant measures like circumferential radius or proper
radial distance. In our case, the proper circumference corresp-
onding to a certain ρ (computed along constant t, ρ, and z)
reads

g d g e

r e

2 2

, 39
0

2

cf⟹ ≔ ( )
ò f p pr

r

= =
p

ff ff
n

n

-

-

where we have denoted the circumferential radius rcf in such a
way that the corresponding circumference is given as 2πrcf.
The proper radial distance from the black hole horizon to a
certain ρ, calculated in the equatorial plane z= 0 for constant
coordinates (t, f), is given by

r g d e d . 40prop
0 0

≔ ( )ò òr r=
r

rr

r
l n-

The latter integral has to be solved numerically. All quantities in
Figures 9–13 are depicted against the coordinate ρ, as well as both
geometrical measures defined above. Note that the proper
circumference is not zero at (ρ= 0, z= 0); instead, it is the proper
equatorial circumference of the black hole horizon. As illustrated in
Section 5, this circumference must grow owing to the presence of
the disk. Namely, the corresponding circumferential radius (for any
black hole–Vogt–Letelier-disk spacetime) there reads
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7. Concluding Remarks

We have found a full metric describing static and axially
symmetric superposition of a black hole and a thin disk. The
disks we considered have finite mass, have no radial pressure,
and extend from the black hole horizon to infinity. They also
have no edges, so the field is regular everywhere outside the

Figure 10. Same profiles as in Figure 9. The disks belong to the inverted Kuzmin–Toomre family; the disk mass is chosen to be M3= , and b = 10M.
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horizon, yet the disks’ surface densities fall off sufficiently
quickly at both extremes ρ= 0 and ρ→∞ . In particular, we
have used disks resulting from the inversion (Kelvin transfor-
mation) of Kuzmin–Toomre solutions, as well as “simple”
disks due to Vogt & Letelier (2009) (of which the inverted

Kuzmin–Toomre disks are a distinct subclass). Both metric
functions are given analytically and in closed forms. The
gravitational field is illustrated in plots of the metric functions
and profiles of densities, azimuthal pressures, and circular
velocities. The black hole horizon was found to be distorted

Figure 11. Same profiles as in Figure 9, but in this figure, eight members of Vogt–Letelier disks (m = 1, 2,...,8, n = 1) are depicted in each panel. The disks are of the
same mass and b as in Figure 9, namely M= and b = 10M.

Figure 12. Profiles of disk densities (top row) and azimuthal pressures (bottom row) of the Vogt–Letelier disks (m = 1, 2,...,8, n = 1) in terms of radial distances, as in
Figure 9. The rotational velocities are in separate figures, because rather extreme parameters have been chosen, namely M3.8= and b = 10M. Meanwhile, the
densities and pressures are well behaving, the rotational velocities would be superluminal in some regions of the disks, and therefore the double-stream interpretation
would not be possible.
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owing to the presence of the disk (flattened in the direction of
the disk), which is in agreement with many previous results,
e.g., Semerák (2004), Semerák (2003), and Semerák et al.
(2001), or, in the stationary case, Kotlařík et al. (2018).
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Relativistic disks by Appell-ring convolutions
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We present a new method for generating the gravitational field of thin disks within the Weyl class
of static and axially symmetric spacetimes. Such a gravitational field is described by two metric
functions: one satisfies the Laplace equation and represents the gravitational potential, while the
other is determined by line integration. We show how to obtain analytic thin-disk solutions by
convolving a certain weight function – an Abel transformation of the physical surface-density profile
– with the Appell-ring potential. We thus re-derive several known thin-disk solutions while, in some
cases, completing the metric by explicitly computing the second metric function. Additionally, we
obtain the total gravitational field of several superpositions of a disk with the Schwarzschild black
hole. While the superposition problem is simple (linear) for the potential, it is mostly not such for
the second metric function. However, in particular cases, both metric functions of the superposition
can be found explicitly. Finally, we discuss a simpler procedure which yields the potentials of
power-law-density disks we studied recently.

I. INTRODUCTION

When matter with modest energy has enough angular
momentum, it often forms disk-like structures due to the
mutual competition between gravitational and centrifu-
gal forces. Such structures occur in many astrophysical
phenomena from galaxy scales down to accretion disks
around stellar-mass objects or even planets. Disks are
crucial in high-energy processes which drive active galac-
tic nuclei, X-ray binaries, and gamma-ray bursts. They
are important in observations of black-hole silhouettes,
and they may affect the future gravitational-wave images
of compact objects.

In order to describe the disk gravitational field in gen-
eral relativity (GR), one has to either impose some rea-
sonable simplifications to tackle the problem analytically,
or to solve the Einstein equations numerically. In this
work, we follow the first approach – we propose a generic
procedure which in some static and axially symmetric
cases provides the full spacetime metric explicitly and in
closed form.

For a physical system in a stationary equilibrium, if
solenoidal-type motions are not important, it is natural
to assume that its spacetime is circular, namely that it
is stationary, axially symmetric, and orthogonally transi-
tive (possessing global meridional planes). If the overall
net rotation can be neglected, or if it is compensated due
to counter-rotating mass currents, one can even consider
the spacetime static. In such a case, if the condition
T ρ
ρ + T z

z = 0 on the energy-momentum tensor holds (as
e.g. in a vacuum or dust), the metric can be written in

∗ k.kofron@gmail.com
† kotlarik.petr@gmail.com
‡ oldrich.semerak@mff.cuni.cz

the Weyl form

ds2 = −e2ν dt2 + ρ2e−2ν dϕ2 + e2λ−2ν(dρ2 + dz2) , (1)

where the Weyl-type cylindrical coordinates (t, ρ, z, ϕ)
are adapted to the symmetries – the metric is indepen-
dent of the time t and of the azimuthal angle ϕ, while
ρ and z cover the meridional planes in an isotropic way.
In vacuum regions, the two metric functions ν(ρ, z) and
λ(ρ, z) satisfy the Einstein equations

∆ν = 0 , (2)

λ,ρ = ρ(ν2,ρ − ν2,z) , λ,z = 2ρν,ρν,z . (3)

where ∆ is the standard Laplace operator in cylindrical
coordinates (ρ, z, ϕ) (with the ϕ term missing, however,
thanks to the axial symmetry). Hence, just like in Newto-
nian gravity or in electrostatics, the field is described by
solutions to the Laplace equation. However, in contrast
to the former, in GR there also appears the second func-
tion λ which can deviate the result from the Newtonian
expectations significantly. For instance, the Bach-Weyl
ring is the natural analogue of the homogeneous thin ring
from Newton’s theory (they share the same form of the
potential ν), but the meridional plane is very much de-
formed close to the ring – the space is not locally cylindri-
cal around the ring, but rather strongly anisotropic [1].
We focus on infinitesimally thin disks here. Such a

case finds applications where the typical cross thickness
of the disk is negligible compared to other length scales.
As relativists, we are mostly interested in disks formed
in accretion in strong gravitational fields, e.g. that of a
black hole or a neutron star. When the disk mass is much
smaller than the mass of the central body, the accreting
matter is usually treated as a test, non-gravitating one.
Yet the field equations of Newton’s as well as Einstein’s
theory involve mass density, so even if the total mass of
the disk is not large, its gravity may still have a significant
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effect, including that on the disk’s own structure, evolu-
tion and stability [2]. The disk gravitation has also been
shown to induce subtle but possibly measurable effects
on quasi-normal modes of black holes [3] or on extreme-
mass-ratio inspirals [4], thus affecting the gravitational
waves generated by the black-hole–disk systems; simi-
larly, it can alter the appearance of the black-hole sil-
houettes [5]. Having an analytical model which includes
the gravitational contribution of the disk may thus help
to understand such phenomena.

Newtonian-density profiles1 of static and axisymmetric
razor-thin disks are proportional to the delta distribution
in the z coordinate,

σ(ρ, z) ≡ σ(ρ)δ(z) . (4)

The spacetime is assumed to be reflection symmetric with
respect to the disk plane (z=0), regular and asymptot-
ically flat. The potential ν as well as the second metric
function λ thus should be finite everywhere and vanish

at spatial infinity (
√︁

ρ2 + z2 → ∞).
The disk potential ν is given by the Poisson integral

ν(ρ, z) =

− 4

∫︂ ∞

0

σ(ρ′)ρ′√︁
(ρ+ ρ′)2 + z2

K

(︄
2
√
ρρ′√︁

(ρ+ ρ′)2 + z2

)︄
dρ′ ,

(5)

where K(k) is the complete elliptic integral of the first
kind, with k as its modulus. Since it is usually impossi-
ble to compute the integral (5) analytically, several other
methods have been developed in the literature. Inspired
by Kuzmin’s trick (see Sec. II), we propose a new way to
solve the problem by integrating, over the Abel transfor-
mation of the source density profile, the “Green function”
given by the potential due to the Appell ring. We illus-
trate the procedure on several known thin-disk solutions
while completing them by also finding the second metric
function λ explicitly in some cases.

The plan of the paper is as follows. In Sec. II we review
some techniques for solving the Weyl-Einstein equations
(2), (3). In Sec. III, we list several explicit disk solu-
tions, specifically the Morgan-Morgan disks and their
inverted counterparts, the disks with polynomial and
power-law densities, the Kuzmin-Toomre and the Vogt-
Letelier disks; we mention in particular the case of the
Appell disk/ring which will serve as an elementary solu-
tion in our method. The method itself is introduced in
Sec. IV. Then in Sec. V we demonstrate the applicability
of the approach on the above particular disk solutions. In
addition, we generalize the Morgan-Morgan disks and su-
perpose them with a Schwarzschild black hole, while also
deriving the second metric function λ for the complete

1 The quantity σ satisfies the Poisson equation ∆ν = 4πσ(ρ, z), so
it is the analogue of the Newtonian matter density.

field. Finally, we revisit the case of power-law-density
disks [6] and describe a simpler procedure for generating
their potential. Concluding remarks are added in Sec. VI.
We use geometrized units in which the speed of light c

and the gravitational constant G equal unity. The met-
ric signature is (−+++). The mass of the black hole
is everywhere denoted by M and the mass of the disk
by M.

II. THIN-DISK SOLUTIONS TO EINSTEIN
EQUATIONS

Let us outline some techniques for solving the equa-
tions (2), or (5), and (3) for a thin-disk distribution of
matter. We focus on those which provide the solutions
considered in the next section.

A. The potential of thin disks

One way to tackle the axisymmetric problem is to per-
form the integration (5) along the symmetry axis ρ= 0
whereK(k) reduces to π/2. If the result can be expanded
in a power series in z, the solution at the generic loca-
tion is given by a similar series supplemented by Legendre
polynomials [7]. Such a series typically does not converge
very well [8], though, in the case of the Morgan-Morgan
family of disks, it performs better (see Sec. III A for more
details).
A different approach was used by Conway [9] and we

have applied it in [6] recently. The trick is to rewrite
the integral (5) in terms of the Laplace transform of a
product of the zero-order Bessel functions,

ν(ρ, z) = −2π

∫︂ ∞

0

∫︂ ∞

0

ρ′σ(ρ′)J0(sρ
′)J0(sρ)e

−s|z| ds dρ′ ,

(6)
where s is an auxiliary real parameter of the dimension
of inverse length. The double integration may look com-
plicated, but it has proved quite efficient, specifically in
the case of the polynomial and power-law density disks
where it even yields closed-form formulae [6] (see Sec.
III C).
Yet another useful approach is due to Kuzmin [10],

later elaborated extensively by Evans & de Zeeuw [11]
in the Newtonian context and by Bičák et al. [12, 13]
in GR. It involves considering a line mass distribution
along the negative-z half of the symmetry axis, cutting
the resulting gravitational field along the z=0 plane, and
copying (reflecting) the result obtained for the positive-
z half-space below that plane. The resulting potential
reads

ν(ρ, z) = −
∫︂ ∞

0

W (b) db√︁
ρ2 + (|z|+ b)2

, (7)

with the “weight function” W (b) describing the mass dis-
tribution, and the surface density induced by the metric-
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gradient jump in the equatorial plane reads

σ(ρ) =
1

2π

∫︂ ∞

0

W (b)b

(ρ2 + b2)3/2
db . (8)

Note that Vieira [14] employed a similar procedure
in order to compute the potential of a black hole sur-
rounded by a disk. His mass distribution was a chain
of Schwarzschild black holes (rods) located on the axis,
and he performed the cut and reflection in the middle of
the positive-z one. The Kuzmin procedure can also be
generalized to a stationary case if glueing along suitable
hypersurfaces [15].

The potentials found by any of the above methods
can be further extended by superpositions thanks to the
linearity of the Laplace equation and by inversion with
respect to a sphere of a certain prescribed radius (this
so-called Kelvin transformation again yields a solution).
The inversion with respect to the radius b changes the
position as

ρ −→ b2ρ

ρ2 + z2
, z −→ b2z

ρ2 + z2
, (9)

and the original potential ν(ρ, z) transforms to

Kν(ρ, z) ≡ b√︁
ρ2 + z2

ν

(︄
b2ρ

ρ2 + z2
,

b2z

ρ2 + z2

)︄
. (10)

It corresponds to a different (“inverted”) density profile,
which in the case of a thin disk reads

σ(ρ) −→ b3

ρ3
σ(b2/ρ) . (11)

Besides the Weyl coordinates, we will also use the
oblate ones, ζ ∈ (0,∞) and ξ ∈ (−1,+1), defined by

ρ2 = b2(1 + ζ2)(1− ξ2) , z = bζξ . (12)

The inverse relations read

ζ =

√
2|z|√︂√︁

(ρ2 − b2 + z2)2 + 4b2z2 − (ρ2 − b2 + z2)
,

(13)

ξ =
z

bζ
, (14)

and the Kelvin transformation works as

ζ −→ ξ√︁
ζ2 + 1− ξ2

, ξ −→ ζ√︁
ζ2 + 1− ξ2

. (15)

Kν(ζ, ξ) =

1√︁
ζ2 + 1− ξ2

ν

(︄
ξ√︁

ζ2 + 1− ξ2
,

ζ√︁
ζ2 + 1− ξ2

)︄
. (16)

B. The function λ and superposition of multiple
sources

For λ, there is no other option usually than to integrate
equation (3) directly, although the reflecting method
works for the whole metric, thus also for λ. In a vac-
uum, the main requirement on λ is to vanish on the axis
(the “elementary flatness” requirement), plus we assume
λ=0 at spatial infinity (asymptotic flatness).
Thanks to the linearity of the Laplace equation, the

potentials of multiple sources just add, e.g. ν = ν1 + ν2,
yet still, the non-linearity of the Einstein equations shows
itself in the second metric function λ. Denoting the pure
individual contributions as λ1 and λ2 (they satisfy (3)
with ν1 and ν2 respectively), the total λ (satisfying (3)
with ν1 + ν2) comes out as

λ = λ1 + λ2 + λint , (17)

where the “interaction” part λint has gradient

λint,ρ = 2ρ(ν1,ρν2,ρ − ν1,zν2,z) , (18)

λint,z = 2ρ(ν1,ρν2,z + ν1,zν2,ρ) . (19)

In particular, if “the first” of the sources is the
Schwarzschild black hole (of mass M), the correspond-
ing metric functions read

ν1 ≡ νSchw =
1

2
ln

(︃
R+ +R− − 2M

R+ +R− + 2M

)︃
, (20)

λ1 ≡ λSchw =
1

2
ln

(︄
(R+ +R−)2 − 4M2

4R+R−

)︄
, (21)

where

R± =
√︁

ρ2 + (z ∓M)2 . (22)

III. SPECIFIC THIN DISKS

In this section, we review several solutions for thin
disks which are empty in the central region (or which
can be made such by inversion), being thus suitable for
the superposition with a central source.

A. Morgan-Morgan disks and their inversion

A class of general relativistic thin disks with the New-
tonian density profile

σ
(n)
MM(ρ ≤ b) =

(2n+ 1)M
2πb2

(︄
1− ρ2

b2

)︄n−1/2

(23)

was proposed by Morgan & Morgan already in 1969 [16].
These disks are finite, stretching between ρ ∈ [0, b] and
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having a finite total mass M. Their field is described by
the potential [17]

ν
(n)
MM = −M

b
(2n+ 1)!

n∑︂

j=0

C
(n)
2j iQ2j(iζ)P2j(ξ) , (24)

where P2j and Q2j are the Legendre functions of the first
and second kind and the coefficients read

C
(n)
2j =

(−1)j(4j + 1)(2j)!(n+ j)!

(j!)2(n− j)!(2n+ 2j + 1)!
. (25)

It is also possible to obtain the second metric function λ
case by case integrating the Einstein equations (3) in the
oblate spherical coordinates (see Sec. VA).

If interested in infinite disks with a central empty re-
gion, an inversion with respect to the outer rim b, i.e.
the Kelvin transformation (10), can be applied. The re-
sulting field corresponds to the disks with the Newtonian
density profiles

σ
(n)
iMM(ρ ≥ b) =

22n(n!)2Mb

(2n)!π2ρ3

(︄
1− b2

ρ2

)︄n−1/2

. (26)

They stretch from ρ= b to radial infinity, yet their total
massM remains finite. There is no explicit result for λ in
the literature. The inverted Morgan-Morgan disks were
first considered and superposed with the Schwarzschild
black hole by Lemos & Letelier [18].

B. Kuzmin-Toomre and Vogt-Letelier disks

When the weight function W (b) in (7) is propor-
tional to a certain sum of delta distributions and their
derivatives, the associated potential describes the gravi-
tational field of a particular family of thin disks studied
by Kuzmin [10] and Toomre [19],

ν
(n)
KT = − M

(2n− 1)!!

n∑︂

k=0

(2n− k)!

2n−k(n− k)!

bk

rk+1
b

Pk

(︁
| cos θb|

)︁
,

(27)
where we have denoted

r2b ≡ ρ2 + (|z|+ b)2 , | cos θb| ≡
|z|+ b

rb
, (28)

and Pk are Legendre polynomials. The corresponding
Newtonian density profiles read

σ
(n)
KT =

(2n+ 1)b2n+1

2π

M
(ρ2 + b2)n+3/2

. (29)

The second metric function λ was found by Bičák et al.
in [12].

Taking a special superposition of expressions (27),
Vogt & Letelier [20] obtained another potential-density

pairs

ν
(m,n)
VL = W (m,n)

n∑︂

k=0

(−1)k
(︃
n

k

)︃
ν
(m+k)
KT

2m+ 2k + 1
, (30)

σ
(m,n)
VL = W (m,n)Mb2m+1

2π

ρ2n

(ρ2 + b2)m+n+3/2
, (31)

where W (m,n) is a normalization factor ensuring that M
remains the total mass of the disk. Recently, in [21], we
derived the second metric function λ and, using the fact
that these disks are empty on the axis, we superposed
them with the Schwarzschild black hole and provided
both metric functions explicitly for the total spacetime.

C. Polynomial and power-law density disks

In [6], we presented solid finite disks of polynomial den-
sity profiles, infinite annular disks of power-law density
and finite annular disks with a bump-like density,

σ
(m,2l)
pol (ρ ≤ b) =

(︃
m+ 1

l

m

)︃M
πb2

(︄
1− ρ2l

b2l

)︄m

, (32)

σ
(m,2l)
pl (ρ ≥ b) =

(︃
m+ 1

2l

m

)︃ Mb

2πρ3

(︄
1− b2l

ρ2l

)︄m

, (33)

σ
(L)
bump(bin ≤ ρ ≤ bout) = −W0 +

L∑︂

j=0

(−1)j
W−3−2j

ρ3+2j
,

(34)

where Wi are constant coefficients. The construction
employed the special properties of the Laplace equa-
tion, i.e., we integrated (6) for elementary density terms

σ
(2l)
pol = ρ2l, applied Kelvin transformation (9) and (10)

to get the negative powers ρ−3−2l, and finally superposed
the corresponding elementary potentials with appropri-
ate weights. The resulting potentials were given in closed
form in terms of complete elliptic integrals. The second
metric function λ has not been found explicitly.

D. Appell ring

Already in 1887, Appell [22] obtained, within electro-
statics, a ring-like solution to the Laplace equation by
putting a charged point particle (massive particle in our
case, M) on the complex extension of the z axis. The
corresponding complex potential reads

νApp = − M√︁
ρ2 + (z − ib)2

, (35)

with a point mass located at (ρ = 0, z = ib), where b is
real and of the dimension of length. Taking the real part,
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we have

νApp = − M√
2Ξ

√︁
Ξ + ρ2 + z2 − b2 , (36)

λApp =
M2

8b2

[︄
1− ρ2 + z2 + b2

Ξ
− 2b2ρ2(Ξ2 − 8z2b2)

Ξ4

]︄
,

(37)

where

Ξ =
√︁
(ρ2 − b2 + z2)2 + 4b2z2 . (38)

A thorough investigation of the whole broader family of
Appell rings in GR was performed by Gleisler & Pullin
[23]. Two interpretations of the simplest solution are at
hand. It is either a disk of negative surface mass density
diverging towards −∞ at the rim (ρ = b, z = 0), jump-
ing to +∞ there, so that the total mass M is positive
and finite, or, it is a singular ring of mass M, through
which the spacetime is analytically extended to a second
asymptotically flat region. Semerák et al. [24] pointed
out that the gravitational field is somewhat similar to the
Kerr solution, although no dragging effects are present as
the spacetime is static, and there is also no horizon. In-
dependently of the interpretation, we use the Appell po-
tential to generate physical thin-disk solutions similarly
as Kuzmin did in [10] for the point mass on the (real)
axis.

IV. CONVOLUTION OF APPELL RINGS

A. The potential ν

Let us combine the Kuzmin-inspired approach (7) and
Appell’s trick (36), i.e., integrate a line matter distribu-
tion on the complex extension of the z axis described
by the real weight function f(w) and mirror the positive
half of the z axis to the negative half. The respective
potential thus reads

νf (ρ, z) = −
∫︂ ∞

0

f(w) dw√︁
ρ2 + (|z|+ iw)2

, (39)

Note that νf is a complex function at this moment. Its
real part corresponds to some matter distribution in the
equatorial plane, while its imaginary part corresponds to
a dipole. Indeed, in the oblate spheroidal coordinates
(12), for ζ ≫ 1, we have

f(w) dw√︁
ρ2 + (|z|+ iw)2

≈ −f(w)

bζ
+

iwξf(w)

b2ζ2
+O(ζ−3), (40)

so
∫︁∞
0

f(w) dw may be interpreted as the total mass. The
imaginary part of (39) we will not consider any further,
because it brings the non-physical dipole term.

The integral (39) can be rewritten as

νf (ρ, z) = −i

∫︂

γ

f

(︄
1

2i

ρ2 + z2 − t2

t− z

)︄
dt

t− z
(41)

if holomorphically extending the function f to a complex
plane, with the integration contour

γ(w) : t =
√︁

ρ2 + (z + iw)2 − iw , w ∈ [0,∞) . (42)

The integrand is holomorphic in the neighbourhood of
the contour γ, so there exists an antiderivative F to (41)
such that

νf = F
[︁
γ(w = ∞)

]︁
− F

[︁
γ(w = 0)

]︁
. (43)

The corresponding (yet complex) Newtonian density
profile reads

σf (ρ) =
1

2π
lim

z→0+

∂νf
∂z

(44)

=
1

2π
lim

z→0+

∫︂ ∞

0

(z + iw)
[︁
ρ2 + (z + iw)2

]︁3/2 f(w) dw .

(45)

Assuming that f(w) is continuous, bounded, and van-
ishes on the boundary, integration by parts yields

σf (ρ) = − i

2π
lim

z→0+

∫︂ ∞

0

∂f

∂w

dw√︁
(z + iw)2 + ρ2

(46)

= − i

2π

∫︂ ρ

0

∂f

∂w

dw√︁
ρ2 − w2

−

− 1

2π

∫︂ ∞

ρ

∂f

∂w

dw√︁
w2 − ρ2

, (47)

where we took the limit z → 0+ and split the integral into
two parts. The principal branch of natural logarithm is
used, i.e. log (−1) = iπ, so

√
−1 ≡ e1/2 log(−1) = i. Both

integrands are real, thus only the second part contributes
to the actual (physical) part of the Newtonian density,

σf (ρ) = − 1

2π

∫︂ ∞

ρ

∂f

∂w

dw√︁
w2 − ρ2

, (48)

which is the Abel transformation of the weight func-
tion f(w). Its inverse reads

f(w) = 4

∫︂ ∞

w

σf (ρ)√︁
ρ2 − w2

ρ dρ . (49)

Hence, rather than solving the challenging integral (5),
we can find the weight function f(w) of the desired New-
tonian density using (49) and evaluate a simpler integra-
tion (39) to obtain the gravitational potential.

B. The second metric function λ

With the potential (39) at hand, we can look for λ.
Equations (3) are quadratic in ν, thus working with the
complex potential (39) and taking the real part later
would not yield the correct λ-counterpart of the real part
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of (39): one has to solve (3) for the real part of (39) di-
rectly. Similarly to [13], we can express λ as an integral
over the individual ν pairs

λf =

∫︂ ∞

0

∫︂ ∞

0

f(w1)f(w2)F(w1, w2) dw1 dw2 , (50)

where F is the cross term between the individual real
parts of the Appell potentials

νj =
1

2

[︁
νApp(wj) + νApp(wj)

]︁
(j = 1, 2) , (51)

satisfying the same equations as the interaction part of
λ, (18) and (19), with νj . One finds that in general

F(w1, w2) = 2
(w2

1 + w2
2)

(w2
1 − w2

2)
2
−1

2

[︂
H(w1, w2) +H(w1, w2)

]︂
,

(52)
with

H(w1, w2) ≡ h(w1, w2) + h(w1,−w2) ,

h(w1, w2) ≡
ρ2 + (z + iw1)(z + iw2)

(w1 − w2)2
1

R1R2
, (53)

and with the notation

R2
j = ρ2 + (z + iwj)

2 . (54)

The constant term 2(w2
1 + w2

2)/(w
2
1 − w2

2)
2 appears due

to the regularity condition on the axis, where we require
limρ→0+ λ = 0.

We can now repeat the procedure for the Kelvin-
inverted potential Kνf . Introducing

KH(w1, w2) ≡
w1w2

b4
[︁
−Kh(w1, w2) +Kh(w1,−w2)

]︁
,

(55)
the cross term in this case reads

F(w1, w2) = − 4w2
1w

2
2

b4(w2
1 − w2

2)
2

− 1

2

[︂
KH(w1, w2) +KH(w1, w2)

]︂
. (56)

The term Kh is the h from (53) Kelvin-transformed ac-
cording to (9).

The procedure works generally, yet in specific situa-
tions, it may be easier to solve the equations (3) directly,
usually after transforming to some appropriate coordi-
nates. For instance, in the oblate spheroidal coordinates
(ζ, ξ), the equations for λ read

ζ2 + ξ2

ξ2 − 1
λ,ζ = −ζ(ξ2 − 1)ν2,ξ − ζ(ζ2 + 1)ν2,ζ+

+ 2ξ(ζ2 + 1)ν,ζν,ξ , (57)

ζ2 + ξ2

ζ2 + 1
λ,ξ = ξ(ζ2 + 1)ν2,ζ + ξ(ξ2 − 1)ν2,ξ−

− 2ζ(ξ2 − 1)ν,ζν,ξ . (58)

C. Superposition with a black hole

When interested in a superposition of the disk with
a black hole of mass M , the interaction part λint is also
necessary. Note that the equations (18) and (19) for ν1 =
νSchw and ν2 = νf are linear in the disk contribution.
Thus, the situation is in fact simpler since we can work
with the complex potential νf and take the real part only
at the end. One finds

λint =

∫︂ ∞

0

{︃
2Mf(w)

w2 +M2
−

[︃
R+(ρ, z)

M + iw
+

R−(ρ, z)
M − iw

]︃
f(w)√︁

ρ2 + (z + iw)2

}︄
dw , (59)

where the first term again ensures the flatness condition
on the axis.
In the case of the Kelvin-inverted disks, i.e. with ν1 =

Kνf in (18) and (19), the interaction part reads

λint = −
∫︂ ∞

0

[︃
R+(ρ, z)

Mw − ib2
+

R−(ρ, z)
Mw + ib2

]︃

wf(w) dw√︁
(b2 + iwz)2 − w2ρ2

. (60)

V. PARTICULAR DISK SOLUTIONS

In this section, we rederive the disk solutions from
Sec. III and complete their metrics by also finding the
metric function λ in some cases. Suitable disks are su-
perposed with the Schwarzschild black hole and the re-
spective interaction part λint is computed. Finally, we
also show a simpler procedure to generate the polyno-
mial and power-law disks discussed in [6].

A. Generalized (inverted) Morgan-Morgan disks

1. The disks

The weight function which corresponds to the Morgan-
Morgan counter-rotating family of disks reads

f
(n)
MM(w ≤ b) =

(2n+ 1)!

22n(n!)2
M
b

(︄
1− w2

b2

)︄n

(61)

(and zero elsewhere). Using this, we recover the potential
(24) by taking the real part of the integral (39).
New disks can easily be found by considering higher

exponents in (61), i.e. wl

bl
for l integers. From (48) it

follows that such disks represent a certain superposition
of the Morgan-Morgan disks plus a logarithmic term in
density if l is odd.
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FIG. 1. The first ten Newtonian-density profiles of the origi-
nal Morgan-Morgan disks (top plot) and the first ten profiles
of the wider family of holey Morgan-Morgan disks (bottom
plot) with fixed n = 2. The edge of the disk is located at
b = 5M in both plots. Increasing the parameter n makes the
density decrease more smoothly at the edge while increasing
the parameter m makes the density peak narrower and closer
to the edge, finally resembling a ring rather than a disk for
high values of m. The vertical axis is in the units of M−1.

Nonetheless, there exists a more interesting and sim-
pler generalization – the holey Morgan-Morgan disks pro-
posed by Letelier [25]. These have densities

σ
(m,n)
hMM (ρ ≤ b) =

M
2πb2+2m

(︁
3
2

)︁
m+n

m!
(︁
1
2

)︁
n

ρ2m

(︄
1− ρ2

b2

)︄n−1/2

,

(62)
where (a)j = Γ(a+ j)/Γ(a) is the Pochhammer symbol.
As illustrated in Fig. 1, contrary to the original Morgan-
Morgan family, the disks with non-zero parameterm have
a hole in the center with the surface density exactly van-
ishing at ρ = 0. The associated weight function (49)
reads

f
(m,n)
hMM (w ≤ b) =

(2m)!
(︁
3
2

)︁
m+n

22m(m!)2(m+ n)!

M
b

m+n∑︂

j=0

(︃
m+ n

j

)︃ (︁
1
2

)︁
j(︁

1
2 −m

)︁
j

(︄
−w2

b2

)︄j

. (63)

The holey potential can again be obtained by integrating
(39) and taking the real part, or, by a straightforward
superposition of the original Morgan-Morgan disks

ν
(m,n)
hMM = N (m,n)

m∑︂

k=0

(−1)k
(︃
m

k

)︃
ν
(k+n)
MM

2k + 2n+ 1
, (64)

with N (m,n) a normalization constant. The potential can
be re-expressed in the basis of Legendre polynomials,

ν
(m,n)
hMM =

(︁
3
2

)︁
m+n

m!
(︁
1
2

)︁
n

M
b

m+n∑︂

k=0

C
(m,n)
2k iQ2k(iζ)P2k(ξ) , (65)

where the coefficients have a slightly more complicated
form

C
(m,n)
2k =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)k+14−n(4k+1)(2n)!( 1
2 )k

k!(n−k)!( 3
2 )k+n

3F2

(︃
−m,n+ 1

2 , n+1

n−k+1, n+k+ 3
2

; 1

)︃
, k ≤ n

(−1)n+1
[︂
( 1

2 )k
]︂2

(m+n−k+1)k−n

( 1
2 )2k(k−n)! 3F2

(︃
k+ 1

2 , k+1, k−m−n

2k+ 3
2 , k−n+1

; 1

)︃
, k > n

involving the generalized hypergeometric function

3F2

(︂
a, b, c
d, e ;x

)︂
with integer and half-integer parameters

evaluated at the point x = 1.

For the metric function λ, we can either solve the dou-
ble integration (50), or tackle the equations for λ directly.
In the Morgan-Morgan case, the latter approach is sim-
pler as the potential is separated in the spheroidal coor-
dinates ζ and ξ. A straightforward integration of (58)
from the axis ξ = 1 (where λ = 0) to some general ξ

yields

λ
(m,n)
hMM = C(m,n)

hMM

[︄(︁
3
2

)︁
m+n

m!
(︁
1
2

)︁
n

]︄2
M2

b2
(ξ2 − 1)

[︂
P(m,n)
0,hMM+

2ζP(m,n)
1,hMM arccot(ζ) + (ζ2 + 1)P(m,n)

2,hMM arccot2(ζ)
]︂
,

(66)

where P(m,n)
j,hMM are polynomials in (ζ, ξ), and C(m,n)

hMM is
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a constant – the explicit expressions are given in Ap-
pendix A. Because the Laplace equation ∆ν = 0 is also
the integrability condition for λ, integrating over ζ would
give the same result.

Similarly to [17, 18, 25], we can make the inversion (16)
of the potential (65) and obtain infinite (yet finite-mass)
disks stretching from the radius ρ = b to infinity while
leaving the central region below b empty. The associated
Newtonian density profiles read

σihMM(ρ ≥ b) =
b2m+1(m+ n)!

π2
(︁
1
2

)︁
m

(︁
1
2

)︁
n

M
ρ3+2m

(︄
1− b2

ρ2

)︄n−1/2

,

(67)

where we again fix the normalization so that M stands
for the total disk mass. Clearly, when m = 0, we obtain
the inverted Morgan-Morgan disks treated in [18] or [17].
The function λ again follows by direct integration of the
Einstein equation (58). The result is similar to (66) if
we apply the Kelvin transformation (15) on it, although
the polynomials are different (since λ does not transform
according to (16)). Specifically, the metric functions ap-
pear as

νihMM =
2(m+ n)!

π
(︁
1
2

)︁
m

(︁
1
2

)︁
n

M
b
√︁
ζ2 + 1− ξ2

m+n∑︂

k=0

C
(m,n)
2k iQ2k

(︄
iξ√︁

ζ2 + 1− ξ2

)︄
P2k

(︄
ζ√︁

ζ2 + 1− ξ2

)︄
, (68)

λ
(m,n)
ihMM = C(m,n)

ihMM

[︄
2(m+ n)!

π
(︁
1
2

)︁
m

(︁
1
2

)︁
n

]︄2
M2

b2
K
{︃
(ξ2 − 1)

[︂
P(m,n)
0,ihMM + 2ζP(m,n)

1,ihMM arccot(ζ) + (ζ2 + 1)P(m,n)
2,ihMM arccot2(ζ)

]︂}︃
.

(69)

2. Superposition with a black hole

The holey Morgan-Morgan disks with m ≥ 1 and their
inverted versions with an arbitrary m ≥ 0 are empty
in the centre. Therefore, we can superpose them with
a black hole of mass M placed at the origin – see the
superposition scheme in Fig. 3. Already in Sec. II B

we discussed how to superpose sources within the Weyl
class. We provided all the necessary expressions in the
previous sections, yet the last piece is still missing – the
interaction part λint.
We will derive λint from (59) or (60), by performing

the integration over the weight function (63) with the
normalization adapted appropriately to the total mass
M. The general form reads

λ
(m,n)
hMM,int = K

(m,n)
0,hMM + K

(m,n)
1,hMM

{︄
atan2

[︃
bξ −Mζ

R−(ζ, ξ)

]︃
− atan2

[︃
bξ +Mζ

R+(ζ, ξ)

]︃}︄
+

+ K
(m,n)
2,hMM

∑︂

∓
R∓(ζ, ξ)

[︂
±P

(m,n)
0,hMM(±ζ, ξ) + P

(m,n)
1,hMM(±ζ, ξ) arccot(ζ)

]︂
, (70)

λ
(m,n)
ihMM,int = K

(m,n)
1,ihMM

{︄
atan2

[︃
bξ −Mζ

R−(ζ, ξ)

]︃
+ atan2

[︃
bξ +Mζ

R+(ζ, ξ)

]︃}︄
+

+ K
(m,n)
2,ihMM

∑︂

∓
R∓(ζ, ξ)K

{︃√︁
1 + ζ2 − ξ2

[︂
±P

(m,n)
0,ihMM(±ζ, ξ) + P

(m,n)
1,ihMM(±ζ, ξ) arccot(ζ)

]︂}︃
, (71)

where atan2( yx ) ≡ atan2(y, x) denotes a 2-argument ar-
cus tangent, R±(ζ, ξ) are defined in (22) and transformed

to the oblate spheroidal coordinates (12), K
(m,n)
j,(i)hMM

stand for constants which depends on the disk param-

eters, and P
(m,n)
j,(i)hMM are polynomials in ζ and ξ. As in

(69), we use the Kelvin transformation (15). Explicit
expressions are given in Appendix A.
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FIG. 2. The first ten Newtonian-density profiles of the in-
verted Morgan-Morgan disks (top plot) and the first ten pro-
files of the inverted holey Morgan-Morgan disks (bottom plot)
with the fixed n = 2. As in Fig. 1, the edge of the disk is
located at b = 5M in both plots, but the disks stretch from
this edge to infinity and are empty bellow b. Again, increasing
the parameter n makes the density decrease more smoothly at
the edge while increasing the parameter m makes the density
peak narrower and closer to the edge. The vertical axis is in
the units of M−1.

B. Kuzmin-Toomre & Vogt-Letelier disks

The suggested method is general in the sense that most
of the known disk solutions can be reformulated in terms
of the weight function and integration (39). From (48),
we easily obtain the weight function associated with the
Kuzmin-Toomre disks (29),

f
(n)
KT(w) =

22n+1(n!)2

π(2n)!

Mb2n+1

(w2 + b2)1+n
, n ∈ N0 . (72)

Note that these disks are infinite, thus w ranges through
the full interval [0,∞), with b just a length parameter
not directly indicating the location of the disk edge. A
simple generalization to half-integer exponents is possible
as well,

f
(n)
gKT(w) =

n b2n(2n)!

22n−1(n!)2
M

(w2 + b2)n+1/2
, (73)

FIG. 3. Schematic plot of the meridional section of the su-
perposition of the holey Morgan-Morgan disk (top plot) and
of its inverted counterpart (bottom plot) with a central black
hole. The black hole of the mass M is indicated by the thick
black line placed symmetrically on the z axis. The thick black
lines in the equatorial plane represent the disk. The density
profile is depicted by the blue dashed lines. The edge of the
disk is located at (ρ = 2.5M, z = 0) in both plots.

resulting in Newtonian surface densities

σ
(n)
gKT(ρ) =

n b2n

π

M
(ρ2 + b2)1+n

. (74)

However, the potential (39) is then given in terms of com-
plete elliptic integrals, which we do not list here.
The weight function of the Vogt-Letelier disk fam-

ily (31),

f
(m,n)
VL (w) =

2

π(2m+ 1)

m!

n!

(︁
3
2

)︁
m+n[︂(︁

1
2

)︁
m

]︂2
M
b

(︃
b

w

)︃2m+2

×

× 2F1

(︄
1 +m, 3+2m+2n

2
3+2m

2

;− b2

w2

)︄
, (75)

can be reduced to

f
(m,n)
VL (w) ∝ P

(m,n)
VL (w)

(w2 + b2)m+n+1
, (76)

where P
(m,n)
VL (w) is an even polynomial of the order 2n

in w. Again, one can also consider half-integer exponents
of (w2+b2)−m−n−1/2 in (76) and compute the respective
potential from (39). The result corresponds to the New-
tonian surface densities (31), wherein the denominator
there appears (ρ2 + b2)m+n+1 rather than a half-integer
exponent. It again involves complete elliptic integrals.
In order to find the second metric function λ, one may

use the approach presented above, including the interac-
tion part λint necessary in superpositions with a black
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FIG. 4. Meridional-section contour plots in Weyl coordi-

nates of the potential ν
(1,2)
ihMM (top plot), the second met-

ric function λ
(1,2)
ihMM (middle plot), and the interaction part

λ
(1,2)
int,ihMM (bottom plot) of the inverted holey Morgan-Morgan

disk with (m = 1, n = 2) superposed with the Schwarzschild
black hole of mass M . The disk’s inner edge is located at
(ρ = 5M, z = 0) and its mass is M = 2M . The disk is indi-
cated by the thick horizontal red line, while the black hole is
indicated by the thick vertical red line. In the middle plot, the
largest negative values are coloured deep blue; they increase
through green to light brown (indicating zero value) up to
positive values indicated by white. The values range from
about −0.32 to −0.17 in the top plot, from about −0.030 to
0.0066 in the middle plot, and from about −0.044 to 0 in the
bottom plot. Both axes are in the units of M .

hole, yet it is easier to follow the direct approach like in
[12, 21].

C. Polynomial and power-law disks

1. The weight function

The polynomial, power-law and bump disks derived
in [6] can also be recast in the present formalism. In

particular, the elementary density terms σ
(2l)
elem(ρ ≤ b) =

ρ2l, l ∈ N0, translate to the weight function

f
(2l)
elem(w ≤ b) = −2w2l+1Bw2

b2

(︃
−1

2
− l,

1

2

)︃
(77)

=
b2l

√
b2 − w2

π2(2l + 1)

l∑︂

k=0

(−l)k(︁
1
2 − l

)︁
k

(︃
w

b

)︃2k

,

(78)

where Bx(c, d) is the incomplete Beta function. By eval-
uating the integral (39) and taking the real part, we re-
produce the results of [6] obtained by direct integration of
the axially symmetric Green function (6). Although the
computation of λ is still beyond our reach, for the power-
law disks superposed with a black hole the computation
of the interaction part λint is feasible actually.

2. Simpler recurrence relation for the potentials in [6]

Before finishing this section, let us add a more straight-
forward way how to derive the potential-density pairs
in [6]. In that paper, we used the approach proposed
by [9] and explicitly integrated the axially symmetric
Green function (6). Considering the elementary density
terms σ(ρ) = ρ2l, the problem reduces to the computa-
tion of the Bessel-Laplace integrals

I(α,β,γ) =
∫︂ ∞

0

sαJβ(sb)Jγ(sρ)e
−s|z| ds . (79)

Various recurrence relations can be used to explicitly cal-
culate I(α,β,γ). In what follows, we show that it is not
necessary to use the lengthy recurrence relations from
[6]. Actually, we have found a simpler recipe inferred
from relations between solutions to the generalized 2s+1
dimensional Laplace (Poisson) equations.
The key observation is that if ν is an axially symmetric

solution to the Laplace equation, then dnν
dzn for n ∈ N

is also a solution. Let us consider the equation for the
generalized axially symmetric Laplace (Poisson) equation
in a flat space of the dimension (2s+ 3) (for integer and
half-integer spin values s ≥ −1/2),

∂2ν(s)

∂z2
+

∂2ν(s)

∂ρ2
+

1 + 2s

ρ

∂ν(s)

∂ρ
≡ ∆sν(s) = σ(ρ, z) . (80)
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Now, the generalized Laplace equation can be also ex-
tended to spins s < −1/2, since it holds

∆−sν(−s) = ρ2s ∆s

[︂
ρ−2sν(−s)

]︂
. (81)

The Kelvin transformation can be extended to work for
arbitrary s as well, because

Kν(s)(ρ, z) ≡
(︃

b

ρ2 + z2

)︃2s+1

ν(s)

(︄
b2ρ

ρ2 + z2
,

b2z

ρ2 + z2

)︄

(82)
solves (80) if ν(s) is a solution (with the density adjusted
appropriately).

One can find identities between the different-s solu-
tions of (80). If ν(s) satisfies

∆sν(s) = σ(ρ, z) , (83)

then it holds

∆s+1

[︃
1

ρ

∂ν(s)

∂ρ

]︃
=

1

ρ

∂

∂ρ
∆sν(s) =

1

ρ

∂σ(ρ, z)

∂ρ
(84)

and

∆s−1

[︄
1

ρ2s−1

∂ρ2sν(s)

∂ρ

]︄
=

1

ρ2s−1

∂

∂ρ
ρ2s∆sν(s)

=
1

ρ2s−1

∂

∂ρ
ρ2sσ(ρ, z) . (85)

Therefore, from known solutions ν(s) of the Laplace equa-
tion, we can generate new solutions ν(s±1) with the source
density distributions given by (84) and (85).
It is then natural to introduce spin-raising and spin-

lowering operators as follows,

Ss
s+1ν(s) ≡

κ2

ρ

∂ν(s)

∂ρ
and Ss

s−1ν(s) ≡
1

ρ2s−1

∂ρ2sν(s)

∂ρ
,

(86)
where κ is a constant of the dimension of length. As a
seed potential-density pair we choose one of the solutions
provided in [6], in particular the one which describes the
field of a thin infinite annular disk extending from ρ = b
to ρ = ∞ lying in the z = 0 plane. Namely2

ν
(−3)
(0) (ρ, z) =

σc b
2

2π

⎡
⎣ 2πb|z|
(ρ2 + z2)3/2

H

(︄
b− ρ b2

ρ2 + z2

)︄
− 4

√
ρb

k(ρ2 + z2)
E(k)− (ρ2 + ρb+ z2)(ρ2 − ρb+ z2)k√

ρb (ρ2 + z2)2
K(k)−

−ρ2 − ρb+ z2

ρ2 + ρb+ z2
b2 z2 k

(ρ2 + z2)2
√
ρb

Π

(︄
4bρ(ρ2 + z2)

(ρ2 + bρ+ z2)2
, k

)︄⎤
⎦ (87)

σ
(−3)
(0) (ρ, z) =

σc

2π

b3

ρ3
H(ρ− b)δ(z) , (88)

where σc is a constant with the dimension of surface den-
sity (inverse length), H is the Heaviside step function,
andK,E,Π are the complete elliptic integrals of the first,
the second, and the third kind with the modulus

k =
2
√
ρb√︁

(ρ+ b)2 + z2
. (89)

Applying the spin operators (86) to the potentials of the

type ν
(−3)
(0) introduces derivatives of the Heaviside step

function, which adds an artificial distributional source
to the edge of the disk. To get rid of that, one has to
subtract the potential of a ring with a uniform density,
satisfying

∆sν
(δ)
(s) =

1

2π
δ(ρ− b)δ(z) . (90)

2 Note that normalization is different from [6].

The recurrence relations are thus obtained

ν
(−3−2l)
(0) = − 1

2l + 1

[︄
S−1
0 ν

(−1−2l)
(−1) −

(︃
κ

b

)︃2l+2

ν
(δ)
(0)

]︄
,

(91)

ν
(−2l−1)
(−1) = − 1

2l + 1

[︄
S0
−1ν

(−2l−1)
(0) −

(︃
κ

b

)︃2l+2

ν
(δ)
(−1)

]︄
,

(92)

where κ2 = b3σc, and ν
(δ)
(0) , ν

(δ)
(−1) are solutions of (90) with

s = 0,−1, respectively, namely

ν
(δ)
(0) = − b

π

K(k)√︁
(ρ− b)2 + z2

. (93)

ν
(δ)
(−1) =

1

2πb

[︂√︁
(ρ− b)2 + z2E(k)− (94)

− (ρ2 + b2 + z2)K(k)√︁
(ρ− b)2 + z2

]︄
. (95)
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In this way, we design disks with the surface den-
sity profile proportional to ρ−2l−3 from the seed solu-

tion ν
(−3)
(0) . The Kelvin transformation then automati-

cally provides ν
(2l)
(0) , thus the densities proportional to ρ2l.

This construction works for any monotonous density pro-
file, but a closed-form formula for the density ρ−2 is not
yet known.

VI. CONCLUSIONS

We have revisited the topic of thin disks as sources of
the Weyl class of spacetimes and proposed a new general
method for obtaining their density and potential. The
method can be understood in two ways: (i) Kuzmin’s
idea [10] and the Appell’s trick [22] are combined in such
way that the gravitational field is obtained from the field
of a line distribution of matter described by the weight
function f(w) (an Abel transform of the Newtonian sur-
face density) placed on the imaginary extension of the
z axis, cut and mirrored with respect to the equatorial
plane; (ii) a certain superposition (convolution) of Ap-
pell rings of radius w is made as weighted by the weight
function f(w). We showed on particular examples that

the procedure is capable of reproducing various thin-disk
solutions known from the literature. Moreover, it has
proved useful in deriving the second metric function λ
which is only rarely known explicitly. Indeed, we pro-
vided the whole metric in closed forms for the general
holey Morgan-Morgan disks and their superposition with
a Schwarzschild black hole. Finally, we also showed that
the polynomial and power-law disks treated in [6] can be
obtained by an easier procedure.
To conclude, let us acknowledge that Letelier &

Oliveira [26] actually discovered the relation (39) for
the zeroth member of the Morgan-Morgan family. Also,
Klein [27] used a similar type of integration to con-
struct inverted isochrone disks around Schwarzschild
black holes, although he did not give the explicit form
of the potential nor the second metric function λ. Any-
way, the method presented here is completely general and
can be applied to any thin-disk solution within the Weyl
class of spacetimes.
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Appendix A: The second metric function λ for the (inverted) generalized Morgan-Morgan disks

In the following, we list explicit results for the second metric function λdisk for the (inverted) holey Morgan-Morgan
disks, and the interaction part λint for their superposition with the black hole. We also provide a Mathematica
notebook containing full expressions in the Supplement Material.

1. Holey Morgan-Morgan disks

a. Qudratic λdisk: A general expression for the second metric function of the holey Morgan-Morgan disks (66)
reads

λ
(m,n)
hMM = C(m,n)

hMM

[︄(︁
3
2

)︁
m+n

m!
(︁
1
2

)︁
n

]︄2
M2

b2
(ξ2 − 1)

[︂
P(m,n)
0,hMM + 2ζP(m,n)

1,hMM arccot(ζ) + (ζ2 + 1)P(m,n)
2,hMM arccot2(ζ)

]︂
, (A1)

where C(m,n)
hMM are numerical constants and P(m,n)

j,hMM are polynomials in (ζ, ξ). The first few members read

C(0,1)
hMM =

1

16
(A2)

P(0,1)
0,hMM = (9ζ2 + 4)ξ2 − ζ2 + 4 (A3)

P(0,1)
1,hMM = −(9ζ2 + 7)ξ2 + ζ2 − 1 (A4)

P(0,1)
2,hMM = ζ2(9ξ2 − 1) + ξ2 − 1 (A5)

C(0,2)
hMM =

1

2048
(A6)

P(0,2)
0,hMM = 11025ζ6ξ6 − 11475ζ6ξ4 + 2835ζ6ξ2 − 81ζ6 + 15150ζ4ξ6 − 10890ζ4ξ4 + 1098ζ4ξ2 + 18ζ4 + 4945ζ2ξ6

− 723ζ2ξ4 − 45ζ2ξ2 − 81ζ2 + 256ξ6 + 256ξ4 + 256ξ2 + 256 (A7)

P(0,2)
1,hMM = −3(3675ζ6ξ6 − 3825ζ6ξ4 + 945ζ6ξ2 − 27ζ6 + 6275ζ4ξ6 − 4905ζ4ξ4 + 681ζ4ξ2 − 3ζ4 + 3005ζ2ξ6 − 1111ζ2ξ4
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− 105ζ2ξ2 + 3ζ2 + 357ξ6 + 113ξ4 + 15ξ2 + 27) (A8)

P(0,2)
2,hMM = 9(1225ζ6ξ6 − 1275ζ6ξ4 + 315ζ6ξ2 − 9ζ6 + 1275ζ4ξ6 − 785ζ4ξ4 + 17ζ4ξ2 + 5ζ4 + 315ζ2ξ6 − 17ζ2ξ4 − 47ζ2ξ2

+ 5ζ2 + 9ξ6 + 5ξ4 − 5ξ2 − 9) (A9)

C(1,1)
hMM =

1

6144
(A10)

P(1,1)
0,hMM = 33075ζ6ξ6 − 34425ζ6ξ4 + 8505ζ6ξ2 − 243ζ6 + 45450ζ4ξ6 − 52830ζ4ξ4 + 14814ζ4ξ2 − 522ζ4 + 14835ζ2ξ6

− 20409ζ2ξ4 + 5625ζ2ξ2 − 51ζ2 + 768ξ6 − 1280ξ4 + 256ξ2 + 256 (A11)

P(1,1)
1,hMM = −3(11025ζ6ξ6 − 11475ζ6ξ4 + 2835ζ6ξ2 − 81ζ6 + 18825ζ4ξ6 − 21435ζ4ξ4 + 5883ζ4ξ2 − 201ζ4 + 9015ζ2ξ6

− 11653ζ2ξ4 + 3525ζ2ξ2 − 119ζ2 + 1071ξ6 − 1645ξ4 + 557ξ2 + 17) (A12)

P(1,1)
2,hMM = 3(11025ζ6ξ6 − 11475ζ6ξ4 + 2835ζ6ξ2 − 81ζ6 + 11475ζ4ξ6 − 13785ζ4ξ4 + 3993ζ4ξ2 − 147ζ4 + 2835ζ2ξ6

− 3993ζ2ξ4 + 1497ζ2ξ2 − 83ζ2 + 81ξ6 − 147ξ4 + 83ξ2 − 17) (A13)

C(1,2)
hMM =

1

983040
(A14)

P(1,2)
0,hMM = 60031125ζ10ξ10 − 121550625ζ10ξ8 + 84341250ζ10ξ6 − 23231250ζ10ξ4 + 2165625ζ10ξ2 − 28125ζ10

+ 141561000ζ8ξ10 − 278359200ζ8ξ8 + 186202800ζ8ξ6 − 48904800ζ8ξ4 + 4276200ζ8ξ2 − 52800ζ8

+ 115519950ζ6ξ10 − 218461950ζ6ξ8 + 137270700ζ6ξ6 − 32294300ζ6ξ4 + 2275750ζ6ξ2 − 17030ζ6

+ 37963800ζ4ξ10 − 68050080ζ4ξ8 + 37925520ζ4ξ6 − 6760800ζ4ξ4 + 220440ζ4ξ2 − 960ζ4

+ 4282845ζ2ξ10 − 7093665ζ2ξ8 + 2940690ζ2ξ6 − 127890ζ2ξ4 + 225ζ2ξ2 − 2205ζ2

+ 81920ξ10 − 114688ξ8 + 8192ξ6 + 8192ξ4 + 8192ξ2 + 8192 (A15)

P(1,2)
1,hMM = −15(4002075ζ10ξ10 − 8103375ζ10ξ8 + 5622750ζ10ξ6 − 1548750ζ10ξ4 + 144375ζ10ξ2 − 1875ζ10

+ 10771425ζ8ξ10 − 21258405ζ8ξ8 + 14287770ζ8ξ6 − 3776570ζ8ξ4 + 333205ζ8ξ2 − 4145ζ8 + 10491390ζ6ξ10

− 20029590ζ6ξ8 + 12789420ζ6ξ6 − 3102060ζ6ξ4 + 233910ζ6ξ2 − 2142ζ6 + 4445490ζ4ξ10 − 8119146ζ4ξ8

+ 4737204ζ4ξ6 − 941460ζ4ξ4 + 40506ζ4ξ2 + 222ζ4 + 763175ζ2ξ10 − 1309915ζ2ξ8 + 635126ζ2ξ6 − 63046ζ2ξ4

− 5485ζ2ξ2 + 113ζ2 + 36525ξ10 − 57009ξ8 + 16434ξ6 + 3918ξ4 − 15ξ2 + 147) (A16)

P(1,2)
2,hMM = 45(1334025ζ10ξ10 − 2701125ζ10ξ8 + 1874250ζ10ξ6 − 516250ζ10ξ4 + 48125ζ10ξ2 − 625ζ10 + 2701125ζ8ξ10

− 5285385ζ8ξ8 + 3513090ζ8ξ6 − 914690ζ8ξ4 + 78985ζ8ξ2 − 965ζ8 + 1874250ζ6ξ10 − 3513090ζ6ξ8

+ 2170980ζ6ξ6 − 493060ζ6ξ4 + 31730ζ6ξ2 − 154ζ6 + 516250ζ4ξ10 − 914690ζ4ξ8 + 493060ζ4ξ6 − 74500ζ4ξ4

− 1918ζ4ξ2 + 230ζ4 + 48125ζ2ξ10 − 78985ζ2ξ8 + 31730ζ2ξ6 + 1918ζ2ξ4 − 1247ζ2ξ2 − 5ζ2 + 625ξ10 − 965ξ8

+ 154ξ6 + 230ξ4 + 5ξ2 − 49) (A17)

C(2,1)
hMM =

1

983040
(A18)

P(2,1)
0,hMM = 60031125ζ10ξ10 − 121550625ζ10ξ8 + 84341250ζ10ξ6 − 23231250ζ10ξ4 + 2165625ζ10ξ2 − 28125ζ10

+ 141561000ζ8ξ10 − 313286400ζ8ξ8 + 239727600ζ8ξ6 − 73701600ζ8ξ4 + 7775400ζ8ξ2 − 117600ζ8

+ 115519950ζ6ξ10 − 283629150ζ6ξ8 + 242657100ζ6ξ6 − 84343100ζ6ξ4 + 10217350ζ6ξ2 − 184070ζ6

+ 37963800ζ4ξ10 − 105255360ζ4ξ8 + 102564240ζ4ξ6 − 40778400ζ4ξ4 + 5627160ζ4ξ2 − 113760ζ4

+ 4282845ζ2ξ10 − 13747905ζ2ξ8 + 15665970ζ2ξ6 − 7221810ζ2ξ4 + 1024065ζ2ξ2 − 3165ζ2 + 81920ξ10

− 311296ξ8 + 425984ξ6 − 229376ξ4 + 16384ξ2 + 16384 (A19)

P(2,1)
1,hMM = −15(4002075ζ10ξ10 − 8103375ζ10ξ8 + 5622750ζ10ξ6 − 1548750ζ10ξ4 + 144375ζ10ξ2 − 1875ζ10

+ 10771425ζ8ξ10 − 23586885ζ8ξ8 + 17856090ζ8ξ6 − 5429690ζ8ξ4 + 566485ζ8ξ2 − 8465ζ8

+ 10491390ζ6ξ10 − 25150230ζ6ξ8 + 21004620ζ6ξ6 − 7123020ζ6ξ4 + 841110ζ6ξ2 − 14718ζ6 + 4445490ζ4ξ10

− 11840682ζ4ξ8 + 11071188ζ4ξ6 − 4240500ζ4ξ4 + 571034ζ4ξ2 − 11650ζ4 + 763175ζ2ξ10 − 2302555ζ2ξ8

+ 2459990ζ2ξ6 − 1083494ζ2ξ4 + 165811ζ2ξ2 − 3439ζ2 + 36525ξ10 − 127953ξ8 + 160850ξ6 − 83794ξ4
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+ 14161ξ2 + 211) (A20)

P(2,1)
2,hMM = 15(4002075ζ10ξ10 − 8103375ζ10ξ8 + 5622750ζ10ξ6 − 1548750ζ10ξ4 + 144375ζ10ξ2 − 1875ζ10 + 8103375ζ8ξ10

− 18184635ζ8ξ8 + 14107590ζ8ξ6 − 4397190ζ8ξ4 + 470235ζ8ξ2 − 7215ζ8 + 5622750ζ6ξ10 − 14107590ζ6ξ8

+ 12349260ζ6ξ6 − 4398060ζ6ξ4 + 546870ζ6ξ2 − 10158ζ6 + 1548750ζ4ξ10 − 4397190ζ4ξ8 + 4398060ζ4ξ6

− 1818540ζ4ξ4 + 269094ζ4ξ2 − 6318ζ4 + 144375ζ2ξ10 − 470235ζ2ξ8 + 546870ζ2ξ6 − 269094ζ2ξ4 + 50307ζ2ξ2

− 1711ζ2 + 1875ξ10 − 7215ξ8 + 10158ξ6 − 6318ξ4 + 1711ξ2 − 211) (A21)

C(2,2)
hMM =

1

21139292160
(A22)

P(2,2)
0,hMM = 15978784696875ζ14ξ14 − 48220421374125ζ14ξ12 + 56556703578375ζ14ξ10 − 32478448550625ζ14ξ8

+ 9431153510625ζ14ξ6 − 1280535834375ζ14ξ4 + 63814078125ζ14ξ2 − 472696875ζ14 + 53546682939750ζ12ξ14

− 163921910402250ζ12ξ12 + 195401453766750ζ12ξ10 − 114310631531250ζ12ξ8 + 33912309611250ζ12ξ6

− 4721464518750ζ12ξ4 + 242354306250ζ12ξ2 − 1878843750ζ12 + 70144588639125ζ10ξ14

− 218331077008275ζ10ξ12 + 264573915831225ζ10ξ10 − 157245484449375ζ10ξ8 + 47328582215775ζ10ξ6

− 6667480157625ζ10ξ4 + 344764777875ζ10ξ2 − 2706591125ζ10 + 45300791358900ζ8ξ14

− 143774916446700ζ8ξ12 + 177053751144900ζ8ξ10 − 106350197324700ζ8ξ8 + 32049674367900ζ8ξ6

− 4445363304900ζ8ξ4 + 219341509100ζ8ξ2 − 1563454900ζ8 + 14914843730325ζ6ξ14 − 48441884967315ζ6ξ12

+ 60540898489785ζ6ξ10 − 36386505134175ζ6ξ8 + 10693987893855ζ6ξ6 − 1374141802425ζ6ξ4

+ 55823145875ζ6ξ2 − 227556245ζ6 + 2318953337190ζ4ξ14 − 7743583874250ζ4ξ12 + 9790161391710ζ4ξ10

− 5770162221810ζ4ξ8 + 1558297174770ζ4ξ6 − 156345952350ζ4ξ4 + 2730718410ζ4ξ2 − 9285990ζ4

+ 133728684075ζ2ξ14 − 462058266285ζ2ξ12 + 586633472775ζ2ξ10 − 323550305505ζ2ξ8 + 66781739745ζ2ξ6

− 1531728135ζ2ξ4 + 6065325ζ2ξ2 − 9661995ζ2 + 1321205760ξ14 − 4718592000ξ12 + 5851054080ξ10

− 2604662784ξ8 + 37748736ξ6 + 37748736ξ4 + 37748736ξ2 + 37748736 (A23)

P(2,2)
1,hMM = −105(152178901875ζ14ξ14 − 459242108325ζ14ξ12 + 538635272175ζ14ξ10 − 309318557625ζ14ξ8

+ 89820509625ζ14ξ6 − 12195579375ζ14ξ4 + 607753125ζ14ξ2 − 4501875ζ14 + 560694709575ζ12ξ14

− 1714241754225ζ12ξ12 + 2040511317075ζ12ξ10 − 1191778867125ζ12ξ8 + 352914547125ζ12ξ6

− 49031521875ζ12ξ4 + 2510720625ζ12ξ2 − 19394375ζ12 + 824506157475ζ10ξ14 − 2558909086965ζ10ξ12

+ 3092194963935ζ10ξ10 − 1832971953225ζ10ξ8 + 550422482505ζ10ξ6 − 77404535775ζ10ξ4

+ 3998830325ζ10ξ2 − 31341475ζ10 + 615872395215ζ8ξ14 − 1945012278825ζ8ξ12 + 2385803488635ζ8ξ10

− 1429682265165ζ8ξ8 + 430957746765ζ8ξ6 − 60074226555ζ8ξ4 + 3006587945ζ8ξ2 − 22101455ζ8

+ 245626175025ζ6ξ14 − 791771672535ζ6ξ12 + 985062075525ζ6ξ10 − 592389903795ζ6ξ8 + 175814410163ζ6ξ6

− 23237084805ζ6ξ4 + 1013428695ζ6ξ2 − 5099569ζ6 + 50107809885ζ4ξ14 − 165506270475ζ4ξ12

+ 208418460705ζ4ξ10 − 124037312951ζ4ξ8 + 34794346423ζ4ξ6 − 3880100385ζ4ξ4 + 92470027ζ4ξ2 + 635299ζ4

+ 4487127225ζ2ξ14 − 15264485775ζ2ξ12 + 19370425773ζ2ξ10 − 11084212811ζ2ξ8 + 2643918923ζ2ξ6

− 142791597ζ2ξ4 − 10494065ζ2ξ2 + 119111ζ2 + 115920525ξ14 − 408771675ξ12 + 517889553ξ10

− 266212935ξ8 + 34318407ξ6 + 6821871ξ4 − 57765ξ2 + 92019) (A24)

P(2,2)
2,hMM = 315(50726300625ζ14ξ14 − 153080702775ζ14ξ12 + 179545090725ζ14ξ10 − 103106185875ζ14ξ8

+ 29940169875ζ14ξ6 − 4065193125ζ14ξ4 + 202584375ζ14ξ2 − 1500625ζ14 + 153080702775ζ12ξ14

− 469360116225ζ12ξ12 + 560473711875ζ12ξ10 − 328522165125ζ12ξ8 + 97678069125ζ12ξ6

− 13633711875ζ12ξ4 + 701850625ζ12ξ2 − 5464375ζ12 + 179545090725ζ10ξ14 − 560473711875ζ10ξ12

+ 681021858825ζ10ξ10 − 405723365775ζ10ξ8 + 122347470735ζ10ξ6 − 17254396425ζ10ξ4 + 892054275ζ10ξ2

− 7004325ζ10 + 103106185875ζ8ξ14 − 328522165125ζ8ξ12 + 405723365775ζ8ξ10 − 243989684505ζ8ξ8
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+ 73400477465ζ8ξ6 − 10107342735ζ8ξ4 + 489496965ζ8ξ2 − 3340435ζ8 + 29940169875ζ6ξ14

− 97678069125ζ6ξ12 + 122347470735ζ6ξ10 − 73400477465ζ6ξ8 + 21340529945ζ6ξ6 − 2643619215ζ6ξ4

+ 92812165ζ6ξ2 + 3437ζ6 + 4065193125ζ4ξ14 − 13633711875ζ4ξ12 + 17254396425ζ4ξ10 − 10107342735ζ4ξ8

+ 2643619215ζ4ξ6 − 219088905ζ4ξ4 − 5739261ζ4ξ2 + 314715ζ4 + 202584375ζ2ξ14 − 701850625ζ2ξ12

+ 892054275ζ2ξ10 − 489496965ζ2ξ8 + 92812165ζ2ξ6 + 5739261ζ2ξ4 − 1692159ζ2ξ2 − 19255ζ2 + 1500625ξ14

− 5464375ξ12 + 7004325ξ10 − 3340435ξ8 − 3437ξ6 + 314715ξ4 + 19255ξ2 − 30673) (A25)

b. Interaction part λint: When a holey Morgan-Morgan disk is superposed with the Schwarzschild black hole, a
general expression for the interaction part reads

λ
(m,n)
hMM,int = K

(m,n)
0,hMM + K

(m,n)
1,hMM

{︄
atan2

[︃
bξ −Mζ

R−(ζ, ξ)

]︃
− atan2

[︃
bξ +Mζ

R+(ζ, ξ)

]︃}︄
+

+ K
(m,n)
2,hMM

∑︂

∓
R∓(ζ, ξ)

[︂
±P

(m,n)
0,hMM(±ζ, ξ) + P

(m,n)
1,hMM(±ζ, ξ) arccot(ζ)

]︂
, (A26)

where atan2( yx ) ≡ atan2(y, x) denotes 2-argument arcus tangent, R±(ζ, ξ) comes from the Schwarzschild potential

(22) transformed to the oblate spheroidal coordinates (12), K
(m,n)
j,hMM stands for constants which depend on the disk

parameters, and P
(m,n)
j,hMM are polynomials in ζ and ξ. A few first members read

K
(1,1)
0,hMM =

15M
16b5

[︄
−πb4 + 2b3M + 2πb2M2 + 2(b2 − 3M2)(b2 +M2) arctan

(︃
b

M

)︃
+ 6bM3 + 3πM4

]︄
(A27)

K
(1,1)
1,hMM =

15M
16b5

(b2 − 3M2)(b2 +M2) (A28)

K
(1,1)
2,hMM = −15M

32b5
(A29)

P
(1,1)
0,hMM = b(15b2ζ2ξ3 − 9b2ζ2ξ + 4b2ξ3 − 2b2ξ − 9bζMξ2 + 3bζM + 6M2ξ) (A30)

P
(1,1)
1,hMM = −15b3ζ3ξ3 + 9b3ζ3ξ − 9b3ζξ3 + 5b3ζξ + 9b2ζ2Mξ2 − 3b2ζ2M + 3b2Mξ2 + b2M − 6bζM2ξ + 6M3 (A31)

K
(1,2)
0,hMM =

35M
96b7

[︄
6b5M + 44b3M3 − 3π(b2 − 5M2)(b2 +M2)2 + 6(b2 − 5M2)(b2 +M2)2 arctan

(︃
b

M

)︃
+ 30bM5

]︄

(A32)

K
(1,2)
1,hMM = (b2 − 5M2)(b2 +M2)2 (A33)

K
(1,2)
2,hMM = − 35M

768b7
(A34)

P
(1,2)
0,hMM = b(945b4ζ4ξ5 − 1050b4ζ4ξ3 + 225b4ζ4ξ + 735b4ζ2ξ5 − 610b4ζ2ξ3 + 51b4ζ2ξ + 64b4ξ5 − 16b4ξ3 − 24b4ξ

− 525b3ζ3Mξ4 + 450b3ζ3Mξ2 − 45b3ζ3M − 275b3ζMξ4 + 66b3ζMξ2 + 33b3ζM + 300b2ζ2M2ξ3

− 180b2ζ2M2ξ + 80b2M2ξ3 + 96b2M2ξ − 180bζM3ξ2 + 60bζM3 + 120M4ξ) (A35)

P
(1,2)
1,hMM = −3(315b5ζ5ξ5 − 350b5ζ5ξ3 + 75b5ζ5ξ + 350b5ζ3ξ5 − 320b5ζ3ξ3 + 42b5ζ3ξ + 75b5ζξ5 − 42b5ζξ3 − 9b5ζξ

− 175b4ζ4Mξ4 + 150b4ζ4Mξ2 − 15b4ζ4M − 150b4ζ2Mξ4 + 72b4ζ2Mξ2 + 6b4ζ2M − 15b4Mξ4 − 6b4Mξ2

− 3b4M + 100b3ζ3M2ξ3 − 60b3ζ3M2ξ + 60b3ζM2ξ3 + 12b3ζM2ξ − 60b2ζ2M3ξ2 + 20b2ζ2M3

− 20b2M3ξ2 − 52b2M3 + 40bζM4ξ − 40M5) (A36)

K
(2,1)
0,hMM =

35M
128b7

[︂
6b5M − 8b3M3 − 3π(b2 +M2)(b4 − 2b2M2 + 5M4)− 30bM5+

+6(b2 +M2)(b4 − 2b2M2 + 5M4) arctan

(︃
b

M

)︃]︄
(A37)

K
(2,1)
1,hMM =

105M
128b7

(b2 +M2)(b4 − 2b2M2 + 5M4) (A38)

K
(2,1)
2,hMM =

35M
1024b7

(A39)
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P
(2,1)
0,hMM = b(945b4ζ4ξ5 − 1050b4ζ4ξ3 + 225b4ζ4ξ + 735b4ζ2ξ5 − 970b4ζ2ξ3 + 267b4ζ2ξ + 64b4ξ5 − 112b4ξ3 + 24b4ξ

− 525b3ζ3Mξ4 + 450b3ζ3Mξ2 − 45b3ζ3M − 275b3ζMξ4 + 282b3ζMξ2 − 39b3ζM + 300b2ζ2M2ξ3

− 180b2ζ2M2ξ + 80b2M2ξ3 − 48b2M2ξ − 180bζM3ξ2 + 60bζM3 + 120M4ξ) (A40)

P
(2,1)
1,hMM = −3(315b5ζ5ξ5 − 350b5ζ5ξ3 + 75b5ζ5ξ + 350b5ζ3ξ5 − 440b5ζ3ξ3 + 114b5ζ3ξ + 75b5ζξ5 − 114b5ζξ3

+ 31b5ζξ − 175b4ζ4Mξ4 + 150b4ζ4Mξ2 − 15b4ζ4M − 150b4ζ2Mξ4 + 144b4ζ2Mξ2 − 18b4ζ2M

− 15b4Mξ4 + 18b4Mξ2 + 5b4M + 100b3ζ3M2ξ3 − 60b3ζ3M2ξ + 60b3ζM2ξ3 − 36b3ζM2ξ − 60b2ζ2M3ξ2

+ 20b2ζ2M3 − 20b2M3ξ2 − 4b2M3 + 40bζM4ξ − 40M5) (A41)

K
(2,2)
0,hMM =

105M
1024b9

[︂
18b7M − 30b5M3 − 290b3M5 − 3π(b2 +M2)2(3b4 − 10b2M2 + 35M4)+

+6(b2 +M2)2(3b4 − 10b2M2 + 35M4) arctan

(︃
b

M

)︃
− 210bM7

]︄
(A42)

K
(2,2)
1,hMM =

105M
1024b9

(b2 +M2)2(3b4 − 10b2M2 + 35M4) (A43)

K
(2,2)
2,hMM =

105M
16384b9

(A44)

P
(2,2)
0,hMM = b(45045b6ζ6ξ7 − 72765b6ζ6ξ5 + 33075b6ζ6ξ3 − 3675b6ζ6ξ + 57750b6ζ4ξ7 − 91980b6ζ4ξ5 + 40950b6ζ4ξ3

− 4400b6ζ4ξ + 17829b6ζ2ξ7 − 27783b6ζ2ξ5 + 10575b6ζ2ξ3 − 381b6ζ2ξ + 768b6ξ7 − 1152b6ξ5 + 96b6ξ3

+ 144b6ξ − 24255b5ζ5Mξ6 + 33075b5ζ5Mξ4 − 11025b5ζ5Mξ2 + 525b5ζ5M − 24990b5ζ3Mξ6

+ 31500b5ζ3Mξ4 − 9150b5ζ3Mξ2 + 320b5ζ3M − 4851b5ζMξ6 + 5265b5ζMξ4 − 441b5ζMξ2 − 213b5ζM

+ 13230b4ζ4M2ξ5 − 14700b4ζ4M2ξ3 + 3150b4ζ4M2ξ + 10290b4ζ2M2ξ5 − 8900b4ζ2M2ξ3 + 930b4ζ2M2ξ

+ 896b4M2ξ5 − 320b4M2ξ3 − 336b4M2ξ − 7350b3ζ3M3ξ4 + 6300b3ζ3M3ξ2 − 630b3ζ3M3

− 3850b3ζM3ξ4 + 1140b3ζM3ξ2 + 390b3ζM3 + 4200b2ζ2M4ξ3 − 2520b2ζ2M4ξ + 1120b2M4ξ3

+ 1200b2M4ξ − 2520bζM5ξ2 + 840bζM5 + 1680M6ξ) (A45)

P
(2,2)
1,hMM = −3(15015b7ζ7ξ7 − 24255b7ζ7ξ5 + 11025b7ζ7ξ3 − 1225b7ζ7ξ + 24255b7ζ5ξ7 − 38745b7ζ5ξ5 + 17325b7ζ5ξ3

− 1875b7ζ5ξ + 11025b7ζ3ξ7 − 17325b7ζ3ξ5 + 7095b7ζ3ξ3 − 507b7ζ3ξ + 1225b7ζξ7 − 1875b7ζξ5 + 507b7ζξ3

+ 79b7ζξ − 8085b6ζ6Mξ6 + 11025b6ζ6Mξ4 − 3675b6ζ6Mξ2 + 175b6ζ6M − 11025b6ζ4Mξ6

+ 14175b6ζ4Mξ4 − 4275b6ζ4Mξ2 + 165b6ζ4M − 3675b6ζ2Mξ6 + 4275b6ζ2Mξ4 − 837b6ζ2Mξ2

− 51b6ζ2M − 175b6Mξ6 + 165b6Mξ4 + 51b6Mξ2 + 23b6M + 4410b5ζ5M2ξ5 − 4900b5ζ5M2ξ3

+ 1050b5ζ5M2ξ + 4900b5ζ3M2ξ5 − 4600b5ζ3M2ξ3 + 660b5ζ3M2ξ + 1050b5ζM2ξ5 − 660b5ζM2ξ3

− 102b5ζM2ξ − 2450b4ζ4M3ξ4 + 2100b4ζ4M3ξ2 − 210b4ζ4M3 − 2100b4ζ2M3ξ4 + 1080b4ζ2M3ξ2

+ 60b4ζ2M3 − 210b4M3ξ4 − 60b4M3ξ2 − 18b4M3 + 1400b3ζ3M4ξ3 − 840b3ζ3M4ξ + 840b3ζM4ξ3

+ 120b3ζM4ξ − 840b2ζ2M5ξ2 + 280b2ζ2M5 − 280b2M5ξ2 − 680b2M5 + 560bζM6ξ − 560M7) (A46)

2. Inverted holey Morgan-Morgan disks

a. Quadratic λdisk: For the inverted holey Morgan-Morgan disks, a general expression for the second metric
function (69) reads

λ
(m,n)
ihMM = C(m,n)

ihMM

[︄
2(m+ n)!

π
(︁
1
2

)︁
m

(︁
1
2

)︁
n

]︄2
M2

b2
K
{︃
(ξ2 − 1)

[︂
P(m,n)
0,ihMM + 2ζP(m,n)

1,ihMM arccot(ζ) + (ζ2 + 1)P(m,n)
2,ihMM arccot2(ζ)

]︂}︃
,

(A47)

where P(m,n)
j,ihMM are polynomials in (ζ, ξ), and C(m,n)

ihMM are numerical constants. For the first few members, we have
explicitly

C(0,1)
ihMM =

1

96
(A48)
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P(0,1)
0,ihMM = 225ζ4ξ4 − 126ζ4ξ2 + 9ζ4 + 201ζ2ξ4 − 96ζ2ξ2 + 3ζ2 + 16ξ4 − 8ξ2 − 8 (A49)

P(0,1)
1,ihMM = −3(75ζ4ξ4 − 42ζ4ξ2 + 3ζ4 + 92ζ2ξ4 − 46ζ2ξ2 + 2ζ2 + 21ξ4 − 8ξ2 − 1) (A50)

P(0,1)
2,ihMM = 3(75ζ4ξ4 − 42ζ4ξ2 + 3ζ4 + 42ζ2ξ4 − 18ζ2ξ2 + 3ξ4 + 1) (A51)

C(0,2)
ihMM =

1

40960
(A52)

P(0,2)
0,ihMM = 893025ζ8ξ8 − 1367100ζ8ξ6 + 633150ζ8ξ4 − 89100ζ8ξ2 + 2025ζ8 + 1664775ζ6ξ8 − 2238600ζ6ξ6

+ 856350ζ6ξ4 − 86400ζ6ξ2 + 675ζ6 + 949935ζ4ξ8 − 1026940ζ4ξ6 + 262410ζ4ξ4 − 6300ζ4ξ2 − 225ζ4

+ 169705ζ2ξ8 − 120320ζ2ξ6 + 3930ζ2ξ4 + 360ζ2ξ2 + 405ζ2 + 4096ξ8 − 1024ξ6 − 1024ξ4 − 1024ξ2

− 1024 (A53)

P(0,2)
1,ihMM = −15(59535ζ8ξ8 − 91140ζ8ξ6 + 42210ζ8ξ4 − 5940ζ8ξ2 + 135ζ8 + 130830ζ6ξ8 − 179620ζ6ξ6 + 71160ζ6ξ4

− 7740ζ6ξ2 + 90ζ6 + 95032ζ4ξ8 − 110108ζ4ξ6 + 32772ζ4ξ4 − 1812ζ4ξ2 − 12ζ4 + 25330ζ2ξ8 − 21820ζ2ξ6

+ 3112ζ2ξ4 + 156ζ2ξ2 + 6ζ2 + 1785ξ8 − 768ξ6 − 134ξ4 − 24ξ2 − 27) (A54)

P(0,2)
2,ihMM = 45(19845ζ8ξ8 − 30380ζ8ξ6 + 14070ζ8ξ4 − 1980ζ8ξ2 + 45ζ8 + 30380ζ6ξ8 − 39620ζ6ξ6 + 14340ζ6ξ4

− 1260ζ6ξ2 + 14070ζ4ξ8 − 14340ζ4ξ6 + 3240ζ4ξ4 − 28ζ4ξ2 + 2ζ4 + 1980ζ2ξ8 − 1260ζ2ξ6

+ 28ζ2ξ4 + 28ζ2ξ2 − 8ζ2 + 45ξ8 + 2ξ4 + 8ξ2 + 9) (A55)

C(1,1)
ihMM =

1

40960
(A56)

P(1,1)
0,ihMM = 893025ζ8ξ8 − 1367100ζ8ξ6 + 633150ζ8ξ4 − 89100ζ8ξ2 + 2025ζ8 + 1664775ζ6ξ8 − 2805600ζ6ξ6

+ 1448550ζ6ξ4 − 232200ζ6ξ2 + 6075ζ6 + 949935ζ4ξ8 − 1808140ζ4ξ6 + 1050810ζ4ξ4 − 187980ζ4ξ2

+ 5295ζ4 + 169705ζ2ξ8 − 375320ζ2ξ6 + 250850ζ2ξ4 − 45280ζ2ξ2 + 365ζ2 + 4096ξ8 − 11264ξ6 + 9216ξ4

− 1024ξ2 − 1024 (A57)

P(1,1)
1,ihMM = −5(178605ζ8ξ8 − 273420ζ8ξ6 + 126630ζ8ξ4 − 17820ζ8ξ2 + 405ζ8 + 392490ζ6ξ8 − 652260ζ6ξ6

+ 331920ζ6ξ4 − 52380ζ6ξ2 + 1350ζ6 + 285096ζ4ξ8 − 524364ζ4ξ6 + 295476ζ4ξ4 − 51492ζ4ξ2 + 1428ζ4

+ 75990ζ2ξ8 − 158460ζ2ξ6 + 99856ζ2ξ4 − 18436ζ2ξ2 + 410ζ2 + 5355ξ8 − 13128ξ6 + 9350ξ4 − 1568ξ2 − 73)
(A58)

P(1,1)
2,ihMM = 5(178605ζ8ξ8 − 273420ζ8ξ6 + 126630ζ8ξ4 − 17820ζ8ξ2 + 405ζ8 + 273420ζ6ξ8 − 469980ζ6ξ6

+ 247500ζ6ξ4 − 40500ζ6ξ2 + 1080ζ6 + 126630ζ4ξ8 − 247500ζ4ξ6 + 147360ζ4ξ4 − 26868ζ4ξ2 + 762ζ4

+ 17820ζ2ξ8 − 40500ζ2ξ6 + 26868ζ2ξ4 − 5052ζ2ξ2 + 96ζ2 + 405ξ8 − 1080ξ6 + 762ξ4 − 96ξ2 + 73) (A59)

C(1,2)
ihMM =

1

41287680
(A60)

P(1,2)
0,ihMM = 10145260125ζ12ξ12 − 25573259250ζ12ξ10 + 23821441875ζ12ξ8 − 10044877500ζ12ξ6 + 1872871875ζ12ξ4

− 124031250ζ12ξ2 + 1378125ζ12 + 28955012625ζ10ξ12 − 72801382500ζ10ξ10 + 67610426625ζ10ξ8

− 28406574000ζ10ξ6 + 5272981875ζ10ξ4 − 347287500ζ10ξ2 + 3766875ζ10 + 30767710050ζ8ξ12

− 77117537700ζ8ξ10 + 70975576350ζ8ξ8 − 29263495800ζ8ξ6 + 5239763550ζ8ξ4 − 321545700ζ8ξ2

+ 2934050ζ8 + 14941303650ζ6ξ12 − 37303988400ζ6ξ10 + 33648082650ζ6ξ8 − 13213628400ζ6ξ6

+ 2130600150ζ6ξ4 − 102093600ζ6ξ2 + 344750ζ6 + 3245151105ζ4ξ12 − 8062033770ζ4ξ10

+ 6975883215ζ4ξ8 − 2440446540ζ4ξ6 + 290714655ζ4ξ4 − 3789450ζ4ξ2 − 22575ζ4 + 254587725ζ2ξ12

− 628428780ζ2ξ10 + 500078565ζ2ξ8 − 128429280ζ2ξ6 + 2173815ζ2ξ4 + 41580ζ2ξ2 + 57015ζ2

+ 2949120ξ12 − 7372800ξ10 + 5013504ξ8 − 147456ξ6 − 147456ξ4 − 147456ξ2 − 147456 (A61)

P(1,2)
1,ihMM = −105(96621525ζ12ξ12 − 243554850ζ12ξ10 + 226870875ζ12ξ8 − 95665500ζ12ξ6 + 17836875ζ12ξ4

− 1181250ζ12ξ2 + 13125ζ12 + 307969200ζ10ξ12 − 774531450ζ10ξ10 + 719532450ζ10ξ8 − 302427300ζ10ξ6

+ 56164500ζ10ξ4 − 3701250ζ10ξ2 + 40250ζ10 + 376357905ζ8ξ12 − 943918920ζ8ξ10 + 870427845ζ8ξ8

73



− 360375960ζ8ξ6 + 65056635ζ8ξ4 − 4059840ζ8ξ2 + 38735ζ8 + 219960000ζ6ξ12 − 549802980ζ6ξ10

+ 499104180ζ6ξ8 − 199150440ζ6ξ6 + 33292200ζ6ξ4 − 1754100ζ6ξ2 + 10020ζ6 + 62214495ζ4ξ12

− 154850850ζ4ξ10 + 136301949ζ4ξ8 − 50147564ζ4ξ6 + 6902553ζ4ξ4 − 200178ζ4ξ2 − 1013ζ4

+ 7501200ζ2ξ12 − 18569250ζ2ξ10 + 15388458ζ2ξ8 − 4689140ζ2ξ6 + 334788ζ2ξ4 + 14454ζ2ξ2 + 34ζ2

+ 255675ξ12 − 628980ξ10 + 459747ξ8 − 76320ξ6 − 9951ξ4 − 396ξ2 − 543) (A62)

P(1,2)
2,ihMM = 315(32207175ζ12ξ12 − 81184950ζ12ξ10 + 75623625ζ12ξ8 − 31888500ζ12ξ6 + 5945625ζ12ξ4 − 393750ζ12ξ2

+ 4375ζ12 + 81184950ζ10ξ12 − 204053850ζ10ξ10 + 189428400ζ10ξ8 − 79550100ζ10ξ6 + 14757750ζ10ξ4

− 971250ζ10ξ2 + 10500ζ10 + 75623625ζ8ξ12 − 189428400ζ8ξ10 + 173940165ζ8ξ8 − 71343720ζ8ξ6

+ 12639795ζ8ξ4 − 758280ζ8ξ2 + 6495ζ8 + 31888500ζ6ξ12 − 79550100ζ6ξ10 + 71343720ζ6ξ8

− 27605480ζ6ξ6 + 4298820ζ6ξ4 − 186180ζ6ξ2 + 160ζ6 + 5945625ζ4ξ12 − 14757750ζ4ξ10 + 12639795ζ4ξ8

− 4298820ζ4ξ6 + 467775ζ4ξ4 + 1338ζ4ξ2 − 267ζ4 + 393750ζ2ξ12 − 971250ζ2ξ10 + 758280ζ2ξ8

− 186180ζ2ξ6 − 1338ζ2ξ4 + 2262ζ2ξ2 − 132ζ2 + 4375ξ12 − 10500ξ10 + 6495ξ8 − 160ξ6 − 267ξ4 + 132ξ2

+ 181) (A63)

b. Interaction part λint: A general expression for the interaction part of λ for the superposition of the inverted
holey Morgan-Morgan disks with the Schwarzschild black hole (71) is

λ
(m,n)
ihMM,int = K

(m,n)
1,ihMM

{︄
atan2

[︃
bξ −Mζ

R−(ζ, ξ)

]︃
+ atan2

[︃
bξ +Mζ

R+(ζ, ξ)

]︃}︄
+

+ K
(m,n)
2,ihMM

∑︂

∓
R∓(ζ, ξ)K

{︃√︁
1 + ζ2 − ξ2

[︂
±P

(m,n)
0,ihMM(±ζ, ξ) + P

(m,n)
1,ihMM(±ζ, ξ) arccot(ζ)

]︂}︃
, (A64)

with the same notation conventions as in (A1), namely K
(m,n)
j,ihMM are constants and P

(m,n)
j,ihMM are polynomials in ζ

and ξ. A few first members read explicitly

K
(0,1)
1,ihMM =

2M
(︁
b2 +M2

)︁

πM3
(A65)

K
(0,1)
2,ihMM =

M
πbM2

(A66)

P
(0,1)
0,ihMM = −2bξ + 3ζMξ2 − ζM (A67)

P
(0,1)
1,ihMM =

1

M
(−2b2 + 2bζMξ − 3ζ2M2ξ2 + ζ2M2 −M2ξ2 −M2) (A68)

K
(0,2)
1,ihMM =

2M
(︁
b2 +M2

)︁2

πM5
(A69)

K
(0,2)
2,ihMM =

M
12πbM4

(A70)

P
(0,2)
0,ihMM = −24b3ξ + 36b2ζMξ2 − 12b2ζM − 60bζ2M2ξ3 + 36bζ2M2ξ − 16bM2ξ3 − 24bM2ξ + 105ζ3M3ξ4

− 90ζ3M3ξ2 + 9ζ3M3 + 55ζM3ξ4 − 6ζM3ξ2 − 9ζM3 (A71)

P
(0,2)
1,ihMM =

−3

M
(8b4 − 8b3ζMξ + 12b2ζ2M2ξ2 − 4b2ζ2M2 + 4b2M2ξ2 + 12b2M2 − 20bζ3M3ξ3 + 12bζ3M3ξ

− 12bζM3ξ3 − 4bζM3ξ + 35ζ4M4ξ4 − 30ζ4M4ξ2 + 3ζ4M4 + 30ζ2M4ξ4 − 12ζ2M4ξ2 − 2ζ2M4 + 3M4ξ4

+ 2M4ξ2 + 3M4) (A72)

K
(1,1)
1,ihMM =

2M
(︁
−3b4 − 2b2M2 +M4

)︁

πM5
(A73)

K
(1,1)
2,ihMM =

M
4πbM4

(A74)

P
(1,1)
0,ihMM = 24b3ξ − 36b2ζMξ2 + 12b2ζM + 60bζ2M2ξ3 − 36bζ2M2ξ + 16bM2ξ3 − 8bM2ξ − 105ζ3M3ξ4 + 90ζ3M3ξ2

− 9ζ3M3 − 55ζM3ξ4 + 54ζM3ξ2 − 7ζM3 (A75)
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P
(1,1)
1,ihMM =

1

M
(24b4 − 24b3ζMξ + 36b2ζ2M2ξ2 − 12b2ζ2M2 + 12b2M2ξ2 + 4b2M2 − 60bζ3M3ξ3 + 36bζ3M3ξ

− 36bζM3ξ3 + 20bζM3ξ + 105ζ4M4ξ4 − 90ζ4M4ξ2 + 9ζ4M4 + 90ζ2M4ξ4 − 84ζ2M4ξ2 + 10ζ2M4

+ 9M4ξ4 − 10M4ξ2 − 7M4) (A76)

K
(1,2)
1,ihMM =

2M
(︁
M2 − 5b2

)︁ (︁
b2 +M2

)︁2

πM7
(A77)

K
(1,2)
2,ihMM =

M
24πbM6

(A78)

P
(1,2)
0,ihMM = 240b5ξ − 360b4ζMξ2 + 120b4ζM + 600b3ζ2M2ξ3 − 360b3ζ2M2ξ + 160b3M2ξ3 + 192b3M2ξ

− 1050b2ζ3M3ξ4 + 900b2ζ3M3ξ2 − 90b2ζ3M3 − 550b2ζM3ξ4 + 132b2ζM3ξ2 + 66b2ζM3 + 1890bζ4M4ξ5

− 2100bζ4M4ξ3 + 450bζ4M4ξ + 1470bζ2M4ξ5 − 1220bζ2M4ξ3 + 102bζ2M4ξ + 128bM4ξ5 − 32bM4ξ3

− 48bM4ξ − 3465ζ5M5ξ6 + 4725ζ5M5ξ4 − 1575ζ5M5ξ2 + 75ζ5M5 − 3570ζ3M5ξ6 + 4410ζ3M5ξ4

− 1230ζ3M5ξ2 + 38ζ3M5 − 693ζM5ξ6 + 705ζM5ξ4 − 27ζM5ξ2 − 33ζM5 (A79)

P
(1,2)
1,ihMM =

3

M
(80b6 − 80b5ζMξ + 120b4ζ2M2ξ2 − 40b4ζ2M2 + 40b4M2ξ2 + 104b4M2 − 200b3ζ3M3ξ3 + 120b3ζ3M3ξ

− 120b3ζM3ξ3 − 24b3ζM3ξ + 350b2ζ4M4ξ4 − 300b2ζ4M4ξ2 + 30b2ζ4M4 + 300b2ζ2M4ξ4 − 144b2ζ2M4ξ2

− 12b2ζ2M4 + 30b2M4ξ4 + 12b2M4ξ2 + 6b2M4 − 630bζ5M5ξ5 + 700bζ5M5ξ3 − 150bζ5M5ξ

− 700bζ3M5ξ5 + 640bζ3M5ξ3 − 84bζ3M5ξ − 150bζM5ξ5 + 84bζM5ξ3 + 18bζM5ξ + 1155ζ6M6ξ6

− 1575ζ6M6ξ4 + 525ζ6M6ξ2 − 25ζ6M6 + 1575ζ4M6ξ6 − 1995ζ4M6ξ4 + 585ζ4M6ξ2 − 21ζ4M6

+ 525ζ2M6ξ6 − 585ζ2M6ξ4 + 99ζ2M6ξ2 + 9ζ2M6 + 25M6ξ6 − 21M6ξ4 − 9M6ξ2 − 11M6) (A80)
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CHAPTER

3

QUASINORMAL MODES (QNMS)

When a particle, e.g. a star, hits a black hole, two black holes merge, or a new
black hole is formed from the gravitational collapse, the black hole rings and emits
gravitational waves until it settles to a stationary equilibrium described by the
Kerr(-Newman) solution. Because the whole system is “open” (asymptotically
flat), the gravitational waves exponentially decay. Such a behaviour is described
by quasi-normal modes – a sum of exponentially damped harmonic oscillations.
For an isolated black hole, the quasi-normal modes are determined by its mass,
spin, and, in the case of electrovacuum, electric charge. Thus, in the recent boom
of new gravitational wave experiments, the quasi-normal modes of black holes
may become very important for robust tests of GR.

The black-hole solutions, however, describe only isolated black holes. For any
observable astrophysical black hole, this condition is not strictly satisfied. So
far, the discussion of “dirty” black holes has been limited to situations where
the spherical symmetry is preserved. Leung et al. (1997, 1999) showed that the
spherical thin shell of matter surrounding the Schwarzschild black hole could
significantly alter the QNMs spectrum. It was later clarified that the additional
matter may actually induce the second barrier in the effective potential Barausse
et al. (2015). This barrier triggers the pseudospectral instability (Jaramillo et al.,
2021; Cheung et al., 2022), which can destroy the spectrum completely. However,
the frequencies may still be extracted from the signal in the time domain Berti
et al. (2022). The pseudospectral instability can be avoided if we consider just
a moderate contribution from the surrounding matter Cardoso et al. (2022). We
continue in the research of this problem by studying a more general case. We relax
the spherical symmetry considering an axially symmetric accretion disc instead.

In this section, we briefly summarize some basic results regarding the QNMs of
the Schwarzschild black hole and summarize our contribution in Chen & Kotlařík
(2023).
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3.1 Quasi-normal modes of the Schwarzschild
black hole

Let’s begin with a Schwarzschild black hole in the spherical (Schwarzschild) co-
ordinates (1.34). We will denote f(r) ≡ 1 − 2M/r and the metric

ds2 = gαβ dxαxβ ≡ −f(r) dt2 + dr2

f(r) + r2(dθ2 + sin2 θ dϕ2) . (3.1)

Consider a linear perturbation of the background Schwarzschild metric,

gexact
µν = gµν + hµν , (3.2)

such that |hµν | ≪ |gµν |. We now separate every component of the perturbation
tensor hµν into the product of four functions, each depending on only one coor-
dinate. Namely, we decompose the time dependence into frequencies exp(−ikt),
the angular part (θ, ϕ) into the spherical harmonics and the radial dependence
will be described by an auxiliary function of r. Under rotations on the sphere, the
components htt, htr, hrr transform as scalars, the tuples (htθ, htϕ) and (hrθ, hrϕ)
transform as components of two two-vectors, and hθθ, hθϕ, hϕϕ transform as com-
ponents of a symmetric two-tensor. Thus, some vector and tensor generaliza-
tion of the spherical harmonics is necessary. The perturbation problem was
partially solved in the pioneering work by Regge & Wheeler (1957) and later
completed by Zerilli (1970). They focused on the spherical harmonics with fixed
parity with respect to the angular transformation (θ, ϕ) → (π − θ, ϕ + π). Since
Yℓmz(π − θ, ϕ + π) = (−1)ℓYℓmz(θ, ϕ), the perturbations may be expanded into
the spherical harmonics with the same parity called “polar” (or “even”), or with
the opposite parity called “axial” (or “odd”).

Regge & Wheeler (1957) found a certain gauge in which the perturbation is
described by two axial and four polar scalar functions, and they showed that
the axial part decouples from the polar part. For the axial part, one of the
unknown radial functions can further be expressed in terms of the other one, and
a convenient redefinition of the quantities leads to the wave (Schrödinger-like)
equation

∂2Ψ
∂r2

∗
+
[︂
k2 − Veff(r)

]︂
Ψ = 0 , (3.3)

where r∗ is the tortoise coordinate, dr∗ = (1 − 2M/r)−1 dr, and the effective
potential reads

V ax
eff (r) =

(︄
1 − 2M

r

)︄[︄
ℓ(ℓ+ 1)
r2 − 6M

r3

]︄
. (3.4)

Analogously, Zerilli (1970) showed that the polar problem reduces to the iden-
tical wave equation, although with a more complicated effective potential

V pol
eff =

(︄
1 − 2M

r

)︄
2n2(n+ 1)r3 + 6n2Mr2 + 18nM2r + 18M3

r3(nr + 3M)2 , (3.5)

where n = 1
2(ℓ − 1)(ℓ + 2). Surprisingly, Chandrasekhar & Detweiler (1975)

discovered a correspondence between the axial and polar parts. Both modes may
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be encoded into a single radial function which satisfies the wave equation (3.3) for
the same choice of Veff(r) (different from the Reggee-Wheeler and Zerilli ones).

Thus, the analysis of the linear perturbation of the Schwarzschild black hole
is closely connected to the problem of waves propagating in the black-hole space-
time.

3.2 Waves propagating in the perturbed black-
hole spacetime

The Regge & Wheeler (1957) analysis was based on the fact that the background
metric is vacuum, static and spherically symmetric. When the black hole is not
isolated and the spherical symmetry is violated, the full analysis of linearized
Einstein equations becomes a lot more difficult and is, at the moment, beyond
our reach. However, a good starting point is to consider an analogous problem
of massless-scalar-field perturbations propagating in the given background space-
time. Indeed, this is a great simplification, although already at this level, we can
address some interesting issues, e.g. the stability of the system, without dealing
with the complexity of the linearized gravitational equations.

The massless scalar field ψ is governed by the Klein-Gordon equation

□ψ = 0 . (3.6)

For the Schwarzschild spacetime, the wave equation (3.6) is separable. In partic-
ular, when we decompose the field into Fourier modes and expand the angular
part into spherical harmonics,

ψ =
∫︂ ∞

−∞

∞∑︂
mz=−∞

∞∑︂
ℓ=|mz |

ψkℓmz(r)Yℓmz(θ, ϕ)e−ikt dk , (3.7)

Eq. (3.6) reduces to the following radial equation for each mode

1
r2

∂

∂r

(︄
r2f(r) ∂ψkℓmz(r)

∂r

)︄
+
[︄
f−1(r)k2 − ℓ(ℓ+ 1)

r2

]︄
ψkℓmz(r) = 0 . (3.8)

Substituting ψ̂kℓmz
(r) = rψkℓmz(r) and rewriting the equation in the tortoise

coordinate dr∗ = f−1(r) dr, we obtain

∂2ψ̂ℓmz

∂r2
∗

+
[︂
k2 − Veff(r)

]︂
ψ̂ℓmz

= 0 , (3.9)

where the effective potential reads

Veff(r) = f(r)f ′(r)
r

+ ℓ(ℓ+ 1)f
r2 , f ′(r) ≡ df

dr . (3.10)

However, even a slight perturbation of the original Schwarzschild spacetime
breaks the separability of the wave equation. Yet, recently, Cano et al. (2020) pro-
posed a projection method which can deal with “nearly” separable systems. These
are the systems which depart from the Schwarzschild solution by a linear pertur-
bation, so the zero-order wave equation is separable, while the non-separability
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solely comes from the perturbative corrections. Let’s denote a small parameter
which parametrizes the deformations as ϵ and suppose that the perturbation pre-
serves static metric, but it can slightly depart from the spherical symmetry. In
frequencies, denote

□ψ ≡
∫︂ ∞

−∞
e−iktD2

kψk(r, θ, ϕ) dk = 0 , (3.11)

so that each mode satisfies

D2
kψk(r, θ, ϕ) = 0 . (3.12)

Now, we can split the operator D2
k into the separable part D2

(0)k and the linear
corrections D2

(1)k, i.e.
D2

k = D2
(0)k + ϵD2

(1)k , (3.13)
where

D2
(0)k = f−1(r)k2 + 1

r2
∂

∂r

(︄
r2f(r) ∂

∂r

)︄
+ 1
r2 sin θ

∂

∂θ

(︄
sin θ ∂

∂θ

)︄
+ 1
r2 sin2 θ

∂2

∂ϕ2 .

(3.14)
Spherical harmonics form a complete set of functions on a sphere, thus the decom-
position (3.7) is always possible. At the zeroth order, the equation D2

(0)kψk = 0
can be factorized into a decoupled set of radial equations (3.8), each of which
contains particular ℓ and mz. Let us choose one of these particular solutions,
say ℓ0,mz0. It is natural to assume that the other terms ℓ ̸= ℓ0,m ̸= m0 in
the decomposition (3.7) arrive from the first perturbation order. Thus, we can
consistently write

ψk(r, θ, ϕ) = ψkℓ0mz0(r)Yℓ0mz0(θ, ϕ) + ϵ
∞∑︂

mz=−∞
mz ̸=mz0

∞∑︂
ℓ=−|mz |

ℓ̸=ℓ0

ψkℓmz(r)Yℓmz(θ, ϕ) . (3.15)

Using (3.13) and (3.15), we have

D2
kψk(r, θ, ϕ) =

[︂
D2

(0)k + ϵD2
(1)k

]︂
ψkℓ0mz0(r)Yℓ0mz0(θ, ϕ)+

+ ϵ
∞∑︂

mz=−∞
mz ̸=mz0

∞∑︂
ℓ=−|mz |

ℓ ̸=ℓ0

D2
(0)kψkℓmz(r)Yℓmz(θ, ϕ) + O(ϵ2) . (3.16)

Spherical harmonics are the eigenfunctions of the operator D(0)k, thus if we project
(3.16) onto a certain Yℓ0mz0 , the last term vanishes for an arbitrary mz0 due to
the orthogonality of the spherical harmonics,
∫︂ 2π

0

∫︂ π

0
Y ∗

ℓ0mz0D2
kψk(r, θ, ϕ) sin θ dθ dϕ =

=
∫︂ 2π

0

∫︂ π

0
Y ∗

ℓ0mz0

[︂
D2

(0)k + ϵD2
(1)k

]︂
ψkℓmz(r)Yℓmz(θ, ϕ) sin θ dθ dϕ . (3.17)

From the zeroth order, we reproduce Eq. (3.8), while the first-order part brings
linear corrections to the effective potential.
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3.3 Quasi-normal modes of the Schwarzschild
black hole in the presence of a thin disc

We can now use the recipe above and apply it to the spacetime of interest. In
the paper Chen & Kotlařík (2023) we studied the influence of a gravitating disc
on the spectrum of scalar field QNMs. We choose the solution of Kotlařík &
Kofroň (2022), see also Sec. 2.6.2, describing a Schwarzschild black hole encircled
by a static thin disc. Although the derived metric is exact, we considered that
the mass of the disc is small compared to the mass of the black hole M ≪ M ,
thus setting ϵ = M/M . We found that the QNM frequencies are shifted due to
the presence of the disc. In particular, both real and imaginary parts decrease
with respect to the pure Schwarzschild value. Moreover, these shifts follow the
same direction in the complex plane through a wide range of disc parameters.
Similar behaviour was also observed in cases when the matter around the black
hole respects spherical symmetry (Cardoso et al., 2022; Konoplya, 2021). This
seems to be a universal relation. If held generically, it may help in distinguishing
the environmental effects (such as gravitating accretion disc) from other effects
predicted by alternative theories of gravity.
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The ringdown phase of gravitational waves emitted by a perturbed black hole is described by
a superposition of exponentially decaying sinusoidal modes, called quasinormal modes (QNMs),
whose frequencies depend only on the property of the black hole geometry. The extraction of QNM
frequencies of an isolated black hole would allow for testing how well the black hole is described by
general relativity. However, astrophysical black holes are not isolated. It remains unclear whether
the extra matter surrounding the black holes such as accretion disks would affect the validity of the
black hole spectroscopy when the gravitational effects of the disks are taken into account. In this
paper, we study the QNMs of a Schwarzschild black hole superposed with a gravitating thin disk.
Considering up to the first order of the mass ratio between the disk and the black hole, we find that
the existence of the disk would decrease the oscillating frequency and the decay rate. In addition,
within the parameter space where the disk model can be regarded as physical, there seems to be
a universal relation that the QNM frequencies tend to obey. The relation, if it holds generically,
would assist in disentangling the QNM shifts caused by the disk contributions from those induced
by other putative effects beyond general relativity. The QNMs in the eikonal limit, as well as their
correspondence with bound photon orbits in this model, are briefly discussed.

I. INTRODUCTION

Black holes ring when they are perturbed, with the
ringing frequencies determined by the underlying space-
time geometry. The feature of the ringings of black holes
is tightly related to the fact that the whole system is
dissipative. For an asymptotically flat black-hole space-
time, the emitted gravitational waves propagate outward,
escaping from the system to spatial infinity. In addi-
tion, the event horizon, i.e., a point beyond which no
infalling matter can return, acts as the other boundary
of dissipation of the system. Because of the dissipation,
the ringings of black holes would decay. Such a “ring-
down” phase can be described by a superposition of ex-
ponentially decaying sinusoidal oscillations, called quasi-
normal modes (QNMs) [1–3]. The QNM frequencies are
complex-valued, with the real part describing the oscil-
lations, and the imaginary part determining the decay of
the amplitudes. Importantly, for an isolated black hole in
general relativity (GR), the spacetime geometry dictates
the QNM spectrum, and they both satisfy the no-hair
theorem, i.e., they are purely determined by the mass
and the spin of the black hole. Therefore, based on the
current achievements [4, 5] and with the upcoming ad-
vancements in the gravitational wave detection of binary
merger events [6, 7], the extraction of QNM frequencies
from ringdown signals may be accessible, helping us to
identify the black hole parameters and even to test GR.

∗ b97202056@gmail.com
† kotlarik.petr@gmail.com

However, astrophysical black holes are generally not
isolated. They may be surrounded by dark matter halos,
or be encircled by accretion disks. The validity of using
black hole QNMs to extract parameters describing the
black hole spacetime requires a sufficient understanding
of how the surrounding matter would alter the QNMs.
One has to ensure that the contributions from the en-
vironments can be disentangled from those induced by
the black hole geometry itself, at least under suitable ap-
proximations.

The QNM spectra of black holes surrounded by mat-
ter – the dirty black holes – have been explored in the
literature. In Refs. [8, 9], the surrounding matter was
modeled by a spherical dust thin-shell. It was shown,
both numerically and analytically, that the QNM spec-
trum could deviate significantly from the vacuum case,
especially when the shell is far away from the black hole.
It was later clearly elucidated in Refs. [10, 11], assum-
ing again spherically symmetric matter configurations,
that this large amount of frequency shifts could be actu-
ally due to the existence of the double-barrier structure
on the effective potential in the QNM master equations.
The surrounding matter induces an additional barrier in
the effective potential, which could induce pseudospectral
instability of black hole QNMs [12]. Even an additional
tiny bump on the effective potential would already trigger
the instability and excite additional modes. The insta-
bility could happen even to the fundamental modes – the
longest-lived modes [13], but their frequencies may still
be extracted robustly from the prompt ringdown signals
in time-domain [14] (see also [15]). The pseudospectral
instability can be avoided when the contributions of the
surrounding matter on the effective potential are suffi-
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ciently mild in the sense that, in the case of nonrotating
black holes, the effective potential retains its single-peak
structure. This can be achieved as shown by the model of
Ref. [16], in which the authors, assuming spherical sym-
metry, proposed an effective metric that can describe the
spacetime geometry of a whole galaxy harboring a su-
permassive black hole. In this case, the frequencies of
fundamental modes are shifted mildly by the environ-
mental effects. The highly damped QNMs of spherically
symmetric dirty black holes were also studied [17].

Apparently, the discussion of the QNM spectrum for
dirty black holes so far is still quite confined to the as-
sumption that the overall spacetime remains spherically
symmetric. However, in a more realistic scenario, such
as a black hole encircled by a gravitating accretion disk,
the spherical symmetry is no longer preserved. But, the
complicated structure of the Einstein equations makes
obtaining the common gravitational field of the black hole
with the disk a rather difficult task, at least for analyt-
ical work. Some reasonable simplifications (symmetries)
are still needed. The simplest viable option is to con-
sider an axially symmetric disk and neglect (or compen-
sate) the total rotation present in the spacetime, so the
spacetime is also static, and the black hole is described
by the Schwarzschild metric. Another assumption that
can be made is that the typical thickness of the disk is
much smaller than the black hole radius, thus it is effec-
tively infinitesimally thin. Then the Einstein equations
are simplified considerably. Nevertheless, not many mod-
els of the Schwarzschild black hole encircled by a thin disk
(SBH-disk models) are known in the literature. The first
“superposition” was made in Ref. [18] (further studied
in Ref. [19]) using inverted Morgan-Morgan disk [20]. It
was also used to calculate the influence of a heavy ac-
cretion disk on the black-hole shadow in the more recent
work [21]. Another class of disk solutions was proposed
in Ref. [22], revisited recently in Ref. [23]. Both of these
models have a slight disadvantage in that only a part of
the metric was obtained explicitly, the rest being left to
numerical treatments when needed. Yet recently, new so-
lutions have been found [24, 25], where the whole metric
of the entire superposition was derived explicitly and in
closed-forms. In this paper, we consider the SBH-disk
model proposed in Ref. [25].

From the astrophysical point of view, the SBH-disk
model [25] may not properly describe any realistic sce-
nario of accretion processes. In addition, being static, it
does not include the spin of the central black hole nor the
rotation of the disk. However, the disk possesses phys-
ically reasonable properties, and it can demonstrate the
effects that may actually occur in the real astrophysi-
cal setup where the gravitation from the disk cannot be
totally neglected.

In the presence of the gravitating disk, the calculations
of the QNMs for the SBH-disk model become substan-
tially challenging because the master equations in general
are nontrivial partial differential equations. This is true
even for the calculations of the QNMs of massless scalar

fields. To proceed, we assume that the mass of the disk
is much smaller than the black hole one. Up to the first
order of the mass ratio, we adopt the projection method,
which was proposed in Ref. [26] then applied in Refs. [27–
30], to derive the master equation and investigate how the
QNM frequencies of a massless scalar field are shifted by
the gravitating disk. To ensure the validity of the projec-
tion method and the stability of the disk, we can fairly
consider the parameter space of the model in which the
aforementioned pseudospectral instability of fundamen-
tal modes does not happen. This can be achieved by
focusing only on the effective potential, which can be
defined in our treatment, with a single-peak structure.
Furthermore, adopting the geometric optics approxima-
tions, we consider the frequencies of eikonal QNMs and
identify their correspondence with bound photon orbits
in the SBH-disk model.
The rest of this paper is organized as follows. In

sec. II, we briefly review the SBH-disk model proposed in
Ref. [25]. In order to analyze the QNMs of the SBH-disk
model, in sec. III we consider a deformed Schwarzschild
black hole, and demonstrate how to recast the master
equation for scalar field perturbations in a Schrödinger-
like form. This section is based on the results of Ref. [27].
The main results of our paper are presented in sec. IV,
in which we show how the effective potentials of the
master equation (sec. IVA) and the QNM frequencies
(sec. IVB) vary with respect to the parameters in the
SBH-disk model. Then, in sec. V, we comment on the
eikonal correspondence between QNMs and bound pho-
ton orbits in the SBH-disk model. Finally, we conclude
in sec. VI.

II. THE SBH-DISK MODEL

Due to the inherent non-linearity of Einstein equations,
it is difficult to “superpose” multiple sources in GR. How-
ever, in the static and axially symmetric case, the situ-
ation is much simpler. In fact, in Weyl cylindrical co-
ordinates (t, ρ, z, φ) Einstein equations outside of sources
(i.e. in vacuum) are reduced to the Laplace equation and
a line integration

∆ν = 0 , (1)

λ,ρ = ρ(ν2,ρ − ν2,z) , λ,z = 2ρν,ρν,z , (2)

where the ν(ρ, z) and λ(ρ, z) are the only nontrivial com-
ponents of the Weyl-type metric

ds2 = −e2νdt2 + ρ2e−2νdφ2 + e2λ−2ν(dρ2 + dz2) . (3)

Thus any axially symmetric gravitational field with its
potential ν known from Newton’s theory has its GR coun-
terpart. However, the potential ν does not tell the whole
story. The presence of the second metric function λ may
significantly depart from the pure Newtonian picture.
Moreover, while the Laplace equation (1) is linear, and
thus makes the superposition problem for the potential ν
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trivial, it is not the case for λ as Eqs. (2) are quadratic
in ν.

Here, we wish to study the QNMs of a black hole that
is surrounded by some matter in a physically appealing
configuration. Namely, we take a recently derived solu-
tion [25] describing a Schwarzschild black hole encircled
by a thin disk (SBH-disk model). Such a structure is
of clear astrophysical importance as disk-like sources of-
ten result from an accretion of matter onto a compact
central body. While the total potential is a simple sum
ν = νSchw+νdisk, for the second metric function we write
λ = λSchw+λdisk+λint, where λSchw and λdisk denote con-
tributions from the Schwarzschild black hole and the disk
(thus each satisfying (2) with their corresponding νSchw,
or, νdisk respectively). The non-linear “interaction” part
λint satisfies

λint,ρ = 2ρ(νSchw,ρνdisk,ρ − νSchw,zνdisk,z) , (4)

λint,z = 2ρ(νSchw,ρνdisk,z + νSchw,zνdisk,ρ) . (5)

Notice that when we treat the existence of the disk as a
small perturbation of the black hole, i.e. |νdisk| ≪ |νSchw|,
and consider its contributions up to the first order, only
the interaction part λint is relevant because λdisk is of
second order.

In Weyl coordinates, the Schwarzschild black hole is a
singular rod of length 2M – twice the black-hole mass M
– placed symmetrically on the z axis described by

νSchw =
1

2
ln

(︃
R+ +R− − 2M

R+ +R− + 2M

)︃
, (6)

λSchw =
1

2
ln

[︄
(R+ +R−)2 − 4M2

4R+R−

]︄
, (7)

where

R± =
√︁
ρ2 + (|z| ∓M)2 . (8)

The disks considered in Ref. [25] are infinitesimally thin
and spatially infinite (with a finite total mass) extend-
ing from the horizon. The disk density falls off quickly
enough both at the horizon and at infinity – see the
schematic Fig. 1. The Newtonian surface density pro-
files1 read

w(m,n) =W (m,n) b2m+1ρ2n

2π(ρ2 + b2)m+n+3/2
, m, n ∈ N0 (9)

where b is a parameter of the dimension of length and
the normalization W (m,n) is chosen in such a way that
the total mass of the disk 2π

∫︁∞
0
w(m,n)(ρ)ρ dρ = M. In

particular,

W (m,n) = (2m+ 1)

(︃
m+ n+ 1/2

n

)︃
M . (10)

1 The quantity w(ρ) satisfies exactly the Poisson equation ∆ν =
4πw(ρ)δ(z), where δ(z) is the delta distribution, so it is the pre-
cise counterpart of the Newtonian surface density.

FIG. 1. The schematic plot in Weyl coordinates of a
Schwarzschild black hole (thick black vertical line) encircled
by a thin disk [25] (thick black horizontal line). The disk lies
in the equatorial plane stretching from the horizon to infinity.
The disk surface density profile (9) is indicated by the dashed
blue line.

The densities (9) have a single maximum located at

ρmax = b
√︂

2n
3+2m . Thus, increasing b (or n) whenm,n (or

m, b) are fixed means shifting the maximum further from
the central region, as well as expanding the width of the
peak. Whereas increasing m when n, b fixed corresponds
to shifting the maximum towards the central region while
shrinking the width of the peak. When keeping the total
disk mass M constant, the maximum density decreases
when increasing b (or n) while it increases when increas-
ing m.
If we denote

r2b := ρ2 + (|z|+ b)2 , | cos θb| :=
|z|+ b

rb
, (11)

the potential is given by

ν(m,n) = −W (m,n)
m+n∑︂

j=0

Q(m,n)
j

bj

rj+1
b

Pj(| cos θb|) , (12)

where Pj are the Legendre polynomials and the coeffi-
cients

Q(m,n)
j =

⎧
⎨
⎩

∑︁n
k=0(−1)k

(︁
n
k

)︁ 2j−k−m(2m+2k−j)!
(m+k−j)!(2m+2k+1)!! if j ≤ m

∑︁m+n
k=j (−1)k−m

(︁
n

k−m

)︁ 2j−k(2k−j)!
(k−j)!(2k+1)!! if j > m .

The potential (12) was first obtained by Vogt & Letelier
[31] by taking a specific superposition of the Kuzmin-
Toomre family of discs [32].
The second metric function λdisk was also found ex-

plicitly (see [25] Eq. (21)), but we will not repeat it here
as we shall not need it. The interaction part λint satisfies
following recurrence relations

λ
(0,0)
int = −M

rb

(︃
R+

b+M
− R−
b−M

)︃
− 2MM

b2 −M2
, (13)

λ
(0,n+1)
int = λ

(0,n)
int +

b

2(n+ 1)

∂

∂b
λ
(0,n)
int , (14)

(2m+ 1)(2n+ 3)

2m+ 2n+ 3
λ
(m+1,n)
int

= λ
(m,n)
int +

4m(n+ 1)

2m+ 2n+ 3
λ
(m,n+1)
int − b

∂

∂b
λ
(m,n)
int . (15)
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Thus the whole metric (both metric functions) of the
SBH-disk model is known explicitly and in closed-form.
From now on, to simplify the expression, the notation
(m,n) that indicates the explicit dependence of the disk
functions on the indices m and n will be dropped. One
should keep in mind that ν and λ explicitly depend on
M, b, m, and n.

Two physical interpretations of these disks are pos-
sible: a) a single component ideal fluid with density σ
and azimuthal pressure P (a set of solid rings with inter-
nal azimuthal stress), or, b) two equally counter-rotating
pressureless dust streams with the densities σ± = σ/2
following circular geodesics. Both characteristics follow
from the metric

σ + P = eν−λ ν,z(z = 0+)

2π
= eν−λw(ρ) , (16)

P = eν−λ ν,z(z = 0+)

2π
ρν,ρ = eν−λw(ρ)ρν,ρ , (17)

where w(ρ) is the Newtonian surface density (9). See
Appendix A for the derivation in more details.

Clearly σ + P ≥ 0, so the strong energy condition
is satisfied automatically for any disk. The dominant
energy condition is generally satisfied everywhere (for a
broad range of parameters) except close to the black-
hole horizon, where σ < P . In fact, the accretion disks
are usually assumed to end around the innermost stable
circular orbit (ISCO). However, we argue that (i) our
disk density drops to zero toward the horizon, so there is
really no matter on the horizon itself, and, (ii) accretion
disks around realistic black holes would indeed stretch
toward the horizon, although the matter will infall there
rather than orbiting on circular trajectories. Thus, in this
sense, it is more realistic to model the gravitational field
with some modest density going down to the horizon.
By choosing appropriate parameters (m,n) and b, the
density can be made arbitrarily small below a chosen
radius, e.g., the ISCO orbit.

For the double-stream interpretation, both energy con-
ditions considered above require σ± ≥ 0, which also im-
plies P ≥ 0 for the single component interpretation. Fi-
nally, the energy conditions are satisfied for both inter-
pretations if the speed of a particle on a circular geodesic
in the equatorial plane

v2 =
P

σ
=

ρν,ρ
1− ρν,ρ

(18)

acquire timelike values 0 ≤ |v| < 1.
While superposition can be carried out very straight-

forwardly in Weyl coordinates, it will be convenient to
work in Schwarzschild coordinates (t, r, θ, φ) from now
on. The two sets of coordinates are related as follows2

ρ =
√︁
r(r − 2M) sin θ , z = (r −M) cos θ , (19)

2 Note the difference between rb and θb with the subscript b defined
in (11) and the Schwarzschild coordinates r, θ.

and the metric of the SBH-disk model in Schwarzschild
coordinates then reads

ds2 =− f(r)e2νdiskdt2 + e2λext−2νdisk
dr2

f(r)

+ r2e−2νdisk

(︂
e2λextdθ2 + sin2 θdφ2

)︂
, (20)

where λext = λdisk + λint and f(r) ≡ νSchw = 1 − 2M/r
after the transformation into Schwarzschild coordinates.

III. DEFORMED SCHWARZSCHILD BLACK
HOLES – MASTER EQUATION

The SBH-disk metric of Eq. (20) describes the space-
time of a Schwarzschild black hole encircled by a gravitat-
ing thin disk. The main goal of this work is to investigate
the QNMs propagating in this superposed spacetime.
However, due to the general (r, θ) dependence appearing
in the metric functions through νdisk and λext, the radial
and the latitudinal sectors of the wave equation are not
separable. In order to proceed, we assume that the disk
mass M is much smaller than the black hole mass M
and consider the contributions up to O(M/M). Besides
having its astrophysical applicability, this assumption, as
mentioned in the previous section, allows us to simplify
the calculations by omitting λdisk term because it is of
second order in M/M . Then, we focus on the QNMs
of scalar field perturbations. Adopting the projection
method [26] to the master equation up to O(M/M), one
can separate the radial component of the master equa-
tion from the latitudinal one. This has been shown ex-
plicitly in Ref. [27] for a very general class of deformed
Schwarzschild spacetimes. In this section, we briefly re-
view the results in Ref. [27], based on which one can
compute the scalar field QNMs of the SBH-disk model.
We consider a deformed Schwarzschild spacetime and

assume that the spacetime remains static and axially
symmetric in the presence of deformations. The nonzero
metric components of the deformed spacetime can be ex-
pressed as [27]

gtt(r, θ) = −f(r)
(︂
1 + ϵAj(r)| cosj θ|

)︂
,

grr(r, θ) =
1

f(r)

(︂
1 + ϵBj(r)| cosj θ|

)︂
,

gθθ(r, θ) = r2
(︂
1 + ϵCj(r)| cosj θ|

)︂
,

gφφ(r, θ) = r2 sin2 θ
(︂
1 + ϵDj(r)| cosj θ|

)︂
, (21)

where ϵ is a dimensionless parameter that quantifies the
amount of deformations. In general, the spacetime de-
formations are functions of r and θ. In Eqs. (21), we
expand the latitudinal part of the deformation functions
as a Taylor series in terms of cos θ. Each term in the
series is weighted by a function of r, i.e., the functions
Aj(r), Bj(r), Cj(r), and Dj(r) that appear in the ex-
pansion. The dummy index j stands for summations
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running upward from j = 0. The absolute value in each
term in the expansion is to preserve the equatorial reflec-
tion symmetry, with the possibility of having a nonzero
surface density at the equatorial plane. When the defor-
mations are small, i.e., |ϵ| ≪ 1, we can consider terms
up to O(ϵ). As we will show later, the radial sector of
the Klein-Gordon equation can then be separated from
the latitudinal one, and it can be further recast into the
Schrödinger-like form.

A. Massless scalar field: Effective potential

In this work, we will focus on the massless scalar field
perturbations, whose QNMs are governed by the Klein-
Gordon equation

□ψ = 0 . (22)

Indeed, the investigation of the ringdown phase in real
gravitational wave emission has to be based on the
computations of linearized gravitational equations rather
than Eq. (22). However, as the simplest scenario, the
consideration of scalar field perturbations already allows
us to address interesting issues, such as the (in)stability
of the system, without suffering the computational com-
plexity in linearized gravitational equations of deformed
background spacetimes. In addition, according to the
geometric optics approximations, the behaviors of scalar
field QNMs should be able to capture those of the grav-
itational perturbations at least in the eikonal regimes,
that is, when the multipole number l is large. This will
be discussed later in sec. V.

For the master equation of scalar fields in the
Schwarzschild spacetime, one can use the associated Leg-
endre functions Pmz

l (x), where x ≡ cos θ and mz is the
azimuthal number, as the angular basis to separate the
radial and latitudinal sectors of the wave equation. The
radial equation is labeled by the multipole number l and
determines the evolution of the mode of l. The azimuthal
number mz degenerates because of the spherical symme-
try of the spacetime. In the presence of deformations of
O(ϵ), there would appear off-diagonal terms that corre-
spond to the modes with multipole numbers l different
from that of the zeroth-order one. These off-diagonal

terms in the wave equations are O(ϵ). Therefore, by tak-
ing advantage of the orthogonality of Pmz

l among multi-
pole numbers, one can project out the off-diagonal terms
and focus only on the corrections on the zeroth-order
equation. In the following, we will only show the main
results of the calculations and refer the readers to sec.
IV of Ref. [27] for more details.
Essentially, the projection method allows us to sepa-

rate the radial and the latitudinal sectors of the wave
equation. To further recast the radial equation into the
Schrödinger-like form, we find it convenient to define the
following coefficients:

ajlmz
=

2mz
2

Nlmz

∫︂ 1

0

xj
(︁
Pmz

l

)︁2

1− x2
dx , (23)

bjlmz
=

2

Nlmz

∫︂ 1

0

xj
(︁
Pmz

l

)︁2
dx , (24)

cjlmz
=

2

Nlmz

∫︂ 1

0

xjPmz

l

[︃(︂
1− x2

)︂
∂2x − 2x∂x

]︃
Pmz

l dx ,

(25)

djlmz
=

2

Nlmz

∫︂ 1

0

Pmz

l

(︂
1− x2

)︂(︂
∂xx

j
)︂ (︁
∂xP

mz

l

)︁
dx ,

(26)

where the normalization constant Nlmz
≡ 2(l +

mz)!/[(2l + 1)(l − mz)!] is determined by the orthogo-
nality condition

∫︂ 1

−1

dxPmz

l (x)Pmz

k (x) = Nlmz
δlk . (27)

Note that the coefficients given by Eqs. (23)-(26) depend
on l and mz, but they are invariant under mz ↔ −mz.
After Fourier transformations, we denote the radial

part of the Fourier modes of the scalar field as Ψl,mz (r).
By using the projection method, the radial wave function
is found to satisfy the following Schrödinger-like equation
[27]

∂2r∗Ψl,mz
(r) + ω2Ψl,mz

(r) = Veff(r)Ψl,mz
(r) , (28)

where ω is the mode frequency. The effective potential
Veff(r) can be expressed as

Veff(r) = l(l + 1)
f(r)

r2
+
f(r)

r

df

dr

[︂
1 + ϵbjlmz

(︁
Aj(r)−Bj(r)

)︁]︂

+ ϵ

{︃
f(r)

r2

[︄
ajlmz

(︁
Aj(r)−Dj(r)

)︁
− cjlmz

(︁
Aj(r)− Cj(r)

)︁
−
djlmz

2

(︁
Aj(r) +Bj(r)− Cj(r) +Dj(r)

)︁
]︄

−
bjlmz

4

d2

dr2∗

[︁
Aj(r)−Bj(r)

]︁
+

1

4r2
d

dr∗

[︃
bjlmz

r2
d

dr∗

(︁
Aj(r)−Bj(r) + Cj(r) +Dj(r)

)︁]︃}︃
, (29)

which explicitly contains the coefficients given by Eqs. (23)-(26). The tortoise radius r∗ is defined as follows

dr

dr∗
= f(r)

{︃
1 +

ϵ

2
bjlmz

[︁
Aj(r)−Bj(r)

]︁}︃
. (30)
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On the above equations (29) and (30), the summations
over j are implicitly assumed. It can be seen that when
ϵ = 0, the effective potential and the whole master equa-
tion reduce to those of the Schwarzschild spacetime. In
this case, as we have mentioned, the azimuthal numbers
mz degenerate, and Eq. (28) is labeled only by l. How-
ever, in the presence of deformations, the spacetime is
no longer spherically symmetric, hence the degeneracy
among mz splits. Different values of |mz| in the range of
0 ≤ |mz| ≤ l give distinctive QNM frequencies.

IV. QNMS OF SBH-DISK MODEL

Having discussed the master equation of the scalar
field perturbations in a general deformed Schwarzschild
spacetime, we then consider the SBH-disk model whose
metric is given by Eq. (20). The SBH-disk model can
also be treated as a deformed Schwarzschild spacetime
whose deformations are caused by the thin disk. Typ-
ical mass M of the astrophysical black hole is usually
expected to dominate over the mass of the accretion disk
M. Therefore, it is natural to set ϵ = M/M and con-
sider terms up to O(M/M). As we have mentioned, in
this linear approximation, we have λext ≈ λint because
λdisk is quadratic in ϵ. The metric components of the

SBH-disk model can then be approximated as

gtt(r, θ) ≈ −f(r) (1 + 2νdisk) ,

grr(r, θ) ≈
1

f(r)
(1 + 2λint − 2νdisk) ,

gθθ(r, θ) ≈ r2 (1 + 2λint − 2νdisk) ,

gφφ(r, θ) ≈ r2 sin2 θ (1− 2νdisk) . (31)

The approximated metric (31) belongs to the class of
deformed Schwarzschild metrics of Eq. (21), as will be
shown more explicitly below.

A. Effective potential

The identification between the metrics (21) and (31) is
made by first expanding νdisk and λint in terms of |x| as
follows:

νdisk = ϵVj(r)|xj | , λint = ϵLj(r)|xj | , (32)

where Vj(r) and Lj(r) depend on m, n, and b, but are in-
dependent of ϵ. Again, the summations over j are implic-
itly imposed as before. One then identifies the weighting
functions in Eq. (21) as follows

Ak(r) = −Dk(r) = 2Vk(r) ,

Bk(r) = Ck(r) = 2Lk(r)− 2Vk(r) ,

for all k. With these mappings, one sees that the ap-
proximated metric (31) does belong to the class of met-
rics (21). As a result, the effective potential (29) can be
written as

Veff(r) = l(l + 1)
f(r)

r2
+
f(r)

r

df

dr

[︂
1 + ϵbjlmz

(︁
4Vj(r)− 2Lj(r)

)︁]︂

+ ϵ

{︄
f

r2

[︂
4ajlmz

Vj(r)− cjlmz

(︁
4Vj(r)− 2Lj(r)

)︁]︂
−
bjlmz

2

d2

dr2∗

[︁
2Vj(r)− Lj(r)

]︁
}︄
, (33)

and the definition of the tortoise radius r∗, which is given
by Eq. (30), becomes

dr

dr∗
= f(r)

{︂
1 + ϵbjlmz

[︁
2Vj(r)− Lj(r)

]︁}︂
. (34)

Note that when ϵ = 0, the spacetime recovers a pure
Schwarzschild one and the effective potential is given by

V Sch
eff (r) ≡ l(l + 1)

f(r)

r2
+
f(r)

r

df

dr
. (35)

With the master equation (28) and the effective potential
(33), we can calculate the QNM frequencies of the scalar
field perturbations of the SBH-disk model.

We first check that the effective potential, which is
ideally defined as an infinite sum in j, has a sufficiently
fast rate of convergence when increasing the summation
order j. In Fig. 2, we consider the effective potential
Veff(r) of the SBH-disk model with m = 0, n = 1, b =
10M , l = |mz| = 2, and M = 0.02M , then calculate the
radius of its peak rm with various truncation values of
j, which we defined as jt. We find that when jt ≥ 4,
the results of rm already converge very well. Therefore,
in the rest of this paper, the effective potential of the
SBH-disk model will be calculated with the summation
truncated at jt = 4.

In Fig. 3, we set m = 0, n = 2, b = 10M , and
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FIG. 2. The radius of potential peak rm calculated with vari-
ous jt at which the summation is truncated. In this figure we
choose m = 0, n = 1, b = 10M , l = |mz| = 2, M = 0.02M .
The results converge very well already at jt = 4.
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FIG. 3. The effective potentials Veff(r) of the SBH-disk model
are shown with various M/M . The presence of the disk flat-
tens the effective potential.

l = |mz| = 2. The effective potentials of SBH-disk
models are shown with respect to different values of
the disk mass M. The black curve corresponds to the
pure Schwarzschild black hole, i.e., M = 0, whose ef-
fective potential is given by V Sch

eff (r). The inset shows
the deviation of the effective potentials in the presence
of the disk with respect to the pure Schwarzschild one
(δVeff ≡ Veff − V Sch

eff ). One can see that the effective
potential is flattened in the presence of the disk. This
is consistent with the findings in Ref. [25] that the disk
provides additional gravitational attractions and makes
the horizon, as well as the effective potential as a whole,
more flattened. Also, from the inset, one finds that the
effective potential reduces to V Sch

eff (r) both near the hori-
zon and at the spatial infinity. This is also expected as
the surface density of the disk drops to zero there, as one
can see in Fig. 1. In fact, the inset of Fig. 3 also indicates
that the effective potential in the presence of the disk ac-
quires the largest deviation from the pure Schwarzschild
one near the peak rm.

Then, we explore the shape of the effective potential
within the parameter space of the disk model itself, i.e.,
m, n, and b. In Figs. 4, 5, and 6, we focus on how
the effective potentials vary with respect to the changes
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FIG. 4. The effective potentials Veff(r) of the SBH-disk model
are shown with various b/M . When b/M increases, the ef-
fective potential converges to that of the pure Schwarzschild
black hole.
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FIG. 5. The effective potentials Veff(r) of the SBH-disk model
are shown with different n. As n increases, the effective po-
tential slowly converges to the Schwarzschild one.

of b, n, and m, respectively. We find that the effective
potentials gradually reduce to V Sch

eff when increasing b
or n. On the other hand, increasing the index m would
further flatten the effective potential, as can be seen from
Fig. 6. As we have mentioned in sec. II, when keeping
M/M constant and increasing either n, b, or 1/m, the
density peak of the disk would get lower and move further
away from the black hole. Therefore, the net effects due
to the disk become weaker. It is also worth remarking
that in the presence of the disk, |δVeff| seems to always
get its largest value near the potential peak rm.

B. Scalar field QNMs

The QNM frequencies of the scalar field perturba-
tions in the SBH-disk model can be calculated by solv-
ing Eq. (28) with the effective potential (33) after im-
posing proper boundary conditions. Typical boundary
conditions for black hole QNMs require that there are
purely outgoing waves at spatial infinity and purely in-
going waves at the event horizon. The system can be
treated as a wave-scattering problem through the peak
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FIG. 6. The effective potentials Veff(r) of the SBH-disk model
are shown with different m. Increasing m makes the peak of
the surface density of the disk higher, narrower, and closer
to the black hole, thus altering the effective potential more
significantly.

of the effective potential. The whole system is dissipa-
tive because of the boundary conditions. Therefore, the
QNM frequencies in general would acquire an imaginary
part that quantifies the decay of the modes.

In this section, we focus on the cases where the effective
potential retains its single-peak structure. This can be
easily achieved when only orders of O(ϵ) are considered.
The single-peak structure of the effective potential allows
us to calculate the QNM frequencies using the third-order
Wentze-Kramers-Brillouin (WKB) method [33, 34]3. We
also make use of the asymptotic iteration method (AIM)
[40, 41] to check the consistency of the results. In this
section, we shall focus on the fundamental modes with
l = |mz| because the fundamental modes have the longest
decay time and hence are more astrophysically relevant.
In addition, our numerical results suggest that changing
|mz| only shifts the frequencies very weakly as compared
to the frequency shifts generated by other model param-
eters.

The complex planes of QNM frequencies within some
parameter space are shown in Fig. 7. In each panel, the
three branches correspond to the complex QNM frequen-
cies with multipole numbers l = 2, l = 4, and l = 6, from
left to right, respectively. For each branch in the top
panel, we fix the set of parameters {m,n, b} as that in
Fig. 3 and use the third-order WKB method to calcu-
late the QNM frequencies with respect to the disk mass,
which is chosen to be M = 0, 0.02M , 0.04M , 0.06M ,
0.08M , and 0.1M (black points from top to bottom).
The green (magenta) points are the results calculated
using AIM, with disk mass M = 0 (M = 0.1M). In
this case, the topmost points in each branch correspond
to the QNM frequencies of a pure Schwarzschild black

3 The WKB method for calculating black hole QNMs has been ex-
tended to higher orders [35–38]. We refer the readers to Ref. [39]
for the review of the method and, in particular, its range of ap-
plicability.
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FIG. 7. The QNM frequencies of the SBH-disk model with
different choices of the parameters. The frequencies are calcu-
lated using the third-order WKB method (black points) and
AIM (colored points). (Top) M varies from 0 to 0.1M (from
top to bottom in each branch) with other parameters {m,n, b}
fixed as those in Fig. 3. The green and magenta points cor-
respond to M/M = 0 and 0.1, respectively. (Bottom) b/M
varies from 5 to 25 (from bottom to top in each branch) with
other parameters {m,n,M} fixed as those in Fig. 4. The
green and magenta points correspond to b/M = 5 and 25,
respectively. The arrows indicate the direction along which
the referred parameters increase.

hole. In the bottom panel of Fig. 7, we fix the set of
parameters {m,n,M} as that in Fig. 4, and vary only
b = 25M , 20M , 15M , 10M , and 5M (black points from
top to bottom) for each branch. The green (magenta)
points are the results calculated using AIM, with b = 5M
(b = 25M).
From Fig. 7, one first sees that the WKB method

and AIM give quite consistent results, particularly in the
regime of large l where the WKB method is expected to
be accurate. Second, increasing the disk mass M would
reduce the values of ωR and |ωI | 4. In addition, given
a non-zero M, the pure Schwarzschild results can be re-
covered when b→ ∞. Reducing the value of b decreases
the values of ωR and |ωI |, as compared with the pure
Schwarzschild case. This is consistent with our previ-
ous finding that when b increases, the effective potential
gradually reduces to V Sch

eff .
In fact, after a careful examination of the parameter

space, we find that the presence of a thin disk would al-

4 The change of ωR in each branch may not be easily seen in Fig. 7.
See Fig. 8 for more details.
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FIG. 8. The l = 2 QNM frequencies of the SBH-disk model.
The solid curve shows the results of fixing {m,n, b} as in
Fig. 3, while varying M/M from 0 to 0.1 (right to left). The
cross corresponds to the pure Schwarzschild results (M = 0).
The colored points show the results of fixingM/M = 0.02 and
other parameters except for the one indicated in the legend.
The arrows indicate the direction along which the referred
parameters change.

ways reduce the values of ωR and |ωI |, as long as M/M
stays reasonably small and the index m remains O(1).
In such cases, the validity of the first-order approxima-
tion used to derive the effective potential (33) is ensured.
Moreover, the effective potential has a single-peak struc-
ture, whose shape monotonically deviates from the pure
Schwarzschild one. In Fig. 8, we focus on l = 2 and in-
vestigate the QNM frequencies in the parameter space
{m,n, b,M}. The solid curve shows the results of fix-
ing m = 0, n = 2, b = 10M , and varying M/M from
0 to 0.1. The cross indicates the pure Schwarzschild fre-
quency M = 0. The colored points and open circles show
the results of fixing M/M = 0.02 and other parameters
except for those indicated in the legend. From Fig. 8,
we find that the larger the parameters b (red circle) or n
(green circle) are, the closer the QNM frequencies are to
the Schwarzschild one. On the other hand, increasing m
would reduce ωR and |ωI |.

Another important observation from Fig. 8 is that al-
most all the colored points are nicely lined along the black
curve. Although the SBH-disk model has a large param-
eter space {m,n, b,M, l,mz}, there seems to be a univer-
sal relation that the QNM frequencies of the model have
to obey. We also consider other multipole numbers l and
a universal relation seems to exist among the modes, as
can be seen in Fig. 9. A similar trend of QNM shifts
also appears in the model in which the black hole space-
time is superposed with a spherically symmetric matter
distribution [16, 42], indicating that the relation may be
really universal in the sense that it is insensitive to the
matter configuration in the distribution. In general, the
universal relation inevitably implies a strong degeneracy
among intrinsic disk parameters. However, the relation
could be helpful to distinguish the disk effects from those
contributed by other putative external parameters not
belonging to the disk model. For example, if the black
hole QNM frequencies are found to be away from this

universal relation, e.g, they are not lined along the black
curve in Fig. 9, such a frequency shift must be induced by
effects other than the disk contributions. In fact, several
quantum-corrected black hole models predict larger val-
ues of ωR [43–49], hence the QNMs of the models would
not be lined on the black curve. The quantum parame-
ters in these models are thus robustly disentangled from
the disk effects, hence enhancing the possibility of test-
ing these quantum-corrected black hole models through
black hole spectroscopy.
Having said that, if there does exist a universal rela-

tion, one should still be careful with the range of its va-
lidity. In particular, from Fig. 9, the relation seems not
valid anymore when one keeps increasing m or M. In-
deed, disk models with sufficiently large m and M could
acquire a very dense and narrow peak in the density pro-
file outside the black hole, resembling a flattened torus
or ring rather than a disk. This extreme density pro-
file could largely alter the shape of the effective poten-
tial, including the possibility of generating extra peaks
outside the original one (see Fig. 10 for an example).
If this happens, pseudospectral instability may be trig-
gered, which would totally destroy the QNM spectrum
[13] and the universal relation would not be valid any-
more. In fact, when the second peak appears in the ef-
fective potential, gravitational echoes following the main
sinusoidal-decaying phase may appear in the time do-
main signals. These echoes correspond to the long-lived
modes which are trapped between the potential barriers
before they slowly leak through the outer one. However,
we would like to emphasize that the possibility of hav-
ing multiple peaks in the effective potential has to be
treated with great care. This is because increasing the
disk mass M would, at some point, violate the validity of
the first-order approximations from which we derive the
effective potential (33). In addition, although all energy
conditions discussed at the end of sec. II hold for the
disk parameters considered in Fig. 10, for high m the
density peak is located around the Schwarzschild value
of the ISCO radius. Thus, for the most part, those disks
would not be stable. Therefore, the double-peak struc-
ture in the effective potential demonstrated in Fig. 10
may have issues regarding its theoretical and physical
viability. Therefore, we will not discuss it more in the
present paper.

V. QNMS IN EIKONAL LIMITS

Consider a test field propagating in curved spacetimes.
In the geometric optics approximation, the wavelength of
the field is assumed to be much smaller than any other
length scale in the system. In the leading order of this
approximation, sometimes also called eikonal approxima-
tion, the equations of motion of the propagating field
share the same form as those of the freely moving pho-
tons. When adopting the approximation to black hole
spacetimes, it is well-known that the eikonal black hole
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FIG. 9. The ratio of the QNM frequencies of the SBH-disk
model with various parameter choices, with respect to the
Schwarzschild QNM frequencies ωSch. The black (l = 2),
orange (l = 4), and red (l = 6) continuous curves show the
results of varying M/M from 0 to 0.1. The cross located at
the coordinate (1, 1) corresponds to the pure Schwarzschild
results (M = 0). The circular, rectangular, and triangular
points correspond to l = 2, l = 4, and l = 6, respectively.
The parameter sets chosen for the points are referred to by
the colors as those in Fig. 8. The thin dashed line with a
slope equal to one is shown for reference.
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FIG. 10. The effective potential Veff(r) of the SBH-disk model
with b = 10M , n = 3, m = 10, l = |mz| = 2. In some cases,
the disk density is huge enough to induce multiple peaks in
the effective potential (green).

QNMs have some properties that can be directly linked
to the photon orbits in such a spacetime. More explic-
itly, one can identify the so-called eikonal correspondence
between the eikonal QNMs and the bound photon orbits
around the black hole.

In a static and spherically symmetric black hole space-
time, the QNMs are determined up to their multipole
number l because the azimuthal numbers mz degener-
ate. As for the bound photon orbits, it turns out that all
the bound photon orbits in this case are circular orbits
and have a single radius, called the photon sphere [50].
In this simple spacetime configuration, the eikonal cor-
respondence can be identified straightforwardly through
the fact that the peak of the effective potential of QNMs
of l ≫ 1 is precisely at the photon sphere. Based on
this identification, the real and the imaginary parts of
the large-l QNMs would correspond to the orbital fre-

quency and the Lyapunov exponent of photons on the
photon sphere, respectively [51]. The eikonal correspon-
dence can be extended to rotating black hole spacetimes
[52, 53], black holes with multiple photon spheres [54],
and even deformed black hole spacetimes [27]. The pos-
sibility of testing eikonal correspondence through black
hole observations has been proposed in Ref. [55].
When the black hole is slightly deformed, as the SBH-

disk model considered in this paper, the QNM equations
depend on both l and mz. Therefore, the identification
of the eikonal correspondence has to be carried out with
care. In fact, for the SBH-disk model, circular orbits
only exist at the equatorial plane. Any inclined bound
photon orbits would acquire θ-dependent deformations
such that they do not have a constant radius. In Ref. [27],
it has been demonstrated that the eikonal correspondence
of deformed Schwarzschild black hole spacetimes can be
identified by defining the averaged radius of the bound
photon orbits along one complete period. More explicitly,
the averaged radius would correspond to the peak of the
effective potentials of QNMs with l ≫ 1 and arbitrary
mz.
In this section, we will investigate the eikonal corre-

spondence for the SBH-disk model. Specifically, we will
consider the equatorial eikonal modes (l = |mz| ≫ 1) and
the polar eikonal modes (mz = 0 and l ≫ 1). The results
obtained in this section can be treated as a consistency
check with those exhibited in Ref. [27].

A. The equatorial modes l = |mz|

When l = |mz|, the coefficients (23)-(26) can be ex-
pressed as

a2kll = a2kl−l =
l(2l + 1)

2
Xeven(l, k) ,

b2kll = b2kl−l =
2l + 1

2l + 2k + 1
Xeven(l, k) ,

c2kll = c2kl−l =
l(2l + 1)(2k − 1)

2(2l + 2k + 1)
Xeven(l, k) ,

d2kll = d2kl−l = − 2kl(2l + 1)

2l + 2k + 1
Xeven(l, k) ,

a2k+1
ll = a2k+1

l−l =
l(2l + 1)

2
Xodd(l, k) ,

b2k+1
ll = b2k+1

l−l =
2l + 1

2l + 2k + 1
Xodd(l, k) ,

c2k+1
ll = c2k+1

l−l =
l(2l + 1)(2k − 1)

2(2l + 2k + 1)
Xodd(l, k) ,

d2k+1
ll = d2k+1

l−l = − 2kl(2l + 1)

2l + 2k + 1
Xodd(l, k) , (36)

where k are non-negative integers, and

Xeven(l, k) ≡
Cl+k

k

C2l+2k
2k

, Xodd(l, k) ≡
C2l

l

4lCl+k
k

, (37)
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where Ci
j are the binomial coefficients. Therefore, in the

eikonal limit l ≫ 1, only the coefficients a0ll and a0l−l
dominate and read

a0ll = a0l−l ≈ l2 . (38)

The effective potential (33) of the SBH-disk model can
thus be approximated as

Veff(r) ≈ l2
f(r)

r2
[︁
1 + 4ϵV0(r)

]︁
. (39)

In this case, the eikonal QNMs with l = |mz| ≫ 1 cor-
respond to the photons that undergo bound circular mo-
tion on the equatorial plane. According to Ref. [27],
the radius of these orbits is determined by the root of
∂r(gtt/gφφ)x=0 = 0. For the SBH-disk model with ap-
proximated metric (31), this equation can be written as

∂r

[︃
f(r)

r2
(1 + 4νdisk)

]︃

x=0

= 0 , (40)

which is precisely the equation that determines the peak
of the effective potential (39) for l = |mz| ≫ 1 because
νdisk|x=0 = ϵV0.

B. The polar modes mz = 0

When mz = 0, the dominant coefficients in the eikonal
limit l ≫ 1 are

cjl0 ≈

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

− 1

4k
C2k

k l2 , if j = 2k

− 4k+1l2

π(k + 1)C2k+2
k+1

, if j = 2k + 1 .

The effective potential (33) is then approximated as

Veff(r) ≈ l2
f(r)

r2

{︄
1 + ϵ

∞∑︂

k=0

[︄
C2k

k

4k
(4V2k − 2L2k)

+
4k+1

π(k + 1)C2k+2
k+1

(4V2k+1 − 2L2k+1)

]︄}︄
. (41)

Note that the last term on the right-hand side comes
from the terms with odd j.

The peak of the effective potential (41) can also be ob-
tained through the calculations of photon geodesic equa-
tions. Consider the polar photon orbits on the photon
sphere around the Schwarzschild black hole. Those or-
bits have zero azimuthal angular momentum Lz and re-
peatedly reach the poles x = ±1. When the spacetime is
deformed, i.e., ϵ ̸= 0, these polar orbits would also be de-
formed such that ṙ = O(ϵ) and Lz = O(ϵ), where the dot
denotes the derivative along the geodesic with respect to
the affine parameter λ. Up to the first-order of ϵ, the
radial component of the geodesic equations

d

dλ

(︁
gµν ẋ

ν
)︁
=

1

2

(︁
∂µgαβ

)︁
ẋαẋβ (42)

can be written as

d

dλ
(grr ṙ) =

1

2

E2

gtt
∂r ln

⃓⃓
⃓⃓ gtt
gθθ

⃓⃓
⃓⃓+O

(︂
ϵ2
)︂
, (43)

where E is the energy of photons. Following Ref. [27],
we assume that the deformed orbits remain periodic and
form a class of limit cycles in the phase space. We can
then integrate Eq. (43) along a closed loop along λ. We
then obtain

o(ϵ) ∝
∫︂ 2π

0

dθ∂r

(︃
gtt
gθθ

)︃

∝
∫︂ 2π

0

dθ∂r

{︄
f(r)

r2

[︃
1 +

(︁
4Vj(r)− 2Lj(r)

)︁ ⃓⃓
⃓cosj θ

⃓⃓
⃓
]︃}︄

,

(44)

with j a dummy index standing for summations over all
non-negative integers. Because of the absolute value of
cosj θ, both even and odd powers of j contribute to the
integration5. One can eventually get

∂r

{︄
f(r)

r2

[︄
1 + ϵ

∞∑︂

k=0

(︄
C2k

k

4k
(4V2k − 2L2k)

+
4k+1

π (k + 1)C2k+2
k+1

(4V2k+1 − 2L2k+1)

)︄]︄}︄
= o(ϵ) ,

(45)

and then see that the root of Eq. (45) coincides with
the peak of the effective potential (41). In Ref. [27], it
has been proved that the root of Eq. (45) is precisely the
averaged radius of the polar photon orbits along full peri-
ods. The averaged radius of bound photon orbits, both in
the cases of equatorial orbits (40) and polar orbits (45),
can be captured by their corresponding effective poten-
tials of QNMs in the eikonal limit, i.e., Eqs. (39) and
(41), respectively. This is the manifestation of eikonal
correspondence between bound photon orbits and high-
frequency QNMs. Here, we show explicitly that even
in the presence of spacetime deformations induced by a
gravitating thin disk, as long as the disk mass is much
smaller than the black hole mass, i.e., ϵ≪ 1, the eikonal
correspondence can be identified through the definition
of the averaged radius of bound photon orbits. This is
consistent with the results of Ref. [27].

VI. CONCLUSIONS

In this paper, we consider a recently obtained solution
of deformed Schwarzschild black holes (SBH-disk model)

5 In Ref. [27], the metric functions are expressed in series of cos θ
without absolute values. Therefore, in that case, only even pow-
ers of j would contribute.
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[25] and investigate the QNMs of a massless scalar field of
this spacetime. The SBH-disk model describes the space-
time geometry of a Schwarzschild black hole encircled by
a gravitating thin accretion disk. The superposed space-
time is an exact solution to GR and the gravitational field
is regular everywhere outside the event horizon. In par-
ticular, the presence of the gravitating thin disk breaks
the spherical symmetry, which is usually assumed in the
literature when considering the gravitating fluid in the
environment around astrophysical black holes.

The lack of spherical symmetry of the SBH-disk model
inevitably leads to the computational complexity of
QNM frequencies because the angular and radial sec-
tors of the QNM master equation are highly coupled.
We overcome this difficulty by assuming that the disk
mass M is much smaller than the black hole mass M .
Up to the first order of M/M , one can obtain the mas-
ter equation that allows us to investigate the frequency
shifts of QNMs in the presence of the disk. In particular,
the radial sector of the master equation can be recast in
a Schrödinger-like form in which the effective potential
Veff(r) can be defined unambiguously and it reduces to
the Schwarzschild one V Sch

eff (r) in proper limits.

Besides the black hole mass M , the SBH-disk model
contains four additional parameters, which essentially
control the shape of the surface density profile for the
disk. Taking a physically reasonable density profile, we
find that the disk gravity would flatten the effective po-
tential Veff(r) as compared with the Schwarzschild one.
This behavior is robust among different choices of disk
parameters. Furthermore, the presence of the gravitat-
ing disk would lower the real part of the QNM frequen-
cies, while increase the damping time. In particular, the
shifts of the real and imaginary parts with respect to their
Schwarzschild counterparts, seem to follow a universal re-
lation in the sense that they are shifted toward the same
direction on the complex plane by the same amount in
the presence of the disk (Fig. 9). Similar results also ap-
pear when the matter around the black hole is modeled
based on the assumption of spherical symmetry [16, 42].
Although still far away from a rigorous proof, if such a
universal relation is indeed robust against the changes
of matter configuration around the black hole, it would
aid the discrimination between the disk effects on the
QNM spectrum and those contributed by other putative
physics beyond GR. This line of research deserves further
investigation.

In addition to QNM frequencies, we investigate two
special kinds of bound photon orbits around the SBH-
disk model. Since the equatorial symmetry is still pre-
served, the circular photon orbits on the equatorial plane
exist, and the radius of the orbits is precisely at the peak
of the effective potential of the eikonal equatorial QNMs.
On the other hand, each polar orbit has a θ-dependent
radius because of the spacetime deformations. Assuming
periodicity of the orbits, we find that the averaged radius
of the orbits along a full period would correspond to the
peak of the effective potential of the eikonal polar modes.

This result is consistent with that found in the literature.
In order to directly connect to the ringdown phase of

gravitational waves, extending the present work to grav-
itational perturbations is necessary6. In addition, the
physical properties of the SBH-disk model are not much
explored so far. These include a detailed investigation of
the geodesic dynamics of photons and massive particles.
An extension towards a more realistic situation would be
to include rotation of the black hole, the disk, or both in
the black-hole–disk model and in the analysis of QNMs.
We leave these interesting issues for future work.
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Appendix A: Physical properties of the disks

To describe the matter content of infinitesimally thin
disks, we have to introduce the stress-energy tensor on a
singular hypersurface. Using the formalism developed by
Israel [57], the surface stress-energy tensor of a singular
layer of matter located at z = const reads [58]

Sαβ = −
√
gρρ

8π

(︄
gαβ
gρρ

)︄

,z

. (A1)

This expression holds for any axially symmetric and sta-
tionary spacetime in Weyl coordinates. If the spacetime
is static described by a metric (3), the stress-energy ten-
sor (A1) has only two non-trivial components which read

Stt =
1

2π
e3ν−λν,z(1− ρν,ρ) , (A2)

Sφφ =
1

2π
e−λ−νρ3ν,zν,ρ , (A3)

where the right-hand sides are evaluated in the singular
hypersurface, i.e., in the equatorial plane z = 0 where
our disk lies. Consider a static observer equipped with a
tetrad

eα(t) =
1√−gtt

δαt , eα(φ) =
1

√
gφφ

δαφ , (A4)

eα(ρ) =
1

√
gρρ

δαρ , eα(z) =
1√
gzz

δαz . (A5)

6 Similar analysis has been carried out in Ref. [56] in which the
matter field around the black hole is assumed not to deform
the black hole geometry at the background level, while interact
gravitationally only at the perturbation level.
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In this tetrad, we easily observe that the disk can be in-
terpreted as ideal fluid with density and azimuthal pres-
sure (measured by the static observer hovering above the
disk)

σ ≡ Sαβe
α
(t)e

β
(t) =

1

2π
eν−λν,z(1− ρν,ρ) , (A6)

P ≡ Sαβe
α
(φ)e

β
(φ) =

1

2π
eν−λρν,zν,ρ . (A7)

The relation between the z derivative of the potential
and the Newtonian surface density w(ρ) can be obtained
by integrating the Poisson equation ∆ν = 4πw(ρ)δ(z)
over the z coordinate. Assuming that the spacetime is
reflection symmetric with respect to the equatorial plane,
only the term ν,zz gives some non-zero contributions,
thus

w(ρ) =
1

2π
lim

z→0+
ν,z . (A8)

Substituting this relation into (A7) we get precisely (17).
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CHAPTER

4

TOWARDS STATIONARY
PERTURBATIONS OF BLACK

HOLES

Although the stationary and axially symmetric Einstein equations are fully inte-
grable, thus in principle all solutions are known, only a few of them have been
found in an explicit form and even fewer describe some astrophysical objects.
In Chap. 2, we already studied the simplest subclass of such spacetimes where
dragging effects associated with the rotation of matter fields were neglected. We
showed that the static problem is partially linear, the Einstein equations reduce
to the Laplace equation plus a quadrature for the only other non-trivial metric
function. In the stationary case, even in a vacuum, we have to solve the full non-
linear system of Einstein equations. That amounts to start with the choice of B
satisfying (1.10), then solve the coupled equations (1.11), (1.12) for the gravita-
tional potential ν and dragging angular velocity ω, and finally integrate (1.14)
and (1.15) to get the last metric function λ. Up to this date, there is no physical
exact solution describing the rotating black hole with some additional (rotating)
matter fields. Even the powerful generation techniques like the inverse scatter-
ing method based on the Ernst potential formulation failed so far to produce
any physically realistic explicit exact solution (Semerák, 2002a; Lenells, 2011),
see also the topical review (Semerák, 2002b) and references therein. Hence, one
has to typically resort to either numerical solutions of the Einstein equations,
or some approximate methods, like perturbations. We are going to address the
latter direction here.

Consider a known background solution ν0, ω0, λ0 (we choose B = 1 for simplic-
ity), then the linearized vacuum Einstein equations for the perturbations ν1, ω1
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read

∇ · ∇ν1 − 1
2ρ

2e−4ν0
[︂
4ν1(∇ω0)2 − ∇ω0 · ∇ω1

]︂
= 0 , (4.1)

∇ ·
[︂
ρ2e−4ν0(∇ω1 − 4ν1∇ω0)

]︂
= 0 , (4.2)

where we already subtracted the background solution. If we assume that the back-
ground is static, in particular, if we look for a perturbation of the Schwarzschild
black hole, the Eqs. (4.1) and (4.2) decouple! Moreover, the equation for ν1 re-
duces to the Laplace equation. Thus, the static superpositions studied in Chap.
2 are also solutions of the stationary case, although they have to be supplemented
by an appropriate solution for ω1. The problem was considered already by Will
(1974) where he obtained the Green function ω1 in terms of a multipole expan-
sion. More recently, Čížek & Semerák (2017) rederived the Green function in
closed-form and provided the solution describing a light, thin and slowly rotating
finite disc around the Schwarzschild black hole1. We then studied its basic phys-
ical properties in Kotlařík et al. (2018). However, this “minimal” approach has
not led to a more general solution for the dragging ω1 so far, nor it is convenient
for the perturbations of the rotating Kerr black hole, since the equations for ν1
and ω1 do not decouple anymore.

Nevertheless, we might have more luck using techniques of the black hole
perturbation theory. We already touched the basics in Chap. 3, where we stud-
ied quasinormal modes. After the groundbreaking works of Regge & Wheeler
(1957) and Zerilli (1970), rapid development started in the 70s after Teukolsky
(1973) succeeded in separating the perturbed equations for the Petrov-type-D
spacetimes. Soon, Linet (1977) applied the Teukolsky results to the stationary
and axially symmetric case and provided an expression for calculating the Green
function of the Teukolsky equation. However, since then not many explicit solu-
tions have been found. This last chapter aims to continue in the direction that
Linet initiated. Yet, we start with a related simpler problem of the electromag-
netic field first.

The topic of the electromagnetic (Maxwell) field on a background containing a
black hole attracted a lot of attention already in the 1950s/1960s with significant
progress following the derivation of separated equations for the Maxwell field in
the previously mentioned work by Teukolsky (1973). We will revisit the problem
of the electromagnetic field sourced by a massless ring on the Kerr background, a
subject that has been extensively explored in numerous works (Petterson, 1974;
Chitre & Vishveshwara, 1975; Petterson, 1975; Linet, 1976; Bičák & Dvořák, 1976;
Bičák & Dvořák, 1977). Despite the variety of forms in which the results have
been presented, they all share a common feature: they are expressed in terms of
the multipole expansion, which exhibits rather suboptimal convergence properties
in the vicinity of the ring source. We will show how to rederive the results in the
framework of the Debye potential and present the solution in closed-form.

Both problems, the electromagnetic field on a curved background and grav-
itational perturbations, will be studied in a specific tetrad. Given the special
algebraic properties of the Kerr geometry, the tetrad formalism developed by
Newman & Penrose (1962) is ideal for the task. We will achieve even further

1Note that they choose B ̸= 1 in the paper which, however, is merely a coordinate change
(1.24) as we already know.
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simplification of the equations using the refined version due to Geroch, Held, and
Penrose (Geroch et al., 1973). In the following pages, we will introduce both
tetrad formalisms, solve equations for the electromagnetic field on the Kerr back-
ground and, at the end of the chapter, discuss the gravitational perturbations
providing an outline for a similar procedure in that case.

4.1 NP formalism
All quantities describing a certain spacetime can be expressed in terms of scalars
constructed from the projections on some tetrad. In particular, Newman & Pen-
rose (1962) introduced a set of four linearly independent null vectors lµ, nµ, mµ,
m̄µ, where lµ, nµ are real and mµ, m̄µ are complex conjugate, such that

gαβl
αnβ = −1 , gαβm

αm̄β = 1 , and other products are zero . (4.3)

They form a tetrad e µ
â ≡ (lµ, nµ,mµ, m̄µ) where the Latin indices with a hat

represent components in the tetrad frame and go through â = {l, n,m, m̄}. We
define an object

η
âb̂

≡ gαβe
α

â e β

b̂
=

⎛⎜⎜⎜⎜⎝
0 −1 0 0

−1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎟⎠ = ηâb̂ , (4.4)

which will represent the metric in the tetrad frame. In particular, for the metric
components it then follows2

gµν = ηâb̂eâµeb̂ν
= −2l(µnν) + 2m(µm̄ν) . (4.5)

The covariant derivative is determined by projections of the connection onto the
tetrad,

γ
âb̂ĉ

= e α
â e β

b̂
∇αeĉβ , (4.6)

which are commonly called the spin coefficients. From the definition, we imme-
diately see that

γ
âb̂ĉ

= −γ
âĉb̂
. (4.7)

It is useful to introduce directional derivatives along the tetrad vectors,

D ≡ lα∇α , ∆ ≡ nα∇α , δ ≡ mα∇α , δ̄ ≡ m̄α∇α . (4.8)

There is a total number of 12 complex spin coefficients defined in Tab. 4.1. The ta-
ble works as follows: e.g., the spin coefficient κ is defined as

κ ≡ −mαDlα = −mαlβ∇βlα = −γlml , etc.

In terms of the spin coefficients, we cast the Einstein equations into a set of
linear equations. We split the Riemann tensor into3

Rµνστ = Cµνστ + gµ[σRτ ]ν − gν[σRτ ]µ − 1
3Rgµ[σgτ ]ν , (4.9)

2The round brackets denote symmetrization, e.g., l(µnν) = 1
2 (lµnν + lνnµ).

3Where antisymmetrization is denoted by square brackets, e.g., A[µν] = 1
2 (Aµν − Aνµ).
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∇ −mα∇lα −1
2(nα∇lα − m̄α∇mα) m̄α∇nα

D κ ϵ π
∆ τ γ ν
δ σ β µ

δ̄ ϱ α λ

Table 4.1: Spin coefficients

where Cµνστ denotes the Weyl tensor. Since the Ricci tensor Rµν and Ricci scalar
R are fixed by the sources via the Einstein equations, the Weyl tensor represents
the degrees of freedom of pure gravitational field. In the NP tetrad formalism,
the 10 independent components of the Weyl tensor are encoded in 5 complex
scalars

ψ0 = Cαβγδl
αmβlγmδ , (4.10)

ψ1 = Cαβγδl
αnβlγmδ , (4.11)

ψ2 = Cαβγδl
αmβm̄γnδ , (4.12)

ψ3 = Cαβγδl
αnβm̄γnδ , (4.13)

ψ4 = Cαβγδn
αm̄βnγm̄δ . (4.14)

Information about the matter is in the components of the Ricci tensor

Φ00 = 1
2Rαβl

αlβ = Φ̄00 , Φ11 = 1
4Rαβ(lαnβ +mαm̄β) = Φ̄11 , (4.15)

Φ01 = 1
2Rαβl

αmβ = Φ̄10 , Φ12 = 1
2Rαβn

αmβ = Φ̄21 , (4.16)

Φ02 = 1
2Rαβm

αmβ = Φ̄20 , Φ22 = 1
2Rαβn

αnβ = Φ̄22 , (4.17)

determined by the Einstein equations (1.9) according to

Φ00 = 1
2Rαβl

αlβ = 4πTαβl
αlβ ≡ 4πTll , etc. (4.18)

4.2 GHP formalism
By making some symmetries of the NP tetrad explicit, Geroch et al. (1973) refined
the NP formalism introducing the concept of spin and boost weights. We first
define a discrete transformation ′ which swaps between the vectors of the NP
tetrad,

(lµ)′ ≡ nµ , (nµ)′ ≡ lµ , (mµ)′ ≡ m̄µ , (m̄µ)′ ≡ mµ . (4.19)

This can be used to reduce the amount of necessary spin coefficients by half with
the other half following from the prime transformation. The common choice is
to use (κ, σ, ϱ, τ, β, ϵ) and their primed counterparts

κ′ = −ν , σ′ = −λ , ϱ′ = −µ , τ ′ = −π , β′ = −α , ϵ′ = −γ . (4.20)
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Similarly, for the directional derivatives, we have

D′ = ∆ , δ′ = δ̄ . (4.21)

Locally, without any real physical changes, we are free to choose any tetrad
vectors related by the Lorentz transformations. In geometries with some preferred
null directions, it is useful to decompose the 6-dimensional group of Lorentz
transformations into a two-parameter Abelian subgroup of boosts in nl-directions
and spatial rotations in the mm̄-plane. Explicitly,

lµ → χχ̄lµ , nµ → χ−1χ̄−1nµ , mµ → χχ̄−1mµ , m̄µ → χ−1χ̄m̄µ , (4.22)

for an arbitrary complex function χ. GHP weights are defined in the following
way: any tensor field φ associated with the tetrad eµ

â , which under the change
(4.22) undergos the transformation

φ → χpχ̄qφ , (4.23)

has the weights {p, q}; we call the combination 1
2(p− q) the spin-weight while the

combination 1
2(p+ q) the boost-weight of φ. In particular, the NP tetrad vectors

have weights

lµ : {1, 1} , nµ : {−1,−1} , mµ : {1,−1} , m̄µ : {−1, 1} . (4.24)

The prime transformation and complex conjugation change the weights as
′ : {p, q} → {−p,−q} , ¯ : {p, q} → {q, p} . (4.25)

Some NP scalars (κ, σ, ϱ, τ) and their primed versions are GHP scalars of weights

κ : {3, 1} , σ : {3,−1} , ϱ : {1, 1} , τ : {1,−1} . (4.26)

However, the rest of the scalars are not GHP quantities. Similarly, the direc-
tional derivatives (4.8) do not produce well-defined GHP quantities as well. But,
they can be incorporated into GHP derivatives defined as operators acting on a
quantity of weights {p, q} as follows

Þφ = (D − pϵ− qϵ̄)φ , ðφ = (δ − pβ + qβ̄
′)φ , (4.27)

Þ′φ = (∆ + pϵ′ + qϵ̄′)φ , ð′φ = (δ̄ + pβ′ − qβ̄)φ . (4.28)

The operators Þ (“thorn”) and ð (“edth”) generate the following change of the
weights

Þφ : {p+ 1, q + 1} , ðφ : {p+ 1, q − 1} , (4.29)
Þ′φ : {p− 1, q − 1} , ð′φ : {p− 1, q + 1} . (4.30)

For completeness, we list the weights of the Weyl scalars

ψ0 : {4, 0} , ψ1 : {2, 0} , ψ2 : {0, 0} , ψ3 : {−2, 0} , ψ4 : {−4, 0} , (4.31)

and the Ricci scalars

Φ00 : {2, 2} , Φ01 : {2, 0} , Φ02 : {2,−2} , (4.32)
Φ11 : {0, 0} , Φ12 : {0,−2} , Φ22 : {−2,−2} . (4.33)

We give the full set of GHP equations in Appendix A. That includes 4 commu-
tation relations, 9 Ricci equations and 4 Bianchi identities plus their counterparts
following from the prime transformation and complex conjugation.
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4.3 Type D spacetimes and the Kerr black hole
Any vector kµ which satisfies the condition

kβkγk[ϵCα]βγ[δkσ] = 0 (4.34)

is called the principal null vector. For each spacetime, there are exactly four of
them, but one or more of the principal null vectors can coincide meaning that some
directions might be degenerate. By a number of unique principal null directions,
Petrov (1954) grouped all spacetimes into six algebraic types. The stationary
black-hole solutions belong to the Petrov type-D class, which is characterized by
the existence of two distinct principal null vectors, both having degeneracy two.
In the NP tetrad with lµ and nµ aligned with the principal null directions, ψ2
is the only non-zero component of the Weyl tensor (ψ0 = ψ1 = ψ3 = ψ4 = 0).
Also, some of the spin coefficients vanish κ = κ′ = σ = σ′ = 0 as well. The Ricci
equations for all type-D spacetimes are reduced to

Þϱ = ϱ2 , Þτ = ϱ(τ − τ̄ ′) , (4.35)
ðτ = τ 2 , ðϱ = τ(ϱ− ϱ̄) , (4.36)

Þ′ϱ = ð′τ + ϱϱ̄′ − τ τ̄ − ψ2 , (4.37)

and the Bianchi identities read

Þψ2 = 3ϱψ2 , ðψ2 = 3τψ2 , (4.38)

plus there are equations which follow from the prime transformation and the com-
plex conjugation. The commutators of the GHP operators acting on a quantity
φ of the weights {p, q} become[︂

ÞÞ′ − Þ′Þ
]︂
φ =

[︂
(τ̄ − τ ′)ð + (τ − τ̄ ′)ð′ − p(ψ2 − ττ ′) − q(ψ̄2 − τ̄ τ̄ ′)

]︂
φ , (4.39)

[Þð − ðÞ]φ =
[︂
ϱ̄ð − τ̄ ′Þ + qϱ̄τ̄ ′

]︂
φ , (4.40)[︂

ðð′ − ð′ð
]︂
φ =

[︂
(ϱ̄′ − ϱ′)Þ + (ϱ− ϱ̄)Þ′ + p(ψ2 + ϱϱ′) − q(ψ̄2 + ϱ̄ϱ̄′)

]︂
φ , (4.41)

and three more following from the complex conjugation and prime transformation
of (4.40). Combining the commutation relations with Bianchi identities and Ricci
equations leads to additional identities in general type-D spacetimes (Edgar et al.,
2009)

ϱϱ̄′ = ϱ̄ϱ′ , τ τ̄ = τ ′τ̄ ′ , Þ′ϱ = Þϱ′ , ðτ ′ = ð′τ (4.42)

and
Þτ ′ = ð′ϱ = −ϱ̄τ ′ + 2ϱτ ′ − ϱτ̄ , (4.43)

plus the primed counterpart of the last equation and the complex conjugate. In
spacetimes which admit a Killing tensor we find extra identities between the spin
coefficients (Demianski & Francaviglia, 1981)

ϱ

ϱ̄
= ϱ′

ϱ̄′ = −τ ′

τ̄
= − τ

τ̄ ′ , (4.44)
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thus from (4.43) we get

Þτ ′ = ð′ϱ = 2ϱτ ′ (4.45)

and from the commutator
[︂
ÞÞ′ − Þ′Þ

]︂
ϱ and the Ricci equation (4.37) we obtain

Þ′ϱ = ϱϱ′ + τ(τ ′ − τ̄) − 1
2ψ2 − ϱ

2ϱ̄ ψ̄2 , (4.46)

ð′τ = ττ ′ + ϱ(ϱ′ − ϱ̄′) + 1
2ψ2 − ϱ

2ϱ̄ ψ̄2 . (4.47)

Such a Killing tensor, i.e., the tensor Kµν satisfying K(µν;α) = 0, exists in all non-
accelerating type D spacetimes, often referred to as the Kerr-NUT subclass. For
a more detailed survey of Killing symmetries of the black-hole related spacetimes,
follow Andersson et al. (2015).

One of the most prominent member of the non-accelerating type-D spacetimes
is the Kerr solution (1.47). The standard choice of the tetrad aligned with the
principal null directions is the so-called Kinnersley tetrad4 (Kinnersley, 1969). In
the Boyer-Lindquist coordinates (t, r, θ, ϕ) the Kinnersley vectors read

lµ = 1√
2∆

(︂
r2 + a2,∆, 0, a

)︂
, (4.48)

nµ = 1√
2Σ

(︂
r2 + a2,−∆, 0, a

)︂
, (4.49)

mµ = 1√
2(r + i a cos θ)

(︄
i a sin θ, 0, 1, i

sin θ

)︄
, (4.50)

where ∆ and Σ are defined in (1.46). Spin coefficients of the Kerr geometry in
Kinnersley tetrad are given as

ϱ = 1√
2

1
r − i a cos θ , µ = 1√

2
∆
Σ

1
r − i a cos θ , (4.51)

τ = i√
2
a sin θ

Σ , π = − i√
2

a sin θ
(r − i a cos θ)2 , (4.52)

β = − 1
2
√

2
cot θ

r + i a cos θ , α = π − β̄ , (4.53)

ϵ = 0 , γ = 0 , (4.54)

and the only non-zero component of the Weyl tensor is

ψ2 = − M

(r − i a cos θ)3 . (4.55)

4.4 Maxwell field
We begin with discussing the electromagnetic field on the Kerr background. In
the NP formalism, the Maxwell field is completely described by three complex

4Note that we adopt a boost factor
√

2 as opposed to the standard Kinnersley tetrad.
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scalars obtained from the projections of the antisymmetric electromagnetic tensor
Fµν onto the tetrad,

φ0 = Fαβl
αmβ , φ1 = 1

2Fαβ(lαnβ −mαm̄β) , φ2 = Fαβm̄
αnβ . (4.56)

Equivalently,

Fµν = 2φ0m̄[µnν] + 2φ1(n[µlν] +m[µm̄ν]) + 2φ2l[µmν] + c.c , (4.57)

where c.c. denotes complex conjugation. The scalars have the following GHP
weights

φ0 : {2, 0} , φ1 : {0, 0} , φ2 : {−2, 0} . (4.58)
Note that by applying the prime transformation, φ0 and φ2 swap, while all three
components change signs

φ′
0 = −φ2 , φ′

1 = −φ1 , φ′
2 = −φ0 . (4.59)

The Maxwell equations,

F[µν;α] = 0 , F µα
;α = 4πJµ , (4.60)

where Jµ is the four-current characterizing sources, are on the type D background
equivalent to

(Þ − 2ϱ)φ1 − (ð′ − τ ′)φ0 = 2πJl , (4.61)
(ð − 2τ)φ1 − (Þ′ − ϱ′)φ0 = 2πJm , (4.62)

plus two primed counterparts. Teukolsky (1973) showed that the equations for
φ0 and φ2 can be decoupled, in particular the component φ0 satisfies[︂

(Þ − ϱ̄− 2ϱ)(Þ′ − ϱ′) − (ð − τ̄ ′ − 2τ)(ð′ − τ ′)
]︂
φ0 = 2πJ0 , (4.63)

where the source term reads

J0 = (ð − 2τ − τ̄ ′)Jl − (Þ − 2ϱ− ϱ̄)Jm . (4.64)

The scalar φ2 satisfies the primed version of Eq. (4.63). Although φ1 also de-
couples from the other two scalars, the equation is not separable on the Kerr
background (Fackerell & Ipser, 1972). It is thus more complicated to obtain φ1
by solving the GHP Maxwell equations directly. However, we will overcome the
difficulties by finding the Debye potential of the field, see the following section.

4.4.1 Hertz and Debye potentials of the electromagnetic
field

It has been known since the 19th century that in flat spacetime, we can introduce
the so-called Hertz and Debye potentials for the Maxwell field. In the 1970s, Co-
hen & Kegeles (1974) developed a similar technique applicable to curved space-
times. In this section, we will follow their construction. In the language of
differential forms, the electromagnetic two-form

F = 1
2 Fαβdxα ∧ dxβ (4.65)
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satisfies the source-free Maxwell equations in a vacuum

dF = 0 , δF = 0 , (4.66)

where d denotes the exterior derivative and δ ≡ ∗d∗ is the coderivative obtained
from the Hodge dual operation ∗. Poincaré’s lemma ensure the existence of a
vector potential A such that F = dA. The choice of A is not unique, the vector
potential A + dχ for an arbitrary scalar field χ generate the same field. This
gauge freedom can be restricted by imposing the Lorentz gauge

δA = 0 . (4.67)

From Poincaré’s lemma, it follows that there exists a two-form H known as the
Hertz potential such that A = δH . If the second equation in (4.66) should remain
satisfied, we have to require

δF = δdδH = −δδdH = 0 , (4.68)

in other words
∆H ≡ (dδ + δd)H = 0 , (4.69)

where we have denoted the Beltrami-Laplace operator as ∆.
Let us introduce an arbitrary (“gauge”) 1-form G and 3-form W . If it holds

for H that
∆H = dG + δW , (4.70)

the two-form
F = dδH + dG = −δdH + δW (4.71)

satisfies the vacuum Maxwell equations (4.66). Note, however, that such a pro-
cedure does not yield the vector potential A in the Lorentz gauge. It is in the
so-called radiation gauge instead.

So far, the construction works for all curved spacetimes. Since the electromag-
netic field has only two degrees of freedom, we might hope for further reduction
of the problem. This can be achieved in spacetimes with a preferred direction,
in other words in spacetimes that are algebraically special. Then, we can use
the gauge freedom to align the Hertz potential with the repeated principal null
direction. As a result, we obtain only two non-zero components, which can be
incorporated into a single complex scalar function, the so-called Debye potential.

To make the construction explicit, we need to translate the above equations
into a tensorial form. The Hertz potential Hµν is defined in such a way that the
four-potential Aµ satisfying the standard relation Fµν = Aν;µ − Aµ;ν is given by

Aµ = −H ;α
αµ . (4.72)

The source-free Maxwell equations are then satisfied provided that (4.70) holds.
In the tensorial form it reads

−H ;α
µν α + (H ;α

αν µ −H α
αν;µ ) + (H ;α

αµ ν −H α
αµ;ν ) = (Gν;µ −Gµ;ν) −W ;α

αµν ,

(4.73)
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where Gµ is an arbitrary covector field and Wαµν is an arbitrary totally antisym-
metric tensor. Cohen & Kegeles (1974) showed that the following choice of the
Hertz potential with appropriate gauge tensors

Hµν = 2m[µlν]Ψ + c.c. , (4.74)
Gµ = 2(ϱmµ − τ lµ)Ψ + c.c. , (4.75)

Wαµν = 12(τ m[αlµm̄ν] + ϱ n[αlµmν])Ψ + c.c. , (4.76)

leads to a single wave equation for the complex scalar Debye potential Ψ,[︂
(Þ′ − ϱ′)(Þ + ϱ̄) − (ð − τ)(ð′ + τ̄)

]︂
Ψ̄ = 0 . (4.77)

Note that the weights of the Debye potential Ψ are {−2, 0}, thus its complex
conjugate Ψ̄ has the weights {0,−2}. We could have chosen a different component
of the Hertz potential, Ψ : {0, 0} for Hln ≡ Ψ, or Ψ : {2, 0} for Hlm ≡ Ψ which
would satisfy analogical Debye equations. The electromagnetic field then follows
from a straightforward differentiation of the Debye potential,

φ0 = −(Þ − ρ̄)(Þ + ρ̄)Ψ̄ , (4.78)
φ1 =

[︂
−Þ(ð′ + τ̄) + (τ̄ − τ ′)(Þ + ϱ̄)

]︂
Ψ̄ , (4.79)

φ2 =
[︂
−(ð′ − τ̄)(ð′ + τ̄) + λ(Þ + ϱ̄)

]︂
Ψ̄ . (4.80)

We remark that Stewart (1979) provided the same result more concisely based
on the language of spinors. A much simpler and more formal method was pro-
posed by Wald (1978) using the notion of adjoint operators. We will use Wald’s
approach when we discuss gravitational perturbations, see Sec. 4.5.2.

4.4.2 Axially symmetric Debye superpotential of the elec-
tromagnetic field

Consider the spacetime of a spinning black hole as the background and assume
that the electromagnetic field respects the symmetries, i.e., it is stationary and
axially symmetric as well. In the Kinnersley tetrad (4.48)-(4.50), the components
of the electromagnetic field can be obtained just by twice differentiating the Debye
potential Ψ. Explicitly,

φ0 = 1
2
∂2Ψ̄
∂r2 , (4.81)

φ1 = 1
2 sin θ

∂2

∂r∂θ

(︄
sin θ

r − i a cos θ Ψ̄
)︄

− i a sin θ
(r − i a cos θ)3 Ψ̄ , (4.82)

φ2 = − ∆
(r − i a cos θ)2φ0 . (4.83)

However, we will proceed in the opposite manner. We will solve the Teukolsky
equation (4.63) for φ0, which takes the following form

−∆−1 ∂

∂r

(︄
∆2 ∂φ0

∂r

)︄
− 1

sin θ
∂

∂θ

(︄
sin θ ∂φ0

∂θ

)︄
+ (cot2 θ − 1)φ0 = 4πΣJ0 . (4.84)
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With φ0 known, we can derive the Debye potential by twice integrating (4.81)
and then obtain the two remaining components φ1, φ2 from the Debye potential.
Let us look for the Debye potential, which after the differentiation of (4.81) gives
the Green function of the Teukolsky equation (4.84), i.e., it leads to the solution
of (4.84) with the source

J0 = 1
4πΣδ(r − r0)δ(cos θ − cos θ0) , (4.85)

where δ stands for the delta distribution. Linet (1979) showed that the problem
leads to an axially symmetric Green function of the Laplace equation in an aux-
iliary flat 5-dimensional space. In particular, if we define the function g(ρ, z) as

φ0 ≡ g(ρ, z) sin θ (4.86)
and transform the Teukolsky equation into the Weyl coordinates (ρ, z)5, we obtain(︄

∂2

∂ρ2 + 3
ρ

∂

∂ρ
+ ∂2

∂z2

)︄
g(ρ, z) = 1

2ρ0 sin θ0
δ(ρ− ρ0)δ(z − z0) . (4.87)

From the generalized axially symmetric potential theory (GASP) we learn that

g(ρ, z) = ρ2
0

4π sin θ0

∫︂ π

0

sin2 α

(ρ2 − 2ρρ0 cosα + ρ2
0 + (z − z0)2)3/2 dα = (4.88)

= 1
4π sin θ0

1
ρ2

⎡⎢⎣ ρ2 + ρ2
0 + (z − z0)2√︂

(ρ+ ρ0)2 + (z − z0)2
K(k)− (4.89)

−
√︂

(ρ+ ρ0)2 + (z − z0)2E(k)
]︃
, (4.90)

where K(k) and E(k) are the complete elliptic integrals of the first and second
kinds with the modulus

k =
2√

ρρ0√︂
(ρ+ ρ0)2 + (z − z0)2

. (4.91)

For a particular source J0 the field follows from the convolution

φ0 =
∫︂ ∞

0

∫︂ π

0
g(r, θ; r′, θ′)J0(r′, θ′)Σ(r′, θ′) sin θ′ dθ′ dr′ . (4.92)

The associated Debye potential, which generates the Green function of the Teukol-
sky equation for φ0, is then given by integrating (4.81). We call it the Debye
superpotential Ψg. Let us also introduce the rescaled superpotential Ξg as

Ψ̄g = sin θ∆(r)Ξg . (4.93)

With such a substitution and transformation to the Weyl coordinates, the Debye
equation is also reduced to the 5-dimensional Laplace equation for Ξg. However,
we are not looking for the Green function of the Debye superpotential. Instead,
we want to find the Debye superpotential which generates the Green function of

5Let us remind the relation between the Boyer-Lindquist coordinates (r, θ) and the Weyl
coordinates: ρ =

√︁
∆(r) sin θ, and z = (r − M) cos θ.
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the Teukolsky equation by (4.81). But since it satisfies the Laplace equation as
well, it is sufficient to know the values only on the symmetry axis ρ = 0. The
solution everywhere then follows from the integral

Ξg(ρ, z) = 2
π

∫︂ π

0
Ξg(0, z + iρ cosα) sin2 α dα . (4.94)

Since both the elliptic integrals reduce to just π/2 on the symmetry axis, the
integration of (4.81) is simple and leads to the following expression in Weyl co-
ordinates

Ξg(ρ = 0, z) = 1
4 sin θ0

√︂
(z − z0)2 + ρ2

0

z2 −M2 + a2 . (4.95)

Hence, the Debye superpotential at general (ρ, z) reads

Ξg(ρ, z) = 1
2π sin θ0

∫︂ π

0

√︂
(z + iρ cosα − z0)2 + ρ2

0

(z + iρ cosα)2 −M2 + a2 sin2 α dα . (4.96)

In Kofroň & Kotlařík (2022) we explicitly integrated (4.96) in closed-form,
analyzed the structure of the superpotential and applied the result to ring sources
on the Kerr background.

4.4.3 Ring sources on the Kerr background
With the Debye superpotential at hand, we can now derive the electromagnetic
field of specific sources. The axially symmetric and stationary four-current reads

Jµ = jt ξ
µ
(t) + jϕ ξ

µ
(ϕ) , (4.97)

where we remind the reader of the notation for the Killing vector fields ξµ
(t,ϕ). We

considered two types of sources in Kofroň & Kotlařík (2022):

• a static charged ring

jt = ĵt(r0, θ0)
Σ(r0, θ0)

δ(r − r0)δ(cos θ − cos θ0) , jϕ = 0 , (4.98)

• and an axial current loop

jt = 0 , jϕ =
ĵϕ(r0, θ0)
Σ(r0, θ0)

δ(r − r0)δ(cos θ − cos θ0) . (4.99)

The source for the Teukolsky equation reads

J0 = 1
2Σ

1
r − ia cos θ

{︄
− ∂

∂θ

[︂
jt(r, θ)(r − i a cos θ)2

]︂
+

+ i a sin θ ∂

∂r

[︂
jt(r, θ)(r − i a cos θ)2

]︂
+

+ ∂

∂θ

[︂
jϕ(r, θ) a sin θ (r − i a cos θ)2

]︂
−
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− i ∂
∂r

[︂
jϕ(r, θ)(r2 + a2) sin θ (r − i a cos θ)2

]︂}︄
,

(4.100)

from which we obtain the Debye potential by

Ψ̄ =
∫︂ π

0

∫︂ ∞

0
Ψ̄g(r, θ, r′, θ′)J0(r′, θ′)Σ(r′, θ′) sin θ′ dr′ dθ′ , (4.101)

=
∫︂ π

0

∫︂ ∞

0
Ξg(r, θ, r′, θ′)J0(r′, θ′)∆(r′) sin2 θ′ dr′ dθ′ . (4.102)

The components of the electromagnetic field follow from (4.81)-(4.83).
The results were checked against the infinite series expansion derived in Bičák

& Dvořák (1976) and showed integral curves of the reconstructed electric and
magnetic field from the point of view of the ZAMO observers.

4.5 Linearized gravitational perturbations
Now, we turn to the gravitational perturbations. Again, we will assume the Kerr
black hole as the background spacetime with the tetrad vectors lµ and nµ aligned
with the two double principal null directions of the unperturbed Weyl tensor.
The perturbation will be controlled by a small parameter ε ≪ 1. We expand the
exact metric in the powers of ε as

gexact
µν = gµν + εhµν + O(ε2) , (4.103)

where gµν stands for the background spacetime and hµν encodes the linear con-
tribution. This amounts to the perturbation of the tetrad vectors and all the NP
quantities. Unperturbed quantities will not be denoted in any special way, while
perturbed quantities will be indicated with a breve above them, e.g., l̆µ, κ̆, ψ̆2,
etc. We will be interested in the first-order perturbation, thus only keeping the
terms linear in ε.

By the direct computation of the Weyl scalars, we find the linear perturbation
of scalars ψ0 and ψ4,

−2ψ̆0 = (ð − τ̄ ′)(ð − τ̄ ′)hll + (Þ − ϱ̄)(Þ − ϱ̄)hmm−
−
[︂
(Þ − ϱ̄)(ð − 2τ̄ ′) + (ð − τ̄ ′)(Þ − 2ϱ̄)

]︂
h(lm) , (4.104)

−2ψ̆4 = (ð′ − τ̄)(ð′ − τ̄)hnn + (Þ′ − ϱ̄′)(Þ′ − ϱ̄′)hm̄m̄−
−
[︂
(Þ′ − ϱ̄′)(ð′ − 2τ̄) + (ð′ − τ̄)(Þ′ − 2ϱ̄′)

]︂
h(nm̄) . (4.105)

Detailed computation and results for the remaining Weyl scalars are given in
Appendix B.

Similarly to the Maxwell field, Teukolsky (1973) found decoupled equations for
ψ̆0 and ψ̆4. By perturbing the Bianchi identity (A.10) and the primed counterpart
of (A.13) we get

(ð′ − τ ′)ψ̆0 − (Þ − 4ϱ)ψ̆1 − 3κ̆ψ2 = 4π
[︂
(ð − τ̄ ′)T̆ ll − (Þ − 2ρ̄)T̆ lm

]︂
, (4.106)

(Þ′ − ϱ′)ψ̆0 − (ð − 4τ)ψ̆1 − 3σ̆ψ2 = 4π
[︂
(ð − 2τ̄ ′)T̆ lm − (Þ − ϱ̄)T̆mm

]︂
. (4.107)

108



Then, the perturbed Ricci equation (A.6)

(Þ − ϱ− ϱ̄)σ̆ − (ð − τ − τ̄ ′)κ̆− ψ̆0 = 0 (4.108)

combined with the identity[︂
(Þ − 4ϱ− ϱ̄)(ð − 4τ) − (ð − τ ′ − 4τ)(Þ − 4ϱ)

]︂
φ = 0 , (4.109)

valid for any GHP quantity φ of the weight {p, 0}, leads to the Teukolsky master
equation[︂

(Þ − 4ϱ− ϱ̄)(Þ′ − ρ′) − (ð − 4τ − τ̄ ′)(ð′ − τ ′) − 3ψ2
]︂
ψ0̆ = 4πT0 (4.110)

with the source term

T0 = (ð − τ̄ ′ − 4τ)
[︂
(Þ − 2ϱ̄)T̆ (lm) − (ð − τ̄ ′)T̆ ll

]︂
+ (Þ − 4ϱ− ϱ̄)

[︂
(ð − 2τ̄ ′)T̆ (lm) − (Þ − ϱ̄)T̆mm

]︂
. (4.111)

The Teukolsky equation for ψ̆4 follows by the prime transformation. However,
unlike the equation for ψ̆0, the Teukolsky equation for ψ̆4 is not separable in the
Boyer-Lindquist coordinates. The separable equation is obtained after factoring
out the term ψ

−4/3
2 ,[︂

(Þ′ − ρ̄′)(Þ + 3ϱ) − (ð′ − τ̄)(ð + 3τ) − 3ψ2
]︂
ψ

− 3
4

2 ψ̆4 = 4π ψ− 3
4

2 T4 , (4.112)

where T4 = T ′
0.

4.5.1 Gauge freedom
In any tetrad formalism, we encounter two types of gauge freedom. We are
free to change the tetrad vectors according to the Lorentz transformations, see
Sec. 4.2, and we are free to choose any coordinates as well. However, in the
perturbation theory, there is an additional complication. We deal with two kinds
of spacetimes here, the (unperturbed) background spacetime and the physical
one (including perturbations). The question which now arises is how to relate
the quantities between them. This can be done by considering a one-parameter
family of spacetimes (Mε, gε) of which (M0, g0) denotes the background and ε
ranges through some real interval starting from zero. Different spacetimes of such
a family are identified by the gauge diffeomorphism γε : M0 → Mε, where γ0 is
the identity. Consider a quantity Q0 on the background M0. Then we can define
a family of quantities Q̂ε living on the background associated with the perturbed
one Qε by the pullback γ∗

ε (Qε) ≡ Q̂ε. The first order perturbation Q̆ on M0 is
then

Q̆ ≡ dQ̂ε

dε

⃓⃓⃓⃓
⃓
ε=0

. (4.113)

However, the choice of γε is not unique. Consider another diffeomorphism
defined on the background spacetime Γε : M0 → M0 (coordinate gauge trans-
formation), and the associated gauge vector field on M0 given by

Θ ≡ dΓε

dε

⃓⃓⃓⃓
⃓
ε=0

. (4.114)
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Then the new identification γε ◦ Γε gives a new family Q̃ε = Γ∗
ε(Q̂ε) on M0 and

a new perturbation Q̆̃ related to Q̃ by

Q̆̃ = Q̃+ LΘQ0 , (4.115)

where LΘ denotes the Lie derivative along the gauge vector field Θµ.
Clearly, Q is identification gauge invariant if LΘQ = 0, that is if (i) Q0

vanishes, or (ii) Q0 is a constant scalar, or (iii) Q0 is a linear combination of
products of Kronecker deltas (Stewart et al., 1997). In particular, the metric
perturbations h ≡ dĝε

dε
|ε=0 are never gauge invariant in this sense.

But, we can always find some invariant quantities if we adopt the tetrad for-
malism and consider an algebraically special background. In the type-D space-
times, the NP vectors lµ and nµ can always be chosen in the directions along the
principal null vectors of the Weyl tensor. Hence, in particular, if the background
ψ0 and ψ4 vanish, the linear perturbations ψ̆0 and ψ̆4 are identification gauge
invariants. Moreover, ψ̆0 and ψ̆4 are also tetrad-gauge invariant as they remain
unchanged under the local Lorentz transformations of the tetrad vectors (Stewart
et al., 1997).

4.5.2 Debye (Hertz) potential
We described in Sec. 4.4.1 how to define the Hertz and Debye potentials of
the electromagnetic field in curved spacetimes. Analogous potentials can also be
introduced for gravitational perturbations. The whole business started with the
work of Cohen & Kegeles (1975) immediately followed by Chrzanowski (1975)
refining the approach in terms of factorized Green’s functions. Later, Kegeles &
Cohen (1979) provided a detailed description of their method as well. A more
concise version was published by Stewart (1979), valid for any algebraically special
spacetime. Finally, about the same time, Wald (1978) provided an elegant and
formal way how to derive the results. His approach uses simple relations between
adjoint operators. We will follow Wald’s construction. For a linear differential
operator L, its adjoint L† is formally defined for arbitrary tensor fields ψ and φ
in the following way

⟨ψ,Lφ⟩ ≡
⟨︂
L†ψ, φ

⟩︂
, (4.116)

with respect to the inner product

⟨ψ, φ⟩ =
∫︂
ψαβ...φ

αβ... dV , (4.117)

where dV is the volume element of the pertinent background spacetime. By defi-
nition, the GHP weights of tensor fields ψ and φ are such that the inner product
has weights {0, 0}. We call the operator self-adjoint if L = L†. The adjoint of the
product of two operators L1 and L2 is (L1L2)† = L†

2L
†
1. Let us formally rewrite

the Teukolsky equations into the language of operators. We consider four linear
differential operators (S, E ,O, and T ) which will have the following meaning: the
decoupling operator S maps the linearized Einstein equations E(hµν) = 0 into the
set of decoupled equations O(ψ0,4) where the Weyl scalars are formally generated
by the action of the operator T on the metric perturbation ψ0,4 = T (hµν). Hence,
formally we have

SE = OT . (4.118)
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The Einstein equations E are self-adjoint, E† = E , therefore the adjoint of
Eq. (4.118) reads

ES† = T †O† . (4.119)
Clearly, if there exists Ψ satisfying O†Ψ = 0, then S†Ψ is the solution to the Ein-
stein equations. Such a Ψ is commonly known as the Debye (or Hertz) potential.
There are two types of the Debye potential, one that starts from the Teukolsky
equation for ψ0, we will denote it as ΨIRG, and the other that starts from the
equation for ψ4 which we will denote as ΨORG. The notation reflects that the
resulting metric perturbation is in two different gauges – ingoing or outgoing
radiation gauge, see the discussion in the next section.

The Teukolsky operator O can be read out from the homogeneous Teukolsky
equation and the decoupling operator S from the source term. For the Weyl
scalar ψ0 we obtain, using (4.110) and (4.111),

O0 = (Þ − 4ϱ− ϱ̄)(Þ′ − ρ′) − (ð − 4τ − τ̄ ′)(ð′ − τ ′) − 3ψ2 , (4.120)
[S0]µν = −lµlν(ð − τ̄ ′ − 4τ)(ð − τ̄ ′) −mµmν(Þ − 4ϱ− ϱ̄)(Þ − ϱ̄)+ (4.121)

+ lµmν

[︂
(ð − τ̄ ′ − 4τ)(Þ − 2ϱ̄) + (Þ − 4ϱ− ϱ̄)(ð − 2τ̄ ′)

]︂
. (4.122)

If we begin with the Teukolsky equation for ψ4, the explicit form of both operators
can be derived from the prime operation O4 = O′

0 and S4 = S ′
0. In order to obtain

an equation for the Debye potential, we need adjoints of these operators. The
GHP scalars are all self-adjoint, but for the GHP derivatives we obtain

Þ† = −(Þ − ϱ− ϱ̄) , ð† = −(ð − τ − τ̄ ′) , (4.123)
Þ′† = −(Þ′ − ϱ′ − ϱ̄′) , ð′† = −(ð′ − τ ′ − τ̄) . (4.124)

which follow from (4.116) using the definition of the derivatives, per partes under
the integral and the covariant divergences of the NP tetrad,

∇αl
α = ϵ+ ϵ̄− ϱ− ϱ̄ , ∇αn

α = ϵ′ + ϵ̄′ − ϱ′ − ϱ̄′ , (4.125)
∇αm

α = β + β̄
′ − τ − τ̄ ′ , ∇αm̄

α = β′ + β̄ − τ ′ − τ̄ . (4.126)

Thus, the Debye equation for the gravitational perturbations reads

O†
0ΨIRG =

[︂
(Þ′ − ρ̄′)(Þ + 3ϱ) − (ð′ − τ̄)(ð + 3τ) − 3ψ2

]︂
ΨIRG = 0 , (4.127)

which is the same equation as the Teukolsky equation for ψ−4/3
2 ψ4. The other

Debye potential ΨORG will satisfy the prime counterpart

O†
4ΨORG =

(︂
O†

0

)︂′
ΨORG = 0 , (4.128)

which is the same equation as the one to be satisfied by ψ
−4/3
2 ψ̆0. Note that

since ψ0 and ψ4 has GHP weights {4, 0} and {−4, 0} respectively, the Debye
potentials ΨIRG and ΨORG must have weights {−4, 0} and {4, 0}, as required by
the definition of the adjoint.

The metric perturbation reconstructed from the Debye potential then reads

hIRG
µν =

[︂
S†

0ΨIRG
]︂

µν
+ c.c. =
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=
{︂
lµlν(ð − τ)(ð + 3τ)−

− l(µmν)
[︂
(Þ − ϱ+ ϱ̄)(ð + 3τ) + (ð − τ + τ̄ ′)(Þ + 3ρ)

]︂
+

+ mµmν(Þ − ϱ)(Þ + 3ϱ)
}︂

ΨIRG + c.c. , (4.129)

while the metric in the outgoing radiation gauge follows from the prime transfor-
mation

hORG
µν =

[︂
S†

4ΨIRG
]︂

µν
+ c.c. =

[︃(︂
S†

0

)︂′
ΨIRG

]︃
µν

+ c.c. (4.130)

The complex conjugate is added, so the metric perturbation tensor is real.
Observe now that if Ψ satisfies O†Ψ = 0, then ES†Ψ = 0, so the identity

S(ES†Ψ) = O(T S†Ψ) implies O(T S†Ψ) = 0. In other words, the perturbed Weyl
scalars reconstructed from the Debye potential are given by ψ̆I = TI

[︂
S†Ψ

]︂
µν

=
TI(hµν), where I = 0, 1, 2, 3, 4. Using (4.129) and (4.104), (4.105) they read,
explicitly,

ψ̆0 = −1
2Þ4Ψ̄IRG

, (4.131)

ψ̆1 = −1
2
[︂
Þ3ð′ + 3τ ′Þ3 + 6ϱτ ′Þ2 + 6ϱ2τ ′Þ

]︂
Ψ̄IRG

, (4.132)

ψ̆2 = −1
2
[︂
Þ2ð′2 + 4τ ′Þ2ð′ + 4ϱτ ′Þð′ + 6τ ′2Þ2 + 12ϱτ ′2Þ

]︂
Ψ̄IRG

, (4.133)

ψ̆3 = −1
2
[︂
Þð′3 + 3τ ′Þð′2 + 6τ ′2Þð′ + 6τ ′3Þ

]︂
Ψ̄IRG

, (4.134)

ψ̆4 = −1
2ð′4Ψ̄IRG + 3

2ψ2
[︂
τ ′ð − τð′ − ϱ′Þ + ϱÞ′ − 2ψ2

]︂
ΨIRG . (4.135)

The Weyl scalars which would follow from ΨORG are analogously can be deter-
mined by applying the prime transformation to the equations above, since

ψ′
I = ψ4−I , i.e. ψ′

0 = ψ4 etc. (4.136)

Notice that our results do not agree with Deadman & Stewart (2010). The authors
computed the perturbations of the Weyl scalars arising solely from the perturba-
tion of the Riemann tensor, missing the terms that follow from the perturbation
of the NP tetrad and the metric – see Appendix B for more details.

Finally, let us remark that the same procedure also works for the Maxwell
field (Wald, 1978). Recently, Aksteiner et al. (2021) showed how to proceed in
any algebraically special spacetime.

4.5.3 Ingoing and outgoing radiation gauges
Observe that the metric perturbation satisfies

lαhIRG
αβ = 0 , gαβhIRG

αβ = 0 , (4.137)
nαhORG

αβ = 0 , gαβhORG
αβ = 0 . (4.138)

These conditions are known as ingoing radiation gauge (IRG) or outgoing radia-
tion gauge (ORG). Note however that the perturbation in IRG is orthogonal to
the vector field lµ, thus there is only purely outgoing radiation present in this
gauge and, vice versa for the ORG.
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The IRG and ORG Hertz potentials are not independent. In a vacuum,
the Weyl scalars ψ0 and ψ4 are related by the Teukolsky-Starobinsky identities
(Teukolsky, 1972; Starobinskii & Churilov, 1974)

Þ4(ψ− 4
3

2 ψ̆4) = ð′4(ψ− 4
3

2 ψ̆0) − 3V ψ̆̄0 , (4.139)

Þ′4(ψ− 4
3

2 ψ̆0) = ð4(ψ− 4
3

2 ψ̆4) + 3V ψ̆̄4 , (4.140)

where the operator V is defined by its action on any GHP quantity of the weight
{p, q} as

V = −ψ− 1
3

2

⎡⎣τ ′ð − τð′ + ϱÞ′ − ϱ′Þ + p

2ψ2 + q

2
ϱψ̄2
ϱ̄

⎤⎦ . (4.141)

Since both gauges should produce the same perturbations of the Weyl scalars,
analogous identities relate the Debye potentials

Þ4ΨIRG = ð′4ΨORG + 3ψ̄
4
3
2 V̄Ψ̄ORG

, (4.142)

Þ′4ΨORG = ð4ΨIRG − 3V̄ψ̄
4
3
2 Ψ̄IRG

. (4.143)

4.5.4 Towards the Debye superpotential of the gravita-
tional perturbations

The recipe for the Debye potential is analogous to the Maxwell case (Linet, 1977).
In the Kinnersley tetrad (4.48)-(4.50), the perturbed Weyl scalars ψ̆0 and ψ̆4 given
by (4.131) and (4.135) reduce to

ψ̆0 = −1
8
∂4Ψ̄IRG

∂r4 , (4.144)

ψ̆4 = ∆2

(r − i a cos θ)4 ψ̆0 . (4.145)

Again, we are interested in the Debye potential which would generate the Green
function of the axially symmetric Teukolsky equation (4.110)

∆−2 ∂

∂r

(︄
∆3 ∂

∂r
ψ̆0

)︄
+ 1

sin θ
∂

∂θ

(︄
sin θ ∂

∂θ
ψ̆0

)︄
+ 2(2 cot2 θ − 1)ψ̆0 = 8πΣT0 ,

(4.146)
where we substitute

T0 = 1
8πΣδ(r − r0)δ(cos θ − cos θ0) . (4.147)

With the substitution
ψ̆0 ≡ g(ρ, z) sin2 θ (4.148)

and after transformation to the Weyl coordinates, the Teukolsky equation reduces
to the Laplace equation in (auxiliary) flat 7-dimensional space(︄

∂2

∂ρ2 + 5
ρ

∂

∂ρ
+ ∂2

∂z2

)︄
g(ρ, z) = 1

ρ0 sin2 θ0
δ(ρ− ρ0)δ(z − z0) . (4.149)
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The corresponding Green function is known to be

g(ρ, z) = ρ4
0

2π sin2 θ0

∫︂ π

0

sin4 α

(ρ2 − 2ρρ0 cosα + ρ2
0 + (z − z0)2)5/2 dα = (4.150)

= 1
6π sin2 θ0

k
√
ρρ0

1
ρ4

{︃[︂
(ρ2 + ρ2

0 + (z − z0)2)2 − ρ2ρ2
0

]︂
K(k2)+

+ 4ρρ0

k2

[︂
ρ2 + ρ2

0 + (z − z0)2
]︂
E(k2)

}︄
.

(4.151)

Similarly, if we substitute

Ψ̄IRG
g ≡ Ξg∆2 sin2 θ , (4.152)

the Debye equation (4.127) leads to the 7-dimensional Laplace equation for Ξg.
Thus, just like in the Maxwell case, the superpotential can be determined from
the values on the axis by integrating (4.144). We find that

Ξg(ρ = 0, z) = 1
6 sin2 θ0

(ρ2
0 + (z − z0)2) 3

2

(z2 −M2 + a2)2 , (4.153)

thus the Debye superpotential at general (ρ, z) then follows by integration

Ξg(ρ, z) = 2
π

∫︂ π

0
Ξg(0, z + i ρ cosα) sin4 α dα . (4.154)

It is again possible to find the solution of the above integration in closed-form in
(many) terms of the complete elliptic integrals. However, we leave the analysis
for the (near) future work.

Finally, let us add that the metric perturbation we reconstruct from the Debye
potential is in IRG, which is not convenient for analyzing the obtained solution
nor for comparing it with the results in the literature, e.g., Will (1974) or Čížek &
Semerák (2017). The metric perturbation in some standard form would be rather
preferable. Thus, we also should look for a specific gauge transformation which
maps the perturbation obtained from the Debye potential to some standard form
of circular metric such as (1.6), i.e. for a calibration field Θµ such that

hcircular
µν = hIRG

µν + LΘgµν . (4.155)
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Debye superpotential for charged rings or circular currents around Kerr black holes

David Kofroň∗ and Petr Kotlařík†
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V Holešovičkách 2, 180 00 Prague 8, Czech Republic

We provide an explicit, closed and compact expression for the Debye superpotential of a circular
source. This superpotential is obtained by integrating the Green function of Teukolsky Master
Equation (TME). The Debye potential itself is then, for a particular configuration, calculated in the
same manner as the φ0 field component is calculated from the Green function of the TME — by
convolution of the Green function with sources. This way we provide an exact field of charged ring
and circular current on the Kerr background, finalizing thus the work of Linet.

I. INTRODUCTION

The test electromagnetic fields on a rotating black
hole – a Kerr black hole [1] – background are of per-
petual interest for their astrophysical importance; for an
overview see [2]. Fields of stationary and axisymmetric
charge/current configurations attract our attention for
the fact that they can represent (simplified) models of
electromagnetic fields generated by accretion discs.

Yet, the task to solve Maxwell’s equations on a Kerr
background is highly nontrivial.

The most fruitful approach is a special tetrad formu-
lation based on null tetrad — Newman –Penrose (NP)
formalism [3] and its refinement Geroch –Held –Penrose
(GHP) formalism [4]. Then the Maxwell field equations
(ME) are four coupled 1st order PDEs for complex scalars
φ0, φ1 and φ2.

Due to the special algebraic properties of type D space-
times — of which the Kerr solution is a prominent mem-
ber — the Maxwell equations can be decoupled and cast
in three 2nd order partial differential equations for re-
spective NP field components. Equations for φ0 and φ2

(so-called TMEs) were found in 1972 by Teukolsky [5, 6]
while the equation for φ1 (so-called FIE) was found by
Fackerell and Ipser in 1971 [7] and elaborated recently
in [8]. In fact, the TMEs are more general since they
govern the behaviour of a test field of arbitrary spin and
has been extensively studied.

The TMEs allow us to seek for solution by method
of separation of variables and therefore are widely used.
Whether or not are the NP scalars components of the
same field (we have decoupled equations!) is answered
by the Teukolsky – Starobinsky identities (TSI) [9–11].

The task of finding an electromagnetic field of charged
ring or circular current has been pursued by many rel-
ativist during 60’s and 70’s in progressively more gen-
eral setting [12–17]. The very first attempts started with
a classical 4-potential formulation but soon the NP ap-
proach attracted more attention. TMEs are separable —

∗ d.kofron@gmail.com
† kotlarik.petr@gmail.com

thus it is easy to find a solution of φ0, φ2 corresponding
to a given source in a form of infinite series. Then the
remaining NP component φ1 has to be solved from ME
directly.
Yet another general approach for solving test fields of

arbitrary spin on type D backgrounds is to introduce the
Debye potentials. A single complex scalar function (the
only independent component of Hertz potential in a par-
ticular gauge) is enough to describe the whole test field.
This approach has been introduced in the realms of gen-
eral relativity by Cohen and Kegeles [18, 19], later elab-
orated in [20, 21] and recently developed and explained
in terms of fundamental spinor operators by Acksteiner,
Andersson and Bäckdahl in [22, 23].
The Debye potentials were used by Linet in 1979 [24]

for construction of the electromagnetic field of a station-
ary axisymmetric field on Kerr background — the theory
was established 43 years ago, but no explicit results were
given. One is not surprised because already the simplest
possible textbook example — a current loop in flat space-
time — is nontrivial since it contains elliptic integrals.
This is where we are going to proceed further.
The paper is organized as follows. We briefly introduce

the Kerr metric and the Kinnersley tetrad in Sec. II to
set up the background. The spin coefficients are for the
sake of brevity listed in Appendix A. For the same rea-
son the congruence of zero angular momentum (ZAMO)
observers, which we will later use for splitting the electro-
magnetic field into the electric E = u · F and magnetic
B = u · ⋆F field, is introduced in Appendix B. And the
elliptic integrals are defined in Appendix C.
We shortly introduce the TMEs in Sec. III and the

Debye potentials in Sec. IV. We introduce neither the NP
nor the GHP formalism since these are standard methods
nowadays and are covered in [3, 4, 22, 25].
In Sec. V we shortly recall the results of Linet

[24, 26]. He cast the TMEs under the assumptions of sta-
tionarity and axisymmetry into the form of generalized
Laplace equations and provided Green functions. He has
also shown, how to obtain the Debye potential for such
fields – using the generalized axially symmetric potential
(GASP) theory. It is easy to obtain the values of poten-
tial (which is a solution of the Laplace equation) on the
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axis; then, the solution on the whole space is defined as
a particular integral.

In Sec. VI we present the analytic solution of the De-
bye potential (which we call the superpotential). This
superpotential gives rise to to a field with φ0 given by
the Green function of the Teukolsky operator. We dis-
cuss the structure of discontinuities which we found in
this superpotential and their significance. The impor-
tance of this result is clear: a closed compact analytical
formula seems to be much better than an infinite series
expansion (which is difficult to treat numerically close to
the radius at which the source is located).

In Sec. VIA we discuss the properties and charge in-
duced by this superpotential on the Kerr black hole. Sec-
tions VIB and VIC are devoted to presentation of real-
istic physical fields of given sources: a charged ring or a
current loop. We numerically check our results against
the series expansion solutions presented in [17]. Again,
for the sake of compactness the reader is asked to refer
to this paper for particular coefficients of the series.

II. KERR BLACK HOLE

One of the most fundamental solution of the vacuum
Einstein field equations — the rotating black hole — was
discovered in 1963 by Roy Kerr [1]. Recent historical
reviews can be found in [27, 28].

The metric itself in Boyer – Lindquist coordinates reads

ds2 = −∆

Σ

(︁
dt− a sin2 θ dφ

)︁2
+

Σ

∆
dr2

+Σdθ2 +
sin2 θ

Σ

(︂(︁
a2 + r2

)︁
dφ− adt

)︂2

, (1)

with the standard definitions

∆ = r2 − 2Mr + a2 = (r − rp)(r − rm) , (2)

Σ = ρρ̄ = r2 + a2 cos2 θ (3)
ρ = r − ia cos θ . (4)

The parameters have the following meaning: M is the
mass of the black hole, Ma is its angular momentum, rp
is the position of outer black hole horizon whereas rm
is the position of inner black hole horizon. We will also
frequently use parameter β which we define as1

β =
√︁
M2 − a2 = (rp − rm)/2 . (5)

The Kinnersley NP2 tetrad (l, m, m̄, n) adapted to
the principal null directions of the Weyl tensor reads as

1 Out of parameters rp, rm,M, a, β only two are independent.
2 Notice the boost given by

√
2 in contrast to standard textbook

form. This makes the resulting expressions in terms of the Debye
potentials to appear ‘more symmetrical’.

follows

l =
1√
2∆

[︁(︁
r2 + a2

)︁
∂t +∆∂r + a∂φ

]︁
,

n =
1√
2Σ

[︁(︁
r2 + a2

)︁
∂t −∆∂r + a∂φ

]︁
,

m =
1√
2 ρ̄

(︁
ia sin θ ∂t + ∂θ + i csc θ ∂φ

)︁
.

(6)

Total electric charge Qe and magnetic charge Qm can
be calculated by integrating two-form F ∗ = F − i ⋆ F
over a closed 2-surface. This yields

iQe −Qm =
1

4π

∮︂
F ∗ . (7)

After standard reconstruction of F ∗ from the NP compo-
nents and the NP tetrad we get for surfaces of constant
t and r following form of the Gauss law:

iQe −Qm =
1

2

∫︂ π

0

−ρ a sin2 θ φ2

− 2i sin θ
(︁
r2 + a2

)︁
φ1 +

a∆sin2 θ

ρ
φ0 dθ , (8)

where we already anticipated axial symmetry.
We will also employ the Weyl coordinates which are

introduced as

z = 1/2∆′(r) cos θ , ϱ =
√
∆ sin θ . (9)

III. TEUKOLSKY MASTER EQUATION

Let us write down TME [5] for φ0 in the GHP formal-
ism as
[︁
(þ− ϱ̄− 2ϱ)

(︁
þ′ − ϱ′

)︁
− (ð− τ̄ ′ − 2τ) (ð′ − τ ′)

]︁
φ0 = J0 ,

(10)
where the sources are encoded in J0 which is given in
terms of projections of the four-current onto the null
tetrad as

J0 = (ð− 2τ − τ̄ ′) Jl − (þ− 2ϱ− ϱ̄) Jm . (11)

Once the Green function G is known the field of par-
ticular sources is then given by convolution of this Green
function G with the particular source terms J0 [26] as

φ0 =

∫︂ ∞

0

∫︂ π

0

G(r, θ, r′, θ′)J0(r
′, θ′, r0, θ0)×

Σ(r′, θ′) sin θ′ dr′dθ′ . (12)

The Green function of the Teukolsky operator (the one
on the l.h.s. of Eq. (10)) is easy to integrate and will be
provided explicitly in the next Section.
To know the whole electromagnetic field, one has to

seek for φ1 as well. And this task is considerably more
difficult. We can either (a) directly solve the ME in NP
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formalism — which are presented in Appendix D in a
simplified version for stationary and axially symmetric
field; or (b) use the Debye potentials for the electromag-
netic field. We will pursue the latter approach in Section
VI.

IV. DEBYE POTENTIAL

There exist three distinct possibilities how to choose
Debye potential for the electromagnetic field. We ad-
here to the most common one — a complex GHP scalar
function ψ̄ of GHP weight [0,−2] which solves the the
Debye equation. This equation in GHP formalism can
be written as

[︁(︁
þ′ − ϱ′

)︁
(þ+ ϱ̄)− (ð− τ) (ð′ + τ̄)

]︁
ψ̄ = 0 . (13)

The Debye potential then gives rise to the solution of
Maxwell equations. For stationary axisymmetric fields
we have

φ0 =
1

2

∂2 ψ̄

∂r2
, (14)

φ1 =
1

2 sin θ

∂2

∂r∂θ

(︃
sin θ ψ̄

ρ

)︃
− i

a sin θ

ρ3
ψ̄ , (15)

φ2 = −∆

ρ2
φ0 , (16)

where Eq. (16) results from axisymmetry and stationar-
ity.

Let us just shortly comment on another possibilities
in choosing the Debye potential. Using the Debye po-
tential with GHP weights [0, 0] does not lead to the
Laplace equation and thus is not suitable for our pur-
poses. Whereas by using the one with GHP weights
[0, 2] under the assumptions of stationarity and axisym-
metry does not lead to anything new. We can prove that
if ψ̄[0,−2] solves the Debye equation (13), then χ̄[2,0] =

∆−1ψ̄[0,−2] solves the corresponding equation for this De-
bye potential and, moreover, it gives rise to exactly the
same field.

V. GENERALIZED AXIALLY SYMMETRICAL
POTENTIAL THEORY

It is straightforward to get the Green function of TME
for φ0, φ2 since TME reduces to Laplace equation in a
fiducial flat space of dimension 2s+3 (where s is the spin
weight of the particular NP field component) under the
assumptions of axial symmetry and stationarity. This has
been done by Linet in [24, 26]. The generalized Laplace
equation is

∆sg =
1

ϱ
δ (ϱ− ϱ0) δ (z − z0) , (17)

where the Laplace operator ∆s is defined as

∆s ≡
∂2

∂z2
+

∂2

∂ϱ2
+

1 + 2s

ϱ

∂

∂ϱ
. (18)

Using GASP, Linet has provided the Green function of
Eq. (17) in term of the integral for general s. In our case,
when s = 1, we have

g =
ϱ20
2π

∫︂ π

0

sin2 α

(ϱ2 − 2ϱϱ0 cosα+ ϱ20 + (z − z0)2)
3/2

dα .

(19)
The Debye equation (13) can also be transformed to

the Laplace equation. Yet, for DE we no longer seek for
Green function. We need to find the Debye potential
(which we call superpotential in this case and denote Ψ)
of this Green function. It is given by twice integrating
Eq. (14) with φ0 = G.
Let us introduce function Ξr which is the Debye super-

potential rescaled and cast in Weyl coordinates

Ψr(r, θ) = sin θ∆Ξr(ϱ, z) . (20)

The Debye equation transformed to the Weyl coordinates
takes the form of generalized Laplace equation

∆1Ξr = 0 . (21)

In the Weyl coordinates Linet [24] obtained by simple
integration values of the function Ξr on the axis of the
symmetry

Ξr(0, z) =
π

sin θ0

√︁
(z − z0)2 + ϱ20
z2 − β2

. (22)

A general theorem ensures that the solution of Laplace
equation is in the axisymmetric case completely deter-
mined by its values on the axis. From GASP it thus
follows that the superpotential is obtained by integration

Ξr(ϱ, z) =
2

π

∫︂ π

0

Ξr (0, z + iϱ cosα) sin2 α dα

=
2

sin θ0

∫︂ π

0

√︂
ϱ20 + (z + iϱ cosα− z0)

2

(z + iϱ cosα)
2 − β2

sin2 α dα .

(23)

So far, the results of Linet.

VI. EXACT INTEGRALS

The integration of the Debye superpotential, Eq. (23),
is long, involves several steps of simplification and exten-
sive use of identities involving elliptic integrals. Therefore
we present only the results and discuss the properties of
the solution.
Although the φ0 component does not carry any in-

formation about the monopole contribution of the cen-
tral black hole, the Debye superpotential can contain
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a monopole term – it arises during integration as an inte-
gration constant. Thus, the proper value of the monopole
on the central black hole has to be evaluated later.

Let us introduce

h(z′, ϱ′) = z − z′ + i (ϱ− ϱ′) , (24)

d(z′, ϱ′) =
√︂
h(z′, ϱ′)h̄(z′, ϱ′)

=

√︂
(z − z′)2 + (ϱ− ϱ′)2 ; (25)

we may think of h as being a vector in complex plane
connecting point (z, ϱ) and (z′, ϱ′), then d is its norm.

The common form of elliptic modulus for circular

sources is

m =
4ϱϱ0

(z − z0)
2
+ (ϱ+ ϱ0)

2 . (26)

However our results will be given also in terms of com-
plementary modulus m′ = 1−m and reciprocal comple-
mentary modulus µ′ = 1/m′, explicitly

µ′(ϱ0) = 1 +
4ϱϱ0

(z − z0)
2
+ (ϱ− ϱ0)

2 , (27)

m′(ϱ0) = µ′(−ϱ0) . (28)

Let us express our desired solution Ξr of the Laplace’s
equation in terms of an auxiliary function f which is
defined as follows

f(ϱ0) =
1

ϱ2d(z0, ϱ0)

[︄
−id(z0, ϱ0)2E(µ′) + 2ϱ0 (4z − h(z0, ϱ0))K(µ′)− 4(z + z0)ϱ0Π

(︃
h(z0,−ϱ0)
h(z0, ϱ0)

⃓⃓
⃓µ′

)︃

+
2ϱ0d(β, 0)

2

β
Π

(︃
(z0 − β − iϱ0)h̄(z0,−ϱ0)
(z0 − β + iϱ0)h̄(z0, ϱ0)

⃓⃓
⃓µ′

)︃
− 2ϱ0d(β, 0)

2

β
Π

(︃
(z0 + β − iϱ0)h̄(z0,−ϱ0)
(z0 + β + iϱ0)h̄(z0, ϱ0)

⃓⃓
⃓µ′

)︃]︄
. (29)

Then, the Debye superpotential for the circular sources
Ξr reads

Ξr =
1

sin θ0

(︁
f(ϱ0) + f̄(−ϱ0)

)︁
. (30)

It is clearly a real function and has interesting structure
of discontinuities as can be seen from the contourplot in
Fig. 3. Two of these three discontinuities will be dealt
with soon.

The existence of these discontinuities arise naturally
from the behavior of elliptic integrals of the third kind
Π(n,m). Seen as a function of complex n it has a branch
cut on the interval (1,∞). When the elliptic character-
istic n crosses the real line for n > 1 it thus has a step

lim
ϵ→+0

Π(n− iϵ|m) = Π(n|m) , (31)

lim
ϵ→+0

Π(n+ iϵ|m) = Π(n|m) +
π√

1− n
√︁

1− m
n

. (32)

In our case, the discontinuities are located – in the
Weyl coordinates – at two arcs connecting the north
pole and south pole of the black hole with the source
(curves γn and γs) and a line from the source to infinity
(curve γi).

The respective circles have centers (0, zj) and radii Rj
where

zn =
1

2

z20 + ϱ20 − β2

z0 − β
, Rn =

1

2

(z0 − β)2 + ϱ20
z0 − β

,

zs =
1

2

z20 + ϱ20 − β2

z0 + β
, Rs =

1

2

(z0 + β)2 + ϱ20
z0 + β

.

(33)

(a) −β < z0 < β, β = 1 (b) z0 > β, β = 1

FIG. 1: The contourplot of the Debye superpotential Ξr
in the Weyl coordinates (ϱ, z). Discontinuities are

present along the thick blue lines: γn, γi, γs and they
divide the space into three different regions whose

characteristic function are Θn, Θi, Θs (northern, inner
and southern region). The outer horizon of the black

hole stretches on the z axis from −β to β.

We also define

rn = ϱ2 + (z − zn)
2 −R2

n ,

rs = ϱ2 + (z − zs)
2 −R2

s ,
(34)

for the purpose of definition of region functions.
The Weyl plane is divided into the north, inner and
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(a) (b)

(c) (d)

FIG. 2: Diagram showing different possibilities of the
location of discontinuities depending on the mutual

position of the horizon and the source in Weyl
coordinates. The shape of inner region has nontrivial
algebraic expression. The black hole horizon stretches
on vertical axis from −1 to 1 and the location of the
ring is denoted by a point. Wherever possible the

centers of the circles are also shown (dots on the axis).

south region with the region functions defined as

Θn = Θ(+z − z0) + Θ(−rn)Θ(−(z − z0) sign(z0 − β)) ,

Θi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Θ(− sign(zs + β)rs)Θ(sign(zn − β)rn) ,

for |zn| > β or |zs| > β

Θ(−rn) + Θ(−rs)
−Θ(− sign(zs + β)rs)Θ(sign(zn − β)rn) ,

otherwise

(35)

Θs = Θ(−z + z0) + Θ(−rs)Θ(−(z − z0) sign(z0 + β)) ,

where Θ(x) stands for Heaviside step function.
We have realized that the discontinuities across the

lines γn,γi,γs corresponds to a contribution of the De-
bye potential of monopole in one part and zero in the
other in the sense that

[Ξr] |γj = Ξj|γj , (36)

for j ∈ {n, i, s}, where [f(x)] represents the jump. Thus
we may get rid of the discontinuities across the lines γn
and γs by adding an appropriate monopole term in the

(a) (b)

FIG. 3: The contourplot of the Debye superpotential
(a) Ξ in Weyl coordinates (ϱ, z) and (b) Ψ in

Boyer – Lindquist coordinates (r, θ). Discontinuity is
still present along the line γi — thick black line. The

white regions are merely a cut-off of the values.

respective regions as

Ξ = Ξr −
4iπ

sin θ0

(β + ia)
√︁
(z0 − β)2 + ϱ20
β

ΞrΘn

+
4iπ

sin θ0

(β − ia)
√︁

(z0 + β)2 + ϱ20
β

ΞsΘs , (37)

where the normalized — corresponding to unit charge —
Debye potentials of the monopole read

Ξn = −i
√︁

(z − β)2 + ϱ2

2 (β + ia) ϱ2
, (38)

Ξi = −i z + z0
(rp + rm)ϱ2

, (39)

Ξs = +i

√︁
(z + β)2 + ϱ2

2 (β − ia) ϱ2
. (40)

The Debye superpotential Ξ remains real.
Actually the discontinuity can be removed across arbi-

trary two of these three lines, yet it has to remain present
on the third one. It has to be stressed that it is neces-
sary to remove two of these three discontinuities – if this
is not done, then the electromagnetic field component φ1

generated from this superpotential is discontinuous.
This discontinuity is caused by a ramification of a

multi-valued function. Yet, it can be also seen as a pres-
ence of distributional sources on the right hand side of
the Laplace’s equation, and we have decided to have these
sources along γi.
The function Ξ is finally sufficiently smooth across γn

and γs; but the discontinuity across γi is still present.
The Debye superpotential is

Ψ = sin θ∆(r) Ξ(r, θ) , (41)

where Ξ(ϱ, z) given by Eq. (37) has to be transformed
from Weyl coordinates to Boyer – Lindquist coordinates.
The contourplot of Ξ and Ψ are in Fig. 3.

119



For stationary axisymmetric sources we may write

J = j0∂t + j3∂φ , (42)

where j0 and j3 are functions of r and θ only.
Simplified expression for the sources of TME reads as

follows

J0 =
1

2ρΣ

[︄
− ∂

∂θ

(︁
ρ2j0

)︁
+ ia sin θ

∂

∂r

(︁
ρ2j0

)︁

∂

∂θ

(︁
a sin2 θ ρ2 j3

)︁
− i

∂

∂r

(︃(︁
a2 + r2

)︁
sin θ ρ2 j3

)︃]︄
(43)

and the Debye potential is given by convolution of the
Debye superpotential with sources as

ψ̄ =

∫︂ π

0

∫︂ ∞

0

Ψ(r, θ, r′, θ′)J0(r
′, θ′, r0, θ0)

Σ(r′, θ′) sin θ′ dr′dθ′ . (44)

We can also explicitly integrate the Green function G
of the Teukolsky operator which is

G =
sin θ

sin θ0
g , (45)

g =
d(z0,−ϱ0)

ϱ2

[︃
−E(m) +

(︃
1 +

2ϱ0ϱ

d(z0,−ϱ0)2
)︃
K(m)

]︃
.

(46)

The function G solves TME and for g we have ∆1g = 0.
It can be checked that

G =
1

2

∂2 Ψ

∂r2
, (47)

which is a consistency check following from the definition
of the superpotential.

Let us also note that the position of discontinuities
discussed so far is natural in the sense, that it is defined
by the branch cuts of respective elliptic integrals of the
third kind. But we are allowed to move the discontinu-
ities wherever is desired. Thus, they can be moved to
line r = r0 on Boyer – Lindquist coordinates (which is an
ellipse in Weyl coordinates). The reason we make this
short comment is to draw a clear theoretical connection
to the series expansion approach. In [17] the field is given
by different series expansions in regions r < r0 and r > r0

φ0 = 2
∞∑︂

l=1

al
l(l + 1)

1Yl0
d2y

(1)
l0

dx2
,

y
(1)
l0 = x(x− 1)F (l + 2, 1− l, 2;x) , for r < r0 , (48)

φ0 = 2
∞∑︂

l=1

bl
l(l + 1)

1Yl0
d2y

(2)
l0

dx2
,

y
(2)
l0 = (−x)lF (l, 1 + l, 2l + 2;x) , for r > r0 , (49)

(a) Ξ0 (b) Ξ1 (c) Ξ2

FIG. 4: The contourplot of the Debye superpotential
Ξj, j ∈ (0,1,2) in Weyl coordinates with different
positions of discontinuities. In (c) we can see the

discontinuities corresponding to the series expansion
case. The exact formulae can be found in Appendix E.

where x = r−rm
rp−rm

. Thus, this is almost ready to be twice
integrated along r to obtain the series expansion of the
Debye potential. As discussed in [17], for φ1 a different
monopole term has to be added in regions r < r0 and r >
r0, so the discontinuity is present also in this formulation.
In Fig. 4 another possible locations of discontinuities
are visualized. The respective formulae are postponed to
Appendix E.
We do not integrate the series expansion of the Debye

potential since we already have found an exact closed
solution. For particular sources, we have numerically
checked the validity of our results.

A. The Debye superpotential

The Debye superpotential is itself a Debye potential
for some electromagnetic field. What will be the electric
and magnetic charge induced on the black hole? Recall
that the charge within a topological sphere is given by
the Gauss law – Eq. (8). Using Eq. (16) this simplifies
to

iQe −Qm =

∫︂ π

0

−i sin θ
(︁
r2 + a2

)︁
φ1 +

a∆sin2 θ

ρ
φ0 dθ ,

(50)
which we would like to evaluate on the horizon.
First of all we may express the electromagnetic field in

terms of the Debye superpotential φ[Ψr]. The behavior
of Ψr on the horizon3 is of the form

Ψr = 0 + S(θ)(r − rp) +O
(︁
(r − rp)

2
)︁
. (51)

3 Keep in mind that during the “regularization” of the Debye super-
potential in Eq. (37) no charge has been added on the black hole.
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In particular we have

Ψr
.
= 0

−π

√︂
4∆(r0) sin

2 θ0 + (−2β cos θ + cos θ0 ∆′(r0))2

β sin θ sin θ0
(r−rp)

+ . . . (52)

Evaluating the flux on the horizon and simplifying the
expressions yield a simple result which can be explicitly
integrated

iQe −Qm =

∫︂ π

0

−irp(rp + rm)
∂

∂θ

(︃
sin θ ∂rΨr

ρ(rp, θ)

)︃
dθ

= −irp(rp + rm)

[︃
sin θ S(θ)

ρ(rp, θ)

]︃π

θ=0

. (53)

Thus, the total charge upon the black hole is4

Qr = iQe −Qm = −i π

β sin θ0

[︄
ρ(rp, θ)×

√︂
4∆(r0) sin

2 θ0 + (−2β cos θ + cos θ0 ∆′(r0))2

]︄π

θ=0

.

(54)

B. Charged ring

Let us consider the source of static charged ring in the
form of Eq. (42) with

j0 = ĵ0(r0, θ0)
δ (r − r0)

Σ(r0, θ0)

δ (θ − θ0)

sin θ0
, j3 = 0 . (55)

Then, the convolution of the sources with the superpo-
tential as in the Eq. (44) leads to the Debye potential of
charged ring

ψ̄ring =
ĵ0(r0, θ0)

2ρ(r0, θ0)

(︃
cot θ0 +

∂

∂θ0
− ia sin θ0

∂

∂r0

)︃
Ψ .

(56)
From this Debye potential the electromagnetic field is
easily reconstructed by differentiation. Hence, we have

φ0 = φ0[ψ̄ring] ,

φ1 = φ1[ψ̄ring] +
ering
ρ2

, (57)

φ2 = φ2[ψ̄ring] ,

where the value of the charge ering counterbalances the
charge induced on the black hole by the presence of the

4 Notice, that ρ(r, 0)ρ(r, π) = r2 + rprm.

(a) Integral curves ofE.

(b) Integral curves of B.

FIG. 5: Integral curves of of the electric E and the
magnetic B field of a charged ring (depicted by black
dot) above the black hole as measured by ZAMO in the
(r, θ) plane. The Meissner effect exhibits itself as well as
the presence of both electric and magnetic field due to
the almost extremal rotation of the black hole. The
rotation axis is horizontal and the parameters are

rp = 2, rm = 1.999, r0 = 4, θ0 = π/3.

ring. It is given by the same operator as in Eq. (56), i.e.

ering =
ĵ0(r0, θ0)

2ρ(r0, θ0)

(︃
cot θ0 +

∂

∂θ0
− ia sin θ0

∂

∂r0

)︃
Qr .

(58)
The integral lines of electric and magnetic field of a

charged ring hovering above the equatorial plane on the
Kerr background which would have been measured by
congruence of ZAMO observers are visualized in Fig. 5.
We have numerically compared the values of φ0 with

the results given in [17] as an infinite series expansion
and the results are identical (modulo normalization factor√
2π).

C. Current loop

Let the source of the electromagnetic field be an axially
symmetric current loop defined as

j0 = 0 , j3 = ĵ3(r0, θ0)
δ (r − r0)

Σ(r0, θ0)

δ (θ − θ0)

sin θ0
. (59)
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Evaluating the Eq. (12) leads to the Debye potential of
the current loop

ψ̄current = ĵ3(r0, θ0)
sin θ0

2ρ(r0, θ0)(︃
−ir0 − a sin θ0

∂

∂θ0
+ i

(︁
r20 + a2

)︁ ∂

∂r0

)︃
Ψ . (60)

Again, the results are in agreement with [17] if we set the
normalization constant ĵ3 = 2

√
2r0

√︁
∆(r0)/Υ(r0, π/2)

(in [17] the ring is only in equatorial plane).
The field can be reconstructed from the NP projections

φ0 = φ0[ψ̄current] ,

φ1 = φ1[ψ̄current] +
ecurrent
ρ2

, (61)

φ2 = φ2[ψ̄current] ,

where the monopole charge ecurrent has to be set to

ecurrent = ĵ3(r0, θ0)
sin θ0

2ρ(r0, θ0)(︃
−ir0 − a sin θ0

∂

∂θ0
+ i

(︁
r20 + a2

)︁ ∂

∂r0

)︃
Qr , (62)

if we want the black hole to be uncharged.
The integral lines of the electric and magnetic fields

which would have been measured by congruence of
ZAMO observers are visualized in Fig. 6.

VII. CONCLUSIONS

We provided compact and closed form of the electro-
magnetic Debye superpotential for circular sources on the
Kerr background. This superpotential is not unique as
the necessary discontinuities can be moved to any line
connecting the source to infinity/axis if viewed as a one-
valued function after ramification. Therefore, also the
distributional sources are not unique.

Having this superpotential at hand we discussed the
field of the charged ring and the circular current loop.

We demonstrated that our results are in agreement
with previous results obtained in a form of series.
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(a) Integral curves of E.

(b) Integral curves of B.

FIG. 6: Integral curves of the electric and the magnetic
field around the current loop (depicted by black dot)

above the black hole as measured by ZAMO in the (r, θ)
plane. The rotational axis is horizontal and the

parameters are rp = 2, rm = 1.999, r0 = 4, θ0 = π/3.

Appendix A: NP quantities of Kerr black hole

The nonzero NP spin coefficients corresponding to the
tetrad (6) are

π =
i√
2

a sin θ

ρ2
, µ =

−1√
2

∆

Σρ
,

τ =
−i√
2

a sin θ

Σ
, ϱ =

−1√
2

1

ρ
,

γ = µ+
1√
2

r −M

Σ
, β =

1√
2

cot θ

ρ̄
,

α = π − β̄ ,

(A1)

and the only nonzero Weyl scalar reads

ψ2 = −M
ρ3

. (A2)

Appendix B: ZAMO congruence

The physical interpretation of the electromagnetic field
is done by an observer who makes a local measurements.
Physical measurements in GR are done by projections of
the field onto an orthonormal tetrad. One of the most
useful congruence of observers around the Kerr black hole
are the ZAMO observers whose 4-velocity is defined by
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ua ∝ (dt)a, the congruence is thus non-twisting and, as
its name suggests, angular momentum of every particular
observer vanishes, i.e. L ≡ η · u = 0. The tetrad (u ≡
e(t)) is given by

e(t) =
1

N
(∂t + ω ∂φ) , e(r) =

√︃
∆

Σ
∂r ,

e(θ) =
1√
Σ

∂θ , e(φ) =
1

sin θ

√︃
Σ

Υ
∂φ ,

(B1)

where

N =

√︄
(η · ξ)2
η · η − ξ · ξ , (B2)

ω = − ξ · η
η · η , (B3)

Υ = ∆Σ+ r(rp + rm)
(︁
r2 + rprm

)︁
. (B4)

The scalar product of two vectors u and v is denoted as
u · v = uagabv

b. The Killing vectors of the Kerr metric
are ξ = ∂t and η = ∂φ. The projections

E(k) = e(t) · F ∗ · e(k) , for k ∈ (r, θ, φ) , (B5)

written in compact form for E = E − iB are

E(r) =
−ia sin θ∆

ρ φ0 − 2
(︁
r2 + a2

)︁
φ1 + ia sin θ ρφ2√

Υ
,

E(θ) =
r2 + a2√

∆Υ

(︃
∆

ρ
φ0 −

2ia sin θ∆

r2 + a2
φ1 − ϱ̄ φ2

)︃
,

E(φ) = − i
√
∆

ρ
φ0 −

iρ√
∆
φ2 . (B6)

Appendix C: Elliptic integrals

We use the same definition of complete elliptic integrals
as the one implemented in Wolfram Mathematica®, i.e.

E(m) =

∫︂ π/2

0

√︁
1−m sin2 θ dθ , (C1)

K(m) =

∫︂ π/2

0

1√︁
1−m sin2 θ

dθ , (C2)

Π(n|m) =

∫︂ π/2

0

1
(︁
1− n sin2 θ

)︁√︁
1−m sin2 θ

dθ . (C3)

Appendix D: Maxwell Equations in axisymmetric
stationary case

Maxwell Equations in axisymmetric stationary case
can be, using the the following rescaled NP quantities

φ0 =

√
2ρ

sin θ
φ̃0 , φ1 =

√
2

ρ2
φ̃1 , φ2 =

√
2∆

ρ sin θ
φ̃2 , (D1)

rewritten as
∂
∂θ φ̃0

sin θ
−

∂
∂r φ̃1

ρ2
= −Jl ,

∂
∂r (∆φ̃0)

ρ̄ sin θ
+

∂
∂θ φ̃1

ρΣ
= Jm ,

(D2)
∂
∂θ φ̃2

Σsin θ
+

∆ ∂
∂r φ̃1

ρ2Σ
= Jn ,

∂
∂r φ̃2

ρ sin θ
−

∂
∂θ φ̃1

ρ3
= Jm̄ .

(D3)

Appendix E: Different discontinuities location

We may express

r =
1

2

(︂
rp + rm +

√︁
(z − β)2 + ϱ2 +

√︁
(z + β)2 + ϱ2

)︂
,

r0 =
1

2

(︃
rp + rm +

√︂
(z0 − β)2 + ϱ20 +

√︂
(z0 + β)2 + ϱ20

)︃

(E1)
and then define potentials

Ξ0 = Ξr −
4iπR+

β sin θ0
ΞnΘn

−
(︃
4iπ(rp + rm)

sin θ0
Ξi +

4iπR+

β sin θ0
Ξn

)︃
Θs , (E2)

Ξ1 = Ξr −
2iπR+

β sin θ0
ΞnΘn (1 + Θ(r0 − r))

−
(︃
4iπ(rp + rm)

sin θ0
Ξi +

2iπR+

β sin θ0
Ξn

)︃
Θs , (E3)

Ξ2 = Ξr −
2iπR+

β sin θ0
ΞnΘn (1 + Θ(r0 − r))

−
(︃
4iπ(rp + rm)

sin θ0
Ξi +

2iπR+

β sin θ0
Ξn

)︃
ΘsΘ(r − r0)

+
4iπR−
β sin θ0

Θ(r0 − r)ΘsΞs , (E4)

where

R+ = (β + ia)
√︂
(z0 − β)2 + ϱ20 ,

R− = (β − ia)
√︂
(z0 + β)2 + ϱ20 .

(E5)

All of these potential represent the same field. They differ
just by the position of discontinuities — visualisations
can be found in Fig 4. And, moreover, there is still a
great freedom since one can add terms

anΞn + aiΞi + asΞs , an + ai + as = 0 , (E6)

i.e. Debye potential of field representing monopole with
vanishing charge.
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CONCLUSIONS

In this thesis, we studied the influence of the environment on the gravitational
field of a black hole. Under some simplifying assumptions, namely stationarity
(or even staticity) and axial symmetry, we obtained several closed-form solutions
describing the field of a black hole encircled by a thin disc or ring. Besides the
basic geometrical properties, we analyzed the quasinormal response of such a
non-isolated black hole.

First, we considered static spacetimes in Chap. 2, i.e. we neglected the overall
rotation present in the spacetime. The metric of such a field can be described
by just two functions: one that satisfies the linear Laplace equation (an analogue
of the Newtonian gravitational potential) and the other is given by a simple, yet
non-linear quadrature. We focused on thin-disc sources while also having their
“superposition” with a black hole in mind. These discs are thus typically empty
in their centre, having a density that is sufficiently smooth when approaching
the disc’s edges. We derived several analytical models of a black hole surrounded
by a thin disc. In some cases, we even found the complete metric, solving the
quadrature for the second metric function analytically.

In particular, we obtained several families of finite or infinite discs with poly-
nomial and power-law density profiles in Sec. 2.6.1. Previously, some of these
discs were known in terms of infinite series with slow convergence properties,
while here we provided the solution in closed form using elliptic integrals. The
second metric function has usually to be found by numerical integration, yet in
some cases it has been possible to solve the problem completely analytically. In
particular, this applies to the discs resulting from combinations of the Kuzmin-
Toomre solutions we derived in Sec. 2.6.2. They smoothly extend from the
horizon to infinity, with density appropriately vanishing at both limits, ensuring
analytical behaviour everywhere above the horizon. Additionally, we proposed
a novel method for generating thin-disc solutions in Sec. 2.6.3 using the Appell
potential as a “seed” solution. The method successfully reproduced many results
from the literature, and we were able to complete the metric for several disc
families constructed from the relativistic Morgan-Morgan discs, including their
superposition with the black hole.
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Then, we studied the QNM spectrum of a black hole encircled by a gravitating
disc in Chap. 3. To simplify the problem, we probed the geometry using a scalar
field while assuming only a small deviation from the Schwarzschild black hole,
thus keeping the mass of the disc small compared to the mass of the central black
hole. We found that for a wide range of disc parameters, the QNM frequencies
decreased while the damping time increased. Similar results were observed in the
spherically symmetric case, indicating some kind of universal behaviour. If such
a relation truly exists generically, it may help to distinguish environmental effects
from those predicted by alternative theories of gravity.

Finally, we embarked on the stationary case in Chap. 4. Here, we chose the
perturbative approach while using the tetrad formalism developed by Geroch,
Held, Newman, and Penrose. Our initial investigation involved the electromag-
netic field on a rotating black-hole background. We introduced the Debye su-
perpotential, a single complex scalar function, which yields the Green function
of the Teukolsky equation, representing the electromagnetic field of an elemental
ring source. Subsequently, we applied these findings to two specific scenarios: the
charged ring and the axial current around the Kerr black hole, see Sec. 4.4.3.
By providing closed-form solutions we expect further generalization to extended
bodies such as discs in future work. Finally, we outlined the procedure for also
defining the Debye superpotential for gravitational perturbations.

The future outlook
The immediate next steps are clear. In particular, we plan to analyze the Debye
super-potential of the gravitational perturbations. Additionally, we are eager to
find stationary analogues of the static disc solutions by perturbatively adding
rotational angular momentum to the disc or considering the Kerr black hole
instead of the Schwarzschild solution. The subsequent analysis will also involve
solving the related issue of finding the gauge transformation from the radiation
gauges to the explicitly circular-type metric (1.6).

Another exciting topic to explore further is the problem of QNMs. There are,
in fact, three directions we look forward:

1. Since astrophysical objects typically possess angular momentum, one natu-
ral extension is to consider stationary rather than static spacetimes. With
some modifications, we can apply the same method we used to find the
frequencies of QNMs in the static case. Therefore, if a suitable analytical
model of a Kerr black hole perturbed by a rotating disc is found, we intend
to perform a similar analysis of QNMs in such a spacetime.

2. The new generation of ground and space-based gravitational wave detectors
may soon allow for a precise spectroscopy of the ring-down phase. For
the spectroscopy to work reliably, the spectrum of QNMs should be stable
against perturbations. However, it has been found that the QNM spectrum
is destabilized when a second peak in the effective potential is present,
although the frequencies of (at least) the fundamental mode can still be
recovered from the time evolution. Whether ordinary matter can indeed
produce a second peak in the effective potential is still an open question,
as discussed in Chap. 3. This aspect deserves further investigation.
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3. Another avenue is to extend the analysis from scalar-field QNMs to the
behavior of gravitational perturbations. In this case, two kinds of pertur-
bations will be involved: one that describes the geometry of the deformed
black-hole spacetime and another that governs the propagation of gravita-
tional QNMs. Their mutual interaction will be the main focus.
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APPENDIX

A

GHP EQUATIONS

Here we list all GHP equations except those which follow from the prime transfor-
mation, complex conjugation or combination of both. The commutation relations
for any GHP quantity φ of weights (p, q) are[︂

ÞÞ′ − Þ′Þ
]︂
φ =

[︂
(τ̄ − τ ′)ð + (τ − τ̄ ′)ð′ − p(κκ′ − ττ ′ + ψ2 + Φ11 − Λ)−

−q(κ̄κ̄′ − τ̄ τ̄ ′ + ψ̄2 + Φ11 − Λ)
]︂
φ ,

(A.1)

[Þð − ðÞ]φ =
[︂
ϱ̄ð + σð′ − τ̄ ′Þ − κÞ′ − p(ϱ′κ− τ ′σ + ψ1)−

−q(σ̄′κ̄− ϱ̄τ̄ ′ + Φ01)
]︂
φ ,

(A.2)

[︂
ðð′ − ð′ð

]︂
φ =

[︂
(ϱ̄′ − ϱ′)Þ + (ϱ− ϱ̄)Þ′ + p(ψ2 + ϱϱ′ − σσ′ − Φ11 − Λ)−

−q(ψ̄2 + ϱ̄ϱ̄′ − σ̄σ̄′ + ψ̄2 − Φ11 − Λ)
]︂
φ .

(A.3)

The Ricci equations are

Þϱ− ð′σ = (ϱ− ϱ̄)τ + (ϱ̄′ − ϱ′)κ− ψ1 + Φ01 , (A.4)
Þϱ− ð′κ = ϱ2 + σσ̄ − κ̄τ − τ ′κ+ Φ00 , (A.5)
Þσ − ðκ = (ϱ− ϱ̄)σ − (τ + τ̄ ′)κ+ ψ0 , (A.6)

Þτ − Þ′κ = (τ − τ ′)ϱ+ (τ̄ − τ ′)σ + ψ1 + Φ01 , (A.7)
ðτ − Þ′σ = −ϱ′σ − σ̄′ϱ+ τ 2 + κκ̄′ + Φ02 , (A.8)
Þ′ϱ− ð′τ = ϱϱ̄′ + σσ′ − τ τ̄ − κκ′ − ψ2 − 2Λ , (A.9)

and the Bianchi identities

Þψ1 − ð′ψ0 − ÞΦ01 + ðΦ00 = −τ ′ψ0 + 4ϱψ1 − 3κψ2 + τ̄ ′Φ00 − 2ϱ̄Φ01−
− 2σΦ10 + 2κΦ11 + κ̄Φ02 ,

(A.10)
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Þψ2 − ð′ψ1 − ð′Φ01 + Þ′Φ00 + 2ÞΛ = σ′ψ0 − 2τ ′ψ1 + 3ϱψ2 − 2κψ3 + ϱ̄′Φ00−
− 2τ̄Φ01 − 2τΦ10 + 2ϱΦ11 + σ̄Φ02 ,

(A.11)
Þψ3 − ð′ψ2 − ÞΦ21 + ðΦ20 − 2ð′Λ = 2σ′ψ1 − 3τ ′ψ2 + 2ϱψ3 − κψ4 − 2ϱ′Φ10+

+ 2τ ′Φ11 + τ̄ ′Φ20 − 2ϱ̄Φ21 + κ̄Φ22 ,

(A.12)
Þψ4 − ð′ψ3 − ð′Φ21 + Þ′Φ20 = 3σ′ψ2 − 4τ ′ψ3 + ϱψ4 − 2κ′Φ10 + 2σ′Φ11+

+ ϱ̄′Φ20 − 2τ̄Φ21 + σ̄Φ22 ,

(A.13)

and the contracted Bianchi identities

ÞΦ11 + Þ′Φ00 − ðΦ10 − ð′Φ01 + 3ÞΛ = (ϱ′ + ϱ̄′)Φ00 + 2(ϱ+ ϱ̄)Φ11−
− (τ ′ + 2τ̄)Φ01 − (2τ + τ̄ ′)Φ10−
− κ̄Φ12 − κΦ21 + σΦ20 + σ̄Φ02 ,

(A.14)

ÞΦ12 + Þ′Φ01 − ðΦ11 − ð′Φ02 + 3ðΛ = (ϱ′ + 2ϱ̄′)Φ01 + (2ϱ+ ϱ̄)Φ12−
− (τ ′ + τ̄)Φ02 − 2(τ + τ̄ ′)Φ11−
− κ̄′Φ00 − κΦ22 + σΦ21 + σ̄′Φ10 .

(A.15)
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APPENDIX

B

PERTURBATION OF WEYL
SCALARS

In a vacuum, the Weyl tensor reduces to the Riemann tensor. The linear pertur-
bation reads

Rexact
µνρσ = Rµνρσ +εR̆µνρσ = Rµνρσ +ϵ(Rα

νρσhαµ+hµ[σ;ρ]ν +hρσ;[µν]+hν[ρ;σ]µ) . (B.1)

The Weyl scalars then follow from the projection onto the perturbed tetrad, i.e.
onto the vector lµ + εl̆

µ etc. The terms linear in ε are then

ψ̆0 = R̆αβγδl
αmβlγmδ+

+Rαβγδ l̆
α
mβlγmδ +Rαβγδl

αm̆βlγmδ+
+Rαβγδl

αmβ l̆
γ
mδ +Rαβγδl

αmβlγm̆δ ,

(B.2)

and similarly for the other Weyl scalars. We can project the perturbation of the
vectors onto the background tetrad,

l̆
â = ηâb̂l̆b̂ = ηâb̂eb̂αl̆

α
, etc, (B.3)

where eb̂α = gαβe
β
â . Consider now that the background is of the Petrov type D,

i.e. ψ0 = ψ1 = ψ3 = ψ4 = 0. Using the symmetries of the Riemann tensor we
find that ψ̆0 and ψ̆4 are given solely by the linear part of the Riemann tensor
projected onto the background tetrad. Perturbation of the other Weyl scalars,
however, contains additional terms,

ψ̆0 = R̆αβγδl
αmβlγmδ , (B.4)

ψ̆1 = R̆αβγδl
αnβlγmδ + l̆

m̄(ψ̄2 − 2ψ2) − m̆n(ψ2 + ψ̄2) , (B.5)

ψ̆2 = R̆αβγδl
αmβm̄γnδ − ψ2(l̆

l + m̆m + m̆̄
m̄ + n̆n) , (B.6)
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ψ̆3 = R̆αβγδl
αnβm̄γnδ + n̆m(ψ̄2 − 2ψ2) − m̆̄

l(ψ2 + ψ̄2) , (B.7)
ψ̆4 = R̆αβγδm̄

αnβm̄γnδ . (B.8)

If the metric in the (exact) tetrad (4.4) should remain the same, we find the
following conditions for the tetrad components

l̆
l + n̆n = hln , m̆n − l̆

m̄ = hlm , l̆
n = 1

2hll , m̆m̄ = −1
2hmm , (B.9)

m̆l − n̆m̄ = hnm , m̆̄
n − l̆

m = hlm̄ , n̆l = 1
2hnn , m̆̄

m = −1
2hm̄m̄ , (B.10)

m̆̄
l − n̆m = hnm̄ , m̆̄

m̄ + m̆m = −hmm̄ . (B.11)

These conditions are satisfied by, e.g., the following choice

l̆
â = 1

2(hln, hll,−hlm̄,−hlm) , (B.12)

n̆â = 1
2(hnn, hln,−hnm̄,−hnm) , (B.13)

m̆â = 1
2(hnm, hlm,−hmm̄,−hmm) , (B.14)

m̆̄
â = 1

2(hnm̄, hlm̄,−hm̄m̄,−hmm̄) . (B.15)

Hence, the linear contribution to the Weyl scalars are

−2ψ̆0 =
[︂
ðð − 2τ̄ ′ð

]︂
hll + [ÞÞ − 2ϱ̄Þ]hmm

− 2
[︂
Þð − τ̄ ′Þ − 2ϱ̄ð − 2ϱ̄τ̄ ′

]︂
h(lm) , (B.16)

−4ψ̆1 =
[︂
Þ′ð + (τ − τ̄ ′)Þ′ + (2ϱ′ − ϱ̄′)ð + 2τ(2ϱ′ + ϱ̄′)

]︂
hll

+
[︂
−Þð + (τ̄ ′ − τ)Þ + (2ϱ̄− ϱ)ð − 2ϱτ + 2ϱ̄τ̄ ′

]︂
h(ln)

+
[︂
−ÞÞ′ − ðð′ + (2ϱ̄′ − 3ϱ′)Þ + ϱ̄Þ′ + (2τ̄ − 3τ ′)ð + τ̄ ′ð′

+ ϱ

ϱ̄
ψ̄2 − 2 ϱ̄

ϱ
ψ2 − 2ϱϱ′ − 2ττ ′ + 2ϱ̄(2ϱ′ + ϱ̄′) + 2τ̄ ′(τ̄ + 2τ ′)

]︄
h(lm)

+
[︂
ðð + 2(τ − τ̄ ′)ð + 2τ(τ − τ̄ ′)

]︂
h(lm̄)

+
[︁
ÞÞ + 2(ϱ+ ϱ̄)Þ + 2ϱ(ϱ+ ϱ̄)

]︁
h(nm)

+
[︂
Þð′ + (3τ ′ − τ̄)Þ − ϱ̄ ð′ + 2τ ′(ϱ− ϱ̄)

]︂
hmm

+
[︂
−Þð + (τ̄ ′ − τ)Þ + (2ϱ̄− ϱ)ð + 2ϱ̄(τ̄ ′ − ϱ)

]︂
h(mm̄) , (B.17)

−6ψ̆2 =
[︄

1
2Þ′Þ′ + (2ϱ′ − ϱ̄′)Þ′ + ϱ′(3ϱ′ − 2ϱ̄′)

]︄
hll

+
[︂
−ÞÞ′ − ðð′ + (ϱ̄− ϱ)Þ′ + 2(ϱ̄′ − ϱ′)Þ + (τ̄ ′ − τ)ð′ + 2(τ̄ − τ ′)ð

− ϱ′

ϱ̄′ ψ̄2 +
(︄

3 + 2 ϱ̄
′

ϱ′

)︄
ψ2 + 4ϱϱ′ + 4ττ ′ − 2ϱ̄(2ϱ′ + ϱ̄′) − 2τ̄ ′(τ̄ + 2τ ′)

⎤⎦hln

+
[︂
−Þ′ð′ + (τ̄ − 2τ ′)Þ′ − 2(ϱ′ − ϱ̄′)ð′ + 2(ϱ̄′τ̄ − 3ϱ′τ ′)

]︂
hlm

+
[︂
2Þ′ð + 2(2τ − τ̄ ′)Þ′ + 2(ϱ′ − ϱ̄′)ð + 8ϱ′τ

]︂
hlm̄
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+
[︄

1
2ÞÞ + (2ϱ− ϱ̄) + ϱ(3ϱ− 2ϱ̄)

]︄
hnn

+
[︂
2Þð′ − 2(τ̄ − 2τ ′)Þ + 2(ϱ− ϱ̄)ð′ + 8ϱτ ′

]︂
hnm

+
[︂
−Þð + (τ̄ ′ − 2τ)Þ + 2(ϱ̄− ϱ)ð + 2(ϱ̄τ̄ ′ − 3ϱτ)

]︂
hnm̄

+
[︄

1
2ð′ð′ + (2τ ′ − τ̄)ð′ − τ ′(2τ̄ + 3τ ′)

]︄
hmm

+
[︂
−ÞÞ′ − ðð′ + 2(ϱ̄′ − ϱ′)Þ + (ϱ̄− ϱ)Þ′ + 2(τ̄ − τ ′)ð + (τ̄ ′ − τ)ð′

+ ϱ′

ϱ̄′ ψ̄2 −
(︄

3 + 2 ϱ̄
′

ϱ′

)︄
ψ2 − 4ϱϱ′ − 4ττ ′ − 2ϱ̄(2ϱ′ + ϱ̄′) + 2τ̄ ′(τ̄ + 2τ ′)

⎤⎦hmm̄

+
[︄

1
2ðð + (2τ − τ̄ ′)ð + τ(3τ − 2τ̄ ′)

]︄
hm̄m̄ , (B.18)

and ψ̆3, ψ̆4 follow from the prime transformation

ψ̆3 = ψ̆
′
1 , ψ̆4 = ψ̆

′
0 . (B.19)

The symmetric form (4.104) can be obtained from (B.16) using Ricci equations
for the type-D spacetimes.
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